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Abstract

In the first part of this thesis we present a C++ implementation of an

improved O(n log n) algorithm to compute runs, number of primitively rooted

distinct squares, and maximal repetitions, based on Crochemore’s partitioning

algorithm. This is a joint work with Mei Jiang and extends her work on the

problem. In the second part we present a C++ implementation of a linear

algorithm to compute runs based on the Main’s, and Kolpakov and Kucherov’s

algorithms following the strategy:

1. Compute suffix array and LCP array in linear time;

2. Using the suffix array and LCP array, compute Lempel-Ziv factorization

in linear time;

3. Using the Lempel-Ziv factorization, compute in linear time some of the

runs that include all the leftmost runs following Main’s algorithm;

4. Using Kolpakov and Kucherov’s approach, compute in linear time the

rest of all the runs.

For our linear time implementation, we partially relied on Jonathan Fis-

cher’s Java implementation [20].
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Chapter 1

Introduction

1.1 Introduction

Periodicity is a fundamental topic in research into algorithms on strings. Pe-

riodicity of a string allows often efficient processing and thus research of peri-

odicities finds numerous applications in bioinformatics, data compression, text

retrieval, text searching, data mining and many more. The basic element of

periodicity in a string is a substring of the form uu, a so-called square. The

expression uu indicating concatenation of the two substrings u is often abbre-

viated to u2. More complex conglomerations of squares often investigated are

maximal repetitions and even more complex runs. In this thesis, we are going to

discuss two approaches to computations of runs. The first leads to an O(n log n)

algorithm and is based on the idea of computing repetitions using refinement

of certain classes of equivalences introduced by Crochemore. The C++ im-

plementation presented here extends Crochemore’s repetition algorithm and

provides computations not only of the maximal repetitions, but also the num-

ber of primitively rooted distinct squares and of runs. An important goal of

the implementation is lowering the memory requirement during processing.
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The second approach presented here leads to a linear time implementa-

tion, based on the Main’s, and the Kolpakov and Kucherov’s algorithms. It

amounts to implementing linear-time constructions of the suffix array, longest

common prefix array, and Lempel-Ziv factorization first to get enough data for

computing runs in linear time. After the essential information is computed,

Main’s algorithm calculates all the leftmost occurrences of the runs, and Kol-

pakov and Kucherov’s algorithm then uses the leftmost runs to find all the

other runs. Considering how the memory handling effects the speed of execu-

tion, we chose C++ for the implementation of this algorithm. We partially rely

on Johannes Fischer’s Java implementation of the same algorithm [20].

This thesis is structured in the following way: the rest of this chapter

covers the basic notions and notations of Stringology. Chapter 2 introduces

the original Crochemore’s repetition algorithm, which separates the indices of

the input string into many partitions (classes of equivalence) and computes

the resulting squares and maximal repetitions in O(n log n) time. Section 2.2

introduces three O(n log n) extensions of this algorithms to compute runs due

to Franek and Jiang. All of the three algorithms compute the runs by consol-

idating the maximal repetitions as computed by the Crochemore’s algorithm.

They differ in the strategy when the consolidation takes place and in the data

structure used to collect the maximal repetitions. Section 2.3 introduces an-

other O(n log n) extension due to Franek, Jiang and myself that reduces the

working memory required and removes the overhead processing of the collection

and consolidation. The final memory requirement of the overall algorithm was

reduced from O(n log n) integers to 13n integers, even less than the most mem-

ory efficient implementation of the Crochemore’s algorithm that is 15n integers.

2
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Chapter 3 introduces Main’s algorithm, then Kolpakov and Kucherov’s algo-

rithm, and the new C++ overall implementation. Sections 3.2 to 3.4 discuss

the linear constructions of the suffix array, the longest common prefix array,

and the Lempel-Ziv factorization. After those data structures are all computed,

all the leftmost runs are computed by the Main’s algorithm in Section 3.5, and

using the leftmost runs to compute all the runs by Kolpakov and Kucherov’s

algorithm in Section 3.6. Finally, the conclusion of these implementations and

the possible future work will be discussed in the last chapter. The source code

can be downloaded from my website [19].

1.2 Basic definitions

Here we are going to introduce some key notions and definitions used in this

thesis. Basically, most of the original definitions were given in [16] and [5].

1.2.1 Strings

A string is a finite collection of elements, and the elements have unique labels.

For every element which is not the leftmost, we can find its predecessor p(x);

for every element which is not the rightmost, we can find its successor s(x). For

each element x, we can find x equal to s(p(x)) or p(s(x)) or both. For any two

distinct elements x and y, we can also find a positive number k that satisfies

x = sk(y) or x = pk(y). In this thesis, the strings we deal with are the linear

strings. A linear string is a sequence (or an array) of characters. The set of

the unique labels of the characters is called the alphabet. Thus, we consider a

string x as an array x[0..n − 1], where n ≥ 0 is the length of the string. The

subarray x[i..j] where 0 ≤ i ≤ n− 1 is called a substring. The substring x[0..i]

3
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where i ≤ n− 1 is called a prefix of x. The substring x[i..n− 1] where i ≥ 0 is

called a suffix of x. The size of a string x[0..n− 1] is denoted by |x|.

The equality of strings can be defined recursively by the length of the

strings: x = y if and only if |x| = |y| = n and x[0] = y[0] and x[1..n − 1] =

y[1..n− 1] for n > 1. An empty string is denoted by ε and is considered to be

a substring of any string.

For technical reasons we often consider string to be terminated by a spe-

cial, so-called sentinel character $ (a kin to NULL character terminating C

strings) that is always considered as lexicographically smallest in the alphabet

of the string.

1.2.2 Repetitions and squares

A collection of the same repeating substrings is called a repeat. A tandem

repeat with adjacent repeating substrings is called a repetition. A repetition

of r ≥ 2 substrings u is often denoted as ur. If r = 2 we talk of squares, if

r = 3 we talk of cubes. If a string x = urv where v is a proper prefix of u,

then p = |u| is called a period of x. For a repetition ur, u is referred to as

its generator, |u| is its period, r is referred to as the exponent (or power). For

example, x = aabaabaabaab = (aab)4, aab is the generator, 3 is the period, 4 is

the exponent, and the string x is a repetition.

A string is called primitive if is not a repetition. A repetition is primitively

rooted if its generator is primitive. The motivation is quite clear – consider for

instance abababab it can be viewed as (ab)4 or as (abab)2. It is unnecessary to

“compute” or “list” both, it is quite enough to compute the primitively rooted

one (ab)4 as the non-primitively rooted one (abab)2 can be easily “deduced”

4
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from (ab)4.

Repetitions in a string x can be coded into triples (s, p, e), where s is the

starting index (position) of the repetition, p is its period, and e is its exponent.

For instance x = x[0..9] = aababbbaba has a repetition (1, 2, 2) (underscored).

Alternatively, a repetition can be coded as (s, p, d) where s is the starting

position of the repetition, p is its period, and d is the ending position. The

mutual transformations from one to the other coding are simple: d = s+ep−1

and e = d/p where / signifies the integer division.

A repetition (s, p, e) in a string x = x[0..n−1] is left-maximal if “it cannot

be extended to the left”; more precisely if either s < p or x[s−p..s−1] 6= x[s..s+

p−1]. Similarly, a repetition (s, p, e) is right-maximal “if it cannot be extended

to the right”; more precisely if either s > n+p or x[s+(e−1)p..s+ep−1] 6= x[s+

ep..s+ (e+ 1)p− 1]. A repetition that is both left-maximal and right-maximal

is referred to as maximal. The motivation is quite clear: consider for instance

a string x[0..7] = abababab. This contains repetitions (0, 2, 2), (0, 2, 3), (0, 2, 4),

(2, 2, 2), (2, 2, 3), and (4, 2, 2). The repetitions (0, 2, 2), (0, 2, 3), (0, 2, 4) are left-

maximal, while the repetitions (0, 2, 4), (2, 2, 3), and (4, 2, 2) are right-maximal.

Only (0, 2, 4) is maximal and all the other repetitions can be “deduced” from

it. It thus makes sense to focus computing on maximal repetitions.

Note that each maximal repetition is a conglomeration of primitively

rooted squares. For instance, the above maximal repetition (0, 2, 4) is a con-

glomeration of (0, 2, 2), (2, 2, 2) and (4, 2, 2) primitively rooted squares. The

squares are mutual “shifts” of the size equal to the period of the repetition.

This fact is strongly used in the Crochemore’s repetitions based algorithms to

trace maximal repetitions from the computation of squares.

5
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1.2.3 Runs

A run is in essence a repetition followed by a proper prefix of the generator of

the repetition, it is another way of considering repetitions with non-integer ex-

ponents. Consider for instance a string x = aabaabaa = (aab)2aa = (aab)2+2/3

telling us that the generator repeats 2 times fully, and then 2 out of 3. We call

the incomplete last repeat the tail of the repetition, so aa is the tail.

A repetition with a tail can be easily encoded by (s, p, e, t) where (s, p, e)

encodes the repetition and t is the size of the tail (0 ≤ t < p). Alternatively,

to save a space we could encode a repetition with a tail by (s, p, d) where s is

the starting position, p is the period, d is the ending position. Note that again

we can easily transform from one notation to the other: d = s+ ep− 1 + t and

e = d/p and t = d%p where / signifies the integer division and % denotes the

modulo function.

A primitively rooted repetition with tail (s, p, e, t) in a string

x = x[0..n − 1] is a run if it cannot be extended to the left, nor to the right,

i.e.

• either s = 0 or x[s− 1] 6= x[s+ p− 1]

• either s = n− 1 or x[s+ ep− t] 6= x[s+ (e− 1)p+ t]

Note that a run is a conglomeration of primitively rooted squares that

are “shifted” just one position: for instance the run (0, 3, 2, 2) in the string

x = x[0..7] = aabaabaa is a conglomeration of the following primitively rooted

squares: (0, 3, 2), (1, 3, 1), and (2, 3, 2). Again, this fact is strongly used in the

Crochemore’s repetitions based algorithms to trace runs from the computation

of squares.

6



Chapter 2

A new implementation of
Crochemore-repetitions-
algorithm based algorithm for
runs

Crochemore’s partitioning algorithm introduced in 1981 was the first O(n log n)

algorithm to compute maximal repetitions in a string, see [1]. An advantage of

the algorithm is that fact that it is independent of the size of the alphabet of the

input string; the only requirement is that the alphabet be indexed. However,

an implementation of the algorithm requires complex and complicated data

structures of about 20n integers, where n is the length of the input string.

Note that the algorithm computes the maximal repetitions in levels, where

level L consists of all maximal repetitions of period L. Franek, Smyth and Xiao

introduced in 2003 a compact C/C++ implementation using only 15n integers

of memory [7]. The data structures used allowed for all the required memory

to be allocated prior to the execution as a single segment, which improves

performance as no dynamic memory allocation or deallocation is performed.

7
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Of course, the memory saving techniques were detrimental to the speed, but

not to any significant degree.

In 2009, Franek and Jiang extended the original Crochemore’s repetition

algorithm to compute runs, [5, 6]. Their algorithm computes the maximal

repetitions first, stores them in a data structure, and then consolidates them

into runs. They used three different approaches: the algorithm A stores the

maximal repetitions for a single level in a binary search tree, when the com-

putation of the level is completed, it traverses the tree and consolidates the

repetitions into runs. It takes O(n log2 n) time and O(n log n) extra memory

for the search tree. The algorithm B creates for each level a separate search

tree and these are traversed and the maximal repetitions consolidated to runs

only after all levels have been computed. This keeps the complexity of the

algorithm same as the complexity of the underlying Crochemore’s algorithm,

i.e. O(n log n), however the memory requirement is boosted significantly. The

algorithm C also collect the maximal repetitions from all levels, but they are

stored in a different data structure - a linked list array of “buckets”. The array

is traversed after all the levels have been computed and the stored repetitions

are consolidated into runs. This keeps the memory required comparable to pro-

gram A (i.e. O(n log n) integers), while keeping the complexity to O(n log n).

Moreover, extensive experiments (see [5, 6]) established the algorithm C as the

fastest and most efficient.

In section 2.2.1 we will discuss the loose term “consolidate” we have used

so far.

8
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2.1 Crochemore’s repetition algorithm

In order to be able to discuss the extensions of Crochemore’s algorithm, we

need a brief introduction of the algorithm and the relevant data structures.

In 1981, Crochemore’s algorithm was the first O(n log n) algorithm to

compute maximal repetitions, [1]. As it works through refinement – or parti-

tioning – of certain classes of equivalence, it is also referred to as Crochemore’s

partitioning algorithm.

Let x = x[0..n − 1] be an input string. For a given 1 ≤ p ≤ n/2,

the equivalence ∼p is defined as follows: for 0 ≤ i, j < n, i ∼p j if and only if

x[i..i+p−1] = x[j..j+p−1]. A class of equivalence ∼p thus consists of all indices

that are starting positions for the same substring of length p. The classes of

equivalence ∼p thus form a partition of the set of all indices {0, ..n− 1}.

Level 1 consists of all the classes of equivalence of ∼1 , level 2 of all the

classes of equivalence of ∼2 , etc. In general, level L consists of all the classes of

equivalence of ∼
L
.

Note that having all these classes of all the levels gives us complete infor-

mation of all repeats in the string x, and hence all primitively squares in x: if

i ∼p j, and j = i + p, then there is a tandem repeat, i.e. a square at position

i. If the elements of the classes are maintained in their natural order, if i is

moreover an immediate predecessor of j in the same class, the square starting

at position i must be primitively rooted.

As mentioned above, maximal repetitions are a conglomerations of primi-

tively rooted squares and thus computing all the levels will allow us to determine

all maximal repetitions.

The size of all levels is O(n2) classes, thus a naive algorithm would require

9
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O(n3) processing, a bit smarter but straightforward algorithm could compute

all the levels on O(n2) steps. The ingenuity of Crochemore’s approach was in

the way it can be computed in O(n log n) time.

The algorithm computes all the classes of equivalence ∼1 by brute force;

this is the 1st level. Level L+ 1 is computed by refinement of the classes from

level L. If the algorithm used the information from the input string and every

class of level L would be traversed, this would lead to O(n2) algorithm.

Instead, for refinement, other classes of the same level are used. Let us

consider two classes C1, C2 of ∼
L
: let C1 = {i1, ..., ik} and let j1, j2 ∈ C2 and

let j1 − 1, j2 − 1 ∈ C1. Then at position j1 − 1 is the same substring of length

L+ 1 as at position j2 − 1, i.e. the positions j1 − 1, j2 − 1 will be in the same

class of equivalence of ∼
L+1

. For illustration, in Figure 2.1, when refining class

C1 = {1, 4, 7, 10} by class C2 = {2, 3, 5, 6} on level 1, we will put 1 and 4 into

the same class since 2 and 5 are both located in C2. On the other hand, 8

and 11 come from the other two classes, so we separate {7} and {10} into two

individual classes and thus the class {1, 4, 7, 10} is partitioned into the classes

{7}, {10}, and {1, 4}.

However, if every class of the level L is refined using every class of the level

L, the resulting processing would still be of O(n2) complexity. The trick is to

use only the so-called small classes for the refining. All the classes of level L+1

that are a refinement of a class from level L form a family (i.e. they all have the

same “parent” on level L). A largest (in size) of them is designed as big, all the

other as small. It is clear that for the refinement process to proceed correctly, it

is sufficient to use only the small classes for the refinement. Crochemore realized

that, and in the paper he proved that there are at most O(log n) small classes.

10
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As there are at most O(n) levels, this leads to the complexity of O(n log n)

steps.

Note that in this setting, once the level 1 is computed, the input string

may be discarded as it is not used for any further processing.

To illustrate the notion of small classes: when talking about the classes

{1, 4}, {7}, {10} from {1, 4, 7, 10}, we identify the class {1, 4} which has the

most elements as “big”, and {7}, {10} are therefore “small”.

Of course, the objective is not to compute the levels and the classes.

The algorithm computes maximal repetitions. To that end, a gap list function

gap() is maintained and the natural order of indices in the classes are main-

tained (though the order of classes themselves cannot be maintained without

worsening the complexity). On level L, the gap list function contains the fol-

lowing information: let gap(p) = 〈i1, ..., ik〉, then for each it from gap(k), it− p

is an immediate predecessor of it in the class of equivalence ∼
L
. Thus, gap(L)

will give us all primitively rooted squares of period L. Note, that if p < L, then

gap(p) will give us all repeats that overlap with the size of the overlap being p,

while if p > L, we get all the repeats that do not touch and do not overlap.

Note that the process of refinement terminates once all classes are refined

into singletons, i.e. classes of size 1. Figure 2.1 is an example of the com-

plete partitions on all the possible levels. It is customary not to repeat the

occurrences of singletons to make the diagrams more readable.

2.2 Franek and Jiang’s algorithms

Franek and Jiang extended Crochemore’s algorithm to compute the runs in

2009. Basically their approach has two parts: first part is computing and

11
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0 1 2 3 4 5 6 7 8 9 10 11

1 0 3 3 0 3 3 0 2 2 0 $String

{ 1 , 4 , 7 , 10 } 0 { 0 } 1 { 8 , 9 } 2 { 2 , 3 , 5 , 6 } 3 { 11 } $

{ 7 } 02 { 1 , 4 } 03 { 10 } 0$ { 9 } 20 { 8 } 22 { 3 , 6 } 30 { 2 , 5 } 33

{ 1 , 4 } 033

{ 1 , 4 } 0330

{ 4 } 03302 { 1 } 03303

{ 6 } 302 { 3 } 303 { 2 , 5 } 330

{ 5 } 3302 { 2 } 3303

l = 1

l = 2

l = 3

l = 4

l = 5

Figure 2.1: Refining the positions into different classes in Crochemore’s repeti-
tion algorithm

storing all the maximal repetitions using Crochemore’s partitioning algorithm,

and the second is consolidating the stored repetitions into runs. In [5, 6] they

introduced three algorithms A, B and C. Algorithms B and C are of the com-

plexity of O(n log n) while algorithm A has complexity O(n log2 n), all of them

requiring O(n log n) additional memory.

2.2.1 Algorithm A

The underlying Crochemore’s partitioning algorithm computes the maximal

repetitions level by level. Thus, the maximal repetitions of the same period

p are reported once the level p is computed. Algorithm A stores the runs (of

12
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course, their encoding as discussed in section 1.2.2) in a binary search tree

ordered by the the starting positions of the runs. When a new repetition is

computed, the algorithm traverses the binary search tree and matches is against

all the previously computed runs. Either it is found to overlap with an existing

run, as explained below, and the repetition is used to possibly extend the run,

or not and then the repetition is recorded in the binary tree as a new run. This

process had been referred to previously as “consolidation” of repetitions into

runs.

In Figure 2.2, we show all possible combinations of a stored run and a

new repetition. Since the overlapping substring of case (a) and (b) is shorter

than the period, it is impossible to join them together. In case (c), the starting

position of the run is to the left of the repetition, having an overlap greater or

equal to the period. In other words, the run could be extended to the right, then

we update the tail of the run by the repetition. On the other hand, if the run

could be extended to the left like case (d), and the overlapping length is greater

or equal than the period, then we also update the starting position of the run

by the repetition. When discussing the repetition and the run contains each

other, in case (e), the run is a substring of the repetition, we use the repetition

the replace the run. In case (f) the repetition is a substring of the run, since

the run is already represented the repetition, we just ignore the repetition.

The repeated traversal of the search tree leads to a poor performance and

complexity of O(n log2 n). The additional memory required is of O(n log n),

but can be really implemented using 5(n log n) integers of memory.

13
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Repetition

Run Run

Repetition

Repetition

Run Run

Repetition

Repetition

Run Repetition

Run

(a) (b)

(c) (d)

overlap < period overlap < period

overlap ≥ period overlap ≥ period

(e) (f)

Figure 2.2: Possible combinations for runs and repetitions

2.2.2 Algorithm B

Algorithm B uses the same concept of Algorithm A. It also uses a binary search

tree during the computation of the levels. However, Algorithm B builds a

separate search tree for each level and stores does not store the runs for all

levels, it build a separate search tree to store them at each level and report it

right after each level. The only difference between Algorithm A and B is that
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the temporary tree structure in Algorithm B could be overwritten. In other

words, Algorithm B reuses the tree to save some memory space. According

to their experimental result, the performance of this algorithm is better than

Algorithm A.

2.2.3 Algorithm C

Unlike building the tree as what Algorithm A and B do, Algorithm C stores

the repetitions in the array of buckets. We collect the repetitions computed by

Crochemore’s algorithm into a linked list first. The repetitions are classified

by the starting position, and store their period and the ending position in the

bucket. After all the repetitions are computed, the algorithm traverse from left

to right of the bucket array. We will test if the repetition is a new run or could

be joined with the right most run at that period.

Since we traverse the bucket from the left to the right, it’s only possible

to get case (a), (c) and (f). If the repetition and the existing run are not

overlapped, we will just make the repetition to be a new run and set it as the

right most run at that period. In case (a), the repetition and the existing run are

overlapped, and the overlapping length is smaller than the period, we will also

make the repetition as a new run and set it as the right most run. In case (c),

the repetition and the existing run are overlapped, and the overlapping length

is greater or equal than the period, we could extend the existing run to the

right, so we change the ending position of the existing run as the repetition’s.

In case (f), the repetition is a substring of the existing run, we just ignore the

repetition.
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2.3 The new FJW algorithm and its imple-

mentation

As Franek and Jiang concluded after the experiments in [5, 6], the performance

for Algorithm C is much better than Algorithms A and B and its memory

requirement is also the best of the three variants. Nevertheless, the increase

of the memory requirement from 15n integers to (15n log n) integers was too

a big price to pay. Thus, in 2011, Franek, Jiang and Weng designed and im-

plemented another extension of the Crochemore’s partitioning algorithm which

does not use the two-step approach and hence computes the runs directly. That

not only saved the extra overhead required for collecting the maximal repeti-

tions, it allowed to slightly improve the memory requirement for the underlying

partitioning algorithm to 13n integers.

Based again on the Crochemore’s partitioning algorithm, Franek, Jiang

and Weng’s algorithm (FJW for short) is more efficient than the three exten-

sions discussed in the previous section. The program not only computes the

maximal repetitions (which the original Crochemore’s algorithm does), but it

also computes the runs and the number of primitively rooted distinct squares.

Note that when we compute runs, we compute all occurrences of runs.

In the problem of the number of primitively rooted distinct squares we do not

compute the occurrences of squares, but their types. For instance, the string

x = x[0..6] = aabaaba has 1 run (0,3,2,1), there are 2 occurrences of the square

aa (at positions 0 and 3), 1 occurrence of the square aabaab (at position 0)

and 1 occurrence of the square abaaba (at position 1), hence it has 4 different

squares, but only three distinct squares aa, aabaab, and abaaba.

The C++ implementation can downloaded from Prof. Franek’s web-
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site [18]. The website also contains all the versions giving the full genesis

of the program and indicating the particular memory saving techniques used.

Unlike Franek and Jiang’s algorithms in 2009, this algorithm does not

wait until all the repetitions are computed, it computes the the repetitions, or

the runs, or the number of distinct level by level based on the information in

the gap list function (see section 2.1). The corresponding

At level L, the gap list gap(L) is traversed. As explained in section 2.1,

each element i of the gap list Gap(L) at level L identifies a primitively rooted

square with period L starting at the position i − L. If the entry is marked as

done, it is ignored and the next entry from the gap list is visited.

1. If the algorithm computes the number of primitively rooted distinct squares,

if i is the first entry from a particular class, the square is counted and

the class is marked as done, otherwise it is ignored. This processing is

performed by the procedure traceSquares.

2. If the algorithm computes the maximal repetitions, the procedure trace-

MaxReps is used. Once a square is identified, the procedure checks

whether it can be extended (as a repetition) to the left, and if so, the

entry corresponding to the extension in the gap list is marked as done.

The new square is than tried if it can be extended yet again to the left

and so on as long as the extensions exist. Similarly, the original square

is traced to the right. This process builds the maximal repetition from

the squares identified by the gap list. The fact that the newly established

squares are marked as done prevent the algorithm from re-building the

repetition once another square of this repetition is encountered in the gap

list.
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3. If the algorithm computes the runs, the procedure traceRuns is used.

Once a square is identified, the procedure checks whether it can be shifted

to the left, and if so, the entry corresponding to the extension in the gap

list is marked as done. The new square is then tried if it can be shifted

yet again to the left and so on as long as the extensions exist. Similarly,

the original square is traced to the right. This process builds the run from

the squares identified by the gap list. The fact that the newly established

squares are marked as done prevent the algorithm from re-building the

run once another square of this run is encountered in the gap list.

The fact that runs can be actually built directly from the information

in the gap list without first building the maximal repetitions and then consol-

idating them into runs allowed us to eliminate all the overhead that was so

detrimental in Franek and Jiang’s previous algorithms. The memory saving

techniques discussed in the next section thus apply to the implementation of

the underlying partitioning algorithm.

2.3.1 The genesis of the program – the memory saving
techniques

1st version – crochB

In the first version crochB, the memory requirement is 19n integers and no

memory saving techniques are used. We use 7 integer arrays dealing with

classes, 4 integer arrays dealing with families, 4 integer arrays dealing with the

refinement process, and 4 integer arrays dealing with the gap list function.

The following 7 integer arrays represent the classes:
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1. CStart[0..n− 1] stores the first element of a class. It emulates a pointer

to the beginning of the class. For example, CStart[i] = j means that j

is the first element of class i.

2. CEnd[0...n − 1] stores the last element of a class. It emulates a pointer

to the end of the class. For example, CEnd[i] = j means that j is the

last element of class i.

3. CNext[0...n − 1] stores the next element in the class. It emulates the

forward links in the class. For example, CNext[i] = j means that i and j

are in the same class, and j is the successor of i. If CNext[i] is null, then

i is the last element in the class. Note that null is a value is emulated by

the value of n as this value never occurs in any of the arrays.

4. CPrev[0...n− 1] stores the previous element in the class. It emulates the

backward links in the class. For example, CPrev[i] = j means that i and

j are in the same class, and j is the predecessor of i. If CPrev[i] is null,

then i is the first element in the class.

5. CMember[0...n − 1] stores the class which the elements belong. For ex-

ample, CMember[i] = j means that the element i belongs to the class

j.

6. CSize[0...n− 1] stores the size of the classes. For example, CSize[i] = j

means that the class i has j elements.

7. CEmpty[0...n−1] is used as a stack. It is a list of empty classes that can

be used as destination for refinement.
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The following 4 integer arrays represent the families:

1. FStart[0...n−1] is used as a stack. It stores the first class of each family.

For example, FStart[i] = j means that the class j is the first class of the

family i.

2. FNext[0...n − 1] emulates the forward links in the list of classes in the

family. For example, FNext[i] = j means that i and j are in the same

family, and j is the successor of i. If FNext[i] is null, then i is the last

class in the family.

3. FPrev[0...n− 1] emulates the backward links in the list of classes in the

family. For example, FPrev[i] = j means that i and j are in the same

family, and j is the predecessor of i. If FPrev[i] is null, then i is the first

class in the family.

4. FMember[0...n − 1] stores the family which the classes belongs to. For

example, FMember[i] = j means that the class i belongs to the family j.

The following 4 integer arrays are data structures used in the refinement

process:

1. Refine[0...n−1] stores the destination class. For example, Refine[i] = j

means that any element from class i is to be moved to class j.

2. RStack[0...n−1] used as a stack. It remembers the items used inRefine[],

so it will be able to clean Refine[] (set with nulls) without traversing the

whole array which will destroy the complexity.

3. Sel[0...n−1] is used as a queue. It stores the elements of all small classes.
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4. Sc[0...n− 1] is used as a queue. It represents a new small class start, so

we can use the data from Sel[] and Sc[] to store the information of every

small class and its elements.

The following 4 integer arrays represent the gap list function:

1. Gap[0...n − 1] stores the first element in the gap lists. For example,

Gap[i] = j means that j is the first element in the gap list i, and thus the

predecessor of j in the class is j − i.

2. GMember[0...n − 1] stores the gap membership of the elements. For

example, GMember[i] = j means that i belongs to the gap list j.

3. GNext[0...n−1] emulates the forward links in the gap lists. For example,

GNext[i] = j means that i and j are in the same gap list, and j is the

successor of i. If GNext[i] is null, then i is the last element in the gap

list.

4. GPrev[0...n− 1] emulates the backward links in the gap lists. For exam-

ple, GPrev[i] = j means that i and j are in the same gap list, and j is

the predecessor of i. If GNext[i] is null, then i is the first element in the

gap list.

2nd version – crochB1

In the next version, crochB1, a GMember() function replaces the GMember[]

array, and thus the memory requirement is reduced to 18n integers. Below is

the formula used to compute GMember().

GMember(i) =


null if i is not member of any class,

null if i is a member of a class of size 1,

i− Prev[i] otherwise.
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3rd version – crochB2

This version, crochB2, eliminates classes STACK and FIFO and replaces their

methods by macros and inlined functions in preparation for their eventual shar-

ing of the same memory segment. The overall memory requirement stays 18n

integers.

4th version – crochB3

The next version, crochB3, virtualizes the FMember[] array over the arrays

FStart[] and FNext[] and the access to this virtual array is provided by a

function FMember(). Moreover a virtual array FEnd is added virtualized

over the arrays FStart[] and FPrev[] with an access function FEnd(). The

memory requirement is thus reduced to 17n integers. The access functions are

defined below.

FMember(i) =


FStart[i] if FStart stack is empty,

FNext[FPrev[FStart[i]]] if i ≤ the FStart stack pointer,

FStart[i] otherwise.

FEnd(i) = FPrev[FStart[i]].

5th version – crochB4

Since the stack CEmpty and the queue Sc can share the same memory segment,

this version crochB4 implements them so lowering the memory requirement to

16n integers.

6th version – crochB5

The version crochB5 virtualizes the array CEnd[] over CStart[] and CNext[]

with an access function CEnd() given below, and the arrays CSize[] over
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CStart[] and CPrev[] with an access function CSize() also given below. Thus

the memory needed is reduced to 14n integers.

CEnd(i) = CPrev[CStart[i]]

CSize(i) = CNext[CPrev[CStart[i]]]

7th version – crochB6

This version, crochB6 use a trick to make do with the array CMember[] by

virtualizing it over Gap[], GNext[], and GPrev[]. In order to be able to dis-

tinguish whether the data stored in Gap[] represent the gap list data or the

CMember data, positive integers represent the former and negative represent

the latter. Of course, this requires that both type of integers stored in Gap[]

must be treated as signed integers, which in turn necessitates to limit the length

of the input strings to half the size, e.g. for a 32-bit machine from 232 − 1 to

231 − 1, which is still more than acceptable for practical purposes.

Note that this positive/negative distinction of the values stored in Gap[]

may pose a problem if the value 0 is to be stored there. Thus the CMember

data stored in Gap[] are not only negative,m but also shifted by 1, thus -1

really represents 0, -2 really represents 1, etc. This final trick reduces the

overall memory to 13n integers.

The code given in Algorithm 1 defines the function that sets the value

of CMember element e to c, while the code given in Algorithm 2 fetches the

value from the e-th element of CMember.

Figure 2.3 shows a table representing the memory usage for different

FJW implementations.

In order to maintain the running complexity of O(n log n), the gap list

function is updated every time an element is removed from or added to a class.
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Algorithm 1: Set the value of CMember(e) to c

if Gap[e] = null AND Gap[e] < 0 then
if c = null then
Gap[e] = null

else
Gap[e] = 0− 1− c

end if
else

if c = null then
GNext[GPrev[Gap[e]]] = null

else
GNext[GPrev[Gap[e]]] = 0− 1− c

end if
end if

Algorithm 2: Get the value of CMember(e)

if Gap[e] = null then
return null

else
if Gap[e] < 0 then

return 0− 1−Gap[e]
else

if GNext[GPrev[Gap[e]]] = null then
return null

else
return GNext[GPrev[Gap[e]]] = 0− 1− c

end if
end if

end if
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Type Array CrochB CrochB1 CrochB3 CrochB4 CrochB5 CrochB6 CrochB7

Class

CStart √ √ √ √ √ √ √

CEnd √ √ √ √

CNext √ √ √ √ √ √ √

CPrev √ √ √ √ √ √ √

CMember √ √ √ √ √

CSize √ √ √ √

CEmpty √ √ √ √ (Share with Sc)

Family

FStart √ √ √ √ √ √ √

FNext √ √ √ √ √ √ √

FPrev √ √ √ √ √ √ √

FMember √ √

Refinement
Process

Refine √ √ √ √ √ √ √

RStack √ √ √ √ √ √ √

Sel √ √ √ √ √ √ √

Sc √ √ √ √ (Share with  CEmpty)

Gap

Gap √ √ √ √ √ √ √

GMember √

GNext √ √ √ √ √ √ √

GPrev √ √ √ √ √ √ √

Total Memory Usage 19n 18n 17n 16n 14n 13n 13n

Figure 2.3: Compare the memory usage for different FJW implementation
versions

As explained in the section 2.3, when traversing the gap list and tracing

either distinct squares, or maximal repetitions, or runs, we need to mark some of

the squares done so we do not retrace the same repetition or run, or do not count

another square of the same type. Since the array Refine[] and the RStack are

just used for the refinement process, and the tracing takes place after the level

had been computed, these arrays can be safely used for this purpose. Refine[]

is used to store the required information of what is done, while RStack is used
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to indicate which of the items of Refine[] had been modified, so Refine[] can

be initialized (all items set to null) without traversing the whole array once all

the tracing is done. If the array had to be traversed each time when it is to be

initialized, the complexity would increase to O(n2 log n).

The final version – crochB7

This is the final version based on crochB6. The task of what should be per-

formed by the method Process is controlled by the compilation options

#define _runs

#define _squares

#define _maxreps

The task that should be performed should be defined, the other commented

out. If two or all three are defined, the order of precedence is runs, then

squares, and then maxreps. If no task is specified, computing runs is the

default task. If we want to perform a different task, the program must be re-

compiled. That was not deemed a serious problem, as rarely there is a need

to do in one execution two different tasks. However, it would be a simple

modification to distinguish the task to be done in run time.

In any case, the method Process returns a single value, the number of

runs, or squares, or repetitions.

The program may output the runs or repetitions. The output of the

program is handled similarly by defining or commenting out the options that

control the output:

#define _show

#define _output
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If neither is defined, there is no output and Process only returns the appro-

priate number. If show is defined, the runs or repetitions or so-called pretty

printed. They are visually displayed withing the string and the repeating parts

are distinguished. For instance, the runs of the string aaaabaababa will be

shown as

aaaabaababa

.....aA....

aAaA.......

......abABa

..aabAABa..

or the maximal repetitions of the same string will be shown as

aaaabaababa

.....aA....

aAaA.......

......abAB.

.......baBA

..aabAAB...

...abaABA..

Note that if the show option is used, the input string must be in lower case

characters, as the dichotomy of lower case/upper case is used to make the

repeating parts to stand out. For no output or output option the input string

can consists of any characters.

An example of output for output option for the same string as above for

runs:
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aaaabaababa

(5,1,2,0)

(0,1,4,0)

(6,2,2,1)

(2,3,2,1)

and for maximal repetitions:

aaaabaababa

(5,1,2,0)

(0,1,4,0)

(6,2,2,0)

(7,2,2,0)

(2,3,2,0)

(3,3,2,0)

If both options are specified, show takes precedence over output.
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Chapter 3

Implementation of a linear time
Algorithm for Computing Runs

In 1984, Main demonstrated a linear time algorithm that computes a set of runs

containing all the leftmost runs from the Lempel-Ziv factorization of the input

string, [13]. Note that by leftmost run we mean the first from the left occurrence

of the run in a string. In 1999, Kolpakov and Kucherov in [10] proved that

the number of runs is linear in the length of the input string, and proposed

an algorithm that computes all the non-leftmost runs from the Lempel-Ziv

factorization. A lot of researchers noticed that a linear time algorithm for

computing runs could be realized along the following strategy:

1. Compute the suffix array

2. Using the suffix array compute the largest common prefix array (LCP

array for short)

3. Using the suffix array and the LCP array build the Lempel-Ziv factoriza-

tion of the input string
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4. From the Lempel-Ziv factorization compute a superset of all the leftmost

runs by Main’s algorithm

5. From the Lempel-Ziv factorization compute all the remaining runs by

Kolpakov and Kucherov’s algorithm.

In 2003, several linear algorithms to compute suffix arrays were introduced

opening an avenue for computing the Lempel-Ziv factorization in linear time,

[12, 9, 8]. Then the all pieces of a possible strategy to compute runs in linear

time were together:

In this chapter, we are going to implement this strategy in C++, and use

Johannes Fischer’s Java implementation as a reference.

In this chapter, a run is represented as a triple (s, p, d), s being the starting

position, p the period, and d the end position of the run. This is purely to save

some space when runs must be stored.

3.1 Suffix array

The suffix array of a string is a data structure introduced by Manber and

Myers 1993 as a more succinct data structure than suffix tree, yet providing

almost the same information of the structure of the string, [14]. Suffix array

is an array of integers giving the starting positions of suffixes of a string in

lexicographical order. In Figure 3.1, we can see an example of the suffixes of a

string 10330330220 and the corresponding suffix array.

To compute the suffix array of a string really amounts to sorting of the

suffixes, i.e. sorting of a set of strings, which in general, can be done at best in

O(n log n) time,where n is the number of strings to be sorted.
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SA Suffix

10 0

7 0220

4 0330220

1 0330330220

0 10330330220

9 20

8 220

6 30220

3 30330220

5 330220

2 330330220

0 1 2 3 4 5 6 7 8 9 10

1 0 3 3 0 3 3 0 2 2 0String

Figure 3.1: The suffix array SA of a string ”10330330220”

In 2003, first three linear-time algorithms to compute suffix array oc-

curred, [12, 9, 8]. Of these, only [12] and [9] are really practical. Since then

several more efficient and also more complex algorithms have been introduced

(see for instance [15]. For our project we opted for implementation of the so-

called skew algorithm of Kärkkäinen and Sanders, [12]). The main reason was

the relative simplicity of the resulting code relying on the recursive solution to

the problem.

We first describe the working of the algorithm in general terms. For

simplicity, a s(i) denotes the suffix x[i..n− 1] of the string x = x[0..n− 1].
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• The suffixes of x = x[0..n − 1] are divided into two groups. The first

group SA12 consists of suffixes that start at a position i of the string so

that i 6= 0 (mod 3), i.e. i/3 = 1 or 2. The second group SA0 consists of

suffixes that start at a position i so that i = 0 (mod 3), i.e. i is divisible

by 3.

• The group SA12 is sorted by a recursion.

• The group SA0 is sorted using the known order of suffixes in SA12 based

on the following observation:

if suffixes s(i1), s(i2) ∈ SA0, then s(i1 + 1), s(i2 + 1) ∈ SA12.

So to compare s(i1) and s(i2), we first compare the letters x[i1] and x[i2],

and if they are the same, then we compare s(i1 + 1) and s(i2 + 1). Thus

a radix sort with key of length 2 will allow us to sort SA0 in linear time.

• The two sorted groups SA12 and SA0 are merged together. A simple

comparison-based merge can be employed, based on the following obser-

vation:

Let s(i1) ∈ SA0 and let s(i2) ∈ SA12. If suffix i2 = 1 (mod 3), then

s(i1+1), s(i2+1) ∈ SA12. If i2 = 2 (mod 3), then s(i1+2), s(i2+2) ∈ SA12.

Thus to compare s(i1) ∈ SA0 and s(i2) ∈ SA12 we follow two scenarios:

(A) if i2 = 1 (mod 3), we compare x[i1] and x[i2], and if they are equal,

we compare s(i1 + 1) and s(i2 + 1).

(B) if i2 = 2 (mod 3), we compare x[i1] and x[i2], and if they are equal,

we compare x[i1 + 1] and x[i2 + 1], and if they are equal, we compare

s(i1 + 2) and (s2 + 2).

The important detail left out in the above high-level description is the
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nature of the recursive call, as the input must be a string, not a set of suffixes

SA12. The trick is to create a string such that order of its suffixes is the same as

the order of suffixes in SA12 ought to be. We shall illustrate the whole process

on an example.

Assume a string x = x[0..n− 1]. For each i = 1 or 2 (mod 3) we consider

the substring of length 3 (i.e. x[i..i+ 2] ). We refer to them as triples. We sort

these triples lexicographically in linear time using radix sort with key of length

3. We assign each triple a symbol (the simplest is to use numbers from the

interval [1,2n/3]) such that they respect the order of the triples. Figures 3.2

and 3.3 illustrate this for a string 103303330220.

0 3 3

0 3 3

0 2 2

3 3 0

2 2 0

0

radix sort

0

1

2

2

3

4

4

0 1 2 3 4 5 6 7 8 9 10

1 0 3 3 0 3 3 0 2 2 0

0 3 3 0 3 3 0 2 2

3 3 0 3 3 0 2 2 0

0

String

3 3 0

Figure 3.2: Create triples and sort them

The string created by symbols assigned to the suffixes starting at index

= 1 (mod 3), concatenated with the string created by symbols assigned to

the suffixes starting at index = 2 (mod 3) has the property that all SA12
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0 1 2 3 4 5 6 7 8 9 10

1 0 3 3 0 3 3 0 2 2 0

0 3 3 0 3 3 0 2 2

3 3 0 3 3 0 2 2 0

0

2                   2                   1                   0

4                   4                   3

String

Figure 3.3: Assign names to the triples

suffixes have the same order as the corresponding suffixes of this new string. In

Figure 3.3 we can see that this new string is 2210443 and in Figure 3.4 we see

how from the suffix array of this new string we determine the order of SA12 of

the original string.

The second step is sorting the suffixes SA0 using the SA12 array. Here

we use radix sort to sort it in linear time using keys of length 2, where the first

element of the key is the first letter of the suffix and the second element of the

key is the suffix that follows the first character.

The last step is merging the two suffix arrays. In Figure 3.5, both SA12

and SA0 are sorted, and we will do a comparison merge for them. If we did the

comparison by brute force, it would have to possibly go through both suffixes

until different characters are found, which would lead to O(n2) complexity.

However, as described above, we need keys of length at most 3 (for scenario A

we need 2, for scenario B we need 3), and thus can use radix sort preserving

the linearity.
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0 1 2 3 4 5 6 7 8 9 10

1 0 3 3 0 3 3 0 2 2 0

0 3 3 0 3 3 0 2 2

3 3 0 3 3 0 2 2 0

0

2                   2                   1                   0

4                   4                   3

String

3 2 1 0 6 5 4SA(2210443)

10 7 4 1 8 5 2SA12

Figure 3.4: Getting SA12 from SA(10330330220)

Figure 3.6 gives us another example by using the string 0001000101. We

put the indices = 1 (mod 3) in light gray color, 2 in dark gray, and 0 in

white. When comparing SA(S0) with SA(S4) at the first step, we check the

first character. Here both characters are the same, so we check if the order

of SA(S1) and SA(S5) is already known. Since SA(S1) and SA(S5) are both

belong to SA12, we can just determine the order of SA(S0) and SA(S4) by their

following substrings SA(S1) and SA(S5). Comparing SA(S2) and SA(S6) is

similar. However, since the following substrings SA(S3) and SA(S7) is not

determined yet (SA(S3) belongs to SA0, we will look up the next substrings

which are SA(S4) and SA(S8). Then we can find the result.

We conclude the situation of having the same first character by two cases.
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0 1 2 3 4 5 6 7 8 9 10

1 0 3 3 0 3 3 0 2 2 0String

10 7 4 1 8 5 2SA12

0 9 6 3SA0

10 7 4 1 0 9 8 6 3 5 2SA

Figure 3.5: Merging SA12 and SA0 arrays

First one starts at the white (SA0) and the dark gray (SA0) indices. In this

case, we’ll look up the next which starts at the light gray (SA1) and the white

(SA0) ones, if they cannot be determined, then we check the next. The other

case is the substrings start at white (SA0) and the light gray (SA1) indices.

The result could be easily determined by the following light gray (SA1) and

dark gray (SA2) ones.

After merging and tracing back level by level, we will get the suffix array

for the original string. The running time of the skew algorithm is O(n) since the

recurrence relation describing the number of steps is T (n) = O(n)+T (d2n/3e),

T(n)=O(1) for n < 3. Hence, T (n) = O(n).
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• and            and             (Check the next)

• and            and             (Solved) 

String

4 1 5 8 2 7SA12

0 6 9 3SA0

0 4 1 5 8 2 6 9 3 7SA

0 1 2 3 4 5 6 7 8 9

0 0 0 1 0 0 0 1 0 1
SA(S0)=0001000101 SA(S1)
SA(S4)=000101 SA(S5)

SA(S2)=01000101 SA(S3)  
SA(S6)=0101   SA(S7)

SA(S3)=1000101 SA(S4)  
SA(S7)=101 SA(S8)

Figure 3.6: Merging SA12 and SA0 arrays, another example

3.2 LCP array

For a given string x = x[0..n−1], we define lcp(i, j) as the length of the longest

common prefix of the suffixes s(i) and s(j). Notice that it is a number from the

range 0..n−1. The LCP array of x is defined as LCP [i] = lcp(SA[i−1].SA[i]).,

where SA[] is the suffix array of the string x.

Figure 3.7 shows an LCP array example: While calculating LCP [8], we

need to look into SA[7] and SA[8], which is 6 and 3. Then we will find the

length of the longest common prefix starting from 6 and 3 is 2.

The direct approach to computing LCP array leads to an O(n2) algorithm,

but it can be done in linear time using for instance an algorithm of Kasai, Lee,
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0 1 2 3 4 5 6 7 8 9 10

1 0 3 3 0 3 3 0 2 2 0String

10 7 4 1 0 9 8 6 3 5 2SA

0 1 1 4 0 0 1 0 2 1 3LCP

Figure 3.7: The suffix array and longest common prefix array of the string
”10330330220”

Arimura, Arikawa and Park, [11]. Its pseudocode is given in Algorithm 3 below.

They introduced a space efficient algorithm based on the simulation of

the bottom-up traversal of a suffix tree. Let us remark that from a given suffix

tree the corresponding suffix array can be determined simple from the order

of the leafs by the depth-first traversal, while suffix array can give rise to the

corresponding suffix tree using minimum range queries. A minimu range query

MRQ(i, j, A) returns the index k such that i ≤ k ≤ j and A[k] is the minimal

value on the interval i..j (i.e. A[k] ≤ A[t] for any i ≤ t ≤ j). Figure 3.8 shows

a suffix array and Figure 3.9 shows the corresponding suffix tree.

We are going to illustrate the working of the algorithm. First we have to

compute the intermediate array Rank[] which is defined as the inverse function

of the suffix array. That is, if SA[k] is i, then Rank[i] is k and vice-versa.

Then we observe two facts about the LCP arrays that can help us reduce

the complexity. First, the lcp of a pair of adjacent suffixes in the suffix array is

greater than any pair of the suffixes surrounding them. Since the suffixes are

lexicographically sorted in the suffix array, the lcp between any two suffixes will
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Figure 3.8: The suffix array example, the suffixes are listed vertically

be the minimum of the lcp of every adjacent suffix pair between the intervals.

We can also consider it as an intersection of those pairs of adjacent suffixes.

Second, if lcp(StringSA[x−1], StringSA[x]) = h > 1, then

lcp(StringSA[x−1]+1, StringSA[x]+1) = h − 1. We can think that the substring

starting at SA[x] + 1 is same as the substring starting at SA[x] and remove

the first element. Since lcp(StringSA[x−1], StringSA[x]) = h is greater than 1

and the rest of both substrings are the same, we can say the lcp between the

substrings starting at SA[x− 1] + 1 and SA[x] + 1 is 1 less than h.

From the above to facts we know that

if lcp(StringSA[i−1], StringSA[i]) = h > 1, then lcp(StringSA[i−1]+1, StringSA[i]+1) =

h− 1 and
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Figure 3.9: The suffix tree corresponding to the suffix array in Figure 3.8

lcp(StringSA[Rank[SA[i]+1]−1], StringSA[i]+1) ≥ lcp(StringSA[i−1]+1, StringSA[i]+1).

Thus we get a formula:

lcp(StringSA[Rank[SA[i]+1]−1], StringSA[i]+1) ≥ lcp(StringSA[i−1]+1, StringSA[i]+1) =

lcp(StringSA[i−1], StringSA[i])− 1.

Using this formula, once we get an lcp which is greater than 1, we can use

it as a base to compute other substrings. The complexity will be O(n) since h

increases at most 2n times, and decreases at most n times. We show it in the

pseudocode Algorithm 3.

For the algorithm, an LCP query function LCPQuery(l, r) to represent

the lcp(l, r) function which we just talked about must be implemented. It
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finds the minimum value between the index range from l + 1 to r. That is:

LCPQuery(StringSA[l], StringSA[r]) = min
l<k≤r

{lcp(StringSA[k−1], StringSA[k])}.

Note that the LCPQuery() is a form pf range minimum query. The range

minimum query can be implemented with linear time preprocessing and con-

stant time querying. However, since such algorithm is much more complicated

an would increase the scope of this project too much, here we use as a tempo-

rary substitute a linear time algorithm to perform the queries. Replacing this

component with a proper range minimum query is the task for near future.

The longest common suffix array (LCS) which is used in next step is easy

to compute as the LCP array of the reversal of the original string.

Algorithm 3: Computing LCP array in linear time

LCP[0]=0, h=0
for i = 0 to Length− 1 do

if Rank[i] > 0 then
j=SA[Rank[i]-1]
while String[i+h] = String[j+h] do

h=h+1
end while
LCP[Rank[i]]=h
if h > 0 then

h=h-1
end if

end if
end for

3.3 Lempel-Ziv factorization

The Lempel-Ziv factorization of a string x is a sequence of substrings of x (often

referred to as factors) 〈u1, ..., un〉 so that
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• x = u1u2...un, x is concatenation of the factors

• each ui is either a first occurrence of a letter (so-called new letter), or the

longest previously occurring factor in u1...ui.

Introduced by Lempel and Ziv in 1978, see [17], for the purpose of data com-

pression, it found also a place in the investigation of periodicities in strings. As

mentioned previously, Lempel-Ziv factorization is the input into Main’s algo-

rithm and that is why it is of interest to us in this project.

The algorithm we implemented for Lempel-Ziv factorization is based on

the Crochemore, Ilie and Smyth’s paper [3]. The approach consists of two

steps. First we compute the longest previous factor (LPF) array, then we use

the LPF array to compute the Lempel-Ziv factorization. During the process

of computing the LPF array, we also keep track of the previous occurrences

(in PrevO) of the longest previous factor which will be used in Kolpakov and

Kucherov’s algorithm later.

The LPF construction is based on Crochemore and Ilie’s paper [2]. The

proper definition of the LPF array:

LPF [i] = max({l | String[i...i+ l−1] is a factor of String[0...i+ l−2]}∪{0})

We also need two stacks to construct the previous smaller value (PSV) array

and the next smaller value (NSV) array. The PSV array stores the closest index

to the left of the suffix array which has a smaller suffix order, and the NSV

array stores the closest index to the right of the suffix array which has a smaller

suffix order. We put -1 on PSV/NSV array if we cannot find any smaller value

to the left/right side.
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In Figure 3.10, we can see an example of PSV, NSV, and LPF arrays.

For example, SA[7] = 6, if we look backward (to the left) of the suffix array,

the closest smaller value is SA[4] = 0, so we put 4 in PSV [7]. When looking

forward (to the right), the closest smaller value is SA[8] = 3, so we put 8 in

NSV [8]. The LPF [5] = 3 means the first 3 elements 330 of the substring

330220 (which starts at position 5 of the original string) has appeared before.

Then we also store the index of the previous occurrence of 330 which is 2 in

PrevO[5].

The idea of the algorithm is quite simple. While computing the LPF value

for the index x, we just look backward and forward to find the two nearest

smaller values of the suffix array. Since the suffix array is lexicographically

sorted, the substrings starting from these two smaller values will be the most

similar substrings. We use LCPQuery to compute the longest length of the

common prefix between those two substrings and the substring starting at x,

then choose the larger one and set it and its location as the LPF and PrevO

values. Algorithm 4 shows the pseudocode for the LPF and PrevO array

construction.

The PSV and NSV arrays can be computed in O(n) time, provided we

can implement the range minimum querying in constant time.

After we finish computing of the LPF and PrevO arrays, we can use a

simple algorithm by Crochemore, Ilie and Smyth to compute the Lempel-Ziv

factorization [3, 2].

Figure 3.10 is an example of Lempel-Ziv factorization construction.

In order to make it easier to compute in the rest of the program, we use

LZB array to represent the beginning indices of the LZ blocks, LZE array to
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Algorithm 4: Computing LPF array and PrevO array

for i = 0 to LZLength− 1 do
if PSV [i] = −1 then

p=0
else

p=LCPQuery(SA[PSV[i]],SA[i])
end if
if NSV [i] = length then

n=0
else

n=LCPQuery(SA[NSV[i]],SA[i])
end if
LPF[SA[i]]=MAX(p,n)
if LPF[SA[i]] = 0 then

PrevO[SA[i]]=-1
else

if p > n then
PrevO[SA[i]]=SA[PSV[i]]

else
PrevO[SA[i]]=SA[NSV[i]]

end if
end if

end for

Algorithm 5: Lempel-Ziv factorization

LZ[0]=0
while LZ[i] < length do

LZ[i+1]=LZ[i]+max(1,LPF[LZ[i]])
i=i+1

end while
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1 0 3 3 0 3 3 0 2 2 0String
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-1 -1 -1 2 1 2 3 4 -1 8 7PrevO

0 1 2 3 4 8 9 10 11LZ

Figure 3.10: The Lempel-Ziv factorization and the LPF array example

represent the ending indices of the LZ blocks (Figure 3.11), and LZLength as

the number of Lempel-Ziv blocks.

3.4 Main’s algorithm

Main’s algorithm uses the Lempel-Ziv factorization as its input, and computes

some runs of the input string that are guaranteed to include all the leftmost

runs.

To discuss the algorithm and its approach, we classify the runs into two

disjoint categories:
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0 1 2 3 4 8 9 10 11LZ

0 1 2 3 4 8 9 10LZB

0 1 2 3 7 8 9 10LZE

Figure 3.11: LZB and LZE arrays

Class I : The run occurs within one Lempel-Ziv block.

Class II : The run occurs across different Lempel-Ziv blocks.

0 1 2 3 4 5 6 7 8 9 10

1 0 3 3 0 3 3 0 2 2 0String

(1,3,7)

(2,1,3)

(5,1,6)

(8,1,9)

Class II

Class II

Class II

Class I

Figure 3.12: Class I and Class II runs

In Figure 3.12, we use different shading to show different Lempel-Ziv

blocks. For example, the run (2,1,3) is across two Lempel-Ziv blocks, so it is a

46



M.Sc. Thesis - Chia-Chun Weng McMaster - Computing and Software

Class II run. The run (5,1,6) is only bounded in one Lempel-Ziv block, so it’s

defined as a Class I run.

In our program, we use Main’s algorithm to compute Class II runs. Let

the string s be composed of many Lempel-Ziv blocks w, that is s = w0w1...wk.

According to Main (see[13]), the Class II run from block wh−1 to the block wh

will be bounded in its length by 2|wh−1wh|.

For each h between 2 to k, we let th be the substring which precedes wh

with length 2|wh−1wh| (if it reaches the beginning, then just start from the

index 0). After the bounded substring thwh is found, we could calculate the

rightmax and the leftmax runs which start in th and end in wh. The pseudocode

is shown in Algorithm 6. According to Main’s paper, the runs in the string s

can be computed in θ(n) time.

We store the Class II runs in a LinkedList array temporarily. We are

going to sort the results, and to remove non-primitively rooted runs later.

3.5 Kolpakov and Kucherov’s algorithm

The last step in our program is computing the Class I runs from the leftmost

runs which we computed at the previous step. The algorithm we used was intro-

duced by Kolpakov and Kucherov in [10]. For its pseudocode see Algorithm 7

below.

For every Lempel-Ziv blocks of length greater than 1, we get the offset

from its previous occurrence. Within the current block, we read every run of the

previous occurrence, and check if the ending index of the previous occurrence

added the offset is still in the block itself. If it fulfills the condition, it is a new

run of Class I.
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Algorithm 6: Main’s algorithm

for i = 0 to length− 1 do
len=min(LZE[i]-LZB[i-1],LZE[i-1]+1)
for l = 1 to len do

if LZE[i− 1]− l < 0 then
s=0

else
s=LCSQuery(LZE[i-1]-l,LZE[i-1])

end if
p=LCPQuery(LZB[i]-l,LZB[i])
if s+ p >= l AND (p > 0 OR LZB[i]− l − s > LZB[i− 1]) then

add run (LZB[i]-l-s,l,LZE[i-1]+p) to LinkedList[LZE[i-1]+p]
end if

end for
for l = 1 to LZE[i]− LZB[i] do

s=LCSQuery(LZE[i-1]+l,LZE[i-1])
p=LCPQuery(LZB[i]+l,LZB[i])
if s+ p >= l AND LZE[i− 1] + l + p <= LZE[i] AND s < l then

add run (LZB[i]-s,l,LZE[i-1]+l+p) to LinkedList[LZE[i-1]+p]
end if

end for
end for

Algorithm 7: Kolpakov and Kucherov’s algorithm

for h = 1 to LZLength− 1 do
if | LZ[h] |> 1 then

delta=LZB[h] - PrevO[LZB[h]]
for i = LZB[h] to LZB[h+ 1]− 1 do

for all j ∈ LinkedList[i− delta] do
if (j.e+ delta) < LZB[h+ 1] then

add run (i, j.e+delta, j.l) to LinkedList[i]
end if

end for
end for

end if
end for
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This algorithm might find some runs which can be extended outside the

block (i.e. Class II), which were already computed by Main’s algorithm. We

need to look forward and backward one element to check if the run could be

extended. In figure 3.13, we can see the example. The Class I run (4,1,5) could

be extended to (4,1,6) which is a Class II run. As we look forward to the next

element and checking it, we can avoid the duplication.

Figure 3.14 shows the steps of storing the runs. In order to store the

results of runs, we implement two LinkedList arrays of length n.

First we use LinkedList array Run1[] to store the results of Main’s algo-

rithm. Then we classify them by the start index and put them to LinkedList

array Run2[]. For example, we put the run (4,1,5) to Run2[4]. After that, we

use LinkedList array Run2[] to find other runs in Kolpakov and Kucherov’s

algorithm. Finally, we move them back to LinkedList array Run1[] with check-

ing if they are primitively rooted. Since Main’s algorithm not only calculates

the primitively rooted runs but also the non-primitively rooted ones (thus tech-

nically speaking not really runs), we use LinkedList array Run2[] to store the

original result, then we identify if it is a primitively rooted run, and put it to

LinkedList array Run1[]. In this part, we use a temporary array end[] and a

stack s3 to save the space and make it in linear time.
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Figure 3.13: Remove the duplication with Class II runs
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Figure 3.14: The steps of storing runs in Run1[] and Run2[]
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Chapter 4

Conclusion

We presented two C++ implementations of algorithms computing primitively

rooted runs in a string. The first, FJW, due to Franek, Jiang, and Weng is an

extension of Crochemore’s repetitions algorithm and also computes the num-

ber of primitively rooted distinct squares and, of course, primitively rooted

maximal repetitions. The complexity of the algorithm is O(n log n) where n is

the length of the input string. Franek and Jiang introduced three algorithms

in 2009 that compute runs. However, Franek, Jiang and Weng’s algorithm is

faster and more memory efficient requiring 13n integers of memory in com-

parison to the Franek and Jiang algorithms requiring O(n log n) integers of

memory, or Franke, Smyth, and Xiao most memory efficient implementation of

Crochemore’s algorithm requiring 14n integers.

The second one is an implementation of a linear time algorithm to com-

pute runs, based on Main, Kolpakov and Kucherov’s algorithms. Main’s algo-

rithm computes every Class II runs which across different Lempel-Ziv blocks

and some other runs. Kolpakov and Kucherov’s algorithm uses the result of

Main’s algorithm to find all the other runs. In order to provide the essential
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data for these two algorithms, we computes the suffix array, the longest common

prefix array, the Lempel-Ziv factorization in linear time. This implementation

uses some LinkedList arrays to store the runs.

In the future work, before mutually benchmarking and comparisons of

these two algorithms, the proper constant time range minimum querying must

be implemented. With many succinct data structures, the constant time of

querying could be achieved by heavy – though linear – preprocessing. Moreover,

the whole implementation can be optimized as far as memory requirements are

concerned by the technique of “allocation from arena” which helps significantly

the efficiency of dynamic memory allocation, [4]. After these modifications are

done, we will have a true linear time implementation to compare with the FJW.
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[12] J. Kärkkäinen and P. Sanders: Simple linear work suffix array con-

struction, Proc. 30th Internat. Colloq. Automata, Languages & Program-

ming (2003), pp. 943–955

54



M.Sc. Thesis - Chia-Chun Weng McMaster - Computing and Software

[13] M.G. Main Detecting leftmost maximal periodicities, Discrete Applied

Maths.25 (1989), pp. 145–153

[14] U. Manber and G. Myers Suffix arrays: a new method for on-line

string searches SIAM Journal on Computing, Volume 22, Issue 5 (October

1993), pp. 935948.

[15] G. Nong, S. Zhang, and W. Chan Linear suffix array con-

struction by almost pure induced-sorting In Proceedings of the

2009 Data Compression Conference (DCC ’09). IEEE Computer So-

ciety, Washington, DC, USA, 193-202. DOI=10.1109/DCC.2009.42

http://dx.doi.org/10.1109/DCC.2009.42

[16] W. Smyth Computing patterns in strings Addison-Wesley Pearson (2003)

[17] J. Ziv and A. Lempel Compression of individual sequences via variable-

rate coding IEEE Transactions on Information Theory, September 1978.

[18] http://www.cas.mcmaster.ca/~franek

[19] http://www.cas.mcmaster.ca/~wengc2

[20] http://www.bio.ifi.lmu.de/~fischer

55


