-~

o

DISCRETE ATOMIC SIMULATION OF FRACTURE IN IRON

BY b
Mayes Mullins

B. Eng. (MeMaster)

L)

A Thesis
Submitted to §he facuity of Graduate Studiés
in Partial Fulfilment of the Requirements
fo% the Degree

'Qpctor of Philosophy

-~

.

MzMzster University

(May) 1980



g+



/_r
DOCTOR OF PHILOSOPHY McMASTER UNIVERSITY
(Mechanicalt Engineering) Hamilton, Ontario
TIm: DISCRETE ATOMIC SYMULATION OF FRACTURE IN IRON
AUTHOR : : Mayes L. Mullins, B. Eng. (McMaster)
SUPERVISOR: Dr. M. A: Dokainish
NUMBER OF PAGES: x, 218
o
,
AY
.,
5

i1



ABSTRACT o

The thesis is coﬁcerned with improving the understanding of mate-
rials at the atoﬁic levei by computer simulation. The work has centered
on three as?as: a study pf the efficlency of various computer algorithms
used to carry out these simulationdéﬁthe development of a new and very ver-
satile boundary condition scheme for such problems; and the application of
the results of these two studies to th; simulation of (001) plane frac-
ture in q-iron. ‘\;N\‘

Tests were performed coméaring vérious soiution methods used for
atomic level computer mode®illing. The results are presented and indicate the -
most efficient method to be éh;sen for variocus problems. This may allow a
reduction in computer cost by factors of two or three over that of other,
often qsed,lmethods. ‘

The new boundary scheme which was developed involves-the use of the.
finite element method. This offers several advantages'over\?revious methods.

L

The new boundary scheme was applied to the (001) plane crack in a-iron.
Two dimensional‘ttacks with erack line directions of [010] and [110] were '
modelled. Significant differences in lattice trapping 1limits and cra%k pré-
pagation speeds were observed between these two cases. Informagion on the
magnitude and shape of the non-linear component of the craqk tip displace-
_.mentofield is provideqﬂgyi thh cases. No dislocations were emitted ap low
tembergtures from these models, but ya?ming the [010] model to 400 K appar- q
ently resulted in the emission of a dislocation from the crack tip. Experi-

mental information available in the literature pertaining to these points

is discu?sed’and possible future work is described.
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7. INTRODUC®TUN

-
The study of materials and their associated defects at the

atomic level by computer simulation is a relatively new field of

materials research. Materials are studied at this ievel in order to-

better understand their macroscopic properties, such as mechanical

strength, by observing.their behaviour at the microscopic level. Since

- —

it is very diffiqﬁ}t to examine real materials at this small scale, this

work is.most easif} accomplished by studying model materials usinag

i
.

4 4 .
compuber simulation., This technique has been used to study the
formation aﬁd migration energies of interstitials and vacancies; the )

structure of static -dislocations; the Peierls barrier for moving

grain boundaries and surfaces;’;he damage of solids by nuclear radiation
and high intensity shock waves; and, the statistical mechanies
properties of solids and liquids.

N ' Q
The present work is concerned 'with the application of computer

simulatiqq-techniques in thg study of solid defects, particularly crack

tips. Sufficient work in this area could improve our understanding of

brittle-ductile transition_phenomeda, acoustic emission Aon-destruptivé
_testiné, §ha£ic ané dynamic‘fdtigue, and a}l otﬁér aspects of material
behaviour inch are related to atomic levei§EVQnts. The major  3 e ;'
limitations on this work are the c;ﬁsé?uction of adequate interatomic .
potentials, the seiection of a boundary‘schehe to be used around the
1 .

7\,/*/‘ . . . -;



discrete area of the model, and the cos€>3f the computer calculations.

This thesis makes some contribution to the soluticn of the last

» - ’ '
two of these problems. After a brief deserip pn of 2 typical problem

2
a&g pertinent areas, a

setup, and an examination of previous work in
coﬁbarison of various solutlon schemes for use wigh these models is
presented. This allows the most efficient scheme to be chosan to
minimize solution cost for a given problem. After this, a2 new boundary
‘scheme is described which makes use of the finite element method. This
. seens to offer several advantages over thoéo whlch have been used in the
past. Finally,)thls boundary schemz is applied to the problem of the

(001) plans crack in a-iron. Some interesting behavicur, not previcusly
s °

noted, was observed with this crack model. Some published'exberimental

work is cite@/which appears to support these observations, bubt more such
" i

work will be necessary before they can be considered to be confirmed.
s ’
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2 TYPICAL PROBLEM SETUP

This ch;pter contains a descriptioﬁ of a 'typical atomic level
computer simulation problem.. The method of modellidg the crystal and

general déseription; of the interatomic force laws and solution schemes
used for these problems are presented. The primary emphasis will be on
simulations which study defect properties in solids. The description in
this chapter is limited to the typas of models studied in éhis thesis.
These correspond to the so-called “"molecular dynamics" models. A small
amount of work has been dene in the»éast with another type cof model

known as "lattice statics" models. These will be described briefly in

section 3.6 .

Figure 1 illuétrates tbe crystallographic axes of bee crystals ©

which will be refarred to in this, and in’ later chapbers{

Crystallographic directions are written in square brackets, for exaaple,

[110]. Crystallographic planes are described by the direction of-their
normals written in round bracksts, for exemple, (061). Negative

components are indicated by a.minus sign above the Eorrespoﬁding number,
for example, (791). A complete discussion of this method of describing

' *
erystal directicns, known as-Miller indices, can be fouad in [1]. . -

"Numbers in square brackets indicate references in Chapter 8.
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Crystallographic directions and pilanes of bcc erystals,
The x, and X, axes are positioned as shown for the {010]
crgck model studied in Chapter 6, and are rotated 450

from these positions for the [11C] crack model.
. ¢




Figure 2 is a ;chematié iliustration of a typical atomic
simulation model. A crack tip problem is shown. If the purpose of the
simulation is to study =a solid mechanics defect, the défeét is located
at the center of 2 section of crystal modelled to the afomic level.
Sﬁudies of liquids or gases or of the ;babistical mechanics properties
of solids do not involve defects bubt there is, in all such studies, a
region of crystal modelled to atomic detail. With very minor and
elementaryrexceptions, this atomic level modelling has so far been done
with classical mechanics. No quantum mechanical effects have beén taken
into accgunt in the equations of motion gesqribing the system although,
for some materials, the interatomic force law may be initially derived
from fundamental quantum mechanical considerations. Classical mechanies
provides sufficient accuracy except for the study of mater;él proparties
at very low temperatures when the system egergy is bomﬁarable to its
zero-point energy. Classical medels woﬁld.not show superfluidity, for
example, which is a quantum effect. .The mbdel ;f the atqmic area thus

takes the form of a series of mass points representing the atoms

connected by interatomic forces.

One of the main difficulties in atomic simulations is the
describtion of these interatomic forces, In real materials, the
behaviour of thése foreces is very complex. The force on an;atom depends
on the relative positions of ;}1 other atoms in the erystal, although
the maénitude of this effect decgzases with distance. The distance at
whizh this effect dgclines to a negligible value depends on the..

‘material. Materials which are strongly govalently bended, suzh as

7
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Figure 2. Schematic fllustration of a typical atomic simulation
problem. :
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diamond, are probably adequately described by including the effect of
:

nearest neighbour bonds only. Materials such as the alkali metals, on
the other hand, seem to show significant bonding out to sixth.ﬁearest
neighbours. A further complication is that, in general, the bonding
cannot be considered to be by pairs only, ie. the total force on’an atom
cannot be broksn down into a 'set of forces, one to each neighbouring
atom. The total force depends.in a complex way on the positions of all
neighbouring atoms. In order to keep computer costs tractable, some

simplification has to be made to describe this behaviour. The specifics

of this point will be examined in greater detail in section 3.4 .

Acting in response to thelinterabomic forces, the atomic mass
points in the central region of the model of Fig. 2 are a2llowad to move
freely. In the most general case, this central region may be extensive
in three dimensions and the atoms may be free to move in all three
coordinate directioés. Some atomic simulation models have been
described which are only one dimensional and allow only one deéree of
freedom peﬁ atom, but by far the most common are two Qimengional medels.
These provide enough information td be inteﬁesting in many cases, while

requiring much smaller amounts of computer effort for their solution

than would a general three dimensional model.

The condition in the third direction of two dimensional models
is usually plane strain. The strg;é field in the immediate vicinity of
a2 long defect, wﬁich is the ;sual center of interest in a problem of
this type, is much higher than that existing at large distances from the

defeck. The large arza of low stressed material tends to support the
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material close to the'defect in the direction parallel to. its axis, .and

this resgits in"plane strain conditions.
- - PO

7 .
‘ﬁﬁTﬂe nutber of planes of atoms which must be included 1n a two

dlmensional model depends on the erystal structure and orientatlon For

-~

example, a model of a bec material in which the axis of the model is

[(010] or [110] (this will be referred to as the xz—axis in agreement

with the models described lébér in this thesis) would require two active

. .
planes, while other directions woﬁfd require more. Bonds to atonms

.outside these active planes may be accounted for by computer bookeeping
or by the addition of image planes of atoms above and below the active
planes. The positions of these image atoms are maintained in a fixed
relation to the positions of the corresponding active atoms in order to
. prodpce the desired x2 relaﬁionship,.which is usually plans strain as
described above. The number of image planes is chosen in accordange

© with the interatomic potential so that all atoms in the active planes
have a complete set of bonds. A typical example is théqbcc crystal with
xz—axis of crystal type [010] mentioned abovg. For an interatomie
potential which cuts off betwzen second and third nearest neighbours,
four }mage planes would be required inladdition to the two active

planes.

The size of the‘area of erystal modelled to atomic detail in a
computer simulation study is restricted to the order of several hundred
to several thousand atoms by computer cost. Often, this is too.-small
for the atomic %evel effects to be negligible at the boundaries; and one

of the major problems in the application of this technique is the

!

QUF
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determination of the boundarx conditions to be applied to the atomic

.area. Tae manner of applying the bounda%y conditionb'generally involves
considefing the outer layer of aﬁoms tOGSQ embedded in, and-@oving with,
a surrounding continuum region. All other atoms in the discrete region
are free to move ind&pendently, constrained only by their interatomic
bonqéf Forces or displacements are applied to the outer edge of Ehg

—7rcont;nuum (uhicthay be infinitely large and is at least maﬁy times the

diameter of the atomic area) in accordance with the problef to be
solved. The gegree to which the diserete atomic area :and the coﬁtinuum
interact ana the accuracy with which the céntinuum is modelled detergrine
the effectiveness of the boundary condition scheme used. A great deal

i of effort has been expanded in previous work to establish a boundary
scheme which perfoqg& well. The problems which may be studied and the
model results are often intimately connected with the particulér scheme

adopted. Further details on this point will be provided'in the next

chapter. y

e F

" Atomic simulations may be divided into two types, static and
dynamic. In a static simulation, only the equilibrium arrangement of
atoms in the modél is found. fhis allows the determination af the
energy and equllibrium structure of erystal defects. In a Qynamid
anialysis, the motion of the atoms with time is followed and it is the
properties of this motion which are of interest. This may be to study
the motion of crystél defects as a2 result of applied stress or thermal
activation; nuclear radiation or shock wave damage; or variqys

thermodynamic or lattice dynamic propsrties. There is Some overlap
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betwsen these two types of simulations and sometimes the same problem

can be solved by either method. For example, the distributiocn of normal

modes of laﬁtice Qibrationg around a crystal defect may be determined as
the eigenvélues of the dispiééement—fbrce matrix for the crystél for
small displacements about its equilibrium position., This equilibrium
position can be fbuAd by a static simulation for the defect.
Alternatively, the lattice may be allowed” to experience random
vibrations corresponding to thermal motion in a dynamic simulation.

Statistical analysis of this motion can also provide the .information

being sought. -

'

.Dynamic simulations obviously involve solving or integrating the
equations of motion obtained from Newton’s.second law applied to each’
atom in the discrete area, and from a description éf the motion allowad
in the continoum region, if any. The equilibrium configurations
required as solutions of static simulations may be found in a number of
ways. The equations of motion of the system may be integrated, a3 in a
dynamic simulation, with the addition of some type of artificial
damping. Various methods of-applfiﬁg éhis damping'are possible. In
addition, optimization techniques may be used to find .equilibrium
positions defined as potential energy minima. The efficiency with which
the equations of motion may be integrated in a dynamic model, and with
wnich the excess energy of the system may be removed in a static
simﬁlation define the amount of computer time needed to solve a problem.
This in turn determines the size and complexity of phe modei which may .

be studied. The method of solution used is, therfore, an important

~
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- . \ ~
parameter in a model. This point will be examined in more detail in
~ Chapter 4 when a.comparison is made'between the efficiency of various

so0lution methods.

This chapter has provided a genefal description of typical

atomic level computer simulatioh agdelé. It can be seen that the
primary difficulty gssociated with hhese models.is the selection of the
interatomic potential, the boundary condition szheme, and the solution
method to‘be used. These points will be discussed in greater detail in

later chapters with regard both to work which has been done previously

bv others, and work done in thesz areas in the presaent study.

-

pesr
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3 LITERATURE SURVEY

This chapter provides a survey of thes literature in areas
pertaining to the work presented in this thésis and indicates the
relationship of this work to these areas. It is intended to prov
illustration of the.current state of'the art in two related fields.
first of these is concerned with general‘iheoéetical and egperimental
work pertaining to microscopic level fracture mechanics, the second with
the area of computer simulation of materials at thé atoaic level. This
is first discussed in generai and then pzarticular emphasis is given to
the study of cracks in solids by this technique. This in turn relates
to the first area described above.

'

3.1_Microstructural Fracture Mschanics — Theoretical

Fracture mechanics is concerned with the rupture of materials
under varicus conditicns of loading and environment. An introduction to

general fracture mechanics can be found in [2], and a much more detailed

§

Tne most important parameter for characterizing the loading

discussion in [3].

condition on a crack is the stress intensity factor, k, which has units
172 : n1-3/2

of Ipressure](length] , or, [force]l{length] . It can be shown

that, for a long, sharp crack in a linear elastic solid, sudh as that

shown in Fig. 3(a), the stress at a point near the tip of the crack is
12
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" Figure 3(a). Coordinates at a crack tip.

4
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Figure 3(b). Effect 'of k;, kg and knpy type loads.

]
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. filIII(e) -
- ¥ k. =St L - (1)
. e T 72 _ . e

+ terms of order ridﬁnd hiERRF

-

and the displacements are given by - r
v " . '
/2
' b = kg o 2 .(0) + kg /2 g ¢ (8) .
% R .
1/2
+ kg T By (®) - @

+ terms of order r and higher o

vhere r and 8 are.defined in Fig. 3(a). The finctions f and g are

independent of the loading condition far from the <rack. The parameter

k. characterizes that'paréuof_load which is attempting pull the crack

1 ©
faces apart; kII' that part attempting to éhear the crack facey parallel
_/F\\\,f’_ to themseslves; and kIII' that part attempting to shear the crgck faces
:’ out of their plane, as shown in Fig. 3(b).
uation (1) predicts the stress 2t the erack-.tip .to be

infinite. This is obviously physically incorrect and material and

geometrical nonalineaq}ties arise to 1limit the stress to a finite valﬁe
% .

everywhere. It has been found, however, that the value of k 3

characterizes the fracture properties of materials with good accuracy

over a large range of loading conditions.’ If_the non-linear behaviour -

is concentrated in a small cylindeJ arodnd the crack tip, =quations (1)
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and (2) still provide the dominant terms ia the relations defining
stress and diéplacement far from the crack tip, énd the non-linear

: —_—
behaviour near the craclk ip ean also be shown to depend primarily
on k, [4]. More elaborate relationships must be used to describe the
fracture behaviour of specimens in which the material and loading -
conditions are such that the non-linear behaviour exteﬁds for a
considerable distance from the crack tip, but for thg work considered
here, the value of k characterizes the system. Much more work has been
done on loadings of kI type than of §he other two types. ALl the
simulations done in the present work .are co?cerned withh;I loadings only
39 the subscript I will be droppad hereafter and k will refer to kI

.. -

unless otherwise noted. s

The basic premise of linear elastic fractMe mechanies was first
stated by Griffith, [5], and is that fracture will occur if %he total
energy of the system composed 6f the fracturing material and the applied
loads decreagés as the crack extends. This energy criterion can be
stated in terms of k. The rate of change of the elastic strain energy
and the potent;al energy of the loads per unit area extension of Ehe

erack is referred to as G. For a plane strain crack in ;§$Jnear

elastic, isotropic solid,

1 -2 ‘
G =’) —————— ‘ k2 ’ (3) .
. E .

. . )
where, E = Young’s modulus, and
V = Poisson’s ratio
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The togal énergy change of the system per unit of new crack area
is G plus the change in energy caused by‘the addition ol two unit areas
of free surface with surface energy, y. The Griffith criterion statesr
that fracture will occur when G > 2;, Equation (3) allows the ‘
determination of the Griffith stress intensity factor, kG, correspondin

to G = 2y. According to Griffith, the crack will extend if k > k , and
G

recede if k < kG. Raceding'cracks cannot usually be observed since

in the material which‘act as pinning points prevent this. It can

"

t
crack face oxidation and the movement of the crack past heterogeneities L\\H\\\\

occaisionally be observed with very pure materdgls and inert
atmospheres, howesver, [6]. The crack should be stable only for k = kG
by the Griffith analysis. Other models indicate that the stress
intensity factor for a propagatlng crack may dlffer’?pom this value. To
indicate this, the stress lntPnsity factor for a propagatlng crauk in a
theoretica} model or'in experimental results will be called bhe eritical
stress intensity factor, kc. In the Griffith model, kc = kG, but bh;s
may not always be true. Atomic lgigl.simufations predict two critical
stress intensity factors. The crack\will propagate whe& k> k+, will
recédeé when k < k_, and is stable wh?n k_ <k < k+. In the remainder of
the thesis, either.k or k+ may be referred to as the critical stress
intensityufactor, kc, when there is no confusion about which is

intended.

The area of qicrostructural fracture mechanics 1is concerned with

the behaviour of the region in the material slose enough to the ac

’

‘tip that equations (1) and (2) begin to break down. There are several

- «



levels on which this may be studied. The material may be considered to
behave as an elastic-plastic solid and the stress field at the crack tip
can be derived oﬁ this basis, [7]. On a.finer scale, microstructural
detail may be added to the analysis. For example, plasticity effects
may be examined by céhsiqég ng the behaviour cof individual Volterra

R
~disldoations and their inLe action with the ecrack tip stress field, [8].

At the finest level, the material may be modelled to atomic detail, as

described in the previous chapter.

One of the most interesting points to wnhich microstructural

theories address themselves is the competition betws=en brittle and
’ |

AN
ductile fracture. Fracture by void nucleation and growth controlled by
/

vacancy diffusion at high temperatures has been treated in [9] and [10}[

In tough materials at lower temperatures, the classical view is that ’

fracture proceeds by a ductile hole growth mechanism. As shown in (7 \\\\\

and (8], 3 crack in a material, treated as an elastic-plastic or \\\\
rigid-plastic continuum, induces a maximum triaxial tensicn at a point \
‘:L slightly ahead of the crack tip, rather than ag it as predicted by '
equation (1). A cgvity is thought to nucleate at this point andfthe

crack grows by necking' of the material between the cavity and.the old

crack tip. This mechﬁnism was discovered experimentally by Crussard,

et al, [11]. Further details of this mechanism can be found in [1i2]

and [13]. AL still ibwer (éryogenic) temperatures, plastic flow is

inhibited because dislocation glide speseds decrease as temp=zrature

falls. As a result, the fracture of many materials which are ductile at

higher temperatures could be purely brittle, with atomically sharp

. Yy o
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cracks, at low temperatures. _Some controversy exists cver this,

howaver.

A simplé argumént on this point is that 'e tensile stress at
the tiﬁ of an atomiealiy sharp cfack must be at the thecoretical limiting
tensile stress which the bonds of the material n support. If the
maximum shear streés near the tip is calculate\j or this loading
condition and compared to the theoretical limiting shear stress for the
material, it may be argued that the crack will blunt by shearing if the-
limiting shear stress is reached before the limiting tensile stress. By
'this argument, most materials will fail ﬁo sustain atomically sharp
cracks. Kélly, Tyson and Cottrell, (14], made detailed calculations for
this theory and concluded that diamond, NaCl and silica could support
T atom%cally sharp cracks and fail by purely brittle fracture, but that
mostgﬁfﬁgFaﬁiféFiﬁls could not. -They recognized, however, that this

argument is very\eleméntary and that more detailed study should ‘be made

on this matter.

Because atomic level details of materials are difficult tol
derive in a direét way by experiment, more information on this point had
to se provided by more elaborate theorebicalltreatment. This has
recently shown that purély brittle fracture should be much more commen

(ﬁ than was previously considered. Computer simulation calculations which

N4

will be-described fully below-indicate that atomically sharp cracks
should be able to exist in many materials. Other, purely theoretical
work by Rice and Thomson, [15], have continued the work of Kelly, et al.

_Rize and Thomson use the linear elastic continuum mechanics stress
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fields around crack tips and Volterra dislocations to examine their
interaction. They find that a dislocation waich has been-punched out of
a crack tip will be reattracted to the tip if it is within a critioal
distance, Ec, from the crack tip. gc is deriQed from the macroscopic
properties of the material. As for'the erack Lip behaviour described by
equations (1) and (2); the Volterra stress field for a dislocation
breaks downlclose to the dislocation center. The region in which this
break down occurs is known as the dislocation core. Rice and Thomson
proposs that if Ec is less than the dislocation core size (or "core
cut-off distanée"), any dislocations which form will be repelled-from

the tip anq the crack could spontaneouslf blunt. If Ec'is greatér than
s
the‘core cué-cff, dislocations which formed would be reattracted to the
cr?gzﬁfip and blunting would not occdr. On this basis,.they fi@dwtpap‘”
many materials could maintain atomically sharp eracks. All.the‘covalent
‘and ionic ér&stals and some of the beec and hep metals studied are
apparently stable with respeqt‘to this. ?hé fce metals appear unstable
and should biunt.' Inte;estinéiy, they find béc q—iron to be a
borderline case. This is the material whiéh has been most studied by’
computer simulations with, so far, inconclusive results. Rice and
Ihomson-recognize, howaver, that "a ccmplete resolution‘of this problem

must rely on a discrete lattice calpulation involving realistic

non-linear force fields", [15].

If this question of‘brihble—ductile competition can be answered,
it would permit a much deeper understanding of fracture propertiés.

Obviously, the theoretical and physical descriptions of fracture by



atomically sharp cracks and\by the ductile hole growth mechanism
desaribed above are very d;‘ erent and it is important to know when each
are applicable. Thomson:b?16], has proposed a.crack model in which both
are necessary. He argues that even if fracture appears to be taking
place by ductile failure, the discrete nature of the dislocation
processes which cause the associated plas£ic flow mean that,-at bhe.very
finest (atomic) scale, the crack tip.could still be brittle with slip
being concentrated on leocalized slip bands which intersect disloeation
sources. These would be necessary bto produce'plastic flow if the crack

tip itself could not spontaneously generate dislocations. The

seperation between dislocation even in a very highly strain hardened

metal averages greater than about 15 (1 nm = 1.E-9 m) and can be
10000 nm in annealed metals, {17]. This can be seen to be much larger
than a typical lattice parameter distance of 0.286 nm for bec a-iron.
This indicates that, unless the crack tip itself can generate
dislocations, the crack will behavé'in an atomically sharp fashion as.a
result of the discrete nature of the plastic effects., Sufficiently far
from the crack tip, the stresses may be averaged over large enough
regions of the ﬁaterial that this discrete nature can be ignored and
elastielplasbic continuum theory can be applied. . Still farther from the
tip, the stresses fall into the elastic range and equations (1) and (2)

again describe the situation. Figure 4 is a schematic illustration of

the Thomson modél.

Although aot formally presanted in the form of Rice and

Thomson s theory, [15], the interaction of the crack tip stress field
. - .
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Figure 4. Schematic jllustration of Thomson's méﬁel. [161].
- In the discrete atomic regions,,the dislocation
population is too small for the material to behave

plastically and the forces can approach the ultimate
bond strengths.
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with a cloud df dislocations has been the basis of several theorie§
which attempt to predict the most likely cleavage plaéé of crystals.
Ayres and Stein,‘[18], calculated the resolved shear stress on all stip
. Planes around a crack in a bee metal for various cleavage planes. By
assuming that cleavage was ﬁost likely on the plane for which the
resulting .dislocation activity is minimized, they could correctly
predict (001) plane cleavage ip bec erystals. They also predict that
the [+10] crack line direction cleavage should be gﬁ§ier than [010].
Pharr et al, [19], have recentiy criticized some details of the
Ayres-Stein treatment but a modification which they propose does not
séem to provide better results. The authors of these theories
apparently consider that the dislocations are pre—existihg, ie. not
punched out of the crack tip. Cleavage planes can also be predicted
theoretically by means of direct bond counting. Tyson, [20], has done

this but there are some significant discrepancies between the

predictions of this theory and experimental results.

The work of this thesis is concerned with some aspects of the
behaviour of tﬁe region governed by the atomically sharp crack
properties in a model such as that of Fig. 4. It considers the most
likely cleavage planes, the easlest fracture directions on these planes,
and the question of the possibility of the erack blunting by dislocation
emission by means of a.discrete atomiec simulation. The material studied
is a2 bée crystal with many properties chosen to correspond with phose of
o-iron. The model is still incomplete so that no final conclusions can

b= reached, but the analysis is carried out to greater detail than had
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been done .in any previous work and some very interesting behavicur was ‘\

observed.

»
b

3.2 Mierostructural Fracture Mechanics - Experimental

Many of thé papers discussed above contain, or refer to,
experimental results to illustrate the theories proposed. These will
not be discussed in further detail here since they bear only indirectly
on the work in this thesis. Some experimental studies which more
directly concern themselves with the work will, however, be discussed in
this section. The area considered is the fracture propertieshgf single
crystal bec metals, especially with regard to the competition between
brittle and ductile fracture and the effect of the direction of the

crack line of two dimensional cracks -- points wnich are studied in this

thesis.

As stated above, the model material chosen for the present study
is similar to bee u-iron}/—Thig,M4g/§hosen not only because of ibs.
technological importance, but also because the interatomic potential on
waich it is based {which will be discussed more fully below in
section 3.4) has taken on the status of 2 standard which is being
studied in considerable depth by many reseaéchers. It has some
properties which are in disagreement with those of iron, however, S0
that it cannot be thought of as a true model of iron. It shauld,

e,

rather, be considered a model\maberial which can be studied by taqiuter
simulation,. as real materials can/bé\apudied Experimentally, in order %o

determine the relation betwsen their macrescopic and microscople

7

r
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properties. Thus, it cannot be expected to reproduce the behaviour of
iron exactly, but, on the other hand; it should show results which can
be compared, at least gqualitatively, with the properties of bee
materials in general. This view of the role of computer simulation is
also useful since the number of experimental results which can be
directly compared to the model results for any one material is quite
small. This is.a consequence 3f the difficulty of performing
experiments which are able to give a direct indicatiod of atomic scale
events. Tacoretical and computer simulation calculations are proceeding
up from this level, whille experimental observations are working down to
this level, but at the moment they can be compared in only a few polints.
Consideraﬁly more gork is neéded in these areas before Ehe topic can be

considered understood.

Whether orﬂ;gi a material fractures in a perfectly brittle
fashion with an atomically sharp crack can be determined experimentally
by, for example, measuring the load needed to cleave a crystal of Ene
materiaff obtaining the corresponding surfége energy.from the method
deseribed with equation (3), and comparing this te the true,
thermodynamic surface energy mea fed by other meazns. If Fignificant
non-linear behaviour haé ocoured ﬁd the crack has not propagated in a
truely brittle fashion, it will be found that the apparent surface .
energy measured by cleavage is mhc é:kher than the trud surface energy-.
The differance repressnts th;\%izé ersible work done by the %rack, for

example, the work involved in moving dislocations or in generating a
Pl - B

cloud of microcracks around the macroscopic crack tip:J/The truz surface

-
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1

energ§ may be measured by several means. One possibility is to measure
the creep properties-of a wire of material at high tempsratures. The
surface tension ;nd corresponding surface energy of the mgterial nay Ee
obtained from this, [21]. Other ways of estimating the likelihocod of-
brittle fracture igvolve examining the appearance of the crack face and

‘

the shape of the load-displacement'burve for thé cracked specimen.

Experimental results appear to indicate that/a-iron behaves in a

\perfectly brittle faéhion at low temperatures. Most work has been done

%n an iron - 39 silicon alloy apparently because of the ease with whiéh
lafée single c}ystals of this maberial can be grown. This is a bee
:crystal in which some silicoﬁ atoms replace iron atoms in the a-iron
lattice. 'Cracks in these studies always propagated on (001) type
planes. Gilman, [22], found the apparent surface energy of this
material in cleavage tesbg at various tepperatures. This was greater
than 240 J/m? at 195 K, 25 J/m? at 77 K, and 1.36 J/m2 at 23 K. ‘The
value of 1.36 J/m2 is based on only one specimen but it is close to the
true, thermodynamic surface energy of iron which is about 2 J/m?, [23].
There is obviously a gfeat deal of.ektr§ work, representing plastic
deformation at 5 K. By examining the cr?ck surface abpearance, Gilman
con:;uded that most of the excess workR in the 77 K specimens was due bo:
the formation of twins around the crack rather than dislocation
processes. Twinning was apparently also inhibited at the iowest

temperature studied. - -~

Tetelman and Robertson, [24], have also studied the fracture

properties of this material experimentally. They induced fracture by
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charging the crystals with hydrogen. lThis‘?hen was precipitated out of
the crystal and the resulting{g;s pressure fofmed and expanded very
small internal cracks. They found that at temperatures greater than
100qu, 3 great deal of dislocaticn activity could be observed involving
[111] dislocations arcund (001)[110] cracks t2 dimensional cracks with
erack p}ane~(001), and crack line direction [110]). They could not
determine whether the aislocations weré emitted by tﬁe crack tip or were

»

from surrounding dislocation sources. By examining the .

load-displacement curve and the appearance of the crack face, they

\

\
. concluded that fracture was completely brittle at 77 K, but they did not
) . . .

study fracture at this temperature in as great detail as did

Gilman, [22]. ﬁore evidence for the twinning process described by
Gilman was found by Barry, [25]. He examined the appearance of the
crack faces in iron - 3% silicon crystals fractured at 77 K and .
concluded alsd that twinning 6n {112) planes was the main mode of :
inelastie deformation. In conclusion, then it appears that ircn-silicon
behaves in a brittle fashion at very low temperatures (23 K from
Gilman). At higher temperatures (77 K} some inelastic deformation is
observed, but it is mainly due to twinning.‘ At still ?igher
temperatures (room temperatu;élénd above) the apparent surface energy
f?om Gilman and the direct observabion of dislocations by }etelman and
Robertson iﬁdicate that a great deal of inelastielbeﬁaviour occurs
ineluding dislocation processes. Whether these dislocations are emitted
by the grack tiﬁ or are from surrounding dislocation sources hasfnot

been determined.
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2
Another bece metal which has been studied to some'exteﬁt'is

tungstan. Hull and Beardmore, [26], studied the speed of propiagabion of

cracks in tungsten‘singlé crystéls by meaﬁs of the shgpe of w;llner

lines and river lines on the fractured éurfaces. Wallner lines éée =
ripples in thé crack surface caused by the intera;tion of the moving
crack tip with p?ssing acoustic waves. The aboustic‘wavgg are geherated
by the same ﬁoving crack as it passes surface or internal flaws-or
heterogeneities in the crystal. The'speed of the crack tip can be

”‘ determined frsm ghese lines by the methdd deseribed in [26]. River
lines are, steps in the crack faces. They probably represzat the lines
of the twins describéa in [25]. They may be:used to determine the crack
speed in a similar manner to that for the Wallnér lines. Hull anﬁ
Beardmore were aSle to measure épeedglby Wallner lines on crystals
fracture® at low tempérafd}es (20 K_gnd 77 K} since obscuring river lines
were rare. This indicates that the twinning process-was suppressed at
low temperatu;;s for 'this material as for iron-silicon. River lines
Waere more easily observed on crystals‘;ractured at highgr temperaturgs
(77‘K, 201 K and 300 K) and thes2 were used to measure crack speeds for '
these crystals. The cracks always propagated on {001) planes. Crack
speeds were measured for cracks having‘crack Lines in [0610] and (1101
directions. The results appear to indica%e that for the higher
temperature crystals, the [010] céﬁck Was fashést; The rétio of [110}
speed to [010] speed ranged from-about,gis to 1 in various specimens.
For the lower temperature crystals, how;;ef, it appears that the [110]
crack may have been fastgn.,:OF two specimens fractured at 20 ¥, one f

— \

showed the [110] crack to be about twice ths speed of the [010], the ’
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other showed them to be about the same. The second spﬂcimen was
fractured acc1dentalt§? s0 this result may not be as rellable as the
first. At 77 K, some results showed [010] fastest, some [110] fastest.
It appears then, that at high temperatures, plasticity effects become
important and [010] cracks are faster than [110}. At low temperatures,
plasticity ;ffects are reduced and [110] cracks are faster. It canf be
seen from the above detailed desecription, however, that there ié a great
deal of scatter in experimental results in this area, and that bhé-
nunber of results which are available is usually too small for -
meaningfg& staﬁistics to Sé drawa. This is a consequence of the
diffiéulty of performing experiments which require the production of
.pure, single crxgﬁéls, cryagenic températures, stiff testing machines
aﬁd the examination of microscopic proberties'of the crack faces. It ~"

must, thus, be expectéd thablany agreement betwsen theory and experiment

éan be only tentative at the present time.

Further exPerimghEal results on tungsten are pr;vided by Liu-and
Bilello, [27]. They also fraétured tungsben single cryipals ét 77 K and
in the two craék directions ;nd measured the %pparént surface energy .
Their ‘initial cracks were created by electric, spark discharge. Their
results are sﬁown in Table i. Again the large scatter in the results is
obvious. Liu and Bilello comment Qn the variatién-ofrinihiql crack
shapes from:the long plane strain geomebtry most common with the large
cracks, to seﬁicircular, most common with the small ones. This is one
obvicus causz for the scatter in the résults and may be obséufing‘any

true material properties. C®rdwell and Hull, [28], performed similar
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N
Table 1. Experimental Results of Liu and Bilello, [27], for tungsten.
N . 4 ¢
Voao
Crack Crack . Fracture Critical Stress
Direction Length Stress ’ Intensity Factor
. (um) (MPa) (MNa™3/2)
{o10] 98 195 2.00
" 204 149 2.21
n 160 . 133 1.75
" . 206 99 1.48
" ' 300 , 96 1.73
" 216 _ 82 1.25
" 190 : - 70 1.01
" Lay 43 1.00 7 4
N
[110] 190 . 60 J 0.86
A 200 ' 69 1.02
" . 150 51 0.65

Averace critical stress intensity factor is

/2

1.554 Mém /% for the [010] direction, and

0.843 MNm'3/2 for the [110] direction,

corresponding to surface energies of

8.6 J/m? for the [010] direction, and

.

2.5 J/m? for the [110] direction.

Thg above table assumes isétropy with elastic constants E = 0.309 TPa,

_—~ zand v

~

«

= 0.278, 1153.

—
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experiments, but for the [010] direction only.? They gzive a further
discussion;gf'the effects of crack shapes: Liu and Bilello found
eviden;e gf.dislocation activity around the crack tip They could not
determine whether or not the ecrack Q;s atomica}%%'sha P, howevér. They
examined their results in the light of a theory Similar to that of Ayres
and Stein, [18], ;q corder to calculate the effects{of the dislocation
act;vity on the values‘of,apparent sqrface energy which ghey measured.
They estimated from this theory that bhg true, thermodynamic tungsten
suﬁface energy is about 3 J/a%. This compares with estimates ranging
from 1.7 J/mz, (28], to 7.8 J/m?, {291, byfother workers using other
methods. Table 17 shows calculated values for critical stress intensity
factor and corresponding surface energy obtained by ignoring any
correction for dislocation activiby and assuming that the geometry is
that of a long crack in plane strain. The effect‘of.thelgeometry of the

crack could be as much as 50% on these values. In any case, it is clear

that the effect of crack tip plasticity is fairly small at this

AQEEBEBatuPe since the apparent. surface energy calculated in this manner

is close to the true thermodynamic value.. It would be expected that its
effect would be even smaller at lower temperabtures. When the critical
stress inténsity factors of Table 1 aré averaged for the two erack
directioné independently and used to calculate a surface energy, the
[01.0] average is 8.6 J/m?, while the [110] is 2.5 J/m2. Many effects
could be responsible for this. It may be a random resultlof the
experimental érrors. The nuﬁber of results available is insufficient

s

for any statistical certainty to be possible for these values. The

effect of crack geométry may be importanp. Liu and Bilello indicate

'
- ' N

A
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that the initial crack shapes were the same in each direction but the

size effect mentioned earlier may have some significance. The effect

may bé due to the different slip systems available in the two cases,

resulting in different corrections to the surface energy for plasticity

effects. Alternatively the differences, if re uld be due to a real,

crystallographic effecfat the aiqmic levelk gragk. Tne work
presented later in this thesis predicts such an effect. It mﬁst be
empnasized, however, that experimental verificatiomsof| such a result

must be considered very tentative at this time.

' a

Both_Hull énd Beardmore, [26], and Liu and Bilello, [27j,
comment on the different appearance of tpe fractﬁre surface for the two
erack line directions, especially at highe; temperatures. This is
probably due mainiy to the different plasticity pro;;sses operable “in
the two cases. No quantitative information c;n be derived from this
which pertains to the present work, but it does provide another

indication that the crystallographic direction eof the crack is important

in determining its macroscopic behaviour.

In summary, it appears that experimental results indicate that

fracture in single crystal iron-silicon and tungsten, taken as sample
-

bee metals, occurs on (001) planes,. that bﬁth behave in a purely brittle
fashiqn at ;ery low bemperafurgs, and that there are differences in

. fracturé pfoperties‘petween cracks having cracklline directions of [010]
and {110]}. The [110] crack appears to propagate at a lower stress
intensity factor than the [010] and to propagate at a faster speed at
very low temperatures. Thée expe?imentallresulté from which thes

)

3
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conclusions are drawn, howsver, have a great deal of uncertainty.
Further experimental work must be performed before they can be
dently accepted. Nevertheless, the model calculations which are

4
ribed latér in this thesis will be compared to them and this wlll
ind¥cate that there is general agreement between these two sets of

results. .

3;L7Discﬁéte Atomic Simulation - General

In this section, a brief review will be made of the ‘broad area

.

of discrete atomic computér simulation. of materials. 'Th;s will provide

En indication of the range of problems to which this basié method of

modelling is applicable and of the type of results which can be expected
in each area. A more detailed, but older, review cgn be found in [30],
by Beeler. A great deal of work in the area of the simulation of

defzcts in solids is reported in the cohference proceedings, (31].

The basic phiiosophy of computer simulation of materials with
atomic detail mag be stated as follows. A material mbdel is constructed
which consists of atoms int;racting with each other by means of an
inperatomio poténbial. This model is then examined by computer.
simulation to observe its behaviour. The borrespandence between.the
model and a real material may be clese. In this case, great pains are
taken to produce a potential which has a close similarity te that wh;ch
detually exists for the real material being simulated, and the behav;our

of the computer model should, then, reproduce the behaviour of .the real

material accurately. On the other hand, 2 simpler, more general

,r%\\
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potential may be chosen which does not have a close resemblance to that
for any real material, but which can be expected to possess some of the
properties common to a range of real materials. in this case, the
computer simulations are thought of as experiments performed on these
model materials which have the great advantage of being much more easily
observed than real materials. Studies of this type shed light on the
general relationzpips thag\akisn.between the microscopic andvmacroscopic
properties of materials of a class simi}npito’fﬁe\model material.
Models of this type may also be used to test theori&k wnich propose to
explain the properties of real materials on the microlevel such as that
of Rice and Thomsdn, (15], described above. If the theory is applicable‘
to a wide range of yeal materials, it shoula also be applicable to the
computer model material and it is usually easier to test on these. At
the present state of the art, accurate Ente omic potentials are N

difficult to derive for most real material ,'so that computer

simulations tend more toward the latter thdn the former type.

¥ ‘ One of the earliest applications hf computer,modelliné was iﬁ
the study of 1iq;ids. ‘Rahman, [32], studied a mo@el of liquid a;;;;\\\\\\
using aﬂg?nnard-Jones inter;tomic poteﬁti;l {the properties of t@e
various interatomic potentials which have been used will be discussed
belgw). He found good agreement with experim;;tal values for the
self-diffusion coefficient and its variation with tgmperature. The
position pair distribution function also showed reasonable agreement

with that derived from x-ray data. The inert gas liquids are relatively

simple to modéi. More difficult is a liquid such as water. Rahman and

.
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Stillinger, 733], have studied a model of liduid water'using a very
special interatomic potential which Eook account of the polar properties
of the water molecule and could thegrefore-account for their rotation;l
as well as translational degrees of freedom. They could obtain good
agreement with expsrimental data for the position histfibubi&n function.
The self-diffusion coefficient was in error by abeout 50%. Dipole
relaxation times appeared to be within the range of the error in nuclear
magnetie resonance experiments. Considering tine complexity of molecular
interactlons in water, the overallQ:esults indlcated that the method was

useful in the study of such liquids but that more work would be needed

to derive accurate interatomic potentials.

é;/;ith liquids, the rare gas solids are also relatively easy to
model. Dickey and Paskin, [34], modelled solid krypton and neon
lattices. 'They obseq%;d thermél vibrations of the crystals and derived
statistical meéhanics properties of the lattices from the resulbs; Theﬁ
found that the nonmalé%ode distribution sMowed godd agreement with
experiment and Hith othér\theories that can be applied at low =~
temperatures. Comparisen of d\\bersion curves with those obtained from »
neutron diffraction studies showed ieasonable agreemEnt for krypton but

were less acceptable for nepn. Quantum effects may have obscured the

results.

\ : . '
e T \)

Johnson and Wnite, [35], have modelled the surfaces of metal

crystals. The results appear reasonable and are in general agreement

GCwith calculations by othe methods bubt experimental results are

J
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insufficient at.the present to give an accurate evaluation.

Johnso 2 [36], has studied interstitials and vacancies in a-iron. He
gives zggputer predicted structures for the stable interstitials and
di-vagancies. The interstitial migration energy appears reaéonable

compared to experimental values.

Considerable work has been done on the modelling of dislocations
in solids. . The classical theory of dislocations may be found in Hirth
and Lothe, [37]. Doyama and Cotterill, [38], examined the [110] edge
disiocation in coppert_an fec crystal, by-computer simulation. They
found appreciable out of plane digplagements not predicted by continuum
theony._ The dislocation core energy was comparable to experimenial
values, Tﬁe same authors also studied a screw dislocation, [39], and
obtained similar results. Chang and Graham, EHOTT“ﬁaﬁglleﬁ the [111]
edge dislocation in bee @-iron. They.made an estimate of the Pelerls
Barrier fo; dislocaticon motion by moving the dislogation in a somewhat
artificial fashion. They estimated the barrier to correspond to a
stress of 0.54 MPa, compared to an ;iperimental valueroflo.HS
to 0.48 MPa. Chang, [(41], also studied the [111] screw dislocation and

w
found an asymmeﬁry in the Peierls barrier similar to that observed
experimentally. Bullough gﬁd Perrin, (42], studied the {111] and [100]

edge dislocations in a-iron. core energy they predict is in the

range of the experimental flata available. They find that the appearance

of the atomic motions duping the relaxation process indicates that the .
£100] edge may zct as 3 naqcent crack in the material. Tnis was

confirmed with another model by Gehlen, et al, (43]. Improved models
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T: with flexible boundary gchgggg/féfiowed (the next section desaribes
\\these bound?ry schemes in depail). Gehlen, et al, TH4], found that
éhere Was an elliptical expansion associated with the [100] edze )
dislocation and that this might be detectable by a2 suitable experiment
.althouzh this has not been done for iron. Hoagland, et al, [H5],
( - modelled dislocations in pota;sium chloride. With a2 flexible bogz?ary
o scheme, they could move the dislocation by the applicaticn of an
’F?f/ eerrnal stress,lsomething whizh had not been possible previously, and

| ) L
thus could get an estimate of the Peierls barrier based on a more

~ -

physicélly aecebtablé"é?gument than that used by Chang, [40,41], The
aqreemegt with experiment was reasonable although there was scme '

difficulty in pinpointing the valus of the barrier with the model.

Some work has been done on the simulation of grain boundaries.
Hasson, and Goux [36], studied:the ergy, entropy and likely
orientation of grain bouﬁdaries\in aluginum and found reasonable.
: égreemént with expariment. Johannesson and Tholen, [(47], studied the
mechanics of grain boundary slidipg.: A& review of grain boundary studies

can be found in [U8].
G

Te =ffect dn solids of nuclear radiation and shock waves~5as
a}so been studied by zomputer simulation. Gibson, et al, [49], obtained
threshold energies, damage zones and ‘information on the.types Bf defeéts

T : generated in copper by nuclear radiation. They claimed the results
apozared reasonable but detailed experimental inforﬁation was not

\"‘\\\g*“~ available for comparison. Paskin and Diz2nes, [50], studied the effect

(;5 of a shock wave passiig througzh an inert gas solid. They fouad that the

N
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temperature rise at the shock front was higher than expected indicating
that the transfer 6f kinetic energy to the material was more efficient
than that possible by adiabatic compression heating. Comparison of the
pressure-volume relationship'at ﬁhe shock front with the experimental

values for solid neon appeared acceptable.

Computer simulatiocn studies applied to various defects could
:}\_' . : . .
eveptually hed 14€ht on m2qy aspects of material behaviour:

1) Accurate knowledge of defect core structure, energy and entropy
coula allow the determination of the equilibrium concentration of
defects in materials produced under various conditions. This is
important in the production of very pure, nearly peffect crystals
for use in electronics components, for example. There is sonme
evidence that the stress inducéd in erystals by gravity éhile they
are growing can affect defect %oncentration; [51]. This is one of

the arguments i ’favour of space manufacturing facilities.

‘4
2) Models which indfcate the conditions under which defects will move
through the lattice can allow the calculation of slow crack growth

effects, (72], for example.

.~

3) Volume expansion associated with dislocations shown by these
oy '
models, [44], could result in a hydrostatic stress dependence for

yielding.

L
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4)  Studies of damage caused by nuclear, radiation, f49], is important

for nuzlear engincering. . : S

5) The generation and scattering of acoustic waves by defacts is
iﬁportant Lo non-destructive testing methods such as accustic
emission.A The level of knoﬁledge of the microstructural
significance of an acoustic emission e&E;:-seeds quite elementaryﬂt

at the present gime. Estimates of the number of dislocations in

motion which could produce a detectable acomst ic ohtpﬁt range from
onz, [52], t5 several hundred, [53]. . Atomic simulation studies

could illuminate this topie. -

' X . ‘
6) Te iateraction of defzets ig a very important subject. For

example, it would be interesting t

F3qover the conditions under
Y

which a dislocation would be emityzd from a crack tip since this

affedts brittle-ductile transit: n properties. Work in this area

has been limited because of 1fficulty, of constructing adequate

models.
TN

: T

—

This sectinn has provided a broad discussion of the area of
atomic level compuber simulation of materials in order to indicate the
range of problems waish can be studied with this technique. A mofe
detailed discussion of the simulation of cracks has been postponed to
late~ in this chapter, This allows, first, a discussion of intera§9mic

potentials and boundary 2onditinn schemes far simulation modelling.
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;lu Discrete Atomic Simulation - Interatomic Potentials

Tnis section provides:information on the interatomic potentials
"\ Lo
which have been-used in compupen imulations. A

{ ) ¥

\-._’

The force-position relation existing between the atoms in a
fluid or crystal may be Qescribﬁd by an interatomic potential, ﬁ. In

™

the most general case, ¢ is a function of all positiogs,

$=pF F T, o B | (4)

on atom i, and there are a total of n

él. The TQ{se on atom i is then given by

(5)
v

Even_if a formula could be determined to describe this

" for e-posiﬂion relation, it would undoubtedly be too .complex for use in

simu i_ns such as the ones being described here because of limitations

on computer cost. As a result, simplifications have to be made to

~describe the bonding behaviour. The bonds for many materials,;ihGIuding

_the inert‘gas solids and most metals, are generally taken to be pairwise

bonds with no bending stiffness. They thus behave as a set of springs

- supporting axial forces only connecting the mass points representing the

atoms. For this case, the total force on atom i, ?;, is the sum of a

N _ .
set of forces, Fij' where j extends over all neighbours of i_and

£
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F.. = ————- - (6)

where F = r.- rj, and r = (tl. The function g(r) is the interatomic
potential for a single bond. Because of its restriction to atom pair
bonding and the fact that it is.a function of r only (and, therefore,

results in radial forces only) it 'is referred to as a pairwise, central

I

potential. In order to contain computér cos;s, it is taksn to have a
finite cut-off distance. Typical cub-off distances which have been used
al}ow the inclusion of nearest neighbours only in the noble gas solids,
the fce metals such as copper, and_the hep metals such as zine; up to
sixtn nearest neighbours in the bee alkali métals; ang up to second |
nearest nelighbours in bec o-iron. Simulaﬁions of iiquids and gases
generally us —siﬁilar-poqgntials to those described abfve, ie. pairwise,
central pofentials. |

¢
The relation between the first order elastic constant’s and the

inferatomic.potentiél was first developed by Fuchs, [54], for various
eryst structures. Johnson, [55,56], gives formulas for the second
order Rlastic constants. Theée have not been used extensively in
interatomic potential generation, bubt should find application in the
future. The first order elastic constants for a material with the

symmetry properties of a cubic erystal max be defined as, {571, @ °
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axes are along the symmetry axes of the

A

provided that the x , x,, ka
~
N <«
erystal. In equation (7), 0 =0 ,0 =g ,0 =0 ,0 =0 ,
1 11 2 22 3 33 4 23

GS = T4y Us = 012 in the more usual notatien. The strains, € are.
defined similarly, with engineering'shearfgéhain4used. If
C._=C__+ 2C . (8)
11 12 Ly

then the material is'isotropié. This is not usually the case for real

s

materials.

" The Cauchy relation is defined as 2.

C._=C | N ¢
12 L .

It may be shown that central tentials in crystals in which every atom
is a center of symmetry and ich is under no external hydrostatic
pressure’to maintain non-equilibrium interatomic bonds, lead to the

- Cauchy relation. This also is not‘generally true Qf real materials.

™

The relation between the elastic constants agd the interateomic
potential for the se of a beec crystal in which fir and second
nearest neighbgur interactions by central, pairwise’ potentials oniy are

- -
/ o
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where the primes indicate differenbiation with respect to r, subscript 1
refers to evaluation at the nearest neighbour distance, and.subscript 2
at the second nearest'neighbour distance. B in eguation (10) is the

!
bulk modulus for the material,

B = (C c. )/ ' -
(€, +2C )3 . (11)
' .
As atated above the Cauchy relation (9), -must hold for such a materla%
unless it is under an artificiall;\\bplied external pressure which
enables the interatomic bonds to be out of equilibrium at tr}&, perfect
erystal position. The preésure required to maintain equilibrium of such
a erystal is , . .- T, e
P=(C -C /2 {12)
12 by,
’ i

There are many possibilities for the detailed form of the

fu;étion-¢(r). One of the. earliest used, [49], was the Born-Mayer

potential. It is of the form
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~

+

gr) = n RSP ‘ (13)

where A, vy and p arefﬁgﬁameters ad justed to fit known‘properties'of the

material such as the elastic constants. The force geanerated by this

potential is always repuisive and requires the additicn of hydrostatic
pressure to malntain equilibrium of the lattice. A more commonly used
potential is the Lennard-Jones potential,

glry =Ar ™ ~Br - | (14)

where A, m and n are parameters chosen as described above. The most
commonly used values of m and .n are 12 and &, respectively. This form

of equation (14) reprodﬁces the theoretically exacﬁ behaviour of the

inert gas solids at large distances and has been used extensively in

" these studies, [32,34,50].' It has occaisionally been used to medel

-

.

metals, usually with different values of m and n. The Morse potentizal
has been used more often for metals. It is of the form

glr) = A { e 2%FTo) | 5e(rro) 3 (15)

where A, @ and ro are the'adjpshable parameters., This form has some
theoretical basis for its large distance behaviour when applied'to'
metals. Girifalco and Weizgr, (58], give Morsé potentiél parameters for
a wide range of metals derived by fitting to the energy of vaporizationi

laﬁtice parameter and bulk compressiblity. -
- .

The type of potential moa%)often used for metals;}n computer $\~\_,
simulations is a purely empirical potential, usually afpolynomial, fit
J, J

@

N
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to various k¥nown material properties.. Johnson, {59}, presented two
potentialslfor iron based on this approach. Each consists of three
splines {3rd order pol&nomials) épplicable over different ranges of r.
Table 2 gives the formulae of the two Johnson potentials. Both go to
zero betwzen thémsecond and third nearest neighbour distances. Both are
fit to first ofder ela;ti; coﬁstant data. The Johnson;II potential is
fig to the full value of the elastic constants of iron. Since these do
not obey the’ Cauchy relation, (9); an external stress given by‘(12) is
required to_maintgin the crystal in equilibrium. The Johnson-I

~ . .
potential has been fit to altered values of the elastic constants-which
do obey the Cauchy relations and eliminate the need for the external
pressure. This simplifies'the modelling prqcedure.‘ The Johnson-I
potential appears to have takeg'on the spatus of a standard potential
for model simulation3. It has been used extensively for the study of
interstitials and vacancies, [36,59], dislocaﬁions, [42,43], and eracks,
[65,68,76]: 1t g;n thus be considered a model material of the second
type deseribed in the previous section. Because of this status, the
Joﬁnson-I potential was chosen for the work in this thesis even though
it ,does nﬁt model real a-iron gxactly. Figure 5 shows the Johnsor=1
potential. The general shape of this potential function is similar to
that of the other potentials discussed above although the exact

nuneérical values differ of course. Alsc shown ih Fig. 5 are the bond

force, F = 3d4/3r, and spfing constant, s = 324/9r2, as functionsgf

& ‘The empirical -potential appréach seems Lo offer the bkst method

of deriving these functions at the present. Pgbéntials for a
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Table 2. Johnson Interatomic Potentialgﬁ\&gg].

Potential is given by g@(r) = A(r-B)3 + Cr + D
with constants given below.

Range
(nm)

<0.24
0.24-0.3
0.3-0.344

>0.3u44

0.2\
0.24-0.3
0.3-0.34

>0.344

o

¢

.

A

(ad/nm3)

-351.82

-102.41

~178.64
0

~756.03

-142.09

-169.11
0

oocCco

cooo

(nm)

.30979
.31158
-30664

.25699
.30833
.30698

C
(ad/nm)

M.3321§
0.76559
0.74800
0 .

0.63393
0.70114
0.69637
0

N

.lD
* (ad)

-1.19139
-0.25338

~0.24800

0

0.12962
-0.23211
-0.23096

0
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*Figure 5(a).

Johnson-I potential, [59].
Potential, &, vs bond length, r.
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Figure 5(b).

Johnson-I potential, [59].
Bond force, F, vs bond length, r.

-
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Figure 5(c}. " Johnson-1 potential, [59]
. Spring constant, s, vs bond length r.
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materials derived in this manner are givén by Johnson and Wilson, [60].
%?me work is underway whieh could e;enbually'enable their derivation_on
more theoretically acceptable grounds, however. This could provide
better modelling of. the long range, volume dependent effects which are
inadequately described by exisbink short range p&tentials such as that
of Johnson. The most important of these methods seems to be the
application of pseudopotentials, [61]. Few models have as y2t been

constructed using these types of potentials, however.

Some materials caunnot be described with any degree of zccuracy
by pairwise central potentials, such as those described above. Thne
bonds of covalent cr&sials, such as diamond for example, have
significapt bending stiffness. They have been described, [G?I:/by
potentials which consi@er'eaéh atom to’be bonded to its Tbunfnearest
neighbours. The Bonds'support axial forces which depend og their
length, as for the potentials above, but now, in addition, they are
prdvided with bending stiffnesé as well. The tangential forces which
they support are functions of the angles between adjacent bonds to thé //

\__,_/
atom. The functional forms for the poEenpials are taken to be

[ )
extensions of those described. above. Another example of this type of
potential is that .used by Rahmgq, £33], to model liquid water waich

accounts for the dipole moment'bf the water molecule.

s

.It is apparent that phe level of understanding of interatepic
potentials is quite elem?nééry ab‘the present time. The ébsence of
beﬁter potengials is ons of,tﬁe prime problems of computer simulatdons
of thg type considered here. It pan_bevexpected that more expaﬁimental

i
A
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work will improve the situation in the future. The use of existing
potentials in computer simulations is not withoubt purpose, howzver.
They do provide some significant correspondence to those for particular

real materials and can certainly provide a general view of the possible

’ nat‘ée of a crass of real materials. 1In addition, disagreements betw=en

the model results and real experimental results, which are inevitable at
the current level of understanding of this subject, can provide an
' , . .
' indication of the direction in which the potentials should be altered in

order to more accurately model real materials.

3.5 Discrete Atomic Simulation - Boundary Schemes

This section describes in detail the typeé of boundary condition
.schemes which have been used in atomic simulations.' This is an
important aspect ofifjbomputer model, especiélly in the study of sqlid
defects which generate large stresses suéh as crack tips. The previous
chaptér contained a brief descriptién of the boundary problem for these

types of studie;} It consists of specifying the behaviour of the

coantinuum area and of the interaction betwsen the continuum and discrete
-

areas in the model of Fig. 2. t

2 most primitive type of boundary sqheme applicable to the

study off dé¢fects in solids involves setbting the continuum td the
L -
v ) P

.positio det ined.by the linear elastic salution for the defect which

[

is being s ied. Because single crystals of materials are usually not

Y opic, anisotropic solutions should be uszd. An example of these is

that for a crack tip in [62]. The continuum carries the embedded atoms

L4

1
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with it to new positions but there is no‘further interaction between thé
discrete and continuum areas. These rigid boundary conditions were used
in some of the earliest studies, [43,64,68,69]. ~The resulting solutions
showed anomalies. %or examp}e, the external stréss.needed to move a
dislocation 3p' rac appeared to be many bimes.that observed

experimentall;?r Flexible boundary schemes were introduced to\make the

models more realistie. These provide a mechanism by which the discrete
and continuum areas may interact. 1In order to allow this, the forces
applied to the atoms embedded in the continuum by interatomic bonds to

their fﬁee neighbours must be able to distort the continuum.

Several techniques have beep used to get the response of the
continuum to these forces. Tae displacement field of the continuum may
bé'described by a set of pigher order linear elastic solutions for the
defect being modelled. The potential enargy of the complete system is
then min;mized with_;;spéct to the posit;;ns of all free atoms fand with L“\
respect to the magnitudes of these higher ‘order terms by a.variational

technique. This method implies that both the atomic and cont inuum
- . L]

degrees of Treedom are treated identically in the solution procedure.

v

Sudh an appqoach is po ip}e'for—fggy problems. Vacancies and
intesﬁitials have been ex. ined this way by Jonnson, [36],
dislocations, [63], and c; ek tips, [75], by Sinclair. The nunmber of
terﬁs that has been used to describe the continuum ranges from

one, [36], to six, [75]. The effectiveness of this.method depeﬁds on
how well thé displacements of the continuum can be described by

functions of this type. This will be examined.later in this thesis fﬁ}



\ ,

Alternatively, "the continuum may be conﬁidered to be an iafinite

the case of 2rack tips.

solid w{th a hole which contains the discrete region. ‘The force on the
embedded atoms is considered to be distribuged over the inner surface of
this hole. The fesponse of the continuum is obtained from linear
elasticity by means of Fourier series or Green’s funotion expansions for
the 1éads and’displacements. Examples of the former are [UU4] and [45],
R . .
for dislocations with eight terms in the'series; of thne latter are [U45],
for disloéations and [76] for crack tips. Dmplexity of this
approéch and correpondingly high computer cost, implies that the
responss of the continuum can oniy be calculated at relati;ely long time

. Iintervals compared to that of the free atoms. This can cause stability

problems, [44].

The boundary schemes descriéed above have several
disadvggtages.-&mong these a;eﬁbﬁéir analytical Q?Aplexiby and the
difficulty of accounting for unusuzl geometries and non-linear effecps '
in the continuum. .This Wwill be discussed more fully later in this

thesis when the new boundary scheme presented in this Kark is described.

.

L

3.6 Discrete Atomic Simulation - Craclk Tips

The boundary condition scheme presented in this thesis is
apptied to the problem of the crack tip in bee a-iron modelled by the
Johnson-I- potential. This section contains 2 review of previous work .

Which has'been done on the simulation of cracks in solids by .atomic

»



level comﬁuter modellipg.

The earliest simulations of cracks used rigid boundagy
conditions. None of these could show crack propagation even under very
high loads. The first appears to be the work of Chang: [64]. He
nmodelled. two dimensional cracks in bee and fee iron as vécancy sheets.
Tnis is probably unrealistic and al} later models assumed the crack to
be a cleavase plane. BHe atudied céacks of various orientations. By
comparing the shear and tensile, "stresses™ (defined in terms of bond
forces for the discrete lattice) in a manner 51milar to that of Kelley,
et al, [i4], he felt that the chance of the opack spontaneously blunting
by emitting dislocations was high for all crack planes except (001).‘ No
such blunting could be dbsérved in the model, however. ngstudied {001)
plane cracks with [010] erack line direction, as well as cracks on other

planes in the bee material.

Gehlen and Kanninen,i[65], studied this crack using the
~ Johnson-I potentialégnd, again, ;igid boundary conditions. They assumed
the crack'éo bé a true.cleavage between adjacent crystal planes. They
found, élso, that the crack would not propagate. By means of an epergy
argument, they estimated the critical stress intensity factor, kc, to be
about 1.13 kg, where k. is-the Griffith stress intensiﬁf factor
predicted by continuum theory for this case. How‘evreq;:s because of ¢

inability to actually observe the crack propagating under stress, it

impossible to confirm this value. . -

Gehlen, et al, [66], allowed the lattice of the previous crack
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to vibrate in a manner which simulated the effects of thérmal motions of
the atoms. It was thought that ﬁhis thermal activation might be an
- . \\

important effect and that the ecrack shéﬁld propagate moﬁa\gaeily under
this condition than near absolute(ziyo7—which the previous simulations
had considered. They found, hz:iyér, that again no crack.propa;;tion
could be observed. It‘uasllong felt that the effect of jogs in th
crack face coula also be important in promoting crack propagation. The - ' .;
stress needed to move such’a joz parallel to the erack face should be
considerably smaller than that needéd to cause the crack to extend as a
unit perpendicular to its direction. Xanninen and Gehlean, [67,68],
modelled suéh a crack. Because of the much larger number of free atoms
neéessary in such a three dimensional model, compgt;r césts for such -
models are quite ﬁigh nd, the;efbre, such studies are rare. They did
find that the Jjog coul:\ﬁbve easily at stresses ounly slightly greater

- than kG. The question of uhe;her or not such jogs were necéssary fof

crack propagation, however, remained QT @
. 4.

N /’——_V
The other materials in which cra have be?ﬁ computer modelled

are the diamond structyre crystals such as silicon. Sinclair and

Lawn, {691, gerformed Yhis work for two dimensional cracks with rigid

boundary conditions. Again they could not obtain crack propagatiom
. ,‘ .
Y . | * \
. .-—/ .- : \
3 /”—— The first st&QI to obtain crack propagation g#s a result of the

[ action of an external stress appears to be that of Hsien and <{

ot

Thomson, 170]. They used a model wh

a very severe simplification
of a real material. This was a sguare, twd dimensional lattijice with

bonds having both stretching and/bending stiffress. The pqtentfil for
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these bonds was quadratiec, ie. the force-disgance relation was linear, -
with a sharp cut-off. The model used by Hsieh and Thomson differs from ik\‘
those whicﬁ havé been described previously in that they used a “lgttice
statics™ model as opposed to the "molecular dynamics™ type of model

already described. The lattice stétics technique was developed as a

means to calculate the vibration modés'and frequeqcies in crystais for

use in analyzing neutron agg x-ray diffraction data. It involves -
writing the equilibrium equationg for the atoms in the lattice and

Fourier tranéforming them into a space of ﬁavenumbers representingu
sinusoidai components in the hisplacements of the paréi&les. The )
equ;tiqns are soi?ed in the wavenumber space dﬁﬁ transfgrmed back into

real space to obt;in tRe solution. This method has the advantage that

the final equations are much more egsily §olvgd than those of molecular
dynanics models becéuse they are ?eweé in n bgr or, at leé;b, uncouﬁled

to a large extent. The algebralc work invélved in setting up the
equations is large; however, except for the siﬁplest cases. PThe method -
does permit the model to extend ﬁo infinity amd, as.a result of this,

the boundary problem ofumolecula} dynamics models is'elim%gg;ed, gndih\h%_ﬁ
crack propagation could be observed. Cracks in this model were stablg/
over a considerable range of stress igtenéfty factor§7/;,.around the

Griffith value. Hsieh and Thom3on called this the lé%tice trapping

effect, and the limiting k values, the lattiée trapping limits. The:

ecrack will extend if k >'k+, the uppér limit, and recede if k < k , the

lower limit. The ratio k+/k could be as high as é.5 in thiﬁ‘model. A

molécuIar dynamics model using a similar interatomic potentiii o that
of Hsieh and Thomson in a triangular two dimensional lattice is given by

i “ , - -
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Ashurst and Hoover, [71].

Lawn, [72], using the lattice trapping concept,.analyzed the .
problem of slow cracg growth or "crack creep". This is the phenoﬁenon
observed in many m;teﬁials‘bf 516w extqnsioﬁ of a crack unde; constant
ﬁtress until it becomes large enocugh to precipipate a catastrophic _ C:dy

failure 6f the material. Lawn assumed that cracks would propagate bf\. v
“thermal and chemical activation oVer the lattlce trapping barrier He

got reasonable correspondeqpé between thlS thpory and experimental &
- results on the frac@gpe‘of synthe c sapphire in a water vapour

environment but’at the expense of lumping many unknown\ansf%nts into

one empirically derived.one. This made an experimental determination of

"the size of the lattice trapping limits <impossible.

Some -later experimenps by Wilkins énd Dutton, [73], on the rate
of closuré of microcracks in glass during anneiling indicated that i
lattice trapping limits might be even wider than.thoaeﬁ%redicted b}\'
Hsieh and Thomson, [70]. Esteﬁling, L7431, extended their model to allow
for some non-linearity of the iptefatomic forée‘law and found thét_a
more.réalistic force law than tﬁe sudden snapping one of Hsieﬁ‘and -

Thomson gave narrower lattice §rapping,1iq}ts. Sineclalir, [75}, ex%ﬁpded NG

his model of silicon to include a flexible boundary scheme‘using higher

order elasticity solution erack tip terms to describe the behayiour of

the cohtinuum. He used a more realistic non-linear ford%/law han that 'c\'-
.

used by Hsieh and Thomson and .found the lattice brapping

-

such that k,/k_ = 1.1 to 1.48
N : : > f
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calculations and, as-3 result, the difficulties of the lattice staties

approach to these problems hés practically eliminated it as a viable

The irén crack has'proven more difficult to model-. arently
‘because the materidl is less easily frac&?red and becaugp(iipthe

possiﬁle pomplicghion of disloéation nucfeation at the cra:L tfﬁ'whiéh

is very gnlikely in silicon. This méans‘that the straiqs in the

édntinuum region chn(%e quite largé and the modelling~of the continuum
Secomes very importa;é"in determining the Eesults:‘ Gehl;;?;gg—gij5fﬁﬁja -
applied a flexible boundary scheme tolthe (001){010] iron crack. This‘ q

involved modelling the crack as'a parallelipiped of dislocations and

using this to desc;ibe the behaviour of the continuum by Green’s

‘ v

functions. Because of tfe complexity of the equat%?ns involved, ;

isotropic elasticity oﬁy was used although tpé
anisotropic. ﬁg;ngiéggi model, crack propagaﬁion ould be observed at a
critical shresé inbensity.faetoriof about 3 Hs' The ;réck propagated
along tﬁ;‘(101) plane, however, rather than the (001) plane
experimé;tally g£served. Gehlen, [77), later extended this model to .
inc}hde anisotroplic behaviour of the contipuum. , (001) pléne fracture

could then be observed at k = 2.78 kg Pé{sonal comnunication with this

p,'hoyever, indicates that they now—feel_that.there may have been an

~

»

v .

analytical mistake in the construction of 3 model and they do not now

have great confidence in the results.” Taus, the difficulty of

* constructing suit e bounda:} schemes for these problems and the

‘ w :
complexity of the current.approaches is evident. . Thig dif%}culty is

-
-~ . ’
. x L

AN
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related %o the very high level of strain in the vieinity of the erack
tip,'as opposed to that for other defects such as dislocations. This

means.that the area of crystal significantly affected by the non-linear

. behaviour around the crack tip extends well beyond the discrete regions

that can be accsmmodated in present computers. This indicates the neea
for a boundany scheme whigh is both moré accurate and easier to

implement than the ones which have been used previously so.that work in
this area can continue. It is hoped thét the scheme presented in this

thesis will prove of some use in this work.

This literature survey has provided an overview of the area of
computer modelliné‘and of mierostructural fracture mechanics theories.
In addition »more detailed information has been 3iven on modelling of
eracks and the difficulties which have been enco;ntered iﬁ this area.
The fracture behavicur of'tée bgz-metals has also been examined in some

detail. This should provide sufficient background for a study of the

wpPk in the remaining chapters.

[



4 SOLUTION METHODS COM.PARISON .
—_——

Most atdmic leyel computer simulations which have been done to
date are static simulations, using t@e'nomenclature of Chapter 2,
ie. éhey are concerned only with the equilibrium state of the crystal
containing the defect being modalled. A literabture survey indlicated
that several techaiques had been used to solve the squations defining
the equilibrium position. In addition, various integration schemes had
been used to solve the equations of mokion of the system in dynanic
simulations. The effioienéy oI~ solution method used to solve the
model is very important since the limitiné factor in work of this type
is computer cost. If computerhcost could be reduéed, it would be
poésible to solve, 1arger, more’ complex models which wéuld impfove the
accuracy of the results. In spite of this, there appears Lo be no

systematic comparison of the velative m3?13§ of diffesent solttloéiD

methods for these'problems in the 1iterahure. This chapter presents the

results of such a study with emphasis.on solution methods for static

simulations. ’ : . "i}\

Tnree solution methods are in general use for stdtic solutions
and they will be referred to ﬁeré as simultaneous quenqhing; individual
quenching, and the conjugate gradient method. All start with the model
near the final equilibrium position and continuously force it closer to

equtlibriﬁm. The starting position may be sep by uéing the linear

elastic solution for the defect being analysed, for example.

60
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Simultaneous quenching, [U43], invqlves‘inteérating the equations of
motion of the model unéil the total kinetic energy of the system reaches
a maximum. At this pﬁint, all velocities are set to zero and the
procedure is then re;eated.- The procedure of setting the velocities to
zero is known as quenching since, at the macroscopic level, this is
equivalent to"sqddenly dropping the temperature to aﬁsolute zero.‘ Each
of tbpselquenching operations rémoves some excess energy from the sys%em
and,“ﬁhus, ghe system continually appFoacheg*equilibrium. Individual
quenching, [usj; islsimilap to thisrexaépt ehat each atom is
iqdividﬁally quenched, or stoppggﬁwyhen ité kinetic energy is a maximumi_ -
The coniugate gradient methoa,'[Ts], is an optimization technique which
is used to find equil#brium positions defined as potential energy
minima. Johnson, [36], used a simpler Apbimization rouﬁine for simple
crystal defects but general experiégce with optimizatidn
procedures, [79]), indicates that Lhe conjugate gradienf method shoula be \).
better for complex problehs, s0 thnson';\mebhoﬂ was not considereq. ‘ | )
. . ¢ /
e * Tis chapter presents a systematic comparison of the three
- statie sélutibn techniqﬁes deécribed above by examining bhg solution
time Fhat was required for vébiogé problems.“Prior to this; a |
comparison is presented of several inﬁei%ation schemes‘which may-bé used
" to solv; the equations ¢of motibn of &he mégel._ This is necessary since.
both quéﬁching procedures use bhesé 1ntégr;tors and thg makimum time
steb which may be used with.them determines how w2ll the quenching
procedures will compare to the conjugate gradient scheme. Since ghis is

b the primary reason for this test, elaborations such as éuhable
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integrators, [80], or vi;}able step sizes were not considered. 1In spite -
of this, the results should be of interest Tor choosing an integration

scheme for use in.dynamic problems as yéll
Lalubir

4.1 TIntegration Scheme Tests

v
ats

f

% The pertinent quantity to be used in comparing the relative.

M -~

+  merits of various integration schemes is the number of interatomic fo;ce
e&alu per unit model time, since almost all the computer cost is
ihvo ved In the calculation of these forces, Alternatively, the inverse .
of tﬁi§ quantity,mh/n, where h is the length of the time step used in
'bh integration procedure and n is the number of force evaluations per

\"'v-»— =

v ;/,jﬁ ep, may be compared and the computer cost is then inverssly

i ' . ' - : i
proportional to h/n. For dynamic proplems the limiting factor is the

accuracy of the integration procedure, which must be wihhin the limits
‘of accuracy desired for the simulation. When the integrabion scheme is
used as part of 2 quenching operahion‘forustatic solutions, accuracy is
not important unles; it is very poor since any errors iﬁ the model state
introduced by the integration scheme will be elﬂminateq, just‘as the
initi i error is eliminated, as the model approaches equilibrium. This

can seen from the results presented later which show that the rate of

ﬁ:) decrease of 3ystem enﬁfgy as the system approaches equilibrium is about
’

Eoitimes the possible increase due to integration errors, even for the

et siw nn s

: worst case of solution scheme and integration method. The limiting
factor on h/n for static solutions ié;‘then, the system sfability limit

regardless of accuracy. ' -
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The relative merits of different integration-=schemes are problem

dependent, [81], and very'difficult tcj-determi;le analytically. As a
. ~—

result, comparison must te-made by numerical experiments and several

tests of this type are available, [81,82], from which some Zeneral

conclusiens may be drawn. No tests'appear to have‘been published,

however, on an atomic simulation problem which has a-large number of

‘degrees of freedom and a range of small displacement elgenvalues and

large displacement. non-linearities typical of problemd of this typa. R
Beeler and Kulecinski, [83], describe éueh a comparison but it is only

for a simple, one degree of freedpm harmonic oseillator. The degree to‘

which suéh a test is applicable to the general atomic simulation problem -

is questionable.  Several schemes have been used in these simuiations,

P

by far the most common of whiéh is.a simple 2-step difference

formula, {49]). This was compared to several others selected from the
literature and the results are presented below. All the integration

schemes tested are summarized in Appendix A.

To select.methods which may be applicable, the characteristics

of the model being solved must be considered. The differential

““equakions to be Solved are not stiff¥ since the time sgale of interest :

i1s that of the smallest EIme constant, S0 this is not a difficulty fhe
equablons are purely second order with no first order components, 80
only thos= mnthods ;;;;loped pargacularly for this type of problem wiil ;
be tested. Most published comparisons are fbr flrst order differential

equations only but the results are probably qualitatively applicable to

similar second order problems and these will be usad as the basis for



64
f -

selection.

//Aéf/’:k\\ - As stated above most discrete atomic 3imulations have used a

A Y

LY

simple 2-step difference Scheme. Many other simple difference schemes
are possible, all more elabdraté than the 2-step, and a S-step éne was
chosen as repre§entative of this class, [81]. The other main clésées
are the Runge:Kutba and the predictor—correctdr methods. The geﬁeral
conclusiénaiqf‘Lapidus and Seinfeld, [81]; for the Runge-Kﬁtta methods
afe bhat; f%f thé'accuracy level need%d here, which is relatively low
compared to that ﬂeeded for many other problems, the accuracy at a given
valué of h/n is nearly independent of the order of the integration
scheme used (note that this does not refer to the order of the
differential ‘equation). Similarly'ﬁhe stability 1imits expressed as h/n
are also ﬁearly independent of order. As a result only one Runge-Kutta
method, of 3rd order, was selected for the test, {84]. Lapidus and

h

Seinfeld aiso concluded éhat, of_the pbedictor—correcﬁor methods, the

Adams aethods are best in general. The Adams methods are chgracterized .
by thé ndhper of steps uéed, P, and Ehe’number of ;terations of the
corrector, q. A compérison of different Adams methods on several

pro ems,'[82], led Hull and Creemer to concludé that as ; incréésed,

: A
the error 4nd stability decreased for a giv¥en computer cost. Thus }t

" would be expected that a high b method would be better for accuracy in

dynamic problems, while a low p would give greater stabilitf for statice
probléms.- The effect of changes in q was less consistént, with g=1

better for some problems and q=2 better for others. A p=U and a p=6
~ ° -
method were selected and both were tried with q=1 and 2. The two Q=2
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schemes were not found to be compétitive in either accuracy or stability

\m

when tested on the problem described Below and so will not be considered

further. The Nordsieck, [84,85], modificati&n of the Adams methoa was
used since it pernits simultaneous possession of the atom positions and
their derivatives. This is useful-in the individual quenching static
spiution method since the timé'at which.an atom reachés its kinetice
energy maximum can then bé/;etermined ag the time at which F-é becomes
negative, where V is the aEpm;s velocity and 3 its accelerétion. Also
changes in the step size are easier to implement than for the basic
Adaﬁijzthbd and thié may be 6f use in somé pfoblems, although it is nqt
puréued heré."The p=6, q=1 Nordsieck method has been used for atomic
simulations, [83]: Finally a hybrid sclieme developed especially for
high éfficiency with second order equations in problems of
agtronaufics, [86], was tested. Tnis has characteristics of both

LIRS

Runge-Kutta and predictor-correcbbr mehhods. .

The tests were performéd on the model crystal shown in Fig. 6
'whicp represents two planes of atoms in bcc';-iron. ‘The atomic motions
ére réstrained to iie in thé§e plan®s so the material méy be Eggsidered
to be in plane stéain. The interatomie pqtential used is the Johnson-I
potential, [59]. The time stepAlengths used could be Scaled for other
' materials to'a first approximationlﬁy.VE7§ vwhere m is the atomic mass
aqd k is some effective spring constant of thelbonds. Some
experimentation may, ‘of course, be.necessary. The size of the models

used vin atomic simulations varies over a wide range, but the one used

Pere is typical of the, smallest which have been used. It_coptaihs 194
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T

atoms in total of which 128 are free to move. The 66 boundary atoms are
rigidly fixed at the positions needed to apply the desired bandary
loads to the model. In actual simulations scome form of fle%ible
boundary scheme must be used to get accurate results, but as explained
in section 3.5, these either update the positions of the boundary atoms
only at long time intervals while holding thea fixed between tﬁéée
updates, (44, for example], or the boundary mﬁtions are defined by other
kdegrees of freedom which are treated in the samg way as the atom
positiqns, [75, and the finite element boundary conditions presented
later in this thesis, for example]. Thus the computer time needed for a
model wiph rigid boundary-conditions is represantatije of that for a
model witﬁ flexivle boundaries, sg that the latter was not considered in
this teat. The time for one evaluation of all interatomic forces for
.the model of Fig. 6 was about 0.6 seconds on a CDC 6400 computer. This
time is .proportional to model size and to the ;omplexity of the
interatomic potential used. More complex potentials would be desireable
but they have been restricted by computer éost in the past. However,
sizes more than 10 times larger than that tested he have been used in
some cases, [75]. It is felt that changes in siég(:::hld notiaffect the
rel;b%ye meéibs of various integration schemés or .static solution

methods although no tests were made of this. Future work could test

this point..
1

The integration schemes w2re compared by checking their
stability limits and the 2ccuraey of energy conservation which they
majintained while simulating the thermal, vibrations of the model of

-

N

\
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ﬁig. 6. Energy conaervatioﬁ was ch;cked since it i3 a single number
characterizing the whole sysﬁém accuracy, it is simple to evaluate, and
it is often the physical propéfty-which is of primary interest, for
example in thermodynam;c simulations or for the evaluation of saddle
point eneﬁgies for defect motion. For this test, the atoms were first
displéced from tﬁeir-equilibviﬁm positions by nanally aistribubed
amounts such that the extra energy added go the system was equgl to 1 2aJd
(1 2ad = 1.E-18 J). This is approximately the energy the crystal would
possess at room temperature. It was gh;sen as being typical of the
enérgies which might be examined in a thermodynamic analysis, as‘uall as
the energy excess which might be presentin a maéel during the course of

a statie solution. For instance, it is about twice the excess energy

‘which must be removed from the crystal for a crack problem at two times

the Griffith stress intensity factor. The factor of two in énerg}
should account for the presence of some bonds which are very highly 
stretched in such defect pfoblemé which dc not apd%ar in thermal -
vibrations.

The simulati&ﬁ‘was caryied out with eachvintégration scheme for
~ ‘ S——T . : :
a model time of 3500 fs (1 f3s = 1.E-15 s). This time was chosen as the
time needed for very accurate stabtic solutions. This can be seen from
the reéults of the static solution tests pressnted iater. This length
of time is also‘enough to permit\a shear wave to propagate about U0
lattice parameters and;'since the speed of crack propagation or

dislocation motion is of this order of magnitude, it should be

sufficient for dynamic studies of defact motion as wsll. For shorter
- 4
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times, the stability limits may appear to be extended slightly since
some cases appeared stable for several hundred fs before finally
diverging. ch int ation scheme was tested with step sizes of 3,‘6,
9, 15, 21, 30 ang;ﬂ5/fs_a£ leéét. The rat ‘of increase of energy error
with model time was roughly 1inear for almost all cases. The few
exceptions were isolated and did not affect the relative standing of the
methods involm%s., Thus compéring‘errors at the endpoint of the ”

»
simulation is sufficient to rank the methods. This error is preseq&ed

in the form r/(KT) vhere

r = eneégy error at the end of the simulation,
K = maximum system kinetic energy = 1 aJ, and
- T = time of simulation = 3500 fs.

. R

This is plotted against the measure of computer cost, han, botﬁ on

logarithmic scales, in Fig. T.

From Fig. 7 it can be seen that the p=4, q=1 Nordsieck method
has the greatest stabllity and therefore shou%ﬂ be best for static
solubions. The commonly used 2-sbep difference formula is next best.
It is, in fact; more accurate than the Nordsieck method over most of the
range of step slizes bub.as stated earlier this factor is negligible fér
static solutions. : In addition the Nordsieck m;thodigiisi.bﬁiﬁvelocity
and acceleration of the atoms simultaneously while they are only//’__\\\5” '
available half a stepilénghh apart for the differqg%e scheme4 Th

..\,_/ s

xfﬁzkes programmning indiﬁidual queﬁching static solutions =asier with the
v/ ‘ '
/ ' ¥ordsieck method. The Nordsieck scheme does use slightly more memory

’
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Figure 7.
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than the 2-step diéference and this may be a problem in some cases. The
5-step difference and the'ﬂunée—ﬂhtta methods are also acceptable Hﬁile
thg hybrid scheme ang the p=6, q=1 Nordsieck, which has been used in the
p;st Eor these simukgtions, ére significantly worse. St;p sizes which
have beeﬁ used in shmulationé are not always stated in published work »

qu the largest is ahparentlx;ﬂ? fs, [43]5 used in.a gislogation proaiem

\?:vthe 2-step difference scheme: This 13 very near the stability limit

found here for this ﬂethod and confirms the general” applicability of the

results for'dﬁfférent'problems. ) ;

The bept method to be used ;Br a dynamic analysis depends gn the
-accurécy level needed. An order of magniﬁudé estimate for this may be

made as follows. Sﬁppose the material properties are knoun‘té 1% and it
: ;s desired that the ;ntegration schenme acéuracy-be comparable to this.

If.r/K = 0:01 at a time of 3500 fs, then r/(KT) = 2.9E-6 fs—l. At this
acéﬁracg and higher, the ¢k6, q=1 Nordsieck and the 5-step difference

_ schemés are best. At }owér accuracies the 2-steb difference becomes

best with‘the 5-step difference véry close. . The others are generally

. within a factor of 1.5 of the best methods in computer cost except for

the Rungé—Kutta which is as much as five times costlier at some

accuraciesf_((
b

. . In c;ﬁclugion, if a single method 1s desired for s;atic and
fdynamié ;nélysea; thé;2¥step éf 5-step dlfferenée schémes are probably
.beét. _For static analyses alope, the p;n,'q=1 Nordsieck 'is slightly
Ué&ter than thg Zésteﬁ,difference ﬁethod. “'The inhegraﬁioa ﬁime sﬁgp

¥

used must-be less than 20 .fs for stability for the NordsTeck case T

. omt

'
e
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w

10 fs should provide a suffiecient safety margin to eﬁsure stabllity

under all conditions. No instabilities were observed using 10 fs on.a - \

L

wide varietf of problems such as those presented later in ﬁie thesis,

whiif_i?;tablility,did occur occaslonally when 20 fs was-used, ﬁnd once

»
=

with 15 fs. For dynamic analyses, one of the difference schemes or the
p=6, q=1 Nordsieck is best depending on the accuracy needed. The step
length for any dégree of accuracy can be read off Fig. T and scaled for

other materials as mentioned above.-

4,2 Static Solution Scheme Tests

- In this section the three static solution methods will be
compared. The model used is the same one used fon-the teét of
integration schemes and shown in Fig. 6. The computer time required to
approach équilibrium was determined for four probiems. In threé of the
problems‘hhe boundary atoms were fixed at the perfect crystal positions.
The free atoms ware given 1nitia1 displacements which were sinusoidal in

form:

u

A sin(mwx/d) sin(mwy/d) ¢ _
. {16)
v

B sin(m wx/d) sin(m11y/d)
vhere (u,v) is'the displacement of the atom at (x,y). B was set equal -

to A/2 30 that the displacement vectors did not lie along a high

oy -

' symmeé?y axis such as the £110] direction. The value of A was chosen-so

that the- hotal eﬁ%rgy”which had’ to be removed from the crysbal uas 5 aJ. ﬂ%e
Thia is larger than the energy excess in most static solution problems

so phat the efficiency of~thg 301ution schemes over a wide range of

/ - ' . : ' T

-
i
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energy levels could be observed. Values of 1, 2 and 3 were used for m.
This form of test problem was chosen so that the effect of different

spatial frequenéies in the initial position errors for statie problems

could be determined. Also, since the final position which was sought

’

' was the perfect crystal position, no problems of alternate minima were

encountered which can be seen in more complex problems. The.final
problem on which the solution schemes were compared was é crack tip
problem. For this, the boundary atoms were set at the positions
specified by linear elastic fracture mechanics, as were the initial
positions of the free atoms. The system was then relaxed from this

position. The energy which had to be removed was about 0.063 aJ for a

~

stress intensity factor equal to the Griffith value. ) ‘ . )
. . “
The conjugate gradient method had to be modified in one way from

that presented by Sinclair and Fletcher, (78], in order to get efficient
convergence. It was found that the unmodified method hung up at
n;n-equilibrium points which it only sloﬁly passed. .To avoid ﬂ
series of conjugate directibns had to be resbaﬁted pericdicglly, much. . - \
more often than suggested by the tSIerances of‘Sinclair apd Fletcher. A

restart every 10 steps was satisfactory.

-
Il

' The results are shown in Figs. B to 1. Each figure gives the

results for one of the test problems. “The

is a measure of comput : is is expressed as the number

©rizontal axis in each plot

of interatomic force evalnetions made >~ The integration scheme déed for

the two quenching solution methoda was the p=l, q=1 Nordsieck.with a

time step of 10 fs. Increasing thé‘step length 'would proportionaily
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decreése the-computer time neede& to reach a given level of accuracy foé
the two quenching metheds thus makiﬁg them more attractive vis-a-vis tﬁe
éonjugabe gradient méthod. The test of ;ptegration schemes described
above.indicates that this.could be done although by Ei?p than a factor

of two. To do so would remove the safety factor on the stability limits

~of the integration and so would not be adviseable.

~

The energy gfror at a'givén point in the solution is expressed .

as (C~E) where !

r

Cc potential energy of the system in its current

configuration, and

m
T n

potential energy of the system at the final (ﬂ\_\

“equilibrium configuration.

E was determined to sufficient accuracy from a very accurate solution
for each case. The energy e?rof may also-bé expreséed as a temperature.
This is the temperature which ﬁould coyrespond to the energy excess in
the s}stem if' it were evenly distributed through the crystal.v The
temperature of a system such as that considered here is given by
statistical thermgdynamics as a function‘of the Hamiltonian of the
system,, £87].* No attgmpt was made to calculate this for the present_;
ﬁBdei. Experiméntal £;formatiod for real iropn is readily available,
however, and «nce the J,ohnson'-i potc_anbial has many proparties similar
to those of iron, this should be sufficiently accurate to ﬁ;dicate the

order of magnitude of the energy in the system. Figure J% shows the

specific heat and enthalpy as a function pf temperature for real
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" Figure 12. Specific heat and enthalpy of iron vs temperature.
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a-iron, (88,891,

Part (a) of each of Figs: 8 to 11 is a plot of this energy error
in the solution against computer time used. Part (b) of each figure is

a plot of the sum of the squares of the forces on all atoms, Ii’-"l2

Aagainst computer time. At equilibrium, these should-both be zero of

course.

- . .
"The results show that for all cases, the errors decreased

approx@métely exponentially with computer time. This knowledge énables
a prediction to be made of the time required to neach a given accurac&
ieveL once a solution has been started. This may\he)useful in -
schedul;ng. In ;adipion, for the §1nusoidai initial displacement
problems, the modified conjugate gradient method was best, followed by
the simultaneous quanching and the individual quenching methods.

Inereasing the integration step size for®he simultaneous quenching

method could make it more efficignt but not 30 much so that it would

>bpcome beést without introducing the possibility of numerical

instability. The poor performance of the individual quenching was I/\\\ﬁ

surprising in view of its widespread use. It may do much betber 1f more
than one atomic mass were present. Thls is a point which could-be

- -' :

examined in the fyture. The unmodified oonjugabe gradient method

reached stages in the solution at which the change in position of the

System during each step becams very small. This causes the‘plateaus in

the energy and force curves which were not passed\in‘gh! time studied,.

For each method, the time to reach a given accuracy was shortest for thq
highest spatial frequency, m=3, and largest for the lowest frequency,
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m=1. Thus 'if any trade-off were possible, initial conditions should be
chosen to minimize the large spatial frequencies in the initial érrors.
This may be of. interest Yo proposais, *[48], to combine the molecular

dynamics models considered™here with the lattice statics models

described in section 3.6 . The changF in solution speed as the spatial

frequency changed was 1gast for the modified conjugate gradient method

and greatest for the individual quenching'mebhod.

r For the crack tip problem, the curves are more complex but the ’

same order of efficiency holds for the solution methods so this result

is probably widely applicable.  The plateaus in the unmodified conjugate

gradient curves are again sden. The force magnitudé plot of Fig. 11(b)
shows that the plateéu was passed and that a fairly accuéaté‘eqhilibrihm
position was achieved at about 320 force evaluations. The reason that
the steep drop off w;s not observed in the energy plot of-Fig..11{a) is
thét the equilibrium position whi&h w3s found by this method was
different thén,th;t-founé:bybthe others., The enevgy'diffeience.between )
the two equilibria is about 0.00017 aJ. If spread thﬁough the entire

crystal this en'er-.gy would represent a temperature of about 15 K." The
. - . ‘

. curves for the other methods seém_to have kinks at this point indicating

that thef‘too may 5ave”fé{F this alternate equilibrium point. This
result ﬂould seem to confi;m the sbate&ent of Bgeler,'[30], that "of all
the methods avallable for computing defect eqﬁilibr{;m configurations,
the artificial damping djnamic'ﬁet;oq [tﬁe &uenching methods used here]
is the only one which will cebbaihly converge to hheztswesb.energy

configuration and not to some 1ow-lying mebastable configuration.” That

&



82

L) .
this is not generally true, however, can be seen for the crack problem

at a stress intensity factor of twice the Griffith value. The crack
. —
(ﬁdoes not propagate because of the lattiée trapping effect and the r}gig\\‘\,‘
boundary conditions. The accuracy versus computer time c;rves are /)
\\similan to those already given and so will nob be presented. In this’/,
case, however, three different equilibria were found. The lowzst in
this cése wWas fopnd by the two conquate gradient metho&s. uThe
simultaneous quenching method conve;ged to'an equilibrium configuration
0.0005 ad (35 K) above this and 'the independent quenching method to one-
0.0136 aJ (50 K) abé;e the conjugate gradient sol&t@on. _Figure 13 shows
T twn of these equilib;ium ﬁositions aqﬂ the unbroken bonds in’each case.
The differences can he seen mainly in the area between the crack tip and
the lower right corner of the modei. Taese are rgal, seperate
equilibrium positions made possible by the presence of a non-linear
interatomic potential, and they are nét merely artifacts of thg sdlution

. I o \" e
. method used. The presence of these alternate equilibria-may be : .‘

important in comhgper simula;lon studies: Saddle poiht ehergy_for crack-
propagation and thermally activated defect motion fbé example, may be
5i§n1ficantly different for the seperate eduilibria. No solution method
apparently can be counted on to give héue lowest energylconfigurations,
The problem consideréd here is of courseﬂ; simble one and cannot be
considered represenﬁative of g true crack'tip gituation. The main

problems are the small size and the rigid boundaries, but improving

these points wgquld increase thé number of degrees of freedom and

2

increase the region of cryatal affécted by the non-linear crack tip

field, so that thWe number of alternate equilibria possible may increase.

s R | :
' ) g . T~

- - -
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Alternate equilibria at twice the Grit‘t‘ith stress .

intensity factor.
(a) » modified conjugate gradient swtion
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Figure 13 (cont.) Alternate equilibria at twice the Griffith stress
intensity factor. .

{b) individual quehéhing.solution -
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The fact that alternate equilibria are so easi[y‘broduced even for such

A

a simple problem.as’thié-indicates that they may be more common than 1is

-

usually considered.

The final point which will be considered is the relation betwsen

the eﬁeggy‘error, (Q—EY, and the sum séuare of the étomic forces, |F|2,
as the system appéoaches equilibrium during a sgatic solution. The
former quantity cannot, of course, be known before the solution is
completed since- E is the final equilibrium energy, but the latter is
easily calculated at any time and it has in fact been used, [78?\b0
determine the point at which the sglubion may be stopped. It can be
used with all solution methods considered here. Other stopping criteria
involving the.useiof kineﬁic energy iq the system are more commoé for
the quenching méthéds; [43;u5],.but_tﬂeée cannot be used for the
conjugate gradient scheéeQ Tﬁ% ;}itéria énd.the values used as
tolerances in them have apparently been chosen fairly arbitrarily ia the
past. Fiéure 14 is a plot éf {C-E) versus |Fl2 for all éolution sch;ﬁes
on all problemé tested'hergf A point is plotted for each after e&ery 20
force evaluations. It can be seen that the force and energy are very
strongly cor:elated'for all cases. If a single Iﬁberat&mic bbgd is

G
represented—4a a first approximation by a linear spring, we would have

EA—

*
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e = £(2s) . (17
where R
e = potential energy in this spring, ’
f = force in the spring, and '

s = spring constant of the bond.

If all springs were similar, the total energy above the equilibrium
state and the sum squa%e of all, forces should behave in the same way.
Figure 14 contains plots of the above equation-.for 5°s of 39.3

and 15.7 N/m. These are the spring constants for small displacements of
the nearest and sscond nearest neighbour bonds in the‘model used here at
their'perféct crystal lengths. This can only be a very rouzh
approximabiQn to the true situation as a system such as the ahe used
here approaches equilibrium of course. In crack problems for exémple,
there is a general stretching of all bonds'and a corresponding decrease
in spring constant since thgvbonds are non-liqear. Also, the fact that
all spr;ngs are not flike even if no changes occurred would mean that no
sfhgle value of s could characterize the system for zll energies.
Nevertheless, the correspondence betwzen the observed points énd the

curves is quite good even for the crack problem. Tnis ability te

estimite bhe‘actual value of the energy error makes the force criterion

’ s N

. . . <
an excellent one to use to determine when a solution has reached a

suf%}cient level of accuracy.
!
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4.3 Ceonzlusions

The tests presented in this chapter have spown that the
selection of the optimum method for solution of an atomic simulation

problem can result in a decrease of computer time usad by factors o™two

<

or three ovar that required by other, often used, methods.. For dynamic
analyses wheére accurate solution of the equations of motion of the

system is desired, the integration schemes which provide the best

performance are the 2-step and 5-step difference formulas at low
accﬁracies and the SLstep'différence and p=6, g=1 Nordsieck at hizh
accuracies. If cne of the quenching methods are being used for statiec
solutions, the p:?, q=1 Nordsieck 5s best, followad by the 2;step

difference scheme. The integration sbép sizes mﬁy be chosen from
Fig. 7. -
PR

Eér static solutians,_the conjugate gradient optimiz;hion scheme
has proven better for ;11 test problems than either of the quenching
methods; It was found, howeyer,ithat'the series of conjugate directions
had to be restarted much more often thhq suggésbedjpy Sinclgir and
Fletcher in order to‘get efficiént convergence (about every 10 steps).
Simu;taneous quendhiﬁg was better than individual quenching for all
éases. It-may be. that in problems where more than one atomic mass is

present, individual quenching tOUId be suparior although this was not

I
tested. For all solution methods, the higher spatial frequency
S }

componéﬁts of the position errors ware removed before the lower-ones.

This difference in speed was especially important for the quenching -

.
S

. 1)
schemes, less so for the conjugate gradient method. The test problems

\
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chosen here were fairly elementary but it is hoped that the results are -

of general- applicability. Future work could check the effect of model
size on solution efficiency and could dgtermine if the addition of
flexible boundary schemes has any =2ffect on it. The ease with which
alternate equilibrium posiﬁions were obtained indicates that phis .
problem may be of some importance. Judging by the limited experience
presented here, no static solution method appearsa%o guarantee a true
lowzst energy state. ihe differences in energy betwzen the various
equilibria are fairly small but may become impoftanb when questions of
thermally activated defect motion are considered, for example. Further
exploration of this point would appear to be in ordér. No detailed
studies of the possibility of zlternate minima were carried éut in the
remainder of the work presented in this thesis. The computer time
necessary for solution ;f a typical problem, such as those used later,
is large egoqgh that the cost of solving each by several different
methods, or with several differeﬁtlinitial conditions, is prohibitive.
It may evenbuafiy be possible to prdduee éigolution method which
unerringly converéés to a true minimum in a reasonable amount of

computer time. At the moxment , howszver, this would be Gery difficult and

it must be recognized that alternate minima, slightly different in
energy from those found,,mayrexish. Finally,-ﬁhe use of the sum of the

squares of the unbalanced forces on all atoms appe2ars to be a good
s

criterion to use to determine when sufficient accuracy has been reached

in a static solutinn.

-
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5 "PINITE ELEMENT BOUNDARY CONDITIONS

)

of the boundary scheme used to analyzeﬁthe

I

~ The accurac
continuum area of computer simulation model, such as that shown in

Fié. 2, has a very important effect o&i&he accuracy of the final
) . :

A

results. This has be jndicated in sections 3.5 and 3.6 of the

literature surv;;‘ayr fo examp%e, ad criptionrof the failure of é

crack to propagate when rigid boundary conditi&ns were used. Thé txpés
. I

of flexible boundary scheme; which have so far been employsd in

published work were 3lso described. This chapter presents a descriptién

of a2 new boundary scheme employing the finibe_element methqd which ‘

appears to offer many advantages over previous methods. fgaps of the

new ﬂaundary scheme and a description of its advantages are also

provided. The finite e{ement method is descyibed extensiﬁely eiéewhere,

{90, for example].

5.1 General Description

Figure 15 shows a typical model with finite element boundary

conditions. It reﬂresents two planes of atoms of bec a-Fe. The lattice

parameter for this material is 0.286_nm. The c%ack shown lies in the
(001) plane and has its cfack_liné in the [010] direction. Ihqimodel
contains 308 free atoms, 82 embedded atoms, 175 nodeg and 288 elements.
Image glanes of 3tom$ above and'below‘the two planes shown are

established to provide the plane strain condition desired. These are

90

™

.,\\,,1&
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Figure 1%. tYodel with finite element bdﬁﬁaary conditions representing
a (001)[010] .crack in «-iron at k = kg.

% Scale is 2.5 em to 1 nm. A/ -
The x, axis is [100], the x5 axis is {001].
See Figure 6 for a destripticn of the.format of this plot.
{a) atomic area . :
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moved with the corresponding atoms in the two active planes and their
presence enables every atom in these two planes to have a comﬁlete set

of bonds. In the present work, the free atoms are able to move in all

three coordinate directions, while the nodes are restricted to movement

in the x1—x3 plane. v

The following nomenclature will be used in this chapter. A
typlecal free atom will be referred‘to as atom i, a typical embedded atom
by k. Quantities referring to free atoms will have subggript i, to
embedded atoms will have subseript k. A typical node will be referred
to as j, and quantities|associated with this node will have subscript j.
The coordinate directions“hill be described by subsc}ipb 1, where
1 =1,2, or 3. Forces on atoms are F, on nodes, Q. Thus, for example,

the % direction force on a typiecal free atom is F1;, and the x3

directioﬁ forece on altypical node is Qsj'

The degrees of freedom wnich completely QescriPe the model are
the x),xz and x3 positions of all free atoms, {xli}, 1 = 1;2,3, and the
x1 and x3 displacements from ‘their perfect crystal positions oflthe
nodes, {ulj}, 1 = 1,3. Thus, the modelrdf Fig. 15 has 924 degrees af
freedom in the atomic area .and 350 in the continuum. Forces '
correspgading to these degrees of fr?edom a;; {Ffi} and {Qlf] -

respactively.

The {Fli} are determined by vector summatjon of the forces in

all bords to each free atom, i. These can be caledlated from the {x },
1i

{xlk} and the interatomic potential. Thne {Qlj} have two components,
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{Q,.}, and {Qlj} Tne first is the nodal force dus to the grid alone.

1j 2’
If the continuum is considered to be linear, this is given by . .

-—
.

194, = Ky ) - (18)

- -
where [K] is the stiffness matrix for the finite elemeat grid. Tne

second component of the nodal forece 1s due to the force on the embedded
atoms caused by 2li bonds to them from the free atoms. This force,
{Flk}, {s'moved to the nodes by standard finite element techniques. , The

nodal- force corresponding to any embedded atom, k, is // i

o, S
il = N GERE (19)

{Q

where [N] is the shape function of the elemsnt containing atom k. Thus
theé total rnodal force-can be described as
Aoy -

- » . - T
(@) = 1050, + 1@, = K} + DNIT(R ) (20)

. e
The embedded atoms move with the grid so that:the displacement

from its equilibrium position for atom k is given'ﬂy [N]{ulj] where,
~ B

again, [N] is the shape function of the element 9ontaining atom k. Thus

tha positions of the embedded atoms are given by. ’
- s LY ¥

(). = Daggedg + [N uyg) | (21

L 3
where the {xlk}o are the equilibrium positions of the embedded atoms.
;o . . N .

r

A unique relationship has now been established betwesen the

degrees ‘of freedom-of the model and the corresponding forces. Given the =

displacements from equilibrium of the nodes,'{ulj}, the embedded atoms ™%

\.;\

L

. - . ll : /\
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are‘set to {xlk} by equation (21). This, together with the positions of
the free atpms, f?;il, enables the forces on the free atonms, {Fli}’ apd
on the ‘embedded atoms, {Fy, }, to be determined from the interatomic
potential. The forces on the nodes, {Qlj}, are now calculated by

equation (20).

Twe method of linking the atomic and continuum areas described
above 1s not completely straightforward since there is some ambiguity in
determining .the force on the_eméedded atoms. The method which has been

used here is to kszep all bonds from embedded to\free atoms ang to

.

-t

- . eliminate all bonds between embedded atoms. Thi imﬁlies that the
finibe-element~grid can account for the total stiffness of the material
in the small ring around bhe.atomic area which'contains the embedded
atpms. Anotﬁer he?hod might be to halve the strength of all

~ embedded-to-embedded bonds and to halve the stiffness of the grid in
this ring. Such elabo%atioqs were not felt to be wabranted, however,
and tests of the model on a uniaxial stmain figld deséribed below
indicated that the method used was brobably adequate. Another probiem
is. the non-uniform distribution of bonds crossing the border to the
continuum area. A'loﬁé flat border wouldkbave the correct number of

bonds but corners of a rectangular atomic area and certain poiats on the

border of a round atomic area have a non-uniform distribution. Again,

e , o

the uniaxial strain tests indicated that the effectfof this is also
small. A third difficulty is the preggnce of npn-zero bond forces in
Qbe model at the perfeét crystal configurat%gn.‘ In this co d@Eion, the

‘nearest neighbqyr bonds are in compressioq and the szcond nefrest
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eighbours are in equilibrating tension. The presence of these forces

=N

Wwould lead to forces on the grid with wavelength equal to the lattice

parameter. In the real crystal, these would be_ba;anced by similar

ot

forces from bonds in the area of the crystal represénbed by the
'

c

ontinuum region of the model. To balance these in{hhe model, a set of |

additicnal forces, {Flk}o’ are applied to the embedded atoms which

b

o]

alance the forces just desé?ibgd in the perfect crystal configuration.

-Figure 16 illustrates this point. Finally, the area of the model at the

rack face is another ambiguous region. Fhe.bonds across the crack in

the atomic area were cut and no other forces applied to the atoms there

so that they are permitted to relax into a free surface arﬁangemenb with

n

o account taken of possible bond redistribution at. such a sur face. Theb

forces, {Flk}o, on the embedded atoms at the crack face were set so that

n

P

c

p

position, The application of a variational technique is straightforward

o net force acted on the crack faces and no net force acted on the -grid,
. 7
erpendicular to the grid-atomic area border in the perfect erystal
onfiguration.
’
1 ) -

fny of the standard solution %echniques for atomic simulation

roblens may now be employed to sclve the model for its equilibrium

I . 5
with the_[x&i?)and {ulj} changed until {Fli} and {Qlj} approach zero.

Queﬁching’type solution methods may also be used. Thé mass of each

e

n

q

lement may be lumped to its nodes (or a mora elaborate consistent mass
atrix way be establishedf and the equationg‘of motion integratéd and

uenched at the appropriate times. _Bince only the final equilibrium

position is of iﬁtérest, the mass uszd has no importance gxcept as it

Z A

7 - o
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Fié?re 16. - Schematic illustrat1on of initial forces applied to
embedded atoms: In the equilibrium conflguratlon of the
crystal, the sum of the forces in the four bonds to

\ ‘atom 1 would be zero. In" the present model atoms “f—‘

; . - It and 5 have been eliminated since ‘they are entirely
i . within the continuum, Force F,o {the sum of the
| : ) ‘ forces in bonds 1-4 and 1-5) is added to atom ] to
; . simulate these forces. ~
. ‘ ) -~ \
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affects the spsed eof convergence. It ‘was found that scaling the mass of

A esach node to the diagonal element of the spiffness_ﬁatrix corresponding

v

to this node gave goodrconvérgence without introducing any instability
in the’qpmerical integration process. A dynamic simulation would, of
soursz, involve iﬁtegratihg the eduations of motion of the model with

the correct mass on each node. *

Anisqtpoﬁy is easily introduced when the stiffness matrix is

calculated. Non—iinearity may also be introduced into finite element

[
.

'analyées“ The usual methods involve an incremental solution by means of

tangent étiffness matrices corresponding to the current configuration at

'
-

the end of 2ach increment, [90]. This could be used here although,
because of the nature of the two solution methods described above, a

simpler techniqus is possible. The problem of finding the nodal forces,

] {Qlj}1’ dus te the gr!ﬁ, corresponding to given nodal displacements,

{uli}' can be approached QS follows: the nodal displacements of =ach
element can be used to find the strain in the elément; this strain can

o
be used to find the corresponding non-linear stress from the crystal

configuration and fhe interatomic potential; this stress can then be
' .

translated back into nodal forces by standard finite element téchniques

-
as - . -

R - . - .‘_/ T
| (st =fv[BJT{mv

(22)

- - .

vy

vhere {g} is the vector of stresses in the element, and the integration

is over the volume of the element containing the nodes {j}. Matrix [B]

relates strain, {e}, to nodal displacements for the element, i.e.

\/‘-"
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{e} = [B)uy ) (23)

# G
Equation (22) must be evaluated for each element aAnd the force on each

node due to each element containing this node summed. Both material and
geometric non-linearities may be accounted for in this mdnner. The time
for the evaluation of one set of nodal forces is proportiohal to the

number of elements and independent of bandwldth in this case.

5.2 ‘Non-Linear Stress-Strain Relationship

.

Material non-linearity has been included in the studies done ian
this thesis. This was found ﬁo'be necessary as a result of the tests on «
the model under uniaxial strain. The manner in whieh the non-linear
stress-strain relationship was calculated and the shape of this relation
are described in this sectiony, . t )

A single atom surrounded by a se£'of all its neighbouring atoms
was considered. In the case of the Johnson-1 potedtial and bee crystals
used in this work, there Qere 14 neighbouring aE}ms, 8 neafest
neighbours and 6 second nearest neighbours. A count was made of the
number of bonds of =ach e qg}ch cross the three positive coordinate
direcbio:.planes. Figure‘;57£nows Fhe s2t of néighbouring atoms to the
test atom, and Tableés 3 and 4 give the count of bonds in each directlion

for the case of coordinate axes in the two directions used in this work.

The neighbouring atoms were moved with respect to the central

atom to correspond to a givea sbtrain. The force in each bond was ~

caleulated from the interabom{; potential. The total forzce per unit
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Figure 17. Neighbouring atoms to test atom, O, for non-linear stress
calculation. The unprimed afes are used for the [010]
crack model, the primed axes for the {110] crack model.
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Table 3. Bond ®ount for non~linear stress calculation for [010] erack.

Atom numgégg ref;r to Fig. 17. This table gives the number of
honds simi that to a given atom number per square nm, of each

positive coordinate plane for bee a-iron.

Atom Number %y, -plane X, -plane x_-plane
100) %010 {0019

1 12.23 12.23 . 12.23

2 12.23 12.23 o

3 12.23 0] 12.23 Y
4 12.23 0 0 d
5 0 12.23 12.23

6 0 12.23 0

T 0 0 12.23

8 0 0 0]

9 2445 0 0]

10 0 0 0

11 0 24,45 (VI

12 0 Y 0

13 0 0 24.145
14 0 0 0
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Table 4. Bond count for nonilinear stress calculation for [110] crack.

Atom numbers refer to Fig. 17. This table gives the number of
bonds similar to that to a given atom number per square nm of each
positive coordinate pliane for bee a-iron.

Atom Number xl-plane -plane X,-plane

(110)° 110) %001)

1 0 17.29 12.23
27 0 17.29 0

"3 17.29 o 12.23

b 17.29 o0 VI

-5 0 ] 12.23
6 0 0 0

T -0 0 12.23
8 0 0 0
9 17.29 17.29 0
10 0 0 0
11 0 17.29 0
12 17.29 0 . .0

13 0 0 24. 45
14 0 0 0

\
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area and, therefore, the stretzzi were then calculated by summing the
coanponents of the forces in ea bond, weighted by the values in Tzble 3

or 4, and resolving these into direct and shear components. The

non-linear stress-strain relations corresponding to a given interatomic

potential could then be caleculated. This procedure is carried out

whenever the stress corresponding to a given strain is needed. Tnis is

done once per element for every force evaluation.

S
Figure 18 shows the plane Strain and plane stress uniaxial

gtresx-strain curves for the model of g-iron uszd in this thesis, This
is the beec material of Fig. 15 with the Johnson-I potential, Fig. 5.

The material is assumed to be oriented so that the coordinate directions
are [100] directions. Since no dislocation processes were considered,
no plastié vielding occurs and very high stresses a}e passible. Strains
in the continuun greaéer than 0.05 are possible in crack tip studies aﬁd
it can be seen that significant elastic non—liqgsriby océurs in the
material at this strain level. This indicates thét.including
non-linearity in the continuum region of a s;mulati%gﬁ?odel should be

quite important in crack tlp studies.

.

Figure 19 shows the extent of non-linearity in the material -
under plane strain conditions, €, = 0. This plot was created by
calculating the stress for giVen values of El and €y with all other

strains zero. For each of the six stress values, the guantity

(o=0 )/0 was calculated where
1 max

-

A
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Figure 18, Stress-strain curves for Johnson-I potential bee iron at
large strains (solid curve). Dotted line is derived frol
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[os - non-linear stress values for strain ;1, e3{

01 = stress value for €11 €y if matérial were linear
with elastic constants equal td‘their‘Small
strain values, and

q“ax = maximum of the six oi's. p

-

The greatest of these values is plotted as the'ndn-linearity. Again, it
can be seen that it can be quite significant. A; a result of this
examination, it was felt that non-linearity would probébly have to be
included and the results of the next section confirmed thys.

B

5.3 Uniaxial Strain Tests

¥

- In 6rder to test the accuracy of the method .of linking the grid

and the atomic area and to examine the effect of including non-linearity

~of the grid, 2 model was solved under a very simple loading'condition.

This made a check possibIé of errors in the final atomic positicns. The

loading condition chosen was uniaxial strain.

The model shown in Fig. 20 was used. The outside edge of the
grid shown in Fig. 20(b) was fixed at a position corfesponding to

uniform uniaxial strain, el Ez was zero because.of the plane.strai

condition and Ea was szt zero on the boundary. In the exact solution,

~

the strain state shou1d be constant everywhere. The model was solved

for El = 0.01 and 0.05 for both linear and non-linear grids. Tne

Jonhnson-I medel of a-iron was ussd in 2ll cases.
A

"
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Figure 20. Model for uniaxial strain tests. Scale is 2.5 cm to 1 nm.
(a) atomic area '
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.The results are shown in Figs. 21 and 22. The error in position
of an atom in the xl and x3 directions are §x and §x respectively.
i 3

The quantities plotted in Figs. 21 and 22 are N

(5x1/x1) /g1 for the error in the x, direction, and .

(5x3/x3) /gl for the error in the x3 direction.

Thess represent the fraction error in strain. These are pl

atoms around the largest square inscribed in the circular atomic area of

- Fig. 20.

It can be seen that both grids are abouﬁ equal in accuracy at
€, = 0.01, but that the non-linear grid is.much better at e, = 0.05.
Since strains in excess of 0.05 appear in the conbinuum areas in some
crack tip studies, it was felt that the non-linear grid should be‘used )
for all later work.' The error with the linear grid is about .10% over
much of-the area studied. in addition, it appears‘to-bé strongly
depeadent on strain level so that it would be even higher-at the strain
levels encountered in some simulations. Comparing Figs. 21 and 22
indicates that thererror with the non-linear grid is virtually
independent of strain.. This error is, then, probably the error due tec
the non-uniform distribution of bonds as described in ssction 5.1 above.
It is less than 2% in all cases and is le;s than 1% over most of the
area stud}ed. The models used later in this thesis are larger than that
of Fig. 20. It would be expected that larger models should be even more

accurate than this. It was felt that this was sufficiently accurate for

the present wirk, so no attempt ﬁas make to reduce this error.-(
Pl
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'bub this did not appear necessary in the present case. Instead, .

~_ 4
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5.4 Model Size and Boundary'Condition Tests

This section describes some possibilitie; for loading the modell
at_the cuter edge of the fi;§%e*g;gment continuun area. ng.method
cﬁosen and some-tests of the Ef{ect of changes.in this, and in the
numbej'of degre;s of freedon in ;hé oontinuum area are described.

" .
The external loads in a real crystal being fractured are

applied at distances very large in comparison to the atomic'spacing.
This should be the case, also, in model crysta}é. In order to eliminate
any confusing_effect of the oyter boundary, it swould be most appropriate
if thesg were set 'at igfinity, ‘It ié"bossible to do this with finite

element: by means of the so-called "boundary salution procadure", [90],

”,

standard finite elements were used and the outside edge of the continuum

‘area was made very large compared to the size of the atomic area. The

rdtsplacemeﬁts of nodes aﬁ this:outside boundary were Lthen set at Lthe

linear elastic solubion positions for the crack studied. Bzcause-the

\Ha\\:utside boundary is much larger thau the size of the atomic area, the

rror caused by fixing these nodes is small. For the cases studied in

Chapter 6, the radius of the outef boundary was set at 25 times that of

-

S~ .
the atomic area. This is the case-that was illustrated in Fig. 15.

-

One estimate of the effect of this boundary may be made as

follows. For the solutions obtained later iq this tnesis, some curve
éifting was performed to determine whether the higher érder linear

astic crack tip solutions could provide a good description of the
™~ .

'y
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resulting dispIacSmizi field. If any of the terms found from fitting
the displacements ne&r the crack tip are extended to the outer boundéry,

the change in displacement there would be about 0.003 of the total

3

. displacement, probably 3 negligible amount o Anothér way of estimating

the effect of this is to solve a préblem with a larger boundary an?
compare the results. Figure 23.shows a model.with outer radius 50 times
that of the atomic area or twice that eof Fig. 1;. At the Griffith
stress intensity factor, the largest difference In position for any atom
between the two cases was 0.003 nm, whilgfzhe average difference was
0.001 nm. This compares to a maximum total displacement of 0.274 nm and

’
an average total displacement of 0.167 nm. It was felt that this was

%?\“’” sufficiently small so the smaller boundary was chosen for all work,

e %
A test of the effect of grid coarseness was also performed. The

modef shown in Fig: 2l was solved at the Griffi;h stress iatensity
factor and compared to that in Fig. 15. Figure 24 contains 85 nodes
compared to 175 in Fig. 15 and the former thus has about half as many .
degrees of freedom as the latter. For this besgg\ahe maximum position
difference was 0.0] nm while the average was 0.005 nm. It was fzlt that

the coarse grid might not have been sufficiently accurate sd the finer

s//jra was used for all studies. Computer memory and cost limitations made

the use of even finer grids or larger atomic areas 'inconvenient



Figure 23. Model with outer radius 50 times atomid area jradius. '
Scale is 1 cm to 20 nm. |
R
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5.5 Conclusions

This chapter has presented a description of a new boundary

condition scheme for atomic simulation problems. In compariéon to

previous methods --

1)

3)

It is much simpler analytically. Tﬁe previous methods are all very
complicated to apply especiaily since anisotropic solutions should
be used.\ As a result, the cbntinuum nas usually been modelled qith
only abo::\ébn,degrees of- freedom, often leas. The finite element

s
methoﬂ can easily employ several hundred and still involve less set

up and computer time as well as less chance of error.
!

/ s

All the solution techniques which can be applied to the atomic area

12

/

of\the model can alsoc be applied to the finite element area. This
eliminates instability prohlems encountered with the other methods
caused by the more complicated soclution process which must be

used, [HU],

Non-linearity may be added. to the finite element area by fairly
well known methods. This may.be quite important in the study of
some defects such as cracks, around which large stresses extend for
a considerable distance into the continuum area. There is no
tractable way of doing this with the otﬁer techniques at the

moment .
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) A dynamic analysis as would be required for the study of defect
motion including the resulting acoustic emission is' straightforward

by finite elements but very difficult with the previous methods.

5) Unusual geometries, such as a grain boundary junction, are much

easier to handle.

6) Three dimensional models or three dimensional displacements in two
dimensional ﬁodels are possible by finite elements while the
analytical solutions that would be necessary in order to use the
other boundary schemes exist only for very special cases. These
types of models will become more widely usad as computer costs
decreasz in the future. Secrew dislocati;ns, for example, must be

-

modelled in this manner.
Various options in the application of this boundary scheme have
been deszribed and those chosen for-the work presented later in this

thesis have been indicated. Some further extensions or problems yet to

be completely resolved are : ‘

1) HModels with more degrees of freedom in DJth the continuum and

discrete areas are, of zourse, always/desireable. Computer memory
and solution time limitations have imposed the.limits chosen in the
problams examined in the present work. ts described above

indicate that they are probably not too restrictive.



3)

u)

1lis

There are some émbiguities in the mating of the discrete and
continuum areas., This problem is common to all currently existing

boundary schemes and not limited to the finite element approach.

Geometric non-linearity has not been accounted for in the finite
element analysis. This should be done in the futire in order to

determine if its effect is significant.

' The method of applying the boundary conditions to the outer edge of

the model could be improved by the use of the bouadary solution
procedure which would allow the model to effectively extend to an

infinite radius.



6 APPLICATION OF FINITE ELEMENT BOUNDARY CONDITION SCHEME

The boundary condition scheme described in the pr?vious chapter
hgs been applied to the (001) plane crack in an g-iron model using the
Johnson-I interatomic potential. .This crack has been studied
previcusly, as described in the literature survey, but the resulés have
not been completely successful with the boundary schemes which have been
used. 'In the present work, two dimensional'cracks with cr;ck line
directions of [010] and-[1{0] have been studied. The latter had
apparently never before been examined. The model results are presented
in various formats andAare compared to the experimental results

available, These have already been described in the literature survey.

The perfect crystal configuration for the twq models studied in
this chapter are shown ;n Figs. 25 and 26. Unless othérwise noted, all
plots in this chapter are at a scale of 2.5 cm to 1 nm. In both cases,
the cracks are introduced alang the x3 plane extending from the origin
in the negative X, direction. The crack line is in the xz direction,

ie. nerpendicular to the plane of these figures.

6.1 Linesr Elastic Crack Tip Boundary Conditions

-
v

As stated in section 5.4, the outer edge of the continuum region
4
of thess2 models was set at the linear elastic crack tip solution

pasition for each case studied. This section describes how these may be
' 119
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for (001)[110]

" Figure

26 (cont.) ~ Perfect crystal con

figuration

crack model.

M0 nm to 1 om.

(b) - finite element area

Scale is
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obtained, [62].

For an anisptropic material with amirror symmetry about the x]-x3
plane and plane strain in the x2 direction (the cases studied here), the

three in-plane strains may be givep by

€, a a{gfa15 ‘ 011

€ =]la a a T v (28%)
3 13 33 35 3
e’ a a a o} . ;
5 | 5 35 55 5 '
whete e, = EL}” €3 =x833’ €, = EB" g, =0, Gy = G331 Tg = Ogy in

the more usual notation and éngineering shear strain is used. The
linear elastic crack tip solution for this material is expressed in
terms of two complex functions,'ﬁz(z]) and ¢2(zz)_of the complex

vgriables z, and 22 where

L= X, o+ pox ' .
1 1 172
{25)
Z, = X + PX,
where p1 and Pz are obtained from the equation -
a p*-2a pd+(2a,, +a_p?- 22 +a,, =0 (26)
11 5P 13 % 8557 asH 33

whose roots are p o, p*, p,, p* (complex conjugate pairs). The

displacements are given by :

u, = Re[p1¢1(z1) + p2¢2(22)] )

. i ' V
U2 =10 _ ‘ ) . (27)
u, = Re{q]¢‘(z]) + q2¢2(22)]

-
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whera '

p. = a]]pi * Ay algPl

1. : (28)

4y = ag Py 33/ 25 : ‘ -
for 1 = 1,2 and ' (ff‘

: Bm 12 . - .

¢1(zl) 2 mmewn— k (221) (29)

Pm _.Pl

for stress intensity factor, k, where 1 = 1,é and m = 2,1 respectively.
+ . - .

Equations {27) are used to set the boundary at the outer edge qf'the

finite element grid. The energy release rate, G, corresponding to k for

this case is given by

k? By * B
G=m--3a_ Re l|i -l-ﬁ--g .
2 Py
ve (30)
1/2 1/2 1/2
il 11733 / 233 2a13 15
- --n-kz ______ == 4 e mamal
2 311 2311

It remains to find the mat:!& [a} in equaﬁion'(?ﬂ) and the energy

+

release rate, G, at the Griffith stress intensity factor for the Ewo

cases studied in this chapter.
.
For thWe [010] ecrack, tﬁé coordinate axes are all in [100] type

crystallographic directions. Theje'are‘the axes of cubic symmetry for.

athafbcc orystal and the elastic conqﬁgnts,.[c] of equation (7) in

section 3.4, are given by esquation (10). For the Johnson-1 potentlial,

these are - , ‘ x

-

e
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e = .19225E12 Pa
¢, = .09613E12 Pa (31)
e, = .09613E12 Pa

. - _ A )
Tne values of the a, . for plane strain in tue x2 directiggﬁmay e found

]

by setting €, = €, =€ =0 in equation (7) and inverting the resulfing

equations. For this case, they become

. ' -1
a,, = 6.93565E-12 Pa

'a =
1 |
- -1
a,, = -3.46801E~12 Pa (32)
. ) ]
a =-.10.40308E-12 Pa -
55 .ol
T T ' T ~

The élastic cdnstants for the [110] crack may be obtained by
rotating the conséitutive equa%ion given in equation (7) with the values
given by equétéqﬂ (31). This may be done by setting oné cqpponent of
stralin iﬁ the'new coordinate systgm; using the constitutive equation
with'consﬁants given by equation {31) iﬂ the o{d coordinate system;

W : )

rotating the resulting stress tensor back to the new coordiﬁates; and

using this to form one column of the new [c] matrix. Tunis leads to

——y
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-

24031 ,.04806 .09613 0 0 o
. 24031 .09613 0 0 0
[e] = | .19225 0 0 0
N .09613 0 0
sw o 09613 0

B -09613 |

x 107 P (33)

where the X, and xé axes are of {110] type and the x_ axis is of [100]

3

type., The a,. for plane strain in the x2 direction now becom%

ij
: ) )

a,, = 5.20154E-12 Pa” -

a,, = ~2.60077E-12 pa” "

2, = 6.50192E-12 Pa”" (34)
.. 10.40308E-12 Pa" "

. 55
a = a =0
15 U35
’ ]

The édbface ene;gy, ¥, for the (001) plane may be determined by
counting thefbonds which would have to be broken per wmit areé of ﬁew
surface. These are four nearest neighbours and two second nearest
neighboufs per square lattice parameter. The energy of a nearest

neighbour bond at the perfect crystal configuration is -Q.0370375 aJ and

A .
of a second nearest neighbour is —0.0QEZOBO‘aJ. The 'lattice parameter

+
is 0.286 nm, leading to an energy of‘geperation of 2.615 J for 2 m? of

new'surface,'or a surface energy of y = 1.307 J/m?. Substituting G = 2y
for the Griffith stress iatensity factor and the values of the 35 given

by =quations (32) and (34) into equation (30) leads to
' ' : ¢

~
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" 5 -
//7kG = 0.3896 MKm / for the [100] crack, and ks = 0.3989 Mim

>
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s

3/2
/ for the

£110] crack.

6.2 Lattice Trapping Limits and Crack Propagation Planes

Each of these cracks is stable over a range of stress intensity
factors, k&, rather than only at a single value of k as predicted by the

,

Griffith theory. This is the latti trapping effect. Thé lattice

)
trapping limits and the plan&s on which the cracks propagated will be

given in this section.

Thermodels of Figs. 25 and 26 were loaded by setting the outside
edge of thé finite element region to the linear elastic solution
positions given by equation (27). Tﬁese wzre held fixed at these
positions as described in section 5.4 . 1In ordeg to reduce solution
time, the positions cof all other nodes and all atcms were also initialfé?}
set at .their linear elastic solution positions. This provided a
reasonable approximation to the final positions. Quenching type
solutions were attempted from this initial position.with the equahions
of motion integratéd by the Ath order Nordsizck scheme described in
Chapter 4, using an integration time step of 10 fs. For the stress
intensity factors used in this section,:equilibrium pasitions could not
be found because the créck propégated to the right for large é's and to

the left for small k’s.

L4 o~

Figure-27(a) shows the position of the [010] crack at a stress:

intensity factor of k = 0.6 kG after a simulation-for a model time of
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Figure 27(b}  (001)[110]) crack at k = 0.8 k. .after 750 fs.
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750 fs. Figure 27(b) shows the [110] crack for k = 0.8 ks, also after

750 fs. The original zrack tip ppsitions are shown as crosses. It can
be sz=en thaﬁ in both cases the crack moves to the left and closes up.
This process is seldom observed in real materials, because oxidation of
the crack face and the movement of the crack past heterogene;ties in the
material which act as pinning points restriect it. It may ocecasionally
be observed in very pure teriais in vacuum or inert gas

atmospheres, [6].

f

More interesting is the response of the cracks to large loads.
Fig. 28(a) shows the [010] ck at k = 3 kG, and Fig. 28{(b) shows the
1110] crack atyk = 1.3 kG’ both at model times of 1500 fs. It c¢an be
seen that in bd;h cases,tthe-cracks have moved to the right. In
addition, both have propégated on the (001) plane and no dislocﬁtions
were emitted. Twinning would be inhibited by tne grid sé it is not
possible to say if this could spontaneouély oceur. Exper;mentall},
twinning is apparently 2 result of shears caused by two cracks-in close
proxim&ty, [25], so it would not be expected in the present model. A
stress intensity factor of 3 ke is*well beyond the upper iatgice
trépping limit for the [010] crack. This crack propagated very slowly
at lower stress intensity factors. The [110] crack, on the other hang,
propaggbed at a comparable speed at 1'3,yG’ only slightly beyond its

!

upper .lattice trapping limit. /

An attempt was made to determine the lattice trapping limits by
means of the conjugate gradient method, (78). This was not successful,

howzver. Eguilibrium positions could be easily located but the saddle



Figure 28(a)
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Figure 28(b)  (001)[110] crack laty: 1.3 k, after 1500 fs
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point positions necessary for the determination of the lattice trapping
limits could not be found because of numerical ig;tability. Other
workers, [91], nave experienced similar difficultiés with iron models
using other boundary schemes, although silicon models apparently perform
iP well, [75]. This may Be due to the shape of the Johnson quential which

v ,
has a discontinuity in second derivative at the cut-off point.

. . As a result of this, the lattice trapping limits had to be

\\\ determined by finding the stress intensity factors at wﬁich no

\\fquilibrium position could be found. These were
/ 0.78 kg and 1.42 k. for the [010] crack, and
; d1§8‘56 and 1.12 kg for the [110] crack.

It\ié felt that these values are correct to £0.02 kG. Tnere is, thus, a
considerable difference betwsen the two cracks. The (010] crack is
.étable ovef a range of stress intensity factors near(y twice that of the
"£110]. The [110] crack will propagate at a stress ihtensiby factor of
0.81 that at-wiich the E010]fwill propagate (when the above values are

corrected for the difference in &3 for the two cases).

If thess results carry over to Eéal materials, # would be
expected that they should apply oniy at low temperatures where the
- complicating effzct of dislocation or twinning processgs could be

ignored. .For this condition, the model predicts that

1) both cracks should bropagate on (001} planes,

w

ni
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2) no dislocations should be emitted spontaneously from these cracks,

3)  the [110] crack should propagate at a lower stress intensity factor

than the [010],

43 . the [110] crack should propagate faster than the {010

an extension of the actual model obszrvations.

cause of computer cost limitations, steady state crack propagation was
not reached for these cracks, while experimentally, steady state speeds
are measursd. The differences in initial acceleration between the two

cracks at = given stress intensity factor is quite large, howsaver, so

. some experimental difference would probably be expected.

The experimental results pertaining to these observations have

already been discussed in section 3.2 of the literature survey.

" Summarizing them here: -

>

- +
1) All workers found that cracks propagated on (0G1) planes for iron

~—

and tungsten.

2) Gilman, [22], and Tetelman and Robert;on, f24], estimated that
fracture of iron was coampletely brittle at the low temperatures
#* corresponding to the model simulations described here, indicating

that the effect of any dislocation activity must be small.

3} Hull and Beardmore, [26], found that,in tungsten at low
: L&
temparatures the [110] crack probably propagated faster than the

(0101, although interpretation of the results is complicated by the



experimental scatter.

) Liu and Bilello, [27], fractured tungsten in both directions
considered here and measured the apparent surface energy. This
show=d some difference in the two directions waich corresponds to
the modeL predictions given here. The reality or cause of this

Id

difference is very difficult to confirm, howsver, because of the
<+

experimental difficulties. 4

It can be sz2en that the experimental results available appear te
. - - l .
correspond to the model predictions of the presant work. Experiments of

this nature are very difficult, QOwever, so this correspondeﬁce cannot
be accepted without question. The experimental difficulties and some

alternate explanations of the results have been described in the

" literature. survery.

In conclusion, then, the presgnt'&odel shows several interest%ng
results not seen in previous computer models. These arefthe clear cut_
(001) plane fracture and the significant 1;f€erences in lattice trépping
limits and erack acceleration rates betwégn E%e {0107 and [110] erack
line directions. Some confirmation of these’effects from previously o

publishéd experimental work has been described but much more such work

is necessary before the model predictions can be confidently accepted. )

<

*
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6.3 HNon-Linear Displacement Field - General

The pésitions.of the atoms near a crack tip in static
equilibrium are different from those given by the linear elastic crack
tip solution which zpplies at greater distances. This is a result of
the discrete nature of the latticé and the non-linearltiks caused by the

interatdmic potéhtial and the geometry changeﬁfﬁhgnighis section, the
' LN
difference in position of an atom in the modél solution and that

- positibn which it would occupy gccording to the linear elastic crack tip

solution will be zalled that atom’s non-linear displacement. This
section presents a description of this non-linear displacement field.
This will indicate the distance from.the crack tip.at which the Iinear
elastic solution :gplies with reasonable ac;uracy and will provide a '
deseription of the shape of the actual displacements nearer to the crack
tip for use in anck-crack, crack-dislocation, crack-vagancy, ete., .'
interaction studies. In add;bion, some information on the possibility

of dislocation emission from the crack tip may be derived from these

results.

Equilibrium positions were obtained for variqus stress intensity
factors for both crack directions. The cutside edge\of the mgﬂél was
fixed at the linear elastic solution position and all other nodes and
atoms were initially set to thess positions alsc. St;tic solutions were
obfained ﬂy both t@e conjugate gradient method aﬁd simﬁltaneous -
queaching. A systematic study was not done on models of the large size
usad here, as was performed for the sméller models in Chapte; 4, but the

results of Cnapter U were confirmed qualitatively since the conjugate

Jo
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gradient scheme appeared faster than simultaneocus quenching. WNo
difficulties were experiesnced finding equilibrium positions with either

method indicating that both are suitable without modification with the

‘finite element boundary conditions.

Tne criterion used to stop the solution was that the sum square
of the unbalanced forces on all atoms should be less than 1:E—21 N
This value was obfained fro; the results of Chapter 4 and the desire to
keep thé excess energy in the crystal below that which would correspond
to the thermal energy due to‘a temperature of 5 K. From Fig. 12 and the
mass of the 308 free atoms in the present models, this energy is
approximately 2.4E-5.ad. This is about 0.601 pf the energy change in
the atomic. area when it is queﬁched from an initial position set to

correspond to the linear elastic crack tip(éolution. bUsing this value

in Figl 14 gives a corresponding sum-square atomic force of

about 1.E-21 N2, _ , -
>
Figures 29 to 32 show the L010] crack at k = 0.8 kG, kG, 1.2 kG,
and 1.4 ko, respectively. Figures>33 to 35 show the [110] crack at ~

kA= 0.9 kG, kG, and 1.1 kG, respectively. Part (a) of eacﬁ'figuve shows
the final équilibrium positions and the unbroken bonds for each case.
Part (b) shows the non-linear dispiacement of 211 atoms and nodes. Each
arrow represents the displaceﬁent éf one of these from the positicn
given by linear elastic fracture amechanies. The§e displacements are
magnified 20 times. The remaining figure parts give tnes?

displacements for atoms within rings 0.2 nm wide centered on radii of

0.5 nm, 1 nm, 1.5 nm, and 2 nm_for the {010] crack and 0.5 nm, 1 nm, and



Ty § - T bt e B

~

. , g ) 139

1.5 nm for the [110] crack (2 nm is larger than the ?adius of the atomie
area for the [?10] crack) . Thelbase of each.arrow in.these figure parts
is on the circle of radius equal to th rag radius of the ring. The
angular position of the base of each arrow i's fixed éb the angular
location of the corresponding atom or node in the perfect crystal

configuration.

Some qualitative observations may be made from these resqlts.
As would_pe expected from the crystal structure, the nop-linear
displacement field is symmetrical about the crack plaﬁe for the (110]
crack but not for the {010). Moving the [010] ecrack gip by half a
lattice parameter would result in equilibrium.positions that are =
reflecﬁions in the ecrack planeiﬁompared to thoss cases given h;re. The
magnitude-of the non-linear displacements increases as k increasesnana
decreases as distance from the crack tip increases. In both cases these
displacements appear to be vaguely.elliptical in form,iwith the atoms
above and be}pw the crack tip moving out,.and those to the right and
. left of it moving in. This appears to be egpecially true for the 1110]
.crack. The displacement field for the [010] case ig ﬁore conplicated,
howaver. For this, thefe appears to be suddén changes in the
displacemeats across the (101) and (101) planes at +45° to the crack

plane. These displacement changes appear as shears across thesz planes.

A

This is what would be ekpected if dislocations were being nucleated at

w//////”'Jtﬁe crack tip. A discussion of this point.is given below.
) N

-

-
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Figure 29{a) Equilibrium position aﬁh unbroken bonds
: for (001)[010) crack at k = 0.8 k.
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Figure 29(b)" Nonplinear displacements magnified 20 timesK_‘
' for (001){N10} crack at k = 4. ’

B k.

7



{c)

Figure 29 (cont.)

(a)

Non—linear displacement magnified 20 times
for (001)[010] crack at k = 0.8 k¢,

() radius, r, equals 0.4 to 0.6 nm.

(d) radius, r, equals 0.9 to 1.1 nm,
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Figure 29{e) Non-linear displacement magnified 20 times
.for (001)[010] crack at k = 0.8 k¢,
‘for radius, r, equals 1.4 to 1.6 nm.



ptn-’_r.\. P

V%

Figure 29(f)

Non-linear displacement magnified 20 times
for (001)[210] erack at k = 0.8 k¢,
for radius, r, equals 1.9 to 2.1 nm.
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Figire 30(a)

-~
Equilibrium position and unbroken bonds
for (001}[010) crack at k = k..
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Figure 30(b)
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Figure 30 (cont.) Non-linear didplacement magnified 20 times
for (001)[010] ecrack at k = kg,
v (e} radius, r, equals 0.4 to 0.6 mm.
(d) radius,; r, equals 0.9 to 1.1 nm.
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3b(e)

Non-linear displacement magnified 20 times”
for (0013[010] erack at k = kg,
for radius, r, equals 1.4 to 1.6 nm.

148




' .

-

Figure 30(f) Non-linear displacement magnified 20 times
for (001)[010] crack at k = ke,
for radius, r, equals 1.9 to 2.1 nm.
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Figure 31(a) FEquilibrium position and unbroken bonds
for (001)[010] crack at k = 1.2 k.
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Figure 31 (cont.} Mon-linear displacement magnifi @D‘trfmes
J/ for (001)[010] crack at k = 1,£ ke,
— - . (a) radius, r, equals 0.¥to 0.6 nm.
e (d) radius, r, 8 79 to 1.1 nm.



Figure 31(e)
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Non—linear displacement magnified éo times
for (001)[010] ecrack at k = 1.2 ke,

for radius, r, equals 1.%:to 1.6 mm. '
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Figure’32(a) Equiljbrium position and unbroken bonds
' for (001)[010] crack at.k = 1.4 k..
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{c)

Figure 32 (cont.)

15

Non-linear displacement magnified 20 times '
for (0013[010]) crack at k = 1.4 k¢,

(e) radius, r, equals 0.4 to 0.6 rm,

(d) radius, r, equals 0.9 £ 1.1 om.



Figure 32(e)

Non-1linear displacement magnified 20 times
for (001){010] crack at k = 1.4 ke,
for radius, r, equals 1.4 to 1.6 nm.
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Figure j2(f)
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Non-linear displacement magnified 20 times -

for (001)[{010] crack at k = 1.8 ke, -
for radius, r, equals 1.9 to 2.1 nm.
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Figure 33(a) Equilibrium position and unbroken bond s

for (001)(110] crack at k = 0.9 k..
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(c)

figure 33 {cont.)

(d)

&

-Non-linear displacement magnified 20 times

for (001)[110] crack at k = 0.9 kg,
(e radius, r, equals 0.4 to 0.6 mm.
(d) radius, r, equals 0.9 to 1.1 nm.
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-Figure ﬁ(e) Non-linear displacement magnified 20 times
for {(001)[110] erack at k = 0.9 k¢,
for radius, r, equals 1.4 to 1.6 om.
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Figure 34(a)
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Equilibrium position and unbroken bonds
for ¢001){110] crack at k = k,.
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(c)

Figbre 34 (cont.)

{d)

+d -
Non-linear -displacement magnified 20 times
for (001)[110] grack at k = k_,

{c) radius, r .equads OTH 22,976~m1;
(d) radius, r, equals 0.9 1.1 nm,
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Figure 34(e)
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Non-linear displacement magnified{é
for (001)[110] crack at k = k.,
for radius, r, equels Thto1.6m
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{c)

€ 35 (cont.)

&

B 1

Non-linear displacement magnified 20 times
for (001)[110] crack at”k = 1.1 k¢,

{¢) -radius, r, equals 0.4 to 0.6 nm.
{(d) * radius, r, equals 0.9 to 1.1 nm.
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Figure 35(e)

&

Non-linear displacement -magnified 20 times .

for (001)[110] erack at k = 1.1 k.,
for radius, r, equals 1.4 to 1.6 nm .
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6.4 Non-Linear Displacement Field - Magnitude

This section gives some information on the magnitude‘of the

dgg:lineaé displacements as é/fadction of radius from the e¢rack tip, r,
e \

\\__‘,J//// and angle from the x -axis, b. Iﬁ*order to obtain this, the model was

divided 1nto various reglons }Wlthin each of these regions the HMS
waznitude of the linear elasbéc crack tip displacements and the HMS
magnitude of whe non-linear dlspLacements (total ddsplacements ninus
ldne;r elastic crack tip values) was calculated. &he ratio of these two
quantities is referred to as d, and is used as a measure of the

e . .
magnitude of the non-linear displacements. At large radii, r, the véiue

of deshould approach zero.

/.“f - The ratio, d, was evaluated for q&ngs of, atoms centered on the
nominal crack tip. A series of rings wWas chosen S0 that thé ﬁagniﬁqde
of d as a function of r averaged over all angles, 8, around the crack

-’ . .
tip could be determined. The boundaries between rings were set eveﬂy

I 0.2 non radiua. Figure 36 shows these results for stress intensity

% . ' factod;'bust inside the lattice tdapping idm@ts‘for the two crack
%"////., - directions. It can be'seen that the non-linear displacements are

. domparable in magni@ude to_the linear elastic ones near the crack tip
and -less than 10% of them at 3 nd radius. They are less than 5% at 5 nm
% . . in all cases. Thus, the‘non;linear displacement.field is of significant
magnitude witdin 20 lattice parameters of the crack tip. An interesting

< . ) . .

difference between the two cracks is obvious from Fig. 36. The value of

s ma s w s

4 is more dependent on k for the [110% crazk than for the [010]. Tnis

3

is in azcord with the greater ease and .decisiveness of qracﬁ ﬁropaiation
. . s ) ' )
[ . ' « '




Figure'BQ(a}

Non-linear displacement, d, vs radius from
the erack tip, r, for (001)[010] crack model.
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Figure 36(b) Non=1inear displacement, d, vs radius from
T the crack tip, r, for (001)[110] crack model.
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for thg 1110] case. Figure 37 is a log-log plot of d versus r. This is
eclosez to a straight line with slope -1-over most of the range of r
values fo% ;imost all cases ;onsidered which indicates that d is roughly
proportional to.1/r. This may be used ﬁbjzstimate the radius aE which
the non-linear displacements may be neglecfed to within ; given level of
accurécy. The gnlj exception is the [110] crack at k = 1;T‘kG wh;gh'

e~

differgyéonsiderably from this at small r. Examination of Figs. 3u(a}

. 1 : - .
_and 35(a) indicates that the bond distribution near the crack tip is

" slightly different for the k = 1.1 kG case compared to k = kg for the

[110] crack. This difference may accounf for the different -

displacements in this area.

Figure 38 shows the © dependence of the non-linear displacements

for the two cracks at the Griffith stress inteﬁsity factor.. Thg anglé ]

)

is measured counterclockwise from the positive x]-axis. The region of
the model from r = 0 to r = 2 nm (corresponding approximately'to the
atomic area shown in Figs. 25 and 26) was divided into a series of 150

wedges and the ratio d evaluated for all atoms in each wedge. Tnis is

_ plotted against 6 in Fig. 38. The non-symmetry of the [010] crack is

obviéus.‘ The non-linear displacements are maximum in the *MSO

directiond and minimum at £180° and +15° for the {0101 case. For the
1110] erack, theyvare m;ximum at £180° and £45° and minumu; at £135°.
There 1s an additional minumum at 0o for the Wz 1.1 kg case whiéh is

absent. 2t kK = 0.9 kG.
‘ -

!
b 1 2o m =
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k = 0.9 kg
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Figure 37(b) Non-linear displacement, d, vs radius from
. the crack tip, r, for (00+¥[110] crack model.
Log-1log plot. ‘



Ar (a)..
—"_,___:—~.
= 0.8 kg
d = 1.4 k,
.
- 180°
4 ‘

. .
-180° * 0 | 180°
Figure 38. Non-linear ‘displacement, d, vs éngle from the

x, axis, 6. - X _ .
(a) (001)[010) crack . ’
(b)  (001)[110] crack )
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6.5 Non-Linear Displacement Field - Shape

An attempt was made to obtain a ‘more detailed descrip\i n of the
non-linear displacement field by least squares curve fitting to varioua

w2ll kmown functions. The results are described in this segtion.

A set of displacement functions which have been used, {753, to
describe the displacements around the crack tip in atomic simulation _—
models are the higher ?rden teéms in the solution of the linear eiastle

crack tip problem. Tﬂese are defined jP a similar maaner to the first

‘order solution given by equation (27), except that the functions'g,(z)
. s » -

are now glven by, (691,
n- ~n : .
,(z) = 47 —-mmems (2 z) . : -(35)

for 1=1 é, T2 2,1 respectively, and n = 1,2,... refers to\gpe order-oq,\f:
the term (tha order of any term will be called n+1 below). >If‘fhe_are£
of the fodel which behaves non- 1inear1y uﬂle confined to a snall
cylinder around the erack tip, thz remainder of the model would have
displacements given by a linear combination of theifirst order sqlution
given by equation «(29) plus a 3°t of higher order terms of various n
given by_equation {39). There is, thus, some physical justification for
. their use. The accuracy of the approximation which they provide will

depend on the degree Lo which the non-linear behaviour of the model is
concentrated near the crack tip. The results of the previou; section

. indicate that it'extends to a considerable distance from the crack tip

Pl

+] . .
.. 80 that it might be expected that the accuracy of this approximatiom
£ 7 K e . T —_— -
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would be limited.

x

~
It was, in fact, found that this did not provide a good

_approximation to the behaviour of the model near the crack tip. Table 5

gives the RMS value of the displacements from the first order linear -
elastic erack tip solution positions after subtracting up to seven

higher order terms for the [010] crack at various radii for k's= k All

G
other cases were qualitatively similar. It can be seen that less than

half of the RMS displacements were removed even after fltting seven

-

terms to the displacement field. Also, each additional term is

contributing very little to the fit so that adding mote would only very
slightly improyg the situation. Tnis indicates that_the use of these

terms in boundar& condition schemes for atomic simulation problems may

zause inaccuracies. s -

.

Some information can be obtained from this curverfitting
-~

exgrcise, howsver. ‘The mdst important crack tip‘tern for reducing the
» o

residual displacements is the term for n = 1 in equation (35) which has

-1/2 . . .
an'r / dependence on distance'fiim the crack tip. If s1 is the
. o

coefficient of this term in the fit to the displacement field,

Sinclair, {75], shows that its effect is equivalent to assuming that, the

crack tip is located at a position
£

position LI 0. Table & gives th

= -31/k rather than at the nominal

-

apparent crack tip pasition for the

1

cracks studied, obtained from fitting to the displacements of atomg and
nodes in various regions of the model . The results are reasonably \ -
consistent from region to region. ‘mey gdicate that the, crack tip

positlon apparent to most regions of the model moves to the right‘as k

. ' . ’ e
| ’ . - (
v - . o -

oy
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Terms subtracted

Table 5. Fraction of original RMS non-linear c.lispllacement

n

(sae éqn. 35)

181

remaining after subtracting higher order crack §ip

terms for (001)[010] emagk at k = kg. i S
) - Y
k-] s . .
_ Radius (nm). ‘ _
0.4-0.6 0.9-1.1 1.4-1.6 0.-2.1 , 0.-60.
@ . all atoms all model
. \ !
" . - . .
0.614 0.574 0.636 0.679. { ¢ 0.718
- 0.611 0.570 0.634 0.665 0.708
0.610 0.513 0.503 -0.665 . 0.708
0.594 0.513 0.500 0.654 0.697
© 0.542 0.513 0.500 0.653 . -.,0.697
©0.514 0.510 0.500 . 0.%29 ' 0.677
0.510 0.509 0.499_. 0.627 0.675
3
b
C, ‘ :
.
- ,
. t .
' «
M
v -
- K .
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ianéases. The change in position as a function of k seems more
- ~dramatic for the [110] crack than for the (0101, again illustrating the

. difference between the two cases, ‘ -

/
.

Visual inspection of the form of the non-}inear displacements-‘
before and after subtracting the higher order cr;ck tip terms.indicated
two primary reasons for the poor Fit. It can be seen in part (b) of
Figs. 29 to 32 that disloeation-like shearing exists near the craéé tip
across ;%e (101) and (101) planes at 1450 to the x, -axis for the EOiO]
crack. This effect is less prominent for tﬁe {110] case which shows a

- smocother variation of dispiacement in this area. This shear strain is
difficult to account for with the crack tip terms. Fitting to two
Volterra dislocations at the origin does not provide a good fit,
howasver, apparentiy because cquitioqs in other areas, especially near
the crack faces, do not correspond well to the dislocation displacement
field.' The area n=ar the crack face is the other regio; whera the
highgr order crack tip terms have difficulty p;oducing a good fit for L
both the [010] and [110] cracks. As discussed in section 5.1, there is
some ambigulty in applying the eﬁbedded atom fb;ces to the gridiin this
area. The method described there appeared reasonable and was ﬁsed for
the results preseanted here. Several other possiblilities were tried but

all gave results that were even more difficult to fit than‘the one used

here.
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6.6 Dislocation-Like Displacements

-
ol

The appearance of dislocation-like dlsplacements with the [010]

]

g&ackris an interestlng effect. The questlon of when a crack will®
propagate in a brittle fashion and when it will blunt by emittinggi\/\\_
dislocations is potentially one of the most importaq: points waich cqula
be illuminated by compuﬁer simulation. No complete dislocatiens ware

emitted during any of the solutions performed in the work described ~
: t
above. The kinetic energy of the model during the quanching solutions .

which were done for this work wae always less than that corresponding to

EY temp°rature of 100 XK. Experimentally, fractT:E/nf iron "is apparently

brittle at these temperatures (as. described in the literature survey)
—

(

in agreement with this reeult. The appeayance of the displacement
field, howaver, indicatés that there is some\ieedency'to form
s
dislocations. The components of this displacement—in the gl—xs plane ) N

would seem to indicate that these are of type (701)/[111] but no

 significant out of plane movement ocecurred which would be expected for

dislocations of this type. This may be an effect Ar the modellingl
procedure siace the atoms are free to mer in all three coordinate
directions but the grid is restrained ﬁo move in the x.!—x.3 plane in the
present model. This restriction could be inhibiting the formation of
complete [111] dislocations. The finite element toundary conditions can
be used to a%low this movement but this has not yet been done.
Alternatively, it may be that the gymmetryvof the problem is.high enough

that ouﬂ of plane movements are inhibited and some noa-uniformity in the

xzudirection, such 2s a1 jog in the crack front, may be nezessary to



-avaluating the likelifiood of dislocation emission f

_interesting to cdmpare the fesults of their analysis to the more
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stimulate ({1117 disldcation emission. Such a jog was considered by
Kanninen, et al, [68], using rigid boundary conditions. No dislocations
were observed, but it would be interesting to examine such 2z model with

. .

the present boundary condition scheme.

The fact that these dislocation-like displacements are:mdre
prominent in the [010] model than in the [110] may be associated with
the higher value for the upper lattice trapping limit for the [010]

case. If some energy were directed into the formation of dislocations,

thsa less would be avaflable to produce crack propagation, and higher

stress intensity’levels would be required to produce fracture. This

finding is similar to'that of Ayres and Stein, t18], who predicted that -

dislocation activity should be greater for the [010] than [110] crack
s Y, o ‘

direction by counting the active slip planes, in each case.

Rice and Thomson, t15], have also provided a method of

a crack tip based

on the linear elastic solution for the displacemet field ar
crack tip and dislocations. Their aﬁalysis is, of course, based

%
greatly simplified model of the real crack tip gituation but it i

detailed ones présented here. The basis of their method was prese

in the literature survey. They calculate a critical diqtance, gc,

B

. beyond which dislocétions wtll tend to move away from the crack tip.

They assume tHat if Ec is less than the core cut-off distance of the |
di&lﬁcation,'spontaneaua emission will occur. This is obviocusly
difficult Sg,judge in many borderline cases of which iron is one. It

' R
T
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may-be sﬁated, howeveﬁ, that the smaller the va}ue of Ec, the greater_is
the tendency to emit dislocations by their analysis. Substituting thé
parameters of the Johnson-I pbtential into the formulas given by Rice
and Thomson leads to the valués shown in Table 7. It can be sean thap
their method predicts the [010] crack to be more likely to emit
dislocations than the [110]. The.appearance of dislocation-like
displacements in the present [010] crack qﬁdel, but not in the [110],
épparently supports this conclusion. Note also that [001] dislocations
have a significant chance of being emitted from the (010] ecrack. No
sign of these was seen in the simulations deseribed to this point which

correspond tg low temperature materials but one was observed in a

thermal¥y activated model which is described below.

The dislocation-like displacements observed here can be compared

to the dislocation displacement field assumed by the Peierls disloecation -

model, [37]. In this model, all the displacement or disregistry caused
by a dislocation in a simple cubic lattice is a;sumed to be between two
ad jacent planes of atoms. A simple sinusoidal interatomic force 1aw‘is
assumed. The disregistry, g, as a function of distance, x,_along the

dislocation glide plane from fhe dislocation center is given by

»

X ' )
€% & l-—% tan_l(--)J A . (36)
£/~ . :

-/
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Table 7. Rice and Tnomson, {15], Results for Johnson-I Potential, [59],

Crack
System

(001)
[010]

(001)
f010]

{001)

,j [110]

(001)
[119]

Slip
Systen

{701)
[111]

(100)

[001]

(110)
[111]_

(112)
[111)

2.66
2.34
3.56

?.97
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N (37)

In equation {37), h = the spac}ng betwzen atom planes, and v = the

Poisson’s ratio of the material.

The Voight average Poisson’s ratio for the Jogﬁson-l material
1s 0.25 . From part (a) of Figs. 29 to 32 it appears that most oﬁ.the
disregistry due to the dislocation-like displacements occurs betwnen two
(101%) planes seperated by %[701] at the lownr k values, and across two
of these planes separat by [101] fon/higher k. S8Since the dislocations
are more likely tc be ehitted at hizh k ;3lues, thé corresponding
[101] seﬁeration bgtwf n adjacent planes will be used. This correspondé
to a value of h of 0.405 nm. Using these valugs; ; glven by
ieqéation (37) is 0.270 nm. Values for the disreéistry, g, as a ‘function
of distance were read off parts {c) to (f)‘of Figs. 29 to 32. The ;

results are plotted in @Egtxggff“-4_

In order to compare thgse results to the Peierls model, the !
curve definéd by equation (36;'is alsb plotted. The value taken for g
was chosea as follﬁ;s. In the'Peierls model of a Hislocation in the
center of a erystal, o is one half-of the Burgérs vector. For the case
considered here, in which the dislocation is forming at the free surfage

of the erack face, g, Was taken tn be the total Burgers vector,

Considering only the x‘-x3 plane componeéﬂ of the Burgers vector for a -

-3
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Figure 39(3), Disregistry, g, vs 'c’:m‘I (x/¥) for d15locatio&s

alonz (101) planes far (001)[010] crack.
Tae dashed lihe is equation (36).
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Figure 39(b)

Disregistry, g, vs ban'f\gx/}’) for dislocationsa
along (101) “planes far (001)(010] crack.
Tne dashed line bs equation (36),
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This description of the information plotted in Fig. 39 lndlcates
that there are a great many assumptions involved in comparing the
.results of the model used in the pré&sent work with the Pei;rls model .
The Peieils model itself contains many simplifying assumptions, Thus,
the comparison must be considered to have only very limited aceuracy.
Nevertheles;, the results show that the general trend of the
disregistries for k = 0.8 kG and of one of the disloca?iods for k = kG
are straight lines as required by quation {(36). The curves %pf
E = 1.2 kG and 1.M;%y.are steep enough at large radii»th;t. if
ext}aéolated to x =70 with these iarge slopes, they wou}d indicate that
the disregistry there is larger than that required to cause a
dislocation of the type'considered. It ecan be seen, howe@er, QEHE these -
curves-are not straight lines, deviating clos# to the crack tip. Thus,

. s Y .

the dislocation-like displacements at the crack tip-never become large

encugh to cause a complete dfsiocation Qhere; even though it wouwld
appear that this would be possible ‘if only the:low k solutions are
considered. This may be due to the non-linearity in this model, whic

. TN

+ becomes especially severe at the high strain levels encguntered near the B

-]

6.7 Elliptie Expénsion Center

i

““Tne appea}ance of the non-linear displacement field for the

Y N .
{110] crack indicated that an elliptic expansion center at -the apparen@_i
cerack tip might provide a good fit. Such.an expansion center was usad

- < SN
t \‘ ] &
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Table «8. Elliptic Expansion Center Strengths for [110] Crack.
: ' ) b = Lattice Parametér = 0.286 nm for a-~Iron,

Y

.. . 2 2
k/kG Ml (nN) | M3 yﬁﬁ;\i SA (nm<) | SA/D
0.9 - -t.64 4.68 0.00659 0.081 !
1.0 . -1.95 ' 6.29 ' 0.00941 0.115
1.1 -0.61 14.72  0.03058 0.374
\
. Jln.
. L
lff [
» v \
] o
. \
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by Gehlen, et al, [44], to describe the non-linear displacement field

around a [100] edge dislocation in a-iron. For the [110] crag:‘in the

present study, it 'was found that subtracting aqrelliptic‘expansion l R g
cente; at the crack tip could reduce tﬂe RMé value of the non-linear
dispiacement field by 20 to 30?. This 1s more than the effect of any ‘
higher order crﬁck tip term indicating that. it 15 an important compeneat
of the crack tip &1splace?ént field although it still leaves much of
this field undescribed. The parameters.of the best fit expansion
centers are given in Table 8. The ;;pansisn cenébr is defined by two
dipole forces at right angles to sach other. ’Ml 1s the dipole str;ngﬁh
‘in the x]-direcﬁion‘ #3 thé_strength in the xa-direction. The vofhme
expansion,‘éA, associated with this term oﬂ the dispiacement field is
‘also given. A complete description of this type of displaéement f§gld-

¥
was given by Gehlen, et al, [44].

6.8 Taermal Activation of the Model '

~

13
A ]

To examine the possiblity of thermally activated dislocation .
emission at high temperatures, the [b10] crack was loaded to k = 2 ka

The atowms were initially given randomlygdistributed kinetic energies and
)

the model was occasionally partially quenched so that the total kinetic

energy in the system remained closz to that corresponding to a

temperature of approxiﬁ?tely 400 K for 1000 fs. The appearance after

this time is shown in Fig. U40. It can be seen that a {001] dislocation

appears to have been emitted from the ecrack tip, blunting it before

crack prapagation could occur.. The finite element area is not flexible
i A ‘

e N

4
1 \

N
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4

(001){010] erack at k = 2 k¢ after 1500 fs showing '

the dislocation émitted from the crack tip,
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enough with the current grid to allow the dislocation to move farther.

The dislocation is not coamplete since the material has not closed above
N .
it afteqjitfmoved past. This may be a result of the relatively short

cut—off‘of‘tbg‘dohnson potential compared ﬁé that probablé in real
materials. It Saes, however, appear that thermally 4Ltivated

dislocatioﬁ emﬁgsion is likely in this material and the fact that an
(001] dislgsation was emitted'corresponds to the prediction of tﬁe model : (\
of Rice and\}homson given in Table 7. As discussed above, the reason

-

that no [111] dlslocatlons ware emitted may be the restrlctlon lmposed

.by the grid, the high symmetry of the model in the x -dlrectlon, or it
A

may 1nd10ate a real effect. ThlS result may be compared to that of

Geﬁlen, 2t al, [66], who used a model with rigid boundary conditions for

thermal activation tests. No rupture or dislocation emission could be

ébtained with that\godel. : :

6.9 Stresses

The stress field around a crack tip is important in determining,

for é#aﬁple, vacaney f&rmation and migration energles in its
viciniﬁy, [é]. Stress can be defined onlg on a continuum basis, but a
"pseudo-stress? was calculated for the discrete area of the models
sﬁud;ed in this Qork. Each atom wis considered to be centered within a
cube ‘with ?xes ﬁahallel to the coordinate axes. The force in egch bond (,
to this aton wnich passes thggg;h’géch face was resolved to give noramal
~ . . _ .
and shear stresses on each of these faces. Averaging the values on
ogposite‘féces gave an approximation to ghe stress state at thi% pointt "

» ' o
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Figurés 51 and 42 sFow qg along the pcsiti&e x]~axis for each
case. This is the largest stress component. The streses given by tne
Efiffith model are also shown and it can be seen that they give a
reasonable approxima;ion to thesz values at large radii Rut that there
is significant de;iation at smaller radii where theJGriffith stress
abproaches infinity. There is a maximum in the value‘of"o3 in the
pressnt médel ahead of fhé cqﬁck tip., Very closs to the crack tip the
stress is.ldwer than thé Griffith stress, At larger distances, the
stress is slightly higﬁer than the Griffith'value, balancing the lowar
stress near fhe tip. This is reminiscent of the reéults for the
continuum theory of zracks when material and geometric;l non-lipearity
is included, [7,81. In the continuum theo;y this result has led t»o the
pgbposal (suppor;ed‘by experimental evidence, [11];) that in ductilg
materials at high temp;rature, crack propagation proceeds by repeated
void nucleation at the point of maximum o (and correspondlng max{mum
hydrostatie tension) follgaad by neckln; faiTure of the material between
this void and the old crack tip; An analoéﬁus type of behaviour could

be responsible for the propagation of the atomically sharp, brittle

cracks studied in the present work. A vacanq@’is most'iikely to form;

'
- S
I
\

at, or migrate to, the point of maximum hydrostatic tension and the

¢rack may then move t RQ\\P the (weakened) material betwsen the vacancy
b s

and thne old crack tip. is would be a source of temparature depeggience

for the propagation of brittle cracks, since the vacancy formation rate

is tenpﬂraturn depesndent, and may be of interest to theories of slow

erack growtn by vacancy diffusion, (9], Although the pseudo-stress

distribution indicates that this may osccur, discrete lattice

»

g
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Figure 42. o3 vs x for (001)(110) cracsk. The curve shows the. . 3
stresses predict‘e#by the Griffith crack model .
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Figure 42 (conts g, vs x, for (001)[110] crack.
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caleulations would be necessary to obtain accurate values of energles

for crack tip—vacancf‘interactions.

The [110] crack at k = 1.1 kG has a more complicated stress

distribution with two peaks. This is probably related to the different

bond distribution in this case compared to that at lowsr -stress

intensity factors as discussed in section 6.4 .

r . -

6.10 __Conclusions

1)

2)

3)

The major conclusions of this chapter may be summarized as

When the finite element boundary scheme was applied to the (001)
plane crack in a- iron, crack propagatlon on the (00]) plane could
be obtained for two dimensional cracks with directions of [010] and

]

f170).

Signifieant differences were observed in the 1attice trapping

"limits and cragk propagation speeds for these two directions. Some

published experimental results seem to support these conelusions

but more experimental work will need to be done before they can be

confirmed.

" The non-linear componeat of the displacement field (defined as the

difference between the total model disolacements and .those given by
- _ b

linear elastic fracture mechanics) is of signifiecant magnitude out

to 20 lattice parameters from the crack tip,. The'Shape of this

non-linear displacement field 1s complex and it is not well
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represented by tﬁe higher order linear efastic crack tip terams, by
Volterra hislocations at the crack tip, or by an elliptic expansion

center, although it shows compog;nbs‘of all these,

X 4) The dislocation-like splagements, apparent around the (010] crack

. . ‘ ¢
tip, are especially interesting”, Tney indicate the possiblility of
S/ ' :

dislocatAdo sion from the crack tip, although this did not
~

occur in low tezgpfatqre simulations. A simulationTat‘QOO K,

) howaver arently result in the emission of a dislocation

, did ap

he crgck tip.

e/ "pséudo-stress' distribution shows a max imum in 63 Just ahead

) of the crack tip in these models.X This may de intsresting for

theories of slow crack grouth. by vacancy diffusion.

——



7 CONCLUSIONS AND DISCUSSION

The work which has been'pre;enﬁed‘in this thesis has been

concerned wit&\iime aspects.of atomic level computer simulation models,
EESUE S . -
with rezard to both impﬁouing-thé_eﬂficiency'and accuracy of thess

models in general, and in abp;ying then to'the‘abUdy_of (001) plane

fracture in a-iron. The ﬁaﬁo?‘cthluaiopé.anq.achieyeﬁents of this work

A

'-
may be stated as follows:

1.2} Sslection of the optimum method for solution of an atomic

. . B ,
simulation problem can result in a-decrease of computer time used
by factors of two or three over that-re%a}red'by other, often_used,

. ¥ I
metbhods. - =

' ‘ﬂa. ) .
.
b} The best method of thosz tested for integration of the equations of
motion of a model depends on the accuracy level required for

dynamic models, and on the stability limits of the integrator for

static models. They may be chosen as deseribed in Chapter 4.

c) The conjugate gradiént method appeared sign%ficantly better than
the quenching solution methods for the attainment of aquilibrium
positions (when the slight modification noted in Chapter 4 is

included in the conjugate gradient scheme).

d) Alternate equilibria appear to be more easily obtained than kad '
been previously considered.

. 203

-
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e) The sum square atomiec force provides a reasonable estimate of the

- energy error in a static solution simulation model.

2. A new boundary scheme which utilizes the finite element method ‘has

. N
been proposéd which offers several advantages over previous

methods.‘(;T}ese are outlined in sqction575 .

. .
v 3.a)-The n;;—ggﬁqgigz,SCheme has been applied to the {001) plane crack

in u-iron Two dlmensional nodels w1th crack 1ine diregtlons of

L1

[010] and F110] were studied.

- b) (001) plane fracture was obtained for both craé&s with no

dislocations enitted from eithgr crack model at low temperatures.

e) 3ignificant differences were observed between the two crack
directions which are supported by some published experimental work,

:;> although this support must be considered tentative at present’. ,/'

. d) Tne non-linear component of the displacemént field is complex and

not wéll represented’ by any of/yggjyisplacement fields considered

in Chapter 6 .

e) Although no dislocations itted at low temperatures,

dislocation-like displacements war. obs

tip. A dislocation was, apparentl

Yed around the [010] erack
» emiffted from this crack during

a dynamic simulation at 300 K.

A great deal of future work in this area is possiblie, and

desirable. With regard to imprqving the accuracy and efficiency of the
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computer models used, tests such as that presented in Chapter 4 should
be carried out on larger models with a variety of boundary conditions.
Some analysis of the effect of alternate equilibria in these models and

solution methods which can obtain all or, at least, most of these is

‘ needed. Improvements possible in the finite element boundary scheme

over the particular implementation used in this thesis were indicated in
section 5.5, . Regarding the (001) plane a-iron crack, further studies

such as that presented in section 6.8 would be deSirable in order to

-~determine under what conditions dislocations can be emitted from the

-

erack gip, since this is fundamental to the fracture behaviour of this,
and many other materials. Three dimensional modéls should be considered
for this, as discussed in section 6.6, but they are expensive at
prssen%i In additién, no studies appear to ha>e bean made on cracks

under kII or kIII type locadings. This is still an open area.

Areas in which studies such as these can be expected to find the
most immediate everyday engineering application are in non-destructive
testing methods such as. acoustic enission in which the scund produzed by
moving crack tips or dislocations 1s measured and correlated with
failure probabilities; nuclear radiation damage to materials, important
for enerzy research and, inh2rently, an atomic level effect; aqd,in.thg
production of very pure crystals used in, for example, electronic '
components, so that it may be possible to determine the conditions under
which such materials can be produced with a minimum of atomic scale

defects. It is hoped that the work presedtgd in this thesis may

contribute in some way to thess studies.

’.
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APPENDIX A .
- J’
The numerical integrators tested in Chapter 4 are described in
this appendix. In what follows, each degree of freedom of =ach atom is

treated identically and its value at time t is represented by x(t)., 1Its

we

derivatives with respect to time are i, §, X, xlv, and xY. The force on
this atom in the direction of the degree of freedom, x, is F. This is

caleulated for all atoms when all degrees of freedon, X, ie. the

positions of all atoms in eaéh coordinate direction, are given. Since
it is a function of the atomie coordinates, it is spécified as F{x]. It
must be‘ehphasized that this is a vector Eelation. All forces, F, may
be calculated when, and only when, all degreas of freedom, %, have begn

specified. The integration time step used is h. The atomic mass is m.

2-3tep Difference {49] ‘

The form used here is equivalent to that given in

reference [49], but it is written in a different notation for easier

comparison to the other methods: } :
x(t+h) = 2 x(t) - x(t-h) + K2%X(t) (A1)
hd
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5-Step Difference {811, p.27

x(t+h) = 2 x(t) - x(t-h) + h2/240 [ 299 X(t)
- 176 X(t-h) + 194 ¥X(t-2h) (A2)

- 96 X(t-3n) + 19 X(t-4h) ]

Runge-Kuktta (847, p.ug

This is 2 3rd order Runge-Kutta scheme for 2nd order

differential equations: ';‘

k, = b?F[ x(t) ] / 2nm |

’ k, = heFL x(t) + 2 h %(t)/3 + U4k /9 1/ 2 (A3)
x(t+h) = x(£) + h x(t) + (kll+ k,)/2
x{t+h} =

x{t) + (k + 3k )/2n
1 2

-

It can be seen that two force evaluations are required per time step for

this method.

Nordsieck Methods [85] and (843, p.148

Thesz are equivalent to ﬁdams methods but are written in a
slightly different form mainly to facilitate changing the step size.
They are predictor-corrector methods. If the predictor operatién ié
specified by P, the correctof)by C, and the efaluation of the forces
by E, then a single application of each may be expressed PEC. This is a
q=1 schemne. If the corﬁector is appiied tﬁice,.q=2 and we have PECEC

or P(EC)2. 1In general, changes in q are described by P(EC)q. The
[ . .



number of force évaluations per step equils q. The P and C operations

.for the p=U and p=6 m=thods used are described below where

_ _-oc 3
Y, = X ¥y = X ha/6
Ayl =xh ¥, = x:V nbsay (a%)
‘
= X h2 = xV h5/1
y2 x h</2 Y. = xR /120

and superscript p refers to predicted values, c to corrected values.
p=4 Predictor

yo(t)

yplts+h) = + ¥ (8) + y,(8) + y (1)

S _ _

y (t+n) = y () +2 y,(t) + 3 y,(t) 7 (A5)
y,(beh) = ¥,(8) + 3y ()

D

y (t+n) =y (t)

p=4 Corrector

L}

From yﬁ(t+h) xp(t+h), get the predicted force, Fp[ xp(t+h) 1,

at t+h. Calculat=s W

*
FPh2/2m - yz(t+h). Correct all y’'s by setting

.

cyS(t+n) = yP(tsh) + c. W (A6)
1 1 1 )
vhere
CG'-' 1/6 " . 02= 1
¢ = 5/6 e = 1/3
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p=6 Predictor

Yﬁ(t;h) =¥, (t) + Y, () + v, (8 + y (t) +y (t) ys(t)
y?(t+h) =¥, (t) + g) (t) + 3 ¥, {t) + H’y {(t) +5 ys(t)
yo(t+h) = yztt) +13 ¥5(t) + 6 y,(t) + 10 yg(t) (A7)
Yo(t+h) = y (t) + By (t) + 10 v (t)
3 \\ 3 4 5
YP(E+R) = y (t) + 5 ¥ (t)
4 y 5
- ¥P(t+h) = y (t)
5 : S ol

p=6 Corrector
The procedure is similar to that foréthe qz=8 correctortwith

3/16 c, = 11718

¢
1t

. 251/360 = 1/6

c,= 1 cg = 1/60 r

Q
1

Hybrid [86}

Nogg that there are some errors in the formulas given in
“reference [86]. The szcond derivatives below are calculated by

3[‘ = E‘[)c]/m.
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>
First, the non-step point

x(t+.7h) = o x(t) .+ & x{t-h) + a x{t-2h) + a x(t=3n) -
. 1 2 .3 4

‘+ h?[ QIY(t) + ;2'x'(t-h) + ;33‘c(t-2h) (A8)

+ -YI.’X( t—3h) ]

\

where
El = ~-1.9320993 ?1 = 0.8625005
EZ = 6.“7195”9 ;2 = 3.0303805
'63 = -3.4476119 ?a = 0.4336798
— — L@- -
a = -0.0922437 Y, = -0.0072178 C
fﬂ) -

Then, the full step (

x(t+h) = o x(t) + a x(t-h) + o x(t-24) + o x(t-3n)
1 2 3 b

\ » BE Y R(E) 4y E(Eh) + v ¥(1-2h) (49)

+ yuﬁ(t—Bh) ) + h24%(t+.Th) /m

where
. = 2.0580497 Tl = 0.,7044318
92 = -0.9634579 Yz = 0.0872588 (ﬁ> : 3
u3 -0.2472333 73 = -0.1544589 ‘ .
@, = 0.1526415 _ Y, = -0.0095188
Y = 0.1615960

~

Two force evaluations per time step are required by tinis method.





