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ABSTRACT 

 

The prediction and characterisation of chemical and biochemical processes are 

fundamental tasks in computational chemistry. Small chemical systems can be 

characterised by the stationary points on potential energy surface and reaction paths 

linking them. For large biological systems, statistical sampling is required to 

characterising their average properties.  

This thesis presents my Ph.D. work on developing new methods to predict and 

characterise chemical and biological processes. Two path-finding methods for finding the 

minimum energy reaction path and alternative reaction paths for small gas-phase 

reactions have been elucidated with examples, and molecular dynamic simulations have 

been used to characterise the binding affinity of protein-ligand complex and the free 

energy of protonation processes in a protein.  

Specifically, the fast marching method (FMM) has been used to find the minimum 

energy path (MEP) on the potential energy surface (PES) for small gas-phase reactions. 

In this thesis, FMM is shown to be one of the most general and reliable surface-walking 

algorithms for finding the MEP. However, it is an expensive method. Some 

improvements have been illustrated in chapter 2 and chapter 3.  

I also proposed a new method (called QSM-NT) for finding all stationary points, 

accordingly all alternative reaction paths on the PES. Unlike other path-finding methods, 



 

iii 

QSM-NT overcomes the need of an initial guess of the path, and it can find all stationary 

points on the PES. QSM-NT has been proven to be efficient and reliable through 

applications on analytical PES and real chemical reaction. The difficulties and pitfalls 

associated with QSM-NT have been elucidated with examples.  

Molecular dynamic (MD) simulation and associated postprocessing procedures have 

been used to study the binding properties of caffeine-A2A complex. The binding affinities 

of different binding modes have been calculated using MM/PBSA method. The binding 

pocket has been characterised with MM/GBSA energy decomposition. Our 

computational work provides significant insight to the targeted drug design of the 

adenosine A2A receptor.  

The pH-dependent properties of a protein play important roles in the fundamental 

biological processes. The protonation states, namely, the pKa values of ionisable residues, 

especially active-site residues are the prerequisites to understanding of the mechanisms of 

many biological processes. In this thesis, acetoacetate decarboxylase (AADase) is used as 

a test case for studying different types of pKa prediction methods. Our computational 

results have shown that the site-site interactions from other ionisable residues are crucial 

to the pKa prediction of the target residue.  

This thesis covers the range from small gas phase reaction prediction to large 

complex biological systems characterisation using quantum mechanical and molecular 

mechanical methods.   

 



 

iv 

 

 

 

 

 

To my husband, Jian (Jeffrey) Li, 

my sons Ethan Chufeng Li and Nathan Chuyang Li 

my parents, Guanggan Liu, Kailian Weng, 

and my brother, Zhiqian Liu. 

 

For their endless love, support and encouragement 

 

 

 

 

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

First I would like to thank McMaster University and the department of chemistry and 

chemical biology for giving me the opportunity to pursuing my degree. Particularly I 

would like to thank Carol Dada and Tammy Feher for their guide and help when I first 

came to Canada and started graduate study in this country.  

I would like to thank my advisor, Professor Paul W. Ayers for accepting me into his 

group, for his encouragement in times of difficulty, his guidance and inspiration along 

my academic journey. Paul is always there when we need him. He is a role model for his 

students. There is an old Chinese saying: Once a teacher, forever a mentor. Paul is the 

best advisor one could have, and he is my lifetime mentor.  

I would like to thank Dr. Dumont and Dr. Bain who served on my Ph.D. committee. I 

am grateful for their guide, help and constructive suggestions on my research projects.  

I would like to thank the Ayers’ group. I would like to thank the postdoctoral fellows 

Dr. Bijoy Dey, Dr. David Thompson, Dr. Utpal Sarkar, Dr. Carlos Cardenas, Dr. Lourdes 

Romero, Dr. Alfredo Guevara, Dr. Peter Limacher and Dr. Steven Burger. Particularly I 

would like to thank Dr. Bijoy Dey and Dr. Steven Burger for their help on my research 

projects. I have learned so much from them. I would like to thank the graduate students 

Dr. Juan Rodriguez, Dr. James Anderson, Ivan Vinogradov, Rogelio Cuevas-Saavedra, 



 

vi 

Debajit Chakraborty, Sandra Rabi, Paul Johnson, Ahmed Kamel, Farnaz Heidarzadeh, 

and Pavel Kulikov. Thank all of them for being such good friends and a warm family.  

I would like to thank my parents and my brother for their unfailing faith in me and 

for always being there for me. Their continuous support and love help me succeed each 

step of the way.  

Last but not the least, I would like to express my gratitude to my husband, Jian 

(Jeffrey) Li for his love, support, and encouragement.   

Financial supports from Natural Sciences and Engineering Research Council 

(NSERC) of Canada, Canada Research Chairs, Ontario government and McMaster 

University are acknowledged. 

 

 

 



 

vii 

Table of Content 

ABSTRACT ………………………………………………………………………….… ii                                                                             

THESIS DEDICATION……………………………………………………...………… iv 

ACKNOWLEDGEMENT………………………………………………………………. v 

LIST OF FIGURES…………………………………………………………………….. xi 

LIST OF TABLES……………………………………………………………………... xii 

PREFACE……………………………………………………………………………… xiv 

 

 

 

Chapter 1: Background 

 

1.1 Introduction................................................................................................................. 2 

1.2 The Potential Energy Surface and the Born-Oppenheimer Approximation ........ 3 

1.3 Minimum Energy Path ............................................................................................... 8 

1.3.1 The Fast Marching Method.................................................................................... 9 

1.3.2 The QSM-NT Method.......................................................................................... 10 

1.4 Molecular Mechanics (MM)..................................................................................... 12 

1.4.1 Potential Energy Functionals and Force Fields ................................................... 13 

1.4.2 From Microscopic to Macroscopic ...................................................................... 15 

1.4.3 Molecular Dynamics (MD) Simulation ............................................................... 16 

1.5 Free Energy Calculation........................................................................................... 19 

1.5.1 Thermodynamic Integration................................................................................. 21 

1.5.2 pKa Calculation .................................................................................................... 22 

1.5.3 MM/PBSA and MM/GBSA Binding Energy Calculation................................... 22 

1.6 Summary of Ph.D. Work.......................................................................................... 23 

Reference List.................................................................................................................. 27 

 

Chapter 2: The Fast Marching Method for Determining Chemical Reaction 

Mechanisms in Complex Systems 

 

2.1 Statement of the Problem......................................................................................... 32 

2.2 Motivation.................................................................................................................. 32 

2.3 Background ............................................................................................................... 33 

2.3.1 The Minimum Energy Path.................................................................................. 33 

2.3.2 Two End Methods................................................................................................ 34 

2.3.3 Surface Walking Algorithms ............................................................................... 36 

2.3.4 Metadynamics Methods ....................................................................................... 38 

2.3.5 The Fast Marching Method.................................................................................. 39 

2.4 The Fast Marching Method ..................................................................................... 39 

2.4.1 Introduction to FMM ........................................................................................... 40 



 

viii 

2.4.2 Upwind Difference Approximation ..................................................................... 41 

2.4.3 Heapsort Technique ............................................................................................. 42 

2.4.4 Shepard Interpolation........................................................................................... 44 

2.4.5 Interpolating Moving Least Square Method ........................................................ 47 

2.4.6 FMM program...................................................................................................... 49 

2.4.7 Application........................................................................................................... 52 

2.5 Quantum Mechanics/Molecular Mechanics (QM/MM) methods applied to 

Enzyme-catalyzed reactions......................................................................... 63 

2.5.1 QM/MM Methods................................................................................................ 63 

2.5.2 Incorporating the QM/MM-MFEP Methods with FMM..................................... 67 

2.5.3 Application of the incorporated FMM and QM/MM-MFEP method to enzyme-

catalyzed reactions ........................................................................................................ 69 

2.6 Summary.................................................................................................................... 71 

Reference List.................................................................................................................. 72 

 

Chapter 3: Finding Minimum Energy Reaction Paths on Ab Initio Potential Energy 

Surfaces Using the Fast Marching Method 

 

3.1 Statement of the Problem......................................................................................... 76 

3.2 Introduction............................................................................................................... 76 

3.3 The Fast-Marching Method..................................................................................... 78 

3.4 Applications ............................................................................................................... 83 

3.4.1 The SN2 reaction .................................................................................................. 83 

3.4.2 The isomerization of HSCN to HNCS................................................................. 88 

3.4.3 The dissociation of ionized O-methylhydroxylamine.......................................... 91 

3.5 Conclusion ................................................................................................................. 95 

Reference List: ................................................................................................................ 97 

 

Chapter 4: 9ewton Trajectories for Finding Stationary Points on Molecular 

Potential Energy Surfaces 

 

4.1 Statement of the Problem....................................................................................... 101 

4.2 Introduction............................................................................................................. 101 

4.3 Background ............................................................................................................. 102 

4.3.1 Methods for Finding the Minimum Energy Path (MEP) ................................... 102 

4.3.2 The Newton Trajectory (NT) ............................................................................. 104 

4.4 Mathematical Definitions and Algorithms ........................................................... 106 

4.4.1 Quadratic String Method (QSM) ....................................................................... 106 

4.4.2 Newton Trajectories (NTs) ................................................................................ 109 

4.5 Applications ............................................................................................................. 110 

4.5.1 Müller-Brown PES............................................................................................. 110 

4.5.2 The 4-well PES .................................................................................................. 113 

4.5.3 The SN2 reaction ................................................................................................ 115 



 

ix 

4.6 Difficulties................................................................................................................ 118 

4.6.1 Discontinuous trajectories.................................................................................. 118 

4.6.2 Multiple minima of 
⊥

g  on the hypersurface ................................................... 121 

4.7 Conclusion ............................................................................................................... 123 

Appendix 1.  The Müller-Brown Potential ................................................................. 125 

Appendix 2.  The 4-well Potential................................................................................ 126 

Reference List................................................................................................................ 127 

 

Chapter 5: Computational study of the binding modes of caffeine to the adenosine 

A2A receptor 
 

5.1 Statement of Problem ............................................................................................. 131 

5.2 Introduction............................................................................................................. 132 

5.3 Computational Methods......................................................................................... 135 

5.3.1 Docking.............................................................................................................. 135 

5.3.2 Molecular Dynamics.......................................................................................... 137 

5.3.3 MM/PBSA Binding Energy Calculation ........................................................... 140 

5.3.4 Residue-wise MM/GBSA energy decomposition.............................................. 142 

5.4 Results and Discussion............................................................................................ 142 

5.4.1 Binding Modes................................................................................................... 142 

5.4.2 Relative Binding Energy.................................................................................... 146 

5.4.3 MM/GBSA energy decomposition results......................................................... 152 

5.4.4 Comparison with site-directed mutagenesis studies .......................................... 155 

5.5 Conclusion ............................................................................................................... 162 

Supporting Information ............................................................................................... 163 

Reference List................................................................................................................ 165 

 

Chapter 6: pKa calculation of Lys115 in Acetoacetate Decarboxylase 

6.1 Statement of Problem ............................................................................................. 173 

6.2 Introduction............................................................................................................. 175 

6.3 Methods.................................................................................................................... 179 

6.3.1 Molecular dynamics/thermodynamic integration (MD/TI) for calculating pKa 

shifts............................................................................................................................ 179 

6.3.1.1 The calculation of pKa shifts and free energy differences .......................... 179 

6.3.1.2 Thermodynamic integration (TI) for calculating the deprotonation free 

energies ................................................................................................................... 182 

6.3.1.3 Thermodynamic integration with Glu76 unprotonated............................... 185 

6.3.1.4 Thermodynamic integration with Glu76 protonated................................... 186 

6.3.2 pKa calculation using MCCE............................................................................. 187 

6.3.3 pKa calculation using PROPKA 2.0 .................................................................. 189 

6.4 Results and Discussion............................................................................................ 189 



 

x 

6.4.1 Results from MD/TI pKa calculations ............................................................... 190 

6.4.1.1 With Glu76 unprotonated ........................................................................... 190 

6.4.1.2 With Glu76 protonated ............................................................................... 190 

6.4.2 Results from MCCE calculations....................................................................... 191 

6.4.3 Results from PROPKA calculations .................................................................. 192 

6.5 Comparison and discussion of results ................................................................... 194 

6.6 Conclusion ............................................................................................................... 198 

Reference List................................................................................................................ 200 

 

Chapter 7: Summary and Future Work 

 

7.1 Summary.................................................................................................................. 205 

7.2 Future Work............................................................................................................ 207 

 

Appendix 

 

List of Abbreviations .................................................................................................... 210 



 

xi 

 

List of Figures 

 

Chapter 1: Background 

 

Figure 1. 1: The 4-well analytical potential energy surface................................................ 7 

 

Chapter 2: The Fast Marching Method for Determining Chemical Reaction 

Mechanisms in Complex Systems 

 

Figure 2. 1: A binary Min-heap. ....................................................................................... 43 

Figure 2. 2: The MEP on the 4-well PES.......................................................................... 55 

Figure 2. 3: The MEP on the energy-cost surface transformed from the 4-well PES. ..... 56 

Figure 2. 4: The PES of the SN2 reaction.......................................................................... 58 

Figure 2. 5: The MEP on the energy-cost surface of the SN2 reaction. ............................ 59 

Figure 2. 6: The energy profile of the SN2 reaction. ......................................................... 60 

Figure 2. 7: The 3-D equipotential surface. ...................................................................... 62 

Figure 2. 8: The energy profile of the dissociation of the ionized O-methylhydroxylamine.

........................................................................................................................................... 63 

Figure 2. 9: The QM subsystem........................................................................................ 65 

 

Chapter 3: Finding Minimum Energy Reaction Paths on Ab Initio Potential Energy 

Surfaces Using the Fast Marching Method 

 

Figure 3. 1: The PES of the SN2 reaction.......................................................................... 85 

Figure 3. 2: The energy-cost surface of the SN2 reaction. ............................................... 86 

Figure 3. 3: The energy profile of the SN2 reaction .......................................................... 87 

Figure 3. 4: The MEP on the PES of the isomerization of HSCN to HNCS. ................... 89 

Figure 3. 5: The energy profile for the isomerization of HSCN to HNCS. ...................... 90 

Figure 3. 6: The 3-D equipotential surface ....................................................................... 93 

Figure 3. 7: The energy profile of the dissociation of the ionized O-methylhydroxylamine.

........................................................................................................................................... 94 

 

Chapter 4: 9ewton Trajectories for Finding Stationary Points on Molecular 

Potential Energy Surfaces 

 

Figure 4. 1: Newton trajectories on the Müller–Brown potential. .................................. 112 

Figure 4. 2: Newton trajectories on the 4-well potential. ............................................... 114 

Figure 4. 3: Newton trajectories for the SN2 reaction. .................................................... 117 



 

xii 

Figure 4. 4: Discontinuous Newton trajectories on the 4-well potential. ....................... 120 

Figure 4. 5: Multiple minima on the hypersufaces. ........................................................ 122 

 

 

Chapter 5: Computational study of the binding modes of caffeine to the adenosine 

A2A receptor 
 

Figure 5. 1: The molecular structure and atom numbering of caffeine. ......................... 136 

Figure 5. 2: The molecular structure and atom numbering of ZM241385. .................... 136 

Figure 5. 3: RMSD of the backbond atoms of the adenosine A2A receptor. ................... 143 

Figure 5. 4: Energy contribution of pocket residues....................................................... 153 

Figure 5. 5: A superimposition of the 4 low-energy binding modes of caffeine and the 

dominant binding modes of ZM241385. ........................................................................ 154 

Figure 5. 6: Caffeine binding cavity, side view. ............................................................. 159 

Figure 5. 7: Caffeine binding cavity, extracellular view. ............................................... 160 

Figure 5. 8: Interactions between caffeine and the pocket residues. ............................. 161 

 

Chapter 6: pKa calculation of Lys115 in Acetoacetate Decarboxylase 

Figure 6. 1: The thermodynamic cycle. .......................................................................... 181 

Figure 6. 2: The model compound.................................................................................. 181 

Figure 6. 3: Mutation of charges on the lysine group during thermodynamic integration.

......................................................................................................................................... 184 

 



 

xiii 

 

List of Tables 

 

Chapter 2: The Fast Marching Method for Determining Chemical Reaction 

Mechanisms in Complex Systems 

 

Table 2. 1: Parameters for the 4-well analytical PES. ...................................................... 53 

 

 Chapter 4: 9ewton Trajectories for Finding Stationary Points on Molecular 

Potential Energy Surfaces 

 

Table 4. 1: Parameters for the Müller–Brown potential. ................................................ 125 

Table 4. 2: Parameters for the 4-well potential............................................................... 126 

  

Chapter 5: Computational study of the binding modes of caffeine to the adenosine 

A2A receptor 
 

Table 5. 1: MM/PBSA relative bindnig energy calculation results. ............................... 147 

Table 5. 2: The overall binding energy of caffeine. ....................................................... 147 

Table 5. 3: Comparison of pocket residues in different binding modes. ........................ 151 

Table 5. 4: Comparison of MM/GBSA results with site-directed mutagenesis results .. 157 

Table 5. 5: PCA calculation results................................................................................. 164 

 

Chapter 6: pKa calculation of Lys115 in Acetoacetate Decarboxylase 

Table 6. 1: MD/TI results with Glu76 unprotonated. .................................................... 190 

Table 6. 2: MD/TI results with Glu76 protonated. ........................................................ 191 

Table 6. 3: MCCE calculation results. ............................................................................ 192 

Table 6. 4: PROPKA calculation results......................................................................... 193 

Table 6. 5: Comparison of results from different methods. ........................................... 196 

 

 

 

 



 

xiv 

 

PREFACE 

 

This thesis contains some published and unpublished contents. The co-authors of each 

chapter have been listed in the footnotes. In this section I will specifically clarify my 

contributions to each chapter.  

My thesis consists of an introduction, five journal articles and a summary at the end. 

The introduction, chapter 1, provides background information and motivation for the 

projects discussed in the following chapters. Chapter 1 also provides an overview of the 

thesis, with emphasis on the perspective that motivated this research. Chapter 2-6 of my 

thesis are reprints of the published articles or manuscripts under review or in preparation. 

The first section of each chapter is a statement of the problem, which explains the 

purpose, motivation and results of the research in this chapter and how it fits into the 

context of this thesis. Chapter 7 summarizes the thesis and suggests directions for future 

research. 

Chapter 2 is a reprint of the book chapter “The Fast Marching Method for 

Determining Chemical Reaction Mechanisms in Complex Systems” published in 

Quantum Biochemistry. (Yuli Liu; Steven K.Burger; Bijoy K.Dey; Utpal Sarkar; Marek 

R.Janicki; Paul W.Ayers; In Quantum Biochemistry, Cherif F.Matta, Ed.; Wiley-VCH: 

2010; pp 171-195.) I am the first author of this book chapter. I did the majority of the 

programming work of the FMM program and performed all the computations. Prof. Paul 
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W. Ayers did the derivation of Shepard interpolation. Dr. Utpal Sarkar did part of the 

programming work for Shepard interpolation. Dr. Steven K. Burger did most of the 

programming work for Shepard interpolation. I wrote the first draft of this book chapter 

and Prof. Paul W. Ayers revised the draft. And then we discussed the revisions until we 

both agreed on this final version.   

Chapter 3 is a reprint of the article “Finding Minimum Energy Reaction Paths on Ab 

Initio Potential Energy Surfaces Using the Fast Marching Method”, accepted for 

publication by the Journal of Mathematical Chemistry. I am the first author and Prof. 

Paul W. Ayers is the co-author. I did all the computational work and wrote the first draft. 

Prof. Paul W. Ayers modify the draft to the final version. 

Chapter 4 is a reprint of the article “Newton Trajectories for Finding Stationary 

Points on Molecular Potential Energy Surfaces”, accepted for publication in the Journal 

of Mathematical Chemistry. I am the first author and Dr. Steven K. Burger and Prof. Paul 

W. Ayers are the co-authors. Dr. Steven K. Burger wrote the QSM program, and I revised 

it into the QSM-NT program. I did all the computational work for this article. I wrote the 

first draft and Prof. Paul W. Ayers modify it to the final version.  

Chapter 5 is a reprint of the article “Computational study of the binding modes of 

caffeine to the adenosine A2A receptor”, submitted to J. Phys. Chem. B., under review at 

the moment. I am the first author, and Dr. Steven K. Burger, Dr. Esteban Vöhringer-

Martinez, and Prof. Paul W. Ayers are the co-authors. I did the majority of the 

computational work, except that the PCA entropy calculations were performed by Dr. 

Esteban Vöhringer-Martinez. I wrote the first draft and Dr. Steven K. Burger revised the 
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draft. Then Prof. Paul W. Ayers and Dr. Estaban Vöhringer-Martinez refined the draft 

until we all agreed on the final version.  

Chapter 6 is a reprint of the manuscript “pKa calculation of Lys115 in Acetoacetate 

Decarboxylase”, which is still in preparation. I did all the computational work. Dr. Steven 

K. Burger did auxiliary calculations with MEAD (not included in this chapter). I wrote 

the first draft of the chapter and Prof. Paul W. Ayers proofread the draft.  

The author of this thesis did the majority of the programming, computational and 

writing work of all content in this thesis, with help from co-authors, such as discussion, 

proofreading, some calculations, etc.. Chapter 2-4 were principally guided by Prof. Paul 

W. Ayers, and chapter 5-6 were jointly guided by Prof. Paul W. Ayers and Dr. Steven K. 

Burger.   
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1.1 Introduction 

The ultimate goal of computational chemistry is to model chemical reactions using 

computers. Suppose that we are given a set of molecules: instead of mixing them in 

beakers, we could load the information into a computer and, through computer simulation, 

predict what would happen and explain how it would happen. While computational 

chemists have made great progress in this quest, it is still far from being fully realized. 

This thesis features theoretical developments and computational studies that advance our 

ability to simulate chemical reactions. 

There are many ways to predict what happens in a chemical reaction. Some 

methods focus on a certain property of the reactants or a certain type of reactions; we call 

these “specific methods.” For example, reactivity indicators provide a straightforward 

way to predict which site of a molecule will be attacked by a specific type of reagent,1,2 

or predict a molecule’s susceptibility to a specific type of reaction (e.g., by predicting the 

quality of a leaving group).3 General-purpose methods are designed to work for all 

possible types of chemical processes and typically use the potential energy surface or free 

energy surface of the molecular system. For gas phase reactions, the potential energy 

surface (PES) provides important information about the reaction: the energy minima 

represent the reactant, the product and potential reactive intermediates; the 1st-order 

saddle points represent the transition states linking these stable structures. Finding the 

stationary points4 on the PES gives us detailed information about the chemical reaction 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu       McMaster University – Department of Chemistry and Chemical Biology 

 

 

3 

mechanism(s). In most chemical systems, one reaction mechanism is dominant, and 

knowing the unique minimum energy reaction path linking the reactant(s) and product(s)5 

provides sufficient information to characterize the thermodynamics and kinetics of the 

chemical system. For gas-phase reactions at sufficiently high temperatures, condensed-

phase reactions, and the reactions of complex biological systems, the potential energy 

surface cannot represent the system’s behaviour because the molecule fluctuates and 

statistically samples a range of different structures. Statistical sampling is required to 

achieve the thermodynamic properties of a macroscopic system, i.e., the free energy 

difference between two states. The same principles apply here, but the mechanism should 

be characterized using free energy surfaces instead of potential energy surfaces. 

In this thesis I will present my work on methods for finding minimum energy 

reaction paths on PES for gas phase reactions and determining free energy differences in 

complex biological systems using molecular dynamics. The remaining sections of this 

chapter describe the quantum mechanics (QM) and molecular mechanics (MM) tools and 

concepts used in subsequent chapters. The motivation, significance, and fundamental 

ideas behind the various facets of my thesis project are also discussed.   

 

1.2 The Potential Energy Surface and the Born-Oppenheimer Approximation 

The molecular potential energy surface (PES) is fundamental to reaction mechanism 

studies. It represents the electronic energy of a molecular system as a function of all the 
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relevant atomic positions. The Born-Oppenheimer approximation, or another similar 

adiabatic approximation, is a precondition for defining the PES.6  

The Schrödinger equation for a molecule with  n  electrons, and    nuclei, is  

    

−
h2

2Mα

∇α
2 −

h2

2m
e

∇
i

2 +
e2

4πε
0

−
Zα

r
iα

+
1

r
ij

+
ZαZβ

rαβα <β
∑

i< j

∑
all i,α
∑











i=1

n

∑
α =1

 

∑













ψ (x,X) = E

total
ψ (x,X)

 (1.1) 

Here  x  and  X  represent the electronic and nuclear coordinates; 
 
Mα  and 

 
Zα  are the 

mass and the atomic number (nuclear charge) of the  α
th  nucleus;  

 
m

e
 is the mass of an 

electron;  e  is the charge on a proton and the magnitude of the charge on an electron; 
 
r

iα ,  

 
r

ij
 and 

 
rαβ  represent electron-nucleus, electron-electron and nucleus-nucleus distances.  

Since nuclei are thousands of times heavier than electrons (and the rest mass of an 

electron is approximately 1836 times smaller than that of the proton), they move much 

more slowly than electrons. Born and Oppenheimer proposed that electrons can be 

pictured as moving in the field of fixed nuclei. When the nuclei move, the electron 

density should adjust almost instantaneously. Thus the electronic motion (described by 

the electron wave function    ψ e
(x;X) ) can be separated from the nuclear motion 

(described by the nuclear wave function    ψ n
(X) ), 

    ψ (x,X) =ψ
e
(x;X)ψ

n
(X) , (1.2) 
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where    ψ e
(x;X)  is a solution of the Schrödinger equation involving the electronic 

Hamiltonian or Hamiltonian describing the motion of  n  electrons in the field of    fixed 

nuclei (   point charges), 

 ˆ ( ; ) ( ) ( ; )e e e eH Vψ ψ=x X X x X . (1.3) 

   ψ e
(x;X)  is a function of the electronic coordinates  x  and only depends on the nuclear 

coordinates  X  parametrically, since it is solved for a particular choice of nuclear 

positions.  

Since nuclei move much slower than electrons, the nuclear kinetic energy term 

   

−
h2

2Mα

∇α
2

α =1

 

∑








  in equation (1.1) is often neglected. The nuclear potential energy term 

  

e2

4πε
0

ZαZβ

rαβα <β
∑









  does not depend on the electronic positions. Therefore the electronic 

Hamiltonian is defined as, 

 

   

Η
e

^

= −
h2

2M
e

∇
i

2 +
e2

4πε
0

−
Zα

r
iα

+
1

r
iji< j

∑
all i,α
∑











i=1

n

∑ . (1.4) 

The potential energy    Ve
(X)  of a particular nuclear configuration  X  is determined 

by the total electronic energy associated with that nuclear configuration and can be 

obtained by solving the Schrödinger equation (1.3) involving the electronic Hamiltonian. 
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Adding the nuclear-nuclear repulsion term to    Ve
(X)  defines the potential energy surface, 

which is usually denoted as    V (X) .  

The potential energy surface    V (X)  of a molecular system contains important 

information on its geometries and the relative energies of its locally stable structures, as 

well as the most favourable reaction pathways between these structures.  Figure 1.1 

shows the 3-D surface plot and contour plot of a 4-well 2-D potential energy surface. The 

bottoms (green, yellow to orange) of the 4 wells represent 4 energy minima (reactant, 

product or intermediates), and the first order saddle points represent the transition states 

between each pair of minima. This surface is used throughout this thesis as a useful test-

case for algorithms (See section 2.4.7 and 4.5.2 for description of 4-well PES). 
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Figure 1. 1: The surface plot and contour plot of a 4-well 2-dimensional potential 
energy surface.  
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1.3 Minimum Energy Path 

The most widely accepted definition of minimum energy path (MEP) is the intrinsic 

reaction coordinate (IRC) proposed by Fukui;7 the IRC is the steepest descent path (SDP) 

from the first order saddle point down to the adjacent minima on the PES. In this thesis, 

the MEP is defined as SDP. For multi-step reactions, the overall minimum energy path 

would be composed by the linking the MEPs of the individual steps, in sequence. When 

multiple mechanisms (alternative reaction paths) exist, the MEP with the lowest overall 

energy barrier is the global MEP, others are local MEPs. The MEP provides critical 

information about chemical reactions, including information about the mechanism, the 

reaction rate, etc.. Thermodynamic properties like the heat of reaction and the equilibrium 

constant8 can also be derived from the MEP. Unsurprisingly, theoretical chemists have 

exerted great effort towards finding MEPs.  

There are two families of algorithms for finding the MEP: the surface walking9-11 

algorithms (an “initial value” formulation) and the two end algorithms12-17 (a “boundary 

value” formulation). The two end methods usually require a good guess for the path 

linking the reactant and product. Only the local MEP can be found using two end 

methods. By contrast, surface walking methods only need the reactant configuration, and 

then explore the PES to predict the products and the mechanism along the way. 

Unfortunately, surface walking algorithms usually are either very expensive or, if a 
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heuristic is used to simplify the computation, they tend to be unreliable18 for complicated 

systems.  

One of the main contributions of this thesis is the development of a new surface-

walking algorithm, the fast marching method (FMM), for finding the global minimum 

energy reaction path. We also developed a new two-end algorithm, the QSM-NT method, 

that locates all the stationary points on a potential energy surface, which allows us to find 

several alternative minimum energy paths (and helps reduce the need for good guesses of 

the reaction path).  Chapter 2 is a comprehensive review of path-finding methods.  

 

1.3.1 The Fast Marching Method 

Fast marching methods are numerical schemes that solve the eikonal equation. The 

Fast Marching Method (FMM) for determining MEP transforms a multiple-well PES 

(
  
V R( )) to a single-well energy cost surface (   U (R) ) by solving the eikonal equation that 

defines the cost of traveling from the initial configuration ( R 0
, the reactant) to another 

( R ) on the PES,5,11,11  

 
   
∇U

n
(R) = 2(E −V (R)){ } n

, (1.5) 

with the boundary condition of    U (R
0
) = 0 . n  is an integer. 
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 This eikonal equation describes wavefront propagation with the local speed 

function 

   

1

2(E −V (R)){ }n
. Pictorially, we imagine flooding the PES, starting from the 

reactant “valley”. The “water” level rises until it breaches the lowest-energy “mountain 

pass” (the transition state) and then races to the bottom of the next “valley” (the 

intermediate) along the steepest descent path. The “valley flooding” process continues 

until the product is found. The contour lines that show what portion of the surface was 

underwater at a given point in time define a new single-well energy cost surface. The 

steepest descent path from the product to the reactant is the MEP; it is constructed by a 

process called backtracing.  

Since the “water” level will always go to the next “valley” through the lowest 

energy “mountain pass”, FMM can assure that the minima (bottom of valleys) are linked 

by the lowest energy transition states. Therefore the global minimum energy path is 

found.  

 

1.3.2 The QSM-*T Method 

The string method is a very popular path-finding method.19 It is a two-end method. 

The string method divides the initial path into several nodes, which are connected by  

strings to define the path. The nodes are driven to the steepest descent path (SDP) by a 

normal force orthogonal to the tangent of the path. The tangent to the path is updated at 
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each iteration and the nodes are redistributed (to maintain equal spacing between nodes) 

until a good approximation to the SDP is found.  

The string method algorithm can be conceptually described as dropping an elastic 

pearl necklace on the PES, with the two ends of the necklace fixed on the reactant and the 

product. The pearls roll down from their initial position until the necklace settles into a 

local MEP.  

The quadratic string method (QSM)20 uses the same algorithmic structure as the 

string method, except that a local quadratic approximation of the PES is used; this 

reduces the number of energy and gradient calculation.   

The Newton trajectory (NT) is an alternative reaction path that has been proposed 

by Quapp and his coworkers.21,22 A Newton trajectory is a curve on which all gradients 

are pointing in the same (or opposite) direction, called the searching direction of the NT. 

Since the magnitude of the gradient at the stationary point is zero, its direction is arbitrary. 

Therefore a Newton trajectory passes all stationary points on the PES. If carefully chosen, 

a continuous NT without any turning points or higher-order saddle points can be found; 

Quapp proposes that this is a good model for the reaction path. The problem is that an NT 

can contain spurious turning points (non-stationary point), 2nd-order or higher-order 

saddle points (stationary points), energy maxima (stationary points). All these points 

could be maxima on the energy profile of the NT and appear to be transition states, which 

might give a misleading reaction path. Without prior knowledge of the PES, it seems 
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difficult to find a searching direction that defines a NT in which all turning points are 

minima or 1st-order saddle points.   

To avoid the “turning point problem” associated with using a single NT as the 

reaction path, we proposed a new method for finding the stationary points on the PES by 

locating the intersections of two or more NTs. Since a NT passes all stationary points on 

the PES, the NTs intersect at stationary points; after finding the stationary points we can 

determine the possible reaction pathways. We adapted the QSM algorithm to find NTs. 

This new method is called QSM-NT; it is discussed in chapter 4. 

 

1.4 Molecular Mechanics (MM) 

Macroscopic systems contain an enormous number of interacting particles. For gas 

phase reactions, molecules are so dilute and far apart that computational chemists usually 

consider only one set of reactant molecules for an ab initio potential energy calculation. 

For condensed phase systems, such as reaction in solution or the reactions of 

macromolecules, the interactions between molecules is too strong to be ignored, and 

thousands, or even millions, of atoms must be modelled. It is difficult to describe the 

evolution of such large and complex system in a deterministic way. Instead, statistical 

sampling is used to study the systems’ average behaviour. Just as in path-finding methods 

for gas-phase reactions, the potential energy is the basic input, but now it is used for 

statistical sampling. In molecular mechanics, the potential energy of the molecular system 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu       McMaster University – Department of Chemistry and Chemical Biology 

 

 

13 

is modelled by classical mechanics, wherein, the atoms and bonds are considered as 

charged (and perhaps polarisable) balls and springs, respectively. The energy function 

depends on force constants (to describe the springs’ strength) and the displacement from 

equilibrium.  

 

1.4.1 Potential Energy Functionals and Force Fields 

In molecular mechanics the potential energy of a system is calculated using force 

fields, which include the form of the potential energy function and the values of its 

associated parameters. The forms of the potential energy functions differ between 

different force fields, but the general form can be described using the following 

formulae,23-25 

 

 

V =V
bonded

+V
non−bonded

V
bonded

=V
bond

+V
angle

+V
dihedral

V
non−bonded

=V
van der Waals

+V
electrostatic

. (1.6) 

The bond and angle terms are usually modelled as harmonic oscillators. The torsion is 

periodic, so the dihedral or torsional terms are modelled by periodic functions, e.g., a 

Fourier series. The van der Waals terms are typically modelled using a 6-12 Lennard-

Jones potential. The electrostatic terms are modelled using the Coulomb interaction, with 

set atomic charges for different types of atoms in the molecule. For example, the potential 

energy functional for the AMBER force field26 is in the following form, 
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. (1.7) 

Here 
 
k

b
 is the stretching force constant and   b

0  is the equilibrium bond length; 
 
kθ  is the 

bending force constant and  θ
0  is the equilibrium bond angle; 

 
V

n
 is the height of the 

torsional barrier,  n  is its periodicity (the number of maxima per full revolution), ω  is the 

torsional angle value, and γ  is the phase angle (which is usually 0 or π  depending on the 

periodicity: γ = 0 if  n  is odd, and γ = π  if  n  is even); 
  
ε

i, j
 is the depth of the Lennard-

Jones potential well and 
  
r

ij

0  is the distance between atoms  i  and  j  when the potential 

reaches its minimum 
  
−ε

i , j
; 

 
q

i
 and 

 
q

j
 are partial charges assigned to atoms  i  and  j , 

respectively, and  ε0
 is the electric constant. These parameters are defined for each type 

of atoms, bonded or non-bonded atom pairs, and bonded triplets (angles) or quadruplets 

(torsions). For macromolecules, their parameters are usually chosen to reproduce 

experimental measurements and/or reproduce quantum-mechanical calculations on small 

molecules. 
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1.4.2 From Microscopic to Macroscopic 

Molecular mechanics is around a million times faster than quantum mechanics at 

computing potential energy surfaces. This means that molecular mechanics can be 

applied to much larger systems than quantum mechanics. Although the minimum energy 

structure on the PES represents the most stable structure of the molecule, molecules are 

not static; they do not stay at the minimum-energy structure, but fluctuate around it. 

According to Einstein and Stern’s expression of zero-point energy in 1913, a molecule 

preserves an residual vibrational energy of 
  

1

2
hν  at absolute zero temperature (T= 0 K).27 

All quantum mechanical systems undergo structural fluctuations, even in their ground 

state. In real life the molecule statistically samples a range of different structures. If the 

molecule is quite small and rigid in structure, and if the temperature is low, then the 

fluctuations are usually tightly clustered around the minimum energy structure. In this 

circumstance it is reasonable to use the minimum energy structure on the PES to model 

the molecule’s structure. For molecules that are large and/or floppy, the idea of a unique 

molecular structure is inadequate, and the molecule should be modeled as a statistical 

distribution of the structures on the PES. The properties of such systems are no longer 

determined by a single state, but by averaging over all possible microstates that satisfy 

the given constraints that define the thermodynamic system; the molecule is represented 

by the statistical ensemble comprising these microstates. The macroscopic 

“thermodynamic” properties of the system are the average properties of the ensemble.28  
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The ensemble average can be obtained by statistical sampling methods such as 

Monte Carlo simulation and molecular dynamics (MD) simulation. In this thesis we only 

use MD simulation.  

 

1.4.3 Molecular Dynamics (MD) Simulation 

According to the ergodic hypothesis, all accessible microstates are equiprobable 

over a long period of time. Therefore we can assume that the averaging over the 

statistical ensemble is equivalent to averaging over the time-evolution of the system. 

Molecular dynamics uses a force field (either from molecular mechanics (MM/MD) or 

quantum mechanics (QM/MD)) to determine the physical movements of the atoms in a 

chemical system in time. The basic idea of molecular dynamics simulation is to predict 

the evolution of a system over a long period of time and then use the time average to 

calculate the ensemble average.  

Some experimental techniques can measure macromolecular systems at atomic 

resolution. For example, a scanning electron microscope (SEM) can probe a molecular 

surface and reveal details to less than 1 nm; the most advanced transmission electron 

microscope (TEM) can even achieve resolution below 0.5 Å; X-ray crystallography can 

take “snapshots” of crystal structures; nuclear magnetic resonance (NMR) spectroscopy 

can probe certain features of molecular motions. But the applications of existing 

experimental techniques are greatly restrained by sample preparation and sample strength. 
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Moreover, it is still challenging to access both the static and dynamic structures with 

atomic resolution in the laboratory. MD simulation provides us the opportunity to peer at 

the motion of the individual atoms in a complex chemical system in a way that is not yet 

experimentally feasible.  

Although MD simulation provides us a way to “visualize” atomic motions, there are 

some inherent problems and errors associated with MD simulation.  

The first problem is related to the ergodic hypothesis. Although it is very hard to 

prove ergodicity, it is believed that almost all many-body systems are ergodic. However, 

complex chemical and biological systems might show “nonergodic behaviour” during 

MD simulations, meaning that the systems do not properly explore phase space. The 

causes of “nonergodic behaviour” include: 1) Large systems diffuse so slowly that the 

volume in phase space explored during the computer simulation is insufficient to estimate 

ensemble average by the time average. In other words, the simulation time is not long 

enough to apply ergodic hypothesis. 2) Different volumes of phase space are separated by 

such high energy barriers that the transitions between these volumes become rare events 

that occur so infrequently that proper sampling of the phase space can not be achieved.  3) 

Different volumes of phase space are connected by very narrow regions (so-called 

“entropy bottlenecks”), hence the transitions between them are rarely sampled.29 When a 

system appears “nonergodic” during MD simulation, more advanced techniques like 

stratification (also called multistage sampling) or importance sampling are required to 

ensure better exploration of the phase space. 
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The errors of a MD simulation usually come from the following sources: 1) 

Discretization of time. In MD simulation of a complex system, the classical equation of 

motion for the atomic nuclei will be solved numerically. This is performed by 

discretizing the time with a finite timestep  ∆t , which is the time length between 

evaluations of the potential. The force on each atom is held constant during the time-span 

 ∆t . The timestep has to be smaller than the fastest vibrational frequency in the system. 

Usually it is set to be 1fs (10-15
s) or less. By using algorithms such as SHAKE, which 

constrain the vibrations of the fastest atoms, the timestep can be increased. 2) Errors in 

force fields. In classical MD (or MM/MD), force fields are used to calculate the potential 

energy of the system. Force fields are usually derived from experimental studies and 

quantum mechanical computations on small molecules, so they are not exact. They can be 

very inaccurate if the chemical character (e.g., bonding pattern) of the molecule changes. 

3) Non-bonded cutoffs. In an MD simulation, the most time-consuming part is the 

evaluation of the potential energy as a function of the atomic position. The non-bonded 

terms are the most expensive part of an MM force field because there is an energy term 

from every pair of nonbonded atoms.  Therefore in most MD simulations, non-bonded 

cutoffs are applied to reduce the computational cost. Neglecting the Coulomb and 

Lennard-Jones terms between atoms separated by more than the cutoff distance increases 

the efficiency of the calculation, but also introduce errors. 
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1.5 Free Energy Calculation 

As we discussed in Section 1.4.2, the thermodynamic properties of a macroscopic 

system cannot be represented by a single state and require, instead, approximating the 

ensemble average. For small-molecule gas-phase reactions, the minimum energy reaction 

path on the PES can provide a good approximation to the reaction mechanism. But for 

condensed-phase reactions and large complex systems, there is an entire family of 

reaction pathways, determined by the free energy behaviour of the system.  Since it is 

often impossible to select a single reaction coordinate that captures the full range of 

possible reaction mechanisms, in these cases we usually focus not on reaction pathways; 

instead we settle for computing free-energy differences between key chemical species.  

The free energy is usually expressed as the Helmhotz free energy,  A , or the Gibbs  

free energy,  G . The Helmholtz free energy is the thermodynamic potential of the 

canonical (NVT: number of particles, volume, temperature) ensemble. The Gibbs free 

energy is the thermodynamic potential of the isothermal-isobaric (NPT: number of 

particles, pressure, temperature) ensemble. They can be expressed in terms of the 

partition function. For example, the Helmholtz free energy can be expressed as, 

                                 ( , , ) ln ( , , )BA  V T k T Z  V T= − ,                 (1.8) 

where 
Bk  is the Boltzmann constant, the canonical partition function can be written as, 

 
  
Z  ,V ,T( )= e

−
Eυ

k
B
T

υ
∑ , (1.9) 
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if all points υ  in the phase space are visited; or 

 
( , )

( , , ) exp
  

  

B

E
Z  V T d d

k T

 −
=  

 
∫∫

p r
p r , (1.10) 

if integrating over classical phase space defined by position  r and momentum  p . The 

Helmhotz free energy can be expressed as, 

 ( )1 ( , )
ln ln exp ,

( , , )

  
    

B B

B

E
A k T k T d d

Z  V T k T
ρ

  
= =      

∫∫
p r

p r p r , (1.11) 

where ( )
( , )

exp

,
( , , )

  

B  

E

k T

Z  V T
ρ

 −
 
 =

p r

p r  is the probability of the state with energy 

( ),  E p r .  

If it were possible to visit all points in the phase space, then the partition function 

could be calculated using equation (1.9). In general an accurate estimation of the partition 

function is impossible due to inadequate sampling during finite simulation time.30 

Calculating the free energy from direct MD or Monte Carlo simulation is very difficult 

because MD or Monte Carlo simulations preferentially generate states of low energy and,  

according to equation (1.11), high energy states can also make significant contribution to 

the free energy. Fortunately in most cases we are only interested in the free energy 

differences between two systems or two states of a system. Since free energy is a state 

function and it does not depend on the path, but only depends on the initial and final 

states, the calculation of free energy difference can be carried out through a series of 

mixed states using free energy perturbation theory or thermodynamic integration.  
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1.5.1 Thermodynamic Integration 

In thermodynamic integration, a order parameter λ  is defined so that the free 

energy is a continuous function of λ ,31 

 

   

∆A =
∂A(λ)

∂λ0

1

∫ dλ =
∂H (p ,r ,λ)

∂λ0

1

∫
λ

dλ . (1.12) 

When using empirical molecular mechanics force fields, the kinetic-energy portion of the 

Hamiltonian does not depend on λ so the only contribution is from the potential function 

   V (r ,λ) . In practice, the numerical integration, such as Gaussian quadrature formula, 

  

∆A = ω
i

i

∑
∂V (λ)

∂λ
i

 is used to approximate the integral in equation (1.12). For each 

discrete value, λi, MD or Monte Carlo simulation is performed to estimate the value of 

  

∂V (λ)

∂λ
i

. The potential function for each λ  value can be expressed as a weighted 

average of the initial ( λ = 0 ) and final perturbed state ( λ = 1), 

 
   
V (r ,λ) = (1− λ)kV r  ,0( )+ 1− (1− λ)k V r ,1( ), (1.13) 

 where   k = 1  represents linear mixing when no atom appears or disappears in the 

perturbed state, and   k > 1 is typically used when dummy atoms are used in the perturbed 

state. 
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1.5.2 pKa Calculation 

The pKa value is proportional to the free energy of deprotonating an ionisable group, 

 
  
pK

a
=

∆A

2.3026RT
. (1.14) 

Therefore, the essence of pKa calculations is directly related to the calculation of free 

energy differences. Usually we are interested in the pKa difference of the free amino acid 

in solvent and in protein environment, in which case, the pKa shift (
 
∆pK

a
) is calculated 

through the difference of the deprotonation free energy between the model compound 

(e.g., the amino acid in a dipeptide chain) and the amino acid in the protein.  

 

1.5.3 MM/PBSA and MM/GBSA Binding Energy Calculation 

The molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) and its 

complementary molecular mechanics/General Born surface area (MM/GBSA) approach 

are postprocessing methods to calculate the binding free energy based on the sets of 

structures from an MD trajectory or a Monte Carlo simulation. The MM/PBSA method 

combines the molecular mechanical energies with continuum solvent so that the binding 

free energy between two species (ligand-protein, protein-protein, etc.) can be expressed 

as, 

 

 

∆G
bind

= G
complex

− G
protein

+ G
ligand( )

= ∆E
MM

+ ∆G
solv

− T∆S

. (1.15) 
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where 
 
∆E

MM
 is the molecular mechanical energy difference between the bound state  

(complex) and unbound state (receptor and ligand), which can be evaluated based on the 

structures (called snapshots) taken from an MD trajectory. 
 
∆G

solv
is the solvation free 

energy difference between the bound and unbound state. The solvation free energy 

includes two components: the electrostatic energy for transferring the solute from the 

vacuum to the solvent, and the non-electrostatic contribution that combines the free 

energy required to form the cavity and van der Waals terms. In MM/PBSA the 

electrostatic component of the solvation free energy is calculated by solving the Poisson-

Boltzmann equation in the vacuum and the solvent, 
  
∆G

PB
=

1

2
q

i
i

∑ φ
i

80 − φ
i

1( ).31 The non-

polar contribution is calculated using an empirical solvent accessible surface area formula, 

  
∆G

nonpolar
= γSASA, γ = 0.0072kcalA

-2°
.  ∆S  is the entropy change upon binding. The 

MM/GBSA method is the same as MM/PBSA except that in MM/GBSA the electrostatic 

component of solvation free energy is calculated using the generalized-Born continuum 

solvent model.31  

1.6 Summary of Ph.D. Work 

Chapter 2, chapter 3 and chapter 4 of the thesis focus on the development of new 

methods for finding reaction paths on the PES. Chapter 2 gives a detailed review on the 

popular path-finding methods, followed by the introduction of the fast marching method 
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(FMM). In this chapter, the mathematical backgrounds and numerical algorithms used in 

FMM are discussed in detail. Applications of FMM to both analytical PES and real 

chemical reactions are also included in this chapter. At the end, the possibility of 

interfacing FMM with QM/MM methods for finding reaction path of complex chemical 

reactions is discussed.  

Chapter 3 presents the extension of the FMM program for finding MEP so that it 

can use Gaussian 03 to calculate the potential energy surface. A conceptual description of 

FMM and its applications to 2-D and 3-D reduced PESs are given in this chapter. The 

methods presented in chapter 2 and chapter 3 are examples of the surface-walking path-

finding methods. 

Chapter 4 presents a new method for finding all the stationary points on the PES: 

the QSM-NT method. It is a combination of the quadratic string method (QSM) and 

Newton trajectory (NT), and therefore falls into the category of the two end methods. The 

idea and numerical structure of this method are presented. The applications of QSM-NT 

to analytical PESs and real chemical reactions are presented. The advantages and pitfalls 

of this method are elucidated with examples as well.  

In addition to chapter 2, chapter 3 and chapter 4, I also co-authored a paper on 

numerical algorithms used to improve the efficiency of FMM32 that is not included in this 

thesis. In this paper, the moving-least-squares enhanced Shepard interpolation is used to 

cut down the number of potential energy and gradient evaluations, and consequently 

reducing the computational cost of FMM.  
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Except for minimum energy reaction paths, there are other, more specific, ways to 

predict the qualitative characteristics of a chemical reaction. One example is the 

development of reactivity indicators for predicting the quality of leaving groups in 

organic molecules. In another non-thesis publication,33 we studied 66 different reactivity 

indicators for predicting the quality of organic leaving groups and tested them against 

experimental data.  

Chapter 5 and chapter 6 focus on MM/MD simulations on complex biological 

systems. Chapter 5 presents a computational study on the binding modes of caffeine to 

the adenosine A2A receptor. Using the engineered crystal structure of the adenosine A2A 

receptor, we docked caffeine to the receptor. 5 ns MD simulations were performed on 

each selected docking pose in the approximate physiological environment. Then the 

relative binding energy of each binding mode was determined using MM/PBSA. Finally, 

the critical residues in the binding pocket were identified using the MM/GBSA energy 

decomposition. The results of our computational studies bring new insight to targeted 

drug design for the adenosine A2A receptor.  

Chapter 6 presents our attempts to calculate the pKa shift of Lys115 in acetoacetate 

decarboxylase (AADase) using different kinds of computational methods: the molecular 

dynamics/thermodynamic integration (MD/TI) method, a Poisson-Boltzmann equation 

based method (MCCE), and an empirical method (PROPKA). According to the recent 

crystal structure of AADase, the large pKa shift of Lys115 is mainly due to its location in 

a solvent-inaccessible hydrophobic environment, that is, the desolvation effect.  Using the 
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natural protonation patterns of other ionisable residues, none of the above-mentioned 

computational methods predict the right protonation state of Lys115. Since these methods 

do not explicitly sample the protonation patterns of other ionisable residues, we postulate 

that site-site interaction from other ionisable residues play important roles in the pKa shift 

of Lys115. Inspired by the results from site-directed mutagenesis studies, we use 

protonated Glu76 (neutral) for MD/TI calculation, and the pKa of Lys115 is calculated as 

5.3, which agrees well with the experimental value of 5.9. 

The classical statistical models that are used to describe complex biological systems 

confined in a box of water molecules can be generalized to quantum mechanics, where 

they can be used to model electrons in atoms, molecules, and electronic devices. In yet 

another non-thesis publication, we used a statistical method to model the electrons in a 

cubic quantum dot.34  

In summary, my Ph.D. work focused on the development of new methods for 

predicting and characterizing the chemical reaction paths of gas-phase chemical reactions 

and MM/MD computations of free energy differences in biochemical processes in 

proteins. 
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2.1 Statement of the Problem 

This chapter is a review of the popular path-finding methods and a conceptual 

introduction to the fast marching method (FMM). FMM is a reliable but yet expensive 

path-finding method. The moving-least-square enhanced Shepard interpolation has been 

applied to reduce the computational cost of FMM. The mathematics and numerical 

schemes used in FMM have been described in detail in this chapter. The Shepard 

interpolation improved FMM has been applied to analytical PES, 2-dimensional and 3-

dimensional reduced PES of real chemical reactions. The possibility of interfacing FMM 

with QM/MM program and applying it to complex system is discussed.  

 

2.2 Motivation 

Suppose that one is given a set of molecules (the reagents) and their reaction 

conditions (solvent or gas phase, temperature, etc.). Does a chemical reaction occur? 

What kind of reaction? What is(are) the product(s)?  How and why does the reaction 

happen?  These are the fundamental problems of chemistry. 

The theoretical solution to these problems requires finding the chemical reaction 

pathway. For example, given the minimum energy path (MEP), one can determine 

molecular structures and energies of the reactants, products, and transition states.  The 

difference in energy between the reactants and products is the reaction energy; the 

difference in energy between the reactants and the transition state structure is the 
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activation energy, which is related to the rate of reaction.  The MEP provides key 

information about reaction thermodynamics and kinetics.  In addition, tracing the MEP 

from the reactant, through reactive intermediates and the transition state, to the products 

gives us the chemical reaction mechanism. The reaction mechanism is the key to 

understanding how and why a reaction occurs, and it is important for optimizing reaction 

conditions and designing catalysts. 

This chapter will review our recent work on computational algorithms for finding 

the MEP, with particular emphasis on the fast marching method (FMM).  In the second 

section, we will present more information about MEPs and review alternatives to FMM.  

Section 3 provides algorithmic details about FMM and some applications to small 

systems. Section 4 reviews the development of the quantum mechanics/molecular 

mechanics (QM/MM) methods for studying enzyme-catalyzed reactions and presents the 

idea and some preliminary work on incorporating FMM with QM/MM methods. Section 

5 summarizes our results to date and presents our perspective on future research 

directions. 

2.3 Background 

2.3.1 The Minimum Energy Path 

The reaction path is usually identified with the steepest descent path linking a 

transition state structure and its adjacent minima (such as reactant, product and reactive 

intermediates). When there is more than one steepest descent path, the one with the 
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lowest energy barrier is MEP. The steepest descent path defines the intrinsic reaction 

coordinate for a chemical reaction1.  

There are two main families of algorithms for finding the MEP: two end methods2 

and surface walking methods.  The two end methods require a good guess for the path 

linking the reactant and product; if the mechanism in the initial guess is qualitatively 

correct (i.e., the path threads its way through the correct “mountain passes” on the 

potential energy surface (PES)), the right MEP will be located. Surface walking methods 

do not require an initial guess. They start exploring the PES from the reactant 

configuration, and eventually predict the products and the mechanism of the chemical 

reaction. Unfortunately, surface walking algorithms are usually either very expensive or, 

if a heuristic is used to simplify the calculation, they tend to be unreliable for complicated 

systems. The two end methods have great advantages from the viewpoint of 

computational cost and numerical stability.  

 

2.3.2 Two End Methods 

A simple example of a two end method is the Nudged Elastic Band (NEB) method3-

8. In this method an initial guess of the path is given which is divided up into a series of 

beads, with springs in between each bead. The beads are then propagated down the PES. 

One of the significant improvements of NEB over previous methods is it decouples the 

problem, by projecting the spring force parallel to the path and the force from the 
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potential perpendicular to the path. This prevents corner cutting of the path and ensures 

that the path will eventually converge to the MEP. 

String methods are similar to NEB, but they do not use a fictitious force to ensure 

that the molecular conformations that define the reaction path are well-spaced.  In the 

following paragraphs, we will discuss the original string method of Ren and Vanden-

Eijnden9-11 and two improved string methods:  the growing string method (GSM)12 and 

the quadratic string method (QSM)13. 

Ren and Vanden-Eijnden proposed a zero-temperature string method14,15 for finding 

the MEP on the PES. Like the NEB method, the string method drives the initial path to 

the MEP by perpendicular forces on the bead. The continuity of the path is ensured by 

reparameterizing the approximate path at each iteration so that the nodes are spaced 

evenly along the path.  

GSM has the same algorithmic structure as the string method. The difference is that 

the string grows from two ends of the reaction path (the reactant and product) toward the 

transition state along an interpolated pathway until the growing ends meet. However, the 

growth of the string depends on the interpolated pathway, which is determined by the 

update to all nodes in the previous iteration. The dependence on the previous iteration 

makes it very difficult to parallelize this method. Furthermore, the growing two ends will 

not meet unless the original interpolated pathway is a good guess for the MEP.  

QSM uses the local quadratic approximation of the PES16. Compared with the string 

method, it is more accurate and it converges faster. QSM applies an adaptive step-size 
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Runge-Kutta method and accordingly removes the need for the user to decide the step 

size17,18. Formulated as a multi-objective optimization problem, it can be easily 

parallelized. QSM is considered one of the most efficient two end methods for large 

reaction systems. 

Unfortunately, even the best two-end methods require that one have enough prior 

knowledge of the PES to guess an accurate initial path. Guessing an initial path is almost 

impossible when exploring new chemistry, in which case one could use the surface 

walking algorithms instead. 

 

2.3.3 Surface Walking Algorithms 

 Surface walking algorithms usually start from a stationary point and search for 

energy minima and transition state (TS) by walking on the PES. Some popular surface 

walking methods are the eigenvector following (EF) method19, the gradient extremal 

following (GEF) method20, the reduced gradient following (RGF) method21, the scaled 

hypersphere search (SHS) method22-25, and the fast marching method (FMM)26-33. Since 

walking uphill is much more difficult than downhill, most surface walking algorithms 

focus on the uphill walking algorithm, and aim at global mapping of the PES. The 

fundamental problem with walking uphill is deciding which walking direction leads from 

the minimum to the TS.  
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The eigenvector following method can locate local minima and first-order saddle 

points by walking through the PES. Starting from an arbitrary point on the PES, the 

eigenvector following method locates the stationary points by walking along an 

eigenvector of the Hessian (second-derivative) matrix. By walking along all 2(3 6) −  

eigenvector directions, the eigenvector following method can potentially find all local 

minima and saddle points in an  -atom molecular system.  

The gradient extremal following method walks uphill and downhill by following the 

extreme absolute values of the gradient along the potential contours19. Gradient extremals 

are curves that intersect the potential energy isosurfaces, ( )V k=R , where the curvature 

of these contour surfaces is an extremum. Since the curvature of an isosurface at a 

stationary point is infinity, the gradient extremal curves (e.g., the gradient maximum and 

gradient minimum) are supposed to cross at the stationary points. So finding the crossing 

points of gradient extremals will give the stationary points. One problem with the 

gradient extremal following method is that sometimes gradient extremals also intersect at 

points other than the stationary points25.  

The idea of the reduced gradient following method comes from the zero gradient 

criterion for stationary points21. Starting from a minimum, RGF finds the set of points 

whose potential gradients are all aligned to the direction of a chosen coordinate. RGF 

curves connect stationary points differing in their index by 1 and they intersect at the 

stationary points. The index of a stationary point is the number of negative eigenvalues of 
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the Hessian matrix at this point34. Examples of searching for saddle points using the 

crossing points of RGF curves are shown in reference 21. RGF curves have been 

extended to a more general concept: the Newton Trajectory (NT)35,36. The searching 

direction of NT is not limited to one of the coordinates. It could be any direction. To 

avoid constructing trajectories that wander around the high energy regions of the PES, 

Quapp applied the growing string algorithm to find the NT37-39. An NT without a turning 

point can be used as approximation to the reaction path. Unfortunately, because there are 

infinitely many searching directions, it is sometimes difficult to locate a NT that 

approximates the reaction path.  

The scaled hypersphere searching method22,23,25 is based on the chemical intuition 

that energy-lowering interactions distort the potential surface downwards as one moves 

towards the TS23. SHS can walk toward the TS by following the extreme magnitude of 

anharmonicity from the second-order surface expanded at the starting minimum. The 

efficiency of SHS method is claimed to be 2(3N-6) energy minimization calculations on 

each hypersphere, but expensive calculations of the Hessian matrix are required.  

 

2.3.4 Metadynamics Methods 

Other energy minima searching approaches, such as the free-energy minima 

escaping method proposed by Laio and Parrinello40, and the conformation flooding 

approach by Grubmuller41, are based on self-avoiding molecular dynamics trajectories on 
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the potential energy surface. These trajectories do not pass precisely through the TS and 

reactive intermediate structures, so they do not provide a satisfactory representation for 

the reaction path. However, a reactive trajectory from these methods can be used as an 

initial guess for a two end method.  

 

2.3.5 The Fast Marching Method 

FMM is a wavefront propagation method that solves the nonlinear eikonal 

equation29-32. FMM has been successfully applied to find the MEP on the PES. As 

previously mentioned, uphill walking on the PES is more troublesome than downhill 

walking. FMM avoids the uphill walking problem and transforms the multi-well PES into 

a single-well energy cost surface by solving the eikonal equation. The only well on the 

energy cost surface is the starting point, where the cost is defined to be zero. Then the 

MEP from any point on the PES to the starting point can be found by a downhill 

backtracing from this point to the bottom of the energy cost surface. Unlike the two end 

methods, FMM does not need an initial guess of the path and it always converges to the 

MEP. If the ending point of the path is not specified, FMM will eventually evaluate the 

whole PES. Details of the FMM algorithm will be presented in next section. 

 

2.4 The Fast Marching Method 
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2.4.1 Introduction to FMM 

We define the cost function at R  as the “minimum cost” required to attain this 

configuration starting from the reactant configuration 0R 28,33:  

 
( )

� { }
,0

0
( ) min 2( ( ( )))

nL

s

U E V s ds= −∫
R RC

R C . (2.1) 

Here the minimization is over all paths, ( )
0 , sR RC , that start at 0R  and end at R , E is the 

total energy of the system, ( )V R  is the potential energy surface, and L is the path length.  

(The variable s  parameterizes the path so that ( )
0 , 00 =R RC R  and ( )

0 , L =R RC R .) The 

path integral problem (2.1), can be conveniently restated as an eikonal equation, namely, 

 { }( ) 2( ( ))
n

U E V∇ = −R R . (2.2) 

The energy cost of the reactant is zero by definition ( 0( ) 0U =R ); this is the boundary 

condition for the eikonal equation.  

This eikonal equation describes wavefront propagation with the local speed 

function

{ }
1

2( ( ))
n

E V− R
. To locate the MEP, we need the cost of molecular 

configurations with higher potential energy to be infinitely larger than the cost of 

configurations with lower potential energy.  (Equivalently, we need for configurations 

that are lower in energy to be attained infinitely faster than configurations that are higher 

in energy.) This can be achieved by letting n →−∞ , which ensures that higher energy 
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paths in equation (2.1) are cut off from the set of paths (
0 ,CR R ), giving only the MEP. Of 

course, in computational implementations we will choose n  to be a sizeable (but non-

infinite) negative number.  In practice, results are usually good when 10n < − .  

Solving this eikonal equation transforms a multi-well potential energy surface, 

( )V R , into a conical energy cost surface ( )U R . The numerical algorithms for solving the 

eikonal equation will be discussed in the following sections.  

 

2.4.2 Upwind Difference Approximation 

We need to solve the eikonal equation using an “upwind” finite difference 

approximation that preserves the causality of the solutions. To do this, we discretize the 

eikonal equation as follows: 

 [ ]
22 2

1 2 ( )( ) ( )
2( ( ))

(1) (2) ( )

n
dU aU a U a

E V
dR dR dR d

++ +      −− −
+ + + = −    

     
R⋯  (2.3) 

Here ( )dR i  is the thi  component of the grid size vector dR . ia  is the smaller cost value 

of point ' sR  two neighbouring points in direction i , min( , )i left righta U U= . The upwind 

finite difference approximation defines ( ) ( )i iU a U a+− = −  if 
iU a>  and ( ) 0iU a +− =  

otherwise. (That is, ( ) max(0, )i iU a U a+− = − .)  

The upwind finite difference enforces the causality condition in the fast marching 

method, which means the cost can only increase while the wavefront moves outward. In 
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other words, for the point in question, its unknown cost value U  has to be greater than 

the cost value, 
ia , of its known neighbouring point; if 

ia U> , then the cost value of this 

neighbouring point must not be known either. We cannot use an unknown point, so we 

discard it by letting ( ) 0iU a +− = . This is the idea behind the upwind finite difference 

approximation. 

Equation (2.3) can be solved in an iterative way. First, sort the 'ia s  in increasing 

order. Second, start from 1j =  and solve the truncated equation: 

 [ ]
2

1( )
2( ( ))

(1)

nU a
E V

dR

+ −
= − 

 
R  (2.4) 

If the solution 1 2U a≤ , then 1 3 dU a a≤ ≤ ≤⋯  and thus 1U U=  is also the solution to 

equation (2.3). If 1 2U a> , then let j = j + 1, and continue to solve the truncated equation 

with 2 terms on the left side. This process is repeated until we find the thj solution 

1j jU a +≤ , 1 j d≤ ≤ . jU U=  is the solution to equation (2.3)42.  

 

2.4.3 Heapsort Technique 

As the wavefront propagates outward, energy cost values of grids on the wavefront  

are computed by solving the discretized eikonal equation. After computing the energy 

cost values of all points on the wavefront, we need to identify the point with minimum 
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energy cost value (thus with maximum local speed) because this is the point that the 

wavefront is going to pass next. The heapsort technique is used to sort these values.  

 

Figure 2. 1: A binary Min-heap 
 
 

Heapsort is an “in-place” sorting algorithm, requiring no auxiliary storage43.  It has 

a runtime of 2( log )O    for the worst case, where   is the number of data. A “sift-up” 

process is applied to arrange the input data into a binary heap. The sift-up process is 

analogous to corporate promotion. It can be described as the following two parts. 

“add to heap” process: We can imagine the first data added to the heap as the first 

employee. Once we “hire” another one, he will temporarily be the subordinate first (add 

to the same, if there is vacancy, or lower level).  
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“update heap” process: We compare the newly-hired employee with his supervisor, 

if he is more capable, swap their positions, and repeat this comparison until we reach the 

top of the heap; if not, he stays put. This “update heap” process ensures that the most 

capable employee always stays at the top and that each upper level employee is always 

more capable than his subordinates. If the capability of the employees is evaluated by 

numbers, the sift-up process gives us a min-heap like in Figure 2. 1. 

 

2.4.4 Shepard Interpolation 

The computational cost of FMM is dominated by the potential energy calculation. 

One Gaussian calculation for a 5-atom reaction system (as shown in Equation (2.19)) 

takes about 3 minutes using B3LYP/6-311++G**. At a reasonable grid size, a 2-

dimensional PES consists of thousands of points, so it might take several weeks to 

compute the entire potential energy surface. FMM does not need the entire potential 

energy surface, but only a narrow band along the reaction path. This saves up to 70% of 

Gaussian calculations for 2-dimensional PES and even more for higher dimensional PES.  

The number of Gaussian calculations can be reduced even further by building the 

PES using Shepard interpolation. Based on   accurately calculated points (we call them 

“reference” points), we can approximate the potential energy at another point, R , using 

the Taylor series26,44 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1
( ) ( ) ( ) ( ) ( ) ( )( )

2

 

i i i i i i i

i

T V V V
=

 = + − ⋅∇ + − ⋅∇∇ − + 
 

R R R R R R R R R R ⋯ . (2.5) 

Due to different distances of the reference points from R , the Taylor series from 

each of these points makes a different contribution to ( )V R . If we model their 

contribution using a weight function ( ) ( )iω R , then the interpolated potential for point R  

is,                              

 ( ) ( )

1

( ) ( ) ( )
 

i i

i

V Tω
=

=∑R R R
∼

, (2.6) 

where ( ) ( )iT R  is the Taylor series expansion given in Eq.(2.5), and the weight function 

( ) ( )iω R  is a non-negative, normalized function. Normalization can be enforced by 
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It is well known that the asymptotic form of ( )iυ ( )R  should be 
( 1)( )-
n

i
− +

R R  if ( ) ( )iT R  

is truncated at the thn  order term. We use the following form, 
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where ( )i
kσ  is the trust radius of reference point i  in the thk  dimension. Rather than using 

the Bettens-Collins isotropic formula45 to calculate the trust radius, 
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we use the direction dependent formula of the form, 
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Given the interpolated potential value ( )V Rɶ , the error of the Shepard interpolant is 

estimated by, 

                

 
2

( ) ( )

1

( ) ( ) ( )
 

i i

i

err V Tω
=

 = − 
 

∑ R R R
∼

. (2.11)                              

If the estimated error given by Eq. (2.11) is less than the error threshold, we accept 

( )V R
∼

 as the potential for point R . If the error is too large, then we do not use the 

Shepard interpolant ( )V R
∼

, and instead we calculate the PES at this point using Gaussian.  

If we truncate the Taylor Series at higher order terms, we expect the accuracy of 

Shepard interpolation to be improved. Unfortunately, computing the higher-order 

derivatives is very expensive. Instead we use the interpolating moving least squares 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu       McMaster University – Department of Chemistry and Chemical Biology 

 

 

47 

method and the potential and gradient values from Gaussian calculation to fit the higher-

order derivatives.  

 

2.4.5 Interpolating Moving Least Square Method 

For the interpolated moving least square method, the basic equation we need to 

solve is26,44 

 min −
x

Ax b , (2.12) 

where x  is the vector of higher order derivatives at the point 
( )jX . For these equations 

we assume that the energy and the first-order derivatives are available at all calculated 

points. If we denote the set of M neighbour points for the jth point as ( )jQ then we can 

write the vector of known data b  in the form, 
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which has ( 1)d M+  elements. The unknown vector x  contains the derivatives of the 

potential with the redundant elements removed, 
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which has  
1

0

1
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n

i

d i
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=

+∏ elements. The matrix A  takes the form, 
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At order n  each point contributes 1d +  elements to Eq.(2.13), so there needs to be 

at least 
1

0

1
( )

( 1) !

n

i

d i
d n

−

=

+
+ ∏  points available to solve for x .  
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2.4.6 FMM program 

To apply FMM to real chemical systems, we need to interface FMM with a 

quantum chemistry package to computer the potential energy. In this section, we will 

discuss how FMM is interfaced to the Gaussian quantum chemistry program. 

 

A. Setup, Definitions, and *otation 

i. Define the grid space 

Given a chemical reaction, the first step is to determine the dimensionality of the 

PES that will be used in Eq. (2.3) of the FMM program. To minimize the computational 

cost, we use a reduced PES by choosing a few key coordinates that are essential for 

describing the reaction coordinate. The dimension of reduced PES is the number of key 

coordinates. We denote it as d . We also need to decide the minimum and maximum 

values of all key coordinates, so that we can limit our calculation to the region of the PES 

that we are interested in.   

ii. Categorize the grid points 

The wavefront starts from a point (usually the reactant) and propagates outward. 

We need to categorize the grid points inside (evaluated) and outside (unevaluated) of the 

wavefront and points on the wavefront (being evaluated). 

“alive” points: points inside the wavefront. The energy cost values of the alive 

points have been evaluated and will not change any more.  
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“near” points: points on the wavefront. These points are under evaluation and their 

energy cost values are temporary. The energy cost of these points will be updated 

whenever the cost of one of their neighbouring points changes.  

“far” points: points outside of the wavefront. These points will not be evaluated 

until the wavefront moves close. The energy cost values of all far points are assigned as 

infinity.  

 

B. Initialize the calculation 

i. Tag all points as far, and set their energy cost values as infinity.  

ii. Call Gaussian to compute the potential energy and gradient of the starting point. Set 

the energy cost of the starting point to zero and tag it as alive. 

iii. Tag the 2d  neighbouring points of this first alive point as near and add them to the 

heap. Call Gaussian to compute the potential energy and potential energy gradient of 

each near point, and calculate the energy cost by solving the discretized eikonal 

equation, Eq. (2.3). Update the heap according to the updated energy cost values, so 

that the point with minimum energy cost value is at the top of the heap.  

iv. Initialize the Shepard interpolation. We call these Gaussian points “reference points” 

because they will be used to approximate the potential values of nearby points. For 

each reference point, we need a neighbour list. This neighbour list contains M  

points that are used to determine the trust radius of Shepard interpolation weights and 

to calculate higher-order derivatives by using interpolated moving least squares. 
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Once we have a new Gaussian point, we compare its distance to the existing 

reference points. If it lies within an acceptable distance of a reference point, then we 

add it to the neighbour list of this reference point.  

 

C. Updating the heap 

i. Tag the top point of the heap as alive, and tag its far neighbouring point(s) as near. 

Add them to the heap.  

ii. For each of these new near points, call Shepard interpolation to approximate the 

potential energy. If the estimated error is acceptable, then use the potential energy 

from the Shepard interpolant. If the estimated error is over the error threshold, call 

Gaussian to compute the potential energy and gradient. Use the potential energy to 

compute the energy cost and then update the heap.  

iii. Repeat the above steps (i) and (ii) until the product is found or another stopping 

criterion is met.  

 

D. Backtracing from the ending point to the starting point on the energy cost 

surface 

Due to the causality condition of the eikonal equation, as the wavefront moves 

outwards the energy cost will always increase, which ensures that the energy cost surface 

is a one-well conical surface. The starting point is at the bottom. So a simple steepest 
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descent path from the ending point to the starting point on the energy cost surface will 

give the MEP. In our program this is done with Euler integration26,46, 

  1

( )

( )
k

k k

k

U R
R R h

U R
+

∇
= −

∇
,                                                (2.16) 

where, for simplicity, we use a fixed step size 
20

d
h =

R
. To compute the energy cost and 

gradient at point R , we can use its 2d  nearest neighbour grid points to form a linear set 

of equations, 

 
1

( ) ( )
d

q i q

i

U b a
=

= + −∑R R R , (2.17) 

where ( )U∇ =R a , ( )U b=R , 1...2dq =  and qR  are the coordinates of the nearest 

neighbour grid points.  Since the energy cost at the neighbour grid points ( )qU R  are 

known, the energy cost and gradient values at point R  can be fitted by solving this linear 

set of equations.  

 

2.4.7 Application 

Our FMM program is interfaced with Gaussian 03.31 All Gaussian calculations 

were done using density-functional theory (BhandhLYP/6-311++G**). 

A. The 4-well analytical PES 

The 4-well PES is defined by the following analytical function28, 
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=

= + −∑ ,                   (2.18) 

where all parameters are listed in the following table: 

 

Table 2. 1 Parameters for the 4-well analytical PES 

Parameters Values Parameters Values Parameters Values 

0V  5.0 kcal/mol 
1p  0.3 Å-2 

1α  1.3 Å 

0a  0.6 kcal/mol 
2p  1.0 Å-2 2α  -1.5 Å 

1a  3.0 kcal/mol 
3p  0.4 Å-2 3α  1.4 Å 

2a  1.5 kcal/mol 
4p  1.0 Å-2 4α  -1.3 Å 

3a  3.2 kcal/mol 
1q  0.4 Å-2 1β  -1.6 Å 

4a  2.0 kcal/mol 
2q  1.0 Å-2 2β  -1.7 Å 

1b  0.1 Å 3q  1.0 Å-2 3β  1.8 Å 

2b  0.1 Å 4q  0.1 Å-2 4β  1.23 Å 

 

 

The 4-well PES is a standard test system for the FMM. There are four minima on 

this PES, and four transition states between each pair of minima. If we choose the 

minimum at the bottom right (R) as the reactant and the one at the top right (P) as the 

product, then there are two possible pathways: (a) the “direct” 1-step pathway, and (b) the 

“C-shaped” 3-step pathway passing through by two intermediates (I and II) and three 
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transition states (TS1, TS2 and TS3) as shown in Figure 2. 2. Starting from the reactant, 

we imagine the FMM procedure as slowly adding water to the reactant valley33; the 

“water” level can be considered as the propagating wavefront. The water level will keep 

going up, wetting the contours of the potential energy surface as it does so. Eventually the 

water level will rise to the level of the lowest-energy TS, which is the lowest “mountain 

pass” for exiting the reactant valley. At this stage a narrow thread of water will follow the 

steepest-descent path to the bottom of the next valley. The water keeps flooding mountain 

valleys in this way until the product is found. In FMM, the “energy cost” contours record 

which portions of the PES are “flooded” at any given point in time (see Figure 2. 3). 

Notice that only the “flooded” portion of the surface needs to be computed. This reduces 

the computational cost significantly. 

The lower energy region of the PES in Figure 2. 2 is transformed into an energy 

cost surface in Figure 2. 3, and higher energy part is cut off. Backtracing from the product 

to the reactant along the steepest descent path gives the MEP.   
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Figure 2. 2: The MEP on the 4-well PES. The grid sizes on both dimensions are 
0.05dR = .  
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Figure 2. 3: The MEP on the energy cost surface transformed from the 4-well PES 
by solving the eikonal equation. The MEP is determined by backtracing from the 
product to the reactant along the steepest descent path on the energy cost surface.  
 

 

B. The S*2 Reaction33 

The mechanism of the SN2 reaction has been studied intensively by experimental 

and theoretical methods, so it is a good test for FMM. Equation (2.19) is an example of 

the SN2 reaction. This is a one-step reaction, so we expect two minima (the reactant R 

and product P) and one TS on the PES.  
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(2.19)                                                         

 

 

In this reaction, only C-F and C-Cl bonds are involved in bond-breaking and bond-

forming, so the PES of this reaction can be modelled using a 2-dimensional reduced PES 

based on the C-F and C-Cl coordinates. At each grid point, we will freeze the C-F and C-

Cl bond lengths at the given values and minimize the energy with respect to the other 

coordinates. The 2-dimensional reduced PES and the MEP computed by the FMM 

program are depicted in Figure 2. 4. About 20% of grid points are in the “flooded” region 

and are computed by Gaussian 03. The energy-cost surface with the reactant (R) as 

starting point and the MEP found on this surface are shown in Figure 2. 5.  Plotting the 

change in potential energy along the MEP gives the energy profile of the reaction 

coordinate (Figure 2. 6).   
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Figure 2. 4: The PES of the S*2 reaction based on C-F and C-Cl bond lengths. The 
grid sizes on both dimensions are dR = 0.01 Å. The calculation starts from the 
reactant (R), fills the reactant valley, breaches the reaction barrier at the transition 
state (TS), and then “flows” down to the product (P). The FMM program 
transforms this PES to an energy-cost surface (Figure 2.5).  
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Figure 2. 5: The energy-cost surface transformed from the PES on Figure 2. 1. The 
MEP is determined by backtracing from the product to the reactant along the 
steepest descent path on the energy-cost surface.  
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Figure 2. 6: The energy profile of the S*2 reaction. 
 

 

C. The dissociation of ionized O-methylhydroxylamine33 

The PES of 
[CH 5N O ]+ .

has been studied using mass spectroscopy and 

computational methods47. The following dissociation reaction has been observed, 

[CH 5N O ]+ .
[C H 2N H 2]+   + OH

.
                     (2.20) 
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Terlouw and coworkers proposed the following mechanism for this dissociation 

reaction47,  

CH3 O NH2 [O NH2 CH3] HO NH2 CH2 HO NH2CH2[ ][ ]
      (2.21) 

Using bond lengths C-N, N-O and O-H as key coordinates, FMM finds a reduced 3-

dimensional PES. The 3-dimensional equipotential surfaces have onion-like structures. 

Each layer of the “onion” represents a certain value of the potential energy. Figure 2.7 

shows one layer of the “onion” with a potential value of -170.534 Hartrees. The cores of 

the onions represent minima on the PES. We can see that there are 4 minima on this PES, 

the reactant (R), two intermediates (I, II), and the product (P). The coordinates of the 

minima show that the structures of intermediate (I) and (II) coincide with 
O NH2 CH3  

and 
HO NH2 CH2  respectively. The energy profile is shown in Figure 2.8. The FMM 

calculation confirms that the mechanism in (2.21) is the minimum energy reaction 

pathway.  
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Figure 2. 7: The isosurface with a potential value of -170.534 Hartrees, which is one 
layer of the reduced 3-dimensional PES for the dissociation reaction of ionized O-
methylhydroxylamine. The 3-dimensional equipotential surfaces have an onion-like 
structure. Each layer of the “onion” represents a certain value of the potential 
energy. The cores of the “onions” are minima on the PES. 
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Figure 2. 8: The energy profile of the dissociation reaction of ionized O- 
methylhydroxylamine. 
 

2.5 Quantum Mechanics/Molecular Mechanics (QM/MM) methods applied to 
Enzyme-catalyzed reactions 

2.5.1 QM/MM Methods 

Enzyme-catalyzed reactions are of great importance in the biological sciences and 

pharmaceutical industry because of their efficiency and specificity. Using computational 
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tools to study the mechanism of enzyme-catalyzed reactions is one of our ultimate goals. 

Even with the advances of modern computers and new computational methods, studying 

the mechanism of enzyme-catalyzed reactions is still a great challenge due to the large 

size of the enzyme system. QM methods are accurate but expensive, and so are generally 

limited to systems of less than 100 atoms. For enzyme-catalyzed reactions that involve 

thousands of atoms, it is impossible to apply QM methods to the entire system. To deal 

with larger systems molecular mechanics is commonly employed. The accuracy of MM 

methods can be poor and it is unsuitable for studying bond-breaking and bond-forming 

processes in chemical reactions.  

In a typical enzyme-catalyzed reaction, only a small number of atoms are involved 

directly in the bond-breaking and bond-forming processes; the primary role of the other 

atoms is to provide a favourable steric and electrostatic environment. This realization led 

Warshel and Levitt to propose the hybrid QM/MM approach48,49. In QM/MM the enzyme 

reaction system is divided into two parts: the atoms that are directly involved in the 

reaction are evaluated quantum mechanically, while the rest of the atoms are treated with 

MM methods. This approach combines the advantages of the high accuracy of QM 

methods for the small QM subsystem, and the computational affordability of MM 

methods for the remainder of the molecules (see Figure 2. 9). After three decades of 

development, QM/MM methods have been successfully applied in simulations of various 

enzyme-catalyzed reactions50-60.  
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Figure 2. 9: The QM subsystem (the substrates, part of residue αArginine8, 
αArginine11, αGlutamine52, and βProline123) and MM subsystem (the rest of the 
system) of the dechlorination of trans-3-chloroacrylate catalyzed by trans-3-
ChloroAcrylic Acid Dehalogenase (CAAD).69 

 

One important problem associated with QM/MM methods is how to deal with the 

QM and MM covalent boundary. The link atom approach is one of the most commonly 

used methods61-64. In the link atom approach, link atoms like hydrogen or pseudohalogen 

atoms are inserted to cover the free valence of the QM subsystem so that the QM 

αArg8 
αArg11 

βPro123 

αGlu52 
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subsystem will still be a closed-shell system. The problem with the link atom approach is 

that it introduces additional degrees of freedom and some double counting of the 

interactions into the system, which can be difficult to correct for. Due to the deficiency of 

the link atom approach, in the following discussion we will focus our attention on the 

pseudobond QM/MM method developed by Yang’s group57,58,60. The pseudobond 

approach does not introduce additional atoms to the system. Instead this approach 

replaces the MM boundary atom with a seven-valence-electron atom with an effective 

core potential and forms a pseudobond between this atom and the QM boundary atom61,62. 

The pseudobond approach gives a smooth interface between the QM and MM subsystems 

and provides a consistent and well-defined ab initio QM/MM potential energy surface.  

QM/MM methods can be categorized into two types: the semiempirical QM/MM 

methods and the ab initio QM/MM methods depending on the level of QM theory used. 

Semiempirical QM/MM methods are much faster computationally so that classical 

statistical sampling can be applied. But semiempirical QM/MM methods are often not 

sufficiently accurate to give reliable free energies65. Ab initio QM/MM methods are 

accurate but expensive, so reaction path ensemble sampling is not feasible. The QM/MM 

Free-Energy Perturbation (QM/MM-FEP) method developed by Yang’s group utilizes the 

pseudobond approach to form a smooth interface between QM and MM subsystems, then 

applies an efficient, iterative optimization procedure59,66 to optimize the QM and MM 

subsystems of a given conformation independently and iteratively until convergence. 

Incorporated with a reaction path optimization method3,8,13,66,67, the reaction path can be 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu       McMaster University – Department of Chemistry and Chemical Biology 

 

 

67 

found on the PES. The last step is to perform free-energy perturbation calculations on the 

reaction path to give the free-energy profile of the reaction. The problem with the 

QM/MM-FEP method is that the optimization of the reaction path depends on the PES of 

a single MM conformation54. To eliminate this dependence one can instead do a direct 

path optimization on the free energy surface.  

The most recent QM/MM minimum free-energy path (QM/MM-MFEP) method54,56 

is one of the more efficient and reliable ab initio QM/MM methods. Unlike other ab 

initio QM/MM methods, the free energy profile obtained in the QM/MM-MFEP method 

is not built from a previously sampled PES of a random chosen initial conformation of 

the system, instead it is generated naturally because the reaction path is optimized on the 

potential of mean force (PMF) surface, which is the free energy expression of the QM 

subsystem with the MM contributions averaged out. Thus, the problem of finding the 

reaction path in a complicated phase space with the same number of degrees of freedom 

of the entire QM/MM system is simplified to a problem of exploring the PMF surface 

depending on just the QM degrees of freedom54.  

 

2.5.2 Incorporating the QM/MM-MFEP Methods with FMM 

QM/MM-MFEP methods54,56 have been incorporated with several path optimization 

methods, such as NEB3, the Ayala-Schlegel second-order MEP method67, and QSM13. 

All these methods aim to find the local MEP of the enzyme reaction. To ensure the 
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convergence to the global MEP, we can implement the QM/MM-MFEP methods with 

FMM.  

To carry out reaction path optimization on the PMF surface, the relative free 

energies between adjacent QM conformations and free-energy gradients for each 

individual QM conformation need to be computed54. The relative free energies between 

adjacent QM conformations are computed by the QM/MM-FEP method. The free energy 

difference is defined as56, 

( ) ( ) ( )

1

1 1
( ) ln[ exp{ [ ( , ( )) ( ( ))]}]

 
n n n

QM ref QM MM ref MMA A r A E E
 τ

β τ τ
β =

∆ = − = − − −∑ r r r             (2.22) 

where an MD simulation is performed on the MM subsystem with the QM conformation 

frozen. Then FMM is performed within a trust radius using the same MD ensemble. 

Outside of this trust radius the FMM algorithm can continue only when a new MD 

simulation is performed with a new QM conformation. 

The free-energy gradients of the QM subsystem are computed through molecular 

dynamics sampling of the MM environment. The free-energy gradient associated with Eq. 

(2.22) is computed as56, 

( ) ( )

1

( ) ( )

1

( , )1
exp{ [ ( , ( )) ( ( ))]}

( )

1
exp{ [ ( , ( )) ( ( ))]}
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QM MM ref MM

QMQM

 
n nQM
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E
E E
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E E
 

τ

τ

β τ τ

β τ τ

=

=

 ∂
− −  ∂∂  =

∂ − −

∑

∑

r r
r r r

rr

r
r r r

                (2.23) 

The rest of the FMM algorithm is the same as in Section 3.  
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2.5.3 Application of the incorporated FMM and QM/MM-MFEP method to enzyme-

catalyzed reactions 

Using FMM as the path optimization algorithm, the QM/MM-MFEP method can be 

applied to find the global MEP for solution-phase reactions and enzyme-catalyzed 

reactions. Below we will present a representative sample of the applications we are 

currently pursuing using this new methodology. 

 

A. The S*2 Reaction in solvent 

The solvent SN2 Reaction is a good test for the incorporated FMM and QM/MM-

MFEP method. This reaction has been studied intensively by experimental and theoretical 

methods. So there is plenty of data to compare with.  

Because of the rapid exchange of solvent molecules, QM/MM methods that depend 

on the initial conformation of the system cannot give reliable results because the initial 

conformation does not reflect the rapid change of solvent. Since the QM/MM-MFEP 

method eliminates this dependence, we expect better results for this solvent reaction. 

 

B. The isomerization reaction catalyzed by 4-oxalocrotonate tautomerase (4-

OT)51,68 
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The mechanism of this reaction has been studied using the QM/MM-FEP method. 

The incorporated FMM and QM/MM-MFEP method can confirm whether the reaction 

path is a global MEP.  

CO2

CO2

H H

H

H O

CO2

O

CO2

CO2

H H

H
OH

CO2

CO2

H

O

H

CO2

H
H

H

(2.24) 

 

C. The dechlorination reaction catalyzed by trans-3-chloroacrylic acid 

dehalogenase (CAAD)  

3-chloroacrylic acid is an unnatural substance degraded from the active ingredient 

of the nematocides Shell D-D and Telone II. Its uncatalyzed half life is about 10,000 

years69. While catalyzed by CAAD, this hydrolytic dechlorination reaction proceeds with 

a rate enhancement of 122 10× . The X-ray structure of trans-3-chloroacrylic acid 

dehalogenase gives some hint on the mechanism of the dechlorination reaction of trans-3-

chloroacrylic acid70. We are planning to apply the incorporated FMM and QM/MM-

MFEP method to study the mechanism of this reaction (as shown in Equation (2.25)).  
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(2.25) 

 

2.6 Summary 

In this chapter, we gave a brief review of some numerical methods that locate the 

MEP on the PES or free energy surface. We focused on the FMM, which is one of the 

most general and reliable methods for finding the chemical reaction path. Unlike most 

competing methods, FMM always finds the global MEP. Some proof-of-principle 

examples of applying FMM to small gas phase reactions were shown in Section 3. Most 

reactions are more complicated than this. Our ultimate goal is to study the mechanism of 

more realistic systems such as those solution phase or enzyme-catalyzed reactions. To 

deal with the effects of the complicated molecular environment, QM/MM methods were 

introduced. A brief history of the development of QM/MM methods was given in Section 

4, followed by the key ideas required to merge FMM with the recent QM/MM potential 

of mean force-based free energy path finding methods. The combination of QM/MM 

methods with FMM is a promising approach for determining chemical reaction 

mechanisms in complex reaction systems.  
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Chapter 3: 

Finding Minimum Energy Reaction Paths on Ab Initio Potential 

Energy Surfaces Using the Fast Marching Method* 

 

 

 

 

 

 

 

 

 

 

 

 

* This chapter is accepted for publication by J. Math. Chem.: Yuli Liu; Paul W.Ayers Finding 
Minimum Energy Reaction Paths on Ab Initio Potential Energy Surfaces Using the Fast marching 
Method.  
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3.1 Statement of the Problem 

This chapter presents the fast marching method (FMM) for determining minimum-

cost paths. FMM has been extended to compute the minimum-energy reaction 

coordinates in chemical reactions. This was accomplished by building an interface 

between FMM and the Gaussian program. We demonstrate the new method using an SN2 

reaction, the isomerization of HSCN to HNCS, and a gas-phase rearrangement reaction of 

relevance in mass spectrometry.  Some of these example reactions have also been used in 

chapter 2.  

Both chapter 2 and chapter 3 present the fast marching method. Chapter 2 focuses on 

the improvement and numerical details of FMM and its advantages compared to other 

path-finding methods. Chapter 3 focuses on the basic idea and concept of FMM and the 

extension of its application from analytical PES to real chemical reactions.   

 

3.2 Introduction 

The multidimensional potential energy surface (PES) of a molecular system contains 

important information about the geometries and relative energies of its locally stable 

structures, as well as the reaction paths between them. When the reactants and products 

are known, the chemical reaction coordinate is often associated with the minimum energy 

path (MEP) connecting the reactant to the product. Once the MEP has been found, one 

knows the reaction mechanism, which is ordinarily characterized in terms of the local 
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energy minima (reactive intermediates) and energy maxima (transition states) along the 

reaction path. One can also use the MEP to estimate the rate of reaction (using transition 

state theory).   

Unfortunately, finding the minimum-energy reaction path is generally difficult.  For 

simple reactions or reactions in which abundant experimental information is available 

beforehand, one can often make a “good guess” for the reaction path and then refine it 

using a method like the nudged elastic band[1-4] or the quadratic string method[5-8].  In 

other cases, one can profitably use methods like coordinate driving[9], eigenvector-

following techniques[10-13], or synchronous transit-guided Quasi-Newton[14,15] to 

locate the transition state; the ordinary intrinsic-reaction coordinate (IRC) algorithm[16-

19] then suffices to find the minimum energy path.  This approach, however, does not 

work for multi-step reaction mechanisms.  While two-point methods like the quadratic 

string method are perfectly valid even for complex multi-step reaction mechanisms, 

finding a “good guess” for the reaction path becomes exponentially more difficult as the 

complexity of the reaction mechanism increases.  We would like to have a more robust 

way to determine reaction paths for complex reaction mechanisms. 

Recently, we have proposed adapting the fast-marching method (FMM) to determine 

minimum-energy reaction paths in complex multi-step reactions[20-25]. The fast-

marching method is a numerical scheme for solving the nonlinear eikonal equation and 

related static Hamilton-Jacobi equations[26-29]. By defining an energy-cost function 

between the reactant and any other point, the fast marching method can transform the 
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potential energy surface (PES) or free energy surface to an energy-cost surface. Unlike 

the multi-well PES, the energy-cost surface is a conical surface with a single minimum 

(the starting point, which is ordinarily either the reactant or the product of the chemical 

reaction). Moreover, given any molecular configuration, the minimum energy path is 

simply located by finding the steepest-descent path on the energy-cost surface. The 

process of finding this steepest-descent path is called backtracing. 

In previous work, we applied the FMM method to some analytical two-dimensional 

potential energy surfaces.[22] Those results were quite favorable, so we elected to extend 

the method to higher-dimensional PES and interface the method with an electronic 

structure theory program, so that we could explore reactions for which analytical PES are 

unavailable.  This paper reports our efforts in these directions.  We have also worked on 

developing interpolation methods to reduce the number of quantum chemistry 

calculations that are needed to model the potential energy surface; those results have been 

reported separately.[24,30] 

In the next section of this paper, we will briefly review the FMM methodology.  Then 

we will present applications to three chemical reactions, of increasing complexity. We 

conclude with some comments on the extensions and improvements that we are currently 

pursuing. 

 

3.3 The Fast-Marching Method 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu        McMaster University – Department of Chemistry and Chemical Biology 

 

79 

 We define the cost function at R  as the “minimum cost” required to attain this 

configuration starting from configuration 0R :[22]  

 
( )

� { }
,0

0
( ) min 2( ( ( )))

nL

n

s

U E V s ds= −∫
R RC

R C . (3.1) 

Here the minimization is over all paths, ( )
0 , sR RC , that start at 0R  and end at R , E is the 

total energy of the system, ( )V R  is the potential energy surface, and L is the path length.  

(So ( )
0 , 00 =R RC R  and ( )

0 , L =R RC R .) The path integral problem, (2.1), can be 

conveniently restated as an eikonal equation, namely, 

 { } 

( ) 2( ( ))
n

nU E V∇ = −R R  (3.2) 

The energy-cost of the reactant is zero by definition ( 0( ) 0U =R ); this is the boundary 

condition for the eikonal equation.  

This eikonal equation describes wavefront propagation with the local speed 

function

{ }
1

2( ( ))
n

E V− R
. To locate the MEP, we need the cost of molecular 

configurations with higher potential energy to be infinitely larger than the cost of 

configurations with lower potential energy.  (Equivalently, we need for configurations 

that are lower in energy to be attained infinitely faster than configurations that are higher 

in energy.) This can be achieved by letting n →−∞ , which ensures that higher energy 

paths in equation (3.1) are cut off from the set of paths (
0 ,CR R ), giving only the MEP. Of 
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course, in computational implementations we will choose n  to be a sizeable (but non-

infinite) negative number.  In practice, it seems that results are usually good as soon as n  

is less than minus ten.  

Solving this eikonal equation transforms a multi-well potential energy surface, ( )V R , 

into a conical energy-cost surface ( )U R . Information about the fast-marching scheme for 

the 2-dimensional eikonal equation can be found in references [22,23]. Our previous 

implementation required a complete PES scan in advance, which is very expensive and 

tends to fail at some regions (e.g., maxima on the PES). In order to apply the fast 

marching method to arbitrary dimensional PES of chemical reactions, we need two key 

innovations:  first we need an improved upwind derivative formula so that we can solve 

the d-dimensional eikonal equation. Second we need to interface the fast-marching 

program with a quantum chemistry package (we are using Gaussian 03) so that the 

potential energy can be computed at molecular configurations of interest. The new FMM 

program doesn’t compute the complete PES; instead it will push the advancing wavefront 

outward along the equipotential contours and call Gaussian 03 to calculate the potentials 

of the points on the front. The energy-cost values are then computed by solving the 

eikonal equation (3.2). 

We need to solve the eikonal equation using an upwind finite difference 

approximation, which will preserve the causality of the solutions. To do this, we 

discretize the eikonal equation as follows: 
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 [ ]
22 2

1 2 ( )( ) ( )
2( ( ))

(1) (2) ( )

n
dU aU a U a

E V
dR dR dR d

++ +      −− −
+ + + = −    

     
R⋯  (3.3) 

Here ( )dR i  is the thi  component of the grid size vector dR ; ia  is the smaller cost value 

of point ' sR  two neighbouring points in dimension i , min( , )i left righta U U= ; 

( ) ( )i iU a U a+− = −  if iU a>  and ( ) 0iU a +− =  otherwise. (That is, 

( ) max(0, )i iU a U a+− = − .) The “upwind finite difference,” ( )iU a +− , enforces the 

causality condition in the fast marching method, which means the cost can only increase 

while the interface moves outward. In other words, for the point in question, its unknown 

cost value U  has to be greater than the cost value, 
ia , of its known neighbouring point; if 

ia U> , then the cost value of this neighbouring point must not be known either. We can 

not use an unknown point, so we discard it by letting ( ) 0iU a +− = . This is the idea 

behind the upwind finite difference approximation. 

Equation (3.3) can be solved in an iterative way. First the 'ia s  are sorted in 

increasing order. Start from 1j =  and solve the truncated equation: 

 [ ]
2

1( )
2( ( ))

(1)

nU a
E V

dR

+ −
= − 

 
R  (3.4) 

If the solution 1 2U a≤ , then 1 3 dU a a≤ ≤ ≤⋯  and 1U U=  is also the solution to equation 

(3.3). If 1 2U a> , then let j = j + 1, and continue to solve the truncated equation with 2 
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terms on the left side. This process is repeated until we find the thj solution 1j jU a +≤ , 

1 j d≤ ≤ . jU U=  is the solution to equation (3.3).[29]  

After computing the energy-cost values of all points on the interface, the heapsort 

technique is used to sort these values to find the point with minimum cost (thus the 

maximum local speed). The FMM program then accepts this point and calls Gaussian 03 

to compute the potentials at any neighboring points where the potential is unknown.  

The FMM loop is then repeated, and the set of points for which the energy cost, 
jU , 

is known systematically expands until the product is found.  

Conceptually, we imagine slowly adding water to the reactant valley; the “water” 

level will keep going up, wetting the contours of the potential energy surface as it does so. 

Eventually the water level will rise to the level of the lowest-energy transition state, 

which is the lowest “mountain pass” for exiting the reactant valley. At this stage a narrow 

thread of water will follow the steepest-descent path to the bottom of the next valley. This 

process is mimicked by the FMM procedure. In FMM, the “energy cost” contours to 

record which portions of the potential energy surface are “flooded” at any given point in 

time.  

 Notice that only the “flooded” portion of the surface needs to be computed. This 

reduces the computational cost significantly. Moreover, the method is amenable to 

parallel computation: since the “beach” where the water meets the land expands in many 
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directions at once, many different potential energy calculations can be performed 

simultaneously.   

 

3.4 Applications 

To demonstrate our revised and extended FMM program, we will give some 

examples using a reduced 2-dimensional PES. Our FMM program is interfaced with 

Gaussian 03.[31] All Gaussian calculations were done using density-functional theory 

(BhandhLYP/6-311++G**).[32-36]  The “half and half” hybrid functional has less self-

interaction error than the more popular hybrid functionals (like B3LYP).  This is believed 

to be important for modeling the transition state structures where the exchange-

correlation hole is delocalized.[37-40] (The SN2 reaction is a classic example of such a 

transition state.) 

 

3.4.1 The S*2 reaction 

The mechanism of the SN2 reaction has been studied intensively by experimental and 

theoretical methods, so it is a good test for our method. This is a one-step reaction, so we 

expect two minima (the reactant R and product P) and one transition state (TS) on the 

PES.  
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  (3.5) 

 
In this reaction, only C-F and C-Cl bonds are involved in bond-breaking and bond-

forming, so the PES of this reaction can be modelled using a 2-dimensional reduced 

potential energy surface based on the C-F and C-Cl coordinates.[41] At each grid point, 

we will freeze the C-F and C-Cl bond length at the given values and minimize the energy 

with respect to the other coordinates. The 2-dimensional reduced PES and the MEP 

computed by the FMM program are depicted in Figure 3. 1. About 20% of grid points are 

in the “flooded” region and are computed by Gaussian 03. The energy-cost surface with 

the reactant (R) as starting point and the MEP found on this surface are shown in Figure 3. 

2.  Plotting the change in potential energy along the MEP gives the energy profile of the 

reaction coordinate (Figure 3. 3).   

F   C
H

H

H

ClC

H
H

H

F Cl C

H H

H

ClF   

 
 

               (R)                                       (TS)                                   (P) 

 
 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu        McMaster University – Department of Chemistry and Chemical Biology 

 

85 

 

 

 
Figure 3. 1: The Potential Energy Surface of the S*2 reaction based on C-F and C-
Cl bond lengths. The grid sizes on both dimensions are dR = 0.01 Å. The calculation 
starts from the reactant (R), fills the reactant valley, breaches the reaction barrier at 
the transition state (TS), and then “flows” down to the product (P). The FMM 
program transforms this PES to an energy-cost surface (Figure 3. 2).  
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Figure 3. 2: The energy-cost surface transformed from the PES on Figure 3. 1. The 
MEP is determined by backtracing from the product to the reactant along the 
steepest descent path on the energy-cost surface.  
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Figure 3. 3: The energy profile of the S*2 reaction in Figure 3.1. 
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3.4.2 The isomerization of HSC* to H*CS 

Wierzejewska and Moc reported 9 isomers of HSCN.[42] For the isomerization 

reaction of HSCN to HNCS, they proposed two competitive mechanisms. The first one is 

a one-step mechanism,  

 

 

  (3.6) 

 
The second mechanism is a two-step mechanism with a ring structure intermediate,  

 

 
 

   

  (3.7) 

According to Wierzejewska and Moc,[42] the first mechanism has the lower energy 

barrier. We will test this conclusion using the FMM program. The H-S and H-N bond 

lengths are chosen as the key coordinates. Figure 3. 4 shows the reduced 2-dimensional 

PES based on these two key coordinates and the MEP found on the energy-cost surface. 

The results are similar to those from previous studies, but the FMM program only 

computes about 30% of the grid points.  

The energy profile of the reaction coordinate is shown in Figure 3. 5.  

H

S C
N

H
N C S

H

S
C

N

 
 

H

S C
N

H
N C S

H

S C

N

 

 

TS1 TS2 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu        McMaster University – Department of Chemistry and Chemical Biology 

 

89 

 

 

 

 

Figure 3. 4: The reduced 2-dimensional PES for the isomerization of HSC* to 
H*CS, based on H-S and H-* bond lengths.  
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Figure 3. 5: The energy profile for the isomerization of HSC* to H*CS.  
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3.4.3 The dissociation of ionized O-methylhydroxylamine 

One strength of the FMM approach is that it can be applied to any number of 

dimensions. The cost, of course, will grow exponentially with increasing dimensionality 

because of the increasing number of stationary points on the potential energy surface, and 

the results become increasing difficult to visualize as dimensionality increases.[43] As a 

simple example that is neither too expensive nor too difficult to visualize, we consider the 

dissociation of [ ]5CH NO
+•

. 

The PES of [ ]5CH NO
+•

 has been studied using mass spectrometry and theoretical 

methods.[44] The following dissociation reaction has been observed, 

 [ ] [ ]5 2 2CH NO CH NH OH
+• + •→ +  (3.8) 

and the mechanism proposed for this dissociation reaction is [44] 

 3 2 2 3 2 2 2 2CH O NH O N H CH H O NH C H H O  +  NH C H
+ + +• • •+•− − → − − → − − →  (3.9) 

We selected the bond lengths C-N, N-O and O-H as the key coordinates, then 

performed FMM on the 3-dimensional reduced PES defined by these points. The 3-

dimensional equi-potential surfaces have onion-like structures. Each layer of the “onion” 

represents a certain value of the potential energy. Figure 3. 6 shows one layer of the 

“onion” with a potential value of -170.534 Hartrees. The cores of onions represent 

minima on the PES. We can see that there are 4 minima on this PES, the reactant (R), two 

intermediates (I, II), and the product (P). By examining the structures obtained, we 
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deduce that intermediate (I) and (II) coincide with 2 3O N H CH
+•

− −  and 2 2H O NH C H
+•

− − , 

respectively. The FMM calculation confirms that the mechanism in (3.9) is the minimum 

energy reaction pathway.  

Figure 3. 7 shows the energy profile along the dissociation pathway in Rxn (3.9). This 

sort of several-step reaction is very difficult for most reaction-path methods, but FMM 

works just as well for this reaction as it does for the much simpler isomerization of 

HSCN.  
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Figure 3. 6: The isosurface with a potential value of -170.534 Hartrees, which is one 
layer of the reduced 3-dimensional PES for the dissociation reaction of ionized O-
methylhydroxylamine. The 3-dimensional equi-potential surfaces have an onion-like 
structure. Each layer of the “onion” represents a certain value of the potential 
energy. The cores of the “onions” are minima on the PES.  
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Figure 3. 7: The energy profile of the dissociation reaction of ionized O-
methylhydroxylamine. 
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3.5 Conclusion 

The fast marching method (FMM) is a very general method for finding the minimum 

energy path (MEP). Without any information about the mechanism in advance, it can find 

the minimum energy reaction path linking the reactant and any other point on the 

potential energy surface (PES). Due to its reliable and unbiased nature, the fast marching 

method can find the minimum energy path for any kind of chemical reactions. However, 

the computation cost of FMM is relatively high because a significant portion of the 

potential energy surface has to be computed in order to rigorously determine the MEP.  

This is especially true for 3 or higher dimensional PES.   

The computation of points on the potential energy surface is several orders of 

magnitude more costly than solving the eikonal equation or performing the heap sort. 

Thus, before we make routine applications to higher-dimensional PES and more 

complicated molecules, we need to reduce the number of potential-energy computations 

that are required. Using a combination of moving-least-squares[45-49] and Shepard 

interpolation[50,51] reduces the number of potential energy computations that are 

required.[24] We can also reduce the cost of this method by performing potential energy 

computations all along the expanding front concurrently, with each point on the 

expanding front assigned to a different processor, and/or by parallelizing the constrained 

geometry optimizations that are needed to construct the reduced potential energy 

surfaces.[52]  It is also useful to run the fast-marching method on a relatively course grid, 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu        McMaster University – Department of Chemistry and Chemical Biology 

 

96 

and then refine the estimates of the geometries and energies of the transition states using 

conventional methods. (One such method, recently developed in our group, exploits the 

same “reduced potential energy” structure as the underlying FMM approach.[53]) Finally, 

in cases where the full reaction path is not needed, and it suffices to only characterize the 

preferred mechanism and the transition state of the rate-limiting step, dual grid methods 

like the boundary-low-path method may be preferred.[30]  
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Newton Trajectories for Finding Stationary Points on Molecular 

Potential Energy Surfaces* 
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4.1 Statement of the Problem 

This chapter presents a new algorithm for computing Newton trajectories based on 

the Quadratic String Method (QSM) and explains how this can be used to find key 

stationary points on the molecular potential energy surface (PES). This method starts by 

using the intersections of Newton trajectories to locate stationary points on the PES. 

These points could then be used to determine the minimum energy path. The new method, 

called QSM-NT, is shown to be efficient and reliable for both analytical potential energy 

surfaces and potential energy surfaces computed from quantum chemistry calculations. 

The advantages and pitfalls of this method for exploring PES are discussed. In particular, 

the problem of discontinuous Newton trajectories is elucidated. 

 

4.2 Introduction 

Finding a reaction path that connects the reactant to the product via transition states 

and key intermediates on the molecular potential energy surface (PES) is the key to 

obtaining both quantitative data and qualitative understanding of chemical reaction 

mechanisms. From the molecular structures along the path, the qualitative features (e.g., 

the sequence in which bonds fracture and form) of the chemical reaction are clear. From 

the energy of the transition state and the relative energies of the reactants and products, 

key quantitative information about chemical kinetics and equilibria may be computed. It 
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is unsurprising, then, that computational chemists continue to devise novel algorithms for 

finding chemical reaction paths.[1] This paper is yet another contribution along these 

lines.  

The distinguishing feature of this work is the focus on stationary points of the PES. 

Most of these methods focus on low-energy regions of the PES or directions on the PES 

with small force constants (large compliance). Chemically, however, the most important 

portions of PESs are the places where the gradient is zero: such stationary points are 

associated with reactants, products, intermediates, and transition states. Newton 

trajectories intersect at these locations, with the “density” of Newton trajectories being 

highest where the gradient of the potential energy is the smallest.[2-4] Using Newton 

trajectories to explore PESs, then, biases the search towards the most chemically relevant 

portions of the surface. This motivates the approach in this paper, where the quadratic 

string method[5] is used to compute Newton trajectories and the intersection of Newton 

trajectories is used to identify stationary points. 

 

4.3 Background 

4.3.1 Methods for Finding the Minimum Energy Path (MEP) 

Most work on finding chemical reaction paths has focussed on the minimum energy 

path (MEP). The MEP is typically obtained by taking the union of the steepest-descent 
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paths from the transition state structure(s) to the reactant and product (and intermediate) 

structures. With rare exceptions, the “intrinsic reaction coordinate” so defined is equal to 

the MEP.[6] 

There are generally two families of algorithms for finding the MEP: the surface-

walking algorithms (“initial value” formulations; [7-15]) and the two-end algorithms 

(“boundary value” formulations; [5,16-29]). The two end methods require a good guess 

for the path linking the reactant and the product; otherwise a local MEP instead of the 

global MEP will be found. The surface-walking methods only need the reactant 

configuration, and then predict the products and the mechanism. Some surface-walking 

methods, like the fast marching method [8,9,12,30-34], guarantee that the global MEP 

will be found. Unfortunately, surface-walking algorithms usually are either very 

expensive or, if a heuristic is used to simplify the construction, they tend to be 

unreliable[24] for complicated systems. The two-end methods have great advantages in 

terms of computation costs and numerical stability.  

The most efficient two-end methods include the string method (SM; [17,23]) and 

some improved string methods, such as the quadratic string method (QSM; [5]) and the 

growing string method (GSM; [24,35,36]). The string method divides the initial path into 

a certain number of nodes, then drives the nodes towards the MEP by a normal force 

along the corresponding hypersurface orthogonal to the path tangent at the node, 

reparameterizing the approximate path so that the nodes will be spaced evenly along the 
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path. The quadratic string method uses the local quadratic approximation for the 

hypersurfaces to reduce the number of calculations on the potential and gradient, which 

makes it more efficient and affordable for larger systems. Conceptually, string methods 

can be imagined as what would occur if one draped a pearl necklace over the PES; the 

pearls (nodes) would slip towards lower potential energy, but remain evenly spaced 

between reactant and product.  

 

4.3.2 The *ewton Trajectory (*T) 

While the MEP is almost universally used to represent the reaction path, an 

alternative reaction path called the Newton trajectory (NT) has been proposed and 

explored by Quapp and coworkers.[2-4,35-47] They argue that the reaction path can be 

considered to be any curve that connects reactant to the product through the saddle point 

as long as the highest-energy point on the curve corresponds to the saddle point. The 

basic idea is that while the molecular structures of stationary points on the PES have 

chemical significance, intermediate structures are of superficial significance. (This 

contrasts somewhat with the common assertion that the MEP serves as a “leading line” 

about which reactive molecular dynamics trajectories are centered when the energy 

barrier is much higher than kT.[48]) 
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A Newton trajectory is defined as a curve on which all gradients are pointing in the 

same (or opposite) direction. Each NT passes through all stationary points on the PES 

because when the magnitude of the gradient is zero, its direction is arbitrary. By the 

preceding argument, any NT that connects the reactant to the product through the 

transition state can be chosen as a reaction path. Notice that some NTs that can mimic 

these reaction paths, but have maxima that correspond to turning points in the trajectory, 

rather than stationary points on the PES.[49] The growing string method (GSM) is 

commonly used to find an appropriate NT.[35,36,44] Because only NTs without spurious 

turning points are acceptable reaction paths, it can be difficult to choose a gradient 

direction that defines an appropriate NT. Without prior knowledge of the PES, the fact 

that candidate NT-based reaction paths might have turning points means that each local 

maximum on a NT must be assessed to see if it is actually a saddle point. 

In this paper we propose a new way to find the stationary points on the PES using 

NTs that avoids the “turning point problem” associated with the GSM-NT method. 

Specifically, since a complete NT passes all stationary points on the PES, the 

intersections of two NTs locate all the stationary points on a PES. We also provide a 

variant of QSM to find NTs; this reduces the computational cost of this approach 

significantly. To test our methods, we consider analytical PESs. With their validity 

established, we interfaced our approach to the Gaussian program and characterized an 

SN2 reaction. 
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The primary advantage of this approach over more conventional approaches is that no 

prior knowledge of the PES is required and the computational effort is concentrated in 

regions of the PES where the NTs are close together—that is, the chemically important 

regions associated with stationary points. Unlike the fast marching method and most 

other “surface walking” approaches, all possible transition states, and therefore all 

possible reaction pathways, are found. This is particularly important where there are 

several competing reaction mechanisms. 

 

4.4 Mathematical Definitions and Algorithms 

4.4.1 Quadratic String Method (QSM) 

The Minimum Energy Path (MEP) is defined as the steepest-descent path (SDP) from 

the transition states (1st order saddle points) to their adjacent minima. The SDP, x(t), can 

be obtained by solving the following differential equation, 

 ( )( )
( )

d t
V t

dt
= − = −∇

x
g x , (4.1) 

which indicates that the tangent of the SDP is always directed against the gradient of the 

potential ( )( )V t≡ ∇g x .  

To simplify the equations, we introduce the projection operators proposed by 

Quapp.[39] For a unit vector û , the dyadic product, ˆ ˆ ˆ T=uD uu projects a vector in the 
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direction defined by û . The projection operator ˆ ˆ= −u uP I D , projects a vector into the 

hyperplane perpendicular to û .  

Parameterize the path ( )tx  by the arc length s . Then ( ) /d t dsx  is the normalized 

tangent of the path. We denote the normalized tangent of the path as ˆ( )o x . Then, from Eq. 

(4.1), 

 ( )ˆ = −
g

o x
g

. (4.2) 

For a point on the steepest descent path, the gradient and ô  are both tangent to the SDP, 

so ˆ =oP g 0 .  Away from the optimal path, however, there is an component of the gradient 

in the hyperplane orthogonal to the SDP, 

 ˆ⊥ = og P g . (4.3) 

Minimizing ⊥g  leads to the SDP; this transforms the differential equation in Eq. (4.1) 

into a minimization problem. String methods work by solving the minimization problem. 

 

 The basic string-method algorithm is: 

1. An initial guess of the reaction path is given. 

2. The initial path is discretized as several nodes.  

3. The energies and gradients of all nodes are evaluated. 

4. For each node, i, on the path,  
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a. The tangent to the guessed reaction path, ˆ
io  is calculated. 

b. The orthogonal projection is performed, giving ˆ, ii i⊥ = og P g . 

c. Search in the direction ,i i⊥= −d g  to minimize the value of ,i⊥g  on 

the hyperplane orthogonal to the guessed path.  This defines the 

updated position for node i. 

5. If necessary, the nodes are redistributed so that they are relatively evenly 

spaced along the path.   

6. If ,i⊥g  is sufficiently small at each node, then a sufficiently accurate 

approximation to the SDP has been found.  Otherwise, return to step 3. 

 

The quadratic string method (QSM) uses the same algorithmic structure as the string 

method.[5] The primary difference is that instead of minimizing the projection of the 

gradient on the hyperplane perpendicular to the path (step 4c), the minimization occurs 

on a quadratic hypersurface that is tangent to the hyperplane, 

 0 0
ˆ( ) ( ( ))

ii i i i= − + −od x P g H x x  (4.4) 

The hypersurface is obtained using a quasi-Newton Hessian constructed from a variable 

step-size Runge-Kutta method. For further details, see ref. [5]. The QSM converges 

superlinearly and requires fewer energy/gradient calculations than simple string methods. 
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4.4.2 *ewton Trajectories (*Ts) 

A NT follows a curve on which the gradients point to the same (or opposite) direction. 

This direction is called the searching direction of the NT. For a given searching direction 

û , the corresponding NT can be formulated as a minimization problem:  minimize ⊥g , 

where 

 ˆ⊥ = ug P g . (4.5) 

This problem is mathematically similar to finding the SDP; the only change is that now 

we minimize on a hyperplane (or hypersurface) that is orthogonal to the searching 

direction û , rather than to the tangent vector of the guessed SDP, ˆ
io .  Notice that û  does 

not change along the reaction path; in this sense finding NTs is even simpler than finding 

the SDP. 

It is easy to modify the QSM algorithm to find NTs; one merely fixes the searching 

direction, replacing ˆ ioP  with ûP  in step 4 and in Eq. (4.4). We call this algorithm QSM-

NT. 

The NTs from all possible search directions intersect at each stationary point on the 

PES. The next step in the procedure is to choose two different search directions and then 

compute the associated NTs.  These NTs intersect at stationary points (minima, maxima, 

and saddle points) on the PES. An NT is said to be complete if it passes through every 

stationary point on the PES. Unfortunately, not all NTs are complete; some NTs are 
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discontinuous. Most path-finding methods, including QSM, only find part of the NT in 

the discontinuous case. In such cases, not every stationary point is found. As an initial 

guess for the path in QSM, we usually use the straight line linking the reactant and 

product. This setup does not guarantee the exploration of all stationary points, but it 

maximizes the possibility of finding all the stationary points in the “interesting” area of 

the PES that is positioned between the reactant and the product.  

 

4.5 Applications 

The QSM-NT method has been applied to the analytical PESs: the 4-well potential, 

the Müller–Brown potential; and a simple 1-step chemical reaction: the SN2 reaction. For 

each PES, two NTs with different searching directions were found and plotted on the PES. 

We can clearly see that the intersections of the two NTs coincide with the reactive 

intermediate(s) and transition states (Figure 4.1, Figure 4.2, and Figure 4. 3).  

 

4.5.1 Müller-Brown PES 

To apply the QSM-NT method, we need to use two searching directions.  The first 

searching direction, shown as the black path in Figure 4.1 is the vector linking the two 

ends of the path: [-0.8, 1.0].  The gradient of the potential at each node in the QSM 

algorithm points either towards [-0.8, 1.0] or in the opposite direction [0.8, -1.0]. For the 
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second searching direction, shown as the red path in Figure 4.1, we chose [-0.2, 1.0]. 

These two NTs cross at 5 points: the reactant (R), transition state 1 (TS1), intermediate 

(Int), transition state 2 (TS2) and the product (P).  

The form of the Müller-Brown PES is given in Appendix 1.[50] 
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Figure 4. 1: *ewton trajectories on the Müller–Brown potential. The gradient 
directions of the two *ewton trajectories are: black [-0.8, 1.0] and red [-0.2, 1.0], 
respectively. The arrows represent the directions of the gradients on the grids of the 
PES, which are orthogonal to the contours. The intersections of these two *Ts 
accurately show the stationary points (the intermediate and the transition states) 
linking the reactant and the product. 
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4.5.2 The 4-well PES  

The 4-well PES is used to explore the case where there are two low-energy pathways 

between the reactant and the product structure; results are shown in Figure 4.2. The 

searching for the black path is the vector linking the two ends of the path: [1.1, 1.0]. The 

searching direction of the red path is [1.9, 1.0]. These two NTs cross at 5 points: the 

reactant (R), transition state 1 (TS1), intermediate (Int), transition state 2 (TS2) and the 

product (P).  

The form of the 4-well PES is given in Appendix 2.[30]  
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Figure 4. 2: *ewton trajectories on the 4-well potential. The gradient directions of 
the two *Ts are: black: [1.1, 1.0]; red: [1.9, 1.0]. The intersections of the two *Ts 
clearly show the stationary points (transition states and intermediate) linking the 
reactant and the product structures.  
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4.5.3 The S*2 reaction 

Encouraged by the favourable results for the aforementioned analytical PES, we built 

an interface between the QSM-NT program and Gaussian 03.[51] We then tested the 

method on the following gas-phase SN2 reaction, 

F   C
H

H

H

ClC

H
H

H

F Cl C

H H

H

ClF   

             (4.6) 

All potential energy and derivative calculations are done using the BhandhLYP/6-

311++G** level of theory.[52,53] For transition states, the larger amount of exact 

exchange in the Bhandh exchange functional, compared to the conventional hybrid 

functionals, is usually preferred. 

We focused on the lengths of the C–F and C–Cl bonds that are formed/broken in the 

reaction. For each choice of these bond lengths, all of the other internal coordinates are 

minimized, so the only nonzero components of the gradient are in these directions.  This 

corresponds to choosing searching directions of the form [RC–F, RC–Cl, 0, 0, 0, …0].  For 

simplicity, the zero-gradient directions will not be shown in what follows. 

The searching direction of the first NT (the black path in Figure 4.3) is [1.3, 1.0], the 

vector linking the reactant and the product. The searching direction of the red NT is [0.4, 

1.0]. (The second direction was chosen to resemble the first one, because search 

directions that are less similar can lead problems with discontinuous trajectories.) As 
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expected, the two NTs cross at the transition state (Figure 4. 3). Even without any 

previous knowledge about the PES of the SN2 reaction, the transition state can still be 

located by finding the crossing point of two NTs.  
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Figure 4. 3: *ewton trajectories for the S*2 reaction. The gradients of the two *Ts 
are: black: [-1.3, 1.0]; red: [-0.4, 1.0]. The *Ts cross at the transition state (TS) 
linking the reactant and the product.  
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4.6 Difficulties 

In favourable cases, the QSM-NT method converges to a NT that passes through all 

the stationary points of interest.  The intersection points of two such NTs locates all the 

stationary points on the PES, and from that point more conventional tools for analyzing 

PES suffice. In some cases, however, the QSM-NT method fails. 

 

4.6.1 Discontinuous trajectories 

For some searching direction, the NT is composed of two or more branches; such NTs 

are said to be discontinuous. For example the NT in Figure 4. 4 (searching direction 

[-1.75, 1.0]) is composed of two branches: branch 1 crosses three minima (M1, M2, M3) 

and two saddle points (S1, S2); branch 2 is a closed curve that crosses one minimum 

(M4), the maximum (Max), and two saddle points (S3, S4).  

A two-end path-finding method like QSM finds only branch 1 if M1 and M3 are fixed 

as the reactant and the product structures. If one attempts to explore both branches at the 

same time by setting the endpoints to M3 and M4, then the QSM calculation never 

converges because there is no continuous path that meets those boundary conditions. The 

result of the (nonconverging) QSM calculation is shown in Figure 4. 4: it traces small 

portions of the lower branch of the NT and then jumps, as discontinuously as it can given 

the algorithmic constraints of the QSM method, to the upper branch of the NT. The 
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stationary points for the 4-well potential could be located (cf. Figure 4.2) only by 

choosing the second searching direction to be close to the first one, so that the two NTs 

branched in a similar fashion. The alternative MEP, corresponding to the reaction 

mechanism M1-S4-M4-S3-M3, can be located, but requires looking for NTs with very 

different directions, like [2.0,1.0].  Such NTs intersect the NTs in Figure 4.2 only at the 

reactant and product structures.  If one wished to find a path from M2 to M4, then one 

would need to adjust the searching direction. Moreover, it is likely that only one of the 

two possible MEPs can be found:  either M2-S1-M1-S4-M4 or M2-S2-M3-S3-M4.  

A singular NT passes and branches on the valley ridge inflection point on the PES,[54] 

so a valley ridge inflection point might be confused with intersections of two NTs. But 

different branches of one NT and different NTs can be easily distinguished by examining 

the searching directions. Thus there is no danger of confusing valley ridge inflection 

points with stationary points on the PES.   However, because of discontinuous trajectories, 

in order to find all the stationary points on a PES, one must vary not only the searching 

directions for the NTs, but consider several different choices for the path endpoints.   
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Figure 4. 4: The dotted curves denote the discontinuous *ewton trajectory on the 4-
well PES found using Matlab 7.0.1; the searching direction of this *T is [-1.75, 1.0]. 
The solid curves correspond to the same searching direction, but the *T was found 
using QSM, choosing the endpoints as either M1 and M3 (the red curve on the left) 
or M3 and M4 (the black curve on the right).  Since the *T with this searching 
direction is discontinuous, the QSM-*T method does not converge in the latter case. 
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4.6.2 Multiple minima of ⊥g  on the hypersurface 

Recall, from section 3, that the NT is found by minimizing ⊥g  on the hypersurface 

orthogonal to the searching direction. When the hypersurface is tangent to a contour line 

of the potential, the gradient g  is orthogonal to the hypersurface and 0⊥ =g . 

In some cases, the hypersurface coincides with the tangent of potential contours from 

two potential wells. An example for the Müller-Brown potential is shown in Figure 4. 5.  

When the searching direction is [0.0, 1.0] (vertical), the hypersurfaces are horizontal (the 

blue and yellow lines in Figure 4. 5). Hypersurfaces between the two yellow lines are 

tangent to contour-lines of the PES in two places, so there are two places where 0⊥ =g  

on these hypersurfaces. Two-end path finding method like QSM can only find the 

minimum closest to the initial path, which leads to an incorrect path (black solid line in 

Figure 4. 5). 

While the problem of discontinuous NTs is inherent in the definition of the NT, the 

problems we encounter when ⊥g  has multiple minima on the hypersurface orthogonal 

to the searching direction is a consequence of using a two-end algorithm to find the NT.  

Solving the differential equation directly avoids this problem. Using a growing string 

algorithm, with one free end, also solves this problem. 
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Figure 4. 5: A case where QSM-*T method fails to find the correct *ewton 
trajectory. The searching direction is [0.0, 1.0]. The dotted path is the complete *T 
found by Matlab7.0.1. The black solid line is the trajectory found using the modified 
QSM program. The red straight line is the initial path. The light blue lines show the 
hypersurfaces orthogonal to the searching direction, which is also the moving 
direction of the nodes during minimization.  
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4.7 Conclusion 

The QSM-NT method is a promising method for finding all stationary points on the 

PES, accordingly all alternative reaction paths linking the reactant and the product. 

Unlike two-end methods (which only find a single local minimum energy path) or the 

fast-marching method (which only finds the global minimum energy path), the basic 

approach pursued here can, in principle, find all possible reaction pathways. One of the 

most appealing features of this approach is that the density of the NTs is highest near the 

stationary points on the PES: the computational effort therefore concentrated in the most 

chemically interesting regions of the PES. 

In our QSM-NT method, a modified version of the QSM program is used to find NTs 

for two different searching directions. The intersections between these NTs are stationary 

points on the PES. While the method does not always work (see section 5), when it does 

work, it is computationally efficient. The main problem is that of discontinuous, or 

incomplete, Newton trajectories. Because not every NT is complete, finding all the 

stationary points on the PES requires, in general, not only considering several different 

searching directions, but also several different choices for the path endpoints.  

The computational cost of the QSM-NT method is nearly twice of QSM, or more, if 

more than two NTs are required to locate all the stationary points than are needed to 

characterize a chemical process. Like other two-end methods, however, conventional 
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QSM can find only the closest local MEP to the initial path, and cannot find the global 

MEP or other alternative paths. However, with proper setup and followed by further 

analysis, the QSM-NT method can find all stationary points on the PES, and therefore all 

reaction paths; this can reveal alternative reaction mechanisms. 
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Appendix 1.  The Müller-Brown Potential 

The Müller–Brown PES is defined by the following function,[50] 

4
2 2

0 0 0 0
1

( , ) ( ) exp ( )( ( )) ( )( ( ))( ( )) ( )( ( ))
i

V x y d i a i x x i b i x x i y y i c i y y i
=

 = ⋅ − + − − + − ∑         

(4.7) 

Table 4. 1: Parameters for the Müller-Brown potential. 
 

i  1 2 3 4 

( )a i  (Å) -1.0 -1.0 -6.5 0.7 

( )b i  (Å) 0.0 0.0 11.0 0.6 

( )c i  (Å) -10.0 -10.0 -6.5 0.7 

0 ( )x i  (Å) 1.0 0.0 -0.5 -1.0 

0 ( )y i  0.0 0.5 1.5 1.0 

( )d i (kcal/mol) -200.0 -100.0 -170.0 15.0 
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Appendix 2.  The 4-well Potential 

The 4-well PES is defined by the following function,[30] 

 
2 2

0 0

4
( )( ( )) ( )( ( ))

0
0

( , ) ( ) a i x x i b i y y i

i

V x y V d i e
− − − −

=

= +∑  (4.8) 

Table 4. 2: Parameters for the 4-well potential. 
 

i 0 1 2 3 4 

0V  (kcal/mol) 5.0 

( )d i  

(kcal/mol) 
0.6 3.0 1.5 3.2 2.0 

( )a i  (Å-2) 1.0 0.3 1.0 0.4 1.0 

( )b i  (Å-2) 1.0 0.4 1.0 1.0 0.1 

0 ( )x i  (Å) 0.1 1.3 -1.5 1.4 -1.3 

0 ( )y i  (Å) 0.1 -1.6 -1.7 1.8 1.23 
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Chapter 5: 

Computational study of the binding modes of caffeine to the 

adenosine A2A receptor* 

 

 

 

 

 

 

 

 

 

 

 

* The content of this chapter is submitted to J. Phys. Chem. B: Yuli Liu; Steven K. Burger; Esteban 
Vöhringer-Martinez; Paul W. Ayers; Computational study of the binding modes of caffeine to 
the adenosine A2A receptor.  
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5.1 Statement of Problem 

As discussed in previous chapters, chemical processes involving small molecules can 

be predicted and characterised from stationary points or reaction paths linking them on 

the potential energy surface (PES). However, for large molecules like proteins, statistical 

sampling techniques like molecular dynamics (MD) simulation are needed because 

entropic effects and dynamical conformational changes make important contributions to 

thermodynamic properties of the system, e.g.: the binding free energy of protein-ligand 

complexes.  

In this chapter, using the recently solved crystal structure of the human adenosine A2A 

receptor, we applied MM/PBSA to compare the binding mechanism of caffeine with the 

antagonist ZM241385. MD simulations were performed on the protein, which was 

embedded in a lipid membrane bilayer and then solvated with water. Four low-energy 

binding modes of caffeine-A2A were found, all of which had similar energies. Assuming 

an equal contribution of each binding mode, a binding free energy of -21.2kcal/mol was 

calculated for caffeine. The binding free energy difference between caffeine and 

ZM241385 was determined to be -2.4 kcal/mol, in good agreement with the experimental 

value of -3.6kcal/mol. The configurational entropy contribution of -0.9 kcal/mol from 

multiple binding modes of caffeine helps explain how a small molecule like caffeine can 

compete with significantly larger molecule, ZM241385, which can form many more 

interactions with the receptor. We also performed residue-wise energy decomposition and 
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found that Phe168, Leu249 and Ile274 contribute most significantly to the binding modes 

of caffeine and ZM241385.  

 

5.2 Introduction 

Caffeine is the most popular psychoactive stimulant, with 1/3 of the world’s 

population under its influence. Caffeine has a wide range of psychostimulative and 

neuroprotective effects on humans.1 According to recent pharmacologic and genetic 

studies, caffeine’s effects are primarily due to its interference with neurotransmission 

within the basal ganglia, and more specifically its involvement in the blockage of 

adenosine receptors, especially the adenosine A2A receptor.1-5  

Adenosine receptors are G protein coupled receptors (GPCR).6 In the human central 

nervous system, there are four adenosine receptor subtypes: A1, A2A, A2B and A3.
7 A1 and 

A2A receptors play roles in the heart and the brain, regulating myocardial oxygen 

consumption, coronary blood flow and mediating the release of neurotransmitters such as 

dopamine, glutamate and acetylcholine. A2B and A3 receptors are involved in emergency 

processes such as inflammation, injury and immune responses.7-13  

Caffeine is one of many xanthine derivatives that act as a non-selective antagonists on 

A1 and A2A receptors. Initially the stimulant effect of caffeine was credited to the 

blockage of A1 recectors14-17. However recent pharmacological4 and genetic studies2 
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show that the psychomotor stimulant effects from low doses of caffeine, as found in 

everyday beverages and food, depend on A2A, not A1, receptors.  

While the normal physiological response to caffeine is interesting in its own right, 

there have been a number of preclinical and clinical studies that show a link between 

caffeine intake and a reduced risk of Parkinson’s disease.18,19 This has lead to an interest 

in xanthine derivates as A2A antagonists for treating Parkinson’s and other diseases 

associated with A2A receptors.20-23 Elucidating the mechanism of action of caffeine may 

give important insights into designing new xanthine based compounds for controlling the 

adenosine A2A receptor. 

To date, there are only two computational studies examining the binding modes of 

caffeine and other xanthine antagonists.24,25 These studies used homology modeling and 

de novo design since no crystal structure was available for the A2A receptor at the time. 

Recently the crystal structure of human adenosine A2A receptor (PDB ID:3EML) has 

been solved by the Stevens group with a bound high-affinity selective antagonist, 

ZM241385.6 The structure proved difficult to characterize due to the thermal instability 

of the A2A receptor, so the receptor had to be engineered using the T4-lysozyme fusion 

strategy,26-28 in which the intracellular part of the receptor (mostly the third cytoplasmic 

loop: Leu209 – Ala221, was replaced with lysozyme from T4 bacteriophage and the 

carboxy-terminal tail (Ala317 to Ser412) of the receptor was deleted. The engineered A2A 

receptor (A2A-T4L-∆C) was shown to be a functional receptor with increased agonist 

binding affinity and a wild-type affinity for the antagonist.6 The crystal structure 
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demonstrated that the binding pocket is perpendicular to the membrane surface. The 

structure also revealed the importance of several previously uncharacterized pocket 

residues: Phe168, Met177, and Leu249. The significance of these residues was further 

confirmed by site-directed mutagenesis and in silico mutation studies.29 

To calculate the free energy difference between ligands, free energy perturbation 

(FEP)30,31 can be used. In a FEP calculation, the free energy difference between two 

states is calculated by slowly perturbing one state into another via a set of mixed states. 

Generally the method works well if the structural changes between the initial and final 

states are small. In this case the structures of caffeine and ZM241385 are too different for 

FEP to be effective(Figure 5. 1, Figure 5. 2), so instead we used the molecular 

mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. MM/PBSA has been 

shown to work well with various systems32-37, especially for the relative binding affinities 

of a series of ligands bound to the same protein36, although large standard deviations 

from the protein entropy term can impede discrimination of ligands with similar binding 

affinities.35,38,39 

In this study we performed the following steps to determine the free energy 

differences between the two ligands: 1) Using A2A-T4L-∆C,6 we docked caffeine, and, 

for comparison, we re-docked ZM241385. 2) After docking the ligands we ran molecular 

dynamics (MD) simulations in explicit solvent on selected docked poses. 3) We then 

determined the relative binding energy with MM/PBSA and 4) finally we performed a 

residue-wise decomposition of the energetic contributions to determine which residues 
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were conserved between selective (ZM241385) and non-selective (caffeine) antagonist 

binding. This analysis gives a sense of the binding poses involved with these types of 

antagonists. The analysis reveals how a small molecule like caffeine can compete with a 

significantly larger molecule, ZM241385, which is capable of forming many more 

interactions with the receptor.25 

 

5.3 Computational Methods 

5.3.1 Docking 

For the protein structure we used the engineered A2A receptor (A2A-T4L-∆C, PDB ID: 

3EML) from which we removed the bound inhibitor ZM241385. The two ligands to be 

docked were caffeine (Figure 5. 1) and ZM241385 (Figure 5. 2). The molecules were first 

optimized with HF/6-31G* level of theory and basis set using Gaussian03.
40 Atomic 

charges were then assigned based on the molecular electrostatic potential fitting, with the 

aide of the RESP module in the Amber10 program package41. The docking was done with 

the AutoDock Vina program42, using a 32×26×28 search grid centered at (-5, 7, 60) with a 

spacing of 1Å. (The origin is defined in the PDB file of the crystal structure.) To search 

for binding modes the iterated local search global optimizer was used.42 From the 

resulting binding modes we examined in detail only the top nine binding modes; the other 

lower scoring modes were found to be either unphysical or redundant. 
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Figure 5. 1: The molecular structure and atom numbering of caffeine.  
 
 
 

 
 

Figure 5. 2: The molecular structure and numbering of ZM241385 
 

 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu        McMaster University – Department of Chemistry and Chemical Biology 

 

 

137 

An analysis of the caffeine binding modes demonstrated that the most important 

interactions are hydrogen bonds and aromatic stacking. Specifically, the most important 

hydrogen-bond interactions are between hydrogen bond acceptors in caffeine (N9, O11, 

O12) and the hydrogen bond donors (Asn253, His278) from the receptor. There are 

important aromatic stacking interactions  between the bicyclic core of caffeine and the 

benzene ring of Phe168. Five of the nine binding modes involved relatively strong 

hydrogen bond(s) (where the distance between the heavy atoms is less than 4.0Å) and/or 

aromatic stacking with Phe168 and were considered suitable for further study by MD 

simulations.  

The observed binding modes of ZM241385 could be categorized into two types. In 

type I the ligand is perpendicular to the membrane surface, with its furan ring buried 

inside the receptor; this is the same orientation as the crystal structure, except for some 

minor differences due to the rotation of C17-C18 bond (Figure 5. 2). In type II the ligand 

is flipped 180°; the ligand is still perpendicular to the membrane surface, but its furan 

ring points towards the extracellular fluid. A representative  example of each type of 

binding mode was then selected for further study by MD simulations. 

 

5.3.2 Molecular Dynamics 

MD simulations were performed on the five docked poses of caffeine, the crystal 

structure with ZM241385 bound (type I), the 180° flipped pose of ZM241385 (type II). 
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To approximate the physiological environment of the A2A receptor, each selected ligand-

protein complex structure was inserted into a 100×100Å POPC (palmitoyl-oleyl-

phosphatidyl-choline) membrane bilayer generated using VMD,43 and then solvated with 

two layers of TIP3P water molecules above and below the lipid bilayers in such a way 

that the intracellular and extracellular parts of the receptor are at least 15Å away from the 

solvent boundary. 

The POPC membrane bilayers were parameterized to be consistent with the rest of 

the Amber parameters44. This involved optimizing POPC with HF/6-31G* using 

Gaussian 03
40, and then fitting the atomic charges using the RESP module of Amber10

41. 

The rest of the parameters for POPC were generated using the general Amber force field 

(GAFF) using the A TECHAMBER module in Amber10.   

When building the initial structure, POPC lipid molecules within 0.8Å and water 

molecules within 3.8Å of the receptor were removed. The TLEAP module in Amber 10 

program package is used to add hydrogens and counterions. A total of 17 Cl– counterions 

were added to neutralize the entire system. The final system size was 100×100×125Å. 

The numbers of water molecules were slightly different between the ZM241385-A2A and 

caffeine-A2A complexes. With caffeine there were 115,930 atoms, including 26,162 water 

molecules, 225 POPC lipid molecules and 17 Cl– anions. 

The parameters for caffeine and ZM241385 were also generated using GAFF with the 

A TECHAMBER module, with the atomic charges determined by RESP fitting from a 

HF/6-31G* calculation. The standard Amber ff03 force field was used for the receptor. 
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Before running MD a series of energy minimizations were performed. First 2000 

steps of minimization were done on the hydrogen atoms to remove any bad contacts, 

followed by 2000 steps on the water molecules. Then 22000 steps of minimization were 

done on protein side chains and the ligand molecule, followed by 50000 steps on the 

environment (POPC molecules and water molecules). To better solvate the system, short 

MD simulations and further minimizations were done on the environment alternatively: 

160ps of MD on the water molecules using a NVT ensemble; then 20000 minimization 

steps on the environment (water molecules, POPC molecules and counterions); then 

another 100ps of MD were done on POPC molecules with a NVT ensemble; then 25000 

steps of energy minimization on the environment (water molecules, POPC molecules and 

counterions), and finally 6000 steps of energy minimization on the entire system.  

To heat up the system, a 100ps simulation was run with the NVT ensemble using the 

Langevin temperature regulation scheme. This was followed by 100ps with the NVT 

ensemble, then 100ps with the NPT ensemble. The production phase was done for 5 ns 

with a periodic boundary condition at 300K and 1 atm with anisotropic pressure scaling 

to maintain a NPT ensemble. The particle-mesh Ewald (PME) method was applied to get 

the correct long-range electrostatic interactions, and a nonbonded cutoff of 12Å was used. 

Bond stretching involving hydrogen atoms was restrained with the SHAKE algorithm, 

enabling the use of a 2-fs time step for MD simulation.    
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5.3.3 MM/PBSA Binding Energy Calculation 

The relative binding energies of the binding modes of caffeine and ZM241385 bound 

to the A2A receptor were evaluated using MM/PBSA, as implemented in Amber10. In 

MM/PBSA the binding free energy is defined as,  

 ( )bind complex protein ligandG G G G∆ = − + ,  (5.1) 

where the average of complex, protein, and ligand free energies are evaluated from 

uncorrelated snapshots in the MD trajectories. The binding free energy can be expressed 

as, 

 
 
∆G

bind
= ∆E

MM
+ ∆G

solv
− T∆S ,  (5.2) 

where 
 
∆E

MM
 is the molecular mechanical energy difference between the bound state  

(complex) and unbound state (receptor and ligand), 
 
∆G

solv
= ∆G

PB
+ ∆G

nonpolar
 and 

  
∆G

nonpolar
= γSASA, γ = 0.0072kcalA

-2°
.  T  is the temperature, and  ∆S  is the entropy 

change upon binding. 

The entropy term  T∆S  in Eq. (5.2) is not considered in MM/PBSA calculation, due 

to a large standard deviation from normal mode analysis45. It is estimated using a 

simplified hindered rotor model instead.46 We use the following equation in the 

MM/PBSA relative binding energy calculation, 

 
 
∆E

bind
= ∆E

MM
+ ∆G

solv
. (5.3) 
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To differentiate from the binding free energy 
 
∆G

bind
, 

 
∆E

bind
 is used to denote the relative 

binding energy. 

The binding free energy of caffeine is calculated using a Boltzmann weighting  

 
/

5
/
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e

−∆

−∆

=

=

∑
 (5.4) 

for each binding mode, where R is the gas constant (8.314 JK-1mol-1) and T = 310 K (the 

human body temperature), and 
 
∆E

i
 is the relative binding energy of binding mode  i . The 

overall binding energy of caffeine is the sum of the weighted energy of each binding 

mode, 

 
  
∆U

bind
= w(i) ⋅ ∆E

i
i=1

5

∑ . (5.5) 

The standard deviation is calculated as, 

 
  
STD = w(i) ⋅ (∆E

i
)2

i=1

5

∑ . (5.6) 

For each ligand, there is a configurational entropy contribution ( T∆S ) to the binding free 

energy. The configurational entropy47 is defined as, 

 
  
∆S = −R w(i) ⋅ ln w(i)

i=1

 
bind

∑ , (5.7) 

where 
 
 

bind
 is the number of binding modes. 
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5.3.4 Residue-wise MM/GBSA energy decomposition 

Residue-wise MM/GBSA energy decomposition was performed on the low-energy 

binding modes of caffeine (binding mode 1, 2, 4, 5) and ZM241385 (binding mode 1) to 

calculate the contribution of each residue to the total binding energy of the complex. In 

Amber10, only MM/GBSA is available for energy decomposition. For MM/GBSA 

binding energy calculations, the same free energy equation is used as the MM/PBSA 

method except that in equation (5.3) 
 
∆G

solv
= ∆G

GB
+ ∆G

nonpolar
, with the electrostatic part 

of the solvation energy calculated using the generalized Born method (GB) instead of by 

solving the Poisson-Boltzmann equation (PB).  

 
 

5.4 Results and Discussion 

5.4.1 Binding Modes  

MD simulations on the five docking poses of caffeine and the two poses of 

ZM241385 converged to stable binding modes. The RMSD plots of the protein backbone 

atoms show that MD simulations on the five binding modes converge after about 1.5ns 

(Figure 5. 3).  
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Figure 5. 3: RMSD of the backbone atoms of the receptor. Each binding mode is 
represented a unique color: Blue for binding mode 1 of caffeine, magenta for 
binding mode 2 of caffeine, yellow for binding mode 3 of caffeine, cyan for binding 
mode 4 of caffeine, red for binding mode 5 of caffeine, brown for binding mode 1 of 
ZM241385 and olive for binding mode 2 of ZM241385.  
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In binding mode 1 of caffeine, O12 of caffeine forms a hydrogen bond network with 

OG1 of Thr88 (2.54Å) and NE2 of His250 (2.92Å) (Figure 5.8). (The hydrogen bond 

length is denoted as the average distance between the heavy atoms over 5ns MD 

simulation.) Additionally, NE2 of His278 forms a hydrogen bond with O11 of caffeine 

(2.90Å). Other important hydrophobic interactions include residues Val84, Phe168, 

Trp246, Leu249 and Ile274, although the aromatic stacking between caffeine and Phe168 

is broken because the aromatic rings are not parallel.  

In binding mode 2 of caffeine only one hydrogen bond is formed between NE2 of 

His278 and O11 of caffeine (2.98Å) (Figure 5.8). During the MD simulation, water 

molecules get into the active site and mediate the binding of caffeine to the receptor. The 

hydrogen bond acceptor O12 of caffeine forms a hydrogen bond with a water molecule 

(2.66Å). Other important hydrophobic interactions in binding mode 2 involve residues 

Val84, Phe168, Leu249 and Ile274. As in binding mode 1, the aromatic stacking between 

caffeine and Phe168 is broken. 

In binding mode 3 the most significant interaction is the aromatic stacking with 

Phe168 (stacking distance 3.6Å, the stacking distance is determined by the average 

distance of the center of mass over 5ns MD simulation). No hydrogen bond formed 

between caffeine and the receptor. Water molecules interfere with the binding of caffeine 

to the receptor for this mode, forming a hydrogen bond of 2.86Å with O11 of caffeine 

and interfering with the hydrogen bond between O11 of caffeine and ND2 of Asn253 
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(4.5Å). Other direct hydrophobic contacts include residues Val84, Glu169, Leu249, 

His250, and Ile274.  

The most important interactions in binding mode 4 include a hydrogen bond between 

O11 of caffeine and NE2 of His250 (3.63Å), a hydrogen bond between O12 of caffeine 

and NE2 of His278 (3.06Å), and the aromatic stacking between caffeine and Phe168 

(stacking distance 3.9Å) (Figure 5.8). A hydrophobic binding pocket is formed from 

residues Met177, Leu249, and Ile274.  

In binding mode 5, N9 of caffeine forms a hydrogen bond with ND2 of Asn253 (3.7Å) 

and the aromatic rings of caffeine stack with Phe168 (stacking distance 3.7Å). O12 of 

caffeine forms a hydrogen bond with a water molecule (2.81Å) (Figure 5.8). Other 

important hydrophobic interactions involve Leu249 and Ile274.  

Binding mode 1 of ZM241385-A2A complex is the result of MD simulation on the 

crystal structure. In binding mode 1, Asn253 forms multiple hydrogen bonds with atoms 

on ZM241385 (OD1 of Asn253 to N4 of ZM241385 (2.97Å), ND2 of Asn253 to N6 of 

ZM241385 (3.69Å), ND2 of Asn253 to O2 of ZM241385 (3.71Å)). Phe168 stacks with 

the bicyclic core of ZM241385 (stacking distance 3.95Å). Other important hydrophobic 

interactions involve Ile66, Leu249, His250 and Ile274. 

In binding mode 2, ZM241385 remained in a 180° flipped mode compared to binding 

mode 1. OE1 of Glu13 forms a hydrogen bond with N4 of ZM241385 (3.12Å), OH of 

Tyr271 forms a hydrogen bond with O2 of ZM241385 (3.72Å). Phe168 has multiple 

hydrophobic contacts with the ligand but its stacking with the bicyclic core of ZM241385 
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does not hold. Other close contacts include Val84, Trp246, Leu249, His250, Ile274, and 

His278.  

 

5.4.2 Relative Binding Energy 

The relative binding energies of the binding modes of caffeine and ZM241385 are 

shown in Table 5. 1. We can see that binding mode 1 is the most stable binding mode of 

caffeine. The binding energies of other 3 modes (2, 4 and 5) are within a standard 

deviation (~3kcal/mol) of this result, while mode 3 is 7.8kcal/mol higher. We focus our 

attention on the low-energy modes 1, 2, 4 and 5 and discard mode 3. 
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Table 5. 1: MM/PBSA calculation results for 5 binding modes of caffeine- A2A, and 2 
binding modes of ZM241385-A2A complex.  
 

Complex 
Binding Energya 

(kcal/mol) 
Standard Deviation 

(kcal/mol) 
Caffeine, binding Mode 1 -20.5 2.7 
Caffeine, binding Mode 2b -18.6 1.9 
Caffeine, binding Mode 3b -12.7 3.2 
Caffeine, binding Mode 4 -17.8 3.1 
Caffeine, binding Mode 5b -17.4 2.7 

ZM241385, binding mode 1  -25.4 3.5 
ZM241385, binding mode 2 -14.8 3.0 

a. The calculation of binding energy is according to Equation (5.3).  
b. Water molecules mediate the binding through forming hydrogen bond with 

hydrogen bond acceptors (O11, O12 or N9) in caffeine.  
 

Table 5. 2: Calculation of the overall binding energy of the caffeine-A2A complex 
from the relative binding energy of each binding mode. 
 

Binding Energy 

(
 
∆E

i
, kcal/mol) 

Weight   w(i)  

  w(i) ⋅ ∆E
i
 

Standard 
Deviation 
(kcal/mol) 

  w(i) ⋅ (∆E
i
)2   

-20.5 0.94 -19.3 2.7 6.7 

-18.6 0.04 -0.7 1.9 0.1 

-12. 7 0.00 0.00 3.2 2.9E-05 

-17.8 0.01 -0.2 3.1 0.1 

-17.4 0.01 -0.1 2. 7 0.04 

Sum 
1.0000000 -20.4

a
 2.7

b 
7.0 

a. The overall binding energy of caffeine 
 
∆U

bind
(equation (5.5)). 

b. The standard deviation of the overall binding energy 
 
∆U

bind
(see equation (5.5) and 

(5.6)). 
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Since the energy differences between binding mode 1, 2, 4 and 5 are within one 

standard deviation (see Table 5. 1), we can assume that all four binding modes have the 

same binding energy; this assumption yields the maximum contribution from the 

configurational entropy. If we assume that binding mode 1, 2, 4 and 5 have same binding 

energy and therefore same probability (
  
w(i) =

1

4
, i = 1,2,4,5) in Boltzmann distribution, 

then the configurational entropy contribution is,  

 
4

1

1 1
( ) ln ( ) 4 ln 0.9 /

4 4i

T S RT w i w i RT kcal mol
=

 ⋅∆ = − ⋅ = − × = 
 

∑ . (5.8) 

The optimum binding free energy of caffeine would then be, 

 21.2 /bind bindG U T S kcal mol∆ = ∆ − ⋅∆ = − , (5.9) 

where 
 
∆U

bind
 is the overall binding energy of caffeine (equation (5.5) and Table 5. 2). 

As for ZM241385, binding mode 1 is found to be dominant in terms of relative 

binding energy (Table 5. 1). So binding mode 2 can be discarded and the configurational 

entropy contribution to the binding free energy is zero.  

The entropy upon binding due to the protein conformational change is calculated using 

principal component analysis (PCA).48,49 For each binding mode, 100 uncorrelated 

snapshots were taken from the 5ns MD trajectory. After removing the translational and 

rotational motions, a mass-weighted covariance matrix of the backbone atoms was 

calculated from all snapshots. By diagonalizing the covariance matrix, the eigenvectors 

(also called the principal components) and eigenvalues can be obtained. Using the 
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g_anaeig tool of Gromacs program package,50 the entropy was calculated from the 

Schlitter formula. The PCA calculation results (Supporting Information, Table 5.5) show 

that the entropies for four low-energy binding modes of caffeine and the dominant 

binding mode of ZM241385 present no significant difference during the 5ns simulation 

time.  

The restrained internal rotation of the pocket residues and the ligand accounts for the 

major local conformational change of the binding pocket. A simplified hindered rotor 

model is applied to calculate the entropy contribution from local conformational change. 

Assuming 2 or 3 states of equal energy per rotatable bond in the unbound state, the 

entropy penalty for each restrained rotation upon binding would be ln 2RT  or ln 3RT  

(0.4 or 0.7 kcal/mol). A multiple linear regression analysis on the experimental binding 

data of 45 protein-ligand complexes gave an empirical value of 0.3kcal/mol for the 

entropy contribution of a restrained rotor.46 According to the average structures from 5ns 

MD simulation, the ZM241385-A2A complex has 6 more restrained rotors than caffeine-

A2A upon binding, which leads to 1.8 kcal/mol entropy penalty to the relative binding free 

energy. Therefore the binding free energy difference between ZM241385 and caffeine 

is -2.4kcal/mol ( 25.4 ( 21.2) 1.8 2.4 /G kcal mol∆ = − − − + = − ). According to experimental 

measurements, ZM241385 is 397 times more potent than caffeine for binding to the 

adenosine A2A receptor in terms of IC50.51 Since the experimental conditions of caffeine 

and ZM241385 were exactly the same, the binding affinity difference is also 397 times 
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according to the Cheng-Prusoff equation.52 This equals a -3.6kcal/mol difference in 

binding free energy (

  

∆G = 2.303RT log
K

ZM

K
CAF









 = −3.6kcal / mol ), which matches well 

with the calculated number.   

ZM241385 is a long molecule and it is much larger than caffeine. An analysis of the 

average structure of the four low-energy binding modes of caffeine and the dominant 

binding mode of ZM241385 over 5ns MD has shown that the bicyclic core of ZM241385 

binds at a similar position as caffeine does in multiple binding modes, and its phenol ring 

points to the extracellular side of the membrane surface and has closer contact with 

transmembrane helix II (Figure 5. 5). This explains the large energy contribution of 

residues from helix II (Ile66) in binding mode 1 of ZM241385 as shown in Table 5. 3. 

Although caffeine is relatively small and has fewer contact centers, it can form more 

binding modes with the A2A receptor than large molecules like ZM241385, and therefore 

has a favourable configurational entropy contribution to the binding free energy. We 

estimate that the binding affinity of caffeine is about one order of magnitude larger than it 

would have been were there only a single binding conformer. Larger ligands, like 

ZM241385, also face a larger entropic penalty upon binding because more hindered 

rotators are constrained; the loss of rotational freedom in ZM241385 makes it bind about 

one order of magnitude more weakly than it would were as a rigid ligand.  
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Table 5. 3: Comparison of pocket residues in 4 low-energy binding modes of 
caffeine-A2A and the dominant binding modes of ZM241385-A2A.  
 

Complex 
Binding 

Mode 1 of 
caffeine-A2A 

Binding 
Mode 2 of 

caffeine-A2A 

Binding 
Mode 4 of 

caffeine-A2A 

Binding 
Mode 5 of 

caffeine-A2A 

Binding 
mode 1 of 

ZM241385-
A2A 

Val84 Val84 Phe168 Phe168 Ile66 
Phe168 Phe168 Met177 Leu249 Phe168 
Leu249 Leu249 Leu249 Asn253 Leu249 
His250 Ile274 His250 Ile274 His250 
Ile274 His278 Ile274  Asn253 

Residues 
with energy 
contribution 

> 0.8 
kcal/mol 

His278  His278  Ile274 
Ala63 Val55 Ala63 Ala63 Ala63 
Thr88 Ala59 Ile66 Ile66 Ser67 

Met177 Ala63 Val84 Ser67 Val84 
Asn181 Ile66 Leu85 Val84 Leu85 
Trp246 Leu85 Thr88 Leu85 Thr88 

 Leu87 Glu169 Met174 Glu169 
 Thr88 Trp246 Met177 Met177 

 Trp246 Asn253 Trp246 Trp246 
 Ser277 Met270 His250 Leu267 
   Met270 Tyr271 

Other 
residues 

within 4.5Å 

   Tyr271  
 
Residues on different transmembrane (TM) helices are highlighted in different colours: 
TM II - green, TM III - yellow, TM V - cyan, TM VI - magenta, TM VII – grey. 
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5.4.3 MM/GBSA energy decomposition results 

Residue-wise MM/GBSA energy decomposition calculations are performed on the 

low-energy binding modes of caffeine (mode 1, 2, 4, 5) and ZM241385 (mode 1). (The 

high-energy binding modes (binding mode 3 of caffeine and binding mode 2 of 

ZM241385) are discarded and are not discussed further.) For the binding modes of 

caffeine, Val84, Phe168, Leu249, His250, Ile274 and His278 make the most important 

contributions to the binding energy, followed by Ala63, Leu85, Thr88, Met177, Trp246, 

and His250. Trp246 is considered the key to a “toggle-switch” activation mechanism of 

the human adenosine A2A receptor.6,53 The rotameric position of Trp246 is thought to 

control the equilibrium between the active and inactive states of the receptor. According 

to the MM/GBSA energy decomposition results as shown in Figure 5. 4, Trp246 has 

important interactions with the ligand in all binding modes of caffeine-A2A and 

ZM241385-A2A.  

Phe168, Leu249 and Ile274 have an energy contribution greater than 1.2kcal/mol in 

all four binding modes of caffeine-A2A and the binding mode of ZM241385-A2A (Figure 

5. 4). Thus, Phe168, Leu249 and Ile274 can be considered as conserved residues for 

selective and non-selective antagonist binding. The binding pockets are formed by 

residues on the transmembrane helix II, III, V, VI and VII, which is clearly shown by 

colour representations of the transmembrane helices in Table 5. 3, Figure 5. 6, Figure 5. 7 

and Figure 5. 8 
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Figure 5. 4: Residue-wise energy contribution of pocket residues in the binding 
modes of caffeine and ZM241385. 
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Figure 5. 5: A superimposition of the 4 low-energy binding modes of caffeine (mode 
1, 2, 4, 5) and the dominant binding mode of ZM241385 (mode 1). Binding mode 1 
of caffeine is shown in red, binding mode 2 of caffeine is shown in blue, binding 
mode 4 of caffeine is shown in green, binding mode 5 of caffeine is shown in purple. 
Binding mode 1 of ZM241385 is shown in cyan.  
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5.4.4 Comparison with site-directed mutagenesis studies  

Previous site-directed mutagenesis studies indicate the significance of residues Val84, 

Phe168, Glu169, Met177, Leu249, His250, Asn253, Ile274 and His278 in agonist and 

antagonist binding with the adenosine A2A receptor (Table 5. 4).29,55-60 (Details about the 

numbering scheme in the parenthesis can be found in ref. 54.) Mutating Phe168, Glu169, 

Met177, Leu249 and Asn253 to Ala (A) impedes antagonist (ZM241385) binding.29,56 

Mutation of Val84 to Leu (L) impedes the binding of xanthine-type ligands but other 

antagonists are not affected.58 Mutation of His278 to Tyr (Y) decreases the binding 

affinity of theophylline.57 Mutation of His250, Ile274 and His278 to Ala (A) abolishes 

antagonist binding.55,56 

According to our MM/GBSA energy decomposition results, the pocket residues are 

categorized to the following three significance levels based on their contributions to the 

binding energy: >1.2kcal/mol, >0.8kcal/mol. and >0.5kcal/mol. (Table 5. 4). Phe168, 

Leu249, and Ile274 (Figure 5. 4) make contributions over 1.2kcal/mol to the binding 

energies in four low-energy binding modes (mode 1, 2, 4, 5) of caffeine-A2A and the 

dominant binding mode (mode 1) of ZM241385-A2A. As shown in Table 5. 4, previous 

site-directed mutagenesis studies show that the mutation of these residues to Ala (A) 

completely abolished agonist and antagonist binding.29,56 Residues with >0.8kcal/mol 

energy contribution in the binding mode(s) of caffeine-A2A (e.g., Val84, Met177, His250, 

Asn253, and His278) have been shown  to abolish antagonist or xanthine-type antagonist 
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binding in site-directed mutagenesis studies.29,56-58 Other important residues 

(>0.5kcal/mol energy contribution) include Ala63, Leu85, Thr88, Glu169 and the 

“toggle-switch” residue Trp246. Mutation of Thr88 to Ala (A), Ser (S), Arg (R), Asp (D) 

and Glu (E) decreased agonist binding substantially, but not antagonist binding.60 

Mutation of Glu169 to Ala (A) impeded agonist and antagonist binding.59 No 

mutagenesis data is available for Ala63, Leu85 and Trp246.  

A comparison between our MM/GBSA energy decomposition has shown that pocket 

residues with >1.2kcal/mol energy contribution (Phe168, Leu249, Ile274) are crucial in 

agonist and antagonist binding according previous site-directed mutagenesis studies; 

residues with >0.8kcal/mol energy contribution are important in xanthine-type antagonist 

binding; residues with >0.5kcal/mol energy contribution either have some impact on 

agonist (Thr88) or antagonist (Glu169) binding, or no site-directed mutagenesis data is 

available (Ala63, Leu85, Trp246) for comparison. Although residues with >0.5kcal/mol 

energy contribution are part of the binding pocket, we postulate that they are not crucial 

to antagonist binding, which may be the reason that no site-directed mutagenesis study 

has been done on Ala63, Leu85 and Trp246. 
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Table 5. 4 Important residues involved in the binding of caffeine and ZM241385 to 
the adenosine A2A receptor, comparison of MD simulation results and site-directed 
mutagenesis results. 
 

Residues MD simulation results 
Site-directed mutagenesis 

results 

Ala63 
>0.5kcal/mol energy contribution to binding 
mode 2 and 5 of caffeine-A2A. 

N/A 

Val84 
>0.5kcal/mol energy contribution to binding 
mode 1, 2, 4, 5 of caffeine-A2A and binding 
mode 1 of ZM241385-A2A. 

L: impede xanthine type 
ligand binding.58 

Leu85 
>0.5kcal/mol energy contribution to binding 
mode 4 of caffeine-A2A. 

N/A 

Thr88 
H-bond with caffeine in binding mode 1, 
>0.5kcal/mol energy contribution in binding 
mode 1 and 2 of caffeine-A2A. 

A/S/R/D/E: decrease 
agonist but not antagonist 
activity.60 

Phe168 
>1.2kcal/mol energy contribution to binding 
mode 1, 2, 4, 5 of caffeine-A2A and binding 
mode 1 of ZM241385-A2A. 

A: abolish both agonist and 
antagonist binding and 
receptor activity.29 

Glu169 
>0.5kcal/mol energy contribution in binding 
mode 1 of ZM241385-A2A. 

A: loss of agonist and 
antagonist binding.59 

Met177 
>0.5kcal/mol energy contribution in binding 
mode 4, 5 of caffeine-A2A, and binding 
mode 1 of ZM241385-A2A. 

A: impede antagonist but 
not agonist binding.29 

Trp246 
>0.5kcal/mol energy contribution in binding 
mode 1, 2, 4 of caffeine-A2A. 

N/A 

Leu249 
>1.2kcal/mol energy contribution in binding 
mode 1, 2, 4, 5 of caffeine-A2A and binding 
mode 1 of ZM241385-A2A. 

A: abolish both agonist and 
antagonist binding.29 

His250 

H-bond with caffeine in binding mode 1 and 
4, >0.8kcal/mol energy contribution in 
binding mode 1, 4 of caffeine-A2A and 
binding mode 1 of ZM241385-A2A. 

A: loss of agonist and 
antagonist binding.56,58 

Asn253 

H-bond with caffeine and >0.8kcal/mol 
energy contribution in binding mode 5 of 
caffeine-A2A, H-bonds with ZM241385 and 
2.4kcal/mol energy contribution in binding 
mode 1 of ZM241385-A2A. 

A: loss of agonist and 
antagonist radioligand 
binding.56 

Ile274 
>1.2kcal/mol energy contribution in binding 
mode 1, 2, 4, 5 of caffeine-A2A and binding 

A: loss of agonist and 
antagonist binding.56 
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mode 1 of ZM241385-A2A. 

His278 
H-bond with caffeine in binding mode 1 
and, >1.2kcal/mol energy contribution in 
binding mode 1, 2, 4 of caffeine-A2A. 

A: loss of agonist and 
antagonist binding.56,57 
Y: decrease the binding 
affinity of theophiline57 
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Figure 5. 6: Caffeine binding cavity. The five transmembrane (TM) helices that 
define the caffeine binding cavity are illustrated with different colors: TM II – green, 
TM III – yellow, TM V – cyan, TM VI – magenta, TM VII – grey. Everything else is 
in pink.  
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Figure 5. 7: Caffeine binding cavity, extracellular view. The five transmembrane 
(TM) helices that define the caffeine binding cavity are illustrated with different 
colors: TM II – green, TM III – yellow, TM V – cyan, TM VI – magenta, TM VII – 
grey. Some important pocket residues are labelled (residue numbering see Ref. 54) 
and shown in Lines. Everything else is in pink.  
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Figure 5. 8: Interactions between caffeine and the pocket residues. Only hydrogen 
bonds and aromatic stacking distances are shown. The hydrogen bond length is 
denoted as the average distance between the heavy atoms over 5ns MD simulation. 
The stacking distance is determined by the average distance of center of mass of 
Phe168 and caffeine over 5ns MD simulation. 
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5.5 Conclusion 

Based on the recently solved crystal structure of the engineered human adenosine A2A 

receptor, we docked caffeine to the receptor and performed MD simulations on selected 

docking poses. Five stable binding modes were found and the relative binding energies 

were calculated using MM/PBSA method. Except for binding mode 3, the binding 

energies of all other binding modes are within the range of standard deviation, which 

indicates that none of these binding modes are dominant, and all contribute to the binding 

free energy. Although caffeine is relatively small, with fewer contact centers to form 

strong interaction with the adenosine A2A receptor, it is capable of forming more binding 

modes, which leads to a favourable configurational entropy contribution to the binding 

free energy of the complex.  

Residue-wise MM/GBSA energy decomposition showed Phe168, Leu249 and Ile274 

make significant contribution (>1.2kcal/mol) to the binding modes of both ligands, and 

were clearly conserved through selective and non-selective antagonist binding. These 

three residues and others, which made major contributions (>0.8kcal/mol), were in 

agreement with the results of site-directed mutagenesis studies.  

The recognition of binding modes and associated pocket residues from our 

computational work provides more details and better understanding of the binding 

mechanism of caffeine to the adenosine A2A receptor, which present important insight for 
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the development of treatments for Parkinson’s disease and other diseases associated with 

the adenosine A2A receptor.  

 

Supporting Information 

The Schlitter Formula for entropy is,  

 2 20.5 ln 1 ( / ) ( )
i

S R kTe E i = + ∑ ℏ , (5.10) 

where R is the gas constant, k is the Boltzmann constant, T is the temperature, ℏ  is the 

reduced Planck’s constant, and ( )E i  is the thi  eigenvalue of the mass-weighted 

covariance matrix.  
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Table 5. 5: PCA calculation results for 4 low-energy binding modes of caffeine and 

the dominant binding mode of ZM241385.  

 

Complex 
Caffeine, 
binding 
mode 1 

Caffeine, 
binding 
mode 2 

Caffeine, 
binding 
mode 4 

Caffeine, 
binding 
mode 5 

ZM241385, 
binding 
mode 2 

Entropy 
(kcal/mol.K)  

0.687 0.695 0.662 0.685 0.678 
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6.1 Statement of Problem 

Ionisable residues play important roles in proteins’ structure and function. Protein 

protonation patterns affect fundamental processes such as protein folding, substrate 

binding, and enzyme catalysis. The pH-dependent properties of proteins are of great 

importance in most enzyme-catalyzed reactions.1 The knowledge of the protonation state, 

more specifically the pKa values of key ionisable residues in a protein, is a prerequisite to 

study enzymatic reaction mechanisms. 

Proton binding is strongly influenced by the protein environment, so the pKa of 

ionisable residues in the protein can be very different from the pKa of the amino acid 

molecules in solution. To rigorously determine the pKa of an ionisable residue, one needs 

to compute the free energy difference between the protonated and deprotonated state of 

the residue in the protein environment. Accurately performing this calculation often 

requires computing a fictious chemical reaction path whereby the protein is gradually 

deprotonated. Such calculations are very demanding and can be error-prone, so there are 

also a variety of models, of varying degrees of empiricism, for computing the pKa’s of 

the residues in a protein. In this chapter, we use acetoacetate decarboxylase (AADase) as 

a test case and study many different methods for calculating protein pKa’s.  

 AADase is a prototypal enzyme for pKa shifts of active site residues.11 Lys115 in the 

active site of AADase is the key residue that catalyzes the decarboxylation reaction for 

acetone production, and the protonation state of Lys115 is crucial for the activity of the 
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enzyme. Experimental studies reveal that the pKa value of Lys115 in AADase has shifted 

from 10.5 to 5.9.12,13,14 The recent crystal structure of AADase exhibits a novel protein 

folding that shows that Lys115 is located in the bottom of a hydrophobic cone, where it is 

almost entirely solvent inaccessible.15 Moreover, the crystal structure shows no hydrogen 

bonds or close-range charge-charge interaction involving Lys115. Most computational 

methods can provide accurate pKa prediction for surface residues and residues with small 

pKa shifts, but not for a residue in a novel environment like Lys115. Lys115 in AADase 

provides the computational community a challenge in pKa prediction methods.  

In this chapter we use three different types of pKa prediction methods to calculate the 

pKa of Lys115 in AADase: molecular dynamics/thermodynamic integration (MD/TI) 

method with implicit solvent, the multiconformation continuum electrostatics (MCCE) 

method, and the empirical method PROPKA. As we expected, the pKa prediction of 

Lys115 depends on the right protonation patterns of other ionisable groups, especially the 

close-by Glu76. Unfortunately, the above-mentioned pKa prediction methods do not 

explicitly sample the protonation patterns of other ionisable residues. When Glu76 is 

deprotonated, all three methods give the wrong pKa value for Lys115.  

According to previous site-directed mutagenesis studies, the mutation of Glu76 

(negatively charged if unprotonated) to Gln (neutral) causes no change in Km (the 

Michaelis constant), which suggests that Glu76 has no effect on the pKa shift of Lys115. 

We postulate that the pKa of Glu76 is also shifted so that Glu76 is protonated (neutral) in 
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AADase. If protonated Glu76 is used in MD/TI calculation, the pKa of Lys115 is 

predicted to be 5.3, which agrees well with the experimental value of 5.9. 

 

6.2 Introduction 

AADase catalyzed acetone and butanol production (AB fermentation) was one of the 

first large-scale industrial fermentation processes.1  The production of butanol in a 

microbial fermentation was first reported by Pasteur in 1861, and the production of 

acetone by fermentation was reported by Schardinger in 1905. In 1914, Weizmann 

developed a culture later named Clostridium acetobutylicum that could produce acetone 

and butanol at high yields from a variety of starchy substances. This process was widely 

applied during World War I and World War II due to the large demand of acetone as 

solvent for the production of nitrocellulose. Production of solvents by the AB 

fermentation almost completely ceased during the early 1960s. However, in the last 

decade there has been renewed interest in AADase-catalyzed production of solvents 

because the biological fermentation process is environmentally friendly and uses 

renewable source materials..  

The mechanism of the enzyme-catalyzed decarboxylation was studied by Westheimer 

and coworkers starting in the 1940s.2-5 Inspired by the mechanism of the decarboxylation 

of dimethylacetoacetic acid catalyzed by aniline7,8, they proposed that the enzymatic 

decarboxylation took place through the formation of a Schiff base intermediate between 
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the enzyme and the substrate2,6. Using radioactive acetoacetate and sodium borohydride 

to label and trap the intermediate, followed by hydrolysis of the resulting protein, a single 

radioactive peptide was isolated, and therefore the sequence of amino acids in the active 

site of the AADase was solved.9,10 Lys115 was recognized as the key catalytic residue 

involved in the Schiff base formation.  

The optimum pH value for AADase catalyzed decarboxylation is around 6. Since the 

pKa of the protonated ε-amino group of free lysine is 10.5, Lys115 should be completely 

protonated at pH 6. However, the proposed catalytic mechanism of AADase requires a 

free amino group, not an ammonium salt group, as a nucleophile for the formation of 

Schiff base.11 Therefore, the pKa of Lys115 must have shifted in the protein environment. 

Two independent experimental methods had been performed to measure the pKa of 

Lys115 in AADase: the reporter group method12,13 and a kinetic method14. The 

experimental pKa value of Lys115 in AADase is reported to be around 5.9, which 

indicates a large pKa shift of –4.6.  

Many researchers have tried to explain this large pKa shift. Westheimer proposed that 

the large pKa shift of Lys115 resulted from its proximity to the positively charged ε-

ammonium group of Lys116, which destabilised the protonated state of Lys115. (This 

hypothesis is historically significant; it was the first time microenvironment effects were 

invoked in enzymology.15) However, the recent crystal structure of AADase (PDB 

ID:3BH2, AADase refers to CaAADase in this manuscript) exhibits a previously 

unknown fold, where Lys115 is located in the bottom of a hydrophobic cone, and Lys116 
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is facing away from Lys115, and with the two lysine ζ-N separated by 14.8Å.15 The large 

distance between the ζ-N atoms implies that the large pKa shift of Lys115 is not from 

Coulombic destabilisation, but from the properties of the hydrophobic cone environment.  

For many decades AADase had been cited as the prototypical example of pKa shifts 

of active site residues.16 Westheimer’s electrostatic microenvironment proposal is widely 

cited and taught in textbooks. With the unveiling of the AADase crystal structure, 

Westheimer’s proposal about the pKa shift of Lys115 has been replaced by new 

hypothesis, which indicates that the pKa shift is mainly due to the desolvation effects 

induced by the hydrophobic environment. Confirmation of this hypothesis using 

computational methods is interesting and challenging.    

In the last two decades many methods have been developed to predict the pKa shifts 

of the ionisable amino acids. These methods can be categorized into four types:  Poisson-

Boltzmann equation based methods17-19, such as MCCE (multiconformation continuum 

electrostatics)20-22 and MEAD (macroscopic electrostatics with atomic details)23,24; 

empirical methods25-27 such as PROPKA; quantum mechanics method on selected cluster 

models28; and the molecular dynamics (MD) or quantum mechanics/molecular 

mechanics(QM/MM) free energy simulation methods27,29, such as thermodynamic 

integration (TI)30 and free energy perturbation (FEP)31,32.  

In PB equation methods, the protein and the solvent are given separate dielectric 

constants, and the charge distribution of the protein is usually represented by the partial 

charges from a molecular mechanics force field. The electrostatic potential is determined 
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by solving the PB equation and the work of mutating the ionisable groups from the 

solvent to the protein environment (also called solvation energy) can be solved for 

calculating the pKa shift from solvent to protein environment. PB equation-based 

methods can yield accurate pKa values in some cases, but they are dependent on the 

charge distribution and protein conformation and they are sensitive to the choice of 

protein dielectric constant.  

Empirical methods start with the factors that are believed to influence protein pKa 

values (e.g., in PROPKA, the key terms are hydrogen bonds, desolvation effects, and 

charge-charge interactions), then parameterize these factors based on experimentally 

available pKa values. The accuracy of empirical methods depends on fitting procedure 

and the choice of reference protein pKa values to which the parameters are fit. Such 

methods can be unreliable for residues in environments very different from any residue in 

the training set. 

The MD and QM/MM free energy simulation methods calculate the deprotonation 

free energy difference of the ionisable groups in solution and in the protein environment, 

and accordingly give the pKa shifts from aqueous solution to the protein environment. 

The free energy simulation methods are the most fundamental ways to calculate the pKa 

values. The MD and QM/MM free energy simulation methods provide a fully atomistic 

simulation of the entire system. The protein electrostatics and other nonbonded 

interactions are modeled explicitly. These are also the most expensive methods.  
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In this manuscript we report our attempts to use molecular dynamics/thermodynamic 

integration (MD/TI), MCCE and PROPKA to calculate the pKa shift of Lys115 in 

AADase. In the following Section 2, we give a detailed description of each method. Then 

we present our calculation results in Section 3, followed by comparison and discussion of 

the results in Section 4. In section 5 we conclude that the pKa shift of Lys115 is most 

likely due to the fact that Glu76 is protonated in AADase. 

 

6.3 Methods 

6.3.1 Molecular dynamics/thermodynamic integration (MD/TI) for calculating pKa 

shifts 

6.3.1.1 The calculation of pKa shifts and free energy differences 

The pKa value is proportional to the deprotonation free energy of an ionisable group,  

2.3026a

G
pK

RT

∆
= .                                     (6.1) 

The deprotonation free energy is the free energy difference between the unprotonated and 

protonated states of the system. 

According to the thermodynamic cycle (Figure 6.1), the pKa shift (
apK∆ ) of an 

ionisable group from the aqueous solution to the protein environment can be denoted as 

the difference in the deprotonation free energies ( G∆∆ ), 
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2.3026 2.3026

p s

a

G GG
pK

RT RT

∆ − ∆∆∆
∆ = = , (6.2) 

where pG∆  is the deprotonation free energy in the protein environment, that is, the free 

energy difference between the unprotonated and protonated state of the protein. The 

protein is solvated in implicit or explicit water. sG∆  is the deprotonation free energy of 

the model compound in solution, where again solvation effects can be modelled with 

either explicit (molecular mechanics-based) or implicit (continuum solvation) water 

models. The model compound is defined as the amino acid in a dipeptide chain, and both 

sides of the backbone of the dipeptide chain are capped with methyl groups (Figure 6.2).  
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Figure 6. 1 The thermodynamic cycle 

 

 

 

 

 

 

 

 

 
Figure 6. 2 The model compound (ACE-LYS-*ME) 
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6.3.1.2 Thermodynamic integration (TI) for calculating the deprotonation free 

energies 

The free energy difference between the protonated (initial) state and deprotonated 

(perturbed) state of the ionisable group can be calculated using thermodynamic 

integration. Denote the energy function of the initial state as iV  and the energy function 

of the final perturbed state as fV . As we gradually mutate the system from the initial state 

to the final state, the energy function of the system can be represented as a linear 

combination of 
iV  and 

fV through a coupling parameter λ , 

 ( ) (1 ) i fV V Vλ λ λ= − + . (6.3) 

Changing λ  from 0 to 1 represents mutation from state i  to f . The values of λ  

correspond to a hybrid system that consists of a mixture of the initial and final energy 

functions. The free energy difference (Gibbs free energy for NPT ensemble or Helmholtz 

free energy for NVT ensemble) between state i  and f  is given by,  

 
1 1

0 0

H dV
G d d

d

λ λ

λ λ
λ λ

λ λ
λ λ

= =

= =

∂ ∆ = = ∂ ∫ ∫ , (6.4) 

where the brackets indicate ensemble average over the MD simulations for a given λ  

value. In practice a numerical integration method (typically Gaussian quadrature) is used 

to calculate the integral in Eq. (6.4):   

 
( )

i

i i

V
G

λ
ω

λ
∂

∆ =
∂∑ , (6.5) 
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In this paper the energy function is modelled using a molecular mechanics potential-

energy function. The potential function involves the bonded terms, electrostatic terms, 

and van der Waals terms. For the deprotonation process, the bonded terms associated 

with the disappearing of the proton are internal to the amino acid, so they are the same for 

the model compound and the protein, and consequently the bonded terms are cancelled 

out in  calculating G∆∆  and apK∆ . The van der Waals terms are negligible because the 

molecular mechanics force field assigns small Lennard-Jones parameters to hydrogen 

atoms. Therefore, most of the deprotonation free energy arises from the electrostatic 

changes: the loss of a positive charge from deprotonation and the rearrangement of 

charges on the remaining atoms in the amino acid upon protonation.  

The deprotonation process can be simply modelled as the loss of one positive charge 

and the rearrangement of partial charges on the atoms of the amino acids as shown in 

Figure 6.3. The numbers outside of the parentheses are the partial charges on the atoms of 

the amino acid in the protonated form (denoted LYS in Amber force field), and the 

numbers inside the parentheses are the partial charges on the atoms of the deprotonated 

amino acid (denoted LYN in Amber force field).  
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Figure 6. 3 Mutation of charges on the lysine group during thermodynamic 

integration. Charges outside of the parenthesis are the charges on protonated lysine 

group, charges inside the parenthesis are the charges on deprotonated lysine group. 
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6.3.1.3 Thermodynamic integration with Glu76 unprotonated 

The thermodynamic integration simulations are based on 5 λ  values 

( 0,0.1127,0.5,0.8873,1λ = ). According to the weights of Gaussian quadrature 

( 0,0.27777,0.44444,0.27777,0ω = , corresponding to the 5 λ  values), the weights for 

the two end points ( 0λ =  and 1λ = ) are 0, so actually we only do simulations on three 

windows 0.1127,0.5,0.8873λ = . The protein deprotonation free energy is calculated 

based on MD simulations on chain A of the AADase crystal structure (PDB ID: 3BH2). 

All other ionisable groups in the protein are assigned to their natural protonation states at 

pH=6.0 (the optimum pH value for AADase catalysis). For example, all glutamic 

residues are unprotonated, including Glu76 (pKa of free glutamic acid is 4.07); all 

arginines are protonated (pKa of free arginine is 12.48), all histidines are doubly 

protonated (pKa of histidine is 6.04), etc. The model compound deprotonation free energy 

is calculated based on MD simulations on the model compound as shown in Figure 6.2. 

The simulations were performed in generalized Born (GB) implicit solvent model33 using 

the Amber 10 program package34 and the standard FF03 Amber force field33,35. For each 

λ  value the system was equilibrated for 150ps with 10kcal/mol harmonic restraint on the 

protein backbone and the restraint was reduced to 1kcal/mol for the 3ns production phase. 

The TLEAP module in Amber 10 program package is used to add hydrogens, counterions 

and prepare for parameter files and input geometry files. SHAKE algorithm is used to 
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freeze bond length involving hydrogen atoms so that a time step of 2fs can be used for 

the MD simulation.  

For each λ  value, the corresponding 
dV

d λλ
 is calculated based on the MD 

simulation over 3ns. The deprotonation free energies of the model compound and the 

protein can then be calculated using the Gaussian quadrature formula as shown in Eq. 

(6.5). 

6.3.1.4 Thermodynamic integration with Glu76 protonated 

Previous site-directed mutagenesis study has shown that Glu76Gln mutant has the 

same Km as the wild type AADase, indicating that replacing Glu76 with an neutral 

residue gives no pKa shift for Lys115.15 Glu76 is 4.3Å away from the ζ-N atoms of 

Lys115 in chain A. If it is unprotonated as other pKa prediction methods indicate,36 the 

negative charge on Glu76 will favour the protonated state of lysine. Therefore we 

postulate that the pKa of Glu76 is also shifted so that Glu76 is protonated in AADase. In 

this MD/TI calculation, the protonation patterns of other ionisable groups are the same as 

the MD/TI calculation in Section 6.3.1.3, except for Glu76. The MD simulations were 

performed using the same protocol for thermodynamic integration.  

 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu        McMaster University – Department of Chemistry and Chemical Biology 

 

 

187 

6.3.2 pKa calculation using MCCE 

Poisson-Boltzmann (PB) equation based methods calculate the pKa shift of an 

ionisable group from aqueous solution to the protein environment by estimating the free 

energy difference of moving the unprotonated and protonated states of the ionisable 

group from aqueous solution to the protein environment. According to the 

thermodynamic cycle (Figure 6.1),  

 
( ) ( )

2.3026 2.3026 2.3026
p s s p s p

a

G G G A G AHG
pK

RT RT RT

→ →∆ −∆ ∆ −∆∆∆
∆ = = = , (6.6) 

where s pG →∆ is the free energy change from moving the ionisable group from the aqueous 

solution to the protein environment. (The unprotonated state is denoted A and the 

protonated state is denoted AH.) 
s pG →∆   is often called the reaction field energy or 

solvation energy. s pG →∆  is estimated using the electrostatic potential obtained by solving 

PB equation, 

 801
( )

2
s p i i i

i

G q εφ φ→∆ = −∑ . (6.7) 

In PB equation based methods the protein is usually defined as a region of a low 

dielectric constant ( 4 ~ 20ε = ) and surrounded by solvent water with a high dielectric 

constant (80). The accuracy of PB equation based methods requires that one choose an 

appropriate protein dielectric constant and a representative conformation of the protein. 

In MCCE method, the side chain flexibility from extra hydrogen bond orientations (e.g., 

due to the ambiguousness of O and N atom positions in the amide group of Asn and Gln, 
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or the C and N atom positions in the imidazol ring of His from the crystal structure) and 

hydroxyl rotamers are considered when generating conformers of the protein. The 

preselected conformers are subjected to Monte Carlo sampling to generate a Boltzmann 

distribution of conformers. One conformer of each residue constitutes a microstate. 

Instead of solving the PB equation on one single conformation (e.g., the crystal structure), 

the PB equations are solved for M conformers using the standard PB solver Delphi37,38. 

And an M M× conformer-conformer pairwise electrostatic interaction matrix is obtained; 

this allows us to determine the dielectric boundary for each microstate. More details 

about the MCCE method can be found in Ref 21,22.  

QUICK MCCE calculation only makes isosteric rotamers by swapping O with N 

atoms in the amide group of Asn and Gln, or CD2 with ND1 and CE2 with NE1 atoms in 

His, so there are about 2.5 conformers per residue. FULL MCCE calculation considers all 

possible side chain flexibilities and makes about 20 conformers per residue (about 50 

conformers per ionisable residue, 15 conformers per polar residue and 5 conformers per 

non-polar residue). Both QUICK and FULL conformer searches are performed on chain 

A of the crystal structure of AADase using MCCE2.4 program package22. For both 

QUICK and FULL MCCE calculations the pKa values are calculated using two different 

dielectric constants of the protein: 4 and 8.  
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6.3.3 pKa calculation using PROPKA 2.0 

PROPKA determines the pKa of ionisable group empirically by parameterizing the 

following determinants: global (GlobalDes) and local (LocalDes) desolvation effects, 

side-chain (SC-HB) and backbone (BB-HB) hydrogen bonds, and Coulomb interactions 

between charged groups (chg-chg), as shown in Eq. (6.8), 

 
a GlobalDes LocalDes SC HB BB HB chg chgpK pK pK pK pK pK− − −∆ = ∆ + ∆ + ∆ + ∆ + ∆ . (6.8) 

The formulae for the pKa determinants and the associated parameters can be found in Ref. 

25,26. 

The pKa of Lys115 was first calculated based on chain A of the crystal structure of 

AADase alone. A comparison of all 4 monomers in the crystal structure (PDB ID: 3BH2) 

has shown that there are some differences in the active site, probably due to the resolution 

of X-ray crystallography. We also performed PROPKA calculation on the other 3 

monomers (chains B, C and D) in the crystal structure. Since AADase is believed to be a 

dodecamer in solution, we built the dodecamer of AADase from the tetramer structure 

provided in the crystal structure, based on the symmetry information provided in the PDB 

file. PROPKA calculations were performed on the dodecamer, and then the average pKa 

value was obtained from the twelve monomers.  

 

6.4 Results and Discussion 
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6.4.1 Results from MD/TI pKa calculations 

6.4.1.1 With Glu76 unprotonated 

The /dU d
λ

λ  value for each λ  is shown in Table 6.1 for the model compound and 

AADase. The difference between the deprotonation free energies of the model compound 

and AADase is -1.14kcal/mol, therefore the pKa shift of Lys115 from the aqueous 

solution to the protein environment is predicted to be -0.83. Even though Glu76 is 

unprotonated and carries a negative charge, the pKa shift of Lys115 is in the right 

direction, but with a large error compared to the experimental pKa shift of -4.6. 

 

Table 6. 1: MD/TI results with Glu76 unprotonated 
 

/dU d
λ

λ  over 3ns (kcal/mol) 
λ  ω  

Model compound AADase 
0.1127 0.27777 14.95 17.61 

0.5 0.44444 14.59 13.44 
0.8873 0.27777 14.22 9.30 

G∆  14.59 13.45 
G∆∆  -1.14 

apK∆  -0.8 

 
 

6.4.1.2 With Glu76 protonated 

Results from MD/TI with Glu76 protonated are shown in Table 6.2. The difference 

between the deprotonation free energies of the model compound and the AADase is 
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calculated as -7.22kcal/mol using Gaussian quadrature formula in Eq. (6.5), and the pKa 

shift of Lys115 from the aqueous solution to the protein environment is calculated as -5.3 

according to Eq.(6.2). We can see that, with Glu76 protonated (neutral), the pKa shift of 

Lys115 matches well with the experimental value of -4.6. This result is supported by the 

site-directed mutagenesis study that showed that replacing Glu76 by a neutral residue 

didn’t change the pKa.  

 

 Table 6. 2: MD/TI results with Glu76 protonated 
 

λ  ω  /dU d
λ

λ  over 6ns (kcal/mol) 

  Model compound AADase 
0.1127 0.27777 14.95 10.63 

0.5 0.44444 14.59 7.38 
0.8873 0.27777 14.22 4.17 

G∆  14.59 7.39 
G∆∆  -7.2 

apK∆  -5.2 

 

6.4.2 Results from MCCE calculations 

The results of QUICK and FULL MCCE calculations with dielectric constants 4 and 

8 are shown in Table 6.3. With MCCE method a dielectric constant of 4 is suggested for 

large proteins (>200 residues), and a dielectric constant of 8 is suggested for small 

soluble proteins. AADase is a large protein with 244 residues in one chain. As we can see 

in Table 6.3, FULL MCCE calculation with a dielectric constant 4 gives the best pKa 
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value of 8.90, with a pKa shift of -1.6. The extreme sensitivity of MCCE to dielectric 

constant is disconcerting, and was also noted by Ishikita.36 

 

Table 6. 3: pKa values of Lys115 from MCCE calculations. 
 

Protein Dielectric Constants QUICK FULL 
4ε =  9.4 8.9 
8ε =  12.0 12.5 

 
 

6.4.3 Results from PROPKA calculations 

AADase is a homododecameric enzyme. The crystal structure (PDB ID: 3BH2) 

provides a tetramer structure, with its monomer labelled as chain A, B, C and D, 

respectively.  Using the symmetry information and the tetramer structure provided in the 

PDB file, we built the dodecamer using PyMol. PROPKA calculations were performed 

on the 4 single chains in separate forms and on the dodecamer (see Table 6.4). The 

average pKa value of Lys115 from the single chain is 9.3, with a pKa shift of -0.8; and 

the average pKa value of Lys115 in the dodecamer is 8.1, with a pKa shift of -2.4 (Table 

6.4).  
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Table 6. 4: pKa values of Lys115 from PROPKA calculations. 
 

Desolvation Protein 
Environment 

Chain 
pKa 

value 
pKa 
shift Global Local 

Coulomb 
(Glu76) 

Average 
pKa value 

Average 
pKa shift 

A 9.8 -0.7 -2.22 -0.63 2.13 
B 9.8 -0.7 -2.58 -0.49 2.40 
C 8.6 -1.9 -2.26 -0.42 0.78 

Single chain 

D 9.1 -1.4 -2.23 -0.42 1.20 

9.3 -0.8 

A 8.5 -2.0 -3.46 -0.63 2.13 
B 8.9 -1.6 -3.52 -0.49 2.40 
C 7.4 -3.1 -3.44 -0.42 0.78 

Dodecamer 

D 7.8 -2.7 -3.45 -0.42 1.20 

8.1 -2.4 

 

The breakdown of the contributions to the PROPKA results is shown in Table 6.4. 

This reveals that the pKa shift of Lys115 is due to the Coulomb interaction with the 

negative charged residue Glu76 in the close proximity and due to global and local 

desolvation effects. There is no backbone or side-chain hydrogen bond associated with 

the amino group of Lys115, and there are only two charged groups within 10Å of NZ of 

Lys115: the negative Glu76 (if unprotonated) and the positive Arg29 (if protonated). The 

positive NH1 and NH2 atoms of Arg29 are over 7Å away, so according to the empirical 

PROPKA formula for charge-charge interaction, the unfavourable charge-charge 

interaction with the protonated form of Lys115 is negligible. The distance of Glu76 to 

Lys115 in the 4 monomers varies from 2.7Å (chain B) to 5.0Å (chain C), which explains 

the pKa difference between the monomers. The major contribution to Lys115 pKa shift is 

the desolvation effects. The global and local desolvation effects favour the pKa shift 

(−4.0 contribution on average), but the Coulomb interaction from Glu76 is against the 
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pKa shift (1.6 contribution by average). Because PROPKA uses the natural protonation 

state of other ionisable residues, the negative charge on the supposedly unprotonated 

Glu76 stablizes the protonated form of Lys115. Previous site-directed mutagenesis 

studies on charged residues (Arg29/Glu76 to Gln) indicate that these residues do not have 

significant impact on the pKa shift of Lys115. The contribution of 1.6 pKa unit of from 

Glu76 in the PROPKA results does not agree with the site-directed mutagenesis results, 

which casts doubt on the protonation state of Glu76. If we leave out the Coulomb 

interaction with Glu76, as suggested by Ho based on the site-directed mutagenesis 

studies,15 then the pKa shift from desolvation effects only (−4.0) is very close to the 

experimental pKa shift of −4.6.  

The difference in the pKa shift of Lys115 in a single AADase chain and in the 

dodecamer is from the global desolvation effect. As shown in the PROPKA results, 

Lys115 is obviously buried deeper in the dodecamer than in the monomer.  

 

6.5 Comparison and discussion of results 

In this study, we calculated the pKa shift of Lys115 in AADase, a buried residue in a 

hydrophobic environment using three different types of methods: MD/TI with implicit 

and explicit solvent, MCCE and PROPKA. In previous benchmarking pKa prediction 

study39, the MD/TI method with implicit solvent model, MCCE and PROPKA all 

achieved an overall RMSD of 1.4.39 Another benchmarking study compared PROPKA to 
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the results from the PB equation based methods MCCE, MEAD, and UHBD.40 They 

claim that among these methods, PROPKA is more accurate for Asp, Glu, Lys and Tyr 

with RMSD values of 0.934, 0.849, 0.260 and 1.001, while MCCE is more accurate for 

His with an RMSD of 1.522.  

When using the natural protonation pattern of other ionisable residues, MD/TI 

calculation with implicit solvent model, FULL MCCE calculation with dielectric constant 

4, and PROPKA calculations on the biologic unit (the dodecamer) all predicted the 

correct direction of the pKa shift direction. However, none of these methods predicted the 

right protonation state of Lys115 in AADase (Table 5). If we assume that Glu76 is 

protonated (neutral), then in MD/TI calculation, the pKa of Lys115 is calculated as 5.3 

(highlighted in Table 6.5), which gives the right protonation state for Lys115 at the 

optimum catalysis pH value of 6.0 of AADase. Without the contribution of the negative 

charge from Glu76, PROPKA predicts the pKa of Lys115 to be 6.5, which is also close to 

the experimental pKa value of 5.9. We can postulate that the pKa of Glu76 is shifted so 

that Glu76 is protonated in AADase. We are running calculations to test this hypothesis.  
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Table 6. 5: Comparison of results from different methods 
 

Methods 
pKa of 
Lys115 apK∆  Experimental 

pKa Value 
Experimental 

pKa shift 

MD/TI with Glu76 
unprotonated 

9.7 -0.8 

MD/TI with Glu76 
protonated 

5.3 -5.2 

FULL MCCE with 4ε =  8.9 -1.6 

PROPKA average on the 
dodecamer 

8.1 -2.4 

5.9 -4.6 

 

In our pKa calculations the protonation patterns cannot be explicitly sampled according 

to site-site interactions of all ionisable residues. Instead the protonation states of all other 

ionisable residues are pre-assigned according to the pKa values of the corresponding free 

amino acids (referred as the natural protonation pattern). Since the pKa values of other 

ionisable residues might shift due to the protein environment, the assignment of 

protonation states could be wrong, which could lead to wrong pKa prediction for the 

target residue. For example, PROPKA results show that Glu76 contributes 1.6 pKa units 

to the pKa shift of Lys115, provided that Glu76 is unprotonated and carries a negative 

charge. But according to site-directed mutagenesis studies, Glu76 does not show 

significant effect on the pKa shift of Lys115, which indicate that Glu76 is protonated. In 

this case, we have to adjust the protonation state of Glu76 in our MD/TI calculation to 

achieve reliable results.  
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A recent computational work on calculating the pKa value of Lys115 in AADase 

claimed that the pKa of Lys115 was calculated as 5.73 using MEAD with protein 

dielectric constant of 4.36 In MEAD calculation, the pKa of the target residue is broken 

into two parts: the first part is pH-independent, including the Born solvation energy and 

the interaction of the charge on the target residue and the background charge from non-

ionisable residues, with all other ionisable residues neutralized; the second part includes 

the interaction between the target residue and other ionisable residues. In the second part, 

the ensemble of the protonation patterns of all other ionisable residues is sampled using 

MD or MC simulation. The sampling of protonation patterns is referred as titration. 

MEAD calculation circumvents the problem of pre-assigned protonation patterns of 

ionisable residues in the protein. But it still has other problems. For example, due to the 

large computational cost of sampling the protonation patterns of all ionisable residues, 

usually only the protonation patterns of some close residues are sampled. The calculation 

results are very sensitive to the choice of ionisable residues. According to our experience, 

excluding one residue from the titration process, the pKa value of the target residue could 

vary from 0.1 to 7.5. The MEAD calculation result is very sensitive to the choice of 

protein dielectric constant as well. According to Ishikita,36 with protein dielectric 

constant of 4, the pKa of Lys115 in AADase was calculated as 5.73, which agrees very 

well with the experimental value of 5.9. But with protein dielectric constant of 6, the pKa 

of Lys115 was calculated as 8.04, which does not predict the right protonation state of 

Lys115. According to Ishikita’s MEAD calculation results,36 Glu76 is unprotonated and 
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has 6.5pKa unit contribution to the pKa shift of Lys115, but this contribution is 

neutralized by the -4.4pKa unit contribution of Arg29. These results do not seem 

consistent with the site-directed mutagenesis study.  

The PROPKA calculations reveal that it is important to include the full biological unit, 

and not just the protein monomer when using empirical protein pKa models. This is true 

even for residues like Lys115, which is not especially close to the surface of the 

monomer. This is in contrast to standard practice, where only the monomer is used. 

While the predicted pKa shift from PROPKA was too small, it was in the right direction, 

and results were closer when the full dodecamer was used. PROPKA results are in good 

agreement with experiment when the electrostatic contribution from the negative charge 

on Glu76 is omitted from the calculation. This supports our hypothesis that the large pKa 

shift in Lys115 is partly due to desolvation and partly due to the fact Glu76 is protonated 

in AADase. 

 

6.6 Conclusion  

Using the recently solved crystal structure, the pKa value of Lys115 in AADase has 

been calculated using three different kinds of pKa prediction methods: MD/TI, MCCE 

and PROPKA. Among those the MD/TI calculation with protonated Glu76 gave the best 

result compared to the experimental value.   
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We postulate that the large errors are due to the site-site interactions from other 

ionisable residues whose protonation patterns are not sampled in our calculations. This 

can be overcome with MD/TI by running TI with different protonation state of nearby 

ionisable residues. Motivated by the site-directed mutagenesis study, we postulate that 

Glu76 is protonated, and used protonated Glu76 for the MD/TI calculation. The resulting 

pKa value of 5.3 for Lys115 agrees well with the experimental value of 5.9.  
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Chapter 7: 

Summary and Future Work 
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7.1 Summary  

This thesis represents my Ph.D. work on developing new methods to elucidate 

chemical reactions. Three different methods were discussed. For small molecules, it is 

computationally feasible to find minimum energy reaction path on the potential energy 

surface (PES), with the PES computed from quantum mechanical models. This gives very 

detailed information about the mechanism of the chemical reaction. Biological systems 

are too large, and entropic effects are too important, for the full reaction path to be 

determined. Instead, free-energy differences between key structures are computed by 

sampling the PES with molecular dynamics (MD); in these applications, the PES is 

modelled using the ball-and-spring-type models known as molecular mechanics. 

Chapter 2 and chapter 3 introduce the fast marching method (FMM) for finding the 

minimum energy path (MEP). FMM is shown to be one of the most general and reliable 

surface-walking algorithms for finding MEP. Without any prior knowledge about the 

PES, it can always find the global MEP. Unfortunately, FMM is an expensive method. 

Therefore, in chapters 2 and 3, some improvements to the original FMM method were 

made, increasing its accuracy and efficiency.  

Chapter 4 presents the QSM-NT method for finding all stationary points on the PES. 

Usually the path-finding methods can only find one reaction path, and the reliability of 

the results depends on the initial guess. QSM-NT can find all stationary points, 

accordingly all alternative reaction paths, which could be a great advantage while 
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studying reactions with several alternative reaction mechanisms or when trying to 

analyze and compare different postulated mechanisms. QSM-NT was proven to be 

efficient and reliable through successful applications to analytical potentials and chemical 

reactions, however it is not a “black box” method and, unlike FMM, sometimes fails.  

For complex biological systems, the properties of the system can no longer be 

represented by a single state, but by averaging over all possible microstates consistent 

with given restraints instead. Statistical sampling methods, such as MD simulation, are 

used to calculate the ensemble average of the system. Chapter 5 and chapter 6 present our 

work on studying biological processes using MD simulation. In these cases, the reaction 

path is not found; instead only the free-energy difference between key stationary points 

on the free-energy surface is determined. Chapter 5 computes a simple free-energy of 

binding where no covalent bonds are created or formed. Chapter 6 looks at a simple 

chemical reaction, the deprotonation of an amino acid in an enzyme.  

Chapter 5 presents a comprehensive computational study on the binding modes of 

caffeine bound to the adenosine A2A receptor. Molecular docking was used to build 

candidate structures of the caffeine-A2A complex. Then 5ns MD simulations were 

performed on the selected docking poses in an approximated physiological environment 

and 5 stable binding modes were found. The relative binding free energy of each binding 

mode was calculated using MM/PBSA method and compared to the binding free energy 

of the ZM241385-A2A complex. Significant pocket residues were identified using 

MM/GBSA energy decomposition and compared to the results of previous site-directed 
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mutagenesis studies. This computational study brings important insight for the targeted 

drug design of the adenosine A2A receptor.  

Chapter 6 presents the pKa calculation of Lys115 in Acetoacetate decarboxylase 

(AADase) with three different types of pKa calculation methods: the molecular 

dynamics/thermodynamic integration (MD/TI) method, a Poisson-Boltzmann equation 

based method (MCCE), and an empirical method (PROPKA). Using the natural 

protonation states of other ionisable residues, none of the three methods could predict the 

correct protonation state of Lys115. But if Glu76 is protonated as indicated by previous 

site-directed mutagenesis studies, MD/TI predicts the pKa of Lys115 to be 5.3, which 

predicts the right protonation state of Lys115 and agrees well with the experimental value 

of 5.9. In PROPKA, we modelled protonated Glu76 (neutral) by zeroing the charge-

charge interaction between Lys115 and Glu76. The predictedpKa of Lys115 is then 6.5, 

which is also close to the experimental value. The case study on Lys115 in AADase has 

shown that the right protonation pattern of other ionisable residues, especially the nearby 

ones, is crucial to the pKa prediction of the target residue, which brings important insight 

to future pKa predictions and development of new pKa calculation methods.  

   

7.2 Future Work 

Finding the reaction path is very important for studying the mechanisms of gas phase 

reactions. The existing path-finding methods require a good initial guess to locate the 
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desired path, otherwise they need to explore a significant portion of the PES, which is 

very expensive  computationally. Our work on developing new path-finding methods is 

only the start of the long journey. There are still lots of work to do on the two methods 

proposed in this thesis.  

FMM is a very general and reliable method. Without prior knowledge of the PES, it 

can always find the global MEP. But it is an expensive method. Moving least square 

enhanced Shepard interpolation has been applied to reduce the computational cost. FMM 

has been successfully applied to analytical PES and small gas-phase chemical reactions. 

To apply FMM to larger systems, we can use the parallel FMM and compute many points 

on the surface at once. The current FMM method still has an exponential dependence on 

the dimensionality of the PES, however, so parallelizing the program will not make it 

possible to look at systems with very many reactive degrees of freedom like proteins with 

ten or more ionisable residues. At this point, FMM is restricted to small systems. 

Medium-sized systems could be accessed if a better interpolation method could be 

designed, so that fewer ab initio calculations were required. For complex biological 

systems with only a few reactive bonds (e.g., enzyme reactions), FMM can be interfaced 

with QM/MM program packages such as Sigma to explore the reaction path.  

The QSM-NT method can find all stationary points on the PES, accordingly all 

alternative reaction paths. The pitfalls of this method include: 1) discontinuous Newton 

trajectories might impede locating all stationary points, and 2) multiple minima on the 

hyperplane might lead to the wrong path. The first problem is inherent to the character of 
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Newton trajectory. The workaround is to try more searching directions and to locate more 

Newton trajectories and their intersections. The second problem is associated with the 

path-finding algorithm (QSM). Using a growing string algorithm (GSM) can solve this 

problem. GSM is more expensive than QSM, so the next step of this program would be to 

design a method that automatically switches from QSM to GSM when the QSM 

calculations is failing to converge to the NT. 

The computational study on the binding modes of caffeine bound to the adenosine 

A2A receptor is a self-contained project. It reveals, however, the difficulty of computing 

the entropic contribution to the binding free energy. New computational methods for 

computing the entropic contribution to protein-ligand binding should be developed. 

The pKa calculations on Lys115 in AADase reveal that the site-site interactions from 

other ionisable residues play important roles on the pKa shift of Lys115. Although our 

calculation results agree with the experimental measurements and results from previous 

site-directed mutagenesis studies, additional calculations on the pKa values of close 

ionisable residues are required to confirm our hypothesis. In particular, it is important to 

calculate the pKa of Glu76, Arg29, Glu61, Arg59 and Lys116 using MD/TI using an 

implicit solvent model. Understanding this complicated network of protonations can 

guide the design of new empirical models for pKa prediction. Such models are 

particularly interesting because MD/TI is slow and tedious, and it is not a reasonable 

method for computing all the pKa’s in a protein.  
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Appendix: 

List of Abbreviations 



 
 
 
 
 

Ph.D. Thesis – Yuli Liu        McMaster University – Department of Chemistry and Chemical Biology 

 

 

211 

(1) Potential Energy Surface (PES) 

(2) Quantum Mechanics (QM) 

(3) Molecular Mechanics (MM) 

(4) Quantum Mechanics/Molecular Mechanics (QM/MM) 

(5) Intrinsic Reaction Coordinate (IRC) 

(6) Steepest Descent Path (SDP) 

(7) Minimum Energy Path (MEP) 

(8) Fast Marching Method (FMM) 

(9) Newton Trajectory (NT) 

(10) String Method (SM) 

(11) Quadratic String Method (QSM) 

(12) Molecular Dynamics (MD) 

(13) Molecular Mechanics/Molecular Dynamics (MM/MD) 

(14) Molecular Mechanics/Poisson Boltzmann Surface Aread (MM/PBSA) 

(15) Molecular Mechanics/General Born Surface Aread (MM/GBSA) 

(16) AcetoAcetate Decarboxylase (AADase) 

(17) Molecular Dynamics/Thermodynamic Integration (MD/TI) 

(18) Multi-Conformation Continuum Electrostatic (MCCE) 

(19) Nudged Elastic Band (NEB) 

(20) Growing String Method (GSM)  

(21) Transition State (TS) 
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(22) Eigenvector Following (EF) 

(23) Gradient Extremal Following (GEF) 

(24) Reduced Gradient Following (RGF) 

(25) Scaled Hypersphere Search (SHS) 

(26) G protein coupled receptor (GPCR) 

(27) Free Energy Perturbation (FEP) 

(28) Particle-Mesh Ewald (PME) 

(29) Macroscopic Electrostatics with Atomic Details (MEAD) 

(30) Thermodynamic Integration (TI) 

 

 


