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Abstract 

 

Due to the strong interest in thorium fuels in CANDU reactors rooting back to 1970’s and 

1980’s [1], four experiments were done in the ZED-2 critical facility at Chalk River 

Laboratories to test the properties of (Th,Pu)O2 fuel [2]. The fuel was placed in five 

bundles with a typical CANDU design, stacked vertically in the center of the core (K0 

site) and surrounded by natural uranium fuel.  

The simulation of these experiments using the transport code DRAGON coupled with the 

diffusion code DONJON is presented. DRAGON is initially used to model two lattices 

and the full cores in 2D. These models are designed to calculate direct/adjoint flux, k∞ 

and keff values using the collision probability method. Furthermore, the models determine 

a set of homogenized and condensed cross sections in two energy groups. Subsequently, 

DONJON is used to model the full core facility in three dimensions. Using the 

homogenized and condensed macroscopic cross section libraries obtained from the 

DRAGON models, DONJON is able to calculate the flux alongside with the keff values 

for the specific cases in two energy groups. The results are then compared to those from 

the experiments and will further validate the accuracy of the simulations.  

Sensitivity and uncertainty results for the infinite lattices and the 2D full core model 

using DRAGON and SUSD3D code are discussed. The direct and adjoint flux values 

determined by DRAGON for the lattices and the full core model are used by SUSD3D to 

calculate the sensitivity profiles for specific reactions of the isotopes present. The 

sensitivity profiles are then used alongside with the covariance matrices to calculate the 

uncertainty contribution of nuclear data to criticality. The sensitivity and uncertainty 

(S/U) results of the 2D model for full core, using the DRAGON/SUSD3D code coupling 

are then compared with the S/U results of a 3D model of the full core using the code 

TSUNAMI within the SCALE6 package in reference [3]. The comparisons will show an 

excellent degree of consistency between the two methods, while reasons for possible 

differences in the results are also presented.  
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Introduction 

 

Thorium fuel has been a topic of extensive research due to its advantages and benefits. 

Having an abundance three to four times larger than uranium in nature, thorium fuel has 

the ability to complement uranium fuels and ensure long term sustainability of nuclear 

power [1]. Moreover, 
232

Th is a stronger fertile isotope than 
238

U, having a thermal 

absorption cross section of approximately 7.4 barns (three times higher than that of 
238

U). 

Upon absorption the fertile 
232

Th breeds fissile 
233

U, which contrary to 
235

U and 
239

Pu, has 

a  ̅ value (average number of neutrons generated per fission) greater than 2.0 throughout 

the energy spectrum. Thus, the 
232

Th – 
233

U cycle can operate in all the possible spectra 

(fast, epithermal and thermal) [1]. Due to these advantages, Canada began to examine the 

application of thorium fuel in CANDU reactors [2], [3], [4], [5], [6].  

Headed by AECL, one of the experiments, performed in the ZED-2 critical facility in 

Chalk River Laboratories, used five (Th,Pu)O2 bundles to analyze the physical 

parameters of the core containing such fuel [7]. The effects of the thorium fuel were 

observed on the overall state of the facility by monitoring the reactivity perturbations in 

the reactor upon inserting the five bundles in the center of the core. Subsequently, the 

effects of coolant voiding were observed upon ridding the five central bundles of their 

coolant. The core reactivity was controlled by adjusting the moderator height, thus each 

of the distinct cases mentioned above was characterized by a specific critical moderator 

height [7]. This work focuses on using reactor physics codes and concepts to simulate the 

aforementioned experiments.  

In a critical facility, there is a steady state of neutron population. This means that the rate 

of production of neutrons is equal to the total rate of loss of neutrons. Subsequently, a 

critical facility is determined to have a multiplication constant, keff, of 1. The keff value is 

thus dependent on the rate of fission, absorption and leakage in the core, all of which are 

dictated by the neutron flux.  

The transport equation is used to calculate the neutron flux and is presented in chapter 1. 

There are generally two computational methods of solving this equation: deterministic 

and stochastic methods. The research in this thesis has been performed using 

deterministic codes. The main advantage of deterministic methods is their lower 
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computation demand and time, while stochastic techniques offer more accurate results at 

the expense of higher computation needs.    

Calculating the transport equation for a full reactor core in three dimensions is 

computationally prohibitive and at times impossible given the current computing 

capabilities. Therefore, the flux calculations are usually divided into two steps:   

1. Using the transport equation to solve the neutron flux for a lattice cell, and 

subsequently calculating a set of homogenized macroscopic cross sections 

2. Using the diffusion equation to solve the neutron flux in the full core with the 

usage of the previously calculated homogenized macroscopic cross sections  

In this work the first step, solving the transport equation for lattice cells, is done using the 

lattice code DRAGON, version 3.05 [8] while the second step, solving the diffusion 

equation for the full core, is done using the full core code DONJON, version 3.1 [9].  

It is important to note that even though these codes have been widely used and 

extensively tested, an “exact” solution is still impossible to determine due to the 

inevitable approximations used in several steps of the calculations. Various sources of 

uncertainty exist, originating from the knowledge about the nuclear data, the material 

compositions and the geometric description of the problem. To gain more confidence 

about the obtained results knowledge of these uncertainties is necessary [10]. This 

knowledge can be gained by sensitivity and uncertainty (S/U) analysis, permitting the 

user to determine the importance of various computational parameters and identifying the 

major sources of uncertainty in the nuclear data. The analysis allows for the 

establishment of reliable safety margins for the calculated and measured values [10]. 

This thesis focuses on the uncertainty in the nuclear data by using the law of error 

propagation [11] to calculate the impact of nuclear data uncertainties on the criticality of 

lattices and cores. The code system used to perform these calculations is a modified 

version of SUSD3D, and the approach used in this code is based on the deterministic 

forward/adjoint perturbation method [10], [12]. 

This work will first illustrate the capabilities of the open-source and Canadian IST codes 

DRAGON and DONJON by comparing the full core simulation results to the benchmark 

experimental results. Furthermore, the work will also examine the coupling of DRAGON 

with the modified version of SUSD3D by comparing the obtained S/U results by those 

determined in reference [3] using the SCALE 6 package.  
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The necessary theoretical background of the concepts used in the thesis are presented 

chapter 1. This includes a thorough explanation of the transport and diffusion equations 

and the deterministic methods used to solve them, and an explanation of sensitivity and 

uncertainty analyses and how SUSD3D is used to perform these calculations for different 

cases.    

The second chapter focuses on the transport calculations done by DRAGON for various 

lattice cells and two dimensional full core cases. Furthermore, each case’s respective 

sensitivities and uncertainties to the different isotopes are presented, determined by using 

SUSD3D. The results of the sensitivity and uncertainty analyses are then compared to 

results obtained from TSUNAMI-3D, which is part of the SCALE 6 package. This will 

prove the accuracy of the results obtained by the methods presented in this paper. 

Subsequently, the final chapter is dedicated to simulating the full reactor cases in 3 

dimensions in DONJON, using the homogenized macroscopic cross section libraries 

created by solving the transport equation for the respective lattice cells. Each case is 

simulated using the critical moderator height which characterizes the specific case in the 

experiment. This will further validate the simulation of the experiment.  
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Chapter 1 

 

Fundamental Theories of Reactor Physics 

 

1.1  The Neutron Flux 

  

The fundamental quantity representing the neutron population is first described using a 

statistical mechanics approach. This approach considers the neutron population n inside a 

control volume V, travelling in a cone of d ̂ surrounding  ̂ at some location  ⃗ in space, 

with an energy between E and dE at time t. The position of a single neutron is thus 

identified by seven quantities:  

 three position coordinates:  ⃗     ⃗     ⃗     ⃗⃗ 

 three velocity coordinates: one velocity module Vn |  
⃗⃗ ⃗⃗ | where  ⃗⃗  

  ⃗

  
 and two 

components of direction  ̂  
 ⃗⃗⃗

 
 

 the time t, only used in transient situations and not applicable in steady state 

calculations 

The neutron population in a specific phase space volume element is thus defined by  

 ( ⃗     ̂  )         . The fundamental quantity in reactor physics, the neutron flux 

 , is defined as:    

  ( ⃗     ̂  )       ⃗     ̂    (1.1) 

Another fundamental distribution is the angular current, which physically represents the 

number of neutrons,    , with a specific velocity    and direction  ⃗⃗⃗, crossing an element 

of surface     during time   . This number is mathematically represented as: 

      ( ⃗     ⃗⃗⃗  )           ⃗⃗⃗    (1.2) 

The angular current can be presented as the following:  

  ⃗( ⃗     ⃗⃗⃗  )   ⃗⃗⃗   ⃗     ⃗⃗⃗    (1.3) 
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1.2  The Transport Equation  

 

1.2.1  The Differential Form 

 

The transport equation is used to balance the neutron population in a volume           

within the region { ⃗     ⃗⃗⃗} during   . As derived in reference [13], the change in the 

neutron population can be calculated by subtracting the balance of neutrons leaving the 

volume    , subtracting the number of neutrons lost during collisions, and adding the 

number of neutrons created.  

Figure 1 shows a control volume C with a surrounding surface of   . The number of 

neutrons in this control volume can be expressed by 

 
∫     ( ⃗     ⃗⃗⃗  )      
 

 
(1.4) 

 

 

Figure 1: Particle balance in a control volume 

Mathematically [13]:  

 The change in the neutron population in the volume   during    is: 

 
    ∫   [ ( ⃗     ⃗⃗⃗     )   ( ⃗     ⃗⃗⃗  )]      

 

 (1.5) 

 To calculate the number of neutrons leaving the volume during   , the neutron 

current is integrated over the surface   : 
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    ∫    ( ⃗⃗⃗  ) ( ⃗     ⃗⃗⃗  )        

  

 
(1.6) 

 Using Gauss’s theorem, equation (1.6) can be transformed into: 

 
    ∫      ⃗⃗⃗ ( ⃗     ⃗⃗⃗  )         

 

 
(1.7) 

 The number of neutron collisions can be calculated using (1.8): 

 
    ∫      ⃗    [   ( ⃗     ⃗⃗⃗  )]        

 

 
(1.8) 

 Finally, the number of new neutrons created is represented by: 

 
    ∫   [ ( ⃗     ⃗⃗⃗  )]        

 

 
(1.9) 

Where  ( ⃗     ⃗⃗⃗  )represents the source density. 

The neutron balance can thus be written as:   

                  (1.10) 

Upon expanding (1.10), removing the control volume integral in each term, and taking 

the limit as    approaches 0, the differential form of the transport equation is derived:   

  

  

 

  
 ( ⃗     ⃗⃗⃗  )     ⃗⃗⃗ ( ⃗     ⃗⃗⃗  )     ⃗     ( ⃗     ⃗⃗⃗  )

    ⃗     ⃗⃗⃗    

(1.11) 

Considering a steady state problem, and substituting the energy,   
   

 

 
, as an 

independent variable instead of Vn ,the equation becomes: 

    ⃗⃗⃗ ( ⃗    ⃗⃗⃗)     ⃗    ( ⃗    ⃗⃗⃗)     ⃗    ⃗⃗⃗  (1.12) 

Where  ( ⃗    ⃗⃗⃗)    ( ⃗    ⃗⃗⃗)    ( ⃗    ⃗⃗⃗)     ⃗    ⃗⃗⃗ . 

The scattering term is expanded to [14]: 

   ( ⃗    ⃗⃗⃗)             ( ⃗  ⃗⃗⃗
   ⃗⃗⃗     )   ⃗  ⃗⃗⃗     , (1.13) 

and the fission term is expressed as: 

   ( ⃗    ⃗⃗⃗)               ⃗  
          ⃗  ⃗⃗⃗     . (1.14) 

If a case is considered where the fixed source term,    ⃗    ⃗⃗⃗ , identically vanishes, 

equation (1.12) becomes an eigenvalue problem and the fission term is modified to the 

form: 
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  ( ⃗    ⃗⃗⃗)  

    

    
         ⃗  

          ⃗  ⃗⃗⃗      
(1.15) 

 

Where keff is the  multiplication constant.  

 

1.2.2  The Characteristic Form 

 

The characteristic of a neutron corresponds to a straight line with a specific direction  ⃗⃗⃗ 

describing the neutron trajectory [13]. By integrating the operator,    ⃗⃗⃗  over the 

neutron’s characteristic, while assuming that the neutron is at a distance s from the 

reference point  ⃗, the forward characteristic form of the equation in steady state is 

derived as the following [13]: 

  
 

 

  
 ( ⃗    ⃗⃗⃗  )     ⃗⃗⃗⃗    ⃗⃗⃗    ( ⃗    ⃗⃗⃗    ⃗⃗⃗)   ( ⃗    ⃗⃗⃗    ⃗⃗⃗) 

(1.16) 

 

 

1.2.3  The Integral Form 

 

In order to derive the integral form of the equation another fundamental concept, the 

optical path, must be introduced. The optical path,  , is proportional to the exponential 

attenuation factor which upon multiplication by the neutron source at any point s is equal 

to a value proportional to the neutron flux at any point a [14]: 

             ( ⃗     ⃗⃗⃗  )
 

 
. (1.17) 

 The following relation is then determined: 

   

  
            ⃗⃗⃗⃗    ⃗⃗⃗    ⃗⃗⃗   

              ⃗⃗⃗⃗    ⃗⃗⃗      ⃗⃗⃗⃗    ⃗⃗⃗    ⃗⃗⃗    

 

  
   ⃗⃗⃗⃗    ⃗⃗⃗    ⃗⃗⃗   

(1.18) 

Upon substituting the characteristic form of the transport equation, equation (1.16) into 

equation (1.18) and subsequently integrating it between 0 and  , the integral form of the 

transport equation is determined: 

 
 (     ⃗⃗⃗)  ∫              ⃗    ⃗⃗⃗    ⃗⃗⃗ 

 

 

 (1.19) 
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1.2.4  The Multi-group Approach 

 

By discretizing the continuous energy spectrum into a finite number of G energy groups, 

the energy-dependent quantities of a neutron can be averaged in each group, such that the 

neutrons behave as one-speed particles within each energy group. 

     {           }          (1.20) 

Thus, the differential form of the transport equation, (1.12), can be expressed as: 

    ⃗⃗⃗  ( ⃗  ⃗⃗⃗)      ⃗   ( ⃗  ⃗⃗⃗)      ⃗  ⃗⃗⃗  (1.21) 

The characteristic form, (1.16), becomes: 

 
 

 

  
  ( ⃗    ⃗⃗⃗)      ⃗⃗⃗⃗    ⃗⃗⃗   ( ⃗    ⃗⃗⃗  ⃗⃗⃗)    ( ⃗    ⃗⃗⃗  ⃗⃗⃗) (1.22) 

And finally, the integral form, (1.19), can be represented by: 

 
  (   ⃗⃗⃗)  ∫              ⃗    ⃗⃗⃗  ⃗⃗⃗ 

 

 

 (1.23) 

 

1.3  The Solution Methods 

 

Given all the assumptions thus far, the transport equation can still not be solved 

analytically for complex geometries, thus numerical methods must be used. Two general 

classes of methods are commonly used: deterministic methods and stochastic ones. The 

deterministic methods are further divided into four prominent methods: 

1. Collision probability method – based on equation (1.19) 

2. Method of characteristics – based on equation (1.16) 

3. Discrete ordinates method – based on equation (1.12) 

4. Spherical harmonics method – based on equation (1.12)  

In this thesis, the only method used was the collision probability method. Some results 

were compared with solutions from stochastic methods.  

The stochastic approach, also called Monte-Carlo methods, have proved to produce more 

accurate result, however this comes at a cost of increasing computational demand [15].  
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1.3.1  The Collision Probability Method  

 

Assuming an isotropic source, the collision probability method solves the integral 

transport equation by spatially discretizing equation (1.19). In a case which contains N 

regions, the CP method creates an NxN matrix in each energy group [13]. In this section, 

the formalism of the collision probability method is shown over an infinite domain, as 

derived in reference [14]. 

The flux is initially integrated through the solid angles to determine the integrated flux: 

 
    ⃗  ∫      ( ⃗  ⃗⃗⃗)

  

 
 

  
∫    ∫              ⃗    ⃗⃗⃗ 

 

   

 

(1.24) 

Let  ⃗’= ⃗    ⃗⃗⃗ with             , substituting this into (1.24) leads to: 

 
    ⃗  

 

  
∫     

       

  
     ⃗  

 

 (1.25) 

Subsequently the problem is discretized into infinite regions with specific volumes Vi, 

and upon integration over each region Vi and multiplication by the macroscopic cross 

section in the region, equation (1.25) becomes:  

 
∫        ⃗ 
  

    ⃗ 

 
 

  
∫        ⃗ ∑    ∫     

   

       

  
 

  

 

(1.26) 

Let  

 
   

 

  
∫    
  

    ⃗  (1.27) 

 
     

 

      
∫        ⃗ 
  

    ⃗  
(1.28) 

 
      

 

        
∫     ∫    

  

       

  
 

  

 
(1.29) 

Equation (1.29) is the reduced collision probability matrix, which occurs in a case where 

the total cross section     ⃗  is constant and equal to     in region Vj. Thus, equation 

(1.26) can be re-written as:  



10 

 

        ∑           

 

 (1.30) 

Upon introducing the reciprocity property of the CPs, i.e.: 

                 (1.31) 

equation (1.30) can be simplified to: 

      ∑         

 

 (1.32) 

The collision probability method is usually done in three steps [13]: 

1. The geometry is divided into a large number of tracks (to appropriately take into 

account a significant number of neutron trajectories). In this paper the geometries 

defined are 2D geometries, thus two parameters defining the tracking are the 

number of azimuthal angles and the number of parallel tracking lines per cm. 

2. Using the tracking information and the regional macroscopic cross sections, 

numerical integration is done to compute the collision probability matrices. 

3. Finally, integrated flux is calculated using equation (1.32). 

 

1.4  Fundamentals of Lattice Calculations 

 

The transport equation, as stated previously, is not generally calculated for a full core due 

to its high computational demand. Lattice calculations are thus initially performed for an 

infinitely repeating unit cell within the core, using the operating conditions applied only 

to the small component in question. Using the correct boundary conditions, it is ensured 

that the flux that is determined for the lattice is a stationary one applied strictly to the cell.  

The calculations begin by accessing the cross sections corresponding to the isotopes in 

the problem. The cross sections are subsequently interpolated as they vary with the 

temperature. Subsequently, a self-shielding module is applied to calculate dilution cross 

sections for the applicable isotopes, and use these cross sections to interpolate the 

resonance integrals of the isotopes in resonance regions. Using the given data gained 

from tracking and the corrected nuclear data, the flux calculations are done using the CP 

method described in the previous section. Finally, homogenization and condensation of 

the reaction rates are done using either a flux-volume weighting method, for cases where 
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the output geometry is homogenous, or superhomogenization method for cases where the 

output geometry is heterogeneous.  

The data obtained from the final homogenization and condensation of the lattice cell are 

then used for full core calculations. 

 

1.4.1  Resonance Self-Shielding 

 

Scattering reactions between the neutrons and the various nuclides present in a reactor are 

the main cause of high energy neutrons slowing down. Inelastic scattering reactions can 

lead to a loss of a large fraction of neutron energy, however these reactions only occur at 

high neutron energies (50 keV for light nuclides and 1 MeV for heavy ones) with 

relatively small cross sections [13]. Thus, the main cause of the thermalization of 

neutrons is elastic scattering. 

When considering neutrons with energies higher than a few eV, the scattering reactions 

only lead to a slowing down effect and thus equation (1.12) can be rewritten as:  

 

   ⃗⃗⃗ ( ⃗    ⃗⃗⃗)     ⃗    ( ⃗    ⃗⃗⃗)  
 

  
     ⃗    ∑      ⃗     

 

   

 (1.33) 

Here u is the called the lethargy of the neutron. This value is the fraction of the kinetic 

energy lost by a neutron upon an elastic scattering reaction and it is represented as 

    
  

 
 . 

    ⃗    is the fission source and       ⃗     is the elastic slowing down operator, 

defined as: 

 
      ⃗     ∫           ⃗         ⃗    

 

 

 (1.34) 

However, as discussed in the previous section, this equation is solved using a multigroup 

approximation, which assumes a constant cross section within each energy group. Yet, 

many heavy nuclides are resonant with small resonance widths, and the multigroup 

discretization of each of these resonances would require an impractically large number of 

energy groups. The flux in these resonant regions is very low, and neglecting this effect 

by using average cross section will lead to an over estimation of the reaction rates. 



12 

 

Thus, the objective of a self-shielding model is to determine the microscopic self-

shielded cross section for a specific reaction   in an energy group g,  ̅    , expressed as 

[16]: 

 

 ̅     
              

  

    

         
  

    

 (1.35) 

where  

ug-1 , ug = lethargy limits of group g 

     = the microscopic cross section of reaction  . 

However, to solve the equation the value of flux is needed, and the value of flux needs to 

be calculated using the self-shielded cross sections. Thus further approximations are 

applied in a process called the generalized Stamm’ler method.  

 

1.4.1.1 Generalized Stamm’ler Method 

 

The goal of the Stamm’ler method is to solve equation (1.35) for a heterogeneous multi-

group problem, using specific approximations. The first approximation involves the 

assumption that the neutron flux is factorized as the product of a resonant fine-structure 

function       with a regular distribution       such that [16]: 

                          (1.36) 

      is called the macroscopic flux which is used to describe the asymptotic behavior of 

the neutron flux. The fine-structure function is then used to describe the effective 

resonance integral Iy(g) for nuclear reaction y. The calculation of this integral is an 

imperative part of the method, which ultimately leads to the final self-shielded cross 

section value: 

         

      
 

  
∫            

  

    

 (1.37) 

While the average fine-structure function can be represented as follows:  

         

      
 

  
∫       

  

    

 (1.38) 

where Ug = ug-ug-1. 
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Using equations (1.37) and (1.38), equation (1.35) can be re-written as: 

         
 ̅     

 

 ̅   
      (1.39) 

The goals of the method are then to calculate the values of       and  ̅   . Both these 

values, however, depend on the averaged microscopic dilution cross section,  ̅ , whose 

calculation is beyond the scope of this thesis and details of its calculation can be found in 

[16].  

Subsequent to the determination of  ̅ , the averaged fine-structure function can be 

calculated using the following equation:  

         
 ̅      

 

 ̅    
      ∑

  

  
        

 

 (1.40) 

where      is the total effective resonance integral and         is the transfer effective 

resonance integral, both of which are interpolated from the cross-section library at the 

specific  ̅ (g).  

However, Livolant and Jeanpierre found that this approach produces an error in some 

heterogeneous problems [17]. This was due to the fact that the average macroscopic 

dilution cross section differed from the escape function evaluated at an average cross 

section,    ̅ 
     . Thus, a procedure known as the Livolant-Jeanpierre normalization 

was proposed, where  ̅     is replaced with    ̅ 
      

 

     
    

  in equation (1.40): 

         
 ̅      

 

   ̅ 
     

      ∑
  

  
        

 

 (1.41) 

Furthermore, the relationship between the heterogeneous resonant integral for reaction y, 

and the pre-tabulated homogeneous resonant integral for reaction y,   
   can be defined as 

the following:  

                 
     ̅      (1.41) 

Upon the calculation of the average resonant cross sections and subsequently the flux, a 

homogenization and condensation step is followed; where condensation leads to a few 

group energy discretization and homogenization is used to calculate a set of nuclear data 

corresponding to a macro-geometry.  
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1.4.2  Homogenization and Condensation  

 

To perform full core calculations using exact geometries, the properties calculated in the 

lattice using the transport equation must be homogenized over macro-regions and 

condensed over the energy groups. Two methods of homogenization and condensation 

will be discussed and used in this paper, the traditional flux-volume weighting (FVW) 

method and superhomogenization (SPH) method.  

In the FVW method, the original quantities which were stored in a NxG matrix (N= 

number of regions, G= number of groups) are condensed and homogenized into an MxK 

matrix, such that for every index m   [1,M] there exists a set of indices n  [1,N]: Nm; 

and for every index k    [1,K] there exists a set of indices G  [1,G]: Gk. 

The average homogenized cross section in region m and group k is calculated by [18]:  

         
    

    ∑ ∑
          

      
        

 (1.42) 

The FVW method can be accurately used in all cases where the final output geometry is 

homogeneous. In cases where heterogeneity exists in the output geometry, the FVW does 

not ensure the preservation of reaction rates [13]. In these specific cases, the SPH method 

is used.  

The SPH method calculates the homogenized cross section using     , the SPH factor 

[18].  

          ̃   
            

    (1.43) 

where  ̃   
    is the SPH corrected homogenized cross section and     

    is the FVW 

homogenized cross section.  

     is calculated using the following relation: 

         

     
 ̅   

   

    
    

[∑ ∑
      

  
        

 ]

    
    

(1.44) 

where, 

 ̅   
   : average neutron flux over a coarse (homogenized) region k in energy group m, 

obtained by cell-heterogeneous calculations 

    
   : average neutron flux over a coarse (homogenized) region k in energy group m, 

obtained by SPH corrected cross sections 
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    : neutron flux in heterogeneous region i obtained by cell-heterogeneous calculations 

It is important to note that in equation (1.44), the SPH factor depends on the average flux 

enumerated by SPH corrected cross sections, hence an iterative strategy is used to 

calculate      , starting from an initial guess of the factor (usually 1).  

Upon the calculation of homogenized and condensed nuclear data, the diffusion equation 

can be solved for the exact geometry in 3 dimensions.  

 

1.5  The Diffusion Equation 

 

Writing the neutron balance over the full core domain in energy group g will have the 

form [13]: 

Leakage rate + Collision rate = Sources 

which symbolically is: 

            ⃗   ⃗      ⃗     ⃗      ⃗  (1.45) 

where  ⃗   ⃗  is the integrated current, calculated by directional integration over equation 

(1.3):  

         
 ⃗   ⃗  ∫     ⃗( ⃗  ⃗⃗⃗)  ∫     ⃗⃗⃗   ⃗  ⃗⃗⃗ 

    

 (1.46) 

However, solving this equation over a complex full core geometry can prove to be 

computationally prohibitive. Thus, simplifications are made to solve equation (1.45) 

using an approximation that relates the integrated current to the integrated flux. This 

relationship is called Fick’s law.     

 

1.5.1 Fick’s Law 

 

Fick’s law formulates the fact that neutrons have a tendency to migrate from areas of 

higher neutron concentration to areas of lower neutron concentration. Using this fact, 

Fick’s law relates the neutron current to the gradient of the neutron flux: 

          ⃗   ⃗       ⃗  ⃗⃗⃗    ⃗  (1.47) 

where D is the diffusion coefficient. The derivation of the directional diffusion 

coefficient tensor is beyond the scope of this paper, and it is presented fully in [13]. It is 
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important to note that Fick’s law is acceptable on the scale of a full reactor, but it breaks 

down at the level of lattice calculations [13].   

Substituting equation (1.47) in to (1.45) leads to the multi-group diffusion equation: 

          ⃗⃗⃗     ⃗  ⃗⃗⃗    ⃗      ⃗     ⃗      ⃗ 

 ∑           ⃗       ⃗ ∑        ⃗     ⃗ 

 

   

 

   

 
(1.48) 

where  = 1/keff, is the eigenvalue of the problem. 

The solution of the eigenproblem (1.48) behaves in a typical way such that only the 

fundamental solution of the problem, which corresponds to the largest absolute value of 

the eigenvalue, is equal to the inverse of the effective multiplication constant Keff [13]. 

This is the only solution that has a physical meaning and leads to positive neutron flux 

over the full reactor domain.   

1.6  Sensitivity and Uncertainty Analysis 

 

“In practice, the results of experiments seldom coincide with the computational results 

obtained from the mathematical models of the respective experiments. Discrepancies 

between the results are due to both experimental and computational uncertainties.” [19] 

 

Uncertainties in computer models can arise from various sources and can be categorized 

as [19]: 

1. Modeling uncertainties arising from the inadequacy of mathematical equations to 

represent the specific phenomena 

2. Modeling uncertainties arising from the numerical methods used to solve the 

model’s equations  

3. Parameter uncertainties arising from uncertainty in the data and parameters in the 

problem (e.g. cross sections)  

This thesis focuses on nuclear data uncertainties, specifically uncertainty in the isotopic 

cross sections. Using sensitivity analysis, these uncertainties are propagated to keff values. 

However, at this point the information of data uncertainties is very limited and varies 

significantly between different libraries [20]. 
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A modified version of SUSD3D was used to perform the sensitivity and uncertainty 

analysis. This code uses the direct and adjoint flux values provided by DRAGON 

calculations to perform first order perturbation theory which ultimately leads to the 

determination of sensitivity coefficients. Subsequently, with the usage of covariance 

matrices, the uncertainty worth of specific cross sections are calculated.  

 

1.6.1  First Order Perturbation Theory 

 

Using operator notation, the transport equation can be re-written as the following:  

           ⃗⃗     ⃗⃗ (1.49) 

where  

           ⃗⃗  ( ̂  ) ⃗⃗     ⃗⃗     ⃗⃗ (1.50) 

and 

           ⃗⃗    (   )
 
 (1.51) 

Assuming that there is a lattice cross section perturbation by     due to changes in the 

local parameters, the transport operators will also change to:  

                 (1.52) 

and 

                 (1.53) 

Thus, equation (1.49) becomes 

                 ⃗⃗    ⃗⃗                ⃗⃗    ⃗⃗  (1.54) 

Ignoring the higher order perturbations and simplifying the above equation leads to: 

            ⃗⃗     ⃗⃗      ⃗⃗      ⃗⃗      ⃗⃗ (1.55) 

An adjoint,   , is then defined which satisfies the following relation: 

             ⃗⃗ ⃗⃗ ⃗       ⃗⃗ ⃗⃗ ⃗ (1.56) 

where  

            ⃗⃗ ⃗⃗ ⃗   ⃗⃗       ⃗⃗     (1.57) 

The < , > notation indicates an integration over the continuous independent variables or a 

sum over the discrete independent variables (in this case, energy, volume and solid 

angle):   ( ⃗  ⃗⃗⃗  )  ( ⃗  ⃗⃗⃗  )               ( ⃗  ⃗⃗⃗  )  ( ⃗  ⃗⃗⃗  ) 
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Taking the inner product of equation (1.55) with  ⃗⃗  leads to: 

                 ⃗⃗          ⃗⃗            ⃗⃗           ⃗⃗    

        ⃗⃗   
(1.58) 

Upon applying the property shown in (1.57) and simplifying based on equation (1.56), 

the final equation expressed in terms of    is: 

         
    

   ⃗⃗ ⃗⃗ ⃗          ⃗⃗  

  ⃗⃗    ⃗⃗  
 (1.59) 

Thus, only the knowledge of the flux and the adjoint flux for a reference case is necessary 

to determine the first-order alteration in the eigenvalue of the perturbed problem, 

provided that    and    are determined explicitly [21]. Reference [22] illustrates that the 

error found in    is first order with respect to   ⃗⃗. 

The adjoint flux is also calculated in DRAGON using the multi-group collision 

probability method, and with the application of a pseudo adjoint flux, a similar algorithm 

required for the calculation of direct flux is applied to the calculation of adjoint flux. The 

details of the calculations are found in reference [23]. 

 

1.6.2  Sensitivity Coefficients Calculations 

 

In recent times, sensitivity and uncertainty analysis has played a significant role in 

discussions of target accuracies, criticality safety assessment evaluation of methods to 

reduce uncertainty in a system [24]. Changes in the cross sections can have both direct 

and indirect effects. For example, changes in the hydrogen isotope will have a direct 

effect on keff of the reactor, however it will also play a role in the resonance escape 

probabilities of heavier isotopes, thus affecting keff indirectly [21]. In this thesis only 

direct effects will be examined, and upon comparison with other results the relevance of 

implicit effects will be determined.  

The explicit sensitivity is defined as [20]: 

         
  

   
  

   
 
  

 
 (1.60) 
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where    is the microscopic cross section for reaction x. Substituting (1.60) into (1.59) 

yields the equation for the energy, volume and solid angle integrated sensitivity 

coefficient: 

         

  
    

  

 
[
  ⃗⃗  ( 

  
   

 
  
   

)  ⃗⃗  

  ⃗⃗    ⃗⃗  
] (1.61) 

The complete process to calculate the group-wise volume integrated sensitivity 

coefficients is found in reference [10], with the final equation being:  

         
    

  
 

 
 

    
∑     

         
   ∑             

     

  

 ∑∑ 
      
   ∑     

     
    
      

 

    

 

     

 

(1.62) 

where 

  : the volume of region i 

  
 : the number density of isotope i in region n 

      
   

: the total microscopic cross section of isotope i, reaction x, in group g and region n 

             
 : the direct and adjoint flux values respectively in group g, region n and 

solid angle m 

       
 : l

th
 legendre coefficient of the scattering microscopic cross section from group g 

to g’ 

    
     

    
    

: direct and adjoint angular flux moments respectively 

The sources of error in the nuclear data and their correlations alongside with the 

sensitivity profiles are subsequently used to determine the nuclear data uncertainty 

propagation.    

 

1.6.3  Error Sources and Correlations 

 

Often cross section experiments employ very similar geometric configurations which 

allows for the determination of broad categories of error sources. These errors are then 

categorized into two general groups, random errors and systematic ones. A random error 

only affects one data point, while systematic ones affect two or more data points in a 
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correlated manner [11]. A paper by D.L. Smith et al. [11] lists the various sources of error 

and their correlations when determining activation and fission ratios data.  

A major source of error is event statistics which include all errors which occur due to 

statistical errors of measure counts (e.g. activity decay counts). These errors are only 

correlated under specific contexts. For example, if more than one activation cross section 

is determined from a single irradiation, then the statistical error during that irradiation 

affects all the data points and thus is fully correlated between all the data points.   

Another significant contributor is the method used in determination of corrected cross 

sections from the raw data. An example of such procedures is the fission extrapolation. 

Some fission events produce very low signals and are unavoidably lost in noise 

distribution. If every fission event is extrapolated and corrected individually, then this 

problem becomes a random source of error. However, if fission events are grouped and 

extrapolated together, then the sources of error are correlated and thus systematic [11].   

If values of cross sections are to be determined, as opposed to their ratios, then the 

neutron flux needs to be determined for a standard reaction. In order to do this, a well-

known cross section (such as 
235

U fission) is used to determine the flux, which in turn is 

used to determine the cross section in question. However, this introduces another source 

of error, generally systematic in nature, due to the uncertainty in the standard cross 

section used to determine the flux.  

A more complete list of sources of errors is listed in reference [11].  

The fundamental physical quantities measured in an experiment (e.g. count rates, masses, 

etc.) can be represented by xk (k=1..l..L) while the results computed from each of these 

fundamental quantities (e.g. cross sections) can be represented by Pi (i=1,n). To calculate 

individual components of the covariance matrix,      , knowledge of the values of errors 

present in each measurement, alongside with their correlation to other errors are 

necessary [11]: 

          
      ∑              

 

   

 (1.63) 

where l represents the specific measurement,      is the partial error of measurement l 

corresponding to Pi, and      is the partial error of measurement l corresponding to Pj, and 

       represents the “micro correlation” coefficient which represents the correlation 
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between the partial errors      and       . The partial errors are recorded throughout the 

experiment, and thus accessing these values is not difficult. However, the micro 

correlation coefficients, -1 < Si,j,l < 1, prove to be much more tedious to determine. These 

values can be obtained analytically, see reference [11] for details, or subjectively by the 

experimenter.   

Hence, the difference between covariance matrices of different libraries can be quite 

significant, due to their differences in experimental design and estimations [12].  

 

1.6.4  Uncertainty Calculations 

 

The sensitivity coefficients form a 1x M vector, in which M= I number of isotopes 

multiplied by X number of reactions and G number of energy groups. This vector, 

alongside with the M x M covariance matrix are used together to calculate the 

uncertainties of the reactions in each energy group:  

          
 

   
  

       
  

 

 
  

    
 ( 

    

  
 

)

 

 (1.64) 

where  
  

    
  is the covariance matrix associated with reaction x in isotope i and reaction 

y in isotope y. Covariance data provide a quantification of the strength of correlation 

between two nuclear data. The covariance matrix is a representation of the covariance 

data in such a way that the element in the i and j position is the covariance between the i
th

 

and j
th

 reaction. The matrix is set up in such a way that the relative variances, (  
 )

 
, are 

along the matrix diagonal and represent the experimental variance of a specific reaction 

of an individual isotope. The off-diagonal terms in the matrix represent the covariance of 

one reaction,   
 ,  with respect to another,   

 
.  

Due to the complex understanding of statistical work required to produce these 

covariance matrices, the job is found to be a tedious, time consuming and non-trivial 

work [11]. This is the reason why different covariance matrices derived from different 

libraries, can often lead to different results. This fact will be exemplified later in the 

thesis, when results obtained using different libraries are compared.    

 

 

 



22 

 

1.7  Codes Used 

 

1.7.1  DRAGON 

 

DRAGON version 3.05 was used in this paper to solve the transport equation for various 

lattices. Developed at École Polytechnique de Montréal, DRAGON contains a collection 

of models that simulate the behavior of the neutron within a unit cell or an assembly [8]. 

The code is divided into various modules which perform different calculations, and are 

all linked together using the GAN generalized driver.  

Listed below are the DRAGON modules used in this paper: 

 The LIB: module was used to read the 69-group library with a WIMS-D format 

[25]. DRAGON also has its own DRAGLIB libraries, with the further options to 

use MATXS [26], WIMS-AECL [27], and APOLLO [28] formatted libraries 

 Modules were used to define the geometry and generate tracking files containing 

regional volumes and track lengths, two of them were used in this paper: 

o EXCELT:, which creates integration lines for full cell calculations and 

o NXT:, which is similar to EXCELT but allows for more usage of block 

geometries 

 The SHI: module was used to calculate the resonance self-shielded cross sections 

using the generalized Stamm’ler method with the option of Livolant- Jeanpierre 

normalization (option LJ) or not (NOLJ)  

 The ASM: module was used to determine the multi-group complete collision 

probability matrices 

 The FLU: module was used to solve the multi-group transport equation for the 

flux, the adjoint flux and the multiplication constant, keff 

 The EDI: module was used to edit the output and at the same time perform FVW 

or SPH method homogenization and condensation 

 The COMPO: module was used to save the homogenized and condensed nuclear 

data in a readable format for later use in DONJON 

 

1.7.2  SUSD3D 

 

SUSD3D development started from the code SUSD, which was created in the late 1980’s 

http://www.polymtl.ca/


23 

 

[29]. Maintained by the OECD/NEA, this code uses first-order perturbation theory to 

obtain multi-group, multi-dimensional sensitivity coefficients. A modified version of the 

code is used that allows coupling with DRAGON to obtain direct and adjoint flux values 

[12]. Cross sections of specific reactions were obtained by the nuclear data processing 

system NJOY. NJOY is a modular computer code that is used to read evaluated nuclear 

data in an ENDF format, transform the library, and output the library with specific 

formats [30]. In this case the GROUPR module of the code was used to obtain 69-group 

cross section libraries from the ENDF/B-VII library.   

The covariance matrices were taken from the SCALE 6 44-group covariance matrix 

library and converted into a 69-group format using ANGELO/LAMBDA. The matrices 

were used alongside with the sensitivity profiles to calculate the variances and the 

standard deviations in the integral response of interest, keff. 

The program is divided into three “overlays”. Overlay 1 calculates the matrices based on 

the products of          
  and            

 . Overlay 2 calculates the group-wise and integral 

sensitivity coefficients based on the results of overlay 1, and cross sections obtained from 

NJOY. Finally, overlay 3 uses the results from overlay 2 and the covariance matrices 

taken from the SCALE 6 44-group library and processed by ANGELO/LAMBDA codes 

to fit the 69-group format [12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: SUSD3D calculation scheme 
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1.7.3  DONJON 

 

The full core code DONJON (version 3.02 in this paper), also developed at École 

Polytechnique de Montréal, contains various models and numerical methods to solve the 

neutron multi-group diffusion equation [9]. This code, much like DRAGON, is also 

modular and uses the GAN generalized driver to link the modules together.  

DONJON has the ability to import the properly formatted homogenized and condensed 

nuclear data files created by DRAGON, and use these data to solve for multi-group direct 

flux, adjoint flux and reactor multiplication constant, keff. 

The geometry is initially tracked using the TRIVAT: module. Subsequently the 

TRIVAA: module is used to compute the finite element system matrices corresponding to 

the previously calculated tracking data. Finally the FLUD: module is used to calculate the 

solution to the eigenvalue problem [9], demonstrated in equation (1.48).  
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Chapter 2 

 

ZED-2 Transport Calculations and S/U Analysis 
 

2.1  Calculation Scheme 

 

To keep within a sensible time frame, this model is completed in several stages. Each 

stage is computed with reasonable assumptions to cut down computation demand and 

time.  

The ZEEP rod lattice was initially modeled in DRAGON (section 2.2). Using transport 

calculations the k∞, direct/adjoint flux, and the homogenized cross sections were 

determined. The direct and adjoint flux values were then used in SUSD3D to calculate 

the sensitivity coefficients of the isotopes and their reactions in the lattice, and further 

their uncertainty on the infinite lattice k∞ was determined.  

The same calculations were subsequently performed for the (Th,Pu)O2 bundle infinite 

lattice (section 2.3). Subsequent to the S/U analysis, the reaction rates of the most 

sensitive reactions were calculated and examined to illustrate the effects of voiding the 

coolant in the bundle infinite lattice. 

Finally, the full ZED-2 core was modeled in DRAGON in 2D (section 2.4). Using similar 

calculation methods the sensitivity and uncertainty worth of the isotopes in the core were 

determined for four different full core cases.  

 

2.2  ZEEP Rod Lattice 

 

Figure 3 represents the ZEEP rod lattice composed of a single fuel pin containing natural 

uranium fuel and its surrounding moderator.  

The DRAGON code operates by using various modules, each designed to perform a 

specific task. The material composition of the lattice and subsequently its geometry are 

the physical parameters initially defined in DRAGON.  
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Figure 3: ZEEP rod lattice 

 

2.2.1  Physical Parameters 

 

The mixtures in the lattice are defined using the LIB: module. The module allows for a 

declaration of the library from which the cross-sections are to be chosen. Furthermore, 

the module presents various ways to use a transport correction to modify the cross-

sections in the lattice. The effect of the transport correction on the total and isotropic 

scattering cross-sections will further be examined by comparing a case without transport 

correction with a case which uses transport correction. 

The geometry of the lattice is defined using the GEO: module. To portray the results of 

an infinite lattice, the boundary conditions around the ZEEP rod lattice were chosen to be 

reflective. Two lattice geometries will be modeled and compared: a Cartesian lattice cell 

containing a circular fuel pin (Carcel geometry) within, and an annular type lattice.  
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Figure 4: Cartesian (Carcel) geometry vs. annual geometry 

 

2.2.2  Choice of Geometry 

 

An Annular and Carcel geometry were modeled to observe the difference between their 

computation time and their results. To examine the two lattices the area between them 

must be conserved, hence the radius of the annular model was calculated using:  

          

         √
       

 
 (2.64) 

Both geometries used the same number of tracking lines with an equal density and both 

had the same meshing. With a very coarse meshing scheme, the Cartesian geometry 

calculates a k∞ of 1.2084 in 2 minutes while the annular geometry determines a k∞ of 

1.2063 in less than 30 seconds.  
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Figure 5: Flux spectrum of the annular and Cartesian ZEEP lattices 

The difference between the two coarse geometries is approximately 3 mk and the 

computation times do not differ significantly. The annular case has a slightly lower 

computation time for two main reasons: The high symmetry present in the ring structure, 

and the reduction of variables in the collision probability calculations (reduces the spatial 

dimensions from 2D to 1).  

As observed, the annular geometry shows a greater flux in the thermal region and a lower 

one in the fast region. This is expected as the annular geometry has a higher flux in the 

outer regions of the lattice due to the nature of its reflective boundary. Upon the strike of 

a neutron against the lattice boundary, a perpendicular collision with the tangent of the 

circular boundary will lead to the neutron bouncing back directly towards the center of 

the lattice; however a collision with a smaller angle can lead to the neutron traveling in an 

unrealistic polygon path around the circle, thus leading to a higher flux in the outer 

regions. Furthermore, the outer regions of the lattice are dominated by thermal neutrons 

due to the presence of the moderator, while the center, the fuel region, is dominated by 

fast neutrons. Hence, the integrated thermal flux is higher in the annular model.  
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As observed, there exist some physical differences between the two geometries. 

However, the advantage of a faster computation time becomes more pronounced as the 

spatial meshing of the models become finer. Thus, the annular geometry is advised if 

high degrees of spatial discretization is required, however the Cartesian geometry offers 

more accurate results.    

 

2.2.3  Spatial Discretization  

 

The spatial meshing used in the lattice is of great importance and requires, much like 

other parameters, an optimization between computation time and accuracy. To illustrate 

the method used to determine the optimal meshing, the effects of radial meshing on the 

fuel rod are first observed. Subsequently, the effects of Cartesian meshing of the 

moderator are analyzed.    

 

Radial subdivisions k∞ Calculation time 

0 1.218515 1 minute 

2 1.218016 1 minute 

5 1.217555 1 minute 

9 1.217422 2 minutes 

Table 1: Effects of radial meshing on k∞ and computation time 

The fuel’s radial meshing is observed to have a small impact on the computation time and 

the k∞ of the lattice. As a result, the calculations were carried out using the five radial 

subdivisions model. 

The moderator in the lattice has a much larger volume than the fuel rod, thus it is 

expected that the Cartesian meshing will have a more significant impact on the lattice 

multiplication constant. Though the higher number of subdivisions had very long 

computation times, the spatial meshing was brought to even smaller volumes to observe 

whether a spatial convergence can be reached in the lattice. 

As observed the Cartesian meshing of the ZEEP rod lattice has a significant effect on the 

lattice k∞ and the computation time. Spatial convergence is observed to be reached at a 

30x 30 discretization.  
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J Cartesian subdivisions k∞ 

1 0 1.217555 

2 10x10 1.208477 

3 15x15 1.207128 

4 20x20 1.206517 

5 25x25 1.206193 

6 30x30 1.205981 

7 35x35 1.20584 

8 50x50 1.205651 

Table 2: Effect of subdivisions on k∞ 

 

 

Figure 6: Spatial convergence of k∞ in ZEEP lattice 

2.2.4  Choice of Reflective Boundary Condition Type  

 

DRAGON allows two types of reflective boundary conditions, white (isotropic) boundary 

conditions and specular (mirror-like) boundary conditions. The specular condition 

considers the boundary as a plane of symmetry, where the out-going flux is equal to the 

returning flux:  ( ⃗    ̂)     ⃗    ̂  . The white boundary condition considers the 

returning flux to have an isotropic angular distribution. This approximation can be used 
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in the case of a symmetric plane, and while the condition leads to less demanding 

calculations, it is nevertheless an approximation. Both these options were analyzed for a 

ZEEP lattice case with very coarse meshing to preserve time.  

 

Boundary condition k∞ CPU time (minutes) 

White (isotropic) 1.21851 1 

Specular (mirror) 1.21858 45 

 Table 3: Reflective boundary choice 

As observed from table 4, even with a geometry containing no additional subdivisions, 

the specular boundary condition demands a high computation time. Although specular 

boundary conditions are the physically correct conditions, the large size of the moderator 

around the lattice leads to a large portion of the flux behaving isotropically in the outer 

regions of the lattice. It is for this reason that choosing between isotropic or mirror-like 

boundary conditions only affects the multiplication constant by 0.07 mk. However, the 

white boundary condition has a significantly shorter computation time and even though it 

is not the physically correct condition, it is a good approximation which leads to results 

that are very close to the physically correct, specular, boundary condition. Hence, the 

white boundary conditions were chosen for the lattice.  

 

2.2.5  Resonance Self-Shielding 

 

The effects of self-shielding were analyzed on the exact non-discretized geometry. 

DRAGON 3.05 uses the SHI: module to study the effects of self-shielding of resonant 

isotopes within a specific geometry. The module uses the generalized Stamm’ler method 

presented in 1.4.1.1. Two different methods of self-shielding calculations were applied to 

observe their differences on the lattice multiplication constant. 

The option LJ commands the code to use the Livolant-Jeanpierre normalization scheme 

(also presented in 1.4.1.1). DRAGON disables this command by default since the NOLJ 

option, the opposite of the LJ option, is found to give more accurate results for CANDU 

cores [30]. The following table illustrates the effects of this option on the ZEEP rod 

lattice.  
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The difference between the two self-shielding calculation options is not negligible, and is 

proved to have a large impact on the multiplication constant of the ZEEP rod lattice. 

 

Normalization option k∞ 

LJ 1.228325 

NOLJ 1.218515 

   9.81 mk 

Table 4: Effect of Livolant-Jeanpierre normalization 

Furthermore, since a large portion of the full core is composed of these ZEEP lattices, 

this large effect is also expected to be observed upon the 3D full core calculations. 

Therefore, the effect and accuracy of the Livolant- Jeanpierre normalization scheme will 

further be analyzed upon examining the results from DONJON in chapter 3.    

       

2.2.6  Energy Condensation and Homogenization 

  

To produce reasonable macroscopic cross section libraries for further use in DONJON, it 

is important to select an accurate method of condensing the energy groups and the 

regions within the lattice.   

Two-group condensation was done by splitting the energy groups into thermal and fast 

regions. Energy groups were stored in one group below 0.625 eV and the other above it. 

Furthermore, using FVW calculations the homogenized macroscopic cross sections were 

calculated. As discussed in the introduction, each specific case ran in the ZED-2 reactor 

was characterized by a specific moderator height. Therefore, while a large portion of the 

ZEEP rods were submerged in the moderator, parts of them were not. To simulate this 

effect, two different libraries were created from the ZEEP rod lattice: One library which 

homogenized the fuel, cladding and moderator and the other which homogenized only the 

fuel and the cladding, excluding the moderator to simulate the ZEEP rods which were not 

submerged in the moderator.       

 

2.2.7  ZEEP Rod Lattice Sensitivity  

 

The modified version of SUSD3D code was used to perform sensitivity/uncertainty 
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analysis based on the first-order perturbation theory, where the sensitivity coefficients 

were derived from the direct and adjoint flux moments calculated by the FLU: module in 

DRAGON.  

The sensitivity coefficients presented in table 5 represent the change in k∞ resulting from 

a 1% change in the corresponding cross section. A positive sensitivity coefficient leads to 

an increase in the k∞ when changes in     are positive. Inversely, a negative sensitivity 

coefficient leads to a decrease in k∞ when changes in     are positive.  

SUSD3D calculated the sensitivity coefficient of various reactions in various isotopes in 

69 groups. Energy integrated sensitivity coefficients were calculated as well. The 

following table illustrates the energy integrated sensitivity coefficients in a decreasing 

order. Energy Group-wise sensitivity coefficients were also plotted for some of the 

reactions with the highest integrated sensitivity coefficients. 

 

Nuclide Reaction SI 

235
U ( ̅) 9.37E-01 

235
U (Fission) 4.42E-01 

238
U (n,γ) -4.09E-01 

235
U (n, γ) -8.64E-02 

238
U ( ̅) 6.35E-02 

238
U (Fission) 3.54E-02 

1
H (n, γ) -2.31E-02 

16
O (n,elas) 7.78E-03 

16
O (n, α) -3.05E-03 

1
H (n,elas) 2.88E-03 

16
O (n, γ) -1.19E-03 

238
U (n,elas) 1.26E-04 

235
U (n,elas) 2.18E-06 

Table 5: Energy integrated sensitivity coefficients 

As expected, 
235

U ( ̅) has the highest integrated sensitivity coefficient. This is to be 

expected as ( ̅) is directly proportional to k∞ and is used as a normalization factor. [11], 

[12]  
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To justify the descending order of the subsequent three reactions, 
235

U (fission), 
238

U 

(n, ) and 
235

U (n, ), three parameters must be analyzed:     , and    
 

, where RX is a 

specific reaction in energy group g. The three isotopes are all within the fuel, and have 

their highest sensitivity coefficients occurring in the same, thermal, region of the energy 

spectrum. Therefore, all three reactions will be affected by equal values of   and   , 

leaving   
 

  as the only parameter differing between the three reactions.  

Figure 7 illustrates the difference between the three microscopic cross sections, where the 

235
U-        is observed to be two orders of magnitude higher than 

238
U-        in the 

thermal region. However, the absolute integrated sensitivity coefficients are observed to 

have the same magnitude. This is justified by the fact that the density of 
238

U is two 

orders of magnitude higher than the density of 
235

U in the fuel, thus the macroscopic 

cross sections of the two isotopes have equal magnitudes in the fuel. Moreover, while 

235
U-        is one order of magnitude higher than 

238
U-       ,        of 

235
U is one 

order of magnitude lower than the        of 
238

 U; thus the integrated sensitivity 

coefficient of 
238

U (n,  ) is one order of magnitude higher than 
235

U (n,  ).  

  

Figure 7: Group-wise 
235

U  ̅ (SI=0.937) and 
235

U fission (SI=0.442) sensitivity profiles in 

the ZEEP lattice 
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Figure 8: ENDF/B-VII.0 group wise microscopic cross section data for 
235

U (n,f), 
235

U 

(n, ), 
238

 U (n,  ) 

 

Figure 9: Group-wise 
238

U (n,  ) sensitivity (SI= -0.409) profile in the ZEEP lattice 
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Figure 10: Group-wise 
235

U (n,  ) sensitivity (SI=-8.64x10
-2

) profile in the ZEEP lattice 

2.2.8  ZEEP Rod k∞ Uncertainty  

ANGELO/LAMBDA was used to create 69-group covariance matrices from the 44-group 

covariance matrices of SCALE 6 [12], and the uncertainty in k∞ due to uncertainties in 

the nuclear data was calculated using equation (1.64). It is important to note the two 

factors playing a role in k∞ uncertainty: the sensitivity of the specific reaction in question, 

and its respective covariance. Table 6 presents the 5 highest contributors to k∞ 

uncertainty with their corresponding standard deviations in mk and their percentage 

contributions to the total variance in the lattice cell. 

Nuclide Reaction   (mk) V% SI 

238
U (n,γ) 7.62 83.7 -4.09E-01 

235
U ( ̅) 2.88 11.9 9.37E-01 

16
O (n, ) 1.01 1.9 -3.05E-03 

235
U (Fission) 0.87 1.1 4.42E-01 

235
U (n,γ) 0.71 0.68 -8.67E-02 

Total k∞ uncertainty (mk) 8.36 

Table 6: Reaction uncertainties in the ZEEP rod, where SI represents the integrated 

sensitivity and V% represents the percentage contribution to total variance 
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238
U (n,γ) displays the highest uncertainty on k∞ in the lattice, even though it has a lower 

integrated sensitivity than 
235

U ( ̅) and 
235

U (Fission). This proves that the uncertainty 

lies chiefly in the 
238
U (n,γ) cross section data. Furthermore, even though 

235
U ( ̅) and 

235
U (Fission) have the two highest integrated sensitivities in the lattice, they only 

contribute a total of 13.0% to the k∞ uncertainty. This illustrates that the two reactions 

have better known nuclear data. The 
16

O (n, ) reaction is observed to have a slightly 

higher contribution to k∞ uncertainty than 
235

U (Fission) even though its integrated 

sensitivity is approximately two orders of magnitude lower. This illustrates that, similar 

to 
238
U (n,γ), the main portion of this reaction’s uncertainty contribution comes from the 

uncertainty in its cross section data.  

 

2.3  (Th, Pu)O2 Bundle Lattice 

 

The second DRAGON model created simulates the central (Th, Pu)O2 bundle. Having the 

same lattice dimensions as the ZEEP rod lattice, the (Th, Pu)O2 lattice consisted of a 

Bruce-designed 36 element bundle, supported by an aluminum central tube.  

 

Figure 11: (Th,Pu)O2 central bundle [7] 
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Using a similar process as the ZEEP lattice in the previous section, the LIB: module was 

first used to declare the mixtures in the lattice while the GEO: module was used to 

describe its geometry.  

Subsequently the collision probability matrices were determined, and using these 

matrices the direct and adjoint flux values, and the lattice multiplication constant were 

calculated. The direct and adjoint flux values were used as inputs for the SUSD3D code 

to calculate the sensitivity coefficients using first order perturbation theory. Furthermore, 

using the ENDF/B-VII library as an input for NJOY, the covariance matrices were 

calculated and fed into the SUSD3D code for uncertainty calculations. The modeling, 

however, began with the analysis of two potential geometries for the bundle.  

 

2.3.1  Choice of Geometries 

 

Two geometry options, Cartesian and annular, were modeled to determine the most 

accurate and timely efficient choice. As mentioned in the previous chapter, the Cartesian 

model is indeed the model which is physically closest to reality. However due to its lower 

order of symmetry and its higher number of variables (two Cartesian variables x and y 

relative to 1 radial variable, r, in the annular geometry) the Cartesian model is expected to 

have a much longer computation time.  

Using equation (2.64) the radius of the annular model is calculated such that the areas 

between the two geometries were conserved. Furthermore, it is important to pick a fine 

meshing for the integration lines, so that they cross every region in the lattice. As 

observed from figure 12 the annular geometry has a 6-fold rotational symmetry, thus the 

number of angles for the integration lines, nangle, was chosen to be 8 with a density, 

dlines, of 200 cm
-1

. The Cartesian geometry does not have the 6-fold rotational geometry 

and thus 48 angles are needed to create a fine meshing for its integration lines.     
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Figure 12: Cartesian (left) and annular (right) geometries of the (Th,Pu)O2 bundle  

 Nangle dlines (cm
-1

) k∞ Computation time 

(minutes) 

Carcel 48 200 1.03716 8 

Annular 8 200 1.03739 2 

     0.23 mk  

Table 7: k∞ and computation times of Annular vs. Cartesian bundle geometries 

As observed the differences between the two cases in terms of computation time and k∞ is 

very small with a coarse meshing. Thus, the Cartesian geometry was chosen due to the 

fact that it has a more physically accurate representation of the lattice and does not have a 

much larger computation time than the annular geometry given a coarse meshing.  

  

2.3.2  Water and Air Cooled Bundles 

 

Two individual experiments were performed in the ZED-2 reactor, one where the central 

(Th, Pu)O2 bundles were cooled, and the other where the bundles were voided. Therefore, 

an air cooled bundle was also modeled in DRAGON to simulate the coolant voided cases.  

By comparing the two types of lattices, one should be able to calculate the Coolant Void 

Reactivity (CVR) worth of the lattice. However, it should be noted that the CVR worth of 

the infinite lattice will not necessarily dictate the CVR worth of the full core, due to the 

added dimension in the DONJON model, along with the ZEEP rods and a more 
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heterogeneous surrounding. The table below represents the respective k∞ values of the 

two cases, along with the CVR worth of the lattice, calculated using:  

     
 

       
 

 

       
 

 

 k∞ 

Cooled (Th, Pu)O2 bundle 1.03716 

Voided (Th, Pu)O2 bundle 1.004680 

CVR -31.17 mk 

Table 8: Coolant Void Reactivity of (Th,Pu)O2 infinite lattice 

Contrary to a typical CANDU lattice, it is observed that the (Th, Pu)O2 bundle has a large 

negative CVR. This is explained by observing the flux spectra of the cooled and voided 

lattices. The voided lattice is observed to have a far lower concentration of neutrons in 

the thermal region, and a larger amount of neutrons in the fast region. This illustrates the 

fact that the coolant was also acting as an effective moderator in the lattice. The lower 

number of thermal neutrons will affect the fission rates within the lattice, whose major 

contributor is 
239

Pu. The 
239

Pu fission cross section shows a slight increase followed by 

sharp decrease at approximately 0.1 – 1 eV. Without moderated thermal neutrons, the 

fission rate in the lattice is greatly reduced. Therefore, the reactivity of the lattice is 

decreased as the coolant is removed.   
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Figure 13: Flux spectra of the cooled and voided lattices 

It is also interesting to note the differences between the (Th, Pu)O2 lattice energy 

spectrum, figure 13, and the ZEEP lattice energy spectrum, figure 5.  As observed from 

table 9, the fissile isotopes in the (Th,Pu)O2 bundle lattice fuel all have strong   values in 

the thermal region of the spectrum; furthermore, the strongest contributor to fission in the 

bundle lattice, 
239

Pu, has a higher neutron fission yield,  ̅, than the strongest fission 

contributor in the ZEEP lattice, 
235

U. Thus there is a higher concentration of fast neutrons 

from the fissile isotopes in the bundle lattice.  

Due to the presence of a strong absorber in the thermal region, 
232

Th, the bundle lattice 

has high absorption in the thermal region; therefore its energy spectrum in the thermal 

region is observed to be half the value of the ZEEP lattice’s thermal spectrum. Moreover, 

the bundle lattice is relatively under-moderated due to its lower fuel to moderator volume 

ratio relative to the ZEEP rod lattice. This leads to a higher concentration of fast neutrons 

and a lower concentration of thermal neutrons.  
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Fuel composition (Th, Pu)O2 lattice ZEEP lattice 

16
O 12.41% - 

232
Th 86.051% - 

238
Pu 0.002% - 

239
Pu 1.181% - 

240
Pu 0.303% - 

241
Pu 0.045% - 

242
Pu 0.008% - 

234
U - 0.005% 

235
U - 0.711% 

238
U - 99.284% 

Fuel density [g/ cm
3
] 9.46 19.05 

Table 9: Isotopic concentrations of (Th, Pu)O2 bundle lattice and the ZEEP rod lattice 

2.3.3  Spatial Discretization 

 

To choose the correct spatial meshing, one structure of the bundle was spatially 

subdivided while the other elements (coolant, moderator, fuel elements and etc…) were 

fixed. It was found that the optimal choice for the meshing in each rod is splitting each 

fuel rod into two annular regions. In this section, the optimal choice for coolant and 

moderator spatial meshing within the bundle lattice is studied. 

Subdividing the coolant region is expected to have a significant impact on the lattice 

multiplication constant. As observed in figure 14, DRAGON treats each individual region 

as a homogenous volume with a constant flux. Thus, having no subdivisions in the 

coolant region dictates a constant flux throughout the coolant, which is an assumption 

that leads to a higher integrated flux value than the various flux values within the coolant. 

Having no subdivisions, though computationally quicker in this case, results in a 

multiplication constant that is higher than the true k∞ of the bundle lattice. Subsequently, 

the effect of subdividing the moderator was analyzed as well. However, its effect on the 

bundle lattice k∞ was observed to be too low to sacrifice the added computation time. 
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Using a constant moderator subdivision of 0 

Coolant subdivisions: Number of subdivisions k∞ 

 1 1.055567 

 2 1.051951 

 3 1.042425 

 4 1.038933 

 5 1.037104 

Using a constant coolant subdivision of 5  

Moderator subdivisions: Number of subdivisions k∞ 

 1 1.037233 

 2 1.037438 

 3 1.037521 

 4 1.037560 

 5 1.037580 

 Table 10: Effects of moderator and coolant spatial subdivisions 

As observed, spatial subdivisions of the moderator had a very small impact, 

 < 1mk, on the lattice while the coolant subdivisions decreased the reactivity by 18.4 mk. 

Thus, the final bundle lattice contained two subdivisions in the fuel elements, five 

subdivisions in the coolant and no subdivisions in the moderator region.  

 

 

Figure 14: Energy integrated flux of the bundle lattice with 0 coolant and moderator 

subdivisions (left), with 5 coolant and 0 moderator subdivisions (center), with 5 coolant 

and 5 moderator subdivisions (right) 
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2.3.4  Energy Condensation and Homogenization 

 

Simulating the full core in 3D using DONJON requires that all the homogenized 

macroscopic cross section libraries have the same energy meshing. Therefore, the bundle 

lattice was condensed using the same energy subdivisions as the ZEEP lattice; where 

three individual libraries containing 2-group cross sections were computed. 

Due to the finer nature of the bundle, it was determined that a finer homogenized 

structure was needed than the ZEEP lattice. Using the Super Homogenization technique, 

each bundle was transformed into a 4x 4 Cartesian cell, where the central 4 cells contain 

the homogenized fuel and cladding structure cross sections, and the outer 4 cells contain 

the homogenized moderator cross sections. This scheme allows for a finer meshing, as 

well as allowing the user to remove the outer moderator to simulate the bundles that are 

above the critical moderator height in the 3D model. Both the air cooled and water cooled 

bundles were homogenized using the aforementioned method.  

 

 

Figure 15: Homogenization scheme of the (Th,Pu)O2 bundle 

2.3.5  (Th,Pu)O2 Bundle Lattice Sensitivity 

 

k∞ sensitivity and uncertainty analysis with respect to cross section data for isotopes 

present in the bundle was performed. Using the same methodology as the ZEEP lattice 

sensitivity/uncertainty analysis, the forward and adjoint flux vectors were computed by 
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DRAGON in 69 groups, and subsequently used by SUSD3D to generate sensitivity 

coefficients using first order perturbation theory.  

The integrated sensitivity (SI) coefficients of the air-cooled and the water-cooled bundles 

are presented in the table below in descending significance. Furthermore, the sensitivity 

coefficients corresponding to each energy group and associated with a specific reaction of 

an isotope are used to examine the integrated sensitivity coefficients.  

Finally, using the law of error propagation the uncertainty worth of each reaction is 

examined and the total uncertainty on the lattice k∞ is calculated. 

As observed from table 9, the top 5 most sensitive reactions in the air-cooled and water-

cooled bundles correspond to the isotopes in the (Th,Pu)O2 fuel and furthermore, 3 of 

these 5 reactions are 
239

Pu reactions: 239
Pu ( ̅ , 239

Pu (fission) and 
239

Pu (    . 
239

Pu has the 

highest relative weight percentage and is the largest contributor to fission. Therefore, its 

average neutron yield has the most direct effect on the bundle multiplication constant.   

As observed the integrated sensitivity coefficients differ between the two types of 

bundles. An increase is observed in all the capture reaction integrated sensitivity 

coefficients in the fuel isotopes except 
238

Pu, while fission reactions sensitivity 

coefficients all increase, without an exception, upon voiding the bundle. As observed 

from figure 13, the flux spectra of both bundles show that the air-cooled bundle has a 

lower concentration of thermal neutrons due to the fact that the coolant was also acting as 

a moderator. Due to the lower amount of thermal neutrons available in the air-cooled 

bundle, the 
239

Pu ( ̅) has a lower integrated sensitivity coefficient than the water-cooled 

bundle.    

232
Th capture is observed to play a more significant role in the air-cooled bundle than the 

water-cooled bundle. 
232
Th has a notable (n,γ) cross-section in the fast region of the 

spectrum, and as already mentioned, without the coolant also acting as a moderator, there 

is a significant amount of fast neutrons available in the air-cooled bundle, and thus the 

integrated sensitivity of 
232
Th (n,γ) is observed to be higher in the air cooled bundle.  

As expected, the water-cooled bundle is more sensitive to 
1
H reactions and this is due to 

the fact that there is a higher concentration of 
1
H in the water-cooled bundle, thus leading 

to a larger macroscopic cross section for both elastic scattering and capture. It is also 

interesting to note that 
1
H elastic scattering plays a more important role in the bundles  
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Table 11: Air cooled and water cooled (Th,Pu)O2 bundle integrated sensitivity 

coefficients 

Water-cooled bundle Air-cooled bundle 

Isotopes and 

reactions SI 

Isotopes and 

reactions SI 

239
Pu (   ) 9.53E-01 

239
Pu ( ̅) 9.51E-01 

239
Pu (Fission) 5.49E-01 

239
Pu (Fission) 5.49E-01 

232
Th(n, γ) -2.92E-01 

232
Th (n,  ) -3.48E-01 

239
Pu (n, γ) -1.91E-01 

239
Pu (n,  ) -1.95E-01 

240
Pu (n, γ) -6.02E-02 

240
Pu (n,  ) -6.13E-02 

1
H (n,elas) 5.21E-02 

241
Pu ( ̅) 4.69E-02 

241
Pu  (   ) 4.53E-02 

241
Pu (Fission) 2.73E-02 

1
H (n, γ) -4.53E-02 

16
O(n, elas ) 9.34E-02 

241
Pu  (Fission) 2.65E-02 

232
Th (Fission) -6.55E-03 

241
Pu  (n, γ) -6.47E-03 

241
Pu (n, γ) -6.53E-03 

232
Th (Fission) -5.30E-03 

1
H(n, elas ) 3.17E-03 

16
O (n,elas) -3.98E-03 

232
Th (n, elas) 2.04E-03 

240
Pu (   ) 1.21E-03 

240
Pu ( ̅) 1.68E-03 

240
Pu (Fission) 8.21E-04 

1
H(n, γ) -1.29E-03 

238
Pu (n, γ) -3.16E-04 

240
Pu (Fission) 1.16E-03 

16
O (n, γ) -1.59E-04 

238
Pu (n,  ) -2.88E-04 

242
Pu  (n, γ) -1.08E-04 

242
Pu (n, γ) -1.62E-04 

232
Th(n, elas ) -6.85E-05 

16
O(n, γ) -1.45E-04 

238
Pu (   ) 4.91E-05 

238
Pu (   ) 6.54E-05 

238
Pu (Fission) 3.23E-05 

238
Pu (Fission) 4.54E-05 

242
Pu  (   ) 2.47E-05 

242
Pu ( ̅) 3.34E-05 

242
Pu  (Fission) 1.69E-05 

240
Pu (n, elas ) 2.48E-05 

240
Pu (n, elas ) 2.75E-06 

242
Pu (Fission) 1.77E-05 

239
Pu (n, elas ) -1.57E-06 

238
Pu (n, elas ) -1.74E-05 

241
Pu  (n, elas ) -8.89E-09 

239
Pu(n, elas ) -9.36E-06 

238
Pu (n, elas ) -2.61E-09 

241
Pu (n, elas ) -1.18E-07 

242
Pu  (n, elas ) -2.10E-09 

242
Pu (n, elas ) -2.50E-08 
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than 
1
H capture, which further emphasizes the moderating role of the coolant, and 

explaining the largely negative CVR.  

 

 

Figure 16: Air cooled vs. water cooled bundle group-wise sensitivity profiles of 
239

Pu ( ̅) 

(SI,A.C.= 0.951, SI,W.C.=0.953) 

As observed from figure 16 the group-wise sensitivity of 
239

Pu ( ̅) is lower in the energy 

groups below 0.14 eV in the air-cooled bundle, while higher in the faster groups. This is 

due to the fact that though the value of ( ̅) does not change significantly between the two 

cases, in the air-cooled case most of the occurring fission reactions are in the fast region 

thus leading to a heightened sensitivity to average fission yield, ( ̅), in that energy range.  

The sensitivity of 
232

Th (n, γ) in the water-cooled bundle is observed to have a lower 

sensitivity than the air-cooled bundle in energy regions greater than approximately 0.02 

eV. The increase in sensitivity of 
232

Th (n, γ) upon voiding the bundle is due to the fact 

that the direct average flux in the fuel pins is higher in energy regions above 0.02 eV in 

the voided case, while the adjoint flux remains similar between the two cases.  
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Figure 17:Air cooled vs. water cooled bundle group-wise sensitivity profile of 
232

Th (n, γ) 

(SI,A.C.= -0.348, SI,W.C.= -0.292) 

 

Figure 18: Air cooled vs. water cooled bundle group-wise sensitivity plot of 
239

Pu (Fiss) 

(SI,A.C.= 0.549, SI,W.C.= 0.549) 
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The sensitivity to 
239

Pu (Fission) is observed to be greater in energy regions above 0.5 eV 

in the air-cooled bundle. Due to the small lattice pitch of the bundle, the coolant also acts 

as a moderator and thus voiding the coolant leads to a lack of moderation and 

subsequently a lower number of thermal neutrons. Therefore, the air-cooled bundle will 

have less fission in the thermal region than the air cooled bundle. Inversely, due to the 

lack of moderation there will be a higher number of fast neutrons, and 
239

Pu(Fission) is 

more sensitive in the fast region of the air-cooled bundle than the water-cooled bundle.     

 

Figure 19: Air cooled vs. water cooled bundle group-wise sensitivity plot of 
239

Pu (n, γ) 

(SI,A.C.= -0.195, SI,W.C.= -0.191) 

It is observed that much like 
232

Th(n, γ), 
239

Pu(n, γ) also increases in all energy groups 

above approximately 0.02 eV when the bundle is voided. Although the adjoint flux is 

approximately equal between the water-cooled bundle and the voided one, the direct flux 

differs slightly. In groups with energies below 0.02 eV, the direct flux in the fuel is 

slightly higher in the water-cooled case and in the higher energy groups the flux is higher 

in the air-cooled case. Hence, the water-cooled case is observed to be more sensitive to 

232
Th(n, γ) and 

239
Pu(n, γ) in the first 2 groups, and in the subsequent energy groups, it is 

the air-cooled bundle case which becomes more sensitive to the two reactions. 
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2.3.6  k∞ Uncertainty 

 

The infinite (Th,Pu)O2 bundle lattice uncertainties were calculated using the same method 

as the ZEEP lattice, explained in the previous section and are presented in table 12.        

 

Air cooled (Th, Pu)O2 bundle 

Nuclide Reaction   
 (mk) V% SI   (mk) 

239
Pu (   ) 9.84 63.9 9.51E-01  

 

12.31 

239
Pu (Fission) 5.90 23.0 5.49E-01 

239
Pu (n, γ) 4.29 12.2 -1.95E-01 

240
Pu (n, γ) 1.02 0.69 -6.13E-02 

16
O (n,α) 0.23 0.03 -3.51E-03 

Water cooled (Th, Pu)O2 bundle 

239
Pu (   ) 9.86 64.3 9.53E-01  

 

12.29 

239
Pu (Fission)

 
5.91 23.1 5.49E-01 

239
Pu (n, γ) 4.18 11.6 -1.91E-01 

240
Pu (n, γ) 1.02 0.76 -6.02E-02 

16
O (n,α) 0.38 0.10 -3.52E-03 

Table 12: Water cooled and air cooled (Th,Pu)O2 bundle lattice isotopic and total 

uncertainties 

With the exception of the 
16
O (n,α) reaction, the uncertainties in the (Th,Pu)O2 infinite 

lattice follow the same order as its integrated sensitivities. Similar to the ZEEP case 
16

O 

(n,α) is concluded to have a relatively high uncertainty in its nuclear data since its 

integrated sensitivity is approximately an order of magnitude less than the 5 most 

sensitive reactions in the lattice, while its contribution to uncertainty in k∞ is amongst the 

top 5.  

 

2.3.7  Reaction Rates 

 

The largely negative CVR can be justified by noting the most sensitive isotopes and their 

various reaction rate perturbations upon voiding the bundle. Table 9 illustrates the fact 

that the capture and fission reactions in the fuel have a strong impact on the lattice 
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criticality, thus by comparing the capture and fission rates in both the bundle cases the 

CVR could be better understood.  

Using the flux values generated by DRAGON along with the macroscopic cross-sections 

of the isotopes, the reaction rates per unit lethargy were initially integrated through 

volumes of interest and normalized to the total integrated flux in the bundle. 

 
          ∑

             

  (
  

    
)

 

 
 

 

   

 (2.65) 

where RX= Specific reaction (i.e.: fission, capture,…) 

g= Energy group number  

i = Region number 

m= Maximum number regions       

 = Total integrated flux in the bundle 

As observed in figure 20, the voided bundle has lower 
239

Pu fission rates in the thermal 

energy regions, while having higher rates in the fast regions. Due to the lack of 

moderation a flux shift towards the fast spectrum is expected in the voided case and thus 

fast fission is observed to have increased in the bundle. However, as shown in the 

sensitivity per unit lethargy of 
239

Pu (Fission) (figure 18), the bundle is most sensitive to 

thermal fission and thus even though there is an increase in the fast fission rate upon 

voiding, the decrease in the thermal fission rate is expected to have the greater impact on 

bundle reactivity. 
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Figure 20: Air cooled vs. water cooled bundle group-wise reaction rates of 
239

Pu (Fiss) 

232
Th(n, γ) is another reaction which is expected to have a significant impact on the 

bundle reactivity due to its high concentration and integrated sensitivity. Figure 21 shows 

that much like the 
239

Pu (Fission) rate, upon voiding the thermal 
232

Th (n, γ) rate also 

decreases while the fast 
232

Th (n, γ) rate increases. However, the 
232

Th (n, γ) sensitivity 

plot shows that the bundle is more sensitive to 
232

Th capture in the fast region than 
239

Pu 

(Fission). Hence, the increase in the fast region of the 
232

Th absorption rate due to 

voiding will have a more significant impact on bundle reactivity than the decrease in the 

fast region of the 
239

Pu fission.  
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Figure 21:Air cooled vs. water cooled bundle group-wise reaction rates of 
232

Th (n, γ) 

 

Figure 22: Air cooled vs. water cooled bundle group-wise reaction rates of 
239

Pu (n, γ) 
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The trend observed thus far is seen in the 
239

Pu (n, γ) reaction rate as well, where due to 

higher levels of moderation in the water-cooled bundle, the thermal region contains a 

higher 
239

Pu (n, γ) reaction rate while the fast region has a lower rate. Furthermore, the 

bundle is observed to be more sensitive to 
239

Pu (n, γ) in the thermal region and thus, 

similar to the previous two reactions. The rate decrease in the thermal region upon 

voiding is expected to be more significant than its increase in the fast region, due to the 

higher sensitivity observed in the thermal region.  

To evaluate the total rates, the group-wise rates were integrated through the energy 

regions of interest. The following equation was used to calculate total reaction rates: 

 

 
              ∑ ∑

             

 

 

   

 

   

 
(2.66) 

Reaction 

Total Rate(s
-1

) 

cooled 

Total rate(s
-1

)-

void 

Relative 

diff. 

Thermal 

rate(s
-1

)- 

cooled 

Thermal 

rate(s
-1

)- 

void 

Relative 

diff. 

239
Pu(Fis) 2.06E-05 2.16E-05 4.79E-02 7.47E-11 6.61E-11 -1.15E-01 

239
Pu(n,γ) 3.75E-07 4.70E-07 2.53E-01 3.99E-11 3.52E-11 -1.17E-01 

232
Th(Fis) 1.02E-04 1.01E-04 -8.12E-03 0.00E+00 0.00E+00 0.00E+00 

232
Th(n,γ) 4.99E-05 5.80E-05 1.62E-01 3.41E-11 3.10E-11 -9.05E-02 

238
Pu(Fis) 4.08E-08 4.23E-08 3.63E-02 1.17E-15 9.45E-16 -1.91E-01 

238
Pu(n,γ) 1.23E-09 1.47E-09 1.92E-01 3.48E-14 2.81E-14 -1.94E-01 

240
Pu(Fis) 4.41E-06 4.52E-06 2.30E-02 2.68E-15 3.02E-15 1.24E-01 

240
Pu(n,γ) 1.42E-07 1.76E-07 2.34E-01 1.12E-11 1.24E-11 1.02E-01 

241
Pu(Fis) 6.94E-07 7.36E-07 5.94E-02 2.61E-12 2.16E-12 -1.71E-01 

241
Pu(n,γ) 3.28E-08 3.89E-08 1.84E-01 9.55E-13 7.99E-13 -1.63E-01 

242
Pu(Fis)

 
9.87E-08 1.01E-07 2.27E-02 1.24E-18 1.18E-18 -4.72E-02 

242
Pu(n,γ) 4.45E-09 5.23E-09 1.76E-01 9.83E-15 9.52E-15 -3.15E-02 

Fuel 

fission 1.28E-04 1.28E-04 2.39E-03 7.73E-11 6.83E-11 -1.17E-01 

Fuel 

absorption 5.05E-05 5.88E-05 1.63E-01 8.61E-11 7.94E-11 -7.86E-02 

Table 13: Integrated (Th,Pu)O2 bundle fuel reaction rates; Relative diff= (RXvoid-

RXcooled)/ RXcooled 
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As observed from table 11, the total fission rate of the fuel increases by approximately 

0.2% upon voiding the bundle. However, this increase is found to be caused by the 

increased amount of fast fission, since the total thermal fission rate decreases by 11.7% 

upon voiding. It is important to note that according to the sensitivity analysis, 

perturbations in the thermal region of the bundle lead to the greatest impact on the bundle 

reactivity. Hence, the 11.7% decrease in the thermal fission rate is expected to have a 

more significant impact on the bundle reactivity than the approximately 0.2% increase in 

the fast fission rate (fast fission dominates total fission rate).  

Furthermore, the thermal absorption rate in the fuel is observed to decrease by 7.9% upon 

voiding. However, due to the thermal fission rate decreasing by a larger value than the 

thermal absorption rate, a total decrease in the reactivity is expected upon voiding. 

Moreover, the fast absorption rate in the fuel is observed to increase by approximately 

16%, a much larger increase than the 0.2% fast fission rate increase upon voiding.    

Overall, it is observed that due to the relatively small lattice pitch the coolant also acts as 

a strong moderator. The loss of coolant subsequently leads to a decrease in the thermal 

neutron population of the bundle which follows a decrease in the thermal fission and 

absorption rates. However, by calculating the integrated reaction rates in the fuel it was 

observed that the thermal fission rate decreases more than the thermal absorption rate. 

Moreover, the increase in the total absorption rate (thermal and fast) was determined to 

be 2 orders of magnitude higher than the increase in the total fission rate. It is thus 

determined that the moderating effects of the coolants were much more dominant than its 

1
H absorption and hence the CVR is justifiably negative.  

 

2.4  2D Reactor Core 

 

DRAGON was further used to model the full ZED-2 core in 2 dimensions and 69 energy 

groups. The four experiments done in the ZED-2 were then simulated, and the keff, 

direct/adjoint flux and sensitivity/uncertainties in the core were analyzed. The S/U results 

were then compared with the results of the SCALE 6 package. Subsequently, two 

libraries were generated for each case for further use in DONJON: 

1. The moderator in the outer regions of the core 

2. The graphite reflector surrounding the core 
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The differences between an infinite ZEEP lattice, infinite (Th, Pu)O2 bundle lattice  

and the full core were examined and the Coolant Void Reactivity (CVR) of the full core 

in 2 dimensions was calculated.  

Similar to the ZEEP and bundle models, the full core was studied using two geometries, 

annular geometry (circular model) and Cartesian geometry (square model).   

 

 

Figure 23: Plan view of the ZED-2 core 

 

2.4.1  Self Shielding Models 

 

The problem with self-shielding calculations for the full core in 2 dimensions is 

immediately presented as the boundary conditions of the full core (void conditions) 

contradict those necessary for self-shielding calculations (reflective conditions).  

There are two different methods of solving this problem. One can calculate self-shielded 

cross sections based on the full core geometry using reflective boundary conditions, and 
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subsequently apply those cross sections to the full core geometry again using void 

boundary conditions. This method will be the most accurate, yet the most 

computationally expensive. This is due to the fact that tracking of the geometry will be 

performed twice: once for the full core with reflective conditions for self-shielding 

calculations, and once for the full core with voided conditions for flux, keff and 

homogenization calculations. 

Another method is defining small 2x2 sub-geometries to simulate the various 

configurations of the ZEEP rods and the (Th,Pu)O2 bundle within the core, where each 

2x2 configuration is modeled using reflective boundary conditions. The cross section 

library is thus corrected for self-shielding upon the calculations performed for each of the 

2x2 sub-geometries and ultimately used for the final full core calculations.         

 

2.4.1.1  The Sub-Geometry Self-Shielding Model 

 

The ZED-2 core contains 6 distinct 2x2 sub-geometries where there is a bundle present in 

the center of the core, and 4 distinct 2x2 sub-geometries where there is either a ZEEP rod 

or no fuel in the center of the core. Tracking and subsequently self-shielding calculations 

were done for all the distinct cases shown in figure 24 and the library was updated upon 

the completion of each configuration.  

 

Figure 24: The 6 2x2 sub-geometries present in the ZED-2 core 
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 The sub-geometries modeled portray an approximate image of all the possible 2x2 

configurations in the core. However, it should be noted that these sub-geometries are not 

exact and due to the triangular pitch of the core, Cartesian modeling of these 

configurations leads to inaccuracy in the results. Furthermore, more error is introduced 

into the calculations as the sub-geometry method only concerns itself with the immediate 

surroundings of the ZEEP rods and bundle, yet effects from rods farther away also impact 

the self-shielding calculations and thus the final keff of the full core. Yet, alongside with 

all the sources of error in this method of calculating self-shielding, the great advantage of 

this method is cutting the calculation time almost in half; hence the results were gathered 

and compared to the most accurate self-shielding calculations using the global geometry 

models.  

The full core geometry used was the annular geometry, which allowed the exact 

placement of the ZEEP rods. The following table contains the keff values for each specific 

case using the sub-geometry self-shielding method.  

 

K0 site keff 

Water-cooled bundle 1.048437 

Air-cooled bundle 1.054189 

ZEEP rod 1.054945 

No fuel 1.050344 

Table 14: The full core keff calculated for the four cases using the sub-geometry self-

shielding method 

 

2.4.1.2  The Global Self-Shielding Model 

 

In this model the full core geometry is initially defined as having reflective boundary 

conditions. The reflective geometry is further tracked, the self-shielding calculations are 

completed and the cross section library is corrected. Subsequently, the same geometry is 

defined again; however the boundary conditions are changed to VOID (representing the 

vacuum outside the core and thus allowing leakage). This geometry is also tracked and 

using the previously updated library, the flux, keff and homogenized cross sections for the 
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graphite and moderator are determined. Table 15 presents the keff values calculated using 

the same geometry as the sub-geometry self-shielding model.  

Upon comparing table 14 and table 15 it is observed that the global self-shielding model 

can differ from the quicker, less accurate sub-geometry model by approximately + 3 mk. 

In cases where computation time is an imperative factor, the sub-geometry modeling of 

the self-shielding is advised, however the global self-shielding model is proved to have a 

notable difference in the criticality. 

 

 K0 site keff 

Water-cooled bundle 1.047586 

Air-cooled bundle 1.056441 

ZEEP rod 1.051454 

No fuel 1.049985 

Table 15: The full core keff calculated for the four cases using the global-geometry self-

shielding method 

Furthermore, in cases with a less complex geometry, where Cartesian sub-geometries 

have a more accurate representation of the local geometries in the core, and in cases 

where larger local geometries, such as 3x3 or even 4x4 Cartesian cells can be defined, the 

sub-geometry self-shielding model will have a large improvement in its accuracy and will 

still be the less computationally demanding option.  

 

2.4.2  keff Analysis 

 

As observed from table 15, the cases containing water-cooled (Th,Pu)O2 bundles have the 

lowest keff values. This is due to the fact that in the thermal region, 
232

Th is a strong and 

non-fissile neutron absorber, and thus both the light-water and air cooled bundles are 

observed to have a dip in the flux in the center of the core. Figure 25 illustrates the 

difference between the lower energy integrated flux in the center of the light-water 

cooled bundle case compared to the ZEEP rod case. 
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Figure 25: Energy integrated flux of water-cooled (Th,Pu)O2 budle case (left) and the 

ZEEP rod case (right) 

Figure 26 represents the flux spectrum in the center of the core of the four individual 

cases. As observed the case where the center of the core contains no fuel has the highest 

concentration of thermal neutrons and the lowest concentration of fast neutrons. This is 

due to the fact that there are no fissile isotopes to absorb thermal neutrons and 

subsequently produce fast ones. Furthermore the ZEEP rod case is observed to have a 

slightly lower concentration of thermal neutrons, and a slightly higher concentration of 

fast ones due to the presence of fissile isotopes in the ZEEP fuel. 

The major difference is observed when the bundle is inserted in the center of the core. 

The thermal concentration of neutrons decreases by approximately half while the 

concentration of fast neutrons increases. Thermal neutron absorption is much higher in 

the bundle than in the ZEEP rod; this is due to the presence of 
232

Th which acts as a 

strong and non-fissile neutron absorber in the thermal region of the spectrum. 

Furthermore, the presence of 
238

Pu,
 239

Pu,
 240

Pu,
 241

Pu, and 
242

Pu isotopes adds to the 

absorption and fission rates in the bundle. The plutonium isotopes are observed to have a 

higher average neutron yield than 
235

U and thus the concentration of fast neutrons in the 

bundle case are observed to be higher.  

It is imperative to note that the neutron spectrum of the case where the center bundle is 

voided does not differ significantly from the case where the center bundle is cooled with 

light water. The similarity illustrates that the coolant did not have a significant 

moderating role in the bundle within the full core. This contrasts the earlier observation 
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of the neutron spectrum of an infinite (Th,Pu)O2 lattice, where voiding the light water 

coolant led to a significant decline in the concentration of thermal neutrons, and an 

increase in the concentration of fast neutrons (figure 13) and thus proving that the coolant 

was acting as a strong moderator in the infinite lattice. Therefore, while the coolant’s 

moderating power played the dominant role in the infinite (Th,Pu)O2 bundle lattice 

leading to a CVR of -31.17 mk, its role was minimized in one bundle placed in the center 

of the core.  

 

Figure 26: The flux spectra of the center of the core (the K0 site) of the four full core 

cases 

2.4.3  Full Core Sensitivity 

 

2.4.3.1  K0 Site – Air Cooled and Water Cooled Bundle 

 

Using the same aforementioned methodology, the adjoint and direct fluxes were 

calculated using DRAGON and subsequently fed to SUSD3D for sensitivity calculations. 

The integrated sensitivities of the case with the air-cooled (Th,Pu)O2 bundle in the K0 
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site of the core and the case with the water-cooled (Th,Pu)O2 bundle in the K0 site of the 

core are listed in table 16.      

The sensitivities of the two cases are observed to be similar. The fissile isotopes in both 

cases show the same integrated sensitivity to  ̅. It is thus determined that the values of  ̅ 

have not been altered significantly in any of the fissile isotopes in the core upon voiding 

the central bundle. The 
235

U ( ̅) value has the highest integrated sensitivity coefficient 

amongst the listed reactions. This is due to the abundance of ZEEP rods, containing 

natural uranium fuel, in the core. As observed from figure 27, the group-wise sensitivity 

plots of 
235

U( ̅) in both cases, air cooled bundle and water cooled bundle in the K0 site, 

are almost identical. This was expected as both cases shared the same 
235

U( ̅) integrated 

sensitivity coefficient. 

 

Figure 27: 
235

U ( ̅)  group wise sensitivity profiles of K0 site with air cooled (Th,Pu)O2 

bundle (SI=0.808) and K0 site with water cooled (Th,Pu)O2 bundle (SI=0.808) 

 

The 
235

U fission integrated sensitivity coefficient is observed to have a larger value in the 

water cooled case. However, it is important to note that the fission reaction is not directly 

correlated to the sensitivity coefficient since the fission term appears in both the gain 

term and the loss term of the sensitivity coefficient formula. Thus a larger 
235

U sensitivity 

coefficient does not necessitate an overall increase of 
235

U fission in the core. The 
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leakage in the core increases upon voiding the central bundle and further leads to a 

decrease in the fission sensitivity coefficient in the voided case. The group-wise 

sensitivity plot (figure 28) shows a decrease in sensitivity in the thermal regions (below 

0.2 eV) upon voiding the central bundle.  

Contrary to 
235

U fission, 
238

U (n,γ) has a consistently higher sensitivity in all energy 

regions of the spectrum in the air cooled case. Consequently, the integrated sensitivity of 

238
U (n,γ) is higher in the air cooled bundle case than the water cooled case.    

 

Figure 28:
235

U (Fiss) group wise sensitivity profiles of K0 site with air cooled (Th,Pu)O2 

bundle (SI=0.403) and K0 site with water cooled (Th,Pu)O2 bundle (SI=0.421) 
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Figure 29: 
238

U (n,γ) group wise sensitivity profiles of K0 site with air cooled (Th,Pu)O2 

bundle (SI=-0.319) and K0 site with water cooled (Th,Pu)O2 bundle (SI=-0.273) 

 

239
Pu fission plays an equally important role in both cases, as observed by their equal 

integrated sensitivities. As expected, the group-wise sensitivities of the two cases over-

lap extensively throughout the energy regions, where the highest sensitivities are 

observed in the thermal region due to the isotope’s high fission cross section in this 

energy range.  
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Figure 30: 
239

Pu (fiss) group wise sensitivity profiles of K0 site with air cooled (Th,Pu)O2 

bundle (SI=5.70x10
-2

) and K0 site with water cooled (Th,Pu)O2 bundle (SI=5.70x10
-2

) 

The group-wise sensitivity plot of 
232

Th (n,γ) (figure 31) portrays a decrease in the 

epithermal regions of the energy spectrum upon voiding the central bundle. This is due to 

the lowering of the cross sections in the resonance energy regions, 9.88 eV - 9.12 x 10
3
 

eV (figure 32). Moreover, the integrated sensitivity of 
232

Th (n,γ) is observed to be lower 

in the voided case. 
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Figure 31: 
232

Th (n,γ) group wise sensitivity profiles of K0 site with air cooled (Th,Pu)O2 

bundle and K0 site with water cooled (Th,Pu)O2 bundle 

 

Figure 32: Self-shielding corrected 
232

Th       water-cooled and voided cross sections 
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Another important reaction to note is the 
1
H scattering reaction. The reaction’s integrated 

sensitivity coefficient shows an increase upon voiding the bundle. However, this does not 

prove an overall increase in the importance of 
1
H scattering in the full core with a voided 

bundle, which only contains 
1
H isotopes in the impurities of its moderator. The group-

wise water-cooled 
1
H sensitivity coefficients (figure 33) show large positive and negative 

peaks in the resonance regions of the energy spectrum, corresponding to fission and 

absorption resonances belonging to the fuel nuclides in the bundle. Furthermore, it is 

observed that in energy regions above 1x10
5
 eV, the water-cooled 

1
H elastic sensitivities 

are a negative value which is in contrast to the slightly positive air-cooled bundle 

sensitivities. This is due to the fact that these energy regions possess higher fission than 

absorption cross sections. Moreover, the light water coolant also acts a moderator which 

leads to a decrease in fast flux and hence fast fission, therefore the elastic sensitivity of 

1
H (present chiefly in the coolant) leads to a decrease in reactivity in energy regions 

above 1x10
5
 eV.     

 

 

Figure 33:
 1

H (n, elas) group wise sensitivity plots of K0 site with air cooled (Th,Pu)O2 

bundle (SI=2.07x10
-3

) and K0 site with water cooled (Th,Pu)O2 bundle (SI=1.15x10
-3

) 
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     Air-cooled Bundle Case Water-cooled Bundle Case 

Reaction SI Reaction SI Reaction SI Reaction SI 

235
U (   ) 8.08E-01 

238
U (Fis) 2.30E-02 

235
U  (   ) 8.08E-01 

239
Pu (n,γ) -2.63E-02 

235
U  (Fis) 4.03E-01 

16
O (n, elas) 1.15E-02 

235
U  (Fis) 4.21E-01 

16
O (n, elas) 1.12E-02 

238
U (n,γ) -3.19E-01 

241
Pu (   ) 7.07E-03 

238
U (n,γ) -2.73E-01 

241
Pu (   ) 7.07E-03 

239
Pu (   ) 1.10E-01 

240
Pu (n,γ) -6.37E-03 

239
Pu (   ) 1.10E-01 

240
Pu (n,γ) -6.39E-03 

239
Pu (Fis) 5.70E-02 

16
O (n,γ) -4.36E-03 

239
Pu (Fis) 5.70E-02 

16
O (n,γ) -4.36E-03 

235
U  (n,γ) -7.50E-02 

241
Pu (Fis) 4.05E-03 

235
U  (n,γ) -6.63E-02 

241
Pu (Fis) 4.05E-03 

238
U (   ) 4.51E-02 

16
O (n, ) -3.40E-03 

1
H (n,γ) -4.77E-02 

16
O (n, ) -3.49E-03 

1
H (n,γ) -4.22E-02 

1
H (n, elas) 2.07E-03 

238
U (   ) 4.51E-02 

1
H (n, elas) 1.15E-03 

232
Th (n,γ) -3.31E-02 

241
Pu (n,γ) -1.03E-03 

232
Th (n,γ) -3.00E-02 

241
Pu (n,γ) -1.03E-03 

239
Pu (n,γ) -2.62E-02   

238
U (Fis) 2.77E-02   

Table 16: Integrated sensitivities of the isotopes in full cores where K0 site with air 

cooled (Th,Pu)O2 bundle and K0 site with water cooled (Th,Pu)O2 bundle  

 

2.4.3.2  K0 Site – ZEEP Rod and No Fuel  

 

Having an identical material composition, the two cases (K0 site containing a ZEEP rod 

and K0 site containing no fuel) are expected to have almost identical sensitivity 

coefficients. As observed in table 15, there is a large degree of similarity between the two 

cases, with the largest difference belonging to the sensitivity coefficient of 
238

U (n,γ), 

with a difference of 0.002 between the ZEEP rod case and the no fuel case. As expected, 

235
U ( ̅) is the most sensitive reaction in both cases, followed by 

235
U fission and 

238
U 

capture. The group-wise sensitivity plots further illustrate the similarities between these 

two cases. 
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ZEEP rod No Fuel 

Reaction SI Reaction SI 

235
U ( ̅) 9.47E-01 

235
U (   ) 9.47E-01 

235
U (Fis) 4.95E-01 

235
U (Fis) 4.96E-01 

238
U (n,γ) -3.18E-01 

238
U (n,γ) -3.16E-01 

235
U (n,γ) -7.75E-02 

235
U (n,γ) -7.72E-02 

238
U (   ) 5.29E-02 

238
U (   ) 5.31E-02 

1
H (n,γ) -4.11E-02 

1
H (n,γ) -4.21E-02 

238
U (Fis) 3.25E-02 

238
U (Fis) 3.27E-02 

16
O (n,elas) 1.24E-02 

16
O (n, elas) 1.25E-02 

16
O (n,γ) -4.24E-03 

16
O (n,γ) -4.35E-03 

16
O (n,   -2.93E-03 

16
O (n,   -2.93E-03 

1
H (n, elas) 2.15E-03 

1
H (n, elas) 2.16E-03 

238
U (n, elas) -3.75E-04 

238
U (n, elas) -3.80E-04 

235
U (n, elas) 4.58E-06 

235
U (n, elas) 4.63E-06 

Table 17:Integrated sensitivities of the isotopes in full cores where K0 site with ZEEP rod 

bundle and K0 site with no fuel 

 

Figure 34: 
235

U ( ̅) and (fiss) group wise sensitivity plots of K0 site with ZEEP rod and 

K0 site with no fuel 



70 

 

 

Figure 35: 
238

U(n,γ)  group wise sensitivity plots of K0 site with ZEEP rod and K0 site 

with no fuel 

 

2.4.4  keff Uncertainty and Code to Code Comparison 

 

Using the sensitivity results from the four full core cases, the uncertainty of various 

isotopes’ nuclear data on the keff was calculated. The uncertainties were then compared to 

SCALE6 results, calculated using the SAMS module [31].  

As observed from table 16, the integrated sensitivities calculated using the 

DRAGON/SUSD3D were generally within 5% of the results from SCALE 6. This 

compatibility proves that the differences in the uncertainties are due to the libraries used, 

and not the sensitivity calculations, further illustrating the fact that the direct and adjoint 

flux results by the two codes were similar and the DRAGON/ SUSD3D coupling was 

effective. 

The first two cases containing a ZEEP rod in the K0 site and no fuel in the K0 site show 

almost identical uncertainties in their nuclear data. The two cases containing the 

(Th,Pu)O2 bundle, however, show slight differences in their major uncertainty 

contributors. The majority of these differences arise from the change in the sensitivity 

vectors between the two cases. As observed, 
238

U (n,γ) sensitivity increases upon voiding 

the central bundle, and subsequently, the uncertainty associated with the reaction also 
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increases. Furthermore, 
235

U (Fission) is observed to decrease upon voiding, leading to a 

decrease in its uncertainty contribution to the reactor’s keff.  

 

K0 Site Reaction SUSD3D SCALE 6 [31] 

    
 (mk) SI   

 (mk) SI 

No Fuel 

SUSD3D   : 

+7.1 mk 

SCALE6     
+7.5 mk 

238
U (n,γ) 6.33 -0.32 5.72 -0.34 

 235
U ( ̅) 2.93 0.95 2.86 0.93 

235
U (Fis) 0.97 0.49 1.65 0.48 

 

ZEEP rod 

SUSD3D   : 

+7.1 mk 

SCALE6     
+7.5 mk 

238
U (n,γ) 6.33 -0.32 5.73 -0.34 

 235
U ( ̅) 2.93 0.95 2.86 0.93 

235
U (Fis) 0.97 0.49 1.65 0.47 

 

 

Water cooled 

(Th,Pu)O2 

bundle 

SUSD3D   : 

+6.3 mk 

SCALE6     
+6.9 mk 

238
U (n,γ) 5.45 -0.27 5.17 -0.30 

235
U ( ̅) 2.50 0.81 2.60 0.83 

235
U (Fis) 0.82 0.42 1.50 0.43 

239
Pu (   ) 1.44 0.11 0.94 0.09 

239
Pu (Fis) 0.49 0.06 0.49 0.05 

232
Th(n,γ)

*
  

1
H (n,γ) 

0.44 

0.24 

-0.03 

-0.05 

0.30 

0.28 

-0.03 

-0.05 

 

 

Air cooled 

(Th,Pu)O2 

bundle 

SUSD3D   : 

+6.5 mk 

SCALE6     
+6.9 mk 

238
U (n,γ) 6.28 -0.32 5.14 -0.30 

235
U ( ̅) 2.50 0.81 2.57 0.83 

235
U (Fis) 0.73 0.40 1.49 0.42 

239
Pu (   ) 1.44 0.11 1.0 0.10 

239
Pu(Fis)

 

232
Th(n,γ)

* 

0.49 

0.46 

0.06 

-0.03 

0.53 

0.34 

0.05 

-0.03 

1
H (n,γ) 0.21 -0.04 0.26 -0.05 

Table 18: SUSD3D vs. SCALE6 uncertainty and integrated sensitivity results 

 

*
 The 

232
Th       covariance data were not available in the covariance matrices used in 

this work. Thus, the group-wise diagonal covariance matrix values of the 
232

Th       
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listed in the reference [32] were used. The values listed in the reference are based on 

“educated guesses” and only represent the diagonal values of the full covariance, hence 

neglecting all types of correlation (among reactions, in energy, between different 

isotopes, etc.). Furthermore, the data is presented for 17 energy groups, thus the first step 

to calculating the total uncertainty contribution of 
232

Th       was to collapse the 

sensitivity data from 69 groups to 17, equation (2.67).  

 

    
          

 ∑     
          

    
  

    
 

    

 (2.67) 

where for every index k   [1,17] there exists a set of indices g  [1,69] : Gk 

Since no off diagonal components existed in the covariance matrix, the condensed group-

wise sensitivity coefficients were then squared and multiplied by the uncertainty in each 

energy group (equation 1.64).  

The final uncertainty value obtained for the water cooled case was 0.44 mk, while the 

SCALE6 uncertainty result [3] was 0.303 mk. The reason for this discrepancy must lie in 

the uncertainty data used, since the integrated sensitivities between the two codes are 

almost identical.   

The air cooled case shared a similar pattern; the uncertainty value calculated for this case 

was 0.46 mk while the SCALE6 result was 0.340 mk. The integrated sensitivities for the 

air cooled case were calculated as -0.033 with SUSD3D and -0.0315 with SCALE 6. 

Thus, the importance of a consistency in covariance libraries is emphasized, and the need 

for more uncertainty data is observed.   

 

2.4.5  Air Cooled Bundle vs. Water Cooled Bundle Reaction Rates 

 

Using equation (2.65), the group-wise reaction rates were calculated for all the fissile 

isotopes in the core, alongside with 
1
H and 

16
O. The rates of the most sensitive reactions 

in the core were then plotted to compare the case containing a water cooled (Th,Pu)O2 

bundle in the K0 site, and the case containing an air cooled bundle in the K0 site.   

However, upon analyzing the group-wise relative differences between the case containing 

a cooled central bundle and the other containing a voided one, it is observed that there is 

a slight decrease in thermal fission upon voiding. This is due to the increase in fast flux 

and an increase in leakage in the central bundle, subsequently leading to an increase in 
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epithermal resonance capture by both 
235

U and 
238

U prior to thermalization. This effect is 

illustrated in the epithermal region of figure 37 where large positive peaks, corresponding 

to the resonant regions of the 
235

U fission cross section, are observed. Furthermore, there 

is a consistent increase in fast fission upon voiding, corresponding to an increased 

leakage of fast neutrons from the central bundle.      

The absorption rate of 
238

U also plays an important role in the core reactivity. As shown 

in figure 38, the 
238

U absorption rate, similar to the 
235

U fission rate, decreases in the 

thermal region while increasing in the epithermal and fast regions. Being located outside 

the central bundle, the 
238

U isotopes absorb the fast and epithermal neutrons, which 

leaked from the bundle, and the lower thermal flux caused by the voiding of the central 

bundle leads to the slight decrease in the thermal capture in 
238

U upon voiding. 

 

Figure 36: Full core 
235

U fission rates of the cases where the K0 site with air cooled 

(Th,Pu)O2 bundle and K0 site with water cooled (Th,Pu)O2 bundle 
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Figure 37: Group wise relative differences plot of 
235

U fission rates - where the relative 

difference = (RXvoid-RXcooled)/RXcooled 

 

 

Figure 38:Full core 
238

U absorption rates of the cases where the K0 site with air cooled 

(Th,Pu)O2 bundle and K0 site with water cooled (Th,Pu)O2 bundle 
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Figure 39: Group wise relative differences plot of 
238

U absorption rates - where the 

relative difference = (RXvoid-RXcooled)/RXcooled 

239
Pu fission rates were also analyzed to study the rates occurring inside the bundle. 

239
Pu 

plays a major role in perturbing the reactivity of the core and thus its reaction rates upon 

voiding are significant. Contrary to the uranium isotopes, 
239

Pu fission shows a consistent 

decrease upon voiding the bundle. The slight decrease in the thermal region corresponds 

to the fact that there are less thermal neutrons available in the bundle, due to the coolant’s 

moderating role. Furthermore, the leakage of fast neutrons produced upon fission inside 

the bundle, in addition to the missing coolant which leads to less neutrons slowing down 

to the epithermal region results in a decrease in 
239

Pu in the epithermal and fast regions of 

the spectrum.  
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Figure 40:Full core 
239

Pu fission rates of the cases where the K0 site with air cooled 

(Th,Pu)O2 bundle and K0 site with water cooled (Th,Pu)O2 bundle 

 

Figure 41:Group wise relative differences plot of 
239

Pu fission 

The absorption rate of 
232

Th, another isotope present in the central bundle, displays a 

similar pattern as 
239

Pu. The leakage of fast neutrons and lack of a coolant to thermalize 

the fast neutrons created in the bundle leads to a general decrease in 
232

Th throughout the 

energy spectrum. The largest decreases are observed in the epithermal and fast regions.  
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Figure 42:Full core 
232

Th absorption rates 

 

Figure 43: Group wise relative differences plot of 
232

Th fission 

The group-wise reaction rates were subsequently integrated over the energy groups to 

determine the total reaction rates in the full core as shown in equation (2.66). As 

observed in table 19, the reaction rates of the isotopes in the central bundle of the core 
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thus leading to this decrease in rates. However, the isotopes outside the bundle are all 

observed to have an increase in their rates. This is again due to the increased flux in the 

regions outside the bundle, upon voiding.   

Furthermore, the reaction rates were used to calculate the ratio of leakage of the full core 

in the case of the voided central bundle and case of the cooled bundle.  

 
     

    

     
 

(2.68) 

 
     

    

   
 

(2.69) 

Rearranging (2.68) gives: 

     

    
       

(2.70) 

Substituting (2.69): 
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)    

(2.71) 

 

 

Thus 
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)

         
 

      
 

 
      

 
        

(2.72) 

 

It is observed that voiding the central bundle in the full core leads to an increase in total 

integrated leakage by a factor of 1.77. This was expected as the population of fast 

neutrons in the core increases upon voiding the central bundle. Having a longer mean free 

path relative to thermal neutrons, an increase in fast neutrons also leads to an increase in 

leakage. 

 

 

 

 

 

 

 



79 

 

  Reaction 

Total rate-

cooled 

Total rate-

void 

Relative 

diff. 

Thermal 

rate- cooled 

Thermal 

rate-void 

Relative 

diff. 

239
Pu(Fis) 2.14E-06 2.03E-06 -5.08E-02 5.91E-12 5.61E-12 -5.14E-02 

239
Pu(n,γ) 3.92E-08 3.73E-08 -5.07E-02 2.91E-12 2.75E-12 -5.26E-02 

232
Th(Fis) 1.04E-05 9.82E-06 -5.22E-02 - - - 

232
Th(n,γ) 5.29E-06 5.02E-06 -5.09E-02 3.25E-12 3.08E-12 -5.14E-02 

238
Pu(Fis) 4.22E-09 4.01E-09 -4.90E-02 1.37E-16 1.30E-16 -5.13E-02 

238
Pu(n,γ) 1.30E-10 1.23E-10 -5.25E-02 4.11E-15 3.90E-15 -5.17E-02 

240
Pu(Fis) 4.55E-07 4.32E-07 -5.15E-02 1.56E-16 1.48E-16 -5.23E-02 

240
Pu(n,γ) 1.51E-08 1.42E-08 -5.33E-02 6.87E-13 6.52E-13 -5.23E-02 

241
Pu(Fis) 7.17E-08 6.79E-08 -5.17E-02 2.59E-13 2.46E-13 -5.18E-02 

241
Pu(n,γ) 3.46E-09 3.28E-09 -5.11E-02 8.82E-14 8.36E-14 -5.21E-02 

242
Pu(Fis) 1.01E-08 9.63E-09 -5.05E-02 1.08E-19 1.03E-19 -5.27E-02 

242
Pu(n,γ) 4.71E-10 4.47E-10 -5.08E-02 8.29E-16 7.86E-16 -5.22E-02 

235
U(Fis) 5.45E-06 7.06E-06 2.95E-01 3.64E-11 3.81E-11 4.60E-02 

235
U(n,γ) 2.19E-07 2.68E-07 2.24E-01 6.18E-12 6.47E-12 4.73E-02 

238
U(Fis) 2.88E-04 3.82E-04 3.28E-01 2.53E-16 2.66E-16 5.25E-02 

238
U(n,γ) 2.24E-05 2.71E-05 2.11E-01 2.57E-11 2.70E-11 5.04E-02 

1
H(n,γ) 8.49E-09 1.01E-09 -8.82E-01 5.56E-12 4.84E-12 -1.29E-01 

16
O(n,γ) 1.26E-10 1.18E-10 -6.93E-02 5.27E-13 5.00E-13 -5.17E-02 

Sum 

fission 3.06E-04 4.01E-04 3.12E-01 4.26E-11 4.40E-11 3.19E-02 

Sum 

absorption 2.79E-05 3.24E-05 1.61E-01 4.49E-11 4.54E-11 1.08E-02 

Table 19: Integrated reaction rates in the fuel, 
1
H and 

16
O in the full core 

 

2.4.6  Moderator and Graphite Homogenization 

 

Unlike the ZEEP rod lattice and the (Th,Pu)O2 bundle, the Flux-Volume Weighting 

(FVW) method was used to calculate homogenized graphite and moderator libraries in 

the  2D full-core model. This is due to the high levels of homogeneity existent in the final 

output geometry containing the homogenized and condensed nuclear data. This 



80 

 

uniformity in the output geometry of the moderator and graphite allows for the 

preservation of the reaction rates while using the FVW method. 

Using the same energy meshing as the previous two lattices, all regions containing the 

graphite reflector were homogenized and subsequently condensed to 2 energy groups. 

The same procedure was used for the reactor moderator. The energy limits chosen for the 

libraries were identical to those used for the ZEEP and bundle lattices to keep the 

consistency necessary for later usage in DONJON. 
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Chapter 3 

 

ZED-2 Full Core Diffusion Calculations 
 

3.1  ZED-2 Critical Facility 

 

The full reactor core was modeled after an experiment done in the ZED-2 critical facility 

in Chalk River Laboratories operated by AECL. Using the Bruce pattern, five 36-element 

bundles containing (Th,Pu)O2 fuel were designed. Each bundle consisted of concentric 

aluminum pressure and calandria tubes separated by an air gap. The 5 bundles were 

subsequently stacked vertically in the center of the reactor core, the K0 site, using an 

aluminum central support tube, which was a snug fit in the holes of their end plates. Each 

bundle had an approximate height of 49.7 cm and the 5 bundle-stack was suspended with 

a distance of 15.1 cm from the Calandria floor.  

The K0 site was surrounded by 63 ZEEP rods, arranged in a non-uniform hexagonal 

array with an NRU pitch of 19.685 cm. Each ZEEP rod contained natural uranium metal 

cylinders with a diameter of 3.25 cm stacked in a 2S aluminum alloy. With a height of 

285 cm, each ZEEP rod was also suspended with a distance of 15.1 cm from the 

Calandria floor.     

The facility’s criticality was controlled by its moderator height. Thus, the four distinct 

experiments conducted were characterized by a specific critical moderator height. The 

following table represents the four experiments and their respective critical moderator 

heights: 

K0 site Critical moderator height (m) 

1. ZEEP rod 2.524 

2. No fuel 2.654 

3. Light-water cooled (Th,Pu)O2 bundle 2.562 

4. Air-cooled (Th,Pu)O2 bundle 2.439 

Table 20: The recorded critical moderator heights for the four full core experiments 

The DONJON models representing each specific experiment were designed to calculate 

the keff and flux values at each experiment’s respective critical moderator height.  
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Figure 44: Cross section of the ZED-2 reactor 

 

3.2  Macroscopic Cross Section Library  

 

As discussed in chapter 2, the COMPO: module in DRAGON was used to create six 

distinct macroscopic cross section libraries. Subsequently, the CRE: module in DONJON 

is used to create one extended macroscopic cross section library containing the nuclear 

properties recovered from the 6 COMPO objects: 

1. Homogenized macroscopic cross sections of the full ZEEP rod lattice 

2. Homogenized macroscopic cross sections of the non-moderated ZEEP lattice 

3. Homogenized macroscopic cross sections of the ZEEP rod lattice moderator 

4. Super-homogenized macroscopic cross sections of the (Th,Pu)O2 bundle 

lattice 

5. Homogenized macroscopic cross sections of the graphite reflector 

6. Homogenized macroscopic cross sections of the reactor moderator 
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3.3  K0 Site - ZEEP Rod 

 

The effects of the various choices made, while choosing the optimal ZEEP rod lattice 

configurations, will be examined on the full core 3D model of the facility. Case 1 was 

only composed of ZEEP rods as a fuel source; the (Th,Pu)O2 bundle configurations will 

be examined in the later sections.    

 

3.3.1  Carcel Lattice Geometry 

  

The Carcel geometry was determined as the most optimal choice for the geometry of the 

lattice, and further discretized to achieve more accurate results. The effects of the 

discretization were further observed in the macroscopic cross section libraries created 

from the lattice model, and subsequently led to different keff values in the full core 3D 

model as well.  

 

Discretization Lattice k∞ 

(DRAGON) 

DRAGON 

Computation Time 

(minutes) 

Full-core keff 

(DONJON) 

0 1.217555 ~2 1.0329878330 

10x 10 1.208477 ~5 1.0092490912 

15x 15 1.207128 ~15 1.0059305429 

20x 20 1.206517 ~35 1.0043908358 

25x 25 1.206193 ~55 1.0035655499 

30x 30 1.205981 ~80 1.0030494928 

35x 35 1.20584 ~130 1.0026820898 

50x 50 1.205651 ~195 1.0021961927 

Table 21: Effects of spatial discretization in a Carcel geometry on the lattice k∞, 

computation time, and full core keff 
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Figure 45: Spatial convergence of the Carcel geometry discretization 

A spatial convergence is observed as the nodalization of the ZEEP rod lattice is increased 

to 25x 25, creating 625 subdivisions in the Carcel geometry. However, achieving the 

extensive accuracy of 3.56 mk for the full core calculation is computationally expensive. 

With almost 1 hour of computation time in DRAGON, the question of accuracy versus 

time efficiency becomes of importance. Thus, even though it was established, in the 

previous chapter, that the Carcel geometry is the model that is physically closest to 

reality, the annular model is also analyzed for its accuracy since it has proven to have 

much smaller computation times.   

 

3.3.2  Annular Lattice Geometry 

 

The annular geometry was tested in a similar manner as discussed in the previous 

chapter. The optimal fuel region discretization was initially determined by keeping the 

moderator subdivisions constant, and subsequently, the moderator discretization was 

examined while keeping the previously determined fuel discretization constant. The 

respective macroscopic cross section libraries were created for each case and the full core 

keff was then calculated.  

As observed from table 20 the fuel region discretization did not yield a great change in 

the lattice k∞, and its changes to the full core keff appear to have converged at 6 annular 
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subdivisions. The moderator subdivisions, however, led to significant changes to the k∞ 

of the lattice and the full core, and this was expected since the moderator’s area in the 

lattice is much larger than the fuel’s. Both lattice k∞ and full core keff values appear to 

have converged at approximately 18 subdivisions, not changing by more than 0.2 mk and 

0.7 mk respectively as subdivisions increase to 42. However, due to the very small 

computation time the increase in nodalization continued to attain even higher accuracies.   

Upon comparing the two geometries, Carcel and annular, the optimal choice is 

determined to be the annular choice. This is due to the fact that the difference between 

the highest level of discretization for the Carcel geometry (50x 50), and that of the  

 

Using a constant moderator subdivision of 0 

Fuel subdivisions: Number of 

subdivisions 

Lattice k∞ 

(DRAGON) 

DRAGON 

Comp. time 

(m) 

Full core keff 

(DONJON) 

 1 1.218460 <1 1.0353044271 

 4 1.217500 <1 1.0332068205 

 6 1.217367 <1 1.0329166651 

Using a constant fuel subdivision of 6  

Moderator 

subdivisions: 

Number of 

subdivisions 

Lattice k∞ 

(DRAGON) 

DRAGON 

Comp. time 

(m) 

Full core keff 

(DONJON) 

 1 1.217367 <1 1.0329166651 

 2 1.214391 <1 1.0250188112 

 4 1.210086 <1 1.0137987137 

 8 1.207434 <1 1.0066967010 

 18 1.206387 <1 1.0037469864 

 26 1.206332 <1 1.0032868385 

 30 1.206200 <1 1.0031859875 

 36 1.206167 <1 1.0030915737 

 42 1.206148 <1 1.0030288696 

Table 22:Effects of spatial discretization in an annular geometry on the lattice k∞, 

computation time, and full core keff 
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annular geometry (6 fuel and 42 moderator subdivisions) only differ by 0.832 mk in 

reactivity. However, the annular geometry yields results approximately 3 hours faster 

than the Carcel one, and thus the annular geometry with 6 fuel and 42 moderator 

subdivisions is determined to be the best choice in the full core modeling of the ZED-2 

facility.   

 

Figure 46:Spatial convergence of the annular geometry discretization 

 

3.3.3  Self-shielding 

 

As discussed in chapter 2.2.5, two options in the SHI: module in DRAGON were 

examined for their accuracy. The Livolant-Jeanpierre (LJ) normalization scheme is found 

to be less accurate for CANDU reactors, and thus the default option in DRAGON is not 

to apply the aforementioned scheme. However, due to the differences between a typical 

CANDU lattice and a ZED-2 lattice, both options (with LJ normalization scheme and 

without it) were examined to determine the more accurate choice.  

  

Normalization scheme Lattice k∞ (DRAGON) Full core keff (DONJON) 

Livolant-Jeanpierre 1.215659 1.0075160265 

No Livolant-Jeanpierre 1.206167 1.0030288696 

Table 23:Effects of the Livolant-Jeanpierre normalization on the lattice k∞ and full core 

keff 
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As observed, the self-shielding option plays a large role in the lattice and the full core 

criticality. However, a difference of almost 10 mk in lattice reactivity and 4 mk in full 

core reactivity illustrates that, much like CANDU lattices and reactors, the LJ 

normalization scheme proves to be less accurate for the ZED-2 facility.  

 

3.3.4  Full-core Discretization 

  

Upon determining the optimal ZEEP lattice configuration, the effects of discretization 

were observed in the full core. It is important to note that the results presented in the 

previous section were achieved using a 3x 3 splitting pattern on the x-y plane and various 

splitting on the z-axis to ensure a height of approximately 10 cm for all the bottom 

graphite boxes and an approximate height of 1 cm for all the boxes in the core.  

  

x-y plane discretization Full-core keff 

1x 1 (no splitting) 9.96375E-01 

2x 2 1.00142 

3x 3 1.00303 

4x 4 1.00378 

5x 5 1.00415 

6x 6 1.00442 

7x 7 1.00450 

Table 24: Effect of full core x-y discretization on the keff 

As observed from table 24 and figure 47, spatial convergence is seen at the 6x 6 x-y plane 

discretization. A difference of 0.1 mk between 6x 6 and 7x 7 proves any higher 

discretization unnecessary and inefficient.    

 



88 

 

 

Figure 47: Spatial convergence in the full core 

3.4  K0 Site - No Fuel 

 

Similar to the previous case, ZEEP rods are the only fuel source within the core in this 

model. The difference in this case is that the K0 site does not contain any fuel. Due to 

having such a minor difference, the optimal lattice configurations chosen for the previous 

case will also apply in this case as well. Hence, using the specific critical height recorded 

for this experiment, 2.654 m, the DONJON model was constructed and the following 

table summarizes the results. 

 

3.4.1  Full Core Discretization 

  

Similar to the ZEEP case, the spatial discretization of the core was increased until a 

convergence pattern was observed, and the changes in the core reactivity became too 

small to sacrifice the extra computation time.  

 As observed from table 23 and figure 48, a converging pattern is observed after 

the 3x 3 subdivision. Furthermore, a difference of 0.03 mk between 6x 6 and 7x 7 

discretization points to the fact that spatial convergence is achieved and any extra 

subdivisions will yield insignificant changes to the reactivity of the core.  
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x-y plane discretization Full-core keff 

1x 1 (no splitting) 9.9472767115E-01 

2x 2 9.9763441086E-01 

3x 3 9.9856561422E-01 

4x 4 9.9894422293E-01 

5x 5 9.9910885096E-01 

6x 6 9.9916986952E-01 

7x 7 9.9920021040E-01 

Table 25: Effects of full core x-y discretization on keff 

 

Figure 48: Spatial convergence in the full core 

 

3.5  K0 Site – Water Cooled Bundle  

 

3.5.1  Carcel Lattice Geometry 
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optimal number of subdivisions was determined for each type of discretization 

individually while keeping the others constant.    

As observed in table 26, the effects of bundle discretization are not as significant as the 

ZEEP lattice discretization. This is justified by the fact that the full core is composed of 

63 ZEEP rods and only 5 bundles. The bundle lattice discretization makes a total of 

approximately 3 mk difference in reactivity yet over 1 hour of difference in computation 

time.    

The computation time does not increase drastically as annular subdivisions increase, 

however as soon as the Cartesian splitting is introduced there is a significant  

Using a constant moderator subdivision of 0 

Annular coolant 

subdivisions: 

Number of 

subdivisions 

Lattice k∞ 

(DRAGON) 

DRAGON 

Comp. time 

(m) 

Full core keff 

(DONJON) 

 1 1.055567 7 1.0051063299 

 3 1.051913 7 1.0046843290 

 6 1.037104 7 1.0030808449 

Using a constant coolant subdivision of 6  

Annular 

moderator 

subdivisions: 

Number of 

subdivisions 

Lattice k∞ 

(DRAGON) 

DRAGON 

Comp. time 

(m) 

Full core keff 

(DONJON) 

 1 1.037104 10 1.0030808449 

 2 1.037105 10 1.0030813327 

 5 1.037106 10 1.0030814409 

Using a constant coolant and moderator subdiv. of 6 and 5 

Cartesian 

subdivisions: 

Number of 

subdivisions 

Lattice k∞ 

(DRAGON) 

DRAGON 

comp. time 

(m) 

Full core keff 

(DONJON) 

 3x 3 1.037145 45 1.0029354095 

 6x 6 1.037068 65 1.0029139519 

 8x 8 1.035347 80 1.0027393103 

Table 26: Effects of various discretization schemes in the Carcel geometry of the 

(Th,Pu)O2 bundle 
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increase in computational time. The difference in reactivity once the Cartesian 

discretization is introduced is not very significant ( < 0.3 mk). Thus, it is determined that 

if the Carcel geometry was to be used for the bundle lattice, the configuration with 6 

annular coolant subdivisions, 5 annular moderator subdivisions, and no further Cartesian 

subdivisions would be the most optimal geometry.   

 

3.5.2  Annular Lattice Geometry 

 

Much like the ZEEP lattice, discussed in the previous chapter, the (Th,Pu)O2 bundle 

lattice was initially modeled using the Carcel geometry due to its higher accuracy. 

However, the annular geometry was also analyzed for a comparison in its accuracy and 

computation time. 

The coolant was initially subdivided while keeping the moderator subdivisions constant, 

and upon finding the optimal coolant nodalization, the moderator was discretized. The 

following table illustrates the k∞ of the bundle lattice alongside with the keff of the full 

core upon increasing the subdivisions in the (Th,Pu)O2 bundle lattice.  

It is interesting to note that, contrasting the ZEEP lattice, the majority of the reactivity 

change due to spatial discretization is due to the coolant subdivisions. This is because the 

bundle lattice has a much smaller volume of moderator than the ZEEP lattice, and thus 

the effects of its coolant discretization are much more emphasized.  

The full core reactivity calculated in DONJON, using the annular bundle lattice data 

determined in DRAGON, appears to converge at approximately 3.01 mk. The k∞ 

achieved with the optimal Carcel bundle lattice geometry is 3.08 mk; while more accurate 

results were calculated with the Carcel geometry, the significant increase in its 

computation time deemed the extra accuracy inefficient. With approximately similar 

computation times between the Carcel bundle lattice geometry and the annular geometry, 

the annular geometry was found to be slightly more accurate. Therefore, the final 

geometry chosen for the (Th,Pu)O2 bundle lattice is the annular geometry with  6 coolant 

and 10 moderator subdivisions.   
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Using a constant moderator subdivision of 0 

Coolant 

subdivisions: 

Number of 

subdivisions 

Lattice k∞ 

(DRAGON) 

DRAGON 

Comp. time 

(m) 

Full core keff 

(DONJON) 

 1 1.055360 <5 1.0051102638 

 3 1.051727 <5 1.0046858788 

 5 1.038709 <5 1.0032633543 

 6 1.036927 <5 1.0030812025 

Using a constant coolant subdivision of 6  

Moderator 

subdivisions: 

Number of 

subdivisions 

Lattice k∞ 

(DRAGON) 

DRAGON 

Comp. time 

(m) 

Full core keff 

(DONJON) 

 1 1.036927 <5 1.0329166651 

 2 1.037054 <5 1.0030357838 

 4 1.037261 <5 1.0030158758 

 6 1.037339 <5 1.0030125380 

 8 1.037374 <5 1.0030115843 

 10 1.037392 <5 1.0030109882 

Table 27: Effects of discretization in the annular geometry of the (Th,Pu)O2 bundle 

3.5.3  Full Core Discretization 

 

The full core was also further discretized to ensure a spatial convergence. The following 

table illustrates the results.  

x-y plane discretization Full-core keff 

1x 1 (no splitting) 9.9775332212E-01 

2x 2 1.0017950535 

3x 3 1.0030109882 

4x 4 1.0035067797 

5x 5 1.0037012131 

6x 6 1.0038523674 

7x 7 1.0039054232 

Table 28: Effects of full core x-y discretization on keff 



93 

 

3.6  K0 Site – Air Cooled Bundle  

 

The full core case containing an air cooled (Th,Pu)O2 bundle in the center is composed of 

the same fuel as the previously mentioned water cooled bundle. Hence, the optimal 

bundle lattice configuration chosen for the previous case (the annular geometry 

containing 6 and 10 subdivisions in its coolant and moderator respectively) will be used 

in this case as well.  

 

x-y plane discretization Full-core keff 

1x 1 (no splitting) 9.9481678009E-01 

2x 2 1.0003066063 

3x 3 1.0020912886 

4x 4 1.0025769472 

5x 5 1.0028507710 

6x 6 1.0030174210 

7x 7 1.0032054232 

Table 29: Effects of full core x-y discretization on keff 

3.7  Overview 

 

Using the optimal configurations for the (Th,Pu)O2 bundle and the ZEEP rod lattices, the 

four full core cases were simulated at their respective critical heights. The following table 

summarizes the keff values of the four cases.  

 

K0 site Critical moderator 

height (m) 

keff 

1. ZEEP rod 2.524 1.0045021330 

2. No fuel 2.654 0.9992002104 

3. Light-water cooled 

(Th,Pu)O2 bundle 

2.562 1.0039054232 

4. Air-cooled (Th,Pu)O2 

bundle 

2.439 1.0032054232 

Table 30: Summary of the four cases keff values 
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Conclusion 

 

In this paper, deterministic methods were used to simulate four benchmark experiments 

done in the ZED-2 critical facility using (Th,Pu)O2 fuel. The keff results of the 

DRAGON/DONJON code coupling were compared to the experimental data gathered by 

AECL [7]. These results illustrated the successful simulation of the 3D full core critical 

cases, modeled at specific moderator heights measured in the experiment. Furthermore, 

the full core 2D S/U results of the DRAGON/SUSD3D code coupling were compared to 

the full core 3D S/U results gathered by TSUNAMI, a code within the SCALE6 package 

[31]. This comparison showed less than a + 5% difference between the two code’s results 

in the sensitivity calculations, and slightly higher discrepancies in the uncertainty 

calculations.   

DRAGON was initially used to model a ZEEP rod unit lattice. To optimize the modeling, 

two geometries were analyzed, the annular geometry and the Cartesian (Carcel) 

geometry. Spatial convergence was reached at 25x 25 Cartesian subdivisions in the 

Carcel geometry, taking approximately 1 hour of computation time and leading to a k∞ of 

1.2062; while convergence was reached after less than 1 minute for the annual model, 

using 6 annular subdivisions in the fuel region and 42 annular subdivisions in the 

moderator region and leading to a k∞ of 1.2061. The difference in k∞ values was 

considered negligible and the annular model was chosen due to its much faster 

computation time.  

Subsequently, the ZEEP model was used to calculate the direct and adjoint flux values 

for the infinite lattice. These values were then used in SUSD3D to perform the S/U 

analysis. The lattice k∞ was found to be most sensitive to perturbations in 
235

U  ̅ and 

fission cross sections, however the largest source of uncertainty in the k∞ was due to the 

cross section uncertainty from 
238

U (n,   , which contributed 83% to the total variance. 

This was found to be due to the large uncertainty present in the 
238

U (n,    cross section. 

The second DRAGON model was the (Th,Pu)O2 bundle unit cell. Similar to the ZEEP 

lattice, the bundle lattice was found to have a much faster computation time in an annular 

geometry, with negligible differences in k∞ between the annular and Cartesian cases. To 

observe the effects of voiding in the bundle, a second bundle lattice cell was modeled 
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without any coolant present. The CVR was measure to be -31.17 mk, and upon observing 

the flux spectra of the cooled and voided bundle, it was clear that the coolant was also 

acting as a moderator in the bundle lattice cell. The reaction rates were subsequently 

determined, showing the fact that the fission rates in the bundle lattice had decreased 

significantly overall, and especially in the sensitive thermal region.  

The S/U analysis of the (Th,Pu)O2 bundle showed a decrease in the 
239

Pu  ̅ value upon 

voiding. Since the sensitivity coefficient is directly proportional to the  ̅ value, the 

decrease in the sensitivity coefficient illustrates a general decrease in the 
239

Pu  ̅ in the 

bundle upon voiding. Furthermore, an increase was seen in the integrated sensitivities of 

all fissile isotope’s fission and capture sensitivity coefficients upon voiding. The 

uncertainties of the reactions followed equation (1.64) as the top 5 reactions with the 

highest contribution to uncertainty were also the most sensitive reactions to the lattice k∞.  

The last DRAGON model was the simulation of the full core in 2 dimensions. The exact 

core geometry was replicated and two self-shielding methods were applied to the library: 

the sub-geometry self-shielding method and the global-geometry self-shielding method. 

The sub-geometry method was based on the core being segregated into 6 2x 2 

geometries, self-shielding calculations were then carried out for each sub-geometry until 

the library was corrected for self-shielding and used in the full core calculations. The 

method was proven to be relatively fast computationally, however there existed a + 3 mk 

difference in the results; a discrepancy which was too significant to neglect.  

The global-geometry method was done by modeling the full core using reflective 

boundary conditions and subsequently correcting the library for self-shielding effects. 

The corrected library was then used to perform the full core calculations under void 

boundary conditions to evaluate the direct/adjoint flux and keff calculations.  

Upon the analysis of the keff values of the four cases it was observed that the case where 

an air cooled bundle is inserted in the K0 site has the highest keff value. The CVR of the 

full core in 2D was determined to be approximately +8.00 mk, a dramatic increase from 

the (Th,Pu)O2 infinite lattice CVR. The reaction rates in the core were then analyzed, 

which led to the conclusion that there was an overall increase in the fission rate of the 

fuel upon voiding the core. This was explained by the fact that without the coolant, there 

is an increase in the resonance escape probability of the neutrons in the bundle. With a 
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higher leakage rate as well, more neutrons leak out of the bundle and enter the 

surrounding moderator, where they thermalize and cause fission in the ZEEP rods.  

The 2D full core S/U results obtained by DRAGON/SUSD3D were then compared to the 

3D full core S/U results obtained by TSUNAMI. The integrated sensitivities between the 

two methods showed a small difference of + 5% however the discrepancies between the 

uncertainty values were more significant. Since the integrated sensitivities had such a 

close agreement, it is concluded that the difference in the uncertainties is due to the 

covariance matrices of the two methods. Covariance matrices are difficult to produce and 

currently contain a large amount of discrepancy between different libraries. This leads to 

differences in uncertainty analyses and leads to less accurate measurements. Thus, more 

effort is needed to produce coherent and consistent covariance matrices to avoid such 

discrepancies. 

Furthermore, it is concluded here that 2D S/U analysis would be sufficient for such 

experiments if the 
2
H data is not significant. Due to the differences in the critical 

moderator height, the 
2
H data is expected to differ between 2D S/U analysis and 3D S/U 

analysis, but all other isotopes illustrated little differences between the two geometric 

dimensions.  

Every optimized DRAGON lattice and the 2D core produced a set of homogenized and 

condensed nuclear data in 2 energy groups. The ZEEP rod lattice data, alongside with the 

full core data produced the homogenized and condensed cross sections using the FVW 

method, chosen due to the homogeneity of the output geometry. The (Th,Pu)O2 bundle 

lattice produced the homogenized data using the SPH method, since the final geometry 

was not fully homogeneous and contained moderator and fuel in it. These nuclear data 

were then used in the diffusion code, DONJON, to determine the full core 3D keff values. 

Characterized by specific critical moderator heights, the four experiments illustrated 

close to critical reactivity values (a maximum of ~4.5 mk) and proved the successful 

simulation of the benchmark experiments using the DRAGON/DONJON codes. 

This research shows the ability to achieve accurate results using the free and open source 

IST codes DRAGON and DONJON, and obtain precise sensitivity and uncertainty data 

by coupling DRAGON with the modified version of SUD3D.  Furthermore, 2D S/U 

analysis of the full core proves to have the needed accuracy for isotopes in the core 

except those that depend directly on the height of the core (in this case, 
2
H existing in the 
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varying critical moderator height). Finally, this paper illustrates the important need for 

more consistency and accuracy between covariance matrices obtained for different 

libraries. 

Future projects in this field include coupling DONJON and SUSD3D to be able to obtain 

S/U data for large 3D geometries. This would require calculating sensitivity coefficients 

based on first order perturbation theory applied to the diffusion equation and propagating 

the uncertainties through the condensation and homogenization of the cross sections. 

Furthermore, the results of this paper could be cross checked with results obtained by 

different libraries and covariance matrices, to further prove that the discrepancies in the 

results were due to the library uncertainties and not modeling errors.      
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