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Abstract 
Abstract 

 

Filtering strategies play an important role in estimation theory, and are used to extract 

knowledge of the true states typically from noisy measurements or observations made of the 

system. The name ‘filter’ is appropriate since it removes unwanted noise from the signal. In 

2007, the smooth variable structure filter (SVSF) was introduced. This filter is based on the 

sliding mode control and estimation techniques, and is formulated in a predictor-corrector 

fashion. The SVSF makes use of an existence subspace and of a smoothing boundary layer to 

keep the estimates bounded within a region of the true state trajectory. This creates a robust 

and stable estimation strategy. The research presented in this thesis focuses on advancing the 

development and implementation of the SVSF. 

In its original form, the SVSF does not utilize a state error covariance matrix, which is a 

measure of the accuracy of the state estimates. Therefore, the first major contribution of this 

research is the formulation of an SVSF strategy with a covariance derivation. This creates a 

number of research opportunities that can only be pursued and rely on the availability of the 

error covariance matrix. In an effort to further improve the estimation accuracy, a time-varying 

smoothing boundary layer is created by minimizing the covariance. This contribution 

significantly improves the SVSF, and provides a mechanism for combining the SVSF with other 

popular estimation strategies. A linear system example with the presence of uncertainties is 

studied which demonstrates that the proposed SVSF improves the estimation accuracy by 

approximately 20%. Furthermore, a new model-based fault detection strategy is created based 

on the interacting multiple model (IMM) method. This new method (IMM-SVSF) is applied on an 

experimental apparatus for the purposes of fault detection. It is able to improve upon the fault 

detection probability by 10 − 30% (depending on the fault), when compared with the most 

commonly used strategy. The IMM-SVSF method is also found to work extremely well for target 

tracking problems, demonstrating an improvement of roughly 40%. This research results in a 

number of novel contributions, and significantly advances the development of the SVSF. 
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Chapter 1 
1 Introduction 

Introduction 

 

This chapter provides an introduction to the research performed; including the problem 

statement, research contributions and novelty, and organization of the thesis. 

 

1.1 Problem Statement 

Estimation theory is considered to be a part of signal processing and statistics. It involves finding 

a value of some parameter of interest, which affects the output of a system, often in the 

presence of inaccurate or uncertain observations. The purpose of estimation, as described by 

Bar-Shalom et al. in [28], can be one of many reasons: determination of planet orbit parameters, 

statistical inference, aircraft traffic control system (i.e., tracking), use in control plants with 

uncertainties (i.e., parameter identification or state estimation), message retrieval from noisy 

signals (i.e., communication theory), and also signal and image processing. The ability to 

successfully control a mechanical or electrical system depends on the knowledge of the true 

states or parameters of interest. For example, consider a linear mechanical system, where the 

dynamics such as position, velocity, and acceleration are defined to be the states of interest. The 

state dynamics, or how the system operates with time, may be captured by using a state 

representation as follows: 

���� = ��� + 	�� + "�  (1.1.1) 
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Where ��  defines the system states, � is the linear system matrix, 	 is the input gain 

matrix, �� is the corresponding input to the system, and "�  refers to the system noise present 

in the system. To understand the behaviour of a system, elements from the state vector need to 

be observed or measured. Sensors placed in the environment are used to measure the states of 

interest. A relationship exists between the measurements and the states, and may be defined as 

follows: 

%��� = ����� +  ��� (1.1.2) 

Where %� defines the measurements, � refers to the linear measurement matrix, and  � 

refers to the measurement noise present in the sensors. Unless otherwise stated, it is assumed 

in this thesis that the system and measurement noises are modeled as Gaussian noise, with zero 

mean and covariance’s �� and ��, respectively as follows: 

3*"�+~1(0,��) (1.1.3) 3* �+~1(0,��) (1.1.4) 

Therefore, it is the role of a filter to extract knowledge of the true states typically from 

noisy measurements or observations made of the system, and form state estimates �7�. The 

name ‘filter’ is appropriate since it removes unwanted noise from the signal. Typically, in solving 

linear estimation problems, the system and measurement dynamics are model based and may 

be described by discrete-time equations, such as (1.1.1) and (1.1.2). The concept of filter applies 

equally well to nonlinear systems and measurements, defined respectively by: 

���� = *�� ,��+ + "� (1.1.5) %��� = ℎ*����+ +  ��� (1.1.6) 

Where  and ℎ represent the nonlinear system and measurement models, respectively. 

The most popular and well-studied estimation method is the Kalman filter (KF), which was 

introduced in the 1960s [29,30]. As will be explained later in Chapter 2, the KF yields a 

statistically optimal solution for linear estimation problems, as defined by (1.1.1) and (1.1.2), in 

the presence of Gaussian noise. 
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The KF is formulated in a predictor-corrector manner, and is implemented recursively. 

The states are first estimated using the system model, termed as a priori estimates, meaning 

‘prior to’ knowledge of the observations. A correction term is then added based on the 

innovation (also called residuals or measurement errors), thus forming the updated or a 

posteriori (meaning ‘subsequent to’ the observations) state estimates. The KF has been broadly 

applied to problems covering state and parameter estimation, signal processing, target tracking, 

fault detection and diagnosis, and even financial analysis [31,32]. The success of the KF comes 

from the optimality of the Kalman gain in minimizing the trace of the a posteriori state error 

covariance matrix. The trace is taken because it represents the state error vector in the 

estimation process [33]. A number of different methods have extended the classical KF to 

nonlinear systems, with the most popular and simplest method being the extended Kalman filter 

(EKF) [34,35]. The EKF is conceptually similar to the KF; however, requires linearization of the 

nonlinear system and measurements models. The optimality of the KF comes at a price of 

stability and robustness. The KF assumes that the system model is known and linear, the system 

and measurement noises are zero mean Gaussian, and the states have initial conditions with 

known means and variances [34,28]. However, the previous assumptions do not always hold in 

real applications. If these assumptions are violated, the KF may yield suboptimal results and can 

become unstable [36]. 

In 2007, the smooth variable structure filter (SVSF) was introduced and is based on 

variable structure theory and sliding mode concepts [37]. It implements a switching gain to 

converge the estimates to within a boundary of the true states, referred to as the existence 

subspace. As demonstrated in the literature, and to be reinforced throughout this thesis, the 

SVSF provides a robust and stable estimate to modeling uncertainties and errors [37,38]. This is 

particularly advantageous when the system model is not well-defined or known to the user. The 

SVSF also offers other advantages which will be explored throughout this thesis. However, since 

the filtering strategy is relatively new, a number of research opportunities exist with the SVSF. It 

is therefore the goal of this research to further advance and develop the SVSF; in particular, to 

improve its performance and increase the number of its useful applications. 



Ph.D. Thesis

S. A. Gadsden
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The main research involves the field of state and parameter estimation, with a concentration on 

further developing the 

it does not yield an optimal state estimate in 

robust and stable to modeling uncertainties and errors. Expanding on the current form of the 

SVSF yields many more opportunities and applications for this new filter.
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A time-varying SBL increases the overall estimation accuracy of the SVSF, and creates a 

mechanism for the SVSF to be combined with other Kalman-based filtering strategies to further 

improve accuracy while maintaining robustness to uncertainties. Furthermore, a time-varying 

SBL provides another indicator of performance, including the ability to detect system changes. 

Another contribution of this research is the formulation of an interacting multiple model (IMM) 

method based on the SVSF filtering strategy. This methodology can be applied on target 

tracking, as well as fault detection and diagnosis problems. The IMM-SVSF methodology makes 

use of a finite number of models (i.e., based on the system behaviour), and the robustness of 

the SVSF strategy, to create a more accurate estimation method.  

These contributions are significant to the development of the SVSF, as well as to the 

body of knowledge in the estimation field. To summarize the research, the contributions may be 

broken down into primary and secondary research goals, as follows. 

Primary Contributions: 

1. Covariance derivation for the SVSF estimation strategy (linear and nonlinear systems). 

2. Time-varying SBL widths, based on minimizing the trace of the state error covariance. 

3. Formulation of the IMM-SVSF (based on the covariance derivation for the SVSF) with 

applications for fault detection and diagnosis of mechanical and electrical systems, as 

well as target tracking problems. 

The following secondary contributions are only possible due to the primary contributions, 

and are listed as follows. 

Secondary Contributions: 

1. Proposal of a smoothing boundary layer matrix, as opposed to a vector, which is 

important for the calculation of a time-varying SBL. 

2. Creation of a new robust filtering strategy for linear systems, based on combining 

elements of the KF with the SVSF. 
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3. Development of the time-varying smoothing boundary layer creates another indicator of 

performance. In particular, the widths may be used to determine the presence of 

modeling uncertainties, as well as detect any changes in the system. 

4. Combination of the SVSF with other nonlinear estimation strategies to increase the 

overall estimation accuracy while maintaining stability (i.e., extended KF, unscented KF, 

and cubature Kalman filter). 

5. A better understanding of how the SVSF behaves according to its smoothing boundary 

layer, and the presence of modeling uncertainties. 

The advancements of the SVSF, as outlined above, are validated through a number of 

computer experiments (typically mechanical systems and target tracking examples). 

Furthermore, an experimental setup (the electrohydrostatic actuator) was used to further 

demonstrate the theory developed in this thesis. 

1.3 Organization of the Thesis 

This thesis is organized as follows. Chapter 2 reviews the main literature on conventional 

estimation forms such as the Kalman filter. Furthermore, it provides an overview of the popular 

multiple model methods, and briefly discusses sliding mode estimation. In Chapter 3, the SVSF is 

described in detail, including its predecessors. A covariance derivation for the SVSF is provided in 

Chapter 4, and is applied to both linear and nonlinear systems. Two computer experiments are 

provided in order to demonstrate the results of this chapter. 

A new form of the SVSF based on minimizing the trace of the covariance is derived and 

discussed in Chapter 5. This allows the SVSF to be combined with other filtering strategies (such 

as the Kalman filter, extended and unscented Kalman filter, and cubature Kalman filter) to 

increase the overall accuracy and robustness of the estimation process. Chapter 6 introduces 

the IMM form of the SVSF. This new strategy, referred to as the IMM-SVSF, is used primarily for 

two applications: target tracking (i.e., radars and global position systems), and fault detection 

and diagnosis of mechanical and electrical systems (i.e., an electrohydrostatic actuator). 
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Recommendations for future research work and concluding remarks are made in the final 

chapter. Furthermore, a number of conference and journal publications have been prepared 

during the research process and development of this thesis [1-27]. These papers are a result of 

research directly and indirectly related to the work presented in the following chapters. 
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Chapter 2 
2 Literature Review 

Literature Review 

 

Estimation theory is an important tool for the successful control of mechanical and electrical 

systems. This chapter provides a comprehensive review of a number of conventional estimation 

strategies (i.e., Kalman-based methods). The concepts of multiple model methods are also 

reviewed. Finally, the chapter concludes with introducing and providing an overview of sliding 

mode estimation methods. 

 

2.1 A (Very) Brief History of Estimation Theory 

Modern control theory relies on reliable state estimates in order to provide accurate and safe 

control of mechanical and electrical systems. Estimation theory is therefore an important tool 

for providing accurate state and parameter estimates. The development of estimation 

techniques spans nearly five centuries, and involves a number of contributors from a variety of 

fields. The following figure shows the lifelines of a number of important contributors to the field 

of estimation, and who are famous in their own right [39]. Girolamo Cardano made the first 

major contribution by providing an accurate analysis of probabilities, and also helped to 

formulate the law of large numbers [34]. His work on general probability was developed further 

by Pascal, Fermat, Huygens, and Bernoulli [34]. Thomas Bayes would later derive his famous rule 

for statistical inference, which forms the basis for some Bayesian estimation techniques [32]. 

During the nineteenth century, it became apparent that probabilistic theory could be used to 

study and even model natural phenomena and systems [39]. 
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Figure 2.1.1. Lifelines of Important Contributors to Estimation Theory [39] 

Based on probability and statistical methods, Andrei Markov developed the Markov 

process or chain [28]. This theory states that the instantaneous variation with time of the 

probability distribution of system states is determined by its current distribution, which includes 

the effects of all the past events of the system [39]. Another very important contributor to the 

field of estimation was Andrei Kolmogorov, who helped formulate the mathematical basis of 

probability and random processes [39]. In fact, his work, along with Norbert Wiener, founded 

the basics of estimation; including the theory of prediction, filtering, and smoothing. The 

concept of prediction refers to estimation methods that use measurements or observations 

prior to the time that the state of the system is to be estimated, or 5�� < 5���  [28]. Filters use 

measurements up to and including the time of interest, or 5�� ≤ 5���. Finally, smoothers make 

use of measurements beyond the desired time of interest, such that the estimate is refined 

further, or 5�� > 5��� [28]. 
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An estimate of the signal �7*5+ may be obtained using a gain ��� , as follows: 

�7*5+ = ���*5+ ∗ %*5+ (2.2.2) 

Where ∗ refers to the convolution operator. The solution that yields the estimate �7*5+ 

of the process is obtained in the frequency domain, where the gain ���  is a transfer function 

calculated by using Fourier transforms [28]. This process attempts to minimize the mean square 

error. The WF gain may be defined by [34,42]: 

���*5+ = ℱ�� 8�� − ���� 9 (2.2.3) 

Where ℱ�� refers to the inverse Fourier transform. Furthermore, �� and �� refer to the 

Fourier transforms of the measurement and noise autocorrelations, respectively (i.e., the power 

spectrums) [34,42]. During the 1950s, a significant amount of work was put into developing the 

WF strategy [43,44]. In particular, NASA was interested in implementing estimation strategies 

for space navigation problems [45]. 

2.3 The Kalman Filter 

In 1960, Rudolph Kalman presented a new approach to linear filtering and prediction problems, 

which would later become known as the Kalman filter (KF) [29]. This method was successfully 

applied by NASA for their lunar and Apollo missions, and quickly became the ‘workhorse’ of 

estimation [34,46]. The KF yields a statistically optimal solution for linear estimation problems, 

as defined by (1.1.1) and (1.1.2), in the presence of Gaussian noise defined by (1.1.3) and (1.1.4). 

The KF is a model based method, derived in the time domain and a discrete-time setting. A 

continuous-time version was developed by Kalman and Bucy, and is consequently referred to as 

the Kalman-Bucy filter [47]. However, this thesis is concerned only with discrete-time estimation 

problems. 
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2.3.1 The KF Equations 

The following five equations form the core of the KF algorithm, and are used in an iterative 

fashion. Equations (2.3.1.1) and (2.3.1.2) define the a priori state estimate �7���|� based on 

knowledge of the system � and previous state estimate �7�|�, and the corresponding state error 

covariance matrix ����|�, respectively. 

�7���|� = ��7�|� + 	�� (2.3.1.1) ����|� = ���|��� + �� (2.3.1.2) 

The Kalman gain ���� is defined by (2.3.1.3), and is used to update the state estimate �7���|��� as shown in (2.3.1.4). The gain makes use of an innovation covariance ����, which is 

defined as the inverse term found in (2.3.1.3). 

���� = ����|���:�����|��� + ����;�� (2.3.1.3) �7���|��� = �7���|� + ����:%��� − ��7���|�; (2.3.1.4) 

The a posteriori state error covariance matrix ����|��� is then calculated by (2.3.1.5), 

and is used iteratively, as per (2.3.1.2). 

����|��� = *� − �����+����|� (2.3.1.5) 

The derivation of the KF is well documented, with details available in [29,30,33]. The 

optimality of the KF comes at a price of stability and robustness. The KF assumes that the system 

model is known and linear, the system and measurement noises are white, and the states have 

initial conditions with known means and variances [28,34]. However, the previous assumptions 

do not always hold in real applications. If these assumptions are violated, the KF yields 

suboptimal results and can become unstable [36]. Furthermore, the KF is sensitive to computer 

precision and the complexity of computations involving matrix inversions [39]. 
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2.3.2 Overcoming Issues with the KF 

This section summarizes methodologies for overcome issues with the KF (i.e., strict assumptions, 

numerical stability, and matrix inversions). As demonstrated in literature, the state error 

covariance matrix must be symmetric and positive-definite in order to properly represent the 

statistics for state vector components [48]. In linear algebra, a symmetric matrix is defined as a 

square matrix which is equal to its corresponding transpose. Consider a symmetric matrix �, 

then the following is satisfied: 

� = �� (2.3.2.1) 

A symmetric matrix � is considered positive-definite if the following is satisfied: 

<��< > 0 (2.3.2.2) 

Where < is a non-zero vector with real entries. Essentially, the above two definitions 

ensure that the off-diagonal elements of the state error covariance matrix are equal to each 

other (i.e., 3�� = 3��), and that the elements along the diagonal are real and positive values (i.e., 

the square of each estimation error is guaranteed to be positive). Factored-form (or square-

root) filters help to ensure numerical stability [49,50,51]. The square-root formulation makes 

use of three powerful linear algebra techniques: QR decomposition, Cholesky factor updating, 

and efficient least squares [52,53]. The covariance matrix is broken up into factored terms, 

which are propagated forward and updated at each measurement [48]. The factors are 

multiplied together reforming the covariance matrix, thus ensuring it to be positive definite. The 

two most popular square-root filters are Potter’s square-root filter and Bierman-Thornton’s UD 

filter [54]. The UD filter has similar accuracy to Potter’s strategy, however is less computationally 

expensive [34]. Introduced in the late 1970s, UD filtering is based on transformation methods 

that involve an upper triangle covariance factorization (2.3.2.3) [55,56]. Although the UD 

strategy is considered a type of square-root filter, no square roots are actually calculated; where 

the covariance � is defined by: 

� = =�=� (2.3.2.3) 
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Where = is an upper triangle matrix with diagonal elements that are unity (all 1), and � = (�&)*(�, … , (�+. The matrices = and � are referred to as the UD factors of the covariance 

matrix �. A number of different strategies exist to perform UD decomposition (i.e., to create = 

and � matrices) [39]. Further to the UD strategy, numerical stability for filtering strategies can 

be improved by factoring the covariance matrix into Cholesky factors [57]. This was discovered 

when attempting to improve the stability of the KF when dealing with finite-precision arithmetic 

[39]. Essentially the nature of the KF remains the same; however, an equivalent statistical 

parameter is used and is found to be less sensitive to round-off errors [58]. Increasing the 

arithmetic precision reduces the effects of round-off error, which improves the overall stability 

of the filter. 

Another strategy which can be used to overcome KF instabilities involves imposing 

boundaries on the state estimate by a priori or designer knowledge of the system [28]. For 

example, given the upper bounds on the level of parameter or modeling uncertainty, the KF gain 

may be bounded to help improve estimation stability [28]. Furthermore, the a priori and a 

posteriori state error covariance matrices may be modified to include the effects of modeling 

uncertainty. The addition of modeling uncertainties increases the covariance value, which makes 

sense intuitively since the presence of uncertainties generally increases the estimation error. For 

example, consider the modified a priori covariance matrix ����|� defined as follows [28]: 

����|� = �>��|��>� + �� + �?$��?� + �>@�|��>� + �?@�|�� �?� (2.3.2.4) 

Equation (2.3.2.4) represents the a priori state error covariance matrix when modeling 

error is present in the estimation process [28]. Note that the last three terms have been added 

to the original covariance calculation (2.3.1.2), which increases the magnitude of the covariance 

matrix (by capturing the additional modeling uncertainties). The matrix $� refers to a mean 

square value (MSV) matrix (or a correlation matrix), and represents the expectation of the true 

states ��, or .A�����B. The matrix @�|� is the cross-term between the true states ��  and the 

error of the states �C�, or .A���C��B. The corresponding a posteriori covariance matrix ����|��� is 

redefined as follows [28]: 
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����|��� = :� − �����>;����|�:� − �����>;� + �������������

+ �����?$����?������ − :� − �����>;@���|��?������

− �����?@���|�� :� − �����>; 

(2.3.2.5) 

Note that the matrices $� and ��|� also need to be calculated recursively in order to 

update the state error covariance matrix. The correlation matrix $� is initialized and calculated 

using the following equations, respectively [28]: 

$� = ./�����0 = �7�|��7�|�� + ��|� (2.3.2.6) $��� = �$��� + �� (2.3.2.7) 

The cross-term @�|� is initialized and calculated (predicted and updated) using the 

following three equations, respectively [28]: 

@�|� = ��|� = �� (2.3.2.8) @���|� = �$��� + �@�|�� �?� + �� (2.3.2.9) @���|��� = :� − �����>;@���|� − �����?$��� (2.3.2.10) 

The previous equations summarize a methodology for calculating the state error 

covariance matrix for the KF process, in the presence of modeling error. Note that the 

calculation of the matrices requires knowledge of the true matrices �, �, �, and �. In most 

cases, these matrices are not available; however, their nominal values may be used to represent 

an average scenario [28]. Furthermore, the true state values ��  are also required in order to 

calculate $� and @�|�. Therefore, the previous equations may only be used practically for 

studying the sensitivity of the KF to modeling errors (i.e., how it changes the size of the 

covariance matrix) [28]. Other methodologies for improving the KF robustness to modeling 

errors include the addition of fictitious process (system) noise, and using a fading memory 

strategy [34,42]. Essentially, modifying the system noise matrix by adding a fictitious amount is 

done when less confidence is placed in the system model used by the filter [34]. This in turn 

causes the filter to place more emphasis on the measurements, and less on the system model 

which may be incorrect [34,59,60]. 
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Typically, tuning is done by trial and error since the modeling errors are almost always 

unknown (if they were known no tuning would be required!) [42]. A fading memory strategy is a 

simple way for the filter to ‘forget’ measurements in the distant past, and place more emphasis 

on the information available now [34]. It is important to note that this causes the KF to lose 

optimality, however it helps to overcome robustness and stability issues. Consider the following 

modification to the a priori state error covariance (2.3.1.2) [34,61,62]: 

����|� = α���|��� + ��  (2.3.2.11) 

Where α is some positive constant, typically slightly larger than 1 (i.e., α = 1.01). The 

value may be selected based on how much of the past measurements are desired (i.e., how 

much one wants the filter to ‘forget’) [34]. This strategy has been shown to improve the KF 

performance in terms of robustness to modeling error [42]. A time-varying value for α has also 

been proposed, in an effort to further improve upon the performance [28,42]. 

In addition to the methods presented earlier, the KF performance may be improved 

numerically by implementing the ‘Joseph form’ of the a posteriori state error covariance matrix 

[34,39]. Suppose that (2.3.1.5) is presented as follows [34]: 

����|��� = *� − �����+����|�*� − �����+� + �������������  (2.3.2.12) 

The form (2.3.2.12) was formulated in the 1960s by Peter Joseph, and has been shown 

to be more stable and robust than the simpler form (2.3.1.5) [63,64]. The Joseph stabilized 

version of the a posteriori covariance equation guarantees that it will always be symmetric 

positive definite, provided that the a priori covariance matrix is symmetric positive definite [34]. 

Note that the simpler form (2.3.1.5) does not guarantee symmetry or positive definiteness [28]. 

The simpler form of the KF a posteriori covariance is calculated when the Kalman gain equals the 

optimal value. Equation (2.3.1.5) is typically used in practice because it is computationally 

cheaper, however can lead to numerical instabilities [34]. As will be described later in Chapter 4, 

the Joseph form of the a posteriori covariance (2.3.2.12) will be used throughout this thesis. 
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Another simple methodology for improving the numerical stability of the state error 

covariance matrix involves forcing the covariance to be symmetric and initializing it 

appropriately [34]. For example, after the a posteriori covariance value has been calculated, it 

may be modified as follows [34,42]: 

����|��� = (����|��� + ����|���� )/2 (2.3.2.13) 

Other ways involve forcing the off-diagonal terms to be equivalent to each other (i.e., ��� = ���), or forcing the eigenvalues of ����|��� to be positive [34]. Note that these solutions 

do not result in major improvements, however they should always be implemented since they 

are relatively straightforward and easy [34]. Furthermore, it is important to use an appropriate 

initial covariance value such that it does not experience large or abrupt changes throughout the 

estimation process [42]. 

The Gaussian assumption for the noise (which is done for a simpler derivation) may also 

cause instabilities. One method for overcoming this sometimes strict assumption is to model the 

non-Gaussian probability distribution with a Gaussian sum (i.e., a finite number of well-designed 

Gaussian probability distributions). Although this increases the computational complexity of the 

filter, this method has been shown to work very well [65]. 

Despite issues with robustness and instability, the KF remains one of the most popular 

and well-studied filter since it was introduced in the 1960s [30,32]. The optimality of the KF for 

linear estimation problems makes it an attractive choice for state estimation [34]. However, in 

some cases the KF strategy may fail, typically due to finite precision arithmetic and modeling 

errors [66]. To summarize the KF strategy, it is important to note that the KF relies on the 

following strict assumptions [34]: 

• The system under study is linear. 

• Matrices �, �, �, and �, are exactly known. 

• The system and measurement noises (" and  ) are zero-mean with a Gaussian 

distribution (� and �), and are completely uncorrelated. 
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If any of these assumptions are violated, the KF yields suboptimal results and can become 

unstable [36]. However, this section introduced a number of methodologies for improving the 

KF performance and stability. These strategies may be summarized by the following list [34]: 

• Increase arithmetic precision. 

• Utilize a form of square root filtering (i.e., UD filtering or Cholesky factorization). 

• Force � to be symmetric at each time step. 

• Initialize � appropriately. 

• Implement a fading memory strategy. 

• Add fictitious system noise. 

The above list is by no means inclusive. However, these strategies are the most popular in 

terms of improving the KF performance [34]. 

2.4 Nonlinear Estimation Strategies 

In nature, all systems are in fact nonlinear, as described by the following system and 

measurement equations. 

���� = *�� ,��+ + "� (2.4.1) %��� = ℎ*����+ +  ��� (2.4.2) 

Due to the success of the KF with linear applications, it was natural to expand on the 

method for nonlinear systems and measurements. The first such expansion led to a perturbation 

form of the KF (PKF), also known as the linearized KF (LKF) [67,68,69]. The PKF was the 

predecessor to the now popular extended Kalman filter (EKF), which was originally called the 

Kalman-Schmidt filter [70]. Following the development of the EKF, an unscented form (UKF) was 

created in an effort to capture a greater estimate of the nonlinearities [36,71]. 
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More recently, the cubature KF (CKF) was proposed to further improve upon the 

estimation accuracy for nonlinear systems and measurements [72]. Other popular nonlinear 

estimation strategies include the H-infinity filter and the particle filter (PF) [31,73]. The PF may 

also be known as Monte Carlo filters [31], interacting particle approximations [74], bootstrap 

filters [75], condensation algorithms [76], and survival of the fittest methods [77], to name a 

few. Although these filters are effective and offer other advantages (and disadvantages), only 

the Kalman-based filters will be reviewed in this thesis. 

2.4.1 The Perturbation Kalman Filter 

The perturbation Kalman filter (PKF) estimates the state of nonlinear dynamic systems by 

linearizing its nonlinearities [68]. Linearization techniques are used to simulate linear behaviour 

locally about a point of interest. Assuming that the function of interest is differentiable, then a 

Taylor series expansion may be used for linearization [42]. In general, a Taylor series expansion 

of some function  about a point � is defined as follows [68]: 

*� + ∆�+ = *�+ + �*�+∆� +
�*�+

2!
∆� + ⋯ +

�*�+�!
∆� (2.4.1.1) 

Where � is the ��� derivative of  with respect to �, evaluated at the linearization point �, and where ∆� is the perturbation [68]. The PKF estimates the states by combining a nominal 

trajectory state with an estimate of the perturbation. It is based on the assumption that the 

system and measurement can be modeled respectively by [34]: 

���� = ����� + ∆��  (2.4.1.2) %��� = %������ + ∆%��� (2.4.1.3) 

Where the nominal states and measurements are found by ������� = *�����+ and %������ = ℎ*�������+, respectively. Note that a nominal trajectory is defined as a trajectory in which 

the random variables take on their expected values [68]. The true values will not follow the 

nominal trajectory exactly due to the presence of random noise (system or measurement), 

which are referred to as perturbations [68]. 
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The system and measurement perturbations are approximated respectively as follows [34]: 

∆���� ≈ ��∆�� + "� (2.4.1.4) 

∆%��� ≈ ����∆���� +  ��� (2.4.1.5) 

Note that the matrices �� and ���� are Jacobian matrices with partial derivatives of the 

system (�) or measurement ℎ(�) function with respect to the state � or measurement %, 

respectively. These are evaluated at the nominal state value �����, as follows [68]: 

�� =
D(�)D� E

� ��
���

 (2.4.1.6) 

���� =
D(�)D� E

� ����
���

 (2.4.1.7) 

The PKF is initialized with the perturbation estimate ∆�F� and uncertainty ��. The initial 

estimate is usually set to zero. The PKF calculates the a priori perturbation estimate and 

covariance respectively as follows [68]: 

∆�F���|� = ��∆�F�|� (2.4.1.8) ����|� = ����|���� + �� (2.4.1.9) 

Similar to the standard KF structure, the PKF gain is calculated as follows [68]: 

���� = ����|������ :��������|������ + ����;�� (2.4.1.10) 

The a posteriori perturbation estimates and covariance are then calculated respectively 

as follows [68]: 

∆�F���|��� = ∆�F���|� + ����:%��� − ℎ*�������+ − ����∆�F���|�; (2.4.1.11) ����|��� = *� − ��������+����|� (2.4.1.12) 

It is important to note that the PKF estimates the state perturbations. The a priori and a 

posteriori full state estimates are respectively defined by: 
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�7���|� = ������� + ∆�F���|� (2.4.1.13) �7���|��� = ������� + ∆�F���|��� (2.4.1.14) 

If the nonlinearities present in the estimation process are very mild, then the PKF 

method will work very well. However, using a nominal trajectory implies that the state 

trajectories are known in advance, which is often not the case [68]. If this is the case, then the 

Jacobian matrices may be calculated offline, saving computational resources. However, if the 

state perturbations are not small, then the PKF will yield large estimation errors [68].  

Furthermore, in practice, the deviation of the actual trajectory from the nominal trajectory 

generally increases over the course of the estimation process [39]. 

2.4.2 The Extended Kalman Filter 

The extended Kalman filter (EKF) builds on the concepts of the PKF. Instead of using a static 

nominal trajectory, the EKF utilizes the state estimate trajectory which is updated at each time 

step [68]. Conceptually, the EKF is very similar to the standard KF. The nonlinear system and 

measurement functions ( and ℎ, respectively) are used to predict the state estimates and 

predicted measurements. However, it is not possible to use these functions to calculate the 

predicted and updated state error covariance matrices. Similar to the PKF, the EKF requires that 

the functions  and ℎ be linearized (as per its Jacobian). Although this allows the KF to handle 

mildly-nonlinear estimation problems, it introduces a number of instabilities. For example, the 

linearization process may overlook unmodeled nonlinear modeling uncertainties, which may 

cause the estimate to go unstable [39]. Furthermore, the calculation of the Jacobian increases 

the computational complexity of the filter. The partial derivatives are used to compute 

linearized system and measurement matrices � and �, respectively found as follows [39]: 

�� =
D*�+D� G

� �!�|�,"�

 (2.4.2.1) 

���� =
Dℎ*�+D� G

� �!���|�

 (2.4.2.2) 
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Equations (2.4.2.1) and (2.4.2.2) essentially linearize the nonlinear system or 

measurement functions around the current state estimate [30]. This comes at a loss of 

optimality, as the KF gain is no longer considered to be the best solution to the estimation 

problem [33]. The EKF process may be summarized by the following seven equations. The state 

estimate �7���|�  is predicted using the nonlinear system model (2.4.2.3), and the corresponding 

state error covariance matrix ����|� is found (2.4.2.4). 

�7���|� = :�7�|� , ��; (2.4.2.3) ����|� = ����|���� + �� (2.4.2.4) 

The measurement error (or innovation) �C��� is then found (2.4.2.5), based on the 

nonlinear measurement model ℎ, followed by the measurement error (innovation) covariance 

matrix ���� (2.4.2.6). 

�C��� = %��� − ℎ:�7���|�; (2.4.2.5) ���� = ��������|������ + ���� (2.4.2.6) 

The near-optimal KF gain ���� is calculated (2.4.2.7). This gain is then used in 

conjunction with the predicted state estimate �7��� and the measurement error �C��� to update 

the state estimate (2.4.2.8). 

���� = ����|������ ������  (2.4.2.7) �7���|��� = �7���|� + �����C��� (2.4.2.8) 

Finally, the state error covariance matrix is updated as per (2.4.2.9). 

����|��� = *� − ��������+����|� (2.4.2.9) 

Equations (2.4.2.1) through (2.4.2.9) form the EKF estimation process. The linearization 

process of (2.4.2.1) and (2.4.2.2) introduces uncertainties that can sometimes cause the filter to 

go unstable [35]. However, for mildly nonlinear systems, the EKF provides a very good estimate 

of the states, and is relatively easy to implement [34]. 
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The following equations help summarize the UKF estimation method [71]. The first step 

to applying the UKF is to generate the sigma points. The �-dimensional random variable ��  with 

mean �7�|� and covariance ��|� may be approximated by 2� + 1 sigma points. The initial sigma 

points (corresponding sample and weight) may be calculated as follows: 

$�,�|� = �7�|� (2.4.3.1) #� = H/(� + H) (2.4.3.2) 

The next � number of sigma points may be calculated as follows: 

$�,�|� = �7�|� + IJ*� + H+��|�K
�

 (2.4.3.3) 

#� = 1/L2*� + H+M (2.4.3.4) 

Likewise, the remaining � number of sigma points may be found as: 

$���,�|� = �7�|� − IJ*� + H+��|�K
�

 (2.4.3.5) 

#��� = 1/L2*� + H+M (2.4.3.6) 

The parameter H is a design value (typically a small value, significantly less than 1), 

IJ*� + H+��|�K
�

 is the ��� row or column of the matrix square root of *� + H+��|�, and #� is 

the weight that is associated with the ��� sample point [36]. The sigma points are then 

propagated through the nonlinear system model (2.4.3.7), and then are used with their 

corresponding weights to calculate the predicted state estimate (2.4.3.8). 

$N�,���|� = :$�,�|� , ��; (2.4.3.7) 

�7���|� = O#�$N�,���|���

� �

 (2.4.3.8) 

From (2.4.3.7) and (2.4.3.8), it is possible to calculate the predicted state error 

covariance as follows: 
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����|� = O#�:$N�,���|� − �7���|�;:$N�,���|� − �7���|�;���

� �

 (2.4.3.9) 

Next, the sigma points are propagated through the nonlinear measurement model 

(2.4.3.10), and the predicted measurement is calculated (2.4.3.11). 

P>�,���|� = ℎ:$N�,���|� ,��; (2.4.3.10) 

%̂���|� = O#�P>�,���|���

� �

 (2.4.3.11) 

The measurement (or innovation) covariance is then calculated as follows: 

���.���|� = O#�:P>�,���|� − %̂���|�;:P>�,���|� − %̂���|�;���

� �

 (2.4.3.12) 

Likewise, the cross-covariance (between the state and measurement) is then calculated 

as follows: 

���.���|� = O#�:$N�,���|� − �7���|�;:P>�,���|� − %̂���|�;���

� �

 (2.4.3.13) 

From (2.4.3.12) and (2.4.3.13), the Kalman gain ���� may be calculated (2.4.3.14). 

���� = ���.���|����.���|���  (2.4.3.14) 

The remaining UKF process is conceptually similar to the standard KF or EKF. The 

updated (or a posteriori) state estimate may be calculated (2.4.3.15), and the updated state 

error covariance may be found (2.4.3.16). 

�7���|��� = �7���|� + ����:%��� − %̂���|�; (2.4.3.15) ����|��� = ����|� − �������,���|������  (2.4.3.16) 
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R� = S √��� , � = 1,2, … ,�
−√�����, � = � + 1,� + 2, … ,2� (2.4.4.2) 

Where �� ∈ ℝ� denotes the ��� elementary column vector. According to [72], the third-

degree cubature rule is exact for polynomial integrands up to the third degree or for any odd-

degree polynomial. As described in [72], the goal of the CKF algorithm is to recursively compute 

the probability 3*����|%�:���+ = 1(�7���|���,����|���) given the posterior 3*��|%�:�+ =1(�7�|� ,��|�) at time �. The CKF algorithm described in this section is presented as in [72]. The 

initial set of cubature points $ are calculated based on the previous a posteriori state estimate �7�|�, the previous a posteriori state covariance ��|�, and the cubature-point set R� (described 

earlier): 

$�,�|� = J��|�R� + �7�|� � = 1,2, … ,2� (2.4.4.3) 

These cubature points are then propagated through the system equation, as follows: 

$�,���|�∗ = ($�,�|� ,��) � = 1,2, … ,2� (2.4.4.4) 

Next, the predicted state �7���|�  and predicted state error covariance ����|� are 

calculated, respectively: 

�7���|� =
1

2�O$�,���|�∗

��

� �

 (2.4.4.5) 

����|� =
1

2�O$�,���|�∗ $�,���|�∗�

��

� �

− �7���|��7���|�� + ���� (2.4.4.6) 

The predicted cubature points $�,���|� are then evaluated based on the predicted 

stated �7���|� and predicted state error covariance ����|�: 

$�,���|� = J����|�R� + �7���|� � = 1,2, … ,2� (2.4.4.7) 
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The predicted cubature points $�,���|� are then propagated through the measurements P�,���|�, and the corresponding predicted measurement is calculated %̂���|�, respectively as 

follows: 

P�,���|� = ℎ($�,���|� ,����) � = 1,2, … ,2� (2.4.4.8) 

%̂���|� =
1

2�OP�,���|���

� �

 (2.4.4.9) 

In order to calculate the corresponding cubature Kalman gain #���, the innovation 

covariance ���,���|�  and cross-covariance ���,���|�  matrices need to be evaluated, respectively 

as follows: 

���,���|� =
1

2�OP�,���|�P�,���|��

��

� �

− %̂���|�%̂���|�� + ���� (2.4.4.10) 

���,���|� =
1

2�O$�,���|�P�,���|��

��

� �

− �7���|�%̂���|��  (2.4.4.11) 

The CKF gain may now be calculated as follows: 

#��� = ���,���|����,���|���  (2.4.4.12) 

Finally, the updated states �7���|��� and corresponding error covariance ����|��� may be found: 

�7���|��� = �7���|� + #���(%��� − %̂���|�) (2.4.4.13) ����|��� = ����|� + #������,���|�#���
�  (2.4.4.14) 

The CKF algorithm may be summarized by (2.4.4.1) through (2.4.4.14), and is repeated 

iteratively. It has been shown to yield more accurate estimation results when compared with 

the EKF and UKF strategies [72,84]. 
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2.5 Multiple Model Methods 

In nature, many systems behave according to a number of different models (modes, or 

operating regimes). For example, in target tracking, a target may travel straight (i.e., uniform 

motion) or turn (i.e., undergo a coordinated turn) [28]. Furthermore, a system may experience 

different types of noises (i.e., white or ‘coloured’) [39]. In these scenarios, it is desirable to 

implement adaptive estimation algorithms, which ‘adapt’ themselves to certain types of 

uncertainties or models in an effort to minimize the state estimation error [28]. One type of 

adaptive estimation technique includes the ‘multiple model’ (MM) algorithm [85]; which include 

the following: static MM [86], dynamic MM [28], generalized pseudo-Bayesian (GPB) 

[87,88,89,90], and the interacting multiple model (IMM) [28,91,92]. 

For the MM methods, a Bayesian framework is used (i.e., probability based). Essentially, 

based on some prior probabilities of each model being correct (i.e., the system is behaving 

according a finite number of modes), the corresponding updated probabilities are calculated 

[28]. Throughout this thesis, it will be assumed that all of the models are linear with the 

presence of Gaussian noise; however, nonlinear models could be used via linearization [28]. 

Each MM method requires estimation of the states and their corresponding probability. The 

most popular strategy that has been implemented in the MM framework remains the KF, and is 

referred to as the IMM-KF [39]. As such, it forms the basis for comparison in later chapters. 

2.5.1 Static Multiple Model Method 

The static MM algorithm assumes that the model the system obeys is fixed and that no 

switching occurs from one mode to another throughout the estimation process [28]. It is 

important to note that although the model is fixed, each model has its own dynamics, such that 

the overall estimator remains dynamic [28]. Bayes’ formula is used to calculate the updated 

probability of model � being correct, based on current measurements, as follows [28]: 

2�,��� =
3:%���UP� ,��;2�,�∑ 3*%���|P� ,��+2�,�#
� �

� = 1, … , � (2.5.1.1) 
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According to [28], 3:%���UP� ,��; is the likelihood function Λ�,��� of mode � at time � + 1 for model ��, and can be solved by: 

Λ�,��� ≡ 3:%���UP� ,��; = 1:��,�,���|�; 0, ��,���; (2.5.1.2) 

Where ��,�,���|� and ��,��� refer to the innovation (or a priori measurement error) and 

the innovation covariance matrix from the mode-matched filter corresponding to mode � [28]. 

Equation (2.5.1.2) may be solved as follows [28,39]: 

Λ�,��� =
1JU2W��,���U�� ��3X

−
1
2
��,�,���|�� ��,�,���|���,��� Y (2.5.1.3) 

An estimation method (such as the KF) is used for each model to calculate mode-

conditioned state estimates and the corresponding mode-conditioned covariance’s [28]. The 

mode estimates defined by (2.5.1.1) determine the probability of each mode being correct (i.e., 

being used by the system), and are calculated based on its corresponding likelihood function 

(2.5.1.2). Note that the total sum of all the mode probabilities (2.5.1.1) is equal to 1. Figure 2.5.1 

helps to further explain the static MM estimator. 

The output from each filter is used to update the mode probability 2�,���, and 

consequently determine the overall output from the static MM strategy. The mode-conditioned 

state estimates are then combined to obtain the overall output estimate as follows [28]: 

�7���|��� = O2�,����7�,���|���#

� �

 (2.5.1.4) 

Finally, the covariance of the combined estimates is defined by [28]: 

����|��� = O2�,��� Z��,���|���#

� �

+ :�7�,���|��� − �7���|���;:�7�,���|��� − �7���|���;�[ 

(2.5.1.5) 
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The conditional probability distribution function of the state � at time � + 1 may be 

found by a Gaussian mixture with an exponentially increasing number of terms, as follows [28]: 

3:����UP���; = O 3#���

$ �

:����U����,$ ,P���;�:����,$UP���; (2.5.2.2) 

Where �:����,$UP���; = 2���,$ refers to the mode history probability, from history \ 
up to time � + 1. The probability of a mode history is obtained by [28]: 

2���,$ =
1] 3:%���U����,$ ,P���;3��2�,� (2.5.2.3) 

Where � = 4� is the last model of the parent sequence 4, and ] is a normalization 

constant. The dynamic MM method requires conditioning on the entire past history, which 

means that an increasing number of filters are required, making the approach impractical [28]. 

According to [28], the only way to avoid the exponentially increasing number of histories is to 

implement suboptimal techniques. There are two main suboptimal techniques for the dynamic 

MM method: the generalized pseudo-Bayesian (GPB) strategy, and the interacting multiple 

model (IMM) estimation algorithm. 

2.5.3 Generalized Pseudo-Bayesian Method 

The generalized pseudo-Bayesian (GPB) approach combines histories of models that differ in 

‘older’ models [28]. There first-order GPB (GPB1) considers only the possible models in the last 

time period, whereas the second-order version (GPB2) considers all the possible models in the 

last two time periods [28,42]. These algorithms require � and �� number of filters to operate in 

parallel, respectively [28]. The GPB1 MM estimator for two models (as an example) is shown in 

the following figure. Essentially, the filters run recursively using the previous combined state 

estimates (i.e., the output from the weighted mode-conditioned states). 
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] = OΛ�,���

#

� �

O3��2�,�#

� �

 (2.5.3.3) 

Finally, the last step involves combining the state estimates (2.5.3.4) and covariance’s 

(2.5.3.5) from the corresponding filters [28]. This combination stage is similar to that presented 

in the static MM method section. 

�7���|��� = O2�,����7�,���|���#

� �

 (2.5.3.4) 

����|��� = O2�,��� Z��,���|���#

� �

+ :�7�,���|��� − �7���|���;:�7�,���|��� − �7���|���;�[ 

(2.5.3.5) 

The GPB2 MM estimator goes beyond what the GPB1 MM estimator does, and 

computes the state estimates under each possible current and previous model [28]. This 

significantly increases the computational complexity of the process [39]. In fact, the structure of 

the GPB2 algorithm includes � number of estimates and �� number of filters. The process may 

be best described using Figure 2.5.3. The GPB2 MM estimator consists of five main steps: mode-

matched filtering, calculation of the merging probabilities, merging stage, mode probability 

updating, and state estimate and covariance combination. In this case, mode-matched filtering 

consists of starting with �7�,�|� and ��,�|�, and computing �7��,���|��� and ���,���|��� through a 

filter matched to ��,���. Note that there will be �� filters, and �, � = 1, … , � [28]. The likelihood 

functions corresponding to each filter are calculated as follows [28]: 

Λ��,��� = 3:%���U��,���, �7�,���|���,��,���|���; (2.5.3.6) 

The next step is to calculate the merging probabilities 2�|�,�|��� [28]: 

2�|�,�|��� =
1]� Λ��,���3��2�,� (2.5.3.7) 
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(2.5.3.8) 

Following this, merging takes place to combine the states and covariance’s 

is calculated as 

(2.5.3.9) 
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��,���|��� = O2�|�,�|��� Z���,���|���#

� �

+ :�7��,���|��� − �7�,���|���;:�7��,���|��� − �7�,���|���;�[ 

(2.5.3.10) 

Next, the mode probabilities are updated using the following two equations [28]: 

2�,��� =
1]OΛ��,���3��2�,�#

� �

 (2.5.3.11) 

] = OOΛ��,���3��#

� �

2�,�#

� �

 (2.5.3.12) 

Finally, like the previous methods, the overall state estimate (2.5.3.13) and covariance 

(2.5.3.14) are calculated, and are used for output purposes only [28]. 

�7���|��� = O2�,����7�,���|���#

� �

 (2.5.3.13) 

����|��� = O2�,��� Z��,���|���#

� �

+ :�7�,���|��� − �7���|���;:�7�,���|��� − �7���|���;�[ 

(2.5.3.14) 

Equations (2.5.3.6) through (2.5.3.14) summarize the GPB2 MM estimator. 

2.5.4 The Interacting Multiple Model Strategy 

The interacting multiple model (IMM) estimation algorithm is conceptually similar to the GPB2 

method, but requires only � number of filters that operate in parallel [28]. The state estimate is 

calculated under each possible current model, with a mixed initial condition (i.e., a different 

combination of the previous model-conditioned estimates) [28]. Furthermore, according to and 

as presented in [28,92], the input to the filter matched to ��  is obtained from an interaction of 

the � filters, which consists of the mixing of the estimates �7�,�|� and weightings 2�|�,�|� (mixing 

probabilities). 
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at the beginning of each estimation cycle, 

filters) [92]. 

The IMM strategy has shown to be very effective, and is more computationally efficient than the 

the IMM estimation 
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The IMM estimator consists of five main steps: calculation of the mixing probabilities, 

matched filtering, mode probability update, and state estimate and 

covariance combination. The first step involves calculating the mixing probabilities (i.e., the 

at the next step). These 



Ph.D. Thesis 

S. A. Gadsden 

McMaster University 

Department of Mechanical Engineering 

 

39 

 

 

2�|�,�|� =
1]�̅ 3��2�,� (2.5.4.1) 

]�̅ = O3��#

� �

2�,�  (2.5.4.2) 

The mixing probabilities 2�|�,�|� are used in the mixing stage, next. In addition to the 

mixing probabilities, the previous mode-matched states �7�,�|� and covariance’s ��,�|� are also 

used to calculate the mixed initial conditions (states and covariance) for the filter matched to ��. The mixed initial conditions are found respectively as follows [28]: 

�7��,�|� = O�7�,�|�2�|�,�|�#

� �

 (2.5.4.3) 

���,�|� = O2�|�,�|�#

� �

Z��,�|� + :�7�,�|� − �7��,�|�;:�7�,�|� − �7��,�|�;�[ (2.5.4.4) 

The next step involves mode-matched filtering, which involves using (2.5.4.3) and 

(2.5.4.4) as inputs to the filter matched to ��. Each filter also uses the measurement %��� and 

input to the system �� (if any). The likelihood functions are calculated for each mode-matched 

filter as follows [28]: 

Λ�,��� = 1:%���; %̂�,���|� , ��,���; (2.5.4.5) 

Equation (2.5.4.5) may be solved by each filter as follows [28,39]: 

Λ�,��� =
1JU2W��,���U�� ��3X

−
1
2
��,�,���|�� ��,�,���|���,��� Y (2.5.4.6) 

Utilizing the likelihood functions from each filter, the mode probability may be updated by [28]: 

2�,� =
1] Λ�,���O3��#

� �

2�,� (2.5.4.7) 
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Where the normalizing constant is defined as [28]: 

] = OΛ�,���O3��#

� �

2�,�#

� �

 (2.5.4.8) 

Finally, as before, the overall state estimates (2.5.4.9) and covariance (2.5.4.10) are calculated. 

�7���|��� = O2�,����7�,���|���#

� �

 (2.5.4.9) 

����|��� = O2�,��� Z��,���|���#

� �

+ :�7�,���|��� − �7���|���;:�7�,���|��� − �7���|���;�[ 

(2.5.4.10) 

Equations (2.5.4.1) through (2.5.4.10) summarize the IMM estimator strategy, and are 

used recursively. Note that (2.5.4.9) and (2.5.4.10) are used for output purposes only, and are 

not part of the algorithm recursions [28]. The IMM strategy has successfully been applied to a 

number of estimation problems [93]; ranging from target tracking in a traffic controller setting 

[94] to fault detection and diagnosis [95,96]. In fact, both of these applications will be studied 

later in Chapter 6. 

2.6 Sliding Mode Observers 

Before continuing to Chapter 3 and discussing the smooth variable structure filter (SVSF), the 

topic of sliding mode observers (SMOs) is introduced. These observers are based on variable 

structure control (VSC) and systems, which were introduced in the 1950s [97,98,99]. Essentially, 

this theory considers systems that contain discontinuities in the differential equations that 

describe their dynamic state [37]. Variable structure systems contain discontinuity hyperplanes 

which divide the state space into regions. Within these regions, the dynamic equation governing 

the system is continuous [37,100]. Hence, the name ‘variable structure’ is appropriate since the 

dynamics of a system may be described by a number of distinct equations. 
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Variable structure theory led to the development of variable structure control. In VSC, 

the control input is formulated as a discontinuous function of the state vector, such that 

discontinuity hyperplanes are artificially introduced [37,101]. Consider the following simple 

example from [37], where ��*�, 5+ is a discontinuous input and 4�*�+ is referred to as a 

discontinuity surface: 

��*�, 5+ = ^���(�, 5) "�5ℎ 4�*�+ > 0���(�, 5) "�5ℎ 4�*�+ < 0
 (2.6.1) 

Therefore, when above the discontinuity surface, the control input is ���(�, 5). 

Conversely, when below the discontinuity surface, the control input is ���(�, 5). The most 

popular form of VSC is sliding mode control (SMC) [98,101]. SMC utilizes a discontinuous 

switching plane along some desired trajectory, referred to as a sliding surface. The objective is 

to keep the state values along this surface by minimizing the state errors (difference between 

the desired trajectory and the estimated or actual values). Ideally, if the state value is off or 

some distance away from the surface, a switching gain would be used to push the state towards 

the sliding surface. Once on the surface, the states slide along the surface in what is called a 

sliding mode [101]. The switching brings inherent stability and robustness to the control 

strategy, while also introducing chattering (high-frequency switching) that is undesirable in 

practice and can excite unmodeled dynamics [37]. A boundary layer may be introduced along 

the sliding surface in order to saturate and smooth out the chattering within a region referred to 

as the smoothing boundary region [101]. 

Prior to the 1980s, VSC and SMC methodologies were considered only in the 

continuous-time domain [42]. In 1985, a discrete-time formulation of SMC was presented 

[37,102]. Shortly thereafter a stability condition for the discrete SMC was presented, and is now 

commonly used in discrete controller design [37,103,104]. Since its inception, SMC has become 

a very popular control methodology, and is the subject of a large amount of research [101]. In 

the 1980s, SMOs were developed based on variable structure and sliding mode theory [42,105]. 

Essentially, SMOs work by minimizing the error between the plant (system) and observer models 

with the help of a switching function [106]. 
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The observer gain is calculated based on the error; such that the system and observer 

outputs match, and the error surface moves towards zero (in the ideal case) [106]. Similar to 

VSC, the SMO defines a hyperplane (i.e., a sliding surface) and applies a discontinuous force on 

the estimate to keep the estimate bounded within an area of the hyperplane, referred to as the 

existence subspace [42]. The motion consists of three phases: reachability, injection, and sliding 

[42,107]. 

The reachability phase consists of forcing the estimates to the hyperplane from some 

initial conditions, in a finite period of time [42]. Once within the existence subspace, both the 

injection and sliding phases are present. As the name suggests, the sliding phase forces the 

estimated errors to slide along a hyperplane towards the origin (ideal case) [42]. The injection 

phase consists of preventing the estimate from leaving the existence subspace, or in other 

words, keeping it bounded within an area of the hyperplane [42]. According to [42,105,108], the 

action of the injection phase enables the observer to be robust enough to overcome 

uncertainties, modeling errors, and nonlinearities present in the system. 

A number of SMOs have been developed since the 1980s [42,105]. The most notable 

observers include those introduced by Slotine et al. [109,110], Walcott et al. [111,112], Edwards 

et al. [108], and later by both Tan and Edwards [113]. SMOs have been successfully applied to 

state and parameter estimation problems, and also fault detection and isolation [42]. 

Furthermore, a number of developments have generated a large amount of research interest in 

SMO methods in recent years [105]. A very comprehensive and thorough survey of SMO 

literature is available in [105]. The following subsections briefly summarize the design of a 

discontinuous observer, the observer presented by Slotine et al., the Walcott and Zak observer, 

and finally the Tan and Edwards observer [42]. 

2.6.1 A Discontinuous Observer 

According to [42] and [105], a discontinuous observer is a type of observer that feeds back the 

output error between the observer and the system as a discontinuous signal. This type of 

observer may be applied on a continuous linear system and measurement, such as [42]: 
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�_*5+ = ��*5+ + 	�(5) (2.6.1.1) %*5+ = ��(5) (2.6.1.2) 

The system, input, and output matrices (�, 	, and �) are time-invariant, where the 

measurement matrix � is defined by [42,105]: 

� = L0�×&���' ��×�M (2.6.1.3) 

The observer makes use of a discontinuous gain �� and a sign function of the output 

error `. The corresponding state estimate �7 is calculated as follows: 

�7_*5+ = ��7*5+ + 	�*5+ + ��` (2.6.1.4) 

The gain �� is real with dimensions (� − �) × � and is defined by �� = L��,� ��×�M� 

[42]. The function ` is defined by ` = a4�)�:��!,�;, and the output error is calculated by ��!,�(5) = %*5+ − �7�(5) [42]. According to [42] and [105], the estimated error is defined as 

follows: 

8�_�!,�(5)�_�!,�(5)
9 = � 8��!,�(5)��!,�(5)

9 − ��` (2.6.1.5) 

Note that the scalar a affects the reachability phase of the discontinuous observer, and 

should be chosen large enough such that the estimated trajectory reaches the sliding surface in 

a finite period of time [42]. As described earlier, once the estimated trajectory researches the 

sliding surface, it is bounded within a region and slides along the surface. The discontinuous 

observer has a few disadvantages. It assumes that there is no noise present, which negatively 

affects the performance of the observer (since noise is present in nearly every system) [42]. 

Furthermore, the discontinuous observer approximates nonlinear systems using two parts: a 

linear and a nonlinear part. The linear part attempts to represent the true system, while the 

nonlinear part is considered to be uncertainties [42]. This strict assumption holds only if the 

linear portion is dominant. Finally, this type of SMO is sensitive to the design parameter a, 

which needs to be selected carefully. A large value may lead to chattering, while a small value 

causes slow convergence [42]. 
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2.6.2 The Slotine et al. Observer 

In 1987, Slotine et al. presented an observer that consisted of a linear portion and a 

discontinuous term [42,110]. According to [42], this observer can be applied to nonlinear 

systems that have the following form: 

�_*5+ = ��*5+ + 	�*5+ + 	2*5, %,�+ (2.6.2.1) 

The term 2*5, %,�+ is an unknown nonlinear scalar function. The measurement equation 

may be defined as (2.6.1.2). For, example consider a system with three states such that the 

system, input, and measurement matrices may be defined respectively as follows [42]: 

� = b0 1 0
0 0 1
0 0 0

c (2.6.2.2) 

	 = L0 0 1M� (2.6.2.3) � = L1 0 0M (2.6.2.4) 

The Slotine et al. observer has the following form [42,110]: 

�7_*5+ = ��7*5+ + 	�*5+ + 	2̂*5, %,�+ + �$�� + ��` (2.6.2.5) %̂*5+ = ��7*5+ (2.6.2.6) 

Where, according to [42,110], 2̂*5, %,�+ is a nonlinear estimated function for 2*5, %,�+, �� = �� = % − %̂, ` = 4�)�(��), and the gains are defined by �$ = L�$,� �$,�M� and �� =L��,� ��,�M�. Furthermore, it is important to note that the error in 2̂*5, %,�+, represented by 

∆2, is assumed to be bounded by ��,� [42]. Slotine et al. reported that the SMO is stable (BIBO) 

if the gain ��,� is defined to be larger than |∆2| [42,110]. Furthermore, it was also reported that 

the addition of the gain ��,� resulted in two types of motion: one prior to reaching the sliding 

surface and another when the sliding surface has been reached [42,110]. It was determined that 

the convergence to the sliding surface becomes faster when the gain ��,� is increased [42]. 

Furthermore, it was found that the gain �$,� affects the reachability of the observer such that 

when the value is increased, the convergence becomes slower [42,110]. 
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2.6.3 The Walcott and Zak Observer 

The Walcott and Zak observer is essentially a modified form of the discontinuous observer, and 

attempts to accommodate nonlinearities and uncertainties in the system, as well as a multi-

input signal [42,111]. Like the previous method, the system is assumed to consist of a linear part 

and an unknown nonlinear component 2*5, %,�+ [42]: 

�_*5+ = ��*5+ + 	�*5+ + 	2*5, %,�+ (2.6.3.1) 

The measurement is defined as follows: 

%*5+ = ��*5+ (2.6.3.2) 

Note that 2*5, %,�+ is bounded by a*5, %,�+, such that |2*5, %,�+| ≤ a*5, %,�+ [42]. The 

Walcott and Zak observer has a similar structure to the Slotine et al. method, as defined as 

follows [42,111]: 

�7_*5+ = ��7*5+ + 	�*5+ + 	2̂*5, %,�+ + �$�� + ��` (2.6.3.3) %̂*5+ = ��7*5+ (2.6.3.4) 

However, note that the gains have different formulations, and are defined by [42,111]: 

` = a*5, %,�+4�)�*����+ (2.6.3.5) �� = �������� (2.6.3.6) 

�$ = 8 ������ − ���� 9 (2.6.3.7) 

Note that � is a square positive definite matrix and is chosen to satisfy the following 

condition [42,111]: 

�*� − �$�+ + *� − �$�+�� < 0 (2.6.3.8) 

Furthermore, �� is a design matrix used to define the sliding surface as ����, while 

subject to the following [42,111]: 
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�	 = *���+� (2.6.3.9) 

Finally, note that ����  is also a design matrix with negative eigenvalues [42]. To 

summarize, the Walcott and Zak observer is a modified form of the discontinuous observer but 

is able to handle multi-input signals and nonlinearities in the system. However, it has several 

limitations that reduce the number of useful applications for the observer [42,111]. 

2.6.4 The Tan and Edwards Observer 

Presented in 2003, the Tan and Edwards observer (also known as convex parameterization) is an 

expansion and modification of the Walcott and Zak observer [42,113]. It attempts to increase 

the number of useful applications, while also reducing the overall design effort [42,113]. For this 

observer, the system and measurement are structured as follows [42,113]: 

�_*5+ = ��*5+ + 	�*5+ + �2*5, %,�+ (2.6.4.1) %*5+ = ��*5+ (2.6.4.2) 

Where, according to [42], the uncertainty matrix is defined by � = L0 ��M�, the 

measurement matrix is � = L0 ��M, and 2*5, %,�+ is a nonlinear function bounded by a*5, %,�+, 
such that |2*5, %,�+| ≤ a*5, %,�+. Note that if the system matrix is not in canonical form, a 

transformation must take place to revise the system structure [42]. This type of observer has a 

similar structure to the previous ones, and is defined by [42,113]: 

�7_*5+ = ��7*5+ + 	�*5+ + �2̂*5, %,�+ + �$�� + ��` (2.6.4.3) %̂*5+ = ��7*5+ (2.6.4.4) 

However, in this case, the function ` is defined by [42,113]: 

` = a*5, %,�+ E���� 8 0��9E 4�)�*��+ (2.6.4.5) 

The matrix �� is the lower portion of the measurement matrix � [42,113]. Furthermore, 

note that �� is a symmetric positive definite matrix defined as a function of the matrix � as 

follows [42,113]: 
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� = 8 �� −��L��,� 0M
−L��,� 0M��� �� + L��,� 0M���L��,� 0M9 (2.6.4.6) 

Where � is designed to satisfy (2.6.3.8) [42,113]: 

�*� − �$�+ + *� − �$�+�� < 0 (2.6.3.8) 

And the matrix �� is defined as follows [42,113]: 

�� = ������� (2.6.4.7) 

Furthermore, it is important to note that the sliding gain �� is defined differently than 

other observers, as follows [42,113]: 

�� = dL��,� 0M������ e ���� (2.6.4.8) 

According to [42,113], the gain ��,� is designed such that the term f��� − ��,����g is 

stable. In order to obtain the linear gain �$  a transformation �$  of the states is required in an 

effort to transform the measurement matrix into an identity matrix [42,113]: 

�$ = 8� L��,� 0M
0 �� 9�� (2.6.4.9) 

Performing �$  converts (2.6.4.1) and (2.6.4.2) respectively as follows [42,113]: 

�_ ′*5+ = �′�′*5+ + 	′�*5+ + �′2*5, %,�+ (2.6.4.10) %*5+ = �′�′*5+ (2.6.4.11) 

Where based on [42,113], �′*5+ = �$���(5) = L��*5+ ��*5+M�, �( = �$����$, 	( = �$��	, �( = ��$, �( = �$��� = L0 ����M�. The gain �$  is defined as follows [42,113]: 

�$ = 8 ���(���( − ���� 9 (2.6.4.12) 

The discontinuous gain �� then takes the following form [42,113]: 
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�� = 8 0����9 (2.6.4.13) 

Although this observer does require a large number of conditions, it needs less design 

effort compared to the Walcott and Zak observer [42,105,113]. However, these conditions also 

limit the number of useful applications for the observer [42,113]. 

2.7 Summary 

Estimation theory is an important tool for the successful control of mechanical and electrical 

systems. This chapter provided a comprehensive review of a number of conventional estimation 

strategies (i.e., Kalman-based methods). It was presented that the Kalman filter provides the 

optimal solution for linear estimation problems. However, it suffers from a number of strict 

assumptions. If any of these assumptions are violated, the KF yields suboptimal results and can 

become unstable. However, this chapter also provided an overview of a number of 

methodologies that may be implemented to improve the KF performance and stability. A 

number of Kalman-based strategies were presented for handling nonlinear estimation problems. 

In nature, many systems behave according to a number of different models (modes, or 

operating regimes). The concept of multiple model (MM) strategies was introduced in an effort 

to improve upon the estimation results. Finally, a brief overview of sliding mode observers 

(SMOs) was provided. The following chapter introduces the smooth variable structure filter 

(SVSF) which is based on concepts closely related to SMOs and variable structure control (VSC), 

and forms the core of the research presented in this thesis. 

 

 



49 

 

 

 

 

Chapter 3 
3 The Smooth Variable Structure Filter 

The Smooth Variable Structure Filter 

 

The smooth variable structure filter (SVSF) forms the core of the research for this thesis. This 

chapter provides an overview of the variable structure filter (VSF), extended variable structure 

filter (EVSF), and finally introduces the important concepts of the SVSF. A linear computer 

experiment is used to study and compare the results of the KF and SVSF estimation methods. 

 

3.1 The Variable Structure Filter 

The variable structure filter (VSF) was first presented in 2002, and is the predecessor to the 

smooth variable structure filter (SVSF) [38,114]. It was a new model-based strategy that used 

concepts closely related to variable structure control. This estimation strategy was presented in 

an effort to improve upon stability and robustness issues of the popular Kalman filter (KF). As 

described in Chapter 2, variable structure control (VSC) theory can guarantee stability given 

some bounded parametric uncertainty [97,98,115]. The most popular form of VSC is that of 

sliding mode control (SMC), which utilizes a discontinuous switching plane along some desired 

trajectory [116,117,118,101]. This plane is often referred to as the sliding surface, in which the 

objective is to keep the state values along this surface in order to minimize the trajectory errors 

(i.e., difference between the desired trajectory and the estimated or actual values). Ideally, if 

the state value is off or away from the surface, a switching gain would be used to push the state 

towards the sliding surface, creating a robust and stable control strategy. Once on the surface, 

the states slide along the surface in what is called the sliding mode [101]. 
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As presented in Chapter 2, sliding mode concepts have been used for state estimation, 

and are referred to as sliding mode observers (SMO) or estimators (SME) [105]. Although the 

VSF uses a discontinuous component to correct estimates like other sliding mode strategies, it 

differs in its formulation [38]. The VSF uses a predictor-corrector strategy similar to the KF. 

Given some knowledge of the system prior to time �, it calculates an a priori (or predicted) state 

estimate �7���|�. This state estimate is then updated based on available measurements of the 

system, thus formulating an a posteriori state estimate �7���|���. Consider the linear system and 

measurement equations of (1.1.1) and (1.1.2). The VSF estimation process is summarized as 

follows [38]. The a priori state estimate is first calculated using the previous time step’s a 

posteriori state estimate and the estimated system model: 

�7���|� = �>�7�|� + 	N�� (3.1.1) 

A gain vector ����)*� is used to formulate an a posteriori state estimate, as follows: 

�7���|��� = �7���|� + ����)*� (3.1.2) 

Where the gain vector ����)*� is calculated as a function of the estimated system and 

measurement matrices �> and �>, a constant diagonal gain matrix h with elements h�� ≥ 1, and 

an upper bound for both the system and measurement noises #�+� and !�+�  [38]: 

����)*� = �>���>� ijU�>�>U
��

ZhU�>U
��

U��,���|�U�� + U�>���>�R?�+�%���U��
+ kU�>�U

��
+ U�>���>�U

��
:R?�+� + �;l !�+� + U�>���>�m?�+���U��

+ kU�>��U
��

+ U�>���>��?�+�U��l#�+�[j
��

∘ 4�)�:��,���|�;n 

(3.1.3) 

Note that the modeling error is denoted by ~, � refers to an identity matrix, and the 

subscript �&� signifies an upper bound. Furthermore, consider that R = ����, R> = �>�>�>�, R? = R − R>, m = �	, m> = �>	N , and m? = m − m>. Finally, R?�+�, m?�+�, and �?�+� are upper bounds on 

modeling uncertainties R, m, and �, respectively. The a priori measurement error vector ��,���|�  

is defined as follows: 
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��,���|� = %��� − ��7���|�  (3.1.4) 

Furthermore, 4�)�:��,���|�; represents a vector, with elements defined by: 

4�)�:��,���|�; = o4�)�:���,���|�;⋮4�)�:���,���|�;p (3.1.5) 

Note that in general a 4�)�*�+ function is defined by: 

4�)�*�+ = q+1 � > 0
0 � � = 0

−1 � < 0

 (3.1.6) 

Furthermore, note that ∘ refers to the Schur product, such that: 

& ∘ < = b&�<�&�<�&
<
c (3.1.7) 

Where & and < are column vectors with three elements each. Note that the VSF gain 

results in high frequency switching which limits the performance, as well as introduces 

chattering in the estimated states [38]. These results may be undesirable when smooth 

estimates are required. The chattering may be minimized and reduced by the introduction of a 

smoothing boundary layer � [38,118]. It is important to note that outside this boundary layer, 

the 4�)� function is maintained to ensure robustness and stability. Inside this boundary layer, 

the VSF gain is interpolated to obtain a smooth function [38]. Hence, consider the following 

change to the VSF gain: 

4�)�:��,���|�; → 4&5 I���,���|��� K (3.1.8) 

Where the saturation function is defined by: 
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4&5 I���,���|��� K =

rs
ts
u +1

���,���|��� ≥ 1���,���|��� � −1 <
���,���|��� < 1

−1
���,���|��� ≤ −1

 (3.1.9) 

As described in [38], for the purposes of stability, the VSF gain needs to be large enough 

to overcome the presence of uncertainties. Therefore, there is a relationship between the 

magnitude of the VSF gain and the level of uncertainty. Furthermore, the smoothing boundary 

layer � width also needs to be sufficiently large, such that it encompasses the maximum VSF 

gain values present in the estimation process [38]. The width of this boundary layer also 

determines the average level of estimation accuracy. Typically, the larger the smoothing 

boundary layer width, the less accurate the estimate (i.e., more uncertainties present) [38]. This 

makes sense intuitively, since the presence of fewer uncertainties leads to a more accurate 

estimate. The boundary layer width is a function of the upper bounds associated with the 

uncertainties present in the estimation process (i.e., modeling errors, and the system and 

measurement noises) [38]: 

� = U�>��>��U
��

U�>�>U
��

ZU�>���>�R?�+�%�+�U��
+ kU�>�U

��
+ U�>���>�U

��
:R> + R?�+� + �;l !�+�

+ U�>���>�m?�+���+�U�� + kU�>��U
��

+ U�>���>��?�+�U��l#�+�[ 

(3.1.10) 

The VSF offers a number of advantages. If the upper bounds of the system uncertainties 

and noise levels are well-defined, the VSF gain may be easily calculated as per (3.1.3) [42]. 

Furthermore, the VSF gain provides a robust estimation strategy, and has demonstrated stability 

to modeling uncertainties [38,114]. However, the VSF strategy does have a few disadvantages. 

The strategy may only be applied to linear systems, and yields non-optimal estimation results. 

Furthermore, the estimate may experience chattering, which may be undesirable, depending on 

the application [38]. 
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3.2 The Extended Variable Structure Filter 

In 2006, a modified form of the VSF was introduced, referred to as the extended variable 

structure filter (EVSF) [119]. Unlike the VSF, the EVSF method may be applied to nonlinear 

systems and measurements defined by (1.1.5) and (1.1.6) respectively.  

���� = *�� ,��+ + "� (1.1.5) %��� = ℎ*����+ +  ��� (1.1.6) 

The EVSF is formulated in a predictor-corrector fashion, and is conceptually similar to 

the VSF [119]. The state estimate is first predicted by using the estimated nonlinear system 

model, as follows: 

�7���|� = >:�7�|� , ��; (3.2.1) 

The estimate �7���|� is obtained by using the previous state estimate �7�|�, or the initial 

conditions �� at the start of the estimation process. The a priori state estimates are then used to 

calculate the a priori measurement estimates %̂���|�, as follows: 

%̂���|� = ℎN:�7���|�; (3.2.2) 

An EVSF corrective gain �����)*� is then calculated, and used to refine the a posteriori 

state estimate as follows [119]: 

�7���|��� = �7���|� + �����)*� (3.2.3) 

The EVSF strategy is similar to the extended Kalman filter (EKF), in the sense that it 

makes use of the linearized system and measurement functions, as follows: 

�N� =
D>D�G

�!�|�,"�

 (3.2.4) 

�v��� =
DℎND�G

�!���|�

 (3.2.5) 
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The linearization is performed in order to derive the EVSF corrective gain used in (3.2.3). 

The EVSF corrective gain is defined as follows [119]: 

�����)*� = �N���v���� IU�v���,�+�U��U�N�,�+�U�� ZhU�v���,�+�� U
��

U��,���|�U��
+ U�N�,�+��� U

��
kU*�� ,��+ − >:�7�|� ,��;U�� + #�+�

+ U�v���,�+�� U
��

!�+�l[ ∘ 4�)�:��,���|�;K 

(3.2.6) 

Note that it is assumed the system under consideration is observable, and has a system 

output matrix that is positive and constant in its linearized form such that ���� = ��  [119]. The 

corrective gained (3.2.6) is conceptually similar to that presented for the VSF (3.1.9), however 

can be applied for nonlinear systems. The EVSF and VSF strategies have similar advantages and 

disadvantages [42]. However, one notable disadvantage for the EVSF method is that it requires 

linearization at each time step in order to calculate the EVSF gain. This results in an increase in 

numerical effort, as well as reduces the overall estimation accuracy due to the truncation of 

higher-order terms (i.e., Taylor series approximation) [119]. These disadvantages are similar to 

the EKF, as discussed earlier in Chapter 2. 

3.3 The Smooth Variable Structure Filter 

A revised form of the VSF, referred to as the smooth variable structure filter (SVSF), was 

presented in 2007 [37]. The SVSF strategy is also a predictor-corrector estimator based on 

sliding mode concepts, and can be applied on both linear or nonlinear systems and 

measurements. As shown in the following figure, and similar to the VSF, it utilizes a switching 

gain to converge the estimates to within a boundary of the true state values (i.e., existence 

subspace) [37]. The SVSF has been shown to be stable and robust to modeling uncertainties and 

noise, when given an upper bound on the level of unmodeled dynamics and noise [37,38]. The 

origin of the SVSF name comes from the requirement that the system is differentiable (or 

‘smooth’) [37,42]. Furthermore, it is assumed that the system under consideration is observable 

[37]. 
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The SVSF gain is a function of: the a priori and a posteriori measurement error vectors ��,���|�  and ��,�|�; the smoothing boundary layer widths �; the ‘SVSF’ memory or convergence 

rate 6 with elements 0 < 6�� ≤ 1; and the linear measurement matrix �. The SVSF gain is used 

to refine the state estimates as follows: 

�7���|��� = �7���|� + ����*)*� (3.3.5) 

Next, the updated measurement estimates %̂���|��� and corresponding errors ��,���|��� are calculated: 

%̂���|��� = ��7���|��� (3.3.6) ��,���|��� = %��� − %̂���|��� (3.3.7) 

The SVSF process may be summarized by (3.3.1) through (3.3.7), and is repeated 

iteratively. According to [37], the estimation process is stable and converges to the existence 

subspace if the following condition is satisfied: 

U��|�U�� > U����|���U�� (3.3.8) 

Note that |�|�� is the absolute of the vector �, and is equal to |�|�� = � ⋅ 4�)�*�+. The 

proof, as described in [37] and [42], yields the derivation of the SVSF gain from (3.3.8). The 

stability proof provided in [42] is very clear, and is provided in Appendix 8.1 for completeness. 

The SVSF results in the state estimates converging to within a region of the state 

trajectory, referred to as the existence subspace. Thereafter, it switches back and forth across 

the state trajectory, as shown earlier in Figure 3.3.1. The existence subspace shown in Figures 

3.3.1 through 3.3.3 represents the amount of uncertainties present in the estimation process, in 

terms of modeling errors or the presence of noise. The width of the existence space � is a 

function of the uncertain dynamics associated with the inaccuracy of the internal model of the 

filter as well as the measurement model, and varies with time [37]. Typically this value is not 

exactly known but an upper bound may be selected based on a priori knowledge. 
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Figure 3.3.2. Smoothed Estimated Trajectory *� ≥ �+ [37] 

 

Figure 3.3.3. Presence of Chattering Effect *� < �+ [37] 

Once within the existence boundary subspace, the estimated states are forced (by the 

SVSF gain) to switch back and forth along the true state trajectory. As mentioned earlier, high-

frequency switching caused by the SVSF gain is referred to as chattering, and in most cases, is 

undesirable for obtaining accurate estimates [37]. 
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However, the effects of chattering may be minimized by the introduction of a smoothing 

boundary layer �. The selection of the smoothing boundary layer width reflects the level of 

uncertainties in the filter and the disturbances (i.e., system and measurement noise, and 

unmodeled dynamics). A time-varying derivation for the SVSF smoothing boundary layer will be 

explored later in Chapter 5, based on the covariance derivation to be presented in Chapter 4. 

The effect of the smoothing boundary layer is shown in Figures 3.3.2 and 3.3.3. When the 

smoothing boundary layer is defined larger than the existence subspace boundary, the 

estimated state trajectory is smoothed. However, when the smoothing term is too small, 

chattering remains due to the uncertainties being underestimated. Similar to the VSF strategy, 

the smoothing boundary layer � modifies the SVSF gain as follows [37]: 

����*)*� = �� wU��,���|�U�� + 6U��,�|�U��x ∘ 4&5:��,���|�/�; (3.3.9) 

The SVSF gain is considerably less complex than its predecessor (VSF), which allows it to 

be implemented more easily (mathematically and conceptually). Furthermore, the SVSF 

estimation process is inherently robust and stable to modeling uncertainties due to the 

switching effect of the gain. This makes for a powerful estimation strategy, particularly when the 

system is not well known. Note that for systems that have fewer measurements than states, a 

‘reduced order’ approach is taken to formulate a full measurement matrix [37,120]. Essentially 

‘artificial measurements’ are created and used throughout the estimation process. 

3.4 Computer Experiment 

This section studies a computer experiment, and compares the KF and SVSF strategies. For linear 

systems, it is expected that the KF will outperform the SVSF in terms of estimation accuracy. 

However, the injection of modeling uncertainties will demonstrate the robust performance of 

the SVSF. A global carbon cycle (GCC) system is used as a linear example, and is shown below as 

presented in [121] and [122]. 
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Figure 3.4.1. Global Carbon Cycle [122] 

The GCC is used to study climate change and global carbon cycles [121]. As shown in the 

previous figure, a generic GCC structure is based on a number of reservoir mass balances: 

atmosphere (��), surface ocean (�*,), intermediate and deep ocean (�-.,), vegetation (�)), 

and soil (�*). These reservoirs hold carbon mass, measured in ‘gigatonnes’ (1 × 10/	5z���4) of 

carbon (
5�). The input ��  to the system is ��� emissions (
5�/��&�) from biological sources, 

such as humans. The arrows in the previous figure represent the net carbon fluxes between 

boxes (reservoirs) as governed by the exchange coefficients �, and are summarized by the 

following table [121]. 

Table 3.4.1. Carbon Fluxes for the Global Carbon Cycle Example 

Flux Land Component ({|�0) Ocean Component ({|�0) 

1 �1� = 0.0722 �,� = 0.1025 

2 �1� = 0.0994 �,� = 0.5921 

3 �1
 = 0.0871 �,
 = 0.0708 

4 �1� = 0.0376 �,� = 0.00296 
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The mass balance equations may be determined from Figure 3.4.1, and are used to 

derive a state space representation of the GCC system. The atmospheric mass balance rate may 

be defined by [121]: 

(��(5 = �� − *�,� + �1�+�� + �1��) + �,��*, + �1��* (3.4.1) 

Note that the time notation was omitted for simplicity (i.e., ��(5) becomes ��). The 

four remaining reservoir mass balances (surface ocean, intermediate and deep ocean, 

vegetation, and soil) are defined respectively as follows [121]: 

(�*,(5 = �,��� − *�,� + �,
+�*, + �,��-., (3.4.2) 

(�-.,(5 = �,
�*, − �,��-., (3.4.3) 

(�)(5 = �1��� − *�1� + �1
+�) (3.4.4) 

(�*(5 = �1
�) − �1��* (3.4.5) 

Suppose the state vector is defined as � = L�� �*, �-., �) �*M�, then a 

discrete-time state space representation for the system (using the values found in Table 3.4.1) 

with � = 1	��&�, may be defined as follows: 

���� =

}~~
~�0.8253 0.5921 0 0.0994 0.0376
0.1025 0.3371 0.0030 0 0

0 0.708 0.9970 0 0
0.0722 0 0 0.8135 0

0 0 0 0.0871 0.9624���
�� �� +

}~~
~�10
0
0
0���
�� ��  (3.4.6) 

The corresponding measurement equation is defined by: 

%��� = L1 0 0 0 0M���� (3.4.7) 

For this simulation, system and measurement noise is injected according to (1.1.3) and 

(1.1.4). The corresponding system and measurement covariance’s are defined respectively as 

follows: 
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� = 10�2 × (�&)*L1 1 1 1 1M+ (3.4.8) � = 1 × 10�3 (3.4.9) 

The initial states and their estimates are set to zero, based on the assumption that there 

is no initial carbon present in the system (for the purposes of the computer experiment). The 

initial state error covariance matrix (used by the KF), is defined as follows: 

��|� = 20 × � (3.4.10) 

For this scenario, the SVSF ‘memory’ or convergence rate and smoothing boundary 

layers were defined as follows: 

6 = 0.1 (3.4.11) � = 0.03 (3.4.12) 

The SVSF smoothing boundary layer was tuned by trial and error in an effort to minimize 

the state estimation error. The following figure shows the true atmospheric ��� concentrations, 

with the corresponding KF and SVSF estimates, based on an initial impulse response (with 

amplitude 1). 

 

Figure 3.4.2. True and Estimated Atmospheric ��� Concentrations, �� 
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Note that the estimates are nearly identical, and as such, appear to be overlapping. The 

KF provides an optimal result (in terms of estimation error) for linear systems; as such, it was 

expected to outperform the SVSF. A good measure of estimation performance is the root mean 

square error (RMSE) calculation, which is defined as follows: 

���.� = �∑ :��,� − �7�,�;��
� � �  

(3.4.13) 

Where in this case: � refers to the ��� state, � refers to the total number of samples, � 

refers to the true state value, and �7 refers to the state estimate (from the KF or SVSF). The 

following table summarizes the RMSE results for this case. 

Table 3.4.2. RMSE Results of the Global Carbon Cycle Example 

Parameter KF SVSF �� 8.256 × 10�� 9.103 × 10�� �*, 3.553 × 10�� 3.568 × 10�� �-., 4.000 × 10�
 4.000 × 10�
 �) 6.120 × 10�� 6.175 × 10�� �* 8.954 × 10�� 9.010 × 10�� 

An interesting result occurs when modeling uncertainties are injected into the 

estimation process half-way through (i.e., at 500 years). Suppose that one of the carbon fluxes 

used to model the system is incorrectly calculated and used by the filters (i.e., �1� = 30 × �1�). 

This changes the system defined by (3.4.6), which affects the estimation process. The following 

two figures illustrate the consequences of the modeling uncertainties. The first figure shows the 

true atmospheric ��� concentrations, with the corresponding KF and SVSF estimates. The 

second figure shows the corresponding estimation error (i.e., the difference between the true 

and estimated values). At the inception of the modeling uncertainty, the KF estimate nearly goes 

unstable, and takes about 500 samples to return to within an acceptable region.  
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Further to the calculation of the RMSE, the Cramér-Rao lower bound (CRLB) may be 

used as an indicator of the performance of each filter. The CRLB is defined as the inverse of the 

Fisher information matrix (FIM) �, which quantifies the available information found in the 

observations about a state [28]. The CRLB provides a lower bound on the achievable variance in 

the estimation of a parameter. A derivation that can be used for discrete-time filtering is the 

posterior form (PCRLB) [123,124,125]. This allows meaningful evaluations of estimation 

techniques, such that the RMSE for each filter can be determined and compared with the PCRLB. 

Ideally, one would want the RMSE to reach the PCRLB, or be as close as possible. According to 

[28], the CRLB states that the covariance matrix is bounded as follows: 

./*� − �7+*� − �7+�0 ≥ ��� (3.4.14) 

The inverse of the PCRLB may be calculated recursively (with initial zero values) [123]: 

���� = :������� + �;�� + ������ (3.4.15) 

The following two figures compare the PCRLB with the KF and SVSF RMSE values for the 

two cases described earlier (normal and modeling uncertainty). 

 

Figure 3.4.5. PCRLB and RMSE for the KF and SVSF Methods (Normal Case) 
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Figure 3.4.6. PCRLB and RMSE for the KF and SVSF Methods (Uncertainty Case) 

For the normal case, the KF RMSE is closer to the PCRLB than the SVSF RMSE, which is to 

be expected, since the KF yields optimal results. The second case clearly shows the SVSF 

robustness to modeling uncertainties, as the SVSF RMSE is bounded closer to the PCRLB (even 

after 10,000 samples). 

3.5 Summary 

This chapter introduced the predecessors to the smooth variable structure filter (SVSF): the 

variable structure filter (VSF) and its extended form (EVSF). The VSF was derived based on sliding 

mode and variable structure concepts, and can be applied to linear systems only. The switching 

gain yields a robust estimation strategy, however this comes at the cost of accuracy (i.e., it is not 

optimal). The VSF was extended to nonlinear systems and is referred to as the EVSF. The SVSF 

strategy is also a predictor-corrector estimator based on sliding mode concepts, and can be 

applied to both linear or nonlinear systems and measurements. The SVSF gain is derived based 

on a sliding mode concept that creates a very robust estimation strategy. This was 

demonstrated by the use of a computer experiment, which looked at the RMSE and PCRLB 

performance metrics. 
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The SVSF also offers other advantages which will be explored throughout this thesis. 

Since the filtering strategy is relatively new, a number of research opportunities exist with the 

SVSF. It is therefore the goal of this research to further advance and develop the SVSF; in 

particular, to improve its performance and increase the number of its useful applications. The 

first such development involves the covariance derivation for the SVSF, which is presented in the 

next chapter. 
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Chapter 4 
4 Covariance Derivation for the SVSF 

Covariance Derivation for the SVSF 

 

This chapter describes the development of the covariance derivation for the SVSF, as applied to 

both linear and nonlinear systems. Two numerical computer experiments (for linear and 

nonlinear systems) are presented to provide a comparative study of the SVSF filter with a state 

error covariance function with other Kalman-based methods. 

 

4.1 Linear Systems 

The SVSF in its current form, as described in Chapter 3, does not have or make use of a state 

error covariance matrix. Error covariance may be used for a variety of reasons: to determine an 

optimal value of the gain (i.e., such as in the case of the KF); for the implementation of 

interacting multiple model (IMM) methods that can be used for target tracking or fault 

detection and diagnosis; or to create other forms such as the information filter formulation (i.e., 

using the inverse of the covariance) [28]. In statistics and probability theory, a covariance matrix 

may be defined as a function of two random vectors $ and @. For example, assuming means of $' and @' respectively, a covariance matrix may be defined as follows: 

]z *$,@+ = .L*$� − $'+*@� − @'+�M (4.1.1) 

Where � refers to the ��� element of the vector $ or @. The covariance provides a 

measure of how random variables are related. 
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For example, if ]z *$,@+ = 1 then $ and @ are said to be highly correlated. Likewise, ]z *$,@+ = 0 means that the sets of random variables are uncorrelated. In this thesis, unless 

otherwise stated, a covariance matrix is assumed to be a function of state estimation errors (i.e., 

the difference between the actual and estimated state values), and may be defined as the 

expectation of the error squared, as follows: 

� = ./�C�C�0 = ./*� − �7+*� − �7+�0 (4.1.2) 

Where � refers to the state, �7 is the corresponding state estimate, and �C is the 

difference between the actual and estimated states. Recall that the SVSF estimation strategy is a 

predictor-corrector method. As such, it requires an a priori (predicted) and an a posteriori 

(updated) state error covariance, referred to as ����|� and ����|��� respectively. In an effort to 

find these functions, the following equations must be solved: 

����|� = . Z:���� − �7���|�;:���� − �7���|�;�[ (4.1.3) 

����|��� = . Z:���� − �7���|���;:���� − �7���|���;�[ (4.1.4) 

A number of strategies were attempted in an effort to solve both (4.1.3) and (4.1.4). 

Equation (4.1.4) proved the most difficult, due to the following (expanded) state update 

equation defined in Chapter 3: 

�7���|��� = �7���|� + �� wU��,���|�U�� + 6U��,�|�U��x ∘ 4&5 I��,���|�� K (4.1.5) 

The full derivation of ����|��� is provided in Appendix 8.2. It was determined that two 

equations exist for ����|���, inside and outside the smoothing boundary layer. While outside of 

the smoothing boundary layer, the a posteriori covariance calculation may be found by: 

����|��� = 6��|�6� + ���*���� + 6��6�+��� (4.1.6) 

While outside the smoothing boundary layer, the a posteriori state error covariance ����|��� is a function of the previous a posteriori state error covariance ��|�, the measurement 

(output) model �, the SVSF parameter 6, and the measurement noise covariance ��. 
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While inside the smoothing boundary layer, solving (4.1.4) using (4.1.5), leads to fourth-

order moment calculations (i.e., ./�C�C��C�C�0). The corresponding a posteriori state error 

covariance may be calculated as follows: 

����|��� = ����|� − :�
,� + �
,�;�'����� − ����'��:�
,
 + �
,�;
+ ����'�����'����� 

(4.1.7) 

Where �
 refers to matrices which consist of third-order moments and �� is a matrix 

consisting of second and fourth-order moments, defined as: 

�� = ��,� + ��,� + ��,
 + ��,� + 4��,� + 2��,� + ��,�� + 2��,�� + ��,�

+ ��,�� + ��,��'���� + �'���:��,4 + ��,/; + ���� ∘ ���� + 6̅����
∘ ��6̅ 

(4.1.8) 

Solutions for the second, third, and fourth-order moments are shown in Appendix 8.2. 

Note that the third and fourth-order moments are calculated recursively. The above derivation 

is complex, and becomes even more so with an increased number of states. Equation (4.1.7) is 

cumbersome to compute due to the large number of supporting equations, and is too tedious to 

implement effectively. In an effort to provide a simplified covariance calculation, an alternative 

method involving an update equation is proposed. The following revised update equation is 

similar to the KF strategy. Let: 

�7���|��� = �7���|� + ������,���|� (4.1.9) 

Where the new SVSF gain ���� is proposed as follows: 

���� = ������ ��	
�,���|�	
���

+ �	
�,�|�	
���

� ∘ �� �
�,���|�� �� ������
�,���|����� (4.1.10) 

To help illustrate (4.1.10), consider a fully measured system *� = �+ with three states, such that: 

���� = (�&) b�����
c b(�&) �
�����
�c

��

 (4.1.11) 
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Where: 

�� = :U���,���|�U + 6�U���,�|�U; ∘ 4&5 I���,���|��� K (4.1.12) 

Simplifying (4.1.11) yields: 

���� = b��/��	 0 0
0 ��/�� 0
0 0 �
/�
c (4.1.13) 

Substitution of (4.1.13) into the new state update equation of (4.1.9) yields: 

�7���|��� = �7���|� + b��/��	 0 0
0 ��/�� 0
0 0 �
/�
c ��,���|� (4.1.14) 

Note that ��,���|� = L�� �� �
M�. Simplifying (4.1.14) yields: 

�7���|��� = �7���|� + b�����
c (4.1.15) 

Equation (4.1.15) is exactly the same as (3.3.5), or the standard SVSF update equation. 

Essentially the nature of the SVSF remains the same, as one divides the gain by the a priori 

output error ��,���|�, and then multiplies by it again in the update estimate equation (4.1.9).  

However, for numerical stability, it is important to ensure that one does not divide by 

zero in (4.1.7). This can be accomplished using a simple � statement with a very small threshold 

(i.e., 1 × 10���). Introducing the notation of (4.1.9) and (4.1.10) enables one to derive a much 

simpler covariance derivation. Furthermore, note that the proof of stability for the SVSF is not 

affected, as the overall corrective gain remains the same as (3.3.5). It is interesting to note that 

the a priori and a posteriori state error covariance matrices for the SVSF are of similar form to 

the KF for linear systems, which is to be expected since both filters make use of the same update 

equation. However, it is important to recognize that although the form of the equations is 

similar, the applied update gain still differs between the two filters. 
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4.1.1 A Priori Covariance Calculation 

The following presents the derivation of the a priori state error covariance equation for the SVSF 

for linear systems. It is assumed that the system and measurement matrices are well-defined 

(i.e., no modeling errors), and are static (i.e., time invariant). The a priori state error covariance 

matrix may be defined as follows: 

����|� = .A�C���|��C���|�� B (4.1.1.1) 

Where, as before, the a priori state error is defined as in (4.1.3). As defined in (1.1.1), 

the discrete model of the system may be described by the following: 

���� = ��� + 	�� + "�  (1.1.1) 

Further to (1.1.1), the uncertain estimation model for the system that is used in the 

prediction stage of the SVSF may be defined as follows: 

�7���|� = �>�7�|� + 	N�� (4.1.1.2) 

Substitution of (1.1.1) and (4.1.1.2) into the a priori state error yields: 

�C���|� = ��� + 	�� + "� − �>�7�|� − 	N��  (4.1.1.3) 

Rearranging (4.1.1.3) yields: 

�C���|� = :� − �>;�� + �>:�� − �7�|�; + :	 − 	N;�� + "� (4.1.1.4) 

Simplifying (4.1.1.4) further yields the following a priori state error equation: 

�C���|� = �?�� + �>�C�|� + 	��� + "�  (4.1.1.5) 

In the absence of modeling errors (i.e., �> = � and 	N = 	), the a priori state error 

equation may be simplified further to (4.1.1.6): 

�C���|� = ��C�|� + "� (4.1.1.6) 
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Substitution of (4.1.1.6) into (4.1.1.1) yields the following definition for the a priori state 

error covariance matrix: 

����|� = . Z:��C�|� + "�;:��C�|� + "�;�[ (4.1.1.7) 

Expanding the terms yields: 

����|� = .A��C�|��C�|�� �� + ��C�|�"�� + "��C�|�� �� + "�"��B (4.1.1.8) 

Recall that the system noise "�  is typically modeled as Gaussian noise, such that it is 

zero-mean with a covariance referred to as ��. Furthermore, it is assumed that the system noise "�  and the state errors �C�|� are uncorrelated and independent of each other. Based on these 

assumptions, one may define the following five equations: 

�*"�+~1(0,��) (4.1.1.9) ./"�0 = .A"��B = 0 (4.1.1.10) .A"�"��B = ��  (4.1.1.11) .A"��C�|�� B = ./"�0.A�C�|�� B = 0 (4.1.1.12) .A�C�|�"��B = .A�C�|�B.A"��B = 0 (4.1.1.13) 

Also, it is important to note the definition for the previous time step’s a posteriori state 

error covariance (4.1.1.14). 

��|� = .A�C�|��C�|�� B (4.1.1.14) 

Applying the previous six definitions to (4.1.1.8) yields the solution for the a priori state 

error covariance for the SVSF, as follows: 

����|� = ���|��� + �� (4.1.1.15) 

In this case, it is shown that the a priori state error covariance ����|� is a function of the 

previous a posteriori state error covariance ��|�, the system model �, and the system noise 

covariance ��. 
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4.1.2 A Posteriori Covariance Calculation 

The a posteriori state error covariance equation may now be obtained using (4.1.1.15). The a 

posteriori state error covariance matrix is defined as: 

����|��� = .A�C���|����C���|���� B (4.1.2.1) 

Where the a posteriori state error �C���|��� is: 

�C���|��� = ���� − �7���|��� (4.1.2.2) 

The state update and a priori measurement error calculations are respectively defined 

as follows: 

�7���|��� = �7���|� + ������,���|� (4.1.9) ��,���|� = %��� − ��7���|� (3.3.3) 

Substitution of (4.1.9) and (3.3.3) into (4.1.2.2) yields: 

�C���|��� = ���� − �7���|� − ����:%��� − ��7���|�; (4.1.2.3) 

Recall (1.1.2), which states the following definition for the measurement calculation: 

%��� = ����� +  ��� (1.1.2) 

Substitution of (1.1.2) into (4.1.2.3) yields: 

�C���|��� = ���� − �7���|� − ����:����� +  ��� − ��7���|�; (4.1.2.4) 

Equation (4.1.2.4) simplifies to the following: 

�C���|��� = �C���|� − ����:��C���|� +  ���; (4.1.2.5) 

Simplifying further yields the following definition for the a posteriori state error equation: 

�C���|��� = *� − �����+�C���|� − ���� ��� (4.1.2.6) 



Ph.D. Thesis 

S. A. Gadsden 

McMaster University 

Department of Mechanical Engineering 

 

74 

 

 

Substitution of (4.1.2.6) into (4.1.2.1), and performing the appropriate transpose, yields 

an equation for the a posteriori state error covariance matrix (4.1.2.7). 

����|��� = .Af*� − �����+�C���|� − ���� ���gf�C���|�� *� − �����+�
−  ���� ����� gB (4.1.2.7) 

Expanding the terms above yields a much more complicated equation, as follows: 

����|��� = .A*� − �����+�C���|��C���|�� *� − �����+�
− *� − �����+�C���|� ���� ����� − ���� ����C���|�� *� − �����+�
+ ���� ��� ���� ����� B (4.1.2.8) 

Recall that the measurement noise  ��� is typically modeled as Gaussian noise, such 

that it is zero-mean with a covariance referred to as ����. Furthermore, it is assumed that the 

measurement noise  ��� and the state errors �C���|�  are independent of each other. Based on 

these assumptions, one may define the following five equations: 

�* ���+~1(0,����) (4.1.2.9) ./ ���0 = .A ���� B = 0 (4.1.2.10) .A ��� ���� B = ���� (4.1.2.11) .A ����C���|�� B = ./ ���0.A�C���|�� B = 0 (4.1.2.12) .A�C���|� ���� B = .A�C���|�B.A ���� B = 0 (4.1.2.13) 

Applying the above five definitions to (4.1.2.8) yields the a posteriori state error 

covariance matrix for the SVSF as follows: 

����|��� = *� − �����+����|�*� − �����+� + �������������  (4.1.2.14) 

In this case, it is shown that the a posteriori state error covariance is a function of the 

SVSF gain ����, the a priori state error covariance ����|�, the measurement model �, and the 

measurement noise covariance ����. Equation (4.1.2.14) is actually known as the Joseph form 

of the covariance equation, and is valid for any gain value [30]. 
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It may be simplified further if the optimal KF gain value is used [39]. Note that the above 

strategy for obtaining the state error covariance matrices is well established in literature; it is 

nonetheless provided here for completeness for the proposed SVSF estimation strategy [30,33].  

4.1.3 Proposed Augmented SVSF Estimation Strategy for Linear Systems 

This section summarizes the proposed augmented SVSF estimation strategy, which includes the 

state error covariance calculations for linear systems. There are two stages: prediction and 

update. The first step is to predict the state estimates (4.1.3.1), calculate the a priori state error 

covariance (4.1.3.2), and find the corresponding estimation error (4.1.3.3). 

�7���|� = �>�7�|� + 	N�� (4.1.3.1) ����|� = �>��|��>� + �� (4.1.3.2) ��,���|� = %��� − ��7���|�  (4.1.3.3) 

The next step involves calculating the corresponding SVSF gain (4.1.3.4), updating the 

state estimate (4.1.3.5), finding the a posteriori state error covariance (4.1.3.6), and determining 

the a posteriori measurement error (4.1.3.7) which is to be used in the next iteration. 

���� = ������ ��	
�,���|�	
���

+ �	
�,�|�	
���

� ∘ �� �
�,���|�� �� ������
�,���|����� (4.1.3.4) 

�7���|��� = �7���|� + ������,���|� (4.1.3.5) ����|��� = *� − �����+����|�*� − �����+� + �������������  (4.1.3.6) ��,���|��� = %��� − ��7���|��� (4.1.3.7) 

It is important to remind the reader that a ‘divide by zero’ check should be performed 

on (4.1.3.4) to avoid division by zero. The proposed SVSF estimation strategy for linear systems 

may be summarized by (4.1.3.1) through (4.1.3.7). In its current form, it is interesting to point 

out that the calculation of ����|��� has no effect on the SVSF gain ����. However, the SVSF gain 

does affect the final value of ����|���. 
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As will be shown later in Chapter 5, the covariance ����|��� may be used to obtain a 

time-varying smoothing boundary layer ���� that is less conservative and improves the SVSF 

estimation accuracy by determining a gain ���� that is closer to its optimal value. 

4.2 Nonlinear Systems 

In reality, all systems are in fact nonlinear. This section helps to provide a strategy for 

determining the state error covariance function for the SVSF for nonlinear systems and 

measurement functions defined respectively as (1.1.5) and (1.1.6). However, it is important to 

note that throughout this thesis, it is assumed that the measurement matrix is linear, such that 

the only function requiring linearization would be the system. 

���� = *�� ,��+ + "� (1.1.5) %��� = ℎ*����+ +  ��� (1.1.6) 

Where  and ℎ represent the nonlinear system and measurement models, respectively. 

It is possible to use the nonlinear functions  and ℎ to predict the state estimates �7���|� and the 

measurements %̂���|�. However, these functions may not be directly used to calculate the 

covariance values [39]. As described in Chapter 2, there are strategies available to extend the KF 

from linear to nonlinear systems. These same principles will be applied here in an effort to 

utilize available strategies for calculating ����|��� for the SVSF in the presence of nonlinearities. 

4.2.1 Linearization 

As made popular by the extended Kalman filter (EKF), the nonlinear system and measurement 

equations may be linearized and then used to calculate the state error covariance [34]. The 

partial derivatives are used to compute linearized system and measurement matrices � and �, 

respectively found as follows [32]: 

�� =
DD�E�!�|�,"�  (4.2.1.1) 
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���� =
DℎD�E�!���|�

 (4.2.1.2) 

Equations (4.2.1.1) and (4.2.1.2) essentially linearize the nonlinear system or 

measurement functions around the current state estimate [30]. As mentioned in Chapter 2, 

linearization introduces uncertainties and errors into the estimation process, which may lead to 

an unstable estimate [33]. Furthermore, determining a Jacobian of a highly nonlinear function 

can sometimes be a difficult task. However, linearization proves to be an effective strategy when 

dealing with mildly-nonlinear functions. Furthermore, as shown by the EKF estimation method, 

the a priori and a posteriori state error covariance’s may be calculated as follows [39]: 

����|� = ����|���� + �� (4.2.1.3) ����|��� = *� − ��������+����|�*� − ��������+� + �������������  (4.2.1.4) 

The above two equations are similar to the linear case; however, the system and 

measurement equations have been linearized. The SVSF strategy for linearization would then be 

the same as that presented in Section 4.1.3, however the predicted and updated covariance is 

calculated using (4.2.1.3) and (4.2.1.4) respectively, and the predicted state estimate is 

calculated by: 

�7���|� = :�7�|� , ��; (4.2.1.5) 

A summary of the SVSF with linearized nonlinear functions is available in Appendix 8.3. 

4.2.2 Unscented Transformation 

The unscented transform (UT) was made popular by the unscented Kalman filter (UKF), as 

presented in Chapter 2. The UT is a deterministic sampling technique. A finite number of 

weighted sample points (referred to as sigma points) are propagated through the nonlinear 

functions, which create an approximate solution to the mean and covariance of the desired 

estimate [36,71]. 
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In this case, only the approximation of the covariance is of interest, since the SVSF will 

handle the state estimate (i.e., mean). The first step to calculating the covariance using the UKF 

strategy is to generate the desired sigma points. The �-dimensional random variable ��  with 

mean �7�|� and covariance ��|� may be approximated by 2� + 1 sigma points. As described in 

Chapter 2, the initial sigma points (corresponding sample and weight) may be calculated as 

follows: 

$�,�|� = �7�|� (4.2.2.1) 

 #� = H/(� + H) (4.2.2.2) 

The next � number of sigma points may be calculated as follows: 

$�,�|� = �7�|� + IJ*� + H+��|�K
�

 (4.2.2.3) 

 #� = 1/L2*� + H+M (4.2.2.4) 

Likewise, the remaining � number of sigma points may be found as: 

$���,�|� = �7�|� − IJ*� + H+��|�K
�

 (4.2.2.5) 

 #��� = 1/L2*� + H+M (4.2.2.6) 

The parameter H is a design value (typically a small value, significantly less than 1), the 

last term of (4.2.2.3) or (4.2.2.5) is the ��� row or column of the matrix square root of *� + H+��|�, and #� is the weight that is associated with the ��� sample point [71]. The sigma 

points are then propagated through the nonlinear system or process model (4.2.2.7), and are 

used to calculate the predicted state error covariance (4.2.2.8). 

$N�,���|� = :$�,�|� , ��; (4.2.2.7) 

 ����|� = ∑ #�:$N�,���|� − �7���|�;:$N�,���|� − �7���|�;���
� �  (4.2.2.8) 

Note that the state estimate �7���|�  is obtained from the SVSF strategy, as opposed to a 

summation of the weighted sigma points $N�,���|� (i.e., the UKF method). 
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Since the SVSF state update equation does not change (4.1.3.5), and it is assumed that 

the measurement matrix is linear or can be linearized as per the earlier section, the updated 

state error covariance matrix may then be calculated as follows: 

����|��� = *� − ��������+����|�*� − ��������+� + �������������  (4.2.2.9) 

By the nature of its derivation, the UT may appear to be more computationally 

demanding. However, this strategy avoids the linearization process, which can cause numerical 

issues as previously discussed. For mildly nonlinear estimation problems, both linearization and 

UT may yield the same solution. However, the UT becomes more advantageous when the 

nonlinearities are increased. The complete SVSF strategy when utilizing the UT will be explored 

further in Chapter 5. 

4.2.3 Cubature Rules 

As described in Chapter 2, the use of cubature rules to calculate the state error covariance for 

the KF was first introduced by the cubature Kalman filter (CKF). The CKF uses a third-degree 

cubature rule to numerically compute Gaussian-weighted integrals, as opposed to the sigma 

point set used by the UKF [72]. The cubature rule approximates an �-dimensional Gaussian 

weighted integral (4.2.3.1). 

� *�+1*�;2, ∑+(�
ℝ��

≈
1

2� (2 + �∑R�) (4.2.3.1) 

The term 2 refers to the mean of �, ∑ refers to the corresponding covariance, and R� 
refers to the ��� cubature point (of 2� in total). Note that the square-root factor of the 

covariance ∑ must satisfy the relationship ∑ = �∑�∑
�

 [72].  

The set of cubature points is given by [72]: 

R� = S √��� , � = 1,2, … ,�
−√�����, � = � + 1,� + 2, … ,2� (4.2.3.2) 
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Where �� ∈ ℝ� denotes the ��� elementary column vector. According to [72], the third-

degree cubature rule is exact for polynomial integrands up to the third degree or for any odd-

degree polynomial. Therefore, it allows a more accurate approximation of the state error 

covariance matrix when compared with the linearization or UT strategies. For more details on 

how the cubature points are derived, refer to Chapter 2 or [72]. The initial set of cubature points $ are calculated based on the previous a posteriori state estimate �7�|�, the previous a posteriori 

state covariance ��|�, and the cubature-point set R� [72]. Once calculated (4.2.3.3), these 

cubature points are propagated through the nonlinear system or process model (4.2.3.4). 

$�,�|� = J��|�R� + �7�|� � = 1,2, … ,2� (4.2.3.3) 

 $�,���|�∗ = ($�,�|� ,��) � = 1,2, … ,2� (4.2.3.4) 

As per the previous section, the predicted estimate is found using the SVSF method �7���|�. This value is then used in conjunction with (4.2.3.4) and the system noise covariance 

matrix �� to find the predicted state error covariance matrix (4.2.3.5) [72]. 

����|� =
1

2�O$�,���|�∗ $�,���|�∗�

��

� �

− �7���|��7���|�� + ���� (4.2.3.5) 

Since the SVSF state update equation does not change (4.1.3.5), and it is assumed that 

the measurement matrix is linear or can be linearized as per the earlier section, the updated 

state error covariance matrix may then be calculated as follows: 

����|��� = *� − ��������+����|�*� − ��������+� + �������������  (4.2.3.6) 

Similar to the linear system case, the aforementioned processes for determining the 

state error covariance with nonlinear systems do not affect the calculated SVSF gain. However, it 

is important to reiterate that the SVSF estimation methods presented later in Chapters 5 and 6 

would not be possible without the development of a state error covariance function. 
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4.3 Computer Experiments 

The following two sections look at the implementation of the aforementioned strategies on a 

linear and nonlinear system. The purpose of these computer experiments is to study and 

compare the state error covariance values calculated by the KF methods and the SVSF. 

4.3.1 Linear System 

In this section, consider an example found in [39], which deals with a linear, underdamped, 

second-order system. Consider the following second-order continuous-time dynamic equation 

with a constant driving term of 12 [39]: 

���*5+ + 2���_�*5+ + ����*5+ = 12 + "*5+ (4.3.1.1) 

Above, �� refers to the displacement, � refers to the damping ratio, � represents the 

natural frequency of the system, and " refers to system noise. Converting (4.3.1.1) to a discrete-

time state space system yields, where � = 0.001	4�] is the sample time: 

k����l��� = 8 1 �
−��� *1 − 2���+9 k����l� + k 0

12
l � + k0�l"�  (4.3.1.2) 

Where �� refers to the velocity of the system. In this case, assume a full measurement 

matrix such that the following is the corresponding measurement equation: 

%��� = k1 0
0 1

l ���� +  ��� (4.3.1.3) 

Where  � refers to measurement noise. Furthermore, assume the following definitions 

for the damping ratio and natural frequency, respectively: 

� = 0.2 (4.3.1.4) � = 5	�&(/4 (4.3.1.5) 

Also, consider the following covariance definitions used to generate the system and 

measurement noise, respectively: 
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� = 81 × 10�5 2 × 10�5

2 × 10�5 5 × 10�

9 (4.3.1.6) 

� = k0.01 0
0 0.01

l (4.3.1.7) 

The initial state estimates and corresponding error covariance were defined as follows: 

�7�|� = L0 0M� (4.3.1.8) 

��|� = k2 0
0 2

l (4.3.1.9) 

For this scenario, the SVSF ‘memory’ or convergence rate and smoothing boundary 

layers were defined as follows: 

6 = 0.1 (4.3.1.10) � = L0.01 0.001M� (4.3.1.11) 

The following figure shows the true position state, with the corresponding KF and SVSF 

estimates. Note that the estimates are nearly identical, and as such, appear to be overlapping. 

The second figure shows the position estimation error over time. The KF provides an optimal 

result (in terms of estimation error) for linear systems; as such, it was expected to outperform 

the SVSF. A methodology for improving the estimation accuracy of the SVSF is introduced later 

in Chapter 5. 

The following table summarizes the root mean square error (RMSE) for both estimation 

strategies (for the linear systems example). 

Table 4.3.1. RMSE Results for the Linear Systems Example 

Filter Position (�) Velocity (�/�) 

KF 1.07 × 10�3 7.28 × 10�3 

SVSF 1.11 × 10�3 9.19 × 10�3 
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Consider the following SVSF gain equation: 

���� = ������ ��	
�,���|�	
���

+ �	
�,�|�	
���

� ∘ �� �
�,���|�� �� ������
�,���|����� (4.3.1.12) 

If the corresponding smoothing boundary layer � is very small relative to the a priori 

measurement error ��,���|�, then ��,���|�/� will be saturated. Based on the fact that 6 = 0.1 

and provided that the a posteriori measurement error ��,�|� is also small, then the resulting 

SVSF gain will be approximately an identity matrix (however, not exactly!). If the measurement 

matrix is full and is identity, the first term in the a posteriori state error covariance matrix 

(4.1.3.6) becomes negligible, such that: 

*� − �����+����|�*� − �����+� → 0 (4.3.1.13) 

This results in the following equation for the updated covariance matrix, based on the 

fact that the SVSF gain approaches an identity matrix: 

����|��� = ���� (4.3.1.14) 

Therefore, if the smoothing boundary layer is set too small, the resulting estimate will 

directly yield the available measurement. This is shown by the state error covariance matrix, 

which yields the measurement matrix. The purpose of the linear example was to demonstrate 

that the SVSF covariance derivation yields meaningful and correct results. 

4.3.2 Nonlinear System 

For completeness, consider a nonlinear system example. One of the most well studied 

aerospace applications involves ballistic objects on re-entry [31]. In this section, a ballistic target 

re-entering the atmosphere is considered, as described in [31]. The following figure shows the 

setup for ballistic target tracking. 
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Figure 4.3.7. Ballistic Target Tracking Scenario [31] 

Assuming that drag � and gravity ) are the only forces acting on the object, the 

following differential equations govern its motion [31,126]: 

ℎ_ =   (4.3.2.1) 

 _ = −
a*ℎ+) �

2� + ) (4.3.2.2) 

�_ = 0 (4.3.2.3) 

The state vector is defined as � = Lℎ  �M�, which refers to the target altitude, 

velocity, and ballistic coefficient, respectively. The air density a is modeled as follows: 

a = 6��6� (4.3.2.4) 

Where 6 = 1.754 and � = 1.49 × 10��. The discrete-time state equation is defined as 

follows [31]: 

���� = ��� − 
L�*��+ − )M + "�  (4.3.2.5) 

With matrices � and 
 defined by: 

� = b1 −� 0
0 1 0
0 0 1

c (4.3.2.6) 
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 = L0 � 0M� (4.3.2.7) 

Furthermore, the function for drag �*��+ (the only nonlinear term) is defined by: 

�*��+ =
)a:��,�;��,��

2�
,�  (4.3.2.8) 

Note that for the EKF approach, the system matrix requires linearization as follows: 

�� =
DD�E�!�|�,"� = }~~

�1 −� 0

0 1 −
�)6��,��
,��6��,� �)6��,��

2�
,�� �6��,�
0 0 1 ���

�
 (4.3.2.9) 

As in [31], the system noise "�  is assumed to be zero-mean Gaussian with a covariance 

matrix � defined by: 

� ≈

}~
~~
��� �
3 	 �� ��2 0

�� ��2 ��� 0

0 0 �����
��
�
 (4.3.2.10) 

Note that the parameters �� and �� respectively control the amount of system noise in 

the target dynamics and the ballistic coefficient [31]. As shown in Figure 4.3.7, a radar is 

positioned on the ground below the target. The measurement equation in this scenario is 

defined by: 

%� = ��� +  �  (4.3.2.11) 

Where, for simplicity, it is assumed that all three states are measured (i.e., � = �). 
In this tracking scenario, the initial states are defined as follows: ��,� = 61,000	�, ��,� = 3,048	�/4, and �
,� = 19,161	�)/�4�. The initial state error covariance matrix was 

defined by: ��|� = 10�. Other notable parameters were defined as: �� = 10�, �� = 10, )	 = 	9.81	�/4�, � = 0.1	4�], and �	 = (�&)*L10� 5 × 10� 10�M+. 
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Furthermore, note that the SVSF ‘memory’ or convergence rate was set to 6 = 0.1, and 

the constant smoothing boundary layer widths were defined as � = L1,000 250 5,000M�. 

Also, note that the UKF design parameter was set to H = 0.001. For nonlinear systems, as 

presented earlier, the SVSF may utilize the a priori covariance calculation of the EKF, UKF, or 

CKF. It is proposed that the a posteriori covariance is calculated as per the EKF strategy for 

simplicity, and based on the assumption that the measurements are linear (or, at the very least, 

may be linearized). For this computer experiment, the a priori covariance values were calculated 

using the EKF, UKF, and CKF strategies. The SVSF gain was then applied, and the covariance was 

updated as per (4.2.1.4). The following three figures show the covariance values for each state, 

based on each covariance calculation strategy (�� refers to EKF, �� refers to UKF, and �
 refers 

to CKF). 

 

Figure 4.3.8. State 1 Error Covariance Value for the Nonlinear System Example 
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Figure 4.3.9. State 2 Error Covariance Value for the Nonlinear System Example 

 

 

Figure 4.3.10. State 3 Error Covariance Value for the Nonlinear System Example 
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In general, the covariance values calculated by the CKF strategy were smaller, which was 

to be expected given that the cubature rule strategy is more accurate than the unscented 

transform and linearization methods [72]. The covariance values had some ‘spikes’ or small 

chattering present, which was due to the nature of the SVSF gain (i.e., switching effect). 

Furthermore, note that the differences in the above figures were only due to the a priori 

covariance calculations, since the same gains and update equations were used. 

4.4 Summary 

In its original form presented in [37], the SVSF is not a classical filter in the sense that it does not 

make use of a state error covariance matrix. This chapter described the development of a 

covariance derivation for the SVSF, for both linear and nonlinear systems. A method that makes 

use of fourth-order moments is provided in Appendix 8.2. However, this method is too 

cumbersome and tedious to implement effectively. The SVSF update equation is modified in 

order to provide a simpler covariance derivation. The covariance developed for the SVSF, for 

both linear and nonlinear systems, are similar to other popular Kalman filtering strategies (KF, 

EKF, UKF, and CKF). However, it is important to note that the gain used to calculate the SVSF 

covariance remains different. Two computer experiments have been studied in order to 

compare the results of the covariance values. It has also been shown that the values for the 

SVSF smoothing boundary layer play an important role in the estimation process. Note that at 

this point, determination of the state error covariance matrix does not affect the SVSF 

estimation process. However, the SVSF estimation methods presented later in Chapters 5 and 6 

would not be possible without the development of a state error covariance function. 
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Chapter 5 
5 A Time-Varying Smoothing Boundary Layer 

A Time-Varying Smoothing Boundary Layer 

 

This chapter presents a novel form of the SVSF which implements a time-varying smoothing 

boundary layer for increased estimation accuracy (SVSF-VBL). A secondary benefit of this 

derivation is that it provides the ability to detect changes in the system. The results of the 

derivation are tested on a computer experiment, and are compared with the popular KF. The 

latter-half of this chapter utilizes the derivation to combine the SVSF with other popular 

nonlinear estimation strategies, and compares the results on another computer experiment. 

 

5.1 Derivation of the VBL 

The partial derivative of the a posteriori covariance (trace) with respect to the smoothing 

boundary layer term � is the basis for obtaining a strategy for the specification of �. The 

approach taken is similar to determining an optimal gain for the KF. The following derivation is 

applicable to any measurement case provided that the measurement matrix is completely 

observable (as defined in Appendix 8.4). For the case when there are fewer measurements than 

states, one needs to implement a reduced order form of the SVSF as shown in [37], or an 

alternative method described later in this chapter. This allows the creation of a full 

measurement matrix, typically in the form of an identity. For the case when there are more 

measurements than states, the system output can be multiplied by the inverse of the 

measurement matrix, thus mapping the measurements to the states. One could then use a full 

measurement matrix (i.e., identity) in the estimation process. 
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As demonstrated in Chapter 3, previous forms of the SVSF included a vector form of �, 

which had a single smoothing boundary layer term for each corresponding measurement error. 

Essentially, the boundary layer terms were independent of each other such that the 

measurement errors would only directly be used for calculating its corresponding gain. The 

coupling effects are not explicitly considered thus preventing an optimal derivation. A ‘near-

optimal’ formulation of the SVSF could be created using a vector form of �, however this would 

lead to a minimization of only the diagonal elements of the state error covariance matrix [11]. In 

this chapter, in an effort to obtain a smoothing boundary layer equation that yields optimal 

state estimates for linear systems (like the KF), a full smoothing boundary layer matrix is 

proposed. Hence, consider the full matrix form of the smoothing boundary layer: 

� = ���� ��� ⋯ ������ ��� ⋯ ���
⋮ ⋮ ⋱ ⋮��� ��� ⋯ ���� (5.1.1) 

Note that the off-diagonal terms of (5.1.1) are zero for the standard SVSF (presented in 

Chapter 3), whereas this is not the case for the algorithm presented in this chapter. This 

definition includes terms that relate one smoothing boundary layer to another (i.e., off-diagonal 

terms). To solve for a time-varying smoothing boundary layer (VBL) based on (5.1.1), consider: 

D:5�&]�[����|���];D� = 0 (5.1.2) 

To solve (5.1.2), first consider the following modification of the SVSF gain defined by 

(4.1.10). Note that the gain structure remains the same. 

���� = ���A(�&)*�+ ∙ 4&5:���(�&)f��,���|�g;Bf(�&):��,���|�;g�� (5.1.3) 

Where � is a ‘vector of errors’, defined as follows: 

� = wU��,���|�U�� + 6U��,�|�U��x (5.1.4) 
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In an effort to avoid significant chattering or switching, consider the region only inside 

the saturation term of the SVSF gain (5.1.5). Furthermore, as will be demonstrated later, this will 

improve the overall SVSF estimation accuracy. Also, consider the bar notation &' to signify a 

diagonal matrix formed of the vector &, such that &' = (�&)*&+. 
4&5 w��������|�

''''''''x = ��������|�
'''''''' (5.1.5) 

Applying (5.1.5) to (5.1.3) yields: 

���� = ����̅��������|�
'''''''' w�����|�

''''''''x�� (5.1.6) 

In an effort to help visualize (5.1.6), consider a system with two states and 

measurements (where � = �), such that (5.1.6) becomes: 

���� = 8&� 0
0 &�9 8��� ������ ���9�� 8��� 0

0 ��	9 }~~
~� 1��� 0

0
1��	���
��

= 8&� 0
0 &�9 8��� ������ ���9�� (5.1.7) 

Note that the notation of (5.1.3) does not impact the gain formulations or the state 

update equation, since the error terms ��,���|�  eventually cancel out. Simplifying (5.1.6), using 

(5.1.7) to visualize, yields the following definition for the SVSF gain: 

���� = ����̅��� (5.1.8) 

In evaluating (5.1.2) consider an expansion of the a posteriori covariance equation 

(4.1.3.6) as follows: 

����|��� = ����|� − ���������|� − ����|�������� + ���������|��������

+ �������������  
(5.1.9) 

Note that the measurement covariance ���� and the state error covariance ����|�  are 

symmetric. Furthermore, recall the definition for the innovation (or measurement error) 

covariance matrix as follows: 
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���� = �����|��� + ���� (5.1.10) 

Equation (5.1.10) can be used to simplify (5.1.9) as follows: 

����|��� = ����|� − ���������|� − ����|�������� + �������������  (5.1.11) 

Substitution of (5.1.8) into (5.1.11) yields: 

����|��� = ����|� − ����̅��������|� − ����|���*����̅���+�
+ ����̅�������*����̅���+� 

(5.1.12) 

Next, to solve for (5.1.2) or D:5�&]�f����|���g;/D�, the individual terms of (5.1.12) will 

be considered respectively as follows [127]: 

D:5�&]�f����|�g;D� = 0 (5.1.13) 

D:5�&]�f−����̅��������|�g;D� = ����̅�������|������ (5.1.14) 

D:5�&]�f−����|���*����̅���+�g;D� = ����̅�������|������ (5.1.15) 

D*5�&]�L����̅�������*����̅���+�M+D� = −2����̅�������̅���������� (5.1.16) 

Combining (5.1.13) through (5.1.16) into (5.1.2) and (5.1.12) yields: 

D:5�&]�[����|���];D� = 2����̅�������|������ − 2����̅�������̅����������
= 0 

(5.1.17) 

Now, what remains, is to simplify (5.1.17) and solve for the smoothing boundary layer �. First, multiply from the left by �
	
*���+��, and then from the right by *���+��: 

�̅�������|��� − �̅�������̅������� = 0 (5.1.18) 

Next, multiply (5.1.18) from the left by �̅��: 
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�������|��� − �������̅������� = 0 (5.1.19) 

Simplify (5.1.19) further by multiplying from the left by �̅���*���+��, which yields: 

�̅�������|��� + ������� = 0 (5.1.20) 

Rearranging (5.1.20) yields a solution for the inverse of the smoothing boundary layer: 

��� = �̅�������|���������  (5.1.21) 

Finally, a solution for the full smoothing boundary layer matrix may be found as follows: 

���� = :�̅�������|��������� ;�� (5.1.22) 

Note that the square matrix (5.1.22) is invertible if �̅�������|���������  is non-singular, 

or if the determinate of the matrix �̅�������|���������  is nonzero. Performing a dimensionality 

check verifies the correct dimension: 

���� = :*� × 1+''''''''''��*� × �+*� × �+*� × �+*� × �+��;�� = *� × �+ (5.1.23) 

The proposed smoothing boundary layer equation (5.1.22) is found to be a function of 

the a priori state error covariance ����|�, measurement covariance ����, measurement matrix �, a priori and previous a posteriori measurement error vectors (��,���|� and ��,�|�), and the 

convergence rate or SVSF ‘memory’ 6. It appears that the width of the boundary layer is 

therefore directly related to the level of modeling uncertainties (by virtue of the errors), as well 

as the estimated system and measurement noise (captured by ����|� and ����).  

The boundary layer widths can now be obtained according to (5.1.22) at each time step, 

as opposed to the constant (conservative) width presented in Chapter 3. As shown in Appendix 

8.5, the units and values of the smoothing boundary layer matrix have been studied. The 

following subsections look at the saturation term and the revised SVSF gain, introduces a robust 

filtering strategy, and finally summarizes the proposed SVSF equations with a time varying 

boundary layer (VBL). 
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5.1.1 A Closer Look at the Saturation Term 

A closer examination of the SVSF gain ���� defined by (5.1.3) reveals that the derivation of � 

removes the need for the saturation term in the gain, as follows. Consider the saturation term of 

(5.1.3) with (5.1.21) as follows: 

4&5:���(�&)f��,���|�g; = 4&5:�̅�������|��������� (�&)f��,���|�g; (5.1.1.1) 

From (5.1.1.1), consider the following two terms: 

5���� = �����|���������  (5.1.1.2) 5���� = �̅��(�&)f��,���|�g (5.1.1.3) 

Analyzing the first term (5.1.1.2) and recalling ���� = �����|��� + ����, consider the 

following: 

�����|��������� = *���� − ����+������  (5.1.1.4) 

From (5.1.10), it is known that ���� ≥ ����. Hence, (5.1.1.2) is bounded between 0 and 

1 as per (5.1.1.4). Next, the second term defined by (5.1.1.3) will be studied. Note the following 

definition: 

U��,���|�U�� + 6U��,�|�U�� ≥ ��,���|� (5.1.1.5) 

Due to the definition of (5.1.1.5), the second term (5.1.1.3) may only yield values equal 

to or between −1 and 1, depending on the value of the convergence rate 6. This can be 

confirmed by looking at the diagonal elements � of (5.1.1.3) given any system: 

f�̅����,���|�''''''''''g
�

=
�7,8��|8�U��,���|�U� + 6�U��,�|�U� (5.1.1.6) 

If the convergence rate 6 is set to zero, (5.1.1.6) simply yields the sign function of the 

measurement error (and the answer is −1, 0, or 1). If the convergence rate 6 is nonzero 

(however, bounded between 0� and 1), (5.1.1.6) yields a value between −1 and 1. 



Ph.D. Thesis 

S. A. Gadsden 

McMaster University 

Department of Mechanical Engineering 

 

99 

 

 

The argument holds for (5.1.1.3). Given the above discussion, when calculating a time-

varying smoothing boundary layer using (5.1.22), the argument inside the saturation term will 

always be between −1 and 1. Hence, the saturating function used in (5.1.3) is redundant given 

the definition of � as provided in (5.1.22). Note that this also works with the earlier assumption 

(5.1.5) that the region of interest for the value of the smoothing boundary layer width is inside 

the saturation term (i.e., between −1 and 1). 

5.1.2 Studying the Proposed SVSF Gain 

In an effort to study the effects of the time-varying smoothing boundary layer term on the SVSF 

gain, consider the following. Substituting (5.1.22) into (5.1.8) yields the revised gain, based on 

the above derivation: 

���� = ����̅f�̅�������|��������� g (5.1.2.1) 

Note that (5.1.2.1) easily simplifies to the following: 

���� = ����|���������  (5.1.2.2) 

Therefore, based on a full smoothing boundary layer matrix defined by (5.1.22), the gain 

(5.1.8) becomes the KF gain (5.1.2.2), which yields the optimal solution for well-defined linear 

systems. This is to be expected as the KF yields the best possible estimate for linear, known 

systems with Gaussian noise. This implies that the robustness of the SVSF is lost with the use of 

an optimal smoothing boundary layer that would make the saturation function redundant. 

5.1.3 A Robust Filtering Strategy for Linear Systems 

As per the previous results, it appears that the VBL for the SVSF yields the KF solution (gain) for 

linear systems. In this case, robustness to modeling uncertainties using the SVSF strategy is lost. 

It is hence beneficial to propose a combined strategy, referred to here as the SVSF-VBL, such 

that an accurate estimate is maintained (i.e., using the VBL calculation or KF gain) while ensuring 

the estimate remains stable (i.e., using the standard SVSF gain). 
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5.1.4 The Computational Process for the SVSF with the VBL 

This section briefly summarizes the proposed strategy for the revised SVSF with a time-varying 

boundary layer (VBL). The equations are primarily the same as the standard SVSF, however with 

the addition of the boundary layer equation (5.1.22) and corresponding changes in the gain 

(5.1.8). Consider the prediction stage for a linear system as described earlier, where the state 

estimates and covariance are first calculated as per (5.1.4.1) and (5.1.4.2), respectively. The 

following 12 equations summarize the SVSF strategy with a VBL. 

�7���|� = �>�7�|� + 	N�� (5.1.4.1) ����|� = ���|��� + �� (5.1.4.2) 

The a priori measurement estimate (5.1.4.3) and errors (5.1.4.4) are then calculated. 

%̂���|� = ��7���|� (5.1.4.3) ��,���|� = %��� − %̂���|� (5.1.4.4) 

The update stage is then defined by the following sets of equations. The innovation 

covariance (5.1.4.5) and combined error vector (5.1.4.6) are calculated, and then used in 

(5.1.4.7) to determine the smoothing boundary layer matrix. Recall that a ‘divide by zero’ check 

should be performed on (5.1.4.6) to avoid inversion of zero in (5.1.4.7). As described earlier, this 

can be accomplished using a simple � statement with a very small threshold (i.e., 1 × 10���). 

���� = �����|��� + ���� (5.1.4.5) ���� = U��,���|�U�� + 6U��,�|�U�� (5.1.4.6) 

���� = :�̅����� �����|��������� ;�� (5.1.4.7) 

The SVSF gain is then calculated (5.1.4.8), and then used to update the state estimates (5.1.4.9). 

���� = ����̅���������  (5.1.4.8) �7���|��� = �7���|� + ������,���|� (5.1.4.9) 
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The EHA has been modeled as a third-order linear system with state variables related to 

its position, velocity, and acceleration [37]. Initially, it is assumed that all three states have 

measurements associated with them (i.e., � = �). The sample time of the system is  � = 0.001	4, and the discrete-time state space system equation may be defined as follows [37]: 

���� = b 1 0.001 0
0 1 0.001

−557.02 −28.616 0.9418
c �� + b 0

0
557.02

c ��  (5.2.1.1) 

For this case, the corresponding measurement equation is defined by: 

%��� = b1 0 0
0 1 0
0 0 1

c ���� (5.2.1.2) 

The initial state values are set to zero. The system and measurement noises (" and  ) 

are considered to be Gaussian, with zero mean and variances � and �, respectively. The initial 

state error covariance ��|�, system noise covariance �, and measurement noise covariance � 

are defined respectively as follows: 

��|� = 10� (5.2.1.3) 

� = b1 × 10�3 0 0
0 1 × 10�
 0
0 0 1 × 10��

c (5.2.1.4) 

� = b1 × 10�� 0 0
0 1 × 10�� 0
0 0 1

c (5.2.1.5) 

For the standard SVSF estimation process, the ‘memory’ or convergence rate was set to 

γ = 0.1, and the limits for the smoothing boundary layer widths were defined as � =L0.05 0.5 5M�. These parameters were selected based on the distribution of the system and 

measurement noises, which are shown in the following sets of figures. For example, the limit for 

the smoothing boundary layer width � was set to 5 times the maximum system noise, or 

approximately equal to the measurement noise. The initial state estimates for the filters were 

defined randomly by a normal distribution, around the true initial state values �� and using the 

initial state error covariance ��|�. 
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Four different cases were studied. The first case was considered ‘normal’, and the 

second included system modeling error half-way through the simulation. The last two cases 

involved fewer and extra measurements, respectively. The main results of applying the KF, SVSF, 

and the SVSF-VBL are shown in the following figure. 

 

Figure 5.2.4. Position Estimates for the EHA Computer Experiment 

This figure shows the true position of the EHA, with the corresponding filter estimates. 

The estimation results of all filters are practically the same (note that the lines are nearly 

overlapping and are thus difficult to distinguish). It is important to note that the KF provides the 

best estimate (i.e., optimal) for a linear and known system, subject to Gaussian noise. 

Consequently, the SVSF-VBL yielded the same results, since the derived gain (5.1.2.2) is the 

same as the KF. Although the standard SVSF yielded good results, the estimates were not 

optimal. The velocity and acceleration estimates were relatively the same, and were thus 

omitted for space constraints. As shown in the following table, in the normal (standard) case, 

the KF and SVSF-VBL provide optimal results (in terms of estimation accuracy). The SVSF-VBL 

improved the SVSF with a constant boundary layer width by roughly 40% (in the position 

estimate). This is a significant improvement in terms of estimation accuracy. However, note that 

after some tuning by trial-and-error, it may be possible to improve the SVSF results. 
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As per [37], consider the introduction of modeling error or uncertainty, such that the 

system used by the filters is modified (5.2.1.6) at 0.5 seconds. The model changes at this point 

to coincide with the input step, to exaggerate the effects of modeling uncertainty. 

���� = b 1 0.001 0
0 1 0.001

−240 −28 0.9418
c �� + b 0

0
557.02

c ��  (5.2.1.6) 

The corresponding position estimates for this case are shown in the following figure. 

 

Figure 5.2.6. Position Estimates for the EHA Computer Experiment (Uncertainty Case) 

An interesting result occurs when studying the elements of the smoothing boundary 

layer matrix. As shown in Figure 5.2.7, the smoothing boundary layer widths corresponding to 

the acceleration state grows larger at the inception of the modeling uncertainty (0.5 seconds). 

This is due to the fact that the width of the smoothing boundary layer is directly related to the 

level of modeling uncertainties (by virtue of the errors), as well as the estimated system and 

measurement noise (captured by ����|�  and ����), as described in (5.1.22). Furthermore, this 

can be seen by looking at the value of (5.1.4.6) at the onset of modeling uncertainties. The 

average value in � (corresponding to the third state �
) increased by nearly 100 times; which in 

turn, drastically increased the smoothing boundary layer width.  
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Table 5.2.2. RMSE Results (Uncertainties Case) 

Filter Position (�) Velocity (�/�) Acceleration (�/�9) 

SVSF-VBL 4.96 × 10�
 5.43 × 10�� 0.98 

SVSF 6.01 × 10�
 5.75 × 10�� 1.12 

KF 0.31 3.49 17.9 

As shown in the above table, the KF provides the worst result (in terms of estimation 

accuracy). However, the standard SVSF and the SVSF-VBL estimation processes remained 

relatively stable (when compared with Table 5.2.1). These results would have significant 

implications when attempting the accurate control of a mechanical or electrical system. 

It is not uncommon to have fewer measurements than states. In this case, different 

strategies may be used to extract the appropriate information. Consider the following revised 

measurement matrix: 

� = k1 0 0
0 1 0

l (5.2.1.7) 

It is required to transform (5.2.1.7) into a square matrix (i.e., identity), such that an 

‘artificial’ measurement is created. Formulating a square measurement matrix allows the 

implementation of the time-varying smoothing boundary layer strategy. A number of methods 

exist, such as the reduced order or Luenberger’s approach, which are presented in [37,129,120]. 

Consider a system model involving phase variables. It is possible to derive a third ‘artificial’ 

measurement based on the available measurements. For example, in (5.2.1.7) the acceleration 

measurement is missing. Therefore, consider the following, where � represents an artificial 

measurement, let: 

�
,� =
1� :%�,��� − %�,�; (5.2.1.8) 

The accuracy of (5.2.1.8) depends on the sampling rate �. Applying (5.2.1.8) allows a 

measurement matrix equivalent to the identity matrix. The estimation process would continue 

as in the previous section, where a full measurement matrix was available. 



Ph.D. Thesis 

S. A. Gadsden 

McMaster University 

Department of Mechanical Engineering 

 

111 

 

 

Note however that the artificial acceleration measurement would be delayed one time 

step. If the system model (5.2.1.1) is known with complete confidence, then it is possible to 

derive an artificial measurement for the acceleration from the first two measurements. Hence, 

consider the following from (5.2.1.1): 

�
,��� = −557.02%�,� − 28.616%�,� + 0.9418�
,� + 557.02�� (5.2.1.9) 

Note that the artificial measurement would have to be initialized (i.e., 0 is a typical 

value). Equation (5.2.1.9) essentially propagates the known measurements through the system 

model to obtain the artificial acceleration measurement. It is conceptually similar to the method 

presented in [120] and creates a full measurement matrix. To reiterate, the a priori 

measurement error vector would be calculated as follows: 

��,���|� = b%�%��
c��� − %̂���|� (5.2.1.10) 

The estimation strategy continues as described in the previous section with a full 

measurement matrix. The following table summarizes the results when the system is well 

defined and has fewer measurements than states. 

Table 5.2.3. RMSE Results (Normal Case with Fewer Measurements) 

Filter Position (�) Velocity (�/�) Acceleration (�/�9) 

KF 4.79 × 10�
 5.96 × 10�� 13.0 

SVSF-VBL 4.79 × 10�
 5.96 × 10�� 13.0 

SVSF 5.78 × 10�
 7.00 × 10�� 17.7 

The results of the normal case with no modeling uncertainties and with fewer 

measurements may be summarized in the above table. The KF was able to provide the best 

estimate in terms of accuracy. The SVSF also yielded relatively good results. This case was 

repeated with modeling uncertainties added, as before. 
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As shown above, the artificial measurement based on the velocity derivative yields a 

more accurate estimate at the onset of the modeling uncertainty (0.5 seconds). However, prior 

to this point (i.e., when the system was well defined), the method of (5.2.1.9) yields a less noisy 

artificial measurement. For this case, the artificial acceleration measurement was calculated as 

per (5.2.1.8), due to the presence of modeling uncertainty. The following table summarizes 

these results. 

Table 5.2.4. RMSE Results (Uncertainties Case with Fewer Measurements) 

Filter Position (�) Velocity (�/�) Acceleration (�/�9) 

SVSF-VBL 5.68 × 10�
 0.09 126.1 

SVSF 6.06 × 10�
 0.10 151.4 

KF 4.08 × 10�� 4.27 1,612 

For this case, the SVSF-VBL provided the best overall estimates in terms of estimation 

accuracy. It is interesting to point out that the SVSF also worked very well. All three filters had 

issues with estimating the acceleration, which lacked an appropriate measurement. Note that 

the KF position estimate was still good; however, the velocity and acceleration measurements 

were significantly worse. 

The final case to be studied involves the presence of more measurements than states. In 

some situations, extra measurements may be available, such as in neural network applications. 

In these scenarios, the extra measurements can be used to create artificial measurements, 

relating the true measurements to the states of interest. Consider the following transformation: 

� = ��% (5.2.1.11) 

Performing (5.2.1.11) allows the creation of an identity matrix, to be used by the SVSF 

and SVSF-VBL estimation processes. For example, consider the case where a differential 

pressure measurement ∆��  is available in the EHA system described earlier, such that: 

∆���� = ��� + 	��_  (5.2.1.12) 
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Table 5.2.5. RMSE Results (Normal Case with Extra Measurements) 

Filter Position (�) Velocity (�/�) Acceleration (�/�9) 

KF 3.29 × 10�
 2.07 × 10�� 0.78 

SVSF-VBL 3.29 × 10�
 2.10 × 10�� 0.79 

SVSF 6.05 × 10�
 4.45 × 10�� 1.20 

The next table summarizes the extra measurements case with the presence of 

uncertainties. The SVSF-VBL method provided the best estimate in terms of RMSE, followed by 

the SVSF. The KF failed to provide a quality estimate at the onset of the modeling uncertainties. 

The addition of measurements can provide useful information. However, the quality of the 

additional information should be taken into account; as in some instances, the extra 

measurements may not be beneficial towards the overall state estimates. 

Table 5.2.6. RMSE Results (Uncertainties Case with Extra Measurements) 

Filter Position (�) Velocity (�/�) Acceleration (�/�9) 

SVSF-VBL 5.23 × 10�
 3.26 × 10�� 0.92 

SVSF 6.23 × 10�
 4.24 × 10�� 1.11 

KF 0.64 0.45 17.2 

The aforementioned cases demonstrated the benefits of the new robust filtering 

strategy for linear systems, referred to as the SVSF-VBL. The optimality of the KF is used in 

conjunction with the robustness of the SVSF, thus creating an accurate and robust filter. 

5.3 Methodology for Combined Nonlinear Filtering Strategies 

The SVSF-VBL estimation strategy may be extended further to nonlinear systems and 

measurements. The variable boundary layer provides a mechanism for combining various forms 

of the KF with the SVSF in an easy and effective manner. In an effort to utilize the accuracy of 

the EKF, UKF, and CKF, and the robustness of the SVSF, the filters have been combined resulting 

in three algorithms referred to as the EK-SVSF, UK-SVSF, and CK-SVSF. 
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���� = ��������|������ + ���� (5.3.1.4) 

At this point, the smoothing boundary layer ���� is calculated as follows: 

���� = :�̅�������|��������� ;�� (5.3.1.5) 

Where: 

� = wj�����|�
j
��

+ 6 j���|�j��x (5.3.1.6) 

As suggested by Figure 5.3.1, the values of (5.3.1.5) are compared with the limits for the 

smoothing boundary layer widths (a designer setting) to determine which gain is used (EKF or 

SVSF). If the values of (5.3.1.5) are larger than the limits (i.e., ���� > �$��), the EK-SVSF gain is 

defined by: 

���� = ������� ��	
�,���|�	
���

+ �	
�,�|�	
���

� ∘ �������
�,���|��� �����
�,���|���� (5.3.1.7) 

Otherwise, the standard EKF gain may be used (5.3.1.8). Note that this is a seamless 

transfer as the gain equation does not change but its amplitude changes smoothly as it crosses 

the boundary layer, ensuring continuity in the estimation process. 

���� = ����|������ ������  (5.3.1.8) 

The updated state estimates �7���|��� and state error covariance matrix ����|��� are 

determined as: 

�7���|��� = �7���|� + ������,���|� (5.3.1.9) ����|��� = *� − �����+����|�*� − �����+� + �������������  (5.3.1.10) 

Finally, the updated measurement estimate %̂���|��� is used to calculate the a posteriori 

measurement error ��,���|���, which is used in later iterations. 

��,���|��� = %��� − ℎ:�7���|���; (5.3.1.11) 
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The EK-SVSF estimation process is iterative, and is summarized by (5.3.1.1) to (5.3.1.11). 

Note that for the linear systems case, the KF has been combined with the SVSF in a similar 

fashion, and is referred to as the SVSF-VBL. 

5.3.2 The UK-SVSF Equations 

For completeness, the UK-SVSF equations are summarized in this section. The sigma points used 

for the UKF portion of the UK-SVSF method is calculated as per (4.2.2.1) through (4.2.2.6). The 

majority of the UKF process remains the same. The sigma points are propagated through the 

nonlinear system model (5.3.2.1), and are used with their corresponding weights to calculate 

the predicted state estimate (5.3.2.2). 

$N�,���|� = :$�,�|� , ��; (5.3.2.1) 

�7���|� = O#�$N�,���|���

� �

 (5.3.2.2) 

From (5.3.2.1) and (5.3.2.2), it is possible to calculate the predicted state error 

covariance as follows: 

����|� = O#�:$N�,���|� − �7���|�;:$N�,���|� − �7���|�;���

� �

 (5.3.2.3) 

Next, the sigma points are propagated through the nonlinear measurement model 

(5.3.2.4), and the predicted measurement is calculated (5.3.2.5). 

P>�,���|� = ℎ:$N�,���|� ,��; (5.3.2.4) 

%̂���|� = O#�P>�,���|���

� �

 (5.3.2.5) 

Next, the a priori measurement error is calculated (5.3.2.6). 

��,���|� = %��� − %̂���|� (5.3.2.6) 
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The measurement (or innovation) covariance is then calculated as follows: 

���.���|� = O#�:P>�,���|� − %̂���|�;:P>�,���|� − %̂���|�;���

� �

 (5.3.2.7) 

Furthermore, the cross-covariance (between the state and measurement) is then 

calculated as follows: 

���.���|� = O#�:$N�,���|� − �7���|�;:P>�,���|� − %̂���|�;���

� �

 (5.3.2.8) 

At this point, the smoothing boundary layer ���� is calculated as follows: 

���� = :�̅�������|������.���|��� ;�� (5.3.2.9) 

Where: 

� = wj�����|�
j
��

+ 6 j���|�j��x (5.3.2.10) 

As suggested by Figure 5.3.1, the values of (5.3.2.9) are compared with the limits for the 

smoothing boundary layer widths (a designer setting) to determine which gain is used (UKF or 

SVSF). If the values of (5.3.2.9) are larger than the limits (i.e., ���� > �$��), the UK-SVSF gain is 

defined by: 

���� = ������� ��	
�,���|�	
���

+ �	
�,�|�	
���

� ∘ �������
�,���|��� �����
�,���|���� (5.3.2.11) 

Otherwise, the standard UKF gain is used (5.3.2.12). 

���� = ���.���|����.���|���  (5.3.2.12) 

Similarly, the updated state estimates �7���|��� and state error covariance matrix ����|��� are determined respectively as follows: 

�7���|��� = �7���|� + ������,���|� (5.3.2.13) 



Ph.D. Thesis 

S. A. Gadsden 

McMaster University 

Department of Mechanical Engineering 

 

120 

 

 

����|��� = *� − �����+����|�*� − �����+� + �������������  (5.3.2.14) 

Finally, the updated measurement estimate %̂���|��� is used to calculate the a posteriori 

measurement error ��,���|���, which is used in later iterations. 

��,���|��� = %��� − ℎ:�7���|���; (5.3.2.15) 

The UK-SVSF estimation process is iterative, and is summarized by (5.3.2.1) to (5.3.2.15). 

5.3.3 The CK-SVSF Equations 

For implementation, the CK-SVSF equations are summarized. Note that the integrals found 

within the CK-SVSF estimation method represent the summation of cubature points used to 

approximate the state distribution, as suggested by (4.2.3.1). The prediction stage begins with 

an estimation of the states �7���|� and the state error covariance ����|�, respectively as follows: 

�7���|� = � >*�� , ��+1:��; �7�|� ,��|�;(��
ℝ��

 (5.3.3.1) 

����|� = � >*�� , ��+>�*�� ,��+1:��; �7�|� ,��|�;(��
ℝ��

− �7���|��7���|�� + ���� (5.3.3.2) 

The estimated measurements %̂���|� and corresponding measurement errors ��,���|� 

are then calculated: 

%̂���|� = � ℎN*����,����+1:����; �7���|� ,����|�;(����
ℝ��

 (5.3.3.3) 

��,���|� = %��� − %̂���|� (5.3.3.4) 

At this point, the smoothing boundary layer ���� is calculated as follows: 

���� = :�̅�������|��������� ;�� (5.3.3.5) 

Where: 
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� = wj�����|�
j
��

+ 6 j���|�j��x (5.3.3.6) 

As suggested by Figure 5.3.1, the values of (5.3.3.5) are compared with the limits for the 

smoothing boundary layer widths to determine which gain is used (CKF or SVSF). If the values of 

(5.3.3.5) are larger than the limits (i.e., ���� > �$��), the CK-SVSF gain used to update the state 

is defined by: 

���� = ������� ��	
�,���|�	
���

+ �	
�,�|�	
���

� ∘ �������
�,���|��� �����
�,���|���� (5.3.3.7) 

Otherwise, the CKF gain (5.3.3.10) is used. In order to calculate the corresponding CKF 

gain ����, the innovation covariance ���,���|� and cross-covariance ���,���|�  matrices need to 

be evaluated, respectively as follows: 

���,���|� = � ℎN*����,����+ℎN�*����,����+1:����; �7���|� ,����|�;(����
ℝ��

− %̂���|�%̂���|�� + ���� 

(5.3.3.8) 

���,���|� = � ����ℎN�*����,����+1:����; �7���|� ,����|�;(����
ℝ��

− �7���|�%̂���|��  (5.3.3.9) 

The CKF gain may now be calculated like before as follows: 

���� = ���,���|����,���|���  (5.3.3.10) 

The updated state estimates �7���|��� and state error covariance matrix ����|��� are 

determined as: 

�7���|��� = �7���|� + ������,���|� (5.3.3.11) ����|��� = *� − �����+����|�*� − �����+� + �������������  (5.3.3.12) 

Finally, the updated measurement estimate %̂���|��� and measurement errors ��,���|��� are calculated, and are used in later iterations: 



Ph.D. Thesis 

S. A. Gadsden 

McMaster University 

Department of Mechanical Engineering 

 

122 

 

 

%̂���|��� = � ℎN*����,����+1:����; �7���|���,����|���;(����
ℝ��

 (5.3.3.13) 

��,���|��� = %��� − %̂���|��� (5.3.3.14) 

The CK-SVSF estimation process is iterative, and is summarized by (5.3.3.1) to (5.3.3.14). 

5.3.4 Computer Experiments 

In this section, the EK-SVSF, UK-SVSF, and CK-SVSF strategies are applied on a target tracking 

problem, and are compared with the EKF, UKF, CKF, and SVSF. The purpose of this computer 

experiment is to demonstrate that the EK-SVSF, UK-SVSF, and CK-SVSF methods provide 

accurate and stable estimates when compared with their standard counterparts. The target 

tracking problem is based on a generic air traffic control (ATC) scenario found in [28]. A radar 

stationed at the origin provides direct position only measurements, with a standard deviation of 

50	� in each coordinate. The following figure illustrates the motion of the target. 

 

Figure 5.3.2. True Target Trajectory 
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As shown in the previous figure, an aircraft starts from an initial position of L25,000	�, 10,000	�M at time 5	 = 	0	4, and flies westward at 120	�/4 for 125	4. The aircraft 

then begins a coordinated turn for a period of 90	4 at a rate of 1˚/4. It then flies southward at 

120	�/4 for 125	4, followed by another coordinated turn for 30	4 at 3˚/4. The aircraft then 

continues to fly westward until it reaches its final destination. 

In ATC scenarios, the behaviour of civilian aircraft may be modeled by two different 

modes: uniform motion (UM) which involves a straight flight path with a constant speed and 

course, and maneuvering which includes turning or climbing and descending [28]. In this case, 

maneuvering will refer to a coordinated turn (CT) model, where a turn is made at a constant 

turn rate and speed. The uniform motion model used for this target tracking problem is given by 

(5.3.4.1) [28,130]. 

���� = �1 0 � 0
0 1 0 �
0 0 1 0
0 0 0 1

� �� +

}~~
~~�
1

2
�� 0

0
1

2
��� 0

0 � ���
��� "� (5.3.4.1) 

The state vector of the aircraft may be defined as follows: 

�� = LR� �� R_� �_�M� (5.3.4.2) 

The first two states refer to the position along the �-axis and �-axis, respectively, and 

the last two states refer to the velocity along the �-axis and �-axis, respectively. The sampling 

time used in this simulation was 5 seconds. When using the CT model, the state vector needs to 

be augmented to include the turn rate, as shown in (5.3.4.3) [28]. The CT model may be 

considered nonlinear if the turn rate of the aircraft is not known. Note that a left turn 

corresponds to a positive turn rate, and a right turn has a negative turn rate. This sign 

convention follows the commonly used trigonometric convention (the opposite is true for 

navigation convention) [28]. As per [28,130], the CT model is given by (5.3.4.4). 

�� = LR� �� R_� �_� ��M� (5.3.4.3) 
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���� =

}~
~~
~~
�1 0

4������� −
1 − ]z4����� 0

0 1
1 − ]z4����� 4������� 0

0 0 ]z4��� −4����� 0
0 0 4����� ]z4��� 0
0 0 0 0 1��

��
��
�
�� +

}~~
~~~
�1
2
�� 0 0

0
1

2
�� 0� 0 0

0 � 0
0 0 ���

���
�� "� (5.3.4.4) 

Since the radar stationed at the origin provides direct position measurements only, the 

measurement equation may be formed linearly as follows: 

%� = k1 0 0 0 0
0 1 0 0 0

l �� +  � (5.3.4.5) 

Equations (5.3.4.1) through (5.3.4.5) were used to generate the true state values of the 

trajectory and the radar measurements for this target tracking scenario. As previously 

mentioned, the EKF uses a linearized form of the system and measurement matrices. In this 

case, the system defined by (5.3.4.4) is nonlinear, such that the Jacobian of it yields a linearized 

form as shown in (5.3.4.6). The terms in the last column of (5.3.4.6) are correspondingly defined 

in (5.3.4.7) [28]. 

f∇���,�� g�j
�� �!�

=

}~~
~~~
~�1 0

4��������� −
1 − ]z4������� �:;�

0 1
1 − ]z4������� 4��������� �:;�

0 0 ]z4���� −4������ �:;

0 0 4������ ]z4���� �:;�
0 0 0 0 1 ���

���
��
 (5.3.4.6) 

��:;��:;��:;
�:;�� =

}~~
~~~
~�*]z4����+���� R_�F −

*4������+���� R_�F −
*4������+���� �_�F −

*−1 + ]z4����+���� �_�F*4������+���� R_�F −
*1 − ]z4����+���� R_�F −

*]z4����+���� �_�F −
*4������+���� �_�F

−*4������+�R_�F − *]z4����+��_�F*]z4����+�R_�F − *4������+��_�F ���
���
��
 

(5.3.4.7) 
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To generate the results for this section, the following values were used for the initial 

state error covariance matrix ��|�, the system noise matrix �, and the measurement noise 

matrix �. 

��|� =

}~~
~���� 0 0 0 0

0 ��� 0 0 0
0 0 100 0 0
0 0 0 100 0
0 0 0 0 1���

��
 (5.3.4.8) 

� = ��

}~
~~
~~
~~
~~
��


3
0

��
2

0 0

0
�

3

0
��
2

0��
2

0 � 0 0

0
��
2

0 � 0

0 0 0 0
���� ���

��
��
��
��
�
 (5.3.4.9) 

� = 50� k1 0
0 1

l (5.3.4.10) 

Note that �� and �� are referred to as power spectral densities, and were defined as 

0.16 and 0.01, respectively [130]. The system and measurement noise ("�  and  �) were 

generated using their respective covariance values (� and �). Also, when using the UM model, 

the fifth row and column of (5.3.4.8) and (5.3.4.9) were truncated. For the standalone SVSF 

estimation process, the limit on the smoothing boundary layer widths were defined as � = L500 1,000 500 1,000 1M�, and the SVSF ‘memory’ or convergence rate was set to 6 = 0.1. These parameters were tuned based on some knowledge of the uncertainties (i.e., 

magnitude of noise) and with the goal of decreasing the estimation error. As per the earlier 

discussions, it is required to transform the measurement matrix of (5.3.4.5) into a square matrix 

(i.e., identity), such that an ‘artificial’ measurement is created. It is possible to derive ‘artificial’ 

velocity measurements based on the available position measurements. For example, consider 

the following artificial measurement vector ��  for the SVSF: 
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�� =

}~
~~
� %�,�%�,�:%�,��� − %�,�;/�:%�,��� − %�,�;/�

0 ��
��
�
 (5.3.4.11) 

The accuracy of (5.3.4.11) depends on the sampling rate �. Applying the above type of 

transformation to non-measured states allows a measurement matrix equivalent to the identity 

matrix, similar to (5.2.1.7) through (5.2.1.10). The estimation process would continue as in the 

previous section, where � = �. Note however that the artificial velocity measurements would be 

delayed one time step. Furthermore, it is assumed that the artificial turn rate measurement is 

set to 0, since no artificial measurement could be created based on the available measurements. 

A total of 500 Monte Carlo runs were performed, and the results were averaged. The following 

two figures show the �-position estimation error for both models (uniform motion and 

coordinated turn, respectively). Notice how the SVSF and combined filtering strategies are 

bounded within a region of 0 error (which is ideal). 

 

Figure 5.3.3. �-Position Estimation Error (Uniform Motion Model) 
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Figure 5.3.4. �-Position Estimation Error (Coordinated Turn Model) 

The following two tables summarize the RMSE results for the 500 Monte Carlo runs. 

Note that the first table corresponds to when the filters used the uniform motion model 

(5.3.4.1), while the second table corresponds to when the coordinated turn model was 

implemented (5.3.4.4). 

Table 5.3.1. RMSE Results for the Uniform Motion Model (Normal Case) 

Filter Position (�) Velocity (�/�) 

EKF 167 23.6 

UKF 155 26.6 

CKF 167 23.6 

SVSF 107 94.1 

EK-SVSF 57.8 30.1 

UK-SVSF 56.5 29.1 

CK-SVSF 52.3 32.1 
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Table 5.3.2. RMSE Results for the Coordinated Turn Model (Normal Case) 

Filter Position (�) Velocity (�/�) Turn Rate (|��/�) 

EKF 2,503 89,258 5.320 

UKF 1520 332 1.949 

CKF 1168 88.5 0.231 

SVSF 130 146 0.063 

EK-SVSF 68.8 58.1 0.026 

UK-SVSF 67.6 56.7 0.035 

CK-SVSF 59.4 50.2 0.025 

As shown in the previous tables, the new combined methods performed the best in 

terms of accuracy (i.e., RMSE). Figure 5.3.3 clearly demonstrates the effects that the uniform 

motion model has on the EKF, UKF, and CKF when the target is turning. The SVSF switching 

effect is shown clearly in Figures 5.3.3 and 5.3.4. The switching, inherent to the SVSF gain, 

ensures that the estimation process is robust and stable. As demonstrated in Figure 5.3.4, the 

EKF, UKF, and CKF methods were unable to provide a good estimate of the target. Bounding 

these Kalman-based nonlinear filters to within a region of the measurements by use of the SVSF 

further increased the stability and the performance, as shown by the results. The strategy 

effectively combined the accuracy of the EKF, UKF, and CKF with the stability of the SVSF. 

The calculation of the smoothing boundary layer term introduces another indicator of 

performance. For example, consider the following two figures which show the calculated 

smoothing boundary layer widths corresponding to the �-position and the �-position states. 

These values were calculated by the EK-SVSF strategy (5.3.1.5), and the state estimates were 

generated by the uniform motion model (5.3.4.1). For both states, the widths increase 

approximately when the target was turning; this corresponds to an increase in the uncertainty 

present in the estimation process (i.e., the filter model does not match the true system model). 
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Figure 5.3.5. �-Position Smoothing Boundary Layer
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To further demonstrate the added benefits of combining the filtering strategies, 

consider the ATC scenario with erroneous measurements introduced half-way through the 

simulation (i.e., %�3� = 500	%�3�). Note that this scenario could be avoided by measurement 

gating techniques; however, it will be used to study the robustness of the methods [28]. 

 

Figure 5.3.7. Estimated Trajectory with Erroneous Measurements (UM Model) 

 

Figure 5.3.8. Estimated Trajectory with Erroneous Measurements (CT Model) 
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The previous two figures illustrate the estimation results for both the uniform motion 

and coordinated turn models. The effect of the erroneous measurement is clearly visible. 

Although all of the filtering strategies remain stable, the recovery time is significantly different. 

The SVSF, EK-SVSF, UK-SVSF, and CK-SVSF methods utilize the chattering effect of the SVSF gain; 

which helps keep the estimates bounded to within a region of the true state trajectory. The SVSF 

chattering effect allows the combined estimation strategies to yield good estimates at the 

inception of the poor measurement after only 2 or 3 samples. For the uniform motion model 

case, the UKF recovered in about 35 samples. The EKF and CKF performed the worse, and 

required about 125 samples to regain the proper target track and yield good state estimates. 

For the coordinated turn model case, at the inception of the poor measurement, the EKF failed 

to yield a good estimate of the target. However, the UKF and CKF eventually recovered, but took 

a significant amount of time. 

5.4 Summary 

This chapter presented a novel form of the SVSF that implemented a time-varying smoothing 

boundary layer (VBL), which was derived based on the covariance derivation presented in 

Chapter 4. For linear systems, it was demonstrated mathematically and on a computer 

experiment that the VBL formulation yielded the optimal KF gain. It was found that a secondary 

benefit of the VBL included the ability to detect changes in the system. A methodology was 

presented based on the VBL which allowed the SVSF to be combined with other nonlinear 

estimation strategies, such as the EKF, UKF, and CKF. The results were tested and compared on a 

target tracking problem. The resulting filters (EK-SVSF, UK-SVSF, and CK-SVSF) were found to be 

more accurate and robust compared with their standalone counterparts. There are two 

noteworthy drawbacks of the VBL approach. The first involves numerical stability issues that can 

be caused by dividing by zero, leading to computational and round-off errors. Secondly, the VBL 

derivation was based on the assumption that the measurement matrix is square. However, this 

is not always the case. A method presented in [37] and [120] was implemented which creates 

‘artificial’ measurements that allow a full measurement matrix to be created and utilized. 
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Chapter 6 
6 Interacting Multiple-Model Form of the SVSF 

Interacting Multiple Model Form of the SVSF 

 

This chapter presents a novel interacting multiple model (IMM) strategy based on the SVSF, 

referred to as the IMM-SVSF. This strategy makes use of the covariance derivation presented 

earlier in Chapter 4. The new IMM-SVSF method is applied on two applications. The first involves 

a target tracking computer experiment, based on a state trajectory built from a GPS tracker. The 

second application involves fault detection and diagnosis of an actual electrohydrostatic 

actuator (EHA) built for experimentation. The fault detection case made use of three models: 

normal system, friction fault, and leakage fault. The models were obtained through system 

identification as well as mathematically modeling the EHA. The results of the IMM-SVSF are 

compared with the popular KF based IMM (referred to as the IMM-KF). 

 

6.1 Formulation of the IMM-SVSF 

As presented earlier in Chapter 2, the interacting multiple model (IMM) strategy makes use of a 

finite number of models, and is associated with filters that run in parallel. The output from each 

filter includes the state estimate, the covariance, and the likelihood calculation (which is a 

function of the measurement error and innovation covariance). The output from the filters is 

used to calculate mode probabilities, which gives an indication of how close the filter model is to 

the true model. The IMM has been shown to work significantly better than single model 

methods, since it is able to make use of more information [28]. It also works extremely well for 

standard estimation problems such as target tracking, where there are typically two models 

used to capture the target’s trajectory (i.e., uniform motion or coordinated turn) [28]. 



Ph.D. Thesis

S. A. Gadsden

 

 

 

estimation process that is sub

strategy 

Furthermore, there was a certain amount of research curiosity present in

perform compared with the KF in terms of model detection probability. The IMM strategy 

utilizes covariance outputs from the filter; as such, the IMM

of Chapter 4.

por

the above figure. Essentially, 

models. As an example, th

of five main steps: calculation of the mixing probabilities, mixing stage, mode

via the SVSF, mode probability update, and state estimate and 

Ph.D. Thesis 

S. A. Gadsden 

 

The motivation for combining the IMM with the SVSF is simple. The SVSF provides an 

estimation process that is sub

strategy which increases the overall accuracy of the estimation process is beneficial. 

Furthermore, there was a certain amount of research curiosity present in

perform compared with the KF in terms of model detection probability. The IMM strategy 

utilizes covariance outputs from the filter; as such, the IMM

of Chapter 4. 

The IMM was implemented as per 

portions will be repeated here to help describe the IMM

the above figure. Essentially, 

models. As an example, th

of five main steps: calculation of the mixing probabilities, mixing stage, mode

via the SVSF, mode probability update, and state estimate and 

 

The motivation for combining the IMM with the SVSF is simple. The SVSF provides an 

estimation process that is sub

which increases the overall accuracy of the estimation process is beneficial. 

Furthermore, there was a certain amount of research curiosity present in

perform compared with the KF in terms of model detection probability. The IMM strategy 

utilizes covariance outputs from the filter; as such, the IMM

 

Figure 

The IMM was implemented as per 

tions will be repeated here to help describe the IMM

the above figure. Essentially, 

models. As an example, the above figure shows two models

of five main steps: calculation of the mixing probabilities, mixing stage, mode

via the SVSF, mode probability update, and state estimate and 

The motivation for combining the IMM with the SVSF is simple. The SVSF provides an 

estimation process that is sub-optimal albeit stable. Therefore, utilizing a multiple

which increases the overall accuracy of the estimation process is beneficial. 

Furthermore, there was a certain amount of research curiosity present in

perform compared with the KF in terms of model detection probability. The IMM strategy 

utilizes covariance outputs from the filter; as such, the IMM

Figure 6.1.1. IMM-

The IMM was implemented as per 

tions will be repeated here to help describe the IMM

the above figure. Essentially, the SVSF estimation strategy 

e above figure shows two models

of five main steps: calculation of the mixing probabilities, mixing stage, mode

via the SVSF, mode probability update, and state estimate and 

The motivation for combining the IMM with the SVSF is simple. The SVSF provides an 

optimal albeit stable. Therefore, utilizing a multiple

which increases the overall accuracy of the estimation process is beneficial. 

Furthermore, there was a certain amount of research curiosity present in

perform compared with the KF in terms of model detection probability. The IMM strategy 

utilizes covariance outputs from the filter; as such, the IMM

-SVSF Strategy (Adapted from 

The IMM was implemented as per [28], and was presented earlier in Chapter 2

tions will be repeated here to help describe the IMM

the SVSF estimation strategy 

e above figure shows two models

of five main steps: calculation of the mixing probabilities, mixing stage, mode

via the SVSF, mode probability update, and state estimate and 

Department of Mechanical Engineering

The motivation for combining the IMM with the SVSF is simple. The SVSF provides an 

optimal albeit stable. Therefore, utilizing a multiple

which increases the overall accuracy of the estimation process is beneficial. 

Furthermore, there was a certain amount of research curiosity present in

perform compared with the KF in terms of model detection probability. The IMM strategy 

utilizes covariance outputs from the filter; as such, the IMM-SVSF method builds on the results 

Strategy (Adapted from 

, and was presented earlier in Chapter 2

tions will be repeated here to help describe the IMM-SVSF strategy.

the SVSF estimation strategy may be applied on 

e above figure shows two models. The IMM

of five main steps: calculation of the mixing probabilities, mixing stage, mode

via the SVSF, mode probability update, and state estimate and covariance combination.

McMa

Department of Mechanical Engineering

The motivation for combining the IMM with the SVSF is simple. The SVSF provides an 

optimal albeit stable. Therefore, utilizing a multiple

which increases the overall accuracy of the estimation process is beneficial. 

Furthermore, there was a certain amount of research curiosity present in how the SVSF would 

perform compared with the KF in terms of model detection probability. The IMM strategy 

SVSF method builds on the results 

Strategy (Adapted from [28]) 

, and was presented earlier in Chapter 2

SVSF strategy. The concept is shown in 

may be applied on 

. The IMM-SVSF estimator consists 

of five main steps: calculation of the mixing probabilities, mixing stage, mode

covariance combination.

McMaster University

Department of Mechanical Engineering

The motivation for combining the IMM with the SVSF is simple. The SVSF provides an 

optimal albeit stable. Therefore, utilizing a multiple model 

which increases the overall accuracy of the estimation process is beneficial. 

how the SVSF would 

perform compared with the KF in terms of model detection probability. The IMM strategy 

SVSF method builds on the results 

 

, and was presented earlier in Chapter 2. 

The concept is shown in 

may be applied on a finite number of 

VSF estimator consists 

of five main steps: calculation of the mixing probabilities, mixing stage, mode-matched filtering 

covariance combination. 

ster University 

Department of Mechanical Engineering 

133 

The motivation for combining the IMM with the SVSF is simple. The SVSF provides an 

model (MM) 

which increases the overall accuracy of the estimation process is beneficial. 

how the SVSF would 

perform compared with the KF in terms of model detection probability. The IMM strategy 

SVSF method builds on the results 

 Some 

The concept is shown in 

a finite number of 

VSF estimator consists 

matched filtering 



Ph.D. Thesis 

S. A. Gadsden 

McMaster University 

Department of Mechanical Engineering 

 

134 

 

 

The first step involves calculating the mixing probabilities 2�|�,�|� (i.e., the probability of 

the system currently in mode �, and switching to mode � at the next step). These are calculated 

using the following two equations [28]: 

2�|�,�|� =
1]�̅ 3��2�,� (6.1.1) 

]�̅ = O3��#

� �

2�,�  (6.1.2) 

Recall that 3��  refers to the mode transition probabilities, and is a designer parameter. 

Note that 2�,� refers to the probability of the mode � being correct (with values between 0 and 

1), and differs from the mixing probabilities 2�|�,�|�. This notation is standard, and is found in 

[28]. The mixing probabilities 2�|�,�|� are used in the mixing stage, next. In addition to the mixing 

probabilities, the previous mode-matched states �7�,�|� and covariance’s ��,�|� are also used to 

calculate the mixed initial conditions (states and covariance) for the filter matched to ��  (which 

consists of ��  and 	�). The mixed initial conditions are found respectively as follows [28]: 

�7��,�|� = O�7�,�|�2�|�,�|�#

� �

 (6.1.3) 

���,�|� = O2�|�,�|�#

� �

Z��,�|� + :�7�,�|� − �7��,�|�;:�7�,�|� − �7��,�|�;�[ (6.1.4) 

The next step involves mode-matched filtering via the SVSF, which involves using (6.1.3) 

and (6.1.4) as inputs to the SVSF matched to ��. Each SVSF also uses the measurement %��� and 

input to the system �� (if any), and calculates the corresponding updated state estimates 

(6.1.10) and corresponding covariance (6.1.11). Adapted from Chapter 4, the modified 

prediction stage (for linear systems) is as follows. The state estimates �7��,�|� (6.1.3) and 

corresponding covariance ���,�|�  (6.1.4) for each model � are used to predict the state estimate �7�,���|� (6.1.5) and calculate the a priori state error covariance matrix ��,���|� (6.1.6). 

�7�,���|� = ���7��,�|� + 	��� (6.1.5) 
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��,���|� = ����|��� ��� + �� (6.1.6) 

From (6.1.5) and (6.1.6), the mode-matched innovation covariance ��,���|� (6.1.7) and 

mode-matched a priori measurement error ��,�,���|�  (6.1.8) are calculated. 

��,���|� = ����,���|���� + ���� (6.1.7) ��,�,���|� = %��� − ���7�,���|�  (6.1.8) 

The update stage is defined by the following four equations. The mode-matched SVSF 

gain ��,��� is calculated (6.1.9) and used to update the state estimates �7�,���|��� (6.1.10). 

��,��� = ���(�&) kwU��,�,���|�U�� + 6�U��,�,�|�U��x
∘ 4&5:�'�����,�,���|�;l (�&):��,�,���|�;�� 

(6.1.9) 

�7�,���|��� = �7�,���|� + ��,�����,�,���|� (6.1.10) 

The corresponding state error covariance matrix ��,���|��� is then calculated (6.1.11) 

and the a posteriori measurement error ��,�,���|��� may be found (6.1.12). 

��,���|��� = :� − ��,�����;��,���|�:� − ��,�����;� + ��,���������,����  (6.1.11) ��,�,���|��� = %��� − ���7�,���|��� (6.1.12) 

Based on the mode-matched innovation matrix ��,���|� (6.1.7) and the mode-matched a 

priori measurement error ��,�,���|� (6.1.8), a corresponding mode-matched likelihood function 

Λ�,��� based on the SVSF estimation method may be calculated, as follows [28]: 

Λ�,��� = 1:%���; %̂�,���|� , ��,���; (6.1.13) 

Equation (6.1.13) may be solved as follows [28,39]: 

Λ�,��� =
1JU2W��,���U�� ��3X

−
1
2
��,�,���|�� ��,�,���|���,��� Y (6.1.14) 
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Utilizing the mode-matched likelihood functions Λ�,���, the mode probability 2�,� may 

be updated by [28]: 

2�,� =
1] Λ�,���O3��#

� �

2�,� (6.1.15) 

Where the normalizing constant is defined as [28]: 

] = OΛ�,���O3��#

� �

2�,�#

� �

 (6.1.16) 

Finally, the overall IMM-SVSF state estimates �7���|��� (6.1.17) and corresponding 

covariance ����|��� (6.1.17) are calculated. 

�7���|��� = O2�,����7�,���|���#

� �

 (6.1.17) 

����|��� = O2�,��� Z��,���|���#

� �

+ :�7�,���|��� − �7���|���;:�7�,���|��� − �7���|���;�[ 

(6.1.18) 

The formulation of the IMM-SVSF may be summarized by (6.1.1) through (6.1.18), 

where there are �, � = 1, … , � models. Note that (6.1.17) and (6.1.18) are used for output 

purposes only, and are not part of the algorithm recursions [28]. Furthermore, note that the 

IMM-KF strategy is the same process as above but (6.1.5) through (6.1.12) are replaced with the 

KF prediction and update equations. 

For the remainder of this chapter, the IMM-SVSF and IMM-KF methods are applied on 

two applications: target tracking, and fault detection and diagnosis of an electrohydrostatic 

actuator. The results are then compared and discussed. 

 



Ph.D. Thesis 

S. A. Gadsden 

McMaster University 

Department of Mechanical Engineering 

 

137 

 

 

6.2 Target Tracking Application 

This section discusses the application of the IMM-SVSF method on a computer experiment. The 

air traffic control scenario presented in Chapter 5 will be used here. However, in an effort to 

provide a more realistic target trajectory, a true state trajectory was generated using a GPS 

tracker on a vehicle. Artificial system and measurement noise are added in order to provide a 

more realistic target tracking scenario. 

The following figure represents the true state trajectory for this application. A Ford 

Escape hybrid was driven from McMaster University to the east-end of Hamilton, along the 

escarpment. This path resulted in a number of turns, uniform directions, and varying velocities. 

A GPS data logger was used to plot the above path in Google Maps software. The true mode 

(i.e., uniform motion or coordinated turn) was generated from knowledge of this map. The 

sample rate for this scenario was � = 1	4�]. The relevant equations for this scenario include 

(5.3.4.1) through (5.3.4.11). To make the estimation problem more difficult, artificial system and 

measurement noise was added to the true states and measurements, respectively. 

 

Figure 6.2.1. True State Trajectory for Target Tracking Computer Experiment 
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The system and measurement noise covariance matrices were defined by: 

� = ��

}~
~~
~~
~~
~~
��


3
0

��
2

0 0

0
�

3

0
��
2

0��
2

0 � 0 0

0
��
2

0 � 0

0 0 0 0
���� ���

��
��
��
��
�
 (6.2.1) 

� = 10� k1 0
0 1

l (6.2.2) 

Note that �� and �� are referred to as power spectral densities, and were defined as 

0.16 and 0.01, respectively [130]. The system and measurement noise ("�  and  �) were 

generated using their respective covariance values (� and �), as per (1.1.3) and (1.1.4). 

The initial states and their corresponding estimates were set to zero. The start is 

assumed to be at McMaster University (i.e., initial position). For the SVSF strategy, the constant 

smoothing boundary layer widths were defined as � = L100 500 100 500 1M�, and the 

SVSF ‘memory’ or convergence rate was set to 6 = 0.1. These parameters were tuned with the 

goal of decreasing the estimation error. Furthermore, note that the initial mode probability for 

both the IMM-KF and IMM-SVSF strategies was set to: 

2�,� = L0.75 0.25M (6.2.3) 

The mode transition matrix was defined by [28]: 

3�� = k0.95 0.05
0.05 0.95

l (6.2.4) 

The following figure shows the true state trajectory, along with the corresponding 

estimates which are fairly close to the true state trajectory, and thus appear overlapping. 
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Figure 6.2.2. True and Estimated Target Trajectory 

However, a noticeable difference occurs when the vehicle takes a sharp-turn (south 

west portion of the trajectory). The IMM-KF strategy is unable to accurately estimate the 

trajectory. The IMM-SVSF method is able to follow the true state trajectory more closely. The 

following table summarizes the RMSE results for the target tracking simulation. The IMM-SVSF 

strategy yielded a significant improvement for the position estimates (roughly 42%). 

Table 6.2.1. RMSE Results for the Target Tracking Computer Experiment 

Filter Position (�) Velocity (�/�) Turn Rate (|��/�) 

IMM-SVSF 15.79 6.01 0.001 

IMM-KF 27.25 6.14 0.033 

However, it is interesting to note that both methods performed relatively the same 

when estimating the target’s velocity. As shown below, this is most likely due to the artificial 

velocity measurements, which were used to form a full measurement matrix. 
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shows the uniform motion mode probability, as calculated by the 

’, the vehicle is 

traveling straight (or relatively straight). When the vehicle turns, this value switches to ‘0’. 
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The true mode probability was calculated based on the available knowledge of the 

vehicle manoeuvres. The IMM strategy is a soft-switching approach, as demonstrated by the 

results. Overall, the IMM-SVSF strategy yields a more accurate mode probability calculation, 

when compared with the IMM-KF. This results in an improvement on the overall estimation 

accuracy. For example, consider the result around 500 seconds. For some period of time, the 

IMM-KF ‘believes’ that the vehicle is turning, when in fact it is traveling straight. This results in a 

less accurate model being implemented by the filter (coordinated turn vs. the uniform motion 

model), which reduces the overall estimation accuracy. Note that when the vehicle performs 

mode switches too frequently (i.e., between the time period of 150 to 250 seconds), both IMM 

strategies have difficulty determining the correct mode probability. 

6.3 Fault Detection and Diagnosis Application 

This section describes the results of applying the IMM-SVSF and the IMM-KF on an experimental 

setup for the purposes of fault detection and diagnosis. The experimental setup of the 

electrohydrostatic actuator is described, followed by methods for obtaining the desired system 

models. Finally, the results of applying the IMM-SVSF and IMM-KF are shown and discussed. 

6.3.1 Experimental Setup 

The experimental setup used in this thesis involved an electrohydrostatic actuator (EHA). An 

EHA is an emerging type of actuator typically used in the aerospace industry. EHAs are self-

contained units comprised of their own pump, hydraulic circuit, and actuating cylinder [37]. The 

main components of an EHA include a variable speed motor, an external gear pump, an 

accumulator, inner circuitry check valves, a cylinder (or actuator), and a bi-directional pressure 

relief mechanism. The schematic of the EHA circuitry is shown in Appendix 8.6, as presented in 

[131]. The EHA can be divided into two subsystems. The first is the inner circuit that includes the 

accumulator and its surrounding check valves. The second is the high pressure outer circuit 

which performs the actuation. The inner circuit prevents cavitation which occurs when the inlet 

pressure reaches near vacuum pressures and provides make-up fluid for any dynamic leakage 

[37]. 
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Mathematical modeling of the EHA has been performed and can be seen in detail in 

[37,132]. The EHA experimental setup was developed at McMaster University by Mr. Kevin 

McCullough, who is a recent M.A.Sc. graduate in the Department of Mechanical Engineering 

[133]. It is important to remind the reader that the experimental setup was used as a test-bed 

for the IMM-SVSF strategy; however, the EHA itself was not a part of this thesis research. The 

following figure shows the experimental setup of the EHA. 

 

Figure 6.3.1. Experimental Setup of the EHA 

In the above figure, the cylinder on the right (foreground) is referred to as Axis A and 

the cylinder connected to it on the left (foreground) is referred to Axis B. An optical linear 

encoder attached to Axis A is used to obtain position measurements (which are differentiated to 

obtain velocity measurements). The gear pump and electric motor are located in the rear 

(middle) of the table. 
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The electric motor drives the gear pump, which moves the hydraulic fluid throughout 

the circuit. A voltage input controls the direction and speed of the pump which affects the 

velocity of the cylinders (or actuators). This setup is a closed hydrostatic circuit [134]. More 

details on the design and setup of the EHA may be found in [128,131,133,134]. The computer 

and electrical cabinet are located off-camera to the right of the setup. The software used to 

communicate with the EHA setup is MATLAB’s Real-Time Windows Target environment. 

The two faults that were introduced to the EHA system were increased friction and 

internal leakage. To incur a friction fault, Axis A was used as the driving mechanism while Axis B 

acted as a load. To cause internal leakage, the Axis A throttling valve is used (where the Axis A 

throttle blocking valve is open). As the pump rotates, the Axis A throttling valve incurs cross-port 

leakage between both chambers of its corresponding cylinder. This action affects the output 

response of the cylinder. 

In order to implement the IMM strategies, three models need to be obtained: normal 

system operation, and the presence of friction and leakage faults. These models may be 

obtained either by system identification or mathematical modeling. System identification was 

performed by Mr. Yu Song, who is currently an M.A.Sc. candidate studying with Dr. Saeid Habibi. 

For completeness, the results of his identified models are presented in Appendix 8.7. It was 

found that mathematically modeling the system led to more accurate results when 

implementing the IMM strategies. 

6.3.2 Mathematical Models of the EHA System 

A mathematical model for the EHA has been described in detail in [132,134,135]. For the 

purposes of this thesis, only the main transfer function will be explored. The EHA may be 

modeled as a third-order, type 1 linear system with state variables related to its position, 

velocity, and acceleration. The input to the system is the rotational speed of the pump �<, with 

typical units of �&(/4. In this experimental setup, the sample rate of the system is � = 1	�4. 

The significant dynamics of the system may be captured by the following third-order transfer 

function, obtained from [132]: 
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�	� =
��< =

.��="�4
 + .��.���4� + .��.���4 (6.3.2.1) 

Where: 

.��="� =
�������!�  (6.3.2.2) 

.��.��� =
	���� + ������!�  (6.3.2.3) 

.��.��� =
	�!� + �����!�  (6.3.2.4) 

Note that ��  refers to the piston cross-sectional area, 	�  represents the load friction 

present in the system, �� is the effective bulk modulus (i.e., the ‘stiffness’ in the hydraulic 

circuit), �< refers to the pump displacement, � represents the leakage coefficient, � is the load 

mass (i.e., weight of the cylinders), and !� is the initial cylinder volume. The three main 

parameters that affect the EHA model are the pump displacement �<, load friction 	�, and 

leakage coefficient �. For the three scenarios (normal, friction, and leakage), these parameters 

need to be determined in order to correctly mathematically model the EHA system. It is 

important to note that an input of 1	! yields a pump rotation of about 300	���. 

The following table lists the known EHA parameter values, experimentally determined in [133]. 

Table 6.3.1. EHA Parameter Values 

Parameter Physical Significance EHA Model Value ��  Piston Area 1.52 × 10�
	�� �� Pump Displacement 6.876 × 10�2	�
/�&( � Load Mass 7.376	�) !� Initial Cylinder Volume 2.1789 × 10��	�
 �� Maximum Cylinder Stroke 0.14335	� �� Effective Bulk Modulus 2.1 × 104	�& 
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Three unknown EHA parameters (�<, 	�, and �) were required in order to obtain 

mathematical models of the EHA under the three different scenarios (normal operation, and 

leakage and friction faults). Appendix 8.8 shows how these parameters were experimentally 

determined. The normal model, leakage model, and friction model are respectively defined as 

follows: 


�	�,=�#�+$ =
4,2504� + 3,9014 + 410,250

 (6.3.2.5) 


�	�,1�+�>� =
4,2504� + 4,2444 + 452,160

 (6.3.2.6) 


�	�,�#�?���� =
3,1384� + 27,2344 + 404,370

 (6.3.2.7) 

Note that the EHA system has become a second-order system, where the input is 

voltage (!), and the output is the cylinder (Axis A) velocity (�/4). 

6.3.3 Experimental Results 

The results of applying the IMM-SVSF and IMM-KF are provided in this section. Before applying 

the methods for the purposes of fault detection and diagnosis, the continuous-time transfer 

functions of (6.3.2.5) through (6.3.2.7) are converted to discrete-time, with � = 0.001	4. The 

discrete-time models for normal EHA operation, and the leakage and friction fault models are 

respectively as follows: 


�	�,=�#�+$ =
7.960 × 10��% + 2.421 × 10��%� − 0.920% + 2.022 × 10��

 (6.3.3.1) 


�	�,1�+�>� =
7.489 × 10��% + 2.093 × 10��%� − 0.912% + 1.435 × 10��

 (6.3.3.2) 


�	�,�#�?���� =
1.103 × 10��% + 4.175 × 10�5%� − 0.985% + 1.488 × 10���

 (6.3.3.3) 

In order to apply the IMM methods, the discrete-time transfer functions must be 

converted to state space representation. The corresponding system and input gain matrices for 

the normal EHA operation are found as follows: 
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�=�#�+$ = k 0.9200 1
−0.0202 0

l (6.3.3.4) 

	=�#�+$ = k7.960
2.421

l × 10�� (6.3.3.5) 

The system and input gain matrices for the leakage fault model are determined to be: 

�1�+�+>� = k 0.9124 1
−0.0144 0

l (6.3.3.6) 

	1�+�+>� = k7.489
2.093

l × 10�� (6.3.3.7) 

Finally, the system and input gain matrices for the friction fault model may be found as follows: 

��#�?���� = k 0.9853 1
−1.4875 × 10��� 0

l (6.3.3.8) 

	�#�?���� = k1.103
0.042

l × 10�� (6.3.3.9) 

According to the previous state space models, there are two states. Note that for the 

purposes of fault detection and diagnosis, the states (whether they are kinematic or not) have 

no bearing on the results, since one is mainly interested in the mode probability. Only the first 

state that corresponds to the velocity of the EHA cylinder (Axis A) is measured such that the 

measurement matrix (used by all three models) is defined as follows: 

� = L1 0M (6.3.3.10) 

An artificial measurement is derived in an effort to create a full measurement matrix 

(i.e., an identity), to be used by the SVSF method. Like before, the artificial measurement is 

created based on the available measurement and knowledge of the system model. As such, each 

model being used by the IMM will have its own respective artificial measurement based on the 

following: 

��,��� = ���%�,� + �����,� + 	���� (6.3.3.11) 
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The measurement noise covariance may be found using MATLAB through the ‘cov’ 

(covariance) command. Alternatively, it may be calculated as follows: 

� =
*%� − %̅+*%� − %̅+�%� = 2.12 × 10�5 (6.3.3.13) 

Where %� (a vector) refers to the ��� measurement sample, %�  refers to the number of 

samples in the measurement segment (3,401), and %̅ is the measurement mean (0.0259	�/4).  

Next, the system noise covariance was determined. An initial estimate of the covariance 

was made based on earlier work performed on a different EHA [134]. From this starting place, 

the values were tuned in an effort to yield the best possible estimate for both the KF and the 

SVSF strategies. It is important to note that a considerable amount of effort was made to ensure 

a fair comparison between the two strategies. For the following experimental results, the 

system noise covariance was defined as follows: 

� = 85 × 10�/ 0
0 1 × 10�2

9 (6.3.3.14) 

The initial state estimates and state error covariance were respectively set to: 

�7�|� = L%� 0M� (6.3.3.15) 

��|� = k20 0
0 20

l (6.3.3.16) 

For the SVSF estimation process, the ‘memory’ or convergence rate was set to γ = 0.1, 

and the smoothing boundary layer widths were defined as � = L0.25 5M�. These parameters 

were tuned based on minimizing the state estimation error. Furthermore, note that the initial 

mode probability 2�,� for both the IMM-KF and IMM-SVSF strategies was set to: 

2�,� = L0.90 0.05 0.05M (6.3.3.17) 

It was assumed with a 90% probability that the EHA experienced normal operation at 

the start (and a 5% probability for each fault). The mode transition matrix 3��  was defined by: 
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For this case, the RMSE was calculated and is summarized in the following table. 

Table 6.3.3. RMSE Results for Sequential Step Input 

Filter Velocity (�/�) Second State 

IMM-SVSF 2.07 × 10�
 4.50 × 10�3 

IMM-KF 2.19 × 10�
 5.80 × 10�3 

In terms of estimation error, the IMM-SVSF method slightly outperformed the IMM-KF 

strategy. However, the ability to detect faults and successfully diagnosis them relies on the 

filters ability to calculate the mode probability. This value gives the user an indication of which 

mode is present in the EHA.  

In the following three figures, a value of ‘1’ refers to a mode probability of 100%, and a 

value of ‘0’ refers to a mode probability of 0%. 

 

Figure 6.3.9. Normal Mode Probability for the EHA Fault Detection Experiment 
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Figure 6.3.10. Leakage Fault Mode Probability for the EHA Fault Detection Experiment 

 

 

Figure 6.3.11. Friction Fault Mode Probability for the EHA Fault Detection Experiment 
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Both methods were able to successfully detect changes in the system, and to diagnosis 

the correct mode that the EHA was experiencing. However, as shown in the following tables, the 

IMM-SVSF strategy was able to diagnose the modes with a higher probability (about 10 − 20%). 

Consequently, the ‘false detection’ probability was lower for the IMM-SVSF than the IMM-KF 

strategy (i.e., detecting a fault when the EHA system was operating normally). Note that for the 

first four seconds, there was no input. Furthermore, the spikes present were due to the type of 

input (sequential step every 4 seconds), as well as the EHA velocity switching across 0	�/4. In 

this region, the three models yielded nearly indistinguishable results. 

Table 6.3.4. IMM-KF Averaged Mode Probability Results 

 Normal Detected Leak Detected Friction Detected 

Normal Present ��.��	% 16.75	% 24.75	% 

Leak Present 13.51	% ��.��	% 39.46	% 

Friction Present 7.68	% 22.10	% ��.��	% 

Table 6.3.5. IMM-SVSF Averaged Mode Probability Results 

 Normal Detected Leak Detected Friction Detected 

Normal Present ��.��	% 13.53	% 16.87	% 

Leak Present 10.92	% ��.��	% 24.86	% 

Friction Present 8.64	% 9.26	% ��.��	% 

Note that both methods yielded noisy probability calculations due to the amount of 

noise present in the measurement. Therefore, out of curiosity, a simple digital filter (i.e., zero-

phase filter) was added to reduce the amount of measurement noise. The measurement noise 

covariance was recalculated and was set to � = 1.68 × 10�4. The above experiments were then 

repeated for this case, and the results are reported as follows. 
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Figure 6.3.12. Normal Mode Probability with Filtered Measurements 

 

 

Figure 6.3.13. Leakage Mode Probability with Filtered Measurements 
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Figure 6.3.14. Friction Mode Probability with Filtered Measurements 

The following table shows a summary of the RMSE results for both the IMM-SVSF and 

IMM-KF, when the measurements were filtered digitally.  

Table 6.3.6. RMSE Results for Sequential Step Input (Filtered Measurements) 

Filter Velocity (�/�) Second State 

IMM-SVSF 2.14 × 10�
 3.41 × 10�3 

IMM-KF 2.22 × 10�
 4.35 × 10�3 

The estimation results for the velocity state did not change very much compared with 

the previous case. However, the second state was estimated more accurately, which is to be 

expected given the reduced measurement noise. The following tables summarize the averaged 

mode probability results for this case. It is interesting to note how a higher quality measurement 

improves the results of both IMM strategies. Future recommendations obviously therefore 

include a better and more suitable sensor to measure the velocity of the EHA cylinder. 
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Table 6.3.7. IMM-KF Averaged Mode Probability Results (Filtered Measurements) 

 Normal Detected Leak Detected Friction Detected 

Normal Present ��.��	% 8.32	% 43.15	% 

Leak Present 6.50	% ��.��	% 29.04	% 

Friction Present 2.25	% 5.31	% ��.��	% 

Table 6.3.8. IMM-SVSF Averaged Mode Probability Results (Filtered Measurements) 

 Normal Detected Leak Detected Friction Detected 

Normal Present ��.��	% 8.48	% 8.82	% 

Leak Present 4.83	% ��.��	% 13.50	% 

Friction Present 5.35	% 7.55	% ��.��	% 

Incorrect model detection was reduced significantly for both methods, as demonstrated 

by the off-diagonals in the above tables. However, the IMM-KF method had significant difficulty 

detecting the presence of the friction fault. For example, when the normal mode was present, 

the IMM-KF correctly identified it with 48.53%; however, it also detected a friction fault with 

43.15%. This yields a difference of roughly 5%, which reduces the amount of confidence in 

correctly identifying the current mode being experienced by the EHA. The IMM-SVSF strategy 

was able to correctly detect and diagnosis all three modes with over 80% probability. The IMM-

SVSF method outperformed the IMM-KF by 34.17% and 17.21% for the first and second mode, 

respectively. However, it is interesting to note that the IMM-KF yielded a slightly higher friction 

detection probability than the IMM-SVSF strategy. It is important to remind the reader that the 

aforementioned scenarios were specific to a certain linear region in the EHA (at 2.5	!), such that 

the developed mathematical models could be implemented. The actual experimental setup is 

nonlinear (unmodeled hydraulic dynamics, static friction, and so on) [134]. Developing nonlinear 

models to fit the entire EHA operating range and then applying the IMM strategies is beyond the 

scope of this thesis. 
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6.4 Summary 

This chapter presented the development of a novel interacting multiple model (IMM) strategy 

based on the SVSF, referred to as the IMM-SVSF. This strategy makes use of the covariance 

derivation presented earlier in Chapter 4. The new IMM-SVSF method was applied on two 

applications. The first involved a target tracking computer experiment. In this case, the IMM-

SVSF strategy yielded a significant improvement for the position estimates (roughly 42%) when 

compared with the popular IMM-KF method. Furthermore, the IMM-SVSF strategy was able to 

provide more accurate mode probabilities. For some period of time, the IMM-KF ‘believes’ that 

the vehicle is turning, when in fact it is traveling straight. This results in a less accurate model 

being implemented by the filter (coordinated turn vs. the uniform motion model), which 

reduces the overall estimation accuracy.  

The second application involved fault detection and diagnosis of an actual 

electrohydrostatic actuator (EHA) built for experimentation. The fault detection case made use 

of three models: normal system, friction fault, and leakage fault. The models were obtained 

through system identification as well as mathematically modeling the EHA. The results of the 

IMM-SVSF were compared with the popular IMM-KF. The IMM-SVSF strategy generally 

outperformed the IMM-KF in terms of estimation accuracy and mode probability determination. 

The ‘false detection’ probability was found to be lower for the IMM-SVSF than the IMM-KF 

strategy (i.e., detecting a fault when the EHA system was operating normally). For the EHA 

application, it was recommended that a more accurate sensor be implemented in order to 

obtain better velocity measurements. This would significantly improve the results of both the 

IMM-SVSF and IMM-KF strategies. 
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Chapter 7 
7 Concluding Remarks 

Concluding Remarks 

 

This short chapter summarizes the major research performed and discussed in this thesis, and 

also includes recommendations for future work to continue and expand on the research. 

 

7.1 Summary of Research 

This research focused on advancing the development and implementation of the SVSF. To 

reiterate, the SVSF was introduced in 2007, and is based on variable structure theory and sliding 

mode concepts. It implements a switching gain to converge the estimates to within a boundary 

of the true states, referred to as the existence subspace. As demonstrated in literature, and 

reinforced throughout this thesis, the SVSF provides a robust and stable estimate to modeling 

uncertainties and errors. In its original form, the SVSF did not utilize a state error covariance 

matrix, which is a measure of the accuracy of the state estimates. 

Therefore, the first major contribution of this research was to formulate an SVSF 

strategy with a covariance derivation. This created a number of research opportunities that 

could only be pursued and relied on the availability of the error covariance matrix. Chapter 4 

presented and summarized the development of the SVSF covariance for both linear and 

nonlinear systems. A method that makes use of fourth-order moments was provided in 

Appendix 8.1. However, this method was too cumbersome and tedious to implement 

effectively. The SVSF update equation was modified in order to provide a simpler covariance 

derivation. 
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The covariance developed for the SVSF, for both linear and nonlinear systems, are 

similar to other popular Kalman filter strategies (KF, EKF, UKF, and CKF). However, it is important 

to note that the gain used to calculate the SVSF covariance remains different. Two computer 

experiments were studied in order to compare the results of the covariance values, and 

demonstrate the functionality of the equations. It was also shown that the values for the SVSF 

smoothing boundary layer play an important role in the estimation process. Note that the 

determination of the state error covariance matrix did not affect the SVSF estimation process. 

However, the SVSF estimation methods presented later in Chapters 5 and 6 would not be 

possible without the development of a state error covariance function. 

A novel form of the SVSF that implemented a time-varying smoothing boundary layer 

(VBL) was presented in Chapter 5, and was derived based on the covariance derivation 

presented in Chapter 4. For linear systems, it was demonstrated mathematically and on a 

computer experiment that the VBL formulation yielded the optimal KF gain. In an effort to 

develop a robust linear estimation strategy, a new method was created based on the KF’s 

optimality and on the SVSF’s robustness. It was found that a secondary benefit of the VBL 

included the ability to detect changes in the system, based on changing widths. For example, 

when modeling uncertainty was present, the VBL width would grow larger in order to 

compensate for the increased modeling error. A methodology was presented based on the VBL 

which allowed the SVSF to be combined with other nonlinear estimation strategies, such as the 

EKF, UKF, and CKF. The results were tested and compared on a target tracking problem. The 

resulting filters (EK-SVSF, UK-SVSF, and CK-SVSF) were found to be more accurate and robust 

compared with their standalone counterparts. There are two noteworthy drawbacks of the VBL 

approach. The first involves numerical stability issues that can be caused by dividing by zero; 

however, this can be prevented with a simple � statement. Secondly, the VBL derivation was 

based on the assumption that the measurement matrix is square. When applicable, ‘artificial’ 

measurements can be used to create a full measurement matrix. 
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Based on the covariance derivation presented in Chapter 4, a novel interacting multiple 

model (IMM) strategy based on the SVSF was developed and presented in Chapter 6. The new 

method, referred to as the IMM-SVSF, was applied on two applications. The first involved a 

target tracking computer experiment based on a trajectory generated by a vehicle driven 

through Hamilton with a GPS data logger. Artificial system and measurement noises were added 

in an effort to make the simulation more realistic. The results of the IMM-SVSF strategy were 

compared with the popular IMM-KF method. The new strategy was found to outperform the 

IMM-KF method by nearly 42% in terms of position estimation accuracy. This is considered to 

be a significant improvement. However, note that both methods yielded relatively the same 

velocity estimate. It was determined that this was most likely due to the noisy artificial velocity 

measurements generated to help formulate a square measurement matrix. 

The second application involved fault detection and diagnosis of an actual 

electrohydrostatic actuator (EHA) built for experimentation. The fault detection case made use 

of three models: normal system, friction fault, and leakage fault. The models were obtained 

through system identification as well as physical modeling of the EHA. The results of the IMM-

SVSF were compared with the popular IMM-KF. Both methods were able to successfully detect 

changes in the system, and to diagnosis the correct mode that the EHA was experiencing. 

However, the IMM-SVSF strategy was able to diagnose the modes with a higher probability 

(about 10 − 20%). Consequently, the ‘false detection’ probability was lower for the IMM-SVSF 

than the IMM-KF strategy (i.e., detecting a fault when the EHA system was operating normally). 

Another case was performed with the presence of a digital filter to help reduce the 

measurement noise. For this case, the IMM-SVSF strategy was able to correctly detect and 

diagnosis all three modes with over 80% probability. The results of the IMM-KF strategy were 

also improved from the first case. However, there was a significant amount of ‘false detection’ 

probability for the friction model for the IMM-KF. This resulted in a loss of confidence (for the 

IMM-KF) in correctly identifying the current mode being experienced by the EHA. 
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7.2 Recommendations and Future Work 

This thesis presented a number of improvements on the SVSF. However, since the SVSF is still a 

relatively new filter, a significant amount of research remains. The first recommendation for the 

work presented in this thesis involves the derivation for the time-varying smoothing boundary 

layer. A strict assumption for the derivation presented in Chapter 5 involved a square 

measurement matrix. This assumption allowed the derivation to be simpler, since taking the 

‘pseudoinverse’ of the measurement matrix could be avoided. Future studies should involve 

looking at this derivation, and attempting to derive an appropriate VBL calculation for non-

square measurement matrices. This is important since most estimation problems do not have 

measurements associated with each state. Furthermore, it may not always be possible to 

calculate an appropriate ‘artificial’ measurement. 

For the EHA application, it was recommended that a more accurate sensor be 

implemented in order to obtain better velocity measurements. This would significantly improve 

the results of both the IMM-SVSF and IMM-KF strategies. Furthermore, it is important to 

reiterate that the fault detection and diagnosis scenarios were specific to a certain linear region 

in the EHA (at 2.5	!), such that the developed mathematical models could be implemented. The 

actual experimental setup is nonlinear (unmodeled hydraulic dynamics, static friction, and so 

on). Developing nonlinear models to fit the entire EHA operating range and then applying the 

IMM strategies was beyond the scope of this thesis. However, it is recommended that nonlinear 

models be studied such that both the IMM strategies may be applied and compared. 

The first recommendation for new research involves creating a factored (or square-root) 

form of the SVSF. The covariance matrix can be broken up into factored terms, which are then 

propagated forward and updated at each measurement. The factors are multiplied together to 

reform the covariance matrix, thus ensuring it to be positive definite, while also helping to 

ensure numerical stability. 
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Another very important recommendation for future work involves the information form 

of the SVSF, or the smooth variable structure information filter (SVSIF). An information filter (IF) 

is one that propagates the inverse of the state error covariance, instead of using the normal 

covariance in the gain calculation. The term ‘information’ is based on the Cramer-Rao lower 

bound (CRLB), where the Fisher information matrix (FIM) is calculated as the inverse of the 

covariance matrix. There are certain advantages to using the information formulation of a filter. 

For example, if no prior information is available, one may initialize the information matrix using 

zeros such that no bias exists in the a priori estimate. Furthermore, the observational update of 

the information matrix is more robust than the covariance filter form, which makes it a more 

attractive method when a large number of measurements are available or when round-off 

errors may be an issue. 

The ensemble Kalman filter (EnKF) is a recursive strategy that may be used for systems 

with a large number of states. It is recommended that an ensemble form of the SVSF be 

developed (referred to as the EnSVSF). Recently, the SVSF has been combined with artificial 

neural network (NN) strategies for fault detection and diagnosis [139]. For these scenarios, NNs 

require a significantly large number of states and measurements. It is recommended that the 

EnSVSF be developed for this particular application. 

Finally, an adaptive SVSF is proposed, based on the adaptive KF. An adaptive filter is one 

that self-adjusts its system model in an effort to optimize the estimation result. It may also be 

used to determine system and measurement noise covariance’s present in an experimental 

system. The adaptive method is of particular interest when the system model is not well 

defined. Furthermore, an adaptive SVSF may be of use when attempting to implement the SVSF 

strategy with cognitive systems applications. 

Although the SVSF is a relatively new filter, it already demonstrates a number of 

advantages over current methodologies. The results of this thesis should provide a strong 

starting point for future advances to the SVSF. 
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Appendices 
8 Appendices 

Index of Supplementary Material 

 

This section provides extra information that was relevant to the overall research, however was 

omitted from the body of the thesis. 

 

8.1 Proof of SVSF Stability 

The following proof of stability for the SVSF is shown exactly as in [42], and has been added here 

only for completeness. The SVSF guarantees stability by making use of a Lyapunov stability 

condition [37]. According to Lyapunov stability theory, a Lyapunov function ! is said to be stable 

if ! is locally positive definite and the time derivative of ! is locally negative semi-definite. Let ! 

be a Lyapunov function defined in terms of the SVSF a posteriori estimation error, such that: 

! = ��,���|���� ��,���|��� > 0 (8.1.1) 

According to Lyapunov stability theory, the estimation process is stable if the following 

is satisfied [42]: 

∆! ≤ 0 (8.1.2) 

Where ∆! represents the change in the Lyapunov function, and in this case, is defined 

as follows: 
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∆! = ��,���|���� ��,���|��� − ��,�|�� ��,�|� (8.1.3) 

Substitution of (8.1.3) into (8.1.2), and rearranging, yields the following: 

��,���|���� ��,���|��� < ��,�|�� ��,�|� (8.1.4) 

Equation (8.1.4) is equivalent to the following, which is the stability condition for the SVSF [37]: 

U��,���|���U�� < U��,�|�U�� (8.1.5) 

To remove the absolute operator in (8.1.5), both sides are expressed in the form of 

diagonal matrices (i.e., (�&)*�+), as follows: 

(�&):��,���|���;(�&):��,���|���; < (�&):��,�|�;(�&):��,�|�; (8.1.6) 

Assuming that the measurement function is well-defined (and it may be linearized as �), 

then the a posteriori measurement error may be calculated as: 

��,���|��� = ���,���|��� +  ��� (8.1.7) 

Substitution of (8.1.7) into (8.1.6) yields: 

�
 ¡
(�&):���,���|���;(�&):���,���|���;

+(�&)* ���+(�&)* ���+
+(�&):���,���|���;(�&)* ���+
+(�&)* ���+(�&):���,���|���; ¢

£¤ <

�
 ¡
(�&):���,�|�;(�&):���,�|�;

+(�&)* �+(�&)* �+
+(�&):���,�|�;(�&)* �+
+(�&)* �+(�&):���,�|�; ¢

£¤ (8.1.8) 

If the measurement noise  ��� is stationary white, then by taking the expectation of 

both sides in (8.1.8) and simplifying yields the following: 

. d(�&):���,���|���;(�&):���,���|���;
+(�&)* ���+(�&)* ���+ e < . d(�&):���,�|�;(�&):���,�|�;

+(�&)* �+(�&)* �+ e (8.1.9) 
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Where .f(�&):���,���|���;(�&)* ���+g and .f(�&)* �+(�&):���,�|�;g vanish due to 

the white noise assumption. For a diagonal, positive and time-invariant measurement matrix, 

(8.1.9) becomes: 

.f(�&):��,���|���;(�&):��,���|���;g < .f(�&):��,�|�;(�&):��,�|�;g (8.1.10) 

Note that the assumptions pertaining to the measurement matrix are realistic since 

most applications use linear sensors as feedback in their operations. Moreover, these sensors 

are well calibrated and their structures are well-known [37]. Finally, (8.1.10) becomes: 

. wU��,���|���U��x < . wU��,�|�U��x (8.1.11) 

Equation (8.1.11) is the proof of stability for the SVSF. It states that the expectation of 

the a posteriori estimation error is reduced over time (i.e., converges towards a region of the 

state trajectory referred to as the existence subspace). It is important to reiterate that the above 

proof of stability for the SVSF was shown exactly as in [42], and has been added here only for 

completeness. Furthermore, the proof of stability may be used to derive the SVSF gain ����*)*�. 

Define 6 to be a diagonal matrix with elements 0 < 6�� ≤ 1, such that: 

U��,�|�U�� > 6U��,�|�U�� (8.1.12) 

Adding the absolute value of the a priori measurement error U��,���|�U�� to both sides 

of (8.1.12) yields: 

U��,���|�U�� + U��,�|�U�� > U��,���|�U�� + 6U��,�|�U�� (8.1.13) 

The absolute value of the measurement matrix multiplied with the SVSF gain U�����*)*�U
��

 is set equal to the right side of (8.1.13), such that [42]: 

U�����*)*�U
��

= U��,���|�U�� + 6U��,�|�U�� (8.1.14) 

Next, consider the following definition: 
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U�����*)*�U
��

= �����*)*� ∘ 4�)�:�����*)*�; (8.1.15) 

Furthermore, the sign of the measurement matrix multiplied with the SVSF gain �����*)*� 

is set equal to the sign of the a priori measurement error ��,���|�  [37,42]. This leads to the SVSF 

gain (with a 4�)� function), as follows: 

����*)*� = �� wU��,���|�U�� + 6U��,�|�U��x ∘ 4�)�:��,���|�; (8.1.16) 

Note that (8.1.16) satisfies and is derived from inequality (8.1.14), and for 0 < 6�� ≤ 1 it 

satisfies (8.1.14) with the stability condition (8.1.5), as per [37,42]. 

8.2 Alternative Covariance Derivation for the SVSF 

The following is an alternative proof for the a posteriori state error covariance ����|��� used in 

the SVSF for linear systems. As shown, this derivation is rather involved and too complex to be 

implemented easily. However, it was included here for completeness, as it provides valuable 

insight into the SVSF and may be instrumental to devising new improved strategies. Note that 

the a priori state error covariance ����|� derivation is the same as that presented in Chapter 4. 

The a posteriori state error covariance matrix may be defined as follows: 

����|��� = .A�C���|����C���|���� B (8.2.1) 

Where the a posteriori state error may be defined by: 

�C���|��� = ���� − �7���|��� (8.2.2) 

The a posteriori state estimate may be described by the following equation: 

�7���|��� = �7���|� + ���� (8.2.3) 

Substitution of (8.2.3) into (8.2.2) yields: 

�C���|��� = ���� − �7���|��� − ���� (8.2.4) 
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Simplifying (8.2.4) further yields the following a posteriori state error equation: 

�C���|��� = �C���|� − ���� (8.2.5) 

Recall the definition for the SVSF gain as follows: 

���� = ��� wU��,���|�U�� + 6U��,�|�U��x ∘ 4&5 I��,���|�� K (8.2.6) 

Note that the a priori and previous a posteriori measurement errors may be written 

respectively as follows: 

��,���|� = %��� − %̂���|� (8.2.7) ��,�|� = %� − %̂�|� (8.2.8) 

Furthermore, recall the following discrete measurement equations and their 

corresponding uncertain measurement estimates: 

%��� = ����� +  ��� (8.2.9) %� = ��� +  � (8.2.10) %̂���|� = �>�7���|� (8.2.11) %̂�|� = �>�7�|� (8.2.12) 

Substitution of (8.2.9) through (8.2.12) into (8.2.7) and (8.2.8) yields, respectively: 

��,���|� = ����� +  ��� − �>�7���|� (8.2.13) ��,�|� = ��� +  � − �>�7�|� (8.2.14) 

Finally, adding and subtracting ��7���|� to (8.2.13) and ��7���|� to (8.2.14) yields, respectively: 

��,���|� = ��C���|� + �?�7���|� +  ��� (8.2.15) ��,�|� = ��C�|� + �?�7�|� +  �  (8.2.16) 

In general, for some value of &, the following is defined: 
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|&| = &4�)�*&+ (8.2.17) 

Based on (8.2.17), the SVSF gain (8.2.6) may be rewritten as follows: 

���� = ��� w��,���|�4�)�:��,���|�; + 6��,�|�4�)�:��,�|�;x ∘ 4&5 I��,���|�� K (8.2.18) 

The above saturation term is known to have three possible values: 

4&5 I��,���|�� K = ¥ 1 ��,���|�/� ≥ 1��,���|�/� z� −1 < ��,���|�/� < 1

−1 ��,���|�/� ≤ −1

 (8.2.19) 

In order to attempt and find a generalization of the a posteriori state error covariance, 

one needs to study the cases (based on the SVSF gain) defined in Table 8.2.1. This is due to the 

fact that multiple scenarios may arise based on the sigmoidal or saturation functions. Also, note 

that for the listed cases it is assumed that there is no model mismatch (i.e., the measurement 

matrix is known), such that the a priori and previous a posteriori measurement errors may be 

written as follows: 

 ��,���|� = ��C���|� +  ��� (8.2.20) ��,�|� = ��C�|� +  � (8.2.21) 

It is the goal to solve for the a posteriori covariance equation for each of the 12 cases, 

and then attempt to find a generalized formulation. A general form was not found; however, it 

was determined that they all collapsed to two cases (inside and outside the boundary layer). 

Table 8.2.1. Cases for the Alternative Updated Covariance Derivation 

Case �¦§¨:©@,A�0|A; �¦§¨:©@,A|A; ��ª:©@,A�0|A/«; Possible 

1 +1 +1 +1 Yes 

2 +1 +1 ��,���|�/� Yes 

3 +1 +1 −1 No 

4 +1 −1 +1 Yes 

5 +1 −1 ��,���|�/� Yes 
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Table 8.2.1. Cases for the Alternative Updated Covariance Derivation (Continued) 

6 +1 −1 −1 No 

7 −1 +1 +1 No 

8 −1 +1 ��,���|�/� Yes 

9 −1 +1 −1 Yes 

10 −1 −1 +1 No 

11 −1 −1 ��,���|�/� Yes 

12 −1 −1 −1 Yes 

Consider the first case, where there are positive measurement errors and upper 

saturation. For this case, the SVSF gain (8.2.18) becomes: 

���� = ���:��,���|� + 6��,�|�; (8.2.22) 

Substitution of (8.2.20) and (8.2.21) into (8.2.22) yields: 

���� = ���:��C���|� +  ��� + 6��C�|� + 6 �; (8.2.23) 

Substitution of (8.2.23) into the equation for the a posteriori state error (8.2.5) yields 

the following: 

�C���|��� = �C���|� − ���:��C���|� +  ��� + 6��C�|� + 6 �; (8.2.24) 

Simplifying (8.2.24) assuming that 6 is a scalar: 

�C���|��� = −6�C�|� − ��� ��� − ���6 � (8.2.25) 

The transpose of (8.2.25) is written as follows: 

�C���|���� = −�C�|�� 6� −  ���� ��� −  ��6���� (8.2.26) 

Multiplying (8.2.25) and (8.2.26) together (and ignoring the cross-terms that go to zero 

after the expectation) yields the following: 

�C���|����C���|���� = 6�C�|��C�|�� 6� + ��� ��� ���� ��� + ���6 � ��6���� (8.2.27) 
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Finally, taking the expectation of (8.2.27) and simplifying yields an equation for the a 

posteriori state error covariance, for the first case: 

����|��� = 6��|�6� + ���*���� + 6��6�+��� (8.2.28) 

In this case, it is shown that the a posteriori state error covariance ����|��� is a function 

of the previous a posteriori state error covariance ��|�, the measurement (output) model �, the 

SVSF parameter 6, and the measurement noise covariance ��. The other cases (4, 9, and 12) 

remaining outside the saturation region yield the same solution (8.2.28). Therefore, when 

outside the smoothing boundary layer (i.e., a saturation of +1 or −1), it is proposed that 

(8.2.28) should be used to derive the updated covariance. Consider the second case of Table 

8.2.1, where one has positive errors but within the saturation limits. For this case, the SVSF gain 

(8.2.18) becomes: 

���� = ���:��,���|� + 6��,�|�; ∘ I��,���|�� K (8.2.29) 

The above equation may be written as follows (to remove the Schur product): 

���� = ���:(�&)*�+;��(�&):��,���|�;��,���|�
+ ���:(�&)*�+;��(�&)*6+(�&):��,�|�;��,���|� 

(8.2.30) 

Collecting like terms: 

���� = ���:(�&)*�+;�� w(�&):��,���|�; + (�&)*6+(�&):��,�|�;x ��,���|� (8.2.31) 

Rewriting the diagonal terms in another notation for simplicity (with an over-bar): 

���� = ����'��:�̅�,���|� + 6̅�̅�,�|�;��,���|� (8.2.32) 

Recall that the a posteriori error (for no model mismatch) may be calculated as follows: 

�C���|��� = �C���|� − ���� (8.2.33) 
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Substitution of (8.2.32) into (8.2.33) yields: 

 �C���|��� = �C���|� − ����'��:�̅�,���|� + 6̅�̅�,�|�;��,���|� (8.2.34) 

Performing the transpose of (8.2.34), where the transpose of a diagonal of itself, yields: 

�C���|���� = �C���|�� − ��,���|�� :�̅�,���|� + 6̅�̅�,�|�;�'����� (8.2.35) 

Furthermore, the a posteriori covariance function for this case is calculated by: 

����|��� = .A�C���|����C���|���� B (8.2.36) 

Hence, utilizing (8.2.34) and (8.2.35) yields: 

�C���|����C���|����

= �C���|��C���|�� − �C���|���,���|�� :�̅�,���|� + 6̅�̅�,�|�;�'�����
− ����'��:�̅�,���|� + 6̅�̅�,�|�;��,���|��C���|��

+ ����'��:�̅�,���|� + 6̅�̅�,�|�;��,���|���,���|�� :�̅�,���|�
+ 6̅�̅�,�|�;�'����� 

(8.2.37) 

To continue with the derivation, the four main terms in (8.2.37) need to be solved by 

taking their corresponding expectations. This process is tedious and eventually yields 81 

separate terms! However, note that a good proportion of the terms are found to be zero. To aid 

this process, consider the following assumptions and conditions: 

.A�C���|�"���� B = .A�C���|� ���� B = .A"��� ���� B = .A"���"��B = .A ��� ��B
= 0 

(8.2.38) 

The task at this point is to expand and simplify the expectations of the four main terms 

of (8.2.37), which will then lead to a final solution. Taking the expectation of the first term in 

(8.2.37) yields: 

.A�C���|��C���|�� B = ����|� (8.2.39) 
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Utilizing (8.2.20) and (8.2.21), the second main term in (8.2.37) becomes: 

−�C���|�:�C���|�� �� +  ���� ;:��C''''���|� +  ̅��� + 6̅��C''''�|� + 6̅ ̅�;�'����� (8.2.40) 

Expanding the terms in (8.2.40) and solving for their corresponding expectation yields 

the following table of results. 

Table 8.2.2. Expectations of the Second Main Term in (8.2.37) 

Term Expectations 

(1) 
−.A�C���|��C���|�� ����C''''���|�B�'����� = −�
,��'����� 

Where �
,� = .A�C���|��C���|�� ����C''''���|�B 
(2) −.A�C���|��C���|�� �� ̅���B�'����� = 0 

(3) 
−.A�C���|��C���|�� ��6̅��C''''�|�B�'����� = −�
,��'����� 

Where �
,� = .A�C���|��C���|�� ��6̅��C''''�|�B 
(4) −.A�C���|��C���|�� ��6̅ ̅�B�'����� = 0 

(5) −.A�C���|� ���� ��C''''���|�B�'����� = 0 

(6) −.A�C���|� ����  ̅���B�'����� = 0 

(7) −.A�C���|� ���� 6̅��C''''�|�B�'����� = 0 

(8) −.A�C���|� ���� 6̅ ̅�B�'����� = 0 

The third main term in (8.2.37) may be written as follows: 

−����'��:��C''''���|� +  ̅��� + 6̅��C''''�|� + 6̅ ̅�;:��C���|� +  ���;�C���|��  (8.2.41) 

Expanding the terms in (8.2.41) and solving for the expectations yields the following table. 

Table 8.2.3. Expectations of the Third Main Term in (8.2.37) 

Term Expectations 

(1) 
−����'��.A��C''''���|���C���|��C���|�� B = −����'���
,
 

Where �
,
 = .A��C''''���|���C���|��C���|�� B 
(2) −����'��.A ̅�����C���|��C���|�� B = 0 

(3) 
−����'��.A6̅��C''''�|���C���|��C���|�� B = −����'���
,� 

Where �
,� = .A6̅��C''''�|���C���|��C���|�� B 
(4) −����'��.A6̅ ̅���C���|��C���|�� B = 0 

(5) −����'��.A��C''''���|� ����C���|�� B = 0 
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Table 8.2.3. Expectations of the Third Main Term in (8.2.37) (Continued) 

(6) −����'��.A ̅��� ����C���|�� B = 0 

(7) −����'��.A6̅��C''''�|� ����C���|�� B = 0 

(8) −����'��.A6̅ ̅� ����C���|�� B = 0 

Expanding the fourth main term of (8.2.37) yields the following: 

����'��:��C''''���|� +  ̅��� + 6̅��C''''�|� + 6̅ ̅�;:��C���|��C���|�� �� + ��C���|� ����

+  ����C���|�� �� +  ��� ���� ;:��C''''���|� +  ̅��� + 6̅��C''''�|�
+ 6̅ ̅�;�'����� 

(8.2.42) 

Equation (8.2.42) leads to 64 (4�) terms. Expectations were performed; leading to 

second, third, and fourth-order moments. The results are shown in the following table. 

Table 8.2.4. Expectations of the Fourth Main Term in (8.2.37) 

Term Expectations 

(1) 
����'��.A��C''''���|���C���|��C���|�� ����C''''���|�B�'����� = ����'����,��'����� 

Where ��,� = .A��C''''���|���C���|��C���|�� ����C''''���|�B 
(2) ����'��.A��C''''���|���C���|��C���|�� �� ̅���B�'����� = 0 

(3) 
����'��.A��C''''���|���C���|��C���|�� ��6̅��C''''�|�B�'����� = ����'����,��'����� 

Where ��,� = .A��C''''���|���C���|��C���|�� ��6̅��C''''�|�B 
(4) ����'��.A��C''''���|���C���|��C���|�� ��6̅ ̅�B�'����� = 0 

(5) ����'��.A��C''''���|���C���|� ���� ��C''''���|�B�'����� = 0 

(6) 
����'��.A��C''''���|���C���|� ����  ̅���B�'����� = ����'����,��'���� �'����� 

Where ��,� = .A��C''''���|���C���|�B 
(7) ����'��.A��C''''���|���C���|� ���� 6̅��C''''�|�B�'����� = 0 

(8) ����'��.A��C''''���|���C���|� ���� 6̅ ̅�B�'����� = 0 

(9) ����'��.A��C''''���|� ����C���|�� ����C''''���|�B�'����� = 0 

(10) 
����'��.A��C''''���|� ����C���|�� �� ̅���B�'����� = ����'����,��'����� 

Where ��,� = .A��C''''���|� ����C���|�� �� ̅���B 
(11) ����'��.A��C''''���|� ����C���|�� ��6̅��C''''�|�B�'����� = 0 

(12) ����'��.A��C''''���|� ����C���|�� ��6̅ ̅�B�'����� = 0 

(13) 
����'��.A��C''''���|� ��� ���� ��C''''���|�B�'����� = ����'����,
�'����� 

Where ��,
 = .A��C''''���|� ��� ���� ��C''''���|�B 
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Table 8.2.4. Expectations of the Fourth Main Term in (8.2.37) (Continued) 

(14) ����'��.A��C''''���|� ��� ����  ̅���B�'����� = 0 

(15) 
����'��.A��C''''���|� ��� ���� 6̅��C''''�|�B�'����� = ����'����,��'����� 

Where ��,� = .A���C''''''
�|� ��� ���� 6̅��C''''�|�B 

(16) ����'��.A��C''''���|� ��� ���� 6̅ ̅�B�'����� = 0 

(17) ����'��.A ̅�����C���|��C���|�� ����C''''���|�B�'����� = 0 

(18) 
����'��.A ̅�����C���|��C���|�� �� ̅���B�'����� = ����'����,3�'����� 

Where ��,3 = .A ̅�����C���|��C���|�� �� ̅���B 
(19) ����'��.A ̅�����C���|��C���|�� ��6̅��C''''�|�B�'����� = 0 

(20) ����'��.A ̅�����C���|��C���|�� ��6̅ ̅�B�'����� = 0 

(21) 
����'��.A ̅�����C���|� ���� ��C''''���|�B�'����� = ����'����,5�'����� 

Where ��,5 = .A ̅�����C���|� ���� ��C''''���|�B 
(22) ����'��.A ̅�����C���|� ����  ̅���B�'����� = 0 

(23) 
����'��.A ̅�����C���|� ���� 6̅��C''''�|�B�'����� = ����'����,2�'����� 

Where ��,2 = .A ̅�����C���|� ���� 6̅��C''''�|�B 
(24) ����'��.A ̅�����C���|� ���� 6̅ ̅�B�'����� = 0 

(25) 
����'��.A ̅��� ����C���|�� ����C''''���|�B�'����� = ����'���'�����,4�'����� 

Where ��,4 = .A ̅��� ����C���|�� ����C''''���|�B 
(26) ����'��.A ̅��� ����C���|�� �� ̅���B�'����� = 0 

(27) 
����'��.A ̅��� ����C���|�� ��6̅��C''''�|�B�'����� = ����'���'�����,/�'����� 

Where ��,/ = .A ̅��� ����C���|�� ��6̅��C''''�|�B 
(28) ����'��.A ̅��� ����C���|�� ��6̅ ̅�B�'����� = 0 

(29) ����'��.A ̅��� ��� ���� ��C''''���|�B�'����� = 0 

(30) ����'��.A ̅��� ��� ����  ̅���B�'����� = ����'������ ∘ �����'����� 

(31) ����'��.A ̅��� ��� ���� 6̅��C''''�|�B�'����� = 0 

(32) ����'��.A ̅��� ��� ���� 6̅ ̅�B�'����� = 0 

(33) 
����'��.A6̅��C''''�|���C���|��C���|�� ����C''''���|�B�'����� = ����'����,
�'����� 

Where ��,
 = .A6̅��C''''�|����C�|��C�|�� �������C''''''
�|�B 

(34) ����'��.A6̅��C''''�|���C���|��C���|�� �� ̅���B�'����� = 0 

(35) 
����'��.A6̅��C''''�|���C���|��C���|�� ��6̅��C''''�|�B�'����� = ����'����,��'����� 

Where ��,� = .A6̅��C''''�|����C�|��C�|�� ����6̅��C''''�|�B 
(36) ����'��.A6̅��C''''�|���C���|��C���|�� ��6̅ ̅�B�'����� = 0 

(37) ����'��.A6̅��C''''�|���C���|� ���� ��C''''���|�B�'����� = 0 

(38) 
����'��.A6̅��C''''�|���C���|� ����  ̅���B�'����� = ����'����,���'����� 

Where ��,�� = .A6̅��C''''�|���C���|� ����  ̅���B 
(39) ����'��.A6̅��C''''�|���C���|� ���� 6̅��C''''�|�B�'����� = 0 
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Table 8.2.4. Expectations of the Fourth Main Term in (8.2.37) (Continued) 

(40) ����'��.A6̅��C''''�|���C���|� ���� 6̅ ̅�B�'����� = 0 

(41) ����'��.A6̅��C''''�|� ����C���|�� ����C''''���|�B�'����� = 0 

(42) 
����'��.A6̅��C''''�|� ����C���|�� �� ̅���B�'����� = ����'����,���'����� 

Where ��,�� = .A6̅��C''''�|� ����C�|�� ���� ̅���B 
(43) ����'��.A6̅��C''''�|� ����C���|�� ��6̅��C''''�|�B�'����� = 0 

(44) ����'��.A6̅��C''''�|� ����C���|�� ��6̅ ̅�B�'����� = 0 

(45) 
����'��.A6̅��C''''�|� ��� ���� ��C''''���|�B�'����� = ����'����,���'����� 

Where ��,�� = .A6̅��C''''�|� ��� ���� ���C''''''
�|�B 

(46) ����'��.A6̅��C''''�|� ��� ����  ̅���B�'����� = 0 

(47) 
����'��.A6̅��C''''�|� ��� ���� 6̅��C''''�|�B�'����� = ����'����,�
�'����� 

Where ��,�
 = .A6̅��C''''�|� ��� ���� 6̅��C''''�|�B 
(48) ����'��.A6̅��C''''�|� ��� ���� 6̅ ̅�B�'����� = 0 

(49) ����'��.A6̅ ̅���C���|��C���|�� ����C''''���|�B�'����� = 0 

(50) ����'��.A6̅ ̅���C���|��C���|�� �� ̅���B�'����� = 0 

(51) ����'��.A6̅ ̅���C���|��C���|�� ��6̅��C''''�|�B�'����� = 0 

(52) 
����'��.A6̅ ̅���C���|��C���|�� ��6̅ ̅�B�'����� = ����'����,���'����� 

Where ��,�� = .A6̅ ̅���C���|��C���|�� ��6̅ ̅�B 
(53) ����'��.A6̅ ̅���C���|� ���� ��C''''���|�B�'����� = 0 

(54) ����'��.A6̅ ̅���C���|� ����  ̅���B�'����� = 0 

(55) ����'��.A6̅ ̅���C���|� ���� 6̅��C''''�|�B�'����� = 0 

(56) ����'��.A6̅ ̅���C���|� ���� 6̅ ̅�B�'����� = 0 

(57) ����'��.A6̅ ̅� ����C���|�� ����C''''���|�B�'����� = 0 

(58) ����'��.A6̅ ̅� ����C���|�� �� ̅���B�'����� = 0 

(59) ����'��.A6̅ ̅� ����C���|�� ��6̅��C''''�|�B�'����� = 0 

(60) ����'��.A6̅ ̅� ����C���|�� ��6̅ ̅�B�'����� = 0 

(61) ����'��.A6̅ ̅� ��� ���� ��C''''���|�B�'����� = 0 

(62) ����'��.A6̅ ̅� ��� ����  ̅���B�'����� = 0 

(63) ����'��.A6̅ ̅� ��� ���� 6̅��C''''�|�B�'����� = 0 

(64) 
����'��.A6̅ ̅� ��� ���� 6̅ ̅�B�'����� = ����'����,�3�'����� 

Where ��,�3 = .A6̅ ̅� ��� ���� 6̅ ̅�B 
The following equation for the a posteriori state error covariance (while inside the 

saturation boundary) may be formed by combining the non-zero terms (from the above 81 

terms). 
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����|��� = ����|� − :�
,� + �
,�;�'����� − ����'��:�
,
 + �
,�;
+ ����'�����'����� 

(8.2.43) 

Where the following is defined: 

�� = ��,� + ��,� + ��,
 + ��,� + ��,��'���� + ��,� + ��,
 + ��,� + ��,3 + ��,5
+ ��,2 + �'���:��,4 + ��,/; + ���� ∘ ���� + ��,�� + ��,��
+ ��,�� + ��,�
 + ��,�� + ��,�3 

(8.2.44) 

Note that some of the non-zero elements yield the same final solution, such as: 

��,� = ��,
 = ��,3 = ��,5 (8.2.45) ��,� = ��,2 (8.2.46) ��,�� = ��,�� (8.2.47) 

From these definitions, (8.2.44) can thus be simplified as follows: 

�� = ��,� + ��,� + ��,
 + ��,� + 4��,� + 2��,� + ��,�� + 2��,�� + ��,�

+ ��,�� + ��,��'���� + �'���:��,4 + ��,/; + ���� ∘ ���� + 6̅����
∘ ��6̅ 

(8.2.48) 

The supporting equations for the second, third, and fourth-order matrices (��,#, �
,#, 

and ��,#) are defined in the previous three tables. Note that these equations contain third and 

fourth-order moments of the state error. These third and fourth-order moments (defined as �
 

and �� respectively) need to be calculated in a recursive format in order to obtain a recursive a 

posteriori state error covariance. Consider the third-order moment matrix as follows: 

�
,���|� = o�
,�� + �
,�� + ⋯ + �
,���
,�� + �
,�� + ⋯ + �
,���
,�� + �
,�� + ⋯ + �
,��p���|�
= o ./�C�
0 + ./�C��C��0 + ⋯ + ./�C��C��0./�C��C��0 + ./�C�
0 + ⋯ + ./�C��C��0./�C��C��0 + ⋯ + ./�C��C���� 0 + ./�C�
0p���|�	 

(8.2.49) 
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Recall the following definition for the a priori state error (with no model mismatch): 

�C���|� = ��C�|� + "�  (8.2.50) 

The above definition may be rewritten as an element-by-element expansion: 

��C��C�
⋮�C�����|� = ���� ��� … ������ ��� … ���

⋮ ⋮ ⋱ ⋮��� ��� … ���� �
�C��C�
⋮�C���|� + �"�"�⋮"��� (8.2.51) 

Utilizing this notation, the elements within the a priori third-order moment matrix 

(8.2.49) may be found as follows (supposing that � = 2): 

�
,�����|�
= .A�C�,���|�
 B

= ���
 �
,���|� + 3������� �
,���|� + 3���� ����
,���|� + ���
 �
,���|�  
(8.2.52) 

�
,�����|�
= .A�C�,���|��C�,���|�� B

= ������� �
,���|� + *2��������� + ������� +�
,���|�
+ *2��������� + ������� +�
,���|� + ������� �
,���|�  

(8.2.53) 

�
,�����|�
= .A�C�,���|�� �C�,���|�B

= ������� �
,���|� + *2��������� + ������� +�
,���|�
+ *2��������� + ������� +�
,���|� + ������� �
,���|�  

(8.2.54) 

�
,�����|�
= .A�C�,���|�
 B

= ���
 �
,���|� + 3������� �
,���|� + 3���� ����
,���|� + ���
 �
,���|�  
(8.2.55) 

Equations (8.2.52) through (8.2.55) may be used to solve the a priori third-order 

moments for a system with two states. The equations may be expanded depending on the 

number of states. The a posteriori third-order moment equations may be found next, in a similar 

manner. Note the following: 

�C���|��� = �C���|� − ���� (8.2.56) 
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Such that, on an element by element basis, the a posteriori third-order moment 

equations (for � = 2) may be found as follows: 

�
,�����|���
= .A�C�,���|���
 B = �
,�����|�

− 3��,������,���|� − ��,���
  (8.2.57) �
,�����|���
= .A�C�,���|����C�,���|���� B

= �
,�����|�
− ��,���:��,���� + ���,���|�; − 2��,������,���|� 

(8.2.58) 

�
,�����|���
= .A�C�,���|���� �C�,���|���B

= �
,�����|�
− ��,���:��,���� + ���,���|�; − 2��,������,���|� 

(8.2.59) 

�
,�����|���
= .A�C�,���|���
 B = �
,�����|�

− 3��,������,���|� − ��,���
  (8.2.60) 

Next, consider the following definition for the fourth-order moment matrix: 

��,���|� = ���,�� ��,�� ⋯ ��,����,�� ��,�� ⋯ ��,��
⋮ ⋮ ⋱ ⋮��,�� ��,�� ⋯ ��,������|�

 (8.2.61) 

Where the diagonal elements of (8.2.61) may be found as follows (omitting the time 

subscript for ease of notation: 

��,�� = ./�C��0 + ./�C���C��0 + ⋯ + ./�C���C��0 (8.2.62) ��,�� = ./�C���C��0 + ⋯ + ./�C���� �C��0 + ./�C��0 (8.2.63) 

The off-diagonal elements of (8.2.61) are found in a similar fashion, where one 

calculates �C�C��C�C�  and looks at the expectation of each off-diagonal element. As an example, 

consider a system with only two states, such that one has the following a priori fourth-order 

moment matrix: 

��,���|� = 8��,�� ��,����,�� ��,��9���|�
= d ./�C��0 + ./�C���C��0 ./�C�
�C�0 + ./�C��C�
0./�C�
�C�0 + ./�C��C�
0 ./�C���C��0 + ./�C��0 e

���|�

 

(8.2.64) 
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Note that one can label each expectation within each matrix cell of (8.2.64) as &, <, ], 

and so on. From the above equations, in particular �C���|� = ��C�|� + "�, one then has the 

following a priori fourth-order moment equations: 

��,��+���|�
= .A�C�,���|�� B

= ���� ��,��+�|� + 4���
 �����,��+�|� + 6���� ���� ��,���|�
+ 6���� ���,����,�|� + 4������
 ��,���|� + 12���������,����,�|�
+ ���� ��,���|� + 6���� ���,����,�|� + 3���,��  

(8.2.65) 

��,�����|�
= .A�C�,���|�� �C�,���|�� B

= ���� ���� ��,��+�|� + 2���� ��������,��+�|� + ���� ���� ��,���|�
+ ���� ���,����,�|� + 2���������� ��,��+�|�
+ 4��������������,���|� + 2���������� ��,���|�
+ 2���������,����,�|� + 4���������,����,�|�
+ 4���������,����,�|� + ���� ���� ��,���|� + 2���� ��������,���|�
+ ���� ���� ��,���|� + ���� ���,����,�|� + 4���������,����,�|�
+ 4���������,����,�|� + ���� ���,����,�|� + 2���������,����,�|�
+ ���� ���,����,�|� 

(8.2.66) 

��,�����|�
= .A�C�,���|�� B

= ���� ��,��+�|� + 4���
 �����,��+�|� + 6���� ���� ��,���|�
+ 6���� ���,����,�|� + 4������
 ��,���|� + 12���������,����,�|�
+ ���� ��,���|� + 6���� ���,����,�|� + 3���,��  

(8.2.67) 

The remaining two a priori fourth-order moments ��,��+���|�
 and ��,�����|�

 may be 

found in a similar fashion. Likewise, the a posteriori fourth-order moment equations (for a 

second order system) may be found as follows: 

��,��+���|���
= .A�C�,���|���� B

= ��,��+���|�
+ 4��,����
,�����|�

+ 6��,���� ���,���|� + ��,����  
(8.2.68) 
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��,�����|���
= A�C�,���|���� �C�,���|���� B

= ��,�����|�
− 2��,����
,�����|�

− 2��,����
,�����|�

+ ��,���� ���,���|� + 4��,�����,��� + ��,���� ���,���|�
+ ��,���� ��,����  

(8.2.69) 

��,��+���|���
= A�C�,���|���
 �C�,���|���B

= ��,��+���|�
+ 3��,�����,������,���|� − ��,����
,�����|�

+ ��,���
 ��,��� − 3��,����
,�����|�
+ 3��,���� ���,���|�  

(8.2.70) 

��,�����|���
= A�C�,���|����C�,���|���
 B

= ��,�����|�
+ 3��,�����,������,���|� − ��,����
,�����|�

+ ��,�����,���
 − 3��,����
,�����|�
+ 3��,���� ���,���|� 

(8.2.71) 

��,�����|���
= .A�C�,���|���� B

= ��,�����|�
+ 4��,����
,�����|�

+ 6��,���� ���,���|� + ��,����  
(8.2.72) 

Equations (8.2.1) through (8.2.72) represent an alternative derivation for the a 

posteriori SVSF covariance equation. Note that the a posteriori covariance when inside the 

smoothing boundary layer was found to be a function of second, third, and fourth-order 

moments. While outside the smoothing boundary layer, the a posteriori covariance was found 

to be a function of only second-order moments. This is an important observation. The above 

derivation is complex, and becomes even more so with an increased number of states. This led 

to revised forms of the SVSF gain and state update equations, creating a significantly simpler 

covariance derivation, as described in Chapter 4. 

8.3 SVSF Strategy with Linearized Nonlinear Functions 

This section summarizes the SVSF strategy with linearized nonlinear functions, which was 

introduced in Chapter 4. There are two stages: prediction and update. The first step is to predict 

the state estimates (8.3.1), calculate the a priori state error covariance (8.3.2), and find the 

corresponding estimation error (8.3.3). 
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�7���|� = :�7�|� , ��; (8.3.1) ����|� = ����|���� + �� (8.3.2) ��,���|� = %��� − ℎ:�7���|�; (8.3.3) 

Where partial derivatives are used to compute linearized system and measurement 

matrices � and �, respectively found as follows [32]: 

�� =
DD�E�!�|�,"�  (8.3.4) 

���� =
DℎD�E�!���|�

 (8.3.5) 

The next step involves calculating the corresponding SVSF gain (8.3.6), updating the 

state estimate (8.3.7), finding the a posteriori state error covariance (8.3.8), and determining the 

a posteriori measurement error (8.3.9) which is to be used in the next iteration. 

���� = ������ ��	
�,���|�	
���

+ �	
�,�|�	
���

� ∘ �� �
�,���|�� �� ������
�,���|����� (8.3.6) 

�7���|��� = �7���|� + ������,���|� (8.3.7) ����|��� = *� − �����+����|�*� − �����+� + �������������  (8.3.8) ��,���|��� = %��� − ��7���|��� (8.3.9) 

It is important to remind the reader that a ‘divide by zero’ check should be performed 

on (8.3.6) to avoid division by zero. The proposed SVSF estimation strategy with linearized 

nonlinear functions may be summarized by (8.3.1) through (8.3.9). 

8.4 Definitions for Observability and Controllability 

As described in [122], consider an ���-order system whose state and measurement equations 

are respectively defined by: 

�_ = �� + 	� (8.4.1) % = �� (8.4.2) 
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Then the system is considered completely observable if the following matrix is of rank �, 

where �� is called the observability matrix [122]: 

�� = � ���
⋮������ (8.4.3) 

Similarly, if the following matrix is of rank �, then the system is considered to be 

completely controllable [122]: 

�� = L	 �	 … ����	M (8.4.4) 

Where �� refers to the controllability matrix. 

8.5 A Look at the Values of the Smoothing Boundary Layer Matrix 

It is important to study the units of the smoothing boundary layer matrix in an effort to better 

understand the values. As an example, consider a system with two fully measured states 

corresponding to position (�) and velocity (�/4). From (5.1.22), one then has the following 

units: 

���� =

�
 ¡�1� 0

0
4�� 8 �� ��/4��/4 ��/4�9 }~~

���
��4��4 ��4� ��

��
��

¢
£¤
��

 (8.5.1) 

Combining the first two matrices yields: 

���� =

�
 ¡��

�4� �4 � }~~
���

��4��4 ��4� ��
��
��

¢
£¤
��

 (8.5.2) 

Performing the matrix inverse of the second matrix in (8.5.2) yields the following: 
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���� = ¬�� �4� �4 � �
1��

4��4��

4���

�
��

 (8.5.3) 

Next, combining the two matrices in (8.5.3) yields: 

���� = �1� 4�
1� 4��

��

 (8.5.4) 

Finally, performing a matrix inverse and simplifying yields the units of the smoothing 

boundary layer matrix for a system with two states (position and velocity): 

���� = k � ��/4	 �/4	l (8.5.5) 

Therefore, it appears that the units may be generalized as follows: 

���� = k�� ����	 ��l (8.5.6) 

Where �� refers to the units of the first state, and �� refers to the units of the second 

state. For completeness, the units of the corresponding SVSF gain and update equation are then 

studied. Consider the units of the SVSF gain (5.1.8), as follows: 

���� = d� 0

0
�4 e d

� ��4 �4 e
��

 (8.5.7) 

Performing the matrix inverse of the second matrix in (8.5.7), and then combining the 

resulting matrices and simplifying yields: 

���� = b1 4
14 1

c (8.5.8) 

Next, studying the units of the state update equation defined earlier: 
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d��4 e = d��4 e + b1 4
14 1

c d��4 e (8.5.9) 

Equation (8.5.9) simplifies to the following correct units: 

d��4 e = d��4 e (8.5.10) 

Therefore, the units of the smoothing boundary layer matrix are shown to be correct, as 

the resulting equations yield the correct units for the state estimates (in this case, position and 

velocity). It is also important to note that the actual values of the smoothing boundary layer 

matrix are positive along the diagonal, whereas the off-diagonal terms may be positive or 

negative. This is due to the fact that (5.1.22) is a function of ����|� and ����, which are both 

positive along the diagonal, but the terms on the off-diagonal may be positive or negative. For 

example, consider the following example using (5.1.22) with a fully measured two-state system: 

���� = Ik6 0
0 1.5

l�� k 5 −9
−9 7

l k 6 −9
−9 8

l��K�� (8.5.11) 

Solving (8.5.11) yields the following: 

���� = k 5.1 −0.3
−1.2 1.3

l (8.5.12) 

Therefore, as shown in the above example, the smoothing boundary layer matrix may 

sometimes have negative terms on the off-diagonal. 

8.6 EHA Circuit Diagram 

The following is a circuit diagram of the EHA used for fault detection and diagnosis in Chapter 6, 

as presented in [131]. 
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Figure 8.6.1. EHA Circuit Diagram [131] 

8.7 Identifying the System Models 

This section presents system identification results performed on the EHA by Mr. Yu Song. 

System identification is performed in an effort to extract a ‘black box model’ of a dynamic 

system by fitting a statistical model with experimental measurements and designer knowledge 

of the system. The prior knowledge of the system includes the frequency range of interest, 

saturation, and knowledge of the piece-wise linear regions. To create an accurate model, the 

frequency of interest should be well past the cross-over frequency range, and preferably to 

where the signal-to-noise ratio drops dramatically and stops offering valuable information. 
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The three scenarios (normal operation, friction and leakage faults) were setup and run 

on the EHA. For each case, a chirp signal with amplitude 2.5	! and maximum frequency 10	�% 

was sent as an input to the system. Two system transfer functions were created by fitting Box-

Jenkins models with experimental data. The normal EHA transfer function (in discrete-time) was 

found to be third-order, as follows: 


�	�,=�#�+$ =
1.072 × 10�
%� − 1.770 × 10�
% + 7.075 × 10�
%
 − 2.711%� + 2.459% − 0.747

 (8.7.1) 

The corresponding model with leakage fault was found to be: 


�	�,1�+�+>� =
−1.588 × 10�
% + 1.877 × 10�
%
 − 0.641%� − 0.605% + 0.276

 (8.7.2) 

Finally, the model with a friction fault present was experimentally identified as: 


�	�,�#�?���� =
9.392 × 10�
%� − 1.722 × 10�
% + 7.910 × 10�
%
 − 2.757%� + 2.545% − 0.787

 (8.7.3) 

Based on the above three EHA models and a sequential step input (magnitude ±2.5	!, 

changing every four seconds), the output from each model may be simulated and compared 

with actual experimental measurements for validation as shown in the following two figures. In 

this scenario, the EHA is run normally for the first 12 seconds. During the following 8 seconds, a 

leak is introduced. A friction fault is produced during the last 8 seconds of the setup. 

As shown in the following figure, the obtained EHA models match the actual 

measurement fairly well during the steady-state regions. However, there appears to be 

significant overshoot or oscillations present during the transient regions. An encoder measured 

the position of the Axis A cylinder. This value was differentiated to obtain the ‘measured’ 

velocity, which resulted in a noisy signal. Future work on the EHA should involve the use of an 

accelerometer to obtain the velocity measurement (through integration), in an effort to 

minimize the effects of noise, such that more distinct models may be obtained and studied. 

More information on performing system identification on the EHA is available in [133]. 
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Figure 8.7.1. Measurements and the Outputs from the System Identification Models 

The following figure shows the errors between the model outputs and the 

measurement. This helps clarify the above figure and the modes that the EHA is operating under 

for each segment. 

 

Figure 8.7.2. Measurement and Output Errors from the System Identification Models 
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486.8	�$4. 10��	c�/3. 

(8.8.2) 

The pump displacement for the friction and leakage cases may be found in a similar 

will be determined for each scenario. Consider the following 

(8.8.3) 
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�� = ∆���� = 	��_B (8.8.4) 

Rearranging and simplifying yields: 

	� =
∆�����_B  (8.8.5) 

For the normal case, the averaged steady-state velocity was found to be 0.0259	�/4. 

Substituting the remaining values into (8.8.5) yields the following load friction value for the 

normal case: 

	� =
*486.8 × 10
	�&+*1.52 × 10�
	��+

0.0259	�/4 = 28,569	`4/� (8.8.6) 

Finally, the leakage coefficient � may be solved. In order to find an approximate leakage 

coefficient, consider multiplying the EHA transfer function (6.3.2.1) by 4 (the Laplace variable), 

and then solving for � when 4 → 0. This allows the steady-state value of the velocity �_B to be 

used, as follows: 

�_B�< =
.��="�44
 + .��.���4� + .��.���4 (8.8.7) 

Then, allowing 4 → 0 in (8.8.7) yields: 

.��="�.��.���E�→� = �_B =
2.5*10W+���<	�� + ���  (8.8.8) 

Rearranging (8.8.8) for the leakage coefficient yields the following: 

� =
2.5*10W+���<	��_B −

���	�  (8.8.9) 

Substitution of the known values, as well as (8.8.2) and (8.8.6), yields: 

� =
2.5*10W+*1.52 × 10�
	��+*6.812 × 10�2�
/�&(+*28,569	`4/�+*0.0259	�/4+ −

*1.52 × 10�
	��+�
28,569	`4/�  (8.8.10) 
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An approximation for the leakage coefficient for the normal case is then found as: 

� = 2.903 × 10���	`�/4 (8.8.11) 

The above procedures may be repeated for the friction and leakage faults. The following 

table summarizes the important data used to obtain the desired parameters (�<, 	�, and �), 

which are used to model the EHA under the three scenarios. 

Table 8.8.1. Measured and Calculated EHA Parameters 

Parameter Normal Leakage Friction 

∆�� 486.8	��& 479.9	��& 2,563.5	��& �_B 0.0259	�/4 0.0235	�/4 0.0194	�/4 ��  5.35 × 10�3	�
/4 5.35 × 10�3	�
/4 3.95 × 10�3	�
/4 �< 6.812 × 10�2�
/�&( 6.812 × 10�2�
/�&( 5.029 × 10�2�
/�&( 	�  28,569	`4/� 31,040	`4/� 200,850	`4/� � 2.903 × 10���	`�/4 3.705 × 10���	`�/4 3.905 × 10���	`�/4 

Finally, based on the aforementioned mathematical modeling, three different transfer 

functions may be created from (6.3.2.1) through (6.3.2.4). The normal model, leakage model, 

and friction model are respectively defined as follows: 


�	�,=�#�+$ =
4,2504� + 3,9014 + 410,250

 (8.8.12) 


�	�,1�+�>� =
4,2504� + 4,2444 + 452,160

 (8.8.13) 


�	�,�#�?���� =
3,1384� + 27,2344 + 404,370

 (8.8.14) 

Note that the EHA system has become a second-order system, where the input is 

voltage (!), and the output is the cylinder (Axis A) velocity (�/4). Based on the above three EHA 

models and the sequential step input defined earlier, the output from each model may be 

simulated and compared with the measurement. 
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As shown in the following two figures, the obtained EHA models match the actual 

measurement very well. These models are used for the fault detection and diagnosis example in 

Chapter 6. 

 

Figure 8.8.4. Measurements and the Outputs from the EHA Mathematical Models 

 

Figure 8.8.5. Measurement and Output Errors from the EHA Mathematical Models 
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