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Abstract 
Achieving control over the construction and operation of microfabricated label-free DNA 

biosensors would be a big leap in the quest for highly reliable clinical laboratory tests. 

Whether it is for the purpose of food and water supply monitoring, early screening of 

diseases, routine walk-in medical checkups, or forensic analysis, controlled design of 

these sensors is essential. Reliable outcomes of critical medical tests mean less need for 

repetitions, earlier isolation of outbreaks, and even a better legal system. Nanotechnology 

has lent itself well to this purpose, with a plethora of work that attempt to produce highly 

sensitive and reliable nano-biosensors for detection of DNA strands. The problem of 

achieving a repeatable outcome is crude at best. Additionally, the mechanism of sensing 

in label-free Field-Effect based DNA sensors is still a matter of dispute. Simulation of the 

sensors using physical models can shed light into these mechanisms and help answer this 

question. Furthermore, computational calculations can allow designers to assess the 

importance of several parameters involved in the fabrication, and provides a framework 

to which experimental results can be compared. 

In this thesis, the problem of modeling FET-based DNA hybridization sensors 

(named BioFET) is approached using mean-field simulation. Using the Finite-Element 

Method, a scalable model for the BioFET is produced and solved in 3D. The results are 

compared to an earlier work and we find that higher dimension physical modeling is 

essential for more realistic results. Additionally, we present a model for the impedance of 

the BioFET, which allows predictions of the change in the complex impedance of the 

sensor due to DNA hybridization, and which also allows the calculation of parasitic 

components that can contaminate the impedance measurements. Such components have 

been judged critical to proper characterization of impedance-based DNA biosensors. 

The issue of variations in the sensed signal from the BioFET is addressed by 

performing hybrid Finite-Element/Monte Carlo simulations on the conformation of 

single-stranded DNA. A simplified model for the DNA is used. From electrostatic 

considerations alone, it is concluded that the change of conformation upon hybridization, 
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from a flailing chain to a stiff cylinder, is a main contributor to the induced signal. The 

hybrid simulation is then performed on a complete three dimensional BioFET, with 

emphasis on the positional variations of the DNA molecules on the sensitive surface. This 

computation yields an estimate for the amount of variation in the sensed signal due to the 

random placement of DNA molecules, and an estimate for the total signal-to-noise ratio 

is deduced. 
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Chapter 1 

INTRODUCTION 

1.1 Biosensor Technologies 

Biosensors can be used for various purposes: to detect complete organisms, isolated cells, 

or biomolecules. Organism biosensors are often optical-based, with a staining phase and a 

recognition phase. An example is Gram staining of bacteria (Figure 1.1). The recognition 

phase is often administered manually by a trained laboratory technician and a 

microscope, or more recently using image processing software and computers. An 

organism biosensor can also measure the abundance of most food and water-borne 

pathogens by measuring the amount of Adenosine-triphosphate (ATP) in a sample using 

photon-inducing labels  [1] . Several commercial products based on staining assays are 

available and extensively used for food supply monitoring. Examples include the 

RedAlert™ product line from Merck, and the Mericon kits from Qiagen. In addition, 

several digitally-controlled assays are available for most common pathogens such as E. 

coli O157 and Salmonella. Examples of these are the Dynabeads® kit by Invitrogen and 

the BAX® Salmonella kit by Dupont Qualicon. However, these are highly customized 

biosensors that exploit certain traits of the target organism and cannot be extended to 

detection of other organisms. Additionally, specificity is not ensured since nonspecific 

staining can occur. Such biosensors are best suited for rapid testing of food supplies, and 

are not necessarily suitable for low concentration, high sensitivity analyte detection. 



Chapter1: Introduction 

2 

 
Figure 1.1 Gram staining of mixed bacteria, showing purple (Gram positive) and pink (Gram 

negative) bacteria. Source: www.wikipedia.org 

Biomolecular sensors cater to a different range of applications. Military bio-

warfare vehicles, such as the Fuchs NBC reconnaissance vehicle (Figure 1.2), detect 

biochemical toxins in the environment using mass spectrometry. The extracted sample is 

purified and heated in an oven to very high temperatures such that the molecular bonds 

break and all atoms are ionized. This “soup” of atoms is taken to the mass spectrometer, 

with the outcome being a spectrum of relative abundance of atoms with different 

molecular masses. The spectrum is correlated against a database of spectra of several 

known toxins, and a warning is triggered when a high correlation coefficient is obtained. 

This method can be useful for detection of certain chemical agents like Sarin. The main 

drawback of this technique is the destruction of the molecular structure, which leads to 

ambiguity in discerning molecules with similar mass distribution but different biological 

significance. This method would, therefore, not be used when detecting DNA sequences 

or proteins. 
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Figure 1.2 The Fuchs NBC Reconnaissance Vehicle. Source: www.wikipedia.org 

Another class of chemical biosensors exploits specific reactions of the analyte. 

Glucose sensors are perhaps the oldest example of this. Glucose sensors monitor the 

consumption of oxygen at a surface of an oxygen-rich electrode  [1] . A layer of glucose 

oxidase, an enzyme, is confined to the surface of the oxygen electrode, as shown in 

Figure 1.3, and oxidation can be monitored by monitoring the electrochemical cell 

potential using the oxygen as a working electrode and an inert platinum counter 

electrode. Several alterations to the enzyme, the electrode, or the introduction of other 

species that mediate electron transfer, can alter the performance and sensitivity of the 

sensor. The electrochemical cell can be operated in the constant voltage (amperometric), 

or constant current (potentiometric) mode. 

 
Figure 1.3 Schematic of an electrode-based glucose sensor 

A very common technique in detecting biomolecules is the Polymerase Chain 

Reaction (PCR). Developed by Kary Mullis in 1983, PCR is a chemical technique for 
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rapid exponential replication of fragments of DNA using DNA polymerase enzyme and a 

short DNA primer  [3] . Replication of the unknown target will occur only if the primer 

contains exactly complementary bases to a segment in the target (Figure 1.4). Successful 

replication, as measured by different labels, is therefore a direct evidence of the 

recognition of the primer’s sequence. This method can, therefore, be used to identify a 

segment of an unknown DNA molecule, and correspondingly, the source organism  [4] . 

The procedure of PCR is relatively simple. However, its success depends on many 

factors, including purity of the samples, efficient cycling of temperatures for the PCR and 

denaturation phases, and abundance of the labels, the polymerase enzyme, the primers, 

and suspended nucleotides in the solution. These issues make it hard to realize a portable, 

low cost biosensor based on PCR, despite its extreme sensitivity. 

 
Figure 1.4 Steps of replicating DNA fragments using PCR and a primer 

Affinity biosensors are considered state-of-the-art methods for detecting 

biomolecules. Their earliest manifestation was the blotting techniques, first introduced by 

Edwin Southern, and named the Southern blot. This was used to detect DNA fragments 

by hybridizing them to probes suspended in a gel matrix (Figure 1.5). Similar techniques 

were developed for detecting different biomolecules such as proteins and RNA 

molecules, and were eponymously named Western blot, Northern blot, Eastern blot and 

Southwestern blot. Contemporary solid-substrate biosensors use the same technique of 

specific recognition, but the detection takes place at a solid surface. DNA hybridization 

sensors can detect the presence of specific genetic material in a sample by means of the 

specific pairing of single-stranded DNA fragments (oligonucleotides or ssDNA). Several 

protein sensors can utilize antigen/antibody or receptor/ligand specific interactions to 

detect the presence of proteins with specific active sites. Detection of viruses can be done 

in this way, by detecting antibodies produced by the immune system in response to the 
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virus. This is the principle of operation of Enzyme-Linked ImmunoSorbent Assay 

(ELISA). 

 
Figure 1.5 Simplified schematic of Southern blotting technique 

Affinity biosensors (Figure 1.6) consist of a substrate, immobilized specific 

capture probes, and a test solution with the targets. Specificity is obtained by the unique 

affinity of binding between the probe and target. Although biomolecular sensors have 

been used for food and water monitoring, they are mostly used for gene expression 

profiling and single nucleotide polymorphism detection. Detection of successful capture 

is accomplished by first staining the targets with a fluorescent dye, generally a Cyanine 

dye like Cy3 or Cy5. The target and solution are applied to the sensor’s surface, and a 

binding to the probes occurs if the sensed biomolecule is found in the solution. Detection 

of successful binding is done by monitoring the residual fluorescence obtained after 

washing away the test solution. Any remaining fluorescent molecules are attached to 

targets that have been captured, and the intensity of the observed fluorescence is 

proportional to the abundance of the molecule. These affinity sensors generally manifest 

as cells in a larger array, called a microarray. The microarray allows parallel detection of 

many species and yield extremely informative data about the target organism. 
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Microarrays are classified based on the target molecule (e.g. protein microarray and DNA 

microarray), or based on the method of fabrication, array density, or even the method of 

use (e.g.  complementary DNA (cDNA) microarray and oligonucleotide microarray). 

 
Figure 1.6 Illustration of affinity biosensors, with immobilized probes on a transducer surface, 

surrounded by potential targets in a test solution 

Recently, much research effort  [5] - [24]  has been put into the development of 

label-free DNA and protein biosensors. The same technique of affinity biosensors is used: 

a specific interaction between probe and target molecules. The new technologies for 

detection can also, at least in principle, be grouped into microarrays. However, detection 

of successful target capture is measured by different means, eliminating the need for any 

kind of dyes. Several versions of label-free biosensors have been presented. 

Electrochemical biosensors detect the capture by monitoring its effect on electron transfer 

reactions at the bio-sensitive surface  [5] - [8] . They can also be used for detection of 

specific chemical ions (ion-sensitive electrodes) or pH level  [9] . Piezoresistive sensors 

have utilized Micro-Electro-Mechanical Systems (MEMS) to produce a deflection of 

suspended micro-cantilever beams due to target capture. This deflection modulates the 

properties of piezoresistive materials, causing a direct electrical readout  [10] - [13] . 

Nanomaterials have recently attracted a lot of interest due to their high surface-to-volume 

ratio, enabling high sensitivity and the detection of a very small number of molecules 

 [14]  [18] . Nanowires  [19] - [22] have been used to detect target capture by monitoring the 

direct effect of the capture on the conductive properties of the nanomaterial. Nanobeads 

attached to ssDNA probes would aggregate closer together, due to DNA hybridization, 
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which would modulate the localized surface plasmon absorption band, leading to a 

change in the observed color of the nanobeads  [23] - [24] . 

Although nanotechnology has pushed the limit for high sensitivity detection of the 

lowest possible concentrations (down to femtomolars), it remains too expensive to be 

commercialized. Alternatively, biosensors based on the field-effect  [25] - [30] , allow very 

low-cost detection of biomolecules, and can be readily integrated with mainstream signal 

processing circuits on the same chip. This biosensor is based on post-processing 

mainstream Field-Effect-Transistors (FETs), chemically attaching the probe molecules to 

the surface of the insulator, and replacing the gate connection with a reference electrode 

 [9]   [31]  [33] . Capture of target molecules causes a shift in the threshold voltage of the 

FET structure, which, again, can be sensed in amperometric or potentiometric mode  [34] 

 [37] . 

The current surge in biosensor technologies is mirrored by an equivalent surge in 

the area of microfluidics. Preprocessing of samples requires many steps such as mixing, 

heating, and separating of molecules using electrophoresis. Much work has been 

published on microfabrication of fluid channels and micro-chambers for these purposes 

 [38]  [45] . The goal is to replicate the processes of sample preparation and purification in 

micro-scale, using only nanoliters of fluid and a countable molecular ensemble. This 

allows smaller volume processing and cost reduction, as well as faster and more reliable 

results  [46] - [47] . Many of the technologies used to build microfluidic systems are 

compatible with those used for integrated circuits, allowing the sensor devices and 

peripheral electronics to be integrated with fluid-processing systems. The offspring of 

this union is the so-called “lab-on-chip” or “micro-total analysis system” (μTAS), which 

is an integrated chip that can replicate one or many functions of a complete lab, and 

provide results that are just as accurate, with minimal time and use of energy and 

chemicals. 

The diverse spectrum of technologies that surround molecular biosensors stems 

from the increasing demand for research into reliable electronic biosensors that are cheap 

and easy to deploy. Figure 1.7a shows the growth in the number of publications that 
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address newer biosensor technologies. It shows an unambiguous tendency for research to 

target integrated label-free biosensors and microfluidic technologies that allow processing 

of small volumes of fluids, as compared to conventional blotting techniques which are on 

the decline. Similarly, newer biosensor technologies are taking a larger market share in 

the diagnostic industry, albeit at a much slower pace  [48] . Figure 1.7b summarizes the 

growth of patents on biosensor technologies in the past two decades. As apparent from 

the figure, the innovative ideas that are being groomed for marketing mostly belong to 

newer biosensor technologies, such as microarrays and microfluidic assays. Legacy lab 

techniques have since fallen short of catching up with the newer technologies, and the 

increase in funding for biosensor research (estimated to reach USD 14.42 billion by 2016 

 [49] ), will only widen this gap. Table 1.1 gives a summary of companies that are 

involved in emerging biosensor technology research. 

 
Figure 1.7 (A) Number of publications on biosensing related topics by year (source: ISI web of 

Knowledge). (B) Number of patents granted to inventions in the biosensing industry by year (source: 

Google patents search). 
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Table 1.1 Biosensor companies and their emerging technologies 

Company Product(s) Purpose Website 

Affymetrix Inc. Axiom™, GeneAtlas™ Gene expression profiling 
high density microarrys 

www.affymetrix.com 

Applied Biophysics ECIS array station Impedance measurement 
of cells to quantify cell 
behavior 

www.biophysics.com 

Applied Biosystems TaqMan® PCR/labeled microarray 
for detection of 
salmonella, lysteria, and 
other food-borne 
pathogens 

www.appliedbiosystems.com 

Attana sensor 
technologies 

Attana sensor chips Label-free quartz-crystal 
microbalance detection of 
molecules 

www.attana.com 

Biacore Intl. AB Bioacore™ Label-free molecular 
interaction and kinetics 
analysis hardware and 
software 

www.bioacore.com 

Biosensing Instrument BI sensor chips Surface-plasmon 
resonance based 
biosensing 

www.biosensingusa.com 

Cantion CantiChip8 MEMS-cantilever based 
molecular sensing 

www.cantion.com 

Invitrogen Luminex®  Protein assays for 
detection of intra- and 
extracellular proteins 

www.invitrogen.com 

LifeScan OneTouch® UltraLink™ Glucose meters with 
wireless transmission 

www.lifescan.com 

Maven Biotechnologies LFIRE™ Label-free internal 
reflection ellipsometry for 
detection of molecular 
binding 

www.mavenbiotech.com 

NeoGen GeneQuence® DNA microwell assay for 
pathogen detection 

www.neogen.com 

NimbleGen ChIP-chip Protein-DNA interaction  
analysis via microarrays 
for  immunoprecipitation 

www.nimblegen.com 

Nova Biomedical Bioprofile® Cell culture analysis www.novabiomedical.com 

OWLS Sensors OWLS Label-free biosensor by 
modulation of laser 
propagation in waveguides 

www.owls-sensors.com 

QIAGEN Mericon kits PCR labeled assays for 
detection of organisms 

www.qiagen.com 

 

1.2 DNA Biosensors 

Affinity biosensors that are made to detect DNA molecules have attracted special interest 

and have dominated biosensor research for several reasons: 

http://www.biophysics.com/�
http://www.neogen.com/�
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1. DNA is the most stable biological molecule that contains information about the 

source organism, and is therefore the most likely to be stable over time and to 

provide accurate identification results. This makes it the ideal molecule for 

forensic or archaeological studies, as well as pathogen detection. A sensor built 

with DNA probes will also be more immune to degradation than a protein sensor. 

2. The chemistry of DNA is far more understood than that of proteins or RNA, and a 

lot can therefore be done with DNA molecules (e.g. amplification using PCR, 

reverse transcription of RNA to DNA, separation by electrophoresis). Some of the 

biochemistry of DNA that occurs inside cells has allowed biochemists to replicate 

the experiment in vitro for other purposes. For example, restriction enzymes, 

found in bacteria, can cut portions of the DNA out of the bacterial genome. This 

mechanism is thought to be a defense mechanism against viral attacks. Biologists 

use this idea to cut up DNA molecules in labs to a more manageable size for lab 

experiments. 

3. DNA molecules remain intact at higher temperatures, and denature at around 

80⁰C. As temperature is lowered, the denatured DNA will self-recognize and 

“hybridize” once again. When proteins denature, it is impossible, without cellular 

machinery, for them to fold back into their original shape. This makes the design 

of DNA sensors more robust. 

4. The pair-recognition property of DNA molecules is highly specific. A single 

mismatch for a ~20-mer probe can destabilize the complex such that its melting 

temperature is reduced by 5⁰C  [50] . This makes detection using DNA strands 

extremely specific, given that the probe length is short enough for the mismatch to 

be significant, but long enough for global stability of the molecular complex. 

On the other hand, the use of DNA molecules for organism detection has the 

limitation that it gives no information about the living state of the organism, whereas a 

positive RNA test is a good indication of the target being alive, since RNA cells are quick 

to degrade. Additionally, DNA sensors might not be sufficient for detecting diseases 

caused by prion infections, such as Creutzfeldt-Jakob’s disease. Such infectious agents 
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are diagnosed by highly-specialized protein conformation biosensors  [51] , or by 

symptom monitoring of the disease. 

The ability to synthesize DNA oligonucleotides allows for the low-cost design of 

DNA biosensor microarrays. A lithographic technique is used by Affymetrix  [52] , and it 

allows for the low-cost synthesis of DNA probes directly onto the sensor. Label-free 

DNA sensors have also been built on many different substrates and materials, including 

gold and carbon  [53] , silicon dioxide  [54] , diamond  [55] , quartz  [56] , optical fiber  [57] 

, and conducting polymers  [58] . One of the challenges of building DNA sensors is the 

attachment of the probes to the substrate. DNA probes are expected to be intimately bond 

to the transducer’s substrate. This is particularly important for sensors that rely on 

electron transfer reactions that travel along the DNA molecule  [59] , but is also useful for 

all other types of transducers. ssDNA probes can be captured on a surface via long-range 

electrostatic forces, or by chemical attachment to an activated (or functionalized) surface. 

For a durable, highly sensitive biosensor, the following must be observed when 

immobilizing probe DNA: 

1. The probe ssDNA molecule must be secured in its position, with little chance of 

breaking free. DNA Biosensors are rinsed before detection to allow unhybridized 

and non-complementary targets to be washed away, so as not to contaminate the 

measured results. If probes get washed away as well, the effective sensitivity of 

the sensor is lowered and the final reading can be ambiguous. 

2. The probes should only attach at one terminus onto the surface, and be suspended 

otherwise into the host solution (Figure 1.8). This allows for the highest degree of 

thermodynamic freedom, which significantly speeds up the hybridization rate. 

Binding should not occur at the nucleotide bases, since those sites are the target 

capture sites. 

3. The probes should not aggregate too close to one another. Close-packed DNA 

molecules can cause cross-hybridization between probes and can lead to reduction 

in the sensor’s speed  [60] . As will be seen later in this thesis, non-uniform 
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distribution of DNA probes will reduce the reliability and sensitivity of the 

biosensor. 

4. Any functionalization layer used should not compromise the functionality of the 

biosensor. This can occur if the functionalization layer prohibits electron-transfer 

reactions in an electrochemical sensor, or if it can repel target molecules away 

from the probes. Strong affinity between the surface and the probe can alter its 

shape, making hybridization less likely. 

 
Figure 1.8 Illustration of good vs. poor immobilization of probes 

For DNA sensors, many methods of binding have been reported. One popular 

immobilization technique is the use of thiol-gold chemisorption. The 5’end of ssDNA 

molecules are attached to an alkanethiol molecule, using an esterification reaction of the 

DNA and a related alcohol, such as 6-mercapto-hexanol  [61] . This reaction is shown in 

Figure. 1.9. The thiol group can be used to attach to many different metallic surfaces as 

well, although they might not be bio-compatible  [62] . When designing DNA sensors 

using mainstream semiconductor technology, it is generally desired to attach the DNA 

molecules to a dielectric material, often silicon dioxide. For silicon oxide or silicon 

nitride, silane groups are used instead of thiols, as they can form a cross network on the 

surface and yield a very high quality Self-Assembled Monolayer (SAM)  [63] . Common 

molecules in use are aminpropyl-triethoxysilane (APTES)  [64] , and glycidyloxypropyl-

triethoxesilane (GPTES)  [65] . These molecules form a cross-network with the 

underlying substrate on the silane end. The other end (amine in APTES and glycidyl in 

GPTES) is used to bind to the DNA molecule at the 5’-end. The energy of this bond is 

critical to the stable operation of the biosensor. Improper covalent bonding can lead to the 
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probes being washed away during the rinse phase. It can also lead to lateral diffusion of 

the probes which can adversely affect the reliability of the sensor’s reading. 

 
Figure 1.9 Esterification reaction, used to link the oligonucleotide with alkanethiols. 

The success of a DNA sensor depends on the high specificity of capturing only 

the exact complementary target, allowing DNA sensors to detect Single-Nucleotide 

Polymorphism (SNP). For this, the DNA probes should be made short such that the 

energy of binding is severely changed with a single mismatch, prohibiting nonspecific 

pairing. Additionally, the probe density should be made high enough such that targets do 

not absorb and attach to vacant sites in the SAM layer. The vacant sites might be 

deactivated by a chemical step, but such processes are not perfect, and active sites can 

still exist. The hybridization experiment must be conducted in a buffer solution with 

carefully selected ionic concentration (often a saturated or near-saturated monovalent 

salt). This will allow the hybridized pair to achieve a local minimum in energy and 

remain stable. 

Most label-free DNA sensors utilize the effects of hybridization on electron 

transfer at a surface as a means of transduction. This could be by modulating the 

electrochemical properties of the electrode by the DNA hybridization, or by steric (or 

perhaps electrostatic) blocking of ionic diffusion into the ssDNA brush layer  [66] . The 

electrochemical reaction might not be with ions in the solution, but instead with a moiety, 

such as ferrocene, attached to the target DNA  [67] . Although this does not qualify as 

strictly label-free, it does not require optical methods of detection, which still makes it an 

attractive option. Such means of transduction are extremely sensitive to the electrode’s 
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surface characteristics, the thermodynamics of the electrochemical reaction, and the exact 

nature and chemistry of the SAM molecules. Field-effect DNA sensors, on the other 

hand, are less sensitive to the chemistries and electronic structures of the molecules, but 

more so to their charge, dipole moment, and geometry. A field-effect DNA sensor 

consists of a normal field-effect transistor, with a source terminal, a drain terminal, a 

channel, and a gate insulator. However, instead of the gate connection, which sets the 

potential of the channel, a bio-active membrane is placed on top of the insulator, and a 

reference electrolyte solution and reference electrode are added, as shown in Figure 1.10 

 [25] ,  [29] ,  [36] . Capture of target DNA molecules causes a modulation in the channel’s 

resistance, which can be sensed as a change in the amount of drain current. This is 

equivalent to a shift in the threshold voltage. 

 
Figure 1.10 Simplified structure of a DNA BioFET, shown with the bias applied 

Field-effect DNA sensors (sometimes called BioFET), have been attracting much 

attention in research, fabrication methods, and operation. One of the main advantages of a 

BioFET is its low cost: being derived from one of the cheapest contemporary 
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technologies, which is CMOS integrated circuit technology, the BioFET is guaranteed to 

be fabricated at extremely low cost, using a few post-processing steps of standard CMOS 

processes. This also allows all signal transduction and processing circuits to be fabricated 

on the same chip, alleviating the need for chip-level assembly. The low-power operation 

of CMOS devices, and by extension the BioFET, allows for the DNA biosensor chip to 

be deployed on portable devices. Equipped with proper wireless communication circuits, 

this chip could be part of a wireless biosensor network system for continuous 

environmental monitoring. Such portable biosensors have been identified as a highly 

sought technology by the Environmental Protection Agency (EPA)  [68] . Furthermore, 

CMOS processes are very highly reliable, owing to decades of improvement in the 

fabrication process. This gives the BioFET an edge over the more sensitive emerging 

technologies such as silicon nanowire and carbon nanotubes. 

1.3 The Need for Mathematical Modeling 

Biosensor technology is one of the newer research areas that have only gained 

considerable momentum in the past two decades. Part of this is due to the demands and 

the success of the human genome project in year 2003, which pushed for proper design 

and characterization of DNA microarrays. This resulted in a big spike in the amount of 

work that targeted biomolecular structures and functions, and the appearance of the 

Worldwide Protein Data Bank. Another reason is the deeper understanding of the 

mechanics of diseases such as cancers, their evolutionary tendencies, and their 

microscopic structure and function. The scientific community is better equipped with 

tools that allows drug synthesis and delivery in a much more efficient and targeted 

manner. This, in turn, causes many new methods of targeting diseases to be proposed. 

Laboratories and medical centers thrive on such opportunities, and in turn, require better 

and faster technologies of isolating, identifying, and synthesizing molecules. Biosensor 

technology is ideal for such requirements. 

Whatever the reason, it is fortunate for research on biosensors to occur at a time 

when computational resources are available at low cost. The power of computation has 
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been following closely, and in some cases superseding, Moore’s law, which predicts a 

doubling of the transistor count in commercial processors every two years (Figure 1.11) 

 [69] . No known technology has been able to evolve at such speed and become available 

at such a low cost. The computation requirements for biosensors can be very large, and 

are therefore only feasible under the abundance of high computation power. On the other 

hand, laboratory experiments remain extremely expensive, with reagents and chemicals 

costing thousands of dollars. A biosensor will have to be designed and tested many times 

before its reliability can be assured. The time and cost for such a task is great, and the 

design must be done by very skilled personnel. Therefore, proper physical modeling and 

computer simulations can help identify the main characteristics, strengths, and 

weaknesses of a biosensor implementation with no need for any expensive resources, 

other than computational time.  

 
Figure 1.11 Number of transistors (reflecting computational power) for common commercial 

processors, with the dashed line showing Moore’s law trend [69]. 

The following sections illustrate the main advantages of using mathematical 

models and simulations in designing and characterizing biosensors: 

1.3.1 Explaining Experimental Observations 

Most experiments conducted on biosensors are concerned with direct measures of 

sensitivity, and demonstrations of selectivity, without direct attribution of the sensor’s 
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output to a physical process. Often, the output is fitted to an empirical or semi-empirical 

model, and some conclusions are derived. This abstracts away much of the physics that 

could otherwise give hints on how to build more reliable sensors. The variables of an 

experiment are huge, and it is financially prohibitive to try and exhaust all experimental 

combinations and come up with a complete set of data points. It is, however, very 

important to know what mechanisms cause the biosensor to operate. In the case of DNA 

biosensors, many mechanisms have been proposed for the sensitivity, including ionic 

reorganization at the surface, direct field-effect from the DNA backbone charge, and the 

change in the dielectric constant of the DNA membrane due to hybridization  [70] . There 

are several valid justifications to each one of these mechanisms. However, even if they 

are all contributors, it is difficult to state which of these mechanisms has the dominant 

effect without proper computational analysis and simulations. Knowing the dominant 

mechanism can help resolve the conflicts and large discrepancies reported in 

measurements  [70] . There are several parameters, including sensor’s geometry, material 

type, temperature, electronic properties, fabrication procedure, and tolerances that could 

severely alter the response of the biosensor. Modeling and simulations can shed light into 

which of these parameters play the most critical role in the performance. 

1.3.2 Optimizing the Design and Operation of the Biosensor 

With science based models and computer simulations, it is possible to examine the 

performance of the sensor under several operating conditions. For example: The sensor 

can be simulated for different device sizes, different molecular binding scenarios can be 

simulated for different host solutions, several biasing and current readout scenarios can 

be investigated, and many others. Optimization techniques can be used in the given 

model to predict local maxima of sensitivity and the corresponding design/operation 

parameters. We could also make good predictions about the expected variation in the 

received signal due to uncontrollable fluctuations in several parameters. We have used 

simulations previously to predict that the biasing point for the BioFET to achieve the 

optimum Signal-to-Noise Ratio (SNR) was in the subthreshold region  [71] ,  [72] , and 
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this has been shown to hold true in the case of silicon nanowire DNA sensors  [73] . 

Simulation outputs like these can give guidelines on proper design and operation of DNA 

biosensors, and can save an experimentalist several attempts in building a suitable device. 

1.3.3 Investigating Novel Phenomena 

Sometimes, a computer simulation can give results that might seem counter-intuitive at 

first. However, upon closer inspection, it turns out that these results were logical but 

overlooked. In our simulations, we have encountered such cases a few times (details in 

Chapters 3,4, and 5). Just as many scientific discoveries were made by mistakes in the 

lab, the same thing can be said of computer calculations. The anomalies could sometimes 

be traced back to an implementation error or non-accounted for physical or chemical 

process. However, in some cases, they can be characteristics of the device that could lead 

to better designs. 

1.3.4 Handling Complex Geometries 

The geometries of biomolecules are often very complex, and the description of their 

interactions is even more complex, requiring simultaneous solution of many coupled 

nonlinear equations. The need to capture details at small scales and fine geometries, as 

well as the complexity of the equations and models, yields a problem that is impervious 

to analytical, simplified treatments. Coupling of many physical phenomena in different 

domains requires a complete numerical treatment that is versatile enough to capture all 

the physics in one single framework. This is especially the case for the BioFET. The 

physics that describes the signal transduction consists of several nonlinear differential 

equations that span different regions in the geometry. The size of the DNA molecule is 

very small in comparison with the size of the biosensor, yet both large and small levels of 

detail are required for a complete simulation. This problem is not amenable to analytical 

treatments without very rough, and sometimes partially valid, simplifications. Numerical 

calculations are, therefore, our best option to capture the operation of the entire biosensor 
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with a high degree of accuracy, and using the most detailed physics on the most detailed 

geometries. 

1.3.5 Integration with Existing Numerical Packages 

As the technology of label-free DNA biosensor mature, there will be a need to integrate it 

with circuit analysis software. Although the two domains of simulation are quite different 

(compact modeling for circuit analysis software vs. physical modeling for DNA sensors), 

they can nevertheless be integrated by proper middleware design. We have previously 

derived a compact model for a one-dimensional DNA BioFET  [74] . However, newer 

circuit simulation packages push harder for more physics-based modeling, as compact 

models are not accurate enough to model deep sub-micron devices. Successful integration 

of physical BioFET models with circuit simulation packages can allow the simulation of 

circuit ideas that can provide better experimental environments. An example of this 

would be an electronic temperature regulator of the BioFET. A simulation would include 

an electronic temperature sensor and heater, coupled to a physical model of the BioFET 

that includes heat transfer effects. Such a complete simulation could allow for the 

investigation of several interesting phenomena, such as the effect of temperature 

gradients on the performance of the biosensor. Equally useful would be the coupling of 

the chemistry/physics of the BioFET with Computational Fluid Dynamics (CFD) 

packages. One could then see the effect of phenomena such as convective mixing, or 

electroosmotic and electrophoretic effects, on the BioFET. 

Although the merits of complete physical simulation are numerous, it should be 

mentioned that the validity of the mathematical models and the geometries used should 

be well-established. Lack of computation resources and/or proper software can force 

severe simplifications on the model, and limit its usefulness. Nevertheless, simplified 

models can still give good hints at performance characteristics and limitations of the 

biosensor, but not the complete picture. 
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1.4 Main Contributions of this Thesis 

This thesis aims to apply numerical physical modeling to static and dynamic aspects of 

the DNA BioFET. The work in this thesis has resulted in many important observations 

about the BioFET which, to our knowledge, has not been reported previously. Many of 

our results apply to the newer nanowire DNA sensors that have been recently reported as 

well: 

1. A first, complete model of the DNA BioFET, with all terminals included and the 

nonlinearities in the solution and in the semiconductor fully coupled. This model 

was implemented in both 2D and 3D. The results are compared with the previous 

1D simulation, and it is established that higher dimensional modeling is essential 

for proper characterization of the BioFET. 

2. Although commonly believed that the saturation mode of operation is preferable 

for the BioFET, due to the high transconductance, we show that saturation 

desensitizes a portion of the channel to hybridized DNA, which can have an 

adverse effect. This is particularly true for short-channel devices and nanowires. 

3. Our investigation into the conformation of single-stranded DNA probes, by means 

of simulation, show that the conformation change of DNA upon hybridization, 

from a flailing molecule to a stiff, compact rod, is the main mode of sensitivity in 

the BioFET. 

4. We have developed the first impedance model, from physical principles, for the 

BioFET. Our model predicts the change in the frequency response due to 

hybridization of the DNA. Once again, it is established that subthreshold 

operation is the optimum biasing condition for maximum impedance sensitivity. 

5. We investigate the effect of varying the locations of immobilized probes onto the 

surface of the BioFET on its sensitivity. We establish that for low-density, high 

speed microarray cells, the locations of the DNA probes are crucial to the 

sensitivity, with the maximum sensitivity found at uniform coverage. We 

calculate estimates for the variance in the signal of microarray cells based on this 

model. 
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Our collective work on DNA biosensors has resulted in several journal publications. 

These are listed below: 

1. M. W. Shinwari, M. F. Shinwari, M. J. Deen, and P. R. Selvaganapathy, “The 

Effect of DNA Probe Distribution on the Reliability of Label-Free Biosensors,” 

Sensors and Actuators B: Chemical (In press, 2011). 

2. M. W. Shinwari, and M. J. Deen, “Impedance Modelling of FET-based 

Biosensors,” Journal of the Electrochemical Society, Vol. 198, No. 6, pp. J189-

J194, 2011. 

3. Feature Article: M. W. Shinwari, M. J. Deen, E. B. Starikov, and G. Cuniberti, 

“Electrical Conductance in Biological Molecules,” Advanced Functional 

Materials, Vol. 20, pp.1865-1883, 2010. 

4. Review Paper: M. W. Shinwari, D. Zhitomirsky, I. A. Deen, P. R. 

Selvaganapathy, M. J. Deen, and D. Landheer, “Microfabricated Reference 

Electrodes and their Biosensing Applications,” Sensors, Vol. 10, pp. 1679-1715, 

2010. 

5. M. W. Shinwari, M. J. Deen, and P. R. Selvaganapathy, “Finite-Element 

Modelling of Biotransistors,” Nanoscale Research Letters, Vol. 5, pp. 494-500, 

2010.  

6. Invited Paper: M. W. Shinwari, M. J. Deen, and P. R. Selvaganapathy, 

“Analytic Modelling of Biotransistors,” IET Circuits, Devices, and Systems, Vol. 

2, pp. 158-165, 2008. 

7. Invited Paper: M. W. Shinwari, M. J. Deen, and D. Landheer, “Study of the 

Electrolyte-Insulator-Semiconductor Field-Effect Transistor (EISFET) with 

Applications in Biosensor Design,” Microelectronics Reliability, Vol. 47, pp. 

2025-2057, 2007. 

8. D. Landheer, W. R. McKinnon, G. Aers, Weihong Jiang, M. J. Deen, and M. W. 

Shinwari, “Calculation of the Response of Field-Effect Transistors to Charged 

biological Molecules,” IEEE Sensors Journal, Vol. 7, pp. 1233-1242, 2007. 
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9. M. J. Deen, M. W. Shinwari, J. C. Ranuárez, and D. Landheer, “Noise 

Considerations in Field-Effect Biosensors,” Journal of Applied Physics, 100, 

074703, 2006. 

Additionally, the following conference presentations were also results of this work: 

1. M. W. Shinwari, M. J. Deen, and P.R. Selvaganapathy, “Geometric and 

Conformational Considerations in Biotransistors,” 217th Electrochemical Society 

Conference, Vancouver, 2010. 

2. Invited Keynote Paper: M. J. Deen, M.W. Shinwari and R. Selvaganapathy, 

Towards Low-cost, High-sensitivty, Integrated Biosensors, 26th IEEE Int. Conf. 

on Microelectronics (MIEL 2008), Nis, Serbia, Electron Devices Society, IEEE 

Press, Piscataway, NJ, pp. 307-314 (11-14 May 2008). 

3. M. W. Shinwari and M. J. Deen, “Optimization of DNA Detection Using FETs,” 

1st Microsystems and Nanoelectronics Research Conference, Ottawa, 2008. 

4. M. J. Deen, M. W. Shinwari, and D. Landheer, “Noise Characteristics in 

Integrated Biosensing Devices,” Proceedings of the 19th International Conference 

on Noise and Fluctuations, Vol. 922, pp. 399-404, 2007. 

5. Invited Paper: M. J. Deen, and M. W. Shinwari, “Modeling the Electrical 

Characteristics of FET-Type Sensors for Biomedical Applications,” NSTI 

Nanotech Workshop on Compact Modeling, Santa Clara, 2007. 

6. Keynote Paper: M. J. Deen, M.W. Shinwari, D. Landheer, G. Lopinski, “High 

Sensitivity Detection of Biological Species via the Field-Effect,” Proceedings of 

the 6th International Caribbean Conference on Devices, Circuits, and Systems, 

Playa del Carmen, 2006. 

Finally, we have co-authored the following chapter, which goes into deeper details of the 

practical aspects of this research: 

1. D. Landheer, W. R. McKinnon, W. H. Jiang, G. Lopinski, G. Dubey, N. G. Tarr, 

M. W. Shinwari, and M. J. Deen, “Bioaffinity Sensors Based on MOS Field-

Effect Transistors,” In Semiconductor Device-Based sensors for Gas, Chemical, 

and Biomedical Applications. Boca Raton: CRC Press, 2011. 
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1.5 Organization of this Thesis 

• Chapter 2 introduces the methods generally used for simulating DNA and DNA 

sensors, with focus on our method of choice: the Finite-Element Method. 

• Chapter 3 gives details about the model used for the biosensor development, both 

in 2D and in 3D. The geometry is defined, and the equations are given. Simulation 

results are compared to our earlier 1D simulation, and several observations on the 

sensitivity of the BioFET are given based on the results. 

• Chapter 4 explains our impedance model for the BioFET. The derivation of the 

equations is given, followed by the results of the calculations. Electrochemical 

Impedance Spectroscopy (EIS) diagrams for the BioFET are produced, and 

several conclusions and observations are made. 

• Chapter 5 introduces the application of a hybrid Monte-Carlo/Finite Element 

Analysis to the BioFET. This is used to address the conformation problem of 

single-stranded DNA. Then, the same method is used to calculate the variations in 

the BioFET due to random placements of DNA probes on the surface. The 

geometries of the problem are described, followed by the mathematical model and 

results. 

• Chapter 6 concludes the thesis, and gives prospective problems for future 

research. 
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Chapter 2 

MATHEMATICAL MODELING 
STRATEGIES 

2.1 Introduction 

Mathematical modeling of DNA biosensors can be a daunting task, since the system 

under consideration is quite dynamic and complex. Additionally, there are many potential 

levels of abstraction in the mathematical description of the system, which lead to different 

paradigms in designing the simulation software. Capturing of all the physics of the DNA 

molecules and coupling them to the physics of the underlying semiconductor, especially 

for large area biosensors, requires such a huge computational effort that makes it 

inaccessible to today’s most resourceful computers. For this reason, scientists often resort 

to several simplifications to the geometry, equations, and boundaries to obtain simpler 

solutions that, nevertheless, capture the essential physics that is intended to be studied. 

This chapter gives an introduction to the different levels of physics that surround 

the BioFET, which include the description of the DNA molecules, the surrounding 

aqueous medium, and the underlying semiconductor. Several mathematical models for 

dealing with these complex physics modes, and that are frequently used in the literature, 

will be briefly introduced. After that, our chosen simulation method, the finite-element 

method, will be explained in detail. This chapter will conclude with an overview of an 

emerging “hybrid” solution paradigm that is ideal for the field of biosensors. 



M. Waleed Shinwari                                            McMaster University-Electrical and Computer Engineering 

25 

2.2 Physics Required for Characterizing the BioFET 

A mathematical description of the BioFET requires two seemingly incompatible models: 

those of the highly dynamic, chemistry driven interactions of the DNA molecule, the 

surrounding electrolyte, and the immobilization surface, and those of the more rigid 

regions of the sensor, like the insulator and the semiconductor region. The former is very 

common to computational chemists and physicists, whereas the latter is more pronounced 

in engineering and material science. This heterogeneous nature of DNA biosensors makes 

it very hard to come up with an accurate model that captures all of the physics. 

Nevertheless, several approximations can be made, based on the phenomenon that is to be 

focused on. The following sections give an overview of the different modeling levels 

required for different areas of the BioFET. 

2.2.1 The DNA Molecule 

The DNA molecule in itself is by far the hardest part to model. This is due to the complex 

nature of its geometry, in addition to the molecule’s flexibility and its versatile chemistry. 

A diagram of the DNA molecule is shown in Figure 2.1  [75] , where it is shown that the 

DNA molecule is a polyelectrolyte comprised of two helically-wound sugar-phosphate 

backbones, joined in the middle by nucleobases (Adenine, Thymine, Cytosine and 

Guanine). The two strands are joined by means of hydrogen bonds between matching 

nucleobases (AT and CG), as well as with dispersion forces that occur between the 

stacked flat nucleobases  [4] . The phosphate groups are negatively charged in biologically 

relevant conditions (25⁰C, 1mM-1M monovalent salt concentration, pH 7). It is believed 

that these negative charges are either directly or indirectly responsible for the signal 

change in a BioFET due to DNA capture. 
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Figure 2.1 Structure of the DNA molecule  [75]  

In a BioFET, the DNA molecules used as probes are short (typically 20-30 bases 

long). Shorter probes (oligonucleotides) allow faster and more specific hybridization rate. 

However, their descriptions can vary widely from models used to describe longer chains. 

Two problems are associated with the description of the DNA molecule: the conformation 

and motion dynamics, and the electrostatics/chemistry. The motion of longer DNA 

molecules is generally handled by simplified continuous models, such as the worm-like 

chain (WLC) model  [76] or the free-jointed chain model (FJC)  [77] . Shorter DNA 

strands are stiffer and cannot be modeled by such continuous models, but are rather 

treated using complete molecular dynamics studies  [78] . Unfortunately, for such studies, 

simulations on the most powerful computers are limited to a few nanoseconds, limiting 

the observation of longer timescale effects. The DNA conformation and flexibility will be 

revisited in Chapter 5. 

The molecular electrostatics and chemistry of the DNA molecule are very 

important in dictating the interaction of the DNA with its surroundings. On the deepest 
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level, the charge distribution of a DNA molecule is determined by solving the many-body 

Schrödinger equation: 

( ) 12 2
1 2 1 22 ( , ) ( , ,...) ( , ,...)

ii r i j
i j

m V r r r r i r r
t

ψ ψ−⎛ ⎞ ∂
− ∇ + =⎜ ⎟⎜ ⎟ ∂⎝ ⎠

∑ ∑G
G G G G G G= = . (2.1) 

In Equation (2.1), nr
G is the position vector for the n-th body, ψ is the wavefunction 

amplitude, mi is the effective mass of the i-th object, V is the potential energy between 

two objects, and = is the reduced Planck constant. The summations in Equation (2.1) go 

over all nuclei and electrons of the molecule. The eigenvalue time-independent version of 

Equation (2.1) gives the many-body wave function which describes the shape of the 

molecule. Unfortunately, Equation (2.1) is too complicated to solve for even the simplest 

two-body system, and many approximations are therefore used to make the solution more 

tractable. The Born-Oppenheimer approximation allows decoupling of nuclei and treating 

them as classical particles. The problem then reduces to finding the energy and shape of 

the electronic cloud as a function of the nucleic coordinates. Since all nucleic 

conformations cannot be exhausted, especially not for a polyelectrolyte like the DNA, the 

approximate locations of the nuclei have to be determined from other, classical molecular 

dynamics simulations, or by resorting to X-ray crystallography data.  

Even with all of these approximations, the many-body electronic wave function 

has to be decoupled. A typical approximation is to replace the dependency of the 

electronic mutual potential energies by an effective average potential  [79] . This is called 

the Hartree-Fock (HF) approximation. The equation then reduces to a single-particle 

wave equation that must be solved self-consistently, since the average potential will be a 

function of the wavefunction. For this reason, the method is named the Self-Consistent-

Field (SCF) method as well. Application of this method results in a coupled system of 

partial differential equations. The solution wavefunctions then give the spatial extension 

of the electronic cloud and its density. Figure 2.2 shows an example of such density map 

for a pair of bases on the DNA molecule  [80] . Another commonly used method is the 

Density Functional Theory (DFT), which transforms the wave equation into a differential 

equation in electronic density (called Kohn-Sham equations). Regardless of the method, 
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averaged correcting potential terms must be introduced to account for electronic 

correlation effects. The DFT method was used in calculating the energy of pairing of 

different bases in DNA  [81] , as well as the interaction with synthetic Peptide Nucleic 

Acids (PNA)  [82] . 

 
Figure 2.2 Electron density map for a DNA base pair (Adenine-Thymine)  [80]  

Ab-initio techniques of solving the electronic structure of the DNA can help in 

determining the effective dipole moment of the molecule, or to give fine details about its 

chemical affinities or charge distribution. However, they remain time and computation 

intensive. Furthermore, in large macromolecules, it is generally the case that the wave 

equation is effectively decoupled over far regions in the molecule, i.e. orbitals that retain 

their atomic extension and do not morph into molecular bonding orbitals. For example, 

the Hamiltonian of the entire molecule can be thought of as consisting of a Hamiltonian 

of the backbone alone, in addition to another Hamiltonian of the bases. This, of course, is 

an approximation. The key here is to find the proper problem simplification without 

sacrificing the loss of valuable chemical and electrical information about the molecule. 

For example, a Hamiltonian-splitting technique which couples the electronic states in the 

bases of the DNA to those in the backbone, sometimes called a fishbone Hamiltonian, 

was used to model electronic transport between Guanine states in a DNA molecule  [83] . 

Ab-initio techniques are generally the most time-consuming, but give the most accurate 

electronic structure and energy information. They can, therefore, be used to estimate the 

energy of particular reactions by calculating the difference in the electrostatic energy 

before and after the reaction takes place. Coupled with molecular dynamics, quantum 
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simulation can also be used to estimate the dielectric constant of a macromolecule, by 

statistically averaging calculated dipole moments  [84] . 

Ab-initio techniques are often solved for small portions of the DNA molecule 

under ideal conditions, and without explicit consideration of the solvent molecules or the 

counter-ions. This is done to allow convergence within reasonable time and avoid 

seemingly needless complexity. However, when trying to simulate dynamic processes 

such as DNA hybridization, or quantify the chemical properties of the DNA, quantum 

simulations become out of reach for such complex systems. Molecular dynamics 

simulations can be used to predict some physicochemical properties of the molecule. Due 

to the high complexity of the DNA, coarse-grained models can be used to approximate 

the electrical and chemical interactions. An example of this was carried out in  [85] , 

where the bases of the DNA were modeled as rigid ellipsoids, shown in Figure 2.3. The 

interaction potentials (electrostatic, Van der Waals, dispersion, bonding interactions) will 

have to be empirically introduced, based on best-fitting to experiments or ab-initio 

models. These models are generally derived for point-shaped atomic interactions. They 

would have to be modified for coarse-grained models, such as that in  [85] . Another 

example for functional coarse-graining is the MARTINI force field method  [86] , which 

replaces groups of molecules by equivalent force fields. This method was used to 

characterize bi-lipid layer formation (as in the exterior of cells). Coarse-graining could 

also be used to simplify the treatment of solvent and ionic species. Such simplifications 

allow the simulations to run for significantly longer times, which enable the capture of 

long-time phenomena such as DNA hybridization and coiling  [87] . 
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Figure 2.3 Coarse-grained model of DNA for molecular dynamics calculations  [85]  

2.2.2 The Electrolyte 

In all DNA biosensor experiments, the biochemical hybridization reaction occurs in an 

electrolytic aqueous medium. The biological recognition will only proceed under specific 

conditions of ionic strength, solution’s pH, and temperature. It is imperative, therefore, to 

include a mathematical description for the electrolyte when modeling the response of the 

BioFET. The concentration of the electrolyte can severely inhibit the sensitivity of the 

BioFET, due to counter-ion condensation [4] ,  [25] . Moreover, the aqueous environment 

is significantly distorted in the vicinity of polyelectrolytes, which then modulates its 

dielectric constant. In label-free biosensors, this is expected to affect the sensitivity. 

The most important phenomena to include when treating the electrolyte are the 

following: 

1. The response of water molecules, as well as ions, to electric fields. 

2. The chemical association of water and ions to surfaces, as well as to the DNA 

molecule. 

3. The electrophoretic mobility of ions in an electric field. 

4. The equilibrium reaction kinetics for the buffering agent. 

5. Other effects, such as solvation energies and steric hindrance. 

When molecular dynamics simulations are used with explicit solvent and counter-ion 

models, the empirical interaction energies will suffice to capture all of these phenomena. 
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However, such simulations require large computational power and are generally only 

implemented for a few picoseconds to a few nanoseconds. Such time scales are not 

compatible with the slower electrical and mechanical time scales when dealing with fluid 

flow or electrophoretic or electroosmotic transport. Additionally, at room temperature, the 

motion of ions is very rapid, and only the statistical average distribution is of significance. 

Statistically averaged mean-field theories are most appropriate for treating the solvent in 

such case. A basic result from equilibrium statistical mechanics is that the configuration 

of an ensemble of particles for a given total system energy at equilibrium can be given as 

a probability distribution of the respective particle energies. Thus, the probability of a 

particle being at a state ni, which has energy Ei, is given by: 

[ ]
i

j

E
kT

i E
kT

j

eP n
e

−

−
=

∑
, (2.2) 

where kT is the thermal energy with k being Boltzmann’s constant, and T the absolute 

temperature. The summation extends over all microstates of the particle. The summation 

in the denominator is called the partition function “Z”, and the corresponding distribution 

is known as the discrete Maxwell-Boltzmann distribution. The state ni is a general term 

encompassing position, momentum, and internal conformation/chemical association of 

the particle. For example, a solvated ion is at a lower energy than that of an ion which is 

free of its solvation shell, even though both ions might have the same position and 

momentum. If thermal equilibrium is assumed, and no alteration of chemical composition 

is undergone by the particles, then Equation (2.2) can result in the following formula for 

the volumetric density of the species c as a function of the bulk concentration c0 and the 

energy E at position rG : 
( )

0( )
E r
kTc r c e

−
=

G
G . (2.3) 

Equation (2.3) is the Boltzmann equation that is often used in mean-field analysis 

of species in a solution. The energy term encompasses the electrical and chemical energy 

changes, and is often written as the electrochemical potential energy μ� : 
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E zqVμ μ= = +� , (2.4) 

where μ is the chemical potential of the species under consideration, z is its electrical 

valence, and V is the electrostatic potential at a particular point in space. The convention 

for using Equation (2.4) in (2.3) is that the chemical potential and electrostatic potential 

are both assumed to be zero in the bulk of the material (where there is no electric field). 

Therefore, care must be taken when using Equations (2.3) and (2.4) across heterogeneous 

phases. A basic condition for equilibrium in statistical thermodynamics is that the 

gradient of the electrochemical potential has to be zero for every reacting species: 

0μ∇ =� . (2.5) 

Figure 2.4 illustrates the difference between the chemical and electrical potentials 

for a solvated ion. The electrical potential on the ion results from the ion being in the 

presence of a net electric field that is caused by the aggregation of other ions (possibly 

due to an externally applied electric field). On the other hand, the chemical potential 

consists of the potential energy due to surrounding the ion with solvent molecules, in 

addition to all other forces of interaction (electrostatic, chemical bonds, and others) 

between the ion and all the surrounding ions. There is some ambiguity in distinguishing 

the chemical and electrical components of the total potential energy, since the chemical 

potential also arises from interactions that can eventually be traced to electrostatic 

energies. In electrochemistry, as long as the non-electrostatic attractions remain intact 

(i.e. all chemical bonds, dispersion forces, and solvation shells), then the chemical 

potential can only change with the change in the interaction of the ion with other ions of 

the same species. The chemical potential is therefore a function of the aggregation 

(volumetric density) of the species. For infinitesimally small species that could be treated 

as an ideal gas, or for a very dilute solution, Equation (2.3) can be used to show that the 

change in the chemical potential is related to the change in volumetric concentration of 

the species by the following expression: 
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When the concentration of the ions is high, one cannot neglect their occupied 

volume or their solvation shell. In such cases, the concentration ratio is often replaced by 

an empirical quantity called the activity a, defined in the following equation: 

( )2 1 lnkT aμ μ= −� � . (2.7) 

The activity is linearly related to the ratio of concentrations in Equation (2.6), and 

the linear constant is called the activity coefficient. Knowledge of the activity will keep 

Equation (2.7) valid over higher electrolyte concentrations. However, when the solution is 

close to saturation, the activity coefficient becomes a function of the concentration. This 

nonlinearity results due to several ion-ion interactions (e.g. the formation of ion pairs), 

solvation shell sharing, steric hindrance to aggregation, and ion-solvent interaction (i.e. 

fewer number of free water molecules)  [88] . Rigorous analysis of ion-solvent and ion-ion 

effects would require complete molecular dynamics simulations. However, several mean-

field models have been proposed to address at least some of these nonidealities, such as 

steric effects  [89] - [91] . 

 
Figure 2.4 Electrical potential (left) occurs due to the presence of a net electric field due to the 

organization of ions. Chemical potential (right) is the reduction of the ion’s energy due to 

surrounding by other ions and molecules, and the presence of chemical bonding and nonbonding 

forces between them. 
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Another technique of capturing the non-ideal equilibrium effects of ions and 

electrolytes is to try and deduce models from thermodynamic data, rather than from 

microscopic information. An example is the estimation of the solubility and activity 

coefficients of ions and polyelectrolytes (such as DNA) using osmotic pressure. Osmotic 

pressure is defined as the hydrodynamic pressure that needs to be applied to a solution to 

prevent an influx of water molecules across a semi-permeable membrane. Figure 2.5 

illustrates this concept. For two water reservoirs at the same temperature and pressure, no 

net water molecules are expected to flow from either side to the other. When a high 

enough concentration of electrolytes is dissolved, they trap a portion of the water, 

reducing the bulk water concentration in this reservoir. The semi-permeable membrane 

prevents migration of the ions, but allows water molecules to flow so that the balance of 

the water chemical potential is restored. Thus, the osmotic pressure is useful in 

determining the rate of solubility of an ion, and subsequently its activity coefficient. This 

osmotic pressure test can be used to extract the virial coefficients (vi) of a solute in water, 

which provide detailed characterization of the non-ideal equation of state. This is given 

by the virial expansion  [88] : 

2 3
2 3( ) ( ) ...P n v T n v T n

kT
= + + + . (2.8) 

The virial coefficients v2(T) and v3(T) relate the osmotic pressure P to the 

volumetric concentration n and are generally functions of the temperature. From the virial 

coefficients, it is possible to calculate the activity coefficients using Pitzer’s theorem  [92] 

. This and similar purely thermodynamic treatments are used extensively in the literature, 

and have even been used to provide simple models for water  [93] . 
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Figure 2.5 Illustration of osmotic pressure. Before any ions are dissolved, no net water molecules 

move across the semi-permeable membrane (left). As ions are dissolved, they trap a portion of the 

water molecules, which lowers the chemical potential of free water molecules, causing an influx of 

water through the membrane. 

In addition to the thermodynamic and energetic treatments of the electrolyte, 

kinetic treatments are needed for describing nonequilibrium processes. For example, 

motion of the electrolyte under a uniform electric field or a temperature or pressure 

gradient. In this case, the behavior of the molecules of the solvent, as well as the solute, 

significantly differs from that at equilibrium. Once again, classical and quantum 

molecular dynamics simulations provide the highest degree of accuracy and have the 

potential to capture all of the physical processes that give rise to macroscopic 

observables. Indeed, there has been a lot of work on simulating fluid flow using 

molecular dynamics  [94] , [95] . However, given the computational cost required, 

scientists often resort to simpler, mean-field theories to describe the kinetics of the 

nonequilibrium process. Macroscopically, all molecules (whether those of the solvent or 

the solute) will move under the influence of a chemical potential gradient, an applied 

force, or by means of interaction with other species that are moving. These three methods 

give rise to the transport methods of diffusion, drift, and convection, respectively. In its 

simplest formulation, the diffusive flux ( J
G

) of a species is given by Fick’s law: 

J K μ μ= − ∇
G

, (2.9) 

where K μ is the conductivity coefficient which, in general, can be a function of the 

chemical potential μ. In absence of chemical interactions or alterations of the diffused 

species, and in the limit of ideal solutions, Fick’s law relates the flux to the volumetric 

concentration c of a species: 
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J D c= − ∇
G

, (2.10) 

where D is the diffusion coefficient. In general, the diffusion coefficient is not constant, 

but varies in a complicated way with the chemical potential of the species. Fick’s law is, 

therefore, a linearized approximation of a more complicated flow. In fact, similar 

phenomena in physics have analogous formulation to Fick’s law, and have their own 

range of validity. Table 2.1 summarizes such phenomena. When the diffusion 

coefficient’s nonlinearity is important, the diffusion is called non-Fickian. 
Table 2.1 Physical phenomena showing Fickian behavior 

Phenomenon Law Formula 

Heat conduction Fourier’s Law q Tλ= − ∇
G

 
Electrical conductance Ohm’s Law J Vσ= − ∇

G
 

Porous fluid flow Darcy’s Law q K P= − ∇
G

 
Photon diffusion Photon Diffusion Equation f D φ= − ∇

G
 

qG : Thermal flux (Fourier’s Law), fluid flux (Darcy’s Law), J
G

: Electrical current density, f
G

: photon 
flux, λ: thermal conductivity, σ: electrical conductivity, K: Darcy’s coefficient 

(permeability/viscosity), D: photon diffusion constant 
Drift motion of ions characterizes the steady-state interaction of species with 

external forces, such as gravity or electromagnetic fields. Whereas Newton’s laws of 

motion are still valid, retarding viscous forces often result in species rapidly acquiring a 

terminal constant velocity. The mobility model relates the flux J
G

 due to this terminal 

velocity to the applied force. In case of an electrical force field E
G

, the mobility cμ relates 

the flux to the electric field by: 

cJ c Eμ=
G G

, (2.11) 

where c is the species volumetric density. For smaller ions, the mobility results from the 

viscous forces of interaction between the solvated ion and the surrounding solution. For 

larger polyelectrolytes and uncharged particles, the mobility results from the surrounding 

cloud of equalizing counter-ions, their interaction with the polyelectrolyte, and their 

interaction with the bulk of the solution. In this case, the mobility of the species depends 

on its zeta-potential, in what is called Smoluchowski’s equation: 
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where ζ is the zeta potential of the macromolecule, η is the viscosity, and k is a constant 

that depends on the shape of the molecule and the thickness of the counter-ion shell 

surrounding the macromolecule. 

Ions and polyelectrolytes can be transported by means of convective mixing or 

pumping as well, in a manner similar to that with which blood transports nutrients. A 

mean-field theory of fluid flow is given by the Navier-Stokes equations of momentum 

and mass continuity: 

( ) 0

v v v T f
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v
t

ρ

ρ ρ

∂⎛ ⎞+ ⋅∇ = ∇ +⎜ ⎟∂⎝ ⎠
∂

+ ∇ ⋅ =
∂

G G G i

G
, (2.13) 

where ρ is the fluid density, vG is the velocity field, T is the stress tensor, which includes 

the applied pressure, and f is the body forces, such as electromagnetic forces. Navier-

Stokes equations are nonlinear coupled partial differential equations and are generally 

extremely hard to solve. Several simpler equations are generally used under limiting 

conditions. For example, for fluids where viscous forces dominate over inertial forces 

(low Reynolds number fluids), one could use the simpler Stokes equation. On the other 

hand, for high Reynolds number fluids, Burger’s equation of fluid flow is valid. 

2.2.3 The Insulator’s Surface 

The insulator is the site where the biological recognition occurs, and where most of the 

interesting chemistry in the BioFET takes place. Ionic species and spurious molecules in 

the sample electrolyte can condense onto the surface, some of which could severely 

compromise the operation of the BioFET. The nature of the condensation depends on the 

phenomenon that causes it. Covalent bonding of ions with dangling bonds can cause 

surface complexation and the removal of the hydration shell of solvated ions. 

Additionally, non-covalent adsorption (physisorption) can occur due to long range 

electrostatic or dispersive forces or hydrophobic aggregation near the surface. Depending 
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on the ion being adsorbed to the surface, this can have a positive or negative impact on 

the biosensor. For example, adsorbed ions can inhibit or change the energetics of target 

capture. On the other hand, efficient adsorption of linker molecules is necessary to ensure 

high-density immobilization of probe oligonucleotides, and also to prevent cross-

adsorption by taking up the insulator’s entire surface. Additionally, the chemistry of the 

probe immobilization must be fully understood. The immobilized probes must have 

complete freedom to pair up with the target; otherwise the incubation time might be 

prohibitively long. 

Understanding the adsorption process requires intimate familiarity with the 

thermodynamics and the kinetics of aggregation on a surface. General mean-field models 

for adsorption treat the adsorbates as point particles. The degree of adsorption is 

measured as the percentage of coverage of the active adsorption sites on the insulator’s 

surface. Different models predict different “adsorption isotherms” that give the 

equilibrium coverage of the surface as a function of the temperature, energy of the 

adsorption, and other geometrical and surface parameters. The simplest isotherm is 

known as the Langmuir isotherm. For equilibrium coverage θ  and free energy of 

adsorption ΔE, the isotherm is given by  [96] : 

1

E
kT

E
kT

ce

ce
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−Δ

−Δ=
+

, (2.14) 

where c is the concentration of the bulk adsorbate in the solution. Langmuir isotherm 

follows from a first-order reaction where the energy of reaction is constant and 

independent on the proximity of free sites to occupied ones. In general, the energy of 

interaction can be a function of the coverage, and the simplest isotherm that captures a 

linearized dependence of the energy on the coverage is given by the Frumkin isotherm: 
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, (2.15) 

where γ is the linear coefficient in the Taylor’s expansion of the Energy-coverage 

relationship, usually determined by experiment. In many cases, the adsorption energy 
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depends on imperfections on the surface and the adsorption energies can vary. When the 

adsorption energy has an exponential distribution, and assuming normal Langmuir-type 

adsorption, then we arrive at Freundlich’s isotherm with empirical constants n and A  [97] 

: 

nAcθ = . 2.16 

The choice of a specific adsorption isotherm depends on the energy and energy 

distribution of adsorption, whether the adsorption occurs in aqueous or gaseous 

environment, the possibility of creating multi-layers, the complexity and molecular 

structure of the adsorbent, and whether the adsorption is a single component or multi-

component adsorption process. Typical isotherms include the Brunauer−Emmer−Teller 

(BET) isotherm, Temkin isotherm, and the Gaussian isotherm. Table 2.2 gives a summary 

of some of the most famous isotherms, and Figure 2.6 shows sample plots of several 

isotherms, as a function of the bulk concentration. 

 

 
Figure 2.6 Concentration vs. coverage plots of some isotherms 
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Table 2.2 Several common isotherms and their uses 

Isotherm Uses Formula Reference 

Generalized Langmuir Monolayer adsorption with 
heterogeneous energy surfaces ( )

( )

/

1

m nn

n

Kc

Kc
θ

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 

 [98]  

Fowler-Guggenheim Monolayer adsorption with lateral 
first-order interactions between 
adsorbates 

2

1
kTKc e
αθθ

θ
=

−
 

 [99]  

Kiselev Localized monolayer adsorption 
with associative lateral interaction 
on homogeneous surface ( )( )1 1 n

Kc
k

θ
θ θ

=
− +

 
 [99]  

Jovanovic Monolayer adsorption with vertical 
interactions (surface-bulk) 

1 Kceθ −= −   [100]  

Tóth Monolayer adsorption with 
asymmetric Gaussian distribution of 
adsorption energies ( )( )1/

1
nn

Kc

Kc
θ =

+
 

 [100]  

Misra Monolayer adsorption with 
heterogeneous surface ( )( ) ( )1/ 1

1 1 1
k

k Kcθ
−

= − + −  
 [101]  

Dubinin-Radushkevich Monolayer adsorption with 
microporous sites 

2
ln 1B kT

ce
α

θ
⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠=  

 [102]  

Hill-de-Boer Mobile monolayer adsorption with 
lateral interactions 

2
1

1 1

K
kTK c e

θ θ
θθ

θ

⎛ ⎞−⎜ ⎟−⎝ ⎠=
−

 
 [103]  

BET Multilayer adsorption (often 
overestimates thickness. Other 
theorems exist such as n-layer BET) 

( )
( )( )

/ 11
1 1 / 1

Kc c
c Kc c

θ
⎛ ⎞−
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Hüttig Two-layer adsorption 
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 [99]  

Temkin Multilayer gas adsorption 
( )lnkT Kc

E
θ =

Δ
 

 [105]  

 

A suitable adsorption isotherm is needed on the insulator’s surface for many 

different phenomena. Active adsorption sites on the insulators can be easy traps for ions 

or protons in the aqueous solution. These ions can contribute to screening the charge of 

the DNA or otherwise jeopardizing the operation of the BioFET. During the SAM layer 

deposition, it is necessary to have a fully packed layer and the adsorption of this layer on 

different surfaces (such as nanowires) must be carefully characterized. Additionally, the 

immobilization and hybridization of DNA can both be seen as mean-field adsorption 

processes. It is important to properly characterize these adsorption processes to ensure 

fast biosensor response, high sensitivity, and high reliability. A good review on the 
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different techniques of monitoring the adsorption process is given in  [106] . What is most 

interesting is the fact that most SAM adsorption experimental data seemed to fit nicely to 

a Langmuir model, even though it is known that hydrophobic forces are responsible for 

keeping the SAM molecules together, and therefore the lateral forces should have an 

influence on the adsorption thermodynamics and kinetics. It was shown via simulations 

 [107] that longer molecules tend to have higher coverage. This can be explained by the 

stronger lateral interactions between them. On the other hand, if the longer SAM 

molecules are not very rigid, then steric hindrance can cause a reduction in the coverage. 

It is therefore very complicated to arrive at a general theory that characterizes all 

adsorbed SAM molecules on all surfaces. 

As for DNA hybridization, Langmuir’s model fails to account for the reported 

reduction of equilibrium coverage density with the density of probes  [60] . An attempt to 

account for this reduction of sensitivity was given by  [108] , in which the mutual 

repulsion between DNA probes was seen as a major influence on the continued 

hybridization. Accordingly, the isotherm for DNA hybridization was suggested as: 
( )0 1

1

s pV ZNG
kT kTc e e

θθ
θ

+Δ

=
−

, (2.17) 

where c is the adsorbate’s volumetric concentration at the surface, ΔG0 is the 

hybridization free energy with no lateral forces present, Z is the number of bases in the 

DNA molecule, NP is the probe surface density, and Vs is a constant that relates to the salt 

concentration, the Debye length, and the geometry of the adsorbates  [108] . This model 

was later refined by Halperin, et al  [109] to include effects such as competitive surface 

hybridization and competitive bulk hybridization, which are important when the solution 

can contain more than one target type. Despite the abundance of attempts to characterize 

the hybridization kinetics, experimental attempts to verify the models seem to be 

contradictory, with some claiming poor correlations with the models  [110] , others 

assuring that simple Langmuir isotherms will suffice  [111] , and yet another group blames 

the inconsistency on washing of the microarray cells, which is claimed to cause some 
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dissociation of targets  [112] . Clearly, a model is still lacking for a complete 

understanding of the hybridization of macromolecules onto surfaces. 

2.2.4 The Reference Electrode 

Modeling of the reference electrode can include similar arguments to those of the 

insulator, namely, energetics of adsorption, isotherms, and kinetics. However, for 

electrodes, the most important reaction is the electron transfer reaction that allows the 

reference electrode to set the potential of the solution. In electrochemical terms, there are 

three types of electrodes: ideally polarizable, non-polarizable, and partially polarizable. 

This classification distinguishes electrode interfaces in terms of their ability to conduct 

current. A non-polarizable electrode is one which can freely allow electron transfer 

reactions without any hindrance. This is shown in Figure 2.7 and compared to the other 

two types. A reference electrode is expected to be non-polarizable; otherwise it could 

undermine the sensitivity of the biosensor  [9] . The reference electrode sets the potential 

of the solution by achieving electrochemical equilibrium with the solution via electron 

transfer reactions. These reactions are either oxidation (removing electrons from the 

solution), or reduction (adding electrons) reactions. Collectively, they are called “redox” 

reactions. 

 
Figure 2.7 Typical current-voltage characteristics of the three electrode types 
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The kinetics of the redox reactions are important in characterizing the operation of 

the reference electrode. They allow estimates of the current-voltage characteristics, help 

determine the time needed to reach equilibrium, and give insight into the effects of 

contaminants and cross-reactions on the electrode potential. The potential of the 

electrode-electrolyte interface has to be maintained constant and stable for a long period 

of time. This is satisfied by ensuring that the kinetics of the redox reactions are very fast, 

and that the solid-liquid interface is stable. Many redox reactions result in precipitation, 

gas evolution, or dissolution of the electrode. These processes occur because the ions 

have to be adsorbed onto the surface of the metal first, followed by electron discharge, 

which results in formation of a chemical with the surface (precipitation), or in two 

discharged ions forming a gas molecule (evolution), or ionization of an atom in the 

electrode (dissolution). On the other hand, some redox reactions occur by electrons 

directly hopping from the donor to the acceptor via quantum mechanical tunneling, 

without any intermediate steps. These are known as outer-sphere reactions. Figure 2.8 

illustrates these reaction types. 

 
Figure 2.8 In an outer-sphere reaction, electrons directly tunnel to/from the ions (left), whereas inner 

sphere reactions require an adsorption intermediate step (right). 
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The reference model for outer-sphere reaction is the Butler-Volmer relationship. It 

is derived using first order reaction rate theory. In its simplest form, the current-voltage 

equation is given by  [113] : 

( )( )1
0i i e eβ α η αβη− −= − , (2.18) 

where i0 is known as the exchange current density, η is the overpotential, and α is a 

symmetry factor that relates to the energetics of the outer-sphere reaction. For high bias, 

the equation predicts an exponential behavior. However, in practical electrodes, the 

current is seldom limited by this exponential relationship. Current might be limited by the 

intermediate steps taken in a reaction, such as inner-sphere ionic adsorption, or multi-step 

reactions. Additionally, if the current is not limited by the kinetics of the reaction, then it 

will be limited by mass transfer, i.e. reactants will not be able to diffuse from the bulk to 

the surface fast enough to replenish the depleted surface. Such problems are usually 

handled in the mean-field diffusion-reaction equation. For a vector of species q, diffusion 

coefficient matrix D, and interaction function R, the vector-equation is given by: 

2 ( )
t

∂
= ∇ +

∂
q D q R q . (2.19) 

The diffusion-reaction system of equation might be defined in different 

dimensions. For example, the reaction equation might only be defined on a surface of the 

electrode, whereas the diffusion can be defined in the bulk of the electrolyte solution. In 

general, the most important parameter of Equation (2.19) is the function R, which 

determines how the reaction depends on the abundance of reactants and their energetics. 

2.2.5 The Semiconductor 

The semiconductor is perhaps the most widely researched part of the entire BioFET. Its 

structure is identical to the structure of mainstream field-effect transistors. Proper 

modeling of the semiconductor generally requires two self-consistent equations: an 

energy balance equation and a material balance equation. The energy balance equation 

gives the potential distribution as a function of the profile of charges within it, whereas 
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the material balance equation uses the kinetic equations of motion for the charges, in 

addition to the potential profile, to determine the distribution of charges. 

The modeling equations used depend on the size scales of the semiconductor. The 

energy equation is given by Poisson’s equation which is valid for all length scales: 

2Vε ρ∇ = − , (2.20) 

where V is the electrostatic potential, ε is the permittivity, and ρ is the charge density. For 

sizes that are large in comparison with the de Broglie wavelength of the electrons, 

classical equations of carrier continuity apply. In general, the kinetics of carriers are 

described by three processes: diffusion, drift, and recombination of both semiconductor 

carriers: electrons and holes. The diffusion term is assumed to follow Fick’s diffusion 

law, whereas the drift is assumed to follow the linear (Ohmic) mobility expression. The 

models for recombination are various, and depend on the type of recombination. In the 

simplest model, the recombination is modeled as a first-order reaction, and characterized 

by a single time decay constant called the lifetime τ. The carrier continuity equation for a 

carrier with density n, equilibrium density n0, diffusion coefficient D, and mobility μ is: 

( ) ( )0n nnD n n V
t

μ
τ
−∂

∇ ⋅ − ∇ + ∇ + = −
∂

. (2.21) 

The diffusion coefficient and mobility are dependent on the crystal and electronic 

structure of the semiconductor. They can significantly change from their bulk value if the 

carriers are confined to the surface of the semiconductor, as in the case of FET devices. 

Additionally, interaction of the carriers with surface states can give rise to peculiar noise 

and spatio-temporal variations in the carrier dynamics  [71] . 

When the semiconductor’s dimensions are small, the classical transport equations 

do not adequately represent the motion of carriers. As the size of the semiconductor 

shrinks, the scattering phenomena, that give rise to the Ohmic behavior, start to diminish. 

The device goes into the ballistic regime, and the treatment of scattering events becomes 

more cumbersome. The kinetics of the device are now given by Boltzmann’s transport 



Chapter2: Mathematical Modeling Strategies 

46 

equation which operates on the probability density function of carriers f in position-

momentum space  [114] : 

r p
coll

f ff F f s
t t

ν∂ ∂
+ ⋅∇ + ⋅∇ = +

∂ ∂

GG , 2.22 

where the subscripts r and p denote position and momentum derivatives, respectively, the 

first term on the right hand side is the collision integral, and s is the carrier generation 

source (if any). Equation (2.22) is very difficult to handle and approximate expressions 

for the collision integral and the source term must be used for tractable solutions. 

Nevertheless, the equation provides a more detailed account of the kinetics of carrier 

transport in small-scale semiconductors.  

When the dimensions of the semiconductor become really small, in the range of 

nanometers, then Newtonian mechanics start to fail to describe the motion of carriers, and 

the carriers cannot be seen as rigid point particles anymore. Effects such as barrier 

tunneling, interference, and Coulomb blockade are commonly observed and cannot be 

described by classical mechanics. The semiconductor and the carriers will now have to be 

modeled with a complete quantum mechanical model. This consists of solving 

Schrödinger’s wave equation, coupled with a suitable transport model, self-consistently. 

Several models for nanoscale transport are available, including Landauer’s model, and the 

more general non-equilibrium Green’s function method  [115] - [118] . 

2.3 Modeling Strategies 

From the above discussions, it is clear that there are several heterogeneous areas of 

simulation, each providing its own insight and view on the underlying physical processes. 

In general, the models for a BioFET involve one or more of the following: 

1. Mean-field systems of coupled partial differential equations. 

2. Individual equations of motion that operate on particles and molecules. 

3. Models of the system’s energy as a function of coordinates and motion. 
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When the problems are not amenable to analytical solution, which is the case for most 

engineering problems, numerical techniques are needed. In this section, some of the 

various numerical techniques that are used to deal with these problems are given. 

2.3.1 Ab-initio Methods 

Ab-initio methods are a subset of a wider variety of methods that are used to solve partial 

differential equations. These methods involve expressing the solution as a linear 

combination of a “basis set”. The basis set should ideally be complete, meaning that any 

function can potentially be constructed using a linear combination of the basis set. 

Mathematically, the basis is the set of components of the function in a finite (or infinite) 

dimensional Hilbert space. To facilitate tractable numerical computation, however, the 

basis set is always chosen incomplete. Using a basis set converts the differential equation 

to an algebraic system of equations, which can be solved on a computer. Schrodinger’s 

single particle time independent equation for a Hamiltonian operator H and wavefunction 

Ψ is given by: 

Eψ ψ=H . (2.23) 

When the wavefunction is expanded in a basis set φi with coefficients ci, the 

equation becomes: 

i i i i
i i

c E cφ φ=∑ ∑H . (2.24) 

Now, if Equation (2.24) is multiplied by φj and integrated over the entire space 

(the variational or weak formulation, discussed later in this chapter, when the finite-

element method is described), we get a matrix equation in the unknown coefficients 

vector c: 

E′ = cH c S , (2.25) 

where the matrix H’ is the Hamiltonian matrix in the chosen basis with elements 

| |ji j iH φ φ= H , and S is the overlap matrix with elements |ji j iS φ φ= , using Dirac’s 
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notation. Equation (2.25) is a generalized eigenvalue equation and can be solved on a 

computer. If the basis set is chosen to be orthonormal, then the overlap matrix reduces to 

an identity matrix, and Equation (2.25) becomes a regular eigenvalue problem. The 

biggest computation demand is in evaluating the matrix elements through integration.  

The best choice of a basis set for a particular problem is one which will minimize 

the number of basis functions required to describe a solution, while at the same time 

maintaining an accurate answer. Ab-initio methods are best suited for resolving the 

geometry and electronic structure of molecules, since the basis set chosen by most solvers 

are localized in space and are thus suitable to describe bound electron wavefunctions. 

Several basis sets are possible. Some of these basis sets are suitable for determination of 

the molecule’s geometry, whereas others are more suitable for band-gap and energy 

calculations in crystals. The choice of the basis set depends on the required simulation 

result, required accuracy, and ease of computing. Several basis sets exist, and Table 2.3 

summarizes some of them. On the topmost level, chemistry basis sets are classified as 

Slater-Type Orbitals (STO), or Gaussian-Type Orbitals (GTO). STO provides more 

accurate description of actual atomic eigenstates, but GTO are more often used, due to 

their ease of integration  [79] . 
Table 2.3 Some common basis sets used in computational chemistry 

Name Type Examples Uses 

Split-valence GTO Double-zeta (DZ), Triple-
zeta (TZ), Quad zeta (QZ), 
Double zeta with polarization 
(DZP) 

• Uses several GTO functions with 
different decays (zeta) 

• Useful for properly characterizing long 
bonds 

• Better description of chemical bonds 
than standard GTO or STO 

• Can add polarization data to better 
model polarization 

Diffuse 
functions 

GTO Contracted GTO (CGTO) • Can better extract polarization 
information for electrons far from 
nucleus 

• Better basis for valence of heavier atoms 
and lone pairs 

Pople-style STO 6-31G, 6-311G • Combines several GTOs to make one 
STO 

• Useful for some specific molecular 
structures 

Plane wave - - • Useful for crystal structure calculations 
• Useful for periodic systems 
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In addition to the suitable choice of basis, compensation must be made for reducing 

the multi-electron problem into a single electron problem. This consists of the problems 

of interaction between the electrons. This further categorizes the problem into simple 

Hartree-Fock (HF) problems, where the interaction between the electrons is taken on 

average and correlation effects are neglected, and Post-Hartree-Fock (PHF) methods. The 

PHF methods treat electron correlations in several different ways, giving many different 

flavors such as: 

• Configuration interaction method 

• Coupled cluster method 

• Møller-Plesset perturbation theory 

2.3.2 Molecular Dynamics 

In many cases, chemical interactions that cause significant change in chemical 

composition are rare, and the bonds and molecules retain their normal structures and bond 

energies to some extent. Additionally, some processes might take time scales that are far 

too large with respect to the time scales of quantum transitions. In such cases, it would be 

computationally exhaustive to simulate the entire problem from first principles. Instead, 

the different interactions are characterized by empirical equations that are fitted to the 

data from quantum calculations or experiments. When all interactions are modeled, 

Newton’s laws of motion are applied to the entire ensemble of atoms. This is the basic 

idea of Molecular Dynamics (MD) simulations. In some cases, such as when dealing with 

large proteins, certain segments of the molecule that are known to be stable and not 

chemically active might be modeled as rigid objects, perhaps with effective potentials. 

This process is known as coarse-graining  [85] . 

In a complete MD simulation, one would have to account for all possible inter-

molecular interactions. This includes chemical bond stretching and twisting, electrostatic 

forces, and van-der-Waals type dispersion interactions. As shown in Figure 2.9, these 

forces must be calculated for each pair of atoms or rigid entities. As the number of 

entities increases, however, the number of calculations increases exponentially. 
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Therefore, in practice, it is desirable to limit the interactions of entities to a certain radius 

that is decided by the extension of the interaction force field. This requires a continuous 

log or adjacency information between the entities as time is integrated and the simulation 

continues. The additional complexity of bookkeeping is more than compensated for by 

the drastic reduction in the required calculations. 

 
Figure 2.9 Forces in molecular dynamics simulation 

Molecular dynamics simulations are classified based on the level of detail that is 

included in molecules, the type of force field used to model the different interactions, the 

type of numerical integration that is used, and the model for the aqueous solution 

surrounding the molecule of interest in biological simulations. Since there is an 

abundance of water molecules even within a small simulation box size, it can be 

prohibitive to include the water molecules in their finest detail. Some MD simulations 

treat the effects of water implicitly, via changes in the dielectric constant. The implicit 

water might work for many simulations, but information is lost when hydrogen bonds 

with water are important, or when the water molecules dipole moments are aligned, such 

as at metallurgical surfaces. In such cases, the most accurate representation would require 

explicit treatment of water molecules. Several simplified explicit water models are 

extensively used in MD simulations. Examples include 3-site models such as TIPS  [118] , 

TIP3P  [119] , and SPC/E  [120] , 4-site models such as TIPS2  [121] , TIP4P  [119] , 

TIP4P/Ice  [122] , and 5-site models such as BNS  [123] and TIP5P  [124] . 
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2.3.3 Monte-Carlo Model 

Monte-Carlo (MC) simulations are a class of simulations that rely on random numbers to 

simulate a phenomenon. Sometimes, the phenomenon itself has inherent randomness. In 

other cases, the deterministic calculation is too complicated to be rigorously attempted. 

The Monte-Carlo approach is to perform a calculation on a finite set of samples that are 

chosen randomly. As the results are aggregated, the approximate solution approaches the 

rigorous solution. There is no absolute method on how to perform MC computations. 

Rather, it is derived for the problem at hand. For example, to calculate the area of a 

complicated two-dimensional closed surface, such as that shown in Figure 2.10, the direct 

method would be to discretize the area into very small fixed areas and sum them up. The 

MC approach would be to enclose the shape into a bigger shape of known area, like a 

square. Then, the MC algorithm sequentially chooses a random two-coordinate point 

within the square and determines whether or not this point is inside the shape. As the 

number of samples increases, and assuming uniform sampling, the ratio of points inside 

the shape to those outside will be equal to the ratio of the two areas, and an estimate of 

the area of the shape can be produced. Clearly, MC simulations will depend on the quality 

of the random number generator, the number of samples taken, and any possible 

statistical bias. 

 
Figure 2.10 Using a Monte-Carlo simulation to estimate the area of the inner complex curve (see text) 

When used instead of molecular dynamics, MC simulation cannot produce the 

kinetics of molecular motion, and is therefore incapable of providing information about 

reaction kinetics, diffusion coefficients, and mobility of molecules. However, it can still 

be used to predict average conformation of molecules, radius of gyration, and other mean 
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distributions. The MC method can be used with statistical mechanical arguments to 

provide information about lowest energy molecular configurations. This technique, called 

the Metropolis algorithm, is used in this thesis and will be explained in Chapter  5. 

2.4 The Finite-Element Method 

The rest of this chapter is dedicated to describe the Finite-Element-Method (FEM). This 

method was used for all simulations in this thesis. It is one of the most widely used 

methods for solving systems of partial differential equations in Engineering. Some of the 

advantages of FEM are the following: 

1. It is very flexible and scalable. It can be used for problems with very large scale, 

as well as nanoscale problems. 

2. It can handle complex geometries and heterogeneous media well. 

3. It discretizes the solution, but not the problem. This makes it superior to the finite-

difference method. 

4. It is not limited to a single type of basis function. 

Of course, these advantages come at the cost of harder implementation of the finite 

element method, and complicated algorithms for discretizing the solution domain. 

2.4.1 The Variational Principle 

The mathematics of the finite element analysis is rooted in variational calculus  [125] -

 [127] . One would like to convert a partial differential equation into a system of algebraic 

equations that can be solved on a computer. If a differential operator L acts on a function 

u(r), where r is the position vector, then the partial differential equation: 

( )u f=L r , (2.26) 

defined over a domain Ω, where f is the inhomogeneous term, might have a unique 

solution for a suitable boundary condition over the boundary of the domain ∂Ω. The 

concept of existence and uniqueness for a general partial differential equation is not fully 
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established. However, for all physical models, a unique solution is ensured, provided 

sufficient boundary conditions exist. 

To get the variational (weak) formulation of Equation (2.26), we set an arbitrary 

function v(r) defined over the domain Ω. Then, from calculus of variations, Equation 

(2.26) is equivalent to: 

( ) ( ) ( )v u d fv d=∫ ∫r L r r r r , (2.27) 

for any continuous function v(r) in Ω. This function is called a test vector (or function). 

Now, for a suitable choice of basis set φi, if we find a solution vector such that Equation 

(2.27) is satisfied for each member of this basis set, then the equation will be satisfied for 

any linear combination of this basis set as well, owing to the linearity of the integral. To 

find the solution vector, it will have to be expressed in the same basis set. Since the basis 

set is not complete, the solution vector is only the closest vector from the span of the basis 

φi to the actual solution. This is the source of approximation in the finite-element method. 

The challenge is to choose a basis set that can potentially give a good approximation to 

the solution vector within the simulation domain Ω, without knowing the solution vector 

itself. One must have a “sense” of the dynamics of the solution vector, where it tends to 

have a sharper and more detailed profile, and where it would be more flat and with little 

detail. The basis set must then be chosen to allow more detail at the more interesting part 

of the domain, while giving little detail in the regions where the solution curve is 

expected not to show rapid dynamics. 

With the solution vector replaced by its expression in the basis set with 

coefficients uj, the problem reduces to finding the expansion coefficients of the solution 

vector. For each basis set used in place of the test vector, we get an equation: 

( ) ( ) ( )j i j i
j

u d f dφ φ φ=∑ ∫ ∫r L r r r r . (2.28) 

For each φi, there is a separate equation. Grouping them together results in a matrix 

equation: 
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=Ku L , (2.29) 

where the matrices are defined as follows: 
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. (2.30) 

For most problems, the matrix K (called the stiffness matrix) will be rank 

deficient, meaning that a unique solution does not exist. The boundary conditions are 

what will allow the solution to be unique. Boundary conditions are defined over 

manifolds that are one dimension smaller than that of the problem. For a 3-D problem, the 

boundary is a 2D surface or set of surfaces. For a 2-D problem, the boundary is a line or a 

set of lines. Typical boundary conditions are defined as Dirichlet, Neumann, Robin, or 

mixed boundary conditions. These are collectively defined using the following equation, 

defined on ∂Ω: 

( )u u qu g⋅ ∇ + + =n c d , (2.31) 

where c,d, q, and g are coefficients related to physical stimuli at the boundaries, and n is 

the unit normal vector to the boundary. Equation (2.31) can be seen as yet another 

differential operator Q acting on the solution vector: 

( )u g=Q r , (2.32) 

defined on ∂Ω. Using a similar variational procedure, Equation (2.32) can be converted 

into an algebraic system of differential equations. In this case, we would need to use 

boundary basis functions ζi, instead of the domain basis functions φi. The boundary basis 

functions are always one dimension smaller than the domain basis functions. 

Additionally, the boundary basis is chosen to coincide with the values of the domain basis 

functions on the boundary. This way, the expansion coefficients for the solution vector in 
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the space of boundary basis is the same as the expansion coefficients in the adjacent 

domain basis functions. With this in mind, Equation (2.32) becomes: 

( ) ( ) ( )j i j i
j

u d g dζ ζ ζ=∑ ∫ ∫r Q r r r r , (2.33) 

which ultimately yields the matrix formulation: 

=Nu M , (2.34) 

where the matrices N and M are defined as follows: 
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Since Equation (2.34) is not defined on the entire domain, several columns of the 

matrix N are expected to be filled with zeros. Additionally, since the number of boundary 

elements is fewer than the number of domain elements, the matrix N will not be square. 

Equation (2.34) is known as the constraint equation. When formulated properly, 

Equations (2.29) and (2.34) admit a unique solution vector, which is the optimum 

approximation of our solution within the span of the selected basis set. 

If the constraints in Equation (2.34) are all simple Dirichlet conditions, then one 

may eliminate the boundary coefficients (solutions of Equation (2.34)) from Equation 

(2.29), which will then yield a system of algebraic equation in the internal nodes, which 

can easily be solved. The method of elimination can, in general, be used to solve 

Equations (2.29) and (2.34) for any type of boundary condition. However, one would 

have to deal with a rank-deficient problem: 

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

K L
u

N M
. (2.36) 

This problem can be solved for the vector u, leaving some redundant zero rows 

during the Gaussian elimination phase. However, small numerical errors can result in 
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inaccurate solutions in this case. An alternative method is using Lagrange multipliers to 

solve the constrained problem. This method, first introduced by Babuška  [128] , involves 

extending the solution vector to include new boundary variables p (the Lagrange 

multipliers). The system to be solved is then  [129] : 

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

T u LK N
p MN 0

. (2.37) 

The vector p is the outward normal flux of the solution ∂u/∂n. The 

implementation of Equation (2.37) is more memory intensive and requires many more 

degrees of freedom over the elimination method. However, it is known to provide better 

estimates of the flux than elimination. 

2.4.2 The Finite Element Discretization and Meshing 

The difference between the finite element method and other discrete-basis methods (such 

as ab-initio methods, spectral method, and others), is that the basis functions in the finite-

element method are only piece-wise smooth, with a finite extension in space, hence the 

name finite element. Having a finite extension makes the matrix K sparse, since most 

integrals within this matrix will be annihilated. This allows the finite-element algorithm 

to be more memory-efficient than if using bases with large spatial extension.  

Since the basis functions are spatially limited in their extension, the solution 

domain must be discretized before a suitable basis function set is chosen. Discretization 

of the space is known as meshing. Figure 2.11 shows an example of a triangular mesh on 

a domain. A 1-D mesh consists of points (nodes) along the single dimension, and the 

elements are line segments of differing sizes. In 2-D, elements are often triangular, 

although quadrilateral elements are common in structural mechanics problems. In 3-D, 

tetrahedral elements are most commonly used, but brick-shaped elements are also 

popular. 
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Figure 2.11 Example of a triangular 2D mesh on a subdomain 

Meshing can be a complicated task, and care must be taken not to have extremely 

thin elements that would cause numerical difficulties. In addition, if adjacent mesh 

elements do not share full edges (called nonconforming mesh), then the assembly of the 

matrices and integral evaluations can lead to some problems. Figure 2.12 shows an 

example of a conforming and a non-conforming two-dimensional mesh. In all simulations 

in this thesis, conforming triangular (and tetrahedral) mesh elements were used. 

 
Figure 2.12 Conforming mesh (left) and a non-conforming mesh (right), with the non-conforming 

edges dashed 

Several meshing schemes are available, and an excellent review is given in  [130] . 

The most common meshing technique starts by defining the nodes first, followed by a 

triangulation. The nodes are chosen with a uniform distribution around the domain, but 
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they are made denser at certain parts where the solution is expected to have steeper 

profiles. Once the nodes are in place, a Voronoi diagram is generated. The Voronoi 

diagram, shown in Figure 2.13, consists of a set of polygons, each including only one 

node, and the set of all points in the domain that are closer to this node than to any other 

node. This diagram is achieved by joining the bisector lines of each pair of closest nodes. 

Once the Voronoi diagram is complete, the Delaunay mesh can be generated by 

connecting the nodes of every 3 mutually adjacent Voronoi cells. 

 
Figure 2.13 Voronoi diagram (dashed), and Delaunay triangulation (solid) of the mesh nodes 

After the Delaunay triangulation is complete, the basis functions have to be 

chosen. In the finite-element method, the number of basis functions needed is the same as 

the number of nodes, with each basis function having a value of unity at that node and 

decaying to zero at all adjacent nodes. When constructed this way, only adjacent elements 

will have possible overlaps. This way, the stiffness matrix is ensured to be sparse and the 

mathematical computation is simplified. This is in stark contrast with ab-initio methods, 

wherein the matrix is dense, but the number of elements is small. In one-dimension, the 

simplest possible element shape function is the linear “hat” functions, shown in Figure 

2.14, along with the equivalent 2-D “tent” function. 
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Figure 2.14 Linear 1-D hat functions (left) and 2-D tent function (right) 

Several basis functions (also called shape functions) are available, with some 

being more suited to solve specific problems than others. The basis functions must be 

selected such that continuity is maintained within each element, as well as across 

elements. Additionally, they should be easy to integrate. This will help speed up the 

calculation of the matrices of Equations (2.29) and (2.34), which is the most time-

consuming process in the entire finite-element analysis. The most famous element type is 

the Lagrange element of order k. These elements are polynomials of order k that satisfy 

continuity between mesh edges. Depending on the order of the Lagrange element used, a 

different number of points might be needed to fully specify the shape function. For 

example, in a two-dimensional triangle, a first-order Lagrange element would require 

three nodes, namely, the nodes on the three vertices of the triangular elements. These are 

the three mesh nodes that were used to create the mesh. However, if an order 2 Lagrange 

element is used, six nodes are required: the three mesh nodes, and three other “internal” 

nodes. Using higher order elements will result in a larger solution vector and many more 

degrees of freedom. Thus, there is a trade-off between accuracy and computational 

overhead. In many cases, linear first-order elements suffice, for a mesh that is dense 

enough. 

Since the mesh elements are not of the same size, the required shape function for 

each element tends to be unique, even when the same shape function class is used (e.g. 

first-order Lagrange element) and the elements are of the same shape (e.g. triangular in 2-

D). However, it is inefficient to keep track of all these functions and perform customized 

integrations on each element. What is generally done in this case is that the element is 
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mapped to a master template, with orthogonal coordinates (called the local coordinates). 

Figure 2.15 shows this mapping for a two-dimensional triangle. The orthogonal 

coordinates ζ and η are mapped from the real-world x and y coordinates, and they extend 

through the interval [0,1]. Integrations on single elements are often better performed on 

local coordinates with simple extensions. This allows formulas such as Gauss’s 

quadrature to be used. The geometry transformation is a combination of a rotation and a 

scaling. The general expression for the relationship between the two frames is given by: 

11 12

21 22

T T

T T

xj j
yj j

ζ
η

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. (2.38) 

where the coefficients Tj constitute the transformation matrix TJ . If this matrix is 

invertible, we can get the real world coordinates (x,y) from the local coordinates: 
* *

11 12
* *
21 22

xj j
yj j

ζ
η

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. (2.39) 

where the coefficients *j are for the inverse transformation matrix ( ) 1* T −
=J J . When the 

transformation only involves scaling and rotation, and no warping or bending, then the 

transformation matrix TJ is a constant. In this case, it can be seen that the transformation 

matrix is the transpose of the Jacobian: 

x x

y y
ζ η

ζ η

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎜ ⎟=
⎜ ⎟∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

J . (2.40) 
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Figure 2.15 Transformation of a triangular element from global coordinates to local coordinates 

using the Jacobian matrix 

When warping exist, the Jacobian is not a constant, but depends on the space 

coordinates. In the simulations in this thesis, all elements were made non-warping to 

simplify the calculations. The Jacobian matrix allows derivatives in the global coordinates 

to be related to the local coordinates: 

f f
x
ff
y

ζ

η

∂⎛ ⎞ ∂⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ⎜ ⎟=

∂⎜ ⎟∂ ⎜ ⎟
⎜ ⎟⎜ ⎟ ∂∂ ⎝ ⎠⎝ ⎠

J . (2.41) 

It also allows the area integration in the global element’s domain Ω to be transformed to 

the local domain Ω
�

: 

11 12 21 22( , ) ( , )T T T Tf x y dxdy f j j j j d dζ η ζ η ζ η
Ω Ω

= + +∫ ∫� J . (2.42) 

The process of converting the elements to the local domain and performing the 

integration to get the different matrices is called assembling. This is the most time 

consuming process of the entire finite-element method. 
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2.4.3 Solving the System 

Once the matrix assembly is completed, and all the boundary conditions are incorporated, 

a single matrix equation needs to be solved: Ax=b. In nonlinear problems, A and b can be 

functions of the solution vector x. Non-linear problems can be solved by a Netwon-

Rhapson technique that involves linearizing the matrices  around a “test” solution vector, 

and then solving the linearized system. Thus, whether a system is linear or nonlinear, a 

linear system solver must be used. The most straightforward linear system solver is direct 

inversion of matrix A, such that x=A-1b. However, this method is very impractical for 

large matrices and wastes both memory space and computation time. Several other 

methods to solve matrix equations are available, both commercially and as freeware. One 

multi-purpose solver that relies on L-U factorization of the A matrix is the unsymmetric 

multifrontal method (software implementation is known as UMFPACK)  [131] . Although 

UMFPACK might not be the most memory efficient, it is nonetheless used in this thesis 

for its simplicity and availability of many implementations of the algorithm. Other less 

memory-intensive solvers are iterative solvers such as the conjugate gradients solver or 

multigrid solvers. However, they generally require direct solvers as preconditioners, and 

have limited range of applicability and convergence. 

When memory is not available, an alternative technique to the iterative solvers is 

an iterative domain decomposition method. There are several advanced methods of 

domain decomposition. In this thesis, to simplify the programming, the simplest such 

method was used: the Schwarz alternating method. A domain Ω is split into two or more 

overlapping domains, as shown in Figure 2.16. First, subdomain Ω1 is solved with an 

arbitrary boundary condition on the fictitious boundary ∂Ω1. This will result in values of 

the dependent variables for the domain Ω1, which includes the fictitious boundary ∂Ω2. 

Next, we solve the differential equation in subdomain Ω2, using the solution on boundary 

∂Ω2 as Dirichlet boundary conditions. This iteration is repeated until convergence is 

achieved. Generally, the number of iterations increases as the range of overlap decreases. 

This method is best suited for parallel processing on multiple computers. However, in the 
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simulations in this thesis, the method was used on the same computer, to compensate for 

lack of memory. This, of course, was implemented at the expense of severely increased 

simulation time. 

 
Figure 2.16 Illustration of a domain decomposition method using two overlapping domains. 

2.5 Summary 

This chapter was intended to introduce the reader to the classes of mathematical problems 

that are generally encountered when modeling bioelectronic devices and systems. Mean-

field partial differential equations, in addition to Monte Carlo methods and classical 

molecular dynamic simulations, are required to analyze and characterize different aspects 

of biological sensors. The finite-element method is a versatile technique that is used to 

solve mean-field systems of partial differential equations in 3 dimensions. A proper FEM 

implementation requires algorithms for geometry construction, meshing, integration, 

matrix assembly, and solving. The basics of the finite-element analysis that were detailed 

in this chapter were used to perform all of the simulations in the chapters to come. 
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Chapter 3 

HIGHER DIMENSION MODELS 
OF DNA BIOSENSORS 

3.1 Introduction 

This chapter introduces the two- and three- dimensional mean-free models of the BioFET 

using the finite-element method. Higher dimensional models are needed to extract 

information that is not captured by empirical modeling or one-dimensional (1-D) physical 

modeling. Furthermore, higher-dimensional effects can have significant impact on the 

sensitivity and reliability of the BioFET. The finite-element model developed in this 

chapter is used in all subsequent chapters to investigate these effects and assess their 

importance and the impact on the sensor’s performance. 

3.2 Goals of Higher Dimensional Modeling 

Previous work  [71] ,  [133] modeled a simplified 1-D BioFET structure. These models 

capture the essentials of the operation of the BioFET: charge attraction or repulsion in the 

channel by the field-effect, screening of the DNA molecules by the counter-ions, and the 

chemical activity of the adsorption of protons on the amphoteric insulator layer. However, 

one-dimensional modeling tends to overestimate the expected response of the BioFET. 

This is due to assuming that the DNA molecules form a uniform ion-permeable 

membrane, rather than discrete charged molecules. The neglect of the geometry of the 

DNA underestimates the amount of screening charge from the solution, which in turn 

overestimates the amount of charge in the semiconductor. Additionally, the nonlinearities 

in the response of the solution, as well as the nonlinearities in the response of the 
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semiconductor, have to be coupled and solved self-consistently. This can only be done 

when the entire geometry of the sensor and the fine structure of the molecules are 

incorporated into the same model, which is the aim of higher-dimensional modeling. 

Several design and geometry parameters in the BioFET that can affect the output 

signal are not present in the one-dimensional model. For example, the capacitance from 

the solution to the source and drain terminals can influence the operation of impedance-

based biosensors. With a one-dimensional impedance model, this effect will not be 

captured. On the other hand, a 2-D or 3-D model of the BioFET will give accurate 

estimates of these fringing capacitances. These simulations can help a designer optimize 

the performance of the BioFET with respect to the CMOS post-processing materials and 

microfluidic structures. 

The non-homogeneous distribution of DNA probes, as well as the non-

homogeneous adsorption of ions onto the surface of the insulator, both cause variation in 

the sensed signal. Only a 2-D or 3-D model is capable of capturing this non-homogeneity. 

Furthermore, a 1-D model cannot distinguish between a hybridized DNA and a single-

stranded DNA that was nonspecifically adsorbed to an empty region of the bio-sensitive 

surface. Finally, the conformation of tethered probes, which are expected to be flailing, 

rather than rigid molecules, can have a significant impact on the performance, as well as 

the noise characteristics of the BioFET. Again, higher-dimensional modeling is needed to 

capture many of these effects. 

3.3 Basic Geometry and Equations 

3.3.1 Two-Dimensional Case 

We start with a two-dimensional BioFET, shown in Figure 3.1. The 2-D model is more 

memory efficient than the 3-D model, and can successfully capture many higher-

dimensional effects. The simulated BioFET was 800nm in length. The length was chosen 

to be small due to lack of computational resources. The depth of the body or wafer slice is 

generally a couple hundreds of micrometers in present-day processed wafers. However, 
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depending on the doping, the potential and charge profiles only vary within the first 

micrometer or so. The insulator’s material was chosen to be SiO2 with an insulator 

thickness of 18nm, consistent with the insulator thickness of a conventional CMOS 

0.8μm process. The Debye length in the electrolyte extends only to a few nanometers at 

electrolyte concentrations in the range of 1mM. Thus, the electrolyte was made to have a 

depth of around 100nm. The electrolyte was chosen to be KCl, which is very common in 

hybridization buffer solutions. As a first approximation, the effect of the hybridization 

buffer was neglected, except in that it would maintain the pH of the solution at neutral 

7.0. The change in the pH concentration can influence the DNA hybridization efficiency 

 [25] , but it also causes a change in the amount of adsorbed charges at any surface sites. 

The semiconductor’s body is chosen to be N-type with doping 3x1016 cm-3. All dopants 

are assumed to be ionized at the operating temperature (300K). Surface states are 

neglected in this model. 

 
Figure 3.1 2-D model of the BioFET with the DNA probes modeled as rectangles. Depth of the bulk 

was truncated to save page space. 

The DNA molecules are modeled as rigid rectangular shapes with a base width of 

2nm and height of 10nm, which corresponds to a height of 30 base-pair DNA. The 

rectangular model of the DNA allows sidewall screening to be captured in 2-D. The DNA 
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molecules are placed at equal distances from each other along the channel’s length. The 

phosphate’s negative charge on the DNA molecule is assumed to be diffuse within the 

rectangular structure. The only interactions considered in this model are the electrostatic 

interactions, since the principle of operation of the BioFET is the field-effect.  Higher-

order structure and electron density map of the DNA are needed only when chemical 

interactions are considered. This would be the case, for example, in amperometric 

electrode-based DNA biosensors, where the transduction is achieved by electrochemical 

reactions involving the DNA molecule. 

The constitutive equations of the model consist of: 

1. Equilibrium model of the ionic response to electric fields 

2. Model for the surface charging by protons 

3. The semiconductor’s transport equations 

These equations have been used to solve the 1-D BioFET structure [74, 133]. The 

eletrolyte’s model is given by the nonlinear Poisson-Boltzmann (PB) Equation for a 

symmetric electrolyte with valence z: 

( ) ( )02 sinhV zqc z Vε β−∇ ⋅ ∇ = . (3.1) 

In Equation (3.1), V is the electrostatic potential referenced to a point in the bulk 

where the equilibrium concentration of ions is c0. Equation (3.1) results from a statistical 

mechanical treatment of the ensemble of ions. The PB distribution of ions ensures 

maximum entropy of ions while minimizing the total energy of the system. The details 

are omitted here but can be found in many textbooks on statistical mechanics  [134] , [135] 

. The PB equation is valid for systems in thermal equilibrium, where only electrostatic 

forces influence the ions. In general, this might not be the case, as steric forces can inhibit 

the aggregation of the finite-sized solvated ions. Additionally, specific adsorption and 

other chemical reactions which involve removing of the solvation shell will render the PB 

equation inaccurate. These possible side-reactions are often treated separately in a 

perturbative manner to the original PB equation. Some of these issues will be discussed 

later in this chapter. 
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The PB equation is often linearized to yield a more tractable solution. However, in 

this work, it is recognized that the high charge of DNA molecules result in a very high 

zeta potential (in the order of 100mV), which invalidates the linearization of the PB 

equation, necessitating a fully non-linear solution. This situation is particularly more 

pronounced when the double layers of adjacent DNA molecules begin to overlap. 

Linearizing the PB equation can lead to severe errors in the estimate of the amount of 

inversion charge in the underlying semiconductor. 

Close to the insulator’s surface, the PB equation often breaks down due to the 

inability of the ions to approach the surface without losing the hydration shells. One 

simple treatment (Stern approximation) is to avoid using the PB equation at a fixed 

distance from the surface (called the Outer Helmholtz Plane OHP), and instead use the 

homogeneous Laplace equation instead. Ions will not be able to pass through the OHP 

closer to the surface without losing their hydration shell. This can be treated using 

reaction rate laws of surface chemistry, or using the previously discussed adsorption 

isotherms. It is assumed that no electron transfer reactions occur at the surface of the 

insulator (thick enough insulator). Thus, there is no need for an electron transfer reaction 

treatment at the surface of the insulator. 

The kinetics of adsorption of charged molecules in the surface of the SiO2 

insulator can be complicated. On the one hand, a properly deposited SAM with 

hydrophobic alkane chain should limit the diffusion of hydrated ions to the surface of the 

insulator. However, due to the high reactivity of the surface sites, even a small number of 

ions that succeed in diffusing will be able to react at the surface. It has been shown  [134] 

that for a 1-1 solution, the adsorption reactions are given by the following equations of 

association for the dangling SiOH site: 
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The first two equations characterize the adsorption of protons in the electrolyte. 

These equations are the reason for the pH sensitivity of the ion-sensitive FET  [137] . The 

second two equations are for the specific electrostatic adsorption of the charged sites to 

the cations and anions in the solution. These equations are characterized by first-order 

equilibrium constants Ka, Kb, K+, and K-. The ion concentrations in these equations refer 

to their values at the surface (shown in Figure 3.2). The surface concentration, in general, 

is different from that of the bulk due to the presence of a double layer around the surface. 

For a dilute electrolyte, the relationship of surface concentrations to the bulk 

concentration is given by: 
( )
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⎡ ⎤ =⎣ ⎦

, (3.3) 

where the voltage V is measured with respect to the bulk of the electrolyte. The values 

δH, δCl, and δNa are additional partition energies that are related to the required de-

solvation, as well as the energy needed for penetrating the SAM layer. These energies are 

often neglected in the literature, but their values can be extremely important in 

determining the amount of adsorption and the effect on the sensitivity of the biosensor. 
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Figure 3.2 Chemical reactions at the OHP and the IHP between the electrode’s surface states and the 

solutions components 

The model of the surface adsorption involves a balance between the amount of 

adsorbents and reaction sites. To accomplish this, a first-order reaction kinetic model is 

assumed. According to this model, the equilibrium coefficients are given as: 
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The balance equation for the reactive sites on the surface is given by: 

[ ] 2 2 sSiOH SiOH SiO SiO Na SiOH Cl N+ − − + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + − + − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , 3.5 

where Ns is the total surface site density. The components SiO −  and 2SiOH + are treated as 

surface charges, whereas the adsorbed Na+ and Cl − are treated as fixed charges in the 

Inner Helmholtz Plane (IHP) (Figure 3.2). The total surface charge density on the surface 

of the insulator, as well as on the Inner Helmholtz Plane, can be derived from Equations 
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(3.4) and (3.5). After some tedious algebra, the charge on the insulator’s surface σo is 

given by: 

( ) ( )
( ) ( )
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1 1
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and the charge on the IHP σIHP is: 
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 Equations (3.6) and (3.7), along with Equation (3.3), allow for the determination 

of the surface charge as a function of the surface electrostatic potential. This surface 

charge appears in the electrostatic boundary condition at the insulator’s surface, as well as 

at the IHP: 
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Within the semiconductor, Poisson’s equation needs to be coupled to a suitable 

transport equation. Since the FET size is well above the ballistic limit, normal diffusive 

equations apply for both electrons and holes. Thus, the charge density/potential profile in 

the semiconductor is described by the following system of equations (from Equations 

(2.20) and (2.21)): 
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In Equation (3.9), N is the ionized doping density of the semiconductor’s channel, 

and p and n are the volumetric charge densities of the holes and electrons, respectively. 

The plus sign in the first equation is for p-type semiconductor. Assuming low bias, the 

recombination current component was eliminated from Equation (2.21), and the time 
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dependent term was also eliminated. Thus, Equation (3.9) is a steady-state, low-bias 

transport model for the FET. 

At the insulator/semiconductor interface, the boundary conditions of the 

electrostatic potential require continuity of the electrical displacement, unless there are 

surface charges at the interface  [4] . Generally, for properly annealed Si/SiO2 

heterostructures, annealing reduced the trap density to around 1010 cm-2  [138] , whose 

charging then has minimal effect on the threshold voltage variation. These surface 

charges are generally assumed to be fully charged, irrespective of the applied gate bias. 

This accumulated surface charge σs interferes with the electrostatic boundary conditions 

at this interface: 

( )
2/ sSi SiO

Vε σ⋅ ∇ = −n . (3.10) 

Equations (3.1), (3.3), (3.6), (3.7), and (3.9), as well as boundary conditions (3.8) 

and (3.10), constitute the model needed to solve for the potential and charge distribution 

in all regions of the BioFET. Of course, the potential references for Equation (3.1) and 

that of Equation (3.9) are not compatible, as the former is referenced to the bulk of the 

solution, whereas the latter is referenced to the bulk of the semiconductor. In order to 

unify the definition of potentials in the model, both potentials are re-referenced to the 

vacuum level of a zero-biased metallic contact. Thus, the potentials (V) in Equations (3.1) 

and (3.3) are replaced by the value: 

( )G M sol refV V Eχ χ− + − − , (3.11) 

where Mχ and solχ are the electron affinities of the metal contact and the solution, 

respectively, Eref is the electrode potential, and VG is the voltage applied to the reference 

electrode. Similarly, the potential (V) in Equation (3.9) is replaced by: 

( )/ 2B M Si g FV V Eχ χ φ− + − − − , (3.12) 

where Siχ is the semiconductor’s electron affinity, Eg is the energy band gap, VB is the 

voltage applied to the body contact, and φF is the Fermi level of the semiconductor, given 

by: 
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1 lnF
i

N
n

φ β − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∓ , (3.13) 

where the minus sign is for a p-type semiconductor. For all mobile charge-free regions of 

space such as the gate insulator, or the sidewall PDMS structures, Laplace’s equation is 

valid without any transformation done on the potential. 

With the voltage reference homogenized over the entire BioFET structure, it 

remains a task to specify the outer boundary conditions. All boundaries that are not in 

immediate contact with a lead will have Neumann reflecting boundary conditions. Of 

course, this will only be accurate if the geometry of the device is made large enough to 

allow the electric fields to subside. This is a big source of redundancy and needless 

computation, since several thousand degrees of freedom are calculated for a more 

accurate total current calculation. 

At the reference electrode boundary, as well as the boundaries in contact with the 

source, drain, and body terminals, Dirichlet conditions are needed. Close to these 

boundaries, there exist sharp potential and charge profiles similar to the double layer. If 

the contacts are assumed to be Ohmic, there is no real need to model these regions as they 

require many degrees of freedom in the finite-element mesh, and generally do not change 

the voltage-current characteristics if the junction is made properly Ohmic. The analysis is 

completely different in the case of nanowire sensors, as the junctions cannot be neglected. 

The Dirichlet conditions for the Reference electrode, body, source, and drain junctions 

are given by: 

( )
( )
( )
( )

/ 2

/ 2

/ 2

REF G M sol ref

B B M Si g F

S S M Si g F

D D M Si g F

V V E

V V E

V V E

V V E

χ χ

χ χ φ

χ χ φ

χ χ φ

∂

∂

∂

∂

= + − −

= + − − −

= + − − −

= + − − −

, (3.14) 

where the voltages VS and VD are the voltages applied to the leads of the source and drain 

terminals, respectively. 

Additionally, boundary conditions for the electron and hole densities are needed at 

all semiconductor boundaries. Since no out-flux of carriers occurs at the 
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insulator/semiconductor interface, Neumann boundary conditions are applied for both 

carriers. For the contact boundaries, the condition on the carriers depends on the kinetics 

of carrier injection between the metal and the semiconductor. If a perfect contact is 

assumed with infinite recombination velocity, then the carrier concentration at the surface 

will be the value at thermal equilibrium, given by: 

( )( )

( )( )

/2

/2

M Si g F

M Si g F

V E

i

V E

i

n n e

p n e

β χ χ φ

β χ χ φ

− − − −

− − − − −

=

=
, (3.15) 

where ni is the intrinsic thermally generated carrier density, and the voltage V is replaced 

by the applied value at the source, drain, or body terminals. 

A sample mesh for the 2-D problem is shown in Figure 3.3. The mesh is made to 

exponentially coarsen with the distance from the DNA molecule edges, accommodating 

the double layer formation. A similar exponential decaying mesh is applied along the 

depth of the channel, accommodating the fast dynamics of the potential and charge 

profiles. The mesh is finest within the insulator layer. This is where the 2-D effects are 

most important. It is important that the discreteness of the DNA charge is communicated 

properly to the semiconductor, and this will only be accomplished with a fine mesh 

within the insulator. The size of the mesh elements within the electrolyte are made 

smaller than those in the semiconductor. This is because the PB equation of the 

electrolyte is extremely nonlinear and results in a very steep profile, whereas the 

semiconductor’s equations are better behaved. 
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Figure 3.3 Sample 2-D mesh for the BioFET. The mesh is made finer around the DNA molecules (not 

visible in this figure due to surrounding mesh) for added accuracy at the critical locations 

3.3.2 Three-Dimensional Case 

The 3-D model of the BioFET follows the exact same equations of the 2-D model given 

above. The advantage of the 3-D model is that it allows for the complete cylindrical 

screening of the DNA charges, as compared with the 2-D model. It will also be useful 

when conducting Monte-Carlo simulations on the positions of the DNA molecules 

(Chapter 5). However, the added value that comes with 3-D modeling is at the expense of 
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significantly higher computation time, which prohibits its use for parametric calculations 

when using a modest computer. 

To make the 3-D simulation possible, the simulation is conducted on a “slice” of 

the BioFET, shown in Figure 3.4. The slice is taken along the length of the device, and is 

made thin enough to yield manageable degrees of freedom, but wide enough to 

accommodate the cylindrical charge screening profile around the DNA. The additional 

boundaries in the 3-D geometry (those along the slicing planes of the BioFET), cannot be 

given Neumann conditions, since these are artificial boundaries that do not impose 

Neumann conditions. In an attempt to emulate the bulk behavior of the BioFET, the 

opposite boundaries in line with the slicing planes are given periodic boundary 

conditions. This allows for the treatment of “spill-over” of the ionic and potential profile. 

This is illustrated with the aid of Figure 3.5. As DNA molecules are placed closer to the 

hypothetical border, the double layer would have to cross the boundary. Periodic 

boundary conditions will allow this boundary to reflect the remainder of the profile to the 

opposite boundary. Thus, a bulk effect is established. 

 
Figure 3.4 Cartoon illustration of the 3-D slice of a BioFET with cylindrical DNA molecules placed 

randomly on the SAM surface. A tetrahedral mesh is applied to the entire domain for solving. 

Periodic boundary conditions also reduce the degrees of freedom of the 3-D 

problem, as the elements on the opposite periodic boundaries are made to have the same 

values, and the same normal derivatives (i.e. the same degrees of freedom). This helps 
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with faster convergence of the 3-D problem. However, for easy implementation of the 

periodic boundary condition, the boundary meshes on the periodic boundaries must be 

made identical. If the meshes do not match, a complicated interpolation step would have 

to be done to map the variables from one boundary to another. Therefore, the meshing of 

the 3-D geometry is done in steps: First, one boundary is meshed with a 2-D mesh, 

respecting the mesh density requirements within different regions in the device. Then, this 

mesh is mirror-copied onto the opposite boundary. Finally, the subdomains are meshed, 

while respecting the mesh nodes and elements of these boundaries. 

 
Figure 3.5 Top view of the 3-D BioFET channel. Periodic boundary conditions applied to the top and 

bottom boundaries in the figure allow spillover charge profiles to be reflected to the opposite 

boundary, causing a bulk effect overall 

3.4 Numerical Conditioning 

In both 2-D and 3-D cases, the system of equations for the BioFET involve variables V, n, 

and p. The values of the carrier concentrations are several orders of magnitude larger than 

the values of the electrostatic potential. This makes the numerical calculation very stiff, 

resulting in severely erroneous estimates of the carrier densities  [139] . For this reason, 

the carriers are scaled according to the following “quasi-Fermi” transformation: 

( )( )

( )( )

/2

/2

qfn Si g F

qfp Si g F

V V E

i

V V E

i

n n e

p n e

β χ φ

β χ φ

− − − −

− − − − −

=

=
, (3.16) 
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where the new variables Vqfn and Vqfp are the quasi-Fermi potentials which have values in 

the same range as the electrostatic vacuum level potential. Utilizing these 

transformations, as well as Einstein’s relation: 

1
, ,n p n pD β μ−= , (3.17) 

the transport equations reduce to the following: 

( )( )
( )( )

/2

/2

0

0

qfn Si g

qfp Si g

V V E
n i

V V E
p i

q n e

q n e

β χ

β χ

μ

μ

− + +

− − + +

∇ ⋅ − =

∇ ⋅ − =
. (3.18) 

These equations are now coupled to Poisson’s equation for a less-stiff problem 

that is easier to converge. With this transformation, the Dirichlet boundary conditions at 

the contacts become: 

qf X MV V χ= + , (3.19) 

where VX is the corresponding bias at the boundary, and Equation (3.19) applies to both 

quasi-Fermi levels. 

3.5 Numerical Results and Design Implications 

The 2-D and 3-D models discussed above are applied to a BioFET structure, using the 

finite-element method. The current is calculated by integrating the current density along 

the source (or drain) boundary, in absence of any DNA molecules: 

( )p nI J J ds
∂Ω

= + ⋅∫
G G G . (3.20) 

Figure 3.6 shows a comparison of the 1-D, 2-D and 3-D simulations of the drain 

current as a function of the drain bias, for three different gate voltages. The 1-D 

simulation was done using a charge-sheet model that was developed earlier  [4] . These 

simulations are conducted for a BioFET with the same geometry (the 3-D simulation is 

normalized to the device’s width). From the figure, it can be seen that the simulations 

follow the expected curve for a FET. The 2-D and 3-D simulations both predict a 

channel-length modulation effect. This is expected since the channel-length modulation is 
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a 2-D effect. The 3-D model does not give any additional insight or detail in this case, 

since the entire FET is a two-dimensional structure with inherent symmetry of the 

potential and the electric field along the width of the device. The small discrepancy 

between the 2-D and 3-D simulations is most likely due to the higher resolution mesh, 

and higher order elements, used in the 2-D simulation. The 3-D simulation does not easily 

admit such high resolution without the need for excessive memory and computation 

power, or exceedingly longer simulation times through the use of overlapping domain 

decomposition. 

 
Figure 3.6 Comparison of the 1-D, 2-D, and 3-D simulation of the drain current in the BioFET with 

similar characteristics. 

The hybridization signal in the BioFET is taken as the difference in the drain 

current before and after successful hybridization. Hybridization is modeled by doubling 

the charge density on the DNA cylinders. The single-stranded volumetric charge density 

of the DNA is taken as a homogeneous value of 1.49×10-10 C/μm3. Doubling this charge 

will cause additional inversion in the underlying semiconductor, which then increases the 

current (in the case of a P-type FET). Figure 3.7 shows the 1-D, 2-D, and 3-D modeled 

hybridization signals of a BioFET with the same size, and the same DNA layer density. 

The advantage of higher-dimension simulation is clear in this result. The 2-D and 3-D 

results predict lower sensitivity of the BioFET due to the better-resolved screening of the 
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molecule. It is clear, in this case, that 1-D results give only a rough estimate of the 

transduced signal and cannot be utilized to probe finer details of the BioFET. The relative 

error between the 2-D and 1-D hybridization signals (with respect to their absolute 

values) as a function of the drain bias is shown in Figure 3.8a. It is seen that the 2-D 

response can be as low as 50% of the 1-D response, in agreement with another attempt at 

2-D modeling  [140] . The 3-D/1-D relative signal shows values as low as 8% (Figure 

3.8b), agreeing again with the worst-case results reported in  [140] . This indicates the 

necessity to include the cylindrical DNA model and to properly model the entire 

screening effect of each molecule. 

The results of Figure 3.8 show another interesting phenomenon. Whereas the 2-D 

model shows an increase of the sensitivity with respect to that of the 1-D problem with 

increased saturation operation, the 3-D/1-D plot shows that this relative sensitivity is 

decreasing. This apparent contrast can be resolved by noting that both the 2-D and 3-D 

models predict the channel-length modulation effect and the increase in transconductance 

with deeper saturation operation, whereas only the 3-D model accurately describes the 

three-dimensional image charge cloud underneath the DNA molecule in the 

semiconductor. Deeper saturation operation causes a stronger lateral field interaction with 

this cloud charge and strips the channel of a portion of this charge. This effect is more 

pronounced in 3-D than in 2-D simulation. It therefore seems that this reduction of 

sensitivity overcomes the increase in sensitivity when the BioFET is placed in deep 

saturation. This effect is absent in the 2-D simulation and indicates that the 2-D 

approximation is insufficient for precision calculations, and that the error can be 

significantly large when dealing with a simplified model. 
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Figure 3.7 Comparison between the simulated hybridization current changes in 1-D, 2-D, and 3-D 

models, showing the drastic reduction in case of the 3-D model. 

 
Figure 3.8 Relative sensitivity of the BioFET between: A) 2-D and 1-D models, B) 3-D and 1-D models 

From Figure 3.7, it can be seen that the channel length modulation tends to help 

with the sensitivity of the BioFET, allowing devices in deeper saturation to be more 

sensitive to the hybridized DNA signal, as evidenced by the increased signal magnitude. 

However, it is important to see whether there are any side-effects to this apparent 

advantage. While in deep saturation, the pinch-off region close to the drain is almost 

depleted of inversion charges. This gives a hint that this would make that area of the FET 

insensitive to the DNA charges. The next FEM simulation was conducted to see if this is 
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in fact the case. By placing the same number of DNA molecules at different aggregations 

along the length of the BioFET, and running the simulations at threshold inversion, a 

sweep of the current versus the drain voltage is shown in Figure 3.9. The simulation was 

carried out four times with the DNA molecules scattered uniformly along the channel 

“sparse”, made closer to the center, source, and drain of the channel. The simulation 

results show that the evenly distributed positioning of the DNA molecules results in the 

most optimum sensitivity, and that DNA molecules that form aggregates can have 

sensitivities reduced by more than 50% (see figure). This result explains the difficulty in 

achieving repeatable measurements, and indicates the need to have adequate control over 

the DNA film growth. 

It is noticed from Figure 3.9 that the error between the optimum, sparsely placed 

probes, and that where the probes are placed at the center is maximum at the onset of 

saturation, while the error gets smaller in deep saturation or deep linear mode. The reason 

behind this is that in the saturated transistor, the drain region is desensitized to the probes 

close to it. Thus, in the sparse case, there are several DNA probes whose charge will not 

influence the output signal. The number of such DNA probes increases as the device goes 

deeper into saturation. When the DNA probes are aggregated closer to the drain, 

hybridization of targets to these probes will have minimal effect on the change in the 

current. 
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Figure 3.9 Variation in the hybridization current change with positioning of the DNA molecules along 

the channel’s length  

The asymmetry of the sensitivity of a saturated BioFET leads to some useful 

design guidelines. Firstly, it is important to try and direct the DNA hybridization to be as 

diffuse as possible. While diffusion control at such a small volume might not be 

achievable, the SAM layer that tethers the DNA will have to be dense, such that DNA 

molecules are equally likely to attach to any point at the surface. A uniform, completely 

dense SAM layer is essential to proper operation of the BioFET. This is needed for 

another reason as well. The SAM layer must not allow any permeation of ions. This is 

accomplished by establishing a highly hydrophobic layer, which is achieved when the 

SAM alkane backbones aggregate by hydrophobic forces and form a strong lipid-like 

membrane.  Figure 3.10 shows simulated results of the shift in the surface potential due to 

hybridization (equivalent to the shift in the threshold voltage), as a function of the 

electrolyte’s concentration, for the case of a permeable membrane and a non-permeable 

membrane  [142] . Whereas it is expected that the increase in electrolytic strength will 

cause a reduction in the sensitivity due to increased DNA charge screening  [4] , it can 

clearly be seen that the ion-permeable SAM layer results in significantly reduced 

sensitivity over the case when the membrane is perfect and completely ion-impermeable. 

This reduction of sensitivity increases exponentially with the thickness of the SAM layer. 
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This is the reason why the SAM molecules generally used are propyl moieties which 

contain only three carbon atoms. As can be seen from the figure, the reduction in 

sensitivity can approach 80%, which is quite significant. 

 
Figure 3.10 Shift in the average surface potential of the BioFET as a function of the electrolyte 

concentration, in the case of a perfect SAM monolayer and an ion-permeable layer 

One way to desensitize the BioFET to the drain-source asymmetry is to make the 

device very long, thus keeping the insensitive area close to the drain relatively small. 

However, making the device long reduces the sensitivity of the BioFET, takes up more 

chip space, and requires more DNA probes and larger settling times for the sensor. For 

nanowires and short-channel BioFET sensors, the simulations above result in the proposal 

that the hybridization measurements be carried out twice, while interchanging the source 

and drain terminals. The averaged result will allow a better estimate of the density of 

hybridized sites than a single measurement. Figure 3.11 shows a simulation of the 

hybridization current with several randomly placed DNA molecules within the channel. 

The simulation is carried out at threshold voltage gate bias of the device and deeply 

saturated mode of operation of the FET for 60 random positions of the DNA molecules. 

The variation in the sensed current will be presented in more detail in Chapter 6. 

However, for this simulation, the variation in the current with one source-drain polarity is 

higher than if the current at the two different polarities is measured and then averaged out. 

The calculated standard deviation of the first curve (source terminal on the left) is 

0.24nA, and 0.23nA for the second curve (source terminal on the right). The calculated 

standard deviation of the averaged current is 0.18nA, which represents around 24% 
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improvement in the accuracy of the measurement. This improvement in the accuracy is an 

indication that the variations in the first two curves are correlated with the positions of the 

DNA molecules within the channel. It can therefore be seen that there is potential for 

discrepancy in results if a fixed terminal is taken as the source. However, when the 

measurement is done in both directions and averaged out, the sensor gives a more stable 

result that is less dependent on the position of the DNA molecules within the channel. 

Such asymmetric measurement would be even more essential in small-geometry DNA 

biosensors, such as silicon nanowire biosensors. 

 
Figure 3.11 Simulated output current for three cases: 1) With one source-drain polarity, 2) with an 

inverted polarity, and 3) the averaged result of these two measurements 

The final simulation in this section concerns the effect of nonspecific binding to 

the SAM layer. The sticky ends of the SAM layer that have not been used to capture 

probes can trap nonspecific DNA targets or other protein molecules in the solution. 

Generally, after incubation of the targets in the hybridization buffer, the sensor is washed 

to eliminate any non-specific adsorbates on the surface. However, washing might not 

suffice if the spurious molecules are covalently attached to the SAM layer or if the SAM 

layer is not very dense and could result in molecules getting entangled. 

Due to the nonlinearity of the PB equations and the transport equations in the 

semiconductor, the local sensor response (aggregated charge in the semiconductor) at a 
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specific location is not linearly proportional to the amount of charge on top of the 

insulator. This is very disadvantageous for the BioFET, because the legitimate 

hybridization signal results when the probe’s charge doubles. If the probe had no charge, 

then the hybridization signal would be much larger. This is exactly what happens when a 

non-specific adsorption occurs. The site of adsorption originally has no charge, and the 

sensitivity to the non-specific adsorbates is significantly high. This is shown in the 

simulation result of Figure 3.12. Here, the adsorption of nonspecific molecules was 

modeled as an addition of extra probe DNA molecules onto vacant sites in the BioFET. 

The simulation was run at threshold bias. The result of Figure 3.12 clearly shows that 

irrespective of the region of operation, the sensitivity to the nonspecifically adsorbed 

molecules is much larger (by a factor of around 6) than the legitimate hybridization 

signal. 

 
Figure 3.12 Simulated response of BioFET to hybridized charge, and to charge from spurious 

nonspecific molecules 

3.6 Other Effects 

The model developed in this chapter thus far is simplified in many ways. The DNA 

molecule is modeled as a cylinder block with diffuse charge. Additionally, the solution 

was assumed to be solely composed of water and the monovalent salt. Practically, 
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however, hybridization is done in a buffer solution that includes other molecules that are 

capable of maintaining the pH at a certain predetermined level. Finally, the PB model that 

is used neglects an important effect which is steric hindrance between the ions. This leads 

to the counter-ions being less capable of screening the DNA charge, which should allow 

the sensitivity of the BioFET to be higher than that in the basic model. 

In this section, these simplifications are relaxed one at a time, and the effect of 

these simplifications on the sensitivity on the BioFET is determined by monitoring the 

effect of the simplification on the inversion charge underneath an isolated cylindrical 

DNA molecule, rather than simulating the entire BioFET. This is done because these 

effects require a finer mesh to be constructed around the DNA molecule, making 

simulation of the entire BioFET impractical for the available computers. The top-view 

dimensions of the simulation box were 80nm×80nm, enough to include several Debye 

lengths of the electrolyte. The semiconductor’s depth was 500nm, and the depth of the 

electrolyte was 100nm. The insulator’s thickness was 17.8nm, and 4nm for the cover 

layer. 

The first effect to consider is the steric effect. The PB equation has the assumption 

of point-like particles with zero volume, allowing them to aggregate closely at a surface. 

As discussed in Chapter 2, this results in an overestimate of the adsorbed charge. The 

adsorbed charge is responsible for screening the DNA molecule’s charge. Therefore, the 

volumetric exclusion of aggregated ions helps to relieve this screening ability and expose 

the DNA’s charge to the semiconductor. Steric hindrance is a result of Pauli repulsion 

between close ions, and is not due to electrostatic forces. A mean-field model for the 

steric repulsion between ions is given by a modified PB equation  [89] - [91] : 

( ) ( )
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where the parameter φ0=2c0a3, and a is the ionic radius. The ionic radii of Na+ ions and 

Cl- ions are between 1-2 Å. However, a larger value is used in the following simulations 

to account for the attached surrounding water molecules. The modified PB equation 

admits a lower number of charges for the same potential as would the PB model. As the 
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radius of the ions tends to zero, the PB equation is restored. The modified PB equation 

offers a “natural” Stern layer at surfaces where ions aggregate, which includes the 

sidewalls of the DNA cylinder itself, but with a smoother and more realistic roll-off, 

rather than a brick-wall model. After the finite-element simulation is completed, the 

inversion charge (holes in a PMOS) is integrated within the semiconductor’s bulk, and the 

total charge density is taken as a measure of sensitivity: 
( )/2

0
B M Si g FV V EQ p e dβ χ χ φ− − − + + +

Ω

= ∫ r . (3.22) 

Figure 3.13 shows the simulated inversion charge under a DNA molecule as a 

function of the electrolyte’s concentration, both with and without steric hindrance taken 

into consideration. The dashed lines correspond to the simulated charge with steric 

hindrance taken into account, whereas the solid lines ignore steric effects. The simulation 

was carried out for two bias points: weak inversion and deep inversion. It can be seen 

here that the steric exclusion indeed does cause the sensitivity of the BioFET to increase, 

as the dashed lines are always above the solid lines, irrespective of the applied bias or the 

electrolyte concentration. 

The main trend of the curves in Figure 3.13 is the expected reduction of inversion 

charge with higher electrolyte concentration, whether steric effects are taken into 

consideration or not. However, what is important is the relative error in the inclusion of 

the steric exclusion. The inset of Figure 3.13 shows this relative error as a function of the 

electrolyte’s concentration. Firstly, the simulation shows that the relative error is 

independent of the applied bias. This is an unexpected result, since the bias can change 

the characteristics of the double layer within the DNA layer. Yet, it seems that if the 

device is maintained in inversion, the position of the inversion bias plays no role in the 

sensitivity change caused by steric exclusion. The second, and more important result, is 

that the relative increase in sensitivity by steric exclusion increases with higher electrolyte 

concentration. Around electrolyte saturation, steric exclusion contributes an equal amount 

of sensitivity as does the field-effect (as demonstrated by the 100% point in the inset). 

The absolute sensitivity, however, will be small at such high concentrations. Generally, 
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the electrochemical characterization of hybridized DNA Is carried out after washing with 

a buffer salt of 1mM-10mM concentration  [142] . Figure 3.13 shows that within this 

range, steric exclusion contributes around 20-25% of the total inversion charge. Thus, 

even at such low concentrations, ionic crowding does indeed cause a sensitivity increase 

and must be included in the model. 

The simulation of Figure 3.13 was carried out for a single molecule that is far 

away from any neighboring DNA molecules. When two probe molecules are placed in 

close proximity, their screening countercharge clouds overlap. Steric effects in this case 

are even more pronounced, and higher sensitivity is expected due to volume exclusion in 

this case. However, it is important to notice that having closely spaced probes limits the 

diffusivity and hybridization of target DNA molecules, for the same reason of steric 

exclusion. This makes the sensor’s response extremely slow and impractical. 

 

 
Figure 3.13 Simulated inversion charge under the DNA molecule at different electrolyte 

concentrations. (Inset: percentage relative error in simulation with and without steric effects, as a 

function of the electrolyte concentration) 

In the previous models, the DNA was always assumed to be a charge-

impermeable object. However, it might be noted that the doubling of the charge is not the 

only change that occurs when the DNA hybridizes. The conformation of the DNA 
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molecule changes (more in Chapter 5), and the charge distribution in its vicinity, also 

change. Even if the conformation were not to change, the single-stranded DNA is not 

impermeable to ions like the double stranded DNA. The next simulations attempt to 

examine the effect of ion exclusion during hybridization. This is done by making the 

DNA cylinder permeable to ions before hybridization. Thus, the PB equation is made 

valid inside the DNA cylinder as well. This, of course, is a simplified approach, since the 

bases can crowd the ions and make it less likely for the ions to diffuse as in a free PB 

solution. However, the model is still more realistic than that of the stiff DNA cylinder. 

After hybridization, the double-stranded DNA is considered impermeable to ions. This is 

due to the base stacking interactions of the base pairs, as well as the hydrogen bonding 

between complementary base pairs. The shared electrons create extended states often 

thought to conduct current  [59] . These states create a Pauli repulsion field that excludes 

ions from the DNA molecule, although a finer detailed structure can show that ions might 

attach to the major and minor grooves of the DNA molecule. 

Figure 3.14 shows the simulated inversion charge as a function of the electrolyte’s 

concentration for a BioFET. The simulation is carried out once in weak inversion and 

once in deep inversion. It can be seen that there is a dramatic effect of increase in the 

sensitivity when the permeation effect is perfect (i.e. the DNA molecule is completely 

permeable to ions before hybridization and completely impermeable to ions after 

hybridization). This increase in sensitivity approaches 50% for electrolyte concentrations 

commonly used (around 1mM). This dramatic increase in sensitivity shows that the 

permeation effects of the DNA are extremely important and must be included in the 

model calculations. This effect is even more important than the steric exclusion of the 

counter-ions, and it provides incentive to further explore the effects of the geometry and 

characteristics of the DNA (Chapter 5). 
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Figure 3.14 Inversion charge change upon hybridization as a function of the electrolyte concentration 

for two different biases. Each simulation is carried out twice, with and without a permeable DNA 

molecule. (Inset: percentage relative error in simulation with and without permeation, as a function 

of the electrolyte concentration) 

One parameter that can have a dramatic effect on the performance of the 

biosensor, and which is often overlooked, is the buffer solution. Generally, an isotonic 

buffer is used such as Phosphate Buffer Silane (PBS), to emulate cellular medium. The 

active ingredient for a NaCl buffer is sodium phosphate Na3PO4. This compound can trap 

and release protons to regulate the pH of the solution. Each sodium ion can be exchanged 

with protons in the solution according to the following equations  [143] : 
12.35

2 4 3 4

7.198

2 4 2 4

2.148

3 4 2 4

pKa

pKa

pKa

Na HPO Na H Na PO

NaH PO Na H Na HPO

H PO Na H NaH PO

=
+ +

=
+ +

=
+ +

+ ↔ +

+ ↔ +

+ ↔ +

. (3.23) 

The second equation is the relevant one since it maintains the solution’s pH at 

around 7. Any excess protons would react with abundant Na2HPO4 molecules. If it is 

assumed that there exists an abundance of sodium cations, and if the dynamics of the 

chemical reaction are completely dictated by the proton reaction, then the pH of the 

solution is dependent on the pKa value (acid dissociation constant) of the reaction, the 
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initial pH of the solution before the buffer was added, and the initial buffer acid and base 

concentrations (NaH2PO4/Na2HPO4). One can now argue that the proton density at the 

insulator’s surface is roughly unaffected by the local potential due to the double layer and 

DNA molecules, as the buffer will work to change that concentration to its equilibrium 

value. Since the buffer is uncharged, it is not affected by the double layer potential and 

charges either. Equation (3.3) must therefore be modified such that the proton density is 

no longer affected by the potential V, but instead the value is fixed by the chemistry of the 

buffer. 

To calculate the pH of the buffer as a function of the pKa value of the buffer, we assume 

that the initial pH of the unbuffered solution is pH0, and that the initial concentration of 

the acid and the base are a0 and b0, respectively. After equilibrium, the increase in the 

concentration of the protons is assumed to be x. Now, using the law of mass-action, we 

can write: 

[ ]
[ ]

( )( )
( )

0
02 4

2 4 0

10
10

pH
pKa

b x xNa HPO H
NaH PO a x

−+

−
⎡ ⎤ + +⎣ ⎦= =

−
. (3.24) 

After some algebra, the increase in the proton concentration is given by the 

solution of the following equation: 

( ) ( )0 02
0 0 010 10 10 10 0pH pHpKa pKax b x b a− −− −+ + + + − = , (3.25) 

and the final pH of the solution is given by: 

( )0
10log 10 pHpH x −= − + . (3.26) 

Thus, not only is the sensitivity of the BioFET dependent on the nature of the 

electrolyte, but also on its composition (the concentrations of both acidic and basic 

components). Generally, when preparing buffers, only the acidic component is added to a 

high pH solution, and then HCl is used to calibrate the pH to the desired value. The 

following simulations use the mean value of pH achievable using different buffers  [143] . 

Figure 3.15 shows simulation results of the inversion charge for different buffers 

in the pH range of 7. The results show significantly different sensitivities for buffers of 
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different pH values. However, when the buffering ability is switched on, a seemingly 

anomalous result is observed. The dashed lines in Figure 3.15 seem to show that the total 

inversion charge underneath the DNA molecule is reduced (although only slightly) after 

hybridization, rather than increased. Thus, it appears that the buffering function of the 

buffer solution has completely destroyed the ability of the BioFET to sense DNA 

hybridization. 

 
Figure 3.15 Hybridization inversion charge with several different buffers. Dashed lines are the results 

with ideal buffering capability, whereas solid lines neglect the buffer solution 

To explain this destruction of sensitivity, we resort to Figure 3.16, showing the 

variation of the capacitance of the adsorption layer with the surface potential. It can be 

seen that at zero potential, higher pH values result in much more adsorbed negative 

charge. The surface potential of the p-type BioFET is negative. Hence, the proton 

concentration at the surface should be quite high (Equation (3.3)), controlling the negative 

charge density on the surface. However, with the buffering capability turned on, this 

excess proton concentration is immediately buffered to the equilibrium bulk value. Now, 

there is nothing that stops the insulator’s surface from accumulating a large amount of 

negative charge. This negative charge is orders of magnitude higher than that of the DNA, 

and causes a “channel pinning” situation in the semiconductor. The negative charge in the 

insulator is so large that virtually all of the inversion charge in the channel is pinned at a 
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certain value and changes only slightly with the charge of the DNA, which is feeble in 

comparison with the adsorbed charge. 

 
Figure 3.16 Charge-potential curves for proton adsorption on SiO2  [4]  

So far, experiments have not shown such severe changes of performance with 

different buffer solutions. An explanation for this is that with the availability of the 

hydrophobic SAM layer, the buffer’s ability to diffuse and neutralize the protons adjacent 

to the surface might be limited, and the partition energy for the buffer might be a limiting 

factor in its potency in compromising the operation of the BioFET. With experimental 

data, this energy can be tweaked such that the dashed lines of Figure 3.15 are closer to the 

solid lines. Nevertheless, the purpose of this simulation was to assess the worst case effect 

of the buffering on the sensitivity of the BioFET, and it was shown that it does have the 

potential to kill the sensitivity of the BioFET with the right conditions. 

3.7 Summary 

This chapter introduced the 2-D and 3-D FEM models of the BioFET. The models were 

used to extract high-dimensional details that are critical to the proper design and 

operation of the BioFET, but that generally are not seen by simpler 1-D or primitive 

compact models commonly used in the literature. Table 3.1 shows how the 3-D model is 

superios to 1-D and 2-D modeling by showing the effects of different parameters on the 
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simulated sensitivity The model has also shown the importance of steric hindrance, pH 

and nature of the buffer solution used, and the permeability of the DNA molecule to ions. 

It is shown that some of these effects can severely enhance or compromise the sensitivity 

of the BioFET, and that all of these effects must be considered when fitting a physical 

model of the BioFET to experimental results. 
Table 3.1 The change in simulated sensitivity as a function of different variables 

Variable 1-D 2-D 3-D 

Higher 
Electrolyte 
concentration 

   

pH increase    

DNA density 
increase 

   

Bias closer to 
threshold 

 -  

Steric Effects 
included 

   

 

 

or or or 
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Chapter 4 

IMPEDANCE MODEL FOR FET-
BASED DNA SENSORS 

4.1 Introduction 

The previous chapter dealt with the static model of a BioFET while operating in 

amperometric mode. In this chapter, an impedimetric finite-element model for the 

BioFET is developed. This work is motivated in part by the history of electrochemical 

analysis techniques, which relied heavily on Electrochemical Impedance Spectroscopy 

(EIS) and Cyclic Voltammetry (CV), and partly by the increasing number of publications 

that use impedance to detect successful hybridization of DNA molecules on several 

electrodes. 

The chapter begins with a discussion of the sources of frequency response within 

the BioFET, and then moves onto the details of the small-signal model and the 

development of the constituent equations. Finally, the results of the simulations are 

presented. 

4.2 Sources of Frequency Response 

The DC behavior that was developed in the last chapter models a solution in equilibrium, 

and a semiconductor in steady-state current flow. That is, the charge density within the 

semiconductor and within the insulator is assumed independent of time. This, of course, is 

valid as time tends to infinity (settling time for the sensor), and given that all the bias 

potentials are constant DC values. Dynamic transient behavior is useful in characterizing 

the speed of the biosensor and its settling time. However, the dynamics of ion motion and 
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charging of the double layer are generally orders of magnitude faster than the 

hybridization kinetics, which eliminates the necessity to model them. On the other hand, 

the steady-state response of the sensor to a small sinusoidal input (after hybridization) has 

been extensively used  [7] ,  [65] ,  [144]  as a hybridization signal in many BioFET-like 

structures. To a first order, the steady-state response to an excitation frequency results in a 

sinusoidal output of the same frequency, but with a different amplitude and phase shift 

that are functions of the excitation frequency. This is generally written in the phasor 

representation: 

( ) ( ) ( )j
outV A e φ ωω ω= , (4.1) 

for angular frequency ω, where Α(ω) is the amplitude of the wave and φ(ω) is the phase. 

For a BioFET, the impedance change is generally taken as a measure of hybridization. 

This is given by the ratio of the complex voltage and current: 

( ) ( )
( ) ( ) ( )V

Z A jB
I

ω
ω ω ω

ω
= = + . (4.2) 

The real part of the impedance A(ω) is associated with resistive elements in the 

device, whereas the imaginary part B(ω) indicates the presence of reactive elements. The 

variation of the impedance with frequency (frequency response) is generally given by a 

Bode diagram of a Nyquist plot. The Nyquist plot is more common in electrochemistry 

and is the presentation used in EIS experiments. CV measurements can also be done but 

these are generally used to monitor large signal response for redox electrodes. In the case 

of the BioFET, no electron transfer reaction is expected due to the presence of the 

insulator, and the CV plot is of no added information when a small-signal bias is applied. 

The general practice in electrochemistry is to fit the results of the EIS experiment 

with a circuit model that consists of discrete passive elements. These are generally 

resistors, capacitors, and Warburg (constant phase) elements. In a BioFET, the charge 

modulation due to hybridization happens within the double layer. In this layer, both 

resistive and reactive phenomena occur simultaneously in a distributed manner. This 

makes the discrete element approximation of electrochemistry not valid when probing the 
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effects of hybridization on the impedance behavior. A complete physical model is 

required to gain full insight into the dynamic operation of the sensor. 

At first glance, the gate-body impedance of the BioFET might seem purely 

capacitive due to the presence of the insulator. However, the dynamics of the charges 

within the solution, as well as in the semiconductor, give a mixed reactive response that 

varies in a complicated manner with frequency. To properly model these effects, the 

dynamic equations of all the involved species must be included in the model. All charged 

species (cations, anions, electrons, and holes) respond in finite time, and a steady-state 

model is no longer applicable. Therefore, dynamic models of species transport must be 

employed. This is achieved using the matter continuity equations. Additionally, any 

chemical reactions that take place at surfaces or in the bulk of the solution have a time 

response and cannot be treated in the framework of equilibrium reaction constants, but 

rather require models from chemical kinetics. Moreover, the materials involved 

(semiconductor, insulator, and water) can be polarized either by electron cloud 

displacement, or molecular re-orientation. This has the effect of modulating the 

permittivity of the medium as a function of time. Finally, the time change of the electrical 

fields, brought on by the change in charge profiles, gives rise to interacting 

electromagnetic fields. Fortunately, some of these dynamics are faster than others, and 

some are of much lower significance that a rigorous treatment of all of these time 

responses is seldom necessary. 

4.3 Model Details 

A few assumptions are made to simplify the AC model. Firstly, almost all EIS 

measurements on DNA sensors are conducted in frequency ranges that do not exceed 

1MHz  [145] - [148] . At this frequency range, the complex permittivity of the different 

media can be neglected (Table 4.1 shows the complex permittivity of water at several 

frequencies). Additionally, at such low frequencies, electromagnetic radiation can also be 

neglected and the electric field is assumed to be irrotational. Convective flow and mixing 

are neglected as well in this AC model. Starting with the solution, the ions’ kinetics are 
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generally modeled by the time-dependent Nernst-Planck (NP) equation  [149] for cations 

with concentration c+ and anions with concentration c-: 

( )c c c c

cJ q D c z c V q
t

μ± ± ± ±

±
± ± ∂

∇ • = ∇ • ∇ ± ∇ =
∂

G
∓ ∓ , (4.3) 

where Dc is the diffusion coefficient of the ionic species, μc is the mobility, V is the 

potential, z is the ionic valence, and J
G

 is the current flux. The drift term in Equation (4.3) 

is a source of nonlinearity in the model. Several approximations are made in the use of 

Equation (4.3). Firstly, steric effects on the mobilities of the ions are ignored. These have 

been shown to only apply at high applied voltages and under high current flow  [150] . It 

is assumed that the dimensions of the FET are large with respect to the Debye length of 

the solution; since smaller channels have been shown to render the Nernst-Planck model 

inaccurate  [151] . Equation (4.3) also neglects the possibility of ion generation or 

recombination since all electrolytes used are very strong and dissociate fully in water. 

Equation (4.3) relates the current’s outward flux at any point due to both ions to the rate 

of change of that species at that point. It is generally solved self-consistently with 

Poisson’s equation which takes care of ion-ion interactions. 

In a manner very similar to the Poisson-Nernst-Planck equation, the dynamic 

equations for holes p and electrons n are also defined by continuity equations: 

( ) ( )( ), , ,
( , ), ,p n p n p n
p nJ q D p n p n V q
t

μ ∂
∇ • = ∇ • ∇ ± ∇ =

∂

G
∓ ∓ . (4.4) 

In Equation (4.4), both the generation and recombination currents were neglected 

for simplification of the model. The insulator is assumed to have no mobile charge 

carriers and thus does not require any continuity equation modeling, and the dynamics of 

trapping and de-trapping of charges at interface states of the semiconductor/insulator 

surface are assumed to be very fast in comparison with the operating frequency of 

interest. 
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Table 4.1 Permittivity of water at various frequencies  [143]  

Frequency 0⁰C 25⁰C 50⁰C 

 ε’ ε’’ ε’ ε’’ ε’ ε’’ 
0 87.90 0.00 78.36 0.00 69.88 0.00 

1kHz 87.90 0.00 78.36 0.00 69.88 0.00 

1MHz 87.90 0.01 78.36 0.00 69.88 0.00 

10MHz 87.90 0.09 78.36 0.04 69.88 0.02 

100MHz 87.89 0.91 78.36 0.38 69.88 0.20 

200MHz 87.86 1.82 78.35 0.76 69.88 0.39 

500MHz 87.65 4.55 78.31 1.90 69.87 0.98 

1GHz 86.90 9.01 78.16 3.79 69.82 1.96 

2GHz 84.04 17.39 77.58 7.52 69.65 3.92 

3GHz 79.69 24.64 76.62 11.13 69.36 5.85 

4GHz 74.36 30.49 75.33 14.58 68.95 7.75 

5GHz 68.54 34.88 73.73 17.81 68.45 9.62 

10GHz 42.52 40.88 62.81 29.93 64.49 18.05 

20GHz 19.56 30.78 40.37 36.55 52.57 28.99 

30GHz 12.50 22.64 26.53 33.25 40.57 32.74 

40GHz 9.67 17.62 18.95 28.58 31.17 32.43 

50GHz 8.28 14.34 14.64 24.53 24.42 30.47 

 

The total current is expected to be continuous across all boundaries. Figure 4.1 

shows the different current contributions in the different parts of the BioFET. In the 

electrolyte, both displacement and ionic currents exist. The displacement current occurs 

due to the change in the local electric field of the double layer as a function of time. The 

same situation applies in the semiconductor, with both displacement current and carrier 

current. Within the insulator, only displacement current exists due to the lack of any 

mobile charges. Across the interfaces, the total current has to be conserved. If the 

dynamics of the trap charging at the insulator/semiconductor interface are neglected, then 

the normal carrier conduction current has to vanish at this interface. At the 

electrolyte/insulator interface, the total current is continuous as well. However, the 

conduction current need not vanish at the interface, as the ions can get adsorbed onto the 

sites at the interface. The proper boundary condition for the flux of cations and anions 
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would require equating the ionic flux into the interface with the rate of change of the 

surface charge densities at the interface: 

( )c c c
q D c z c V

t
σμ± ± ±

±
± ± −∂

∇ ± ∇ =
∂

, (4.5) 

where the variables σ+ and σ - are the positively charged and negatively charged surface 

charge densities, respectively. If one of the ions is not amenable to adsorption, then 

reflecting boundary conditions must be applied to that species, which is achieved by 

annihilating the right hand side of Equation (4.5). 

 
Figure 4.1 Different current components across the BioFET key interfaces [149] 

At the electrolyte-insulator’s surface, the chemical adsorptions discussed in 

Chapter 2 have a transient response which can coincide with the frequency of 

measurement. Hence, these transients must be included in the model. 

Equation (4.5) depends on the charging rate of the insulator’s surface, and these 

charges are no longer related to the potential by Equations (3.3), (3.6), and (3.7), since the 

interface now is in non-equilibrium. Thus, the surface charges become extra degrees of 

freedom that must be solved together with the potential and charge density variables in 

the electrolyte and semiconductor. This makes the impedance problem a hybrid 2-D/3-D 

problem. 

The adsorbed charges on the insulator are generally not in equilibrium, and 

equilibrium constants cannot be used. Rather, a kinetic theory for the adsorption reaction 

must be used. If a first-order reaction is assumed, then the rates of cationic and anionic 

charging are given by Arrhenius’s equation: 
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( )
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E E
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∂
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∂

∂
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∂

, (4.6) 

where Ka, Kr, Ea, and Er are the activation pre-exponential factors and activation energies 

for the adsorption and desorption processes, respectively, and σs is the total surface site 

density. The surface activity of hydrogen ions 
H

a + is given by Equation (3.3). It is noted 

here that the kinetics of proton diffusion is neglected, and protons in the solution are 

assumed to be in equilibrium. This is justifiable since the mobility of protons in water is 

much higher than that of other ions  [152] , [153] . 

The activation energies are understood from the reaction diagram of Figure 4.2. 

According to Arrhenius’s model, the reaction rate depends on the activation energy, 

which is the energy required for the reactants to reach the “activated” state, and be ready 

to roll onto the products. In the absence of catalysts, the activated complex is unstable and 

generally has a higher free energy than the reactants or the products, such that the reaction 

is not spontaneous. Furthermore, the energy levels of the reactants and the products are 

generally not constant but depend on the concentrations of the species, attaining 

equilibrium when the energy levels are at the same height in the reaction diagram. Thus, 

to properly describe the kinetic model, both forward and reverse reaction rates must be 

known. This requires knowledge of the pre-exponential factor, as well as the energy 

barrier. In this model, it is assumed that this data is available, or can be fitted with 

sufficient experimental data. 
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Figure 4.2 A sample reaction energy diagram. The forward and reverse reaction energies are only the 

same for a completely reversible reaction in equilibrium 

The presence of the time-dependent surface charge on the insulator’s surface has 

its effects on the boundary conditions of the electrostatic potential. The new boundary 

condition requires the discontinuity in the flux density across this interface to be equal to 

the total charge adsorbed onto the surface: 

ins ins Si SiV Vε ε σ σ+ −∇ − ∇ = − . (4.7) 

The complete, time dependent solution of the AC model requires solving 

Equations (4.3)-(4.7) self consistently to determine the electrostatic potential, cation and 

anion charge densities, electrons and holes concentrations, and adsorbed charge densities 

as functions of time and space. This requires a finite-element discretization of space, in 

addition to an Euler time-stepping mechanism for time integration. The starting point for 

integration would be the DC solution (obtained by solving the system and setting all time 

derivatives to zero, which reduces to the equations of Chapter 3). 

To study the impedance characteristics, it is not necessary to solve the time-

dependent system. Since the steady-state sinusoidal response contains all the information 

about the impedance, it is sufficient to perform a frequency response analysis on the 
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system of equations. This is accomplished by isolating the DC and AC responses, 

applying the Fourier transform on the AC set of equations, and annihilating nonlinear 

terms with the assumption of small-signal stimuli. This results in a FEM model in 

complex variables, representing the magnitudes and phases of the potential and charge 

densities as functions of frequency. To start, the total solution variables X are expressed 

as DC terms XDC and AC terms x� : 

,

,

,

,

,

,

DC

DC qfp qfp DC qfp

DC qfn qfn DC qfn

DC qfc qfc DC qfc

V V v
p p p V V v

n n n V V v

c c c V V v± ± ±
± ± ±

= +
= + = +

= + = +

= + = +

�
� �
� �

� �

, (4.8) 

where the ions of the solution now require to be expressed by their quasi-Fermi levels, 

since they are in nonequilibrium. The quasi-Fermi levels are related to the charge 

densities by the following equations: 

( ) ( )( )

( )

, /2
0

0

, qfp qfn si g

sol refc qfc

V V E

z V V E

p n c e

c c e

β χ

β χ± ±

− + +

− + +±

=

=

∓

∓
. (4.9) 

Inserting these expressions into the original, time dependent equations, cancelling 

the DC terms out, and applying the Fourier transform, the linearized impedance equations 

for the bulk electrolyte is given by: 

( )
( ) ( ) ( )( )
( )( ) ( )( )
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2 2
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2 2
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0

0
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+ −
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∇ − ∇ + ∇ − ∇ + ∇ + =
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� � �� �i

� � �� �i

, (4.10) 

where the variable ω is the radial frequency of the stimulus signal. The first equation is 

the AC equation for Poisson’s equation (neglecting radiating effects), whereas the second 

and third equations are the AC equations for the charge transport. It should be noted that 

the small-signal model does depend on the DC operating point and its gradient, even 

though the actual terms describing the DC solution were omitted. It is therefore assumed 

that this AC model is implemented on top of the DC model (Chapter 3), and using the 

exact same mesh and geometry that was used for the DC solution. 
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In a similar fashion, the AC model for the bulk semiconductor is given by the 

following complex-valued equations: 

( )

( )( )( ) ( )

2

, , , , , , , 0

si

p n qfp qfn qfp DC qfn DC qfp qfn qfp qfn

v q p n

q v V v v i q v v

ε

μ β ω β

− ∇ = −

∇ − ∇ ± ∇ − + − =

� ��

� � � � �i
. (4.11) 

Also, since the insulator’s charge is time dependent, it would have to have a 

frequency response as well. By separating the DC and AC components of the surface 

charge density (as was done for all other degrees of freedom in Equation (4.8)), the 

impedance model for the site-binding theory is given by: 

( ) ( )( )
( ) ( )
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, (4.12) 

and the corresponding boundary conditions for the ion charge densities and the 

electrostatic potential are given by: 

( )( )c c c
q c z c V c v iμ βμ ωβσ± ± ±

± ± ± ±∇ ± ∇ + ∇ = −� � � �  (4.13) 

and 

ins ins Si Siv vε ε σ σ+ −∇ − ∇ = −� � � � , 4.14 

respectively. Equations (4.9)-(4.14), together with the DC equations of Chapter 3, thus 

provide a complete AC impedance model for the BioFET. Using Dirichlet boundary 

conditions on the source, drain, reference electrode, or body contacts can allow 

determination of several different impedance responses. For example, it is generally 

desired in impedance studies to assess the solution/source or solution/drain capacitance 

through the covering PDMS layer. This is done to monitor the quality of the post-

processing of the FET, as well as to determine parasitic impedances (the quantities 

referred to as CCLCS and CCLD in  [154] ). To use the AC model to determine this 

capacitance, the FET would have to operate in accumulation, so as not to include the 

channel gate capacitance. A deep-accumulation bias is applied to the reference electrode, 

superimposed on a small (around 10mV) AC sinusoidal signal. This appears as a Dirichlet 
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boundary condition for the electrostatic potential at the boundary of interest (reference 

electrode in this example). The AC current flow due to this applied potential is evaluated 

by integrating the current density along the boundary of interest (source terminal in this 

example). Leakage currents can also be evaluated by integrating the current density along 

the other terminals. 

In this model, the reference electrode was not included. This is due to the fact that 

most BioFET sensors to date use macroscopic reference electrodes. As such, the 

impedance of these electrodes is very small with respect to the impedance of the BioFET 

across a large range of frequencies. In addition, modeling a large reference electrode 

would require a significant increase in the mesh size, and much higher computational 

bandwidth with a very small added value. However, as microfabricated reference 

electrodes start to be integrated with the BioFET, their impedances will have to be 

revisited from physical modeling. This is because the kinetics of the specific reaction can 

severely change with the micro-structure of the reference electrode. This is especially true 

for dissolving electrodes such as Ag/AgCl, which is the most commonly used electrode 

for these applications. The electrode modeling can be complicated by the need to model 

the reaction kinetics as well as the diffusion of ions for a complicated geometry. 

4.4 Simulation Results 

Since the most commonly used methods of impedance detection in published experiments 

are CV or EIS diagrams, these will be the focus of the simulation results in this section. 

The CV diagram of a BioFET is expected to be very similar to that of a conventional 

FET, since the essential charge-potential profile is not changed in the underlying FET. To 

plot the CV diagram, the applied AC voltage V and the resulting current I must be 

evaluated for a large range of reference electrode applied potentials with no DC currents 

between the source and drain. The capacitance of the FET structure is responsible for the 

reactive part of the impedance. Thus, the capacitance is calculated as: 
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The BioFET is expected to maintain the CV diagram of a normal FET. This is 

shown in the simulation results of Figure 4.3. These simulations were carried out at 

frequency of 1 kHz, since extremely high frequencies result in inhibition of the reactive 

response due to inertial effects in the carriers. The depletion region’s reduction of the 

capacitance is clearly seen. One could isolate the capacitance contributions from the body 

or from the contacts by integrating the current along the boundaries of interest. It can be 

seen that in accumulation (more positive reference electrode bias), the capacitance 

contribution from the body of the semiconductor is the largest, whereas the contacts only 

give residual capacitance due to small overlap with the solution. In inversion, the body 

capacitance diminishes since the channel is set up, and most of the current goes through 

the source and drain contacts. This AC simulation can therefore be used to predict the 

overlap and parasitic capacitances after post-processing and PDMS treatment. These 

parasitic capacitances can have detrimental effects on the functionality of impedance-

based biosensors, since these conductive paths are parallel to the sensitive layer of the 

sensor as shown in Figure 4.4. Therefore, their values must be clear before fabrication, 

and this AC model can accurately calculate these capacitances for different geometries. 

The calculations becomes more important with smaller-sized sensors, such as nanowire 

sensors, since the overlap capacitances are now of the same orders of magnitudes as the 

active area capacitance of the biosensor. 
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Figure 4.3 Simulated CV diagram of the FET, with the body and contacts capacitances separately 

shown 

 
Figure 4.4 Capacitances in a FET structure 

Upon introduction of the electrolyte and probe DNA immobilization, a shift in the 

threshold voltage is noticed. This is generally seen as a shift in the CV diagram of the 

FET. Figure 4.5 shows simulation results of the CV diagram of a BioFET, in comparison 
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with that of a regular FET with the same dimensions and composition. It can be seen that 

the BioFET’s CV curve indeed has shifted to the right, lowering the amount of negative 

reference electrode bias needed to invert the channel. However, the minimum capacitance 

also seems larger than that of the FET in depletion, whereas in deep accumulation and 

inversion, the BioFET capacitance is smaller than the capacitance of the FET. This is 

expected since the double layer introduces a series capacitance that would reduce the 

overall capacitance of the structure. These fine details are necessary when characterizing 

the post-processing steps and monitoring the threshold shift. The threshold of the BioFET 

and its capacitance before hybridization must be known to a high precision; otherwise the 

measurements can be erroneous. 

 
Figure 4.5 Comparison of the CV diagram of a regular FET and a BioFET, showing the shift due to 

the presence of DNA molecules and the electrolyte solution 

The signal sought in impedance sensors is the change in the capacitance due to 

hybridization. Once again, it is assumed here that complete hybridization takes place, 

with doubling of the charge on the DNA cylinder. Figure 4.6 shows a diagram of the 

relative differential capacitance as a function of the applied voltage. It is seen that there 

exist two peaks of high sensitivity: the onset of accumulation and the onset of inversion, 
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with the change in inversion being the largest, at around 1%. It has been previously 

shown that this region is also the chosen bias point for optimum SNR  [71] . Thus, 

whether operating as an amperometric sensor or an impedimetric sensor, one must 

operate the BioFET at threshold voltage for optimum SNR. 

 
Figure 4.6 Differential capacitance change due to hybridization as a function of the gate bias, showing 

that the onset of inversion and accumulation result in the maximum sensitivity 

In electrochemistry, the change in the entire impedance, and not just in the 

reactive part, is commonly presented. Nyquist diagrams (also known as EIS diagrams) are 

used to show the variation of the real and reactive parts of the impedance with frequency. 

Here, Nyquist diagrams are used to show the variation of the impedance with 

hybridization at different frequencies. In RC series-like circuits, instead of plotting the 

impedance diagram, the admittance is plotted. It is still known as an EIS diagram, but 

using the admittance allows for easier extraction of equivalent circuit parameters. 

Impedance Nyquist plots are generally used for RC parallel-like circuits. Figure 4.7 

shows the simulated EIS diagrams for the admittance of the BioFET. The diagrams are 

drawn for a frequency sweep of 1Hz-1MHz for each curve, and with a sweep of reference 

electrode bias from deep accumulation to deep inversion. For any given frequency, the 

real admittance follows the reactive admittance in its change. The admittance is highest in 

deep accumulation and inversion, and has its lowest values in depletion. This was already 
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seen in the CV diagram. However, the Nyquist diagram goes further into giving details of 

the conductive change, and not just the reactive. This is important in the design of 

oscillator-based sensors, since the oscillation frequency is very dependent on the total 

impedance of the sensitive element, and not just on the reactive part. 

 
Figure 4.7 Electrochemical admittance diagram for the BioFET. The sweep is from deep 

accumulation to deep inversion 

Figure 4.8 shows the Nyquist plot of the relative change in the admittance of the 

BioFET upon hybridization for a lightly packed DNA monolayer (around 15%). The 

simulation was carried out at threshold bias to optimize the sensitivity. The result shows 

the interesting result that the optimum relative change in the reactance is about an order 

of magnitude greater than that of the susceptance. Furthermore, these two extrema do not 

occur at the same frequency. For reactive AC sensing, lower frequencies (~100Hz) are 

favored for mainstream CMOS, whereas for conductive sensing, the optimum frequency 

range is around 1-2MHz. 
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Figure 4.8 Nyquist plot for the relative change in the admittance of the BioFET upon hybridization in 

inversion. (Inset: absolute change in admittance in accumulation) 

The AC model allows extraction of some interesting fine details about the charge 

distribution in the DNA layer and their influence on the total charge transport in the 

device. Figure 4.9 shows simulated Nyquist plots of the absolute change in the admittance 

of a BioFET for several bias voltages in inversion. It can be seen that the change in the 

real conductance at strong inversion is negative. This seems counter-intuitive since the 

simulations are done on a PMOS device and the DNA charge is negative, which means 

that successful hybridization should increase the hole charge in the channel by the Field-

Effect. A closer examination of the structure, however, reveals that the distribution of 

charges between the DNA, the solution’s ions, and the underlying semiconductor, is what 

dictates the sensitivity of the DNA. In moderate inversion, the Debye layer adjacent to the 

DNA walls is diffuse enough that hybridization of DNA molecules will not have a 

significant effect on the ionic density at that layer. However, in deep inversion, the 

hybridization can cause more counter-charge to be close to the DNA wall, limiting the 

number of vertical conductive paths through the solution. Therefore, even though there 

might be more holes in the semiconductor’s channel due to hybridization, the total AC 

current is lower because of the redistribution of ionic charges in the DNA layer, which 

significantly increases the resistance of that layer and reduces the overall real admittance. 
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The result of Figure 4.9 also can be used to make a useful design guideline. As 

mentioned, in oscillator-based sensors, it is desired to solely change the reactive part of 

the admittance upon hybridization. Looking at Figure 4.9, it can be seen that the optimum 

bias point is not necessarily that which results in the maximum capacitive change, but that 

which would maintain a minimum read admittance change (keeps the Nyquist plot of the 

admittance change vertical). This would not give the best sensitivity but would ensure a 

reliable operation of the BioFET oscillator-sensor. 

 
Figure 4.9 Absolute change in the admittance of the BioFET in inversion. The anomalous negative 

change in admittance in deep inversion are clearly seen 

4.5 Other Effects 

4.5.1 Electrolyte Concentration 

In previous DC simulations  [4] , it was shown that the concentration of the solution 

significantly affects the sensitivity. Lower electrolyte concentrations were preferred over 

saturated solutions since dilute electrolytes were less capable of shielding the DNA’s 

charge. However, when AC analysis is conducted, the situation can be more complicated. 

Higher electrolyte concentrations do indeed shield the DNA charges more efficiently. 

However, a higher electrolyte concentration also means lower solution impedance. This 
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has the potential to enhance the impedance change upon hybridization. Additionally, 

higher electrolyte concentrations imply a smaller Debye length and a larger capacitance. 

Thus, it is plausible that the high electrolyte concentration might allow higher sensitivity 

when performing AC detection. However, depending on the values of the different 

physical parameters, such speculations must be put to the test via simulations. 

Figure 4.10 shows the Nyquist diagram of the sensitivity of the BioFET for 

different electrolyte concentrations. The simulations were carried out under threshold 

bias. As can be seen from the results, the trends of the EIS diagrams change dramatically 

with the electrolyte concentration, and different concentrations show different 

sensitivities at different frequencies. For the higher frequency range (100kHz-10MHz), it 

is seen from the figure that the lower concentrations (10μM-1mM) give a curve that is 

concave upwards, whereas the higher concentrations give a profile that is concave 

downwards. This indicates that at low concentrations, the ratio of the reactive sensitivity 

to the real sensitivity decreases with frequency increase, whereas the converse is true for 

higher electrolyte concentration. At any point on these curves, this ratio can be calculated 

from the slope of the curve. Larger slopes mean more reactive sensitivity, whereas 

smaller slopes indicate dominance of the real conductance. 

 
Figure 4.10 Nyquist diagram of the admittance change due to hybridization of DNA, for different 

electrolyte concentrations 
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Figure 4.10 also affirms our earlier expectation that the change of sensitivity with 

electrolyte concentration would not necessarily be monotonic. There are several crossings 

of the admittance curves that indicate changes in the real and reactive sensitivities. 

Looking at Figure 4.10, we can see that the reactive sensitivity is generally larger with 

higher electrolyte concentration, unlike DC sensors where the sensitivity is reduced with 

electrolyte concentration increase. It is also noticed that at moderate concentrations 

(1mM-10mM), the real change in impedance is large. This behavior can be traced back to 

the Debye length. At these moderate concentrations, the Debye length is of the same 

order as the length of the oligonucleotide, making the increase in the mobile counter-

charge large when the DNA has hybridized. At higher electrolyte concentration, the 

Debye length is short enough that the DNA hybridization does not significantly change 

the resistive path. On the other hand, at low concentrations, the Debye length is too large, 

and the DNA hybridization has a small and local effect on the charge profile. This 

diminishes the real impedance change upon hybridization. From the previous discussion, 

it would seem that for oscillator-based DNA sensors, we should operate the device using 

high electrolyte concentration. This allows us to eliminate the flushing step to remove the 

saturated hybridization buffer and replace it with a low strength buffer. Using impedance 

detection, higher electrolyte concentrations lead to a larger reactive sensitivity and lower 

real sensitivity. This even holds at low frequencies, as shown in Figure 4.11. 
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Figure 4.11 Nyquist diagram of the admittance change in a BioFET for low frequencies 

4.5.2 Drain Bias 

Often, the AC measurements are not done under zero DC drain current. This is done to 

utilize the intrinsic transconductance of the BioFET to try and enhance the sensitivity of 

the BioFET. In this case, the transistor’s source, drain, and body are not connected 

together, and the device cannot be characterized by a single impedance. Instead, the 

relationships between different voltage biases and currents give rise to different 

equivalent circuit elements. Although we do not attempt or encourage the use of lumped 

elements since the complete physics of the device must be captured, we do use one 

lumped circuit parameter to measure the sensitivity. This is the transconductance gm 

defined as: 

D
m

GS

Ig
V
∂

=
∂

. (4.16) 

In a lumped circuit element, this parameter is defined as a voltage-dependent 

current source, and generally has a real and positive value. Any phase relationships 

between the gate voltage and the drain currents are fitted using reactive and resistive 

elements within the current path. Since our model is physics-based, all of these reactive 

effects will automatically be calculated. Thus, the relationship between the real and 
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imaginary parts of the transconductance carries in it information about the equivalent 

circuit elements. 

Figure 4.12 shows simulated Nyquist plots for the transconductance change of the 

BioFET upon DNA hybridization at different drain biases. As expected, hybridization 

will cause the channel to be more inverted, and the real part of the transconductance will 

be positive and will increase until it almost saturates at a maximum value (around 140nS 

in Figure 4.12). However, the AC model also shows how the reactive part of the 

transconductance changes. The frequency sweep in Figure 4.12 is from 1Hz-10MHz in 

logarithmic steps. For frequency ranges upto 1MHz, and irrespective of the drain bias, the 

real part of the transconductance does not seem to change, but the absolute value of the 

reactive change rapidly increases. There also appears to be a maximum reactive change at 

a frequency of around 3MHz, which is also independent on the drain bias. As the reactive 

change approaches a maximum, it is noticed that the real change starts to slightly degrade. 

This can be identified as the onset of resistive dominance in the electrolyte. The 

semiconductor’s carriers can respond to much higher frequencies, but the ions in the 

solution are slower to respond. This causes a significant portion of the applied AC voltage 

to appear across the electrolyte’s bulk. The degradation in real transconductance will then 

be dependent on the distance between the reference electrode and the sensitive surface of 

the electrolyte  [155] . This leads to a penalty when using impedance measurements to 

detect DNA hybridization: the depth of the electrolyte and its composition is much more 

important due to kinetic effects of the solution, as compared with the equilibrium case in 

DC measurements. 
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Figure 4.12 Nyquist plot of the change in the transconductance of the BioFET 

Another result obtained from Figure 4.12 is that the real change in the 

transconductance is almost an order of magnitude larger than the reactive change. This is 

in contrast with the situation in the previous figures (with the BioFET used as a 

capacitor). This is traced to the inherent amplification capability of the saturated BioFET. 

The enhancement in both real and reactive sensitivities is a few orders of magnitude over 

the passive capacitive structure. Thus, a good impedance sensor will always utilize the 

BioFET in saturation and monitor the change in the transconductance (both real and 

reactive) as a measure of hybridization. 

A final point to make about Figure 4.12 is that it appears that the sensitivity 

reaches a maximum as the drain bias is increased, and does not go beyond this point. This 

occurs despite the fact that the drain bias in a normal FET would enhance the 

transconductance (Figure 3.7, and neglecting higher order effects). In this case, the 

saturation of sensitivity is due to the desensitization of the drain region to the DNA 

charges. Here, the increased drain bias effect on sensitivity and the channel length 

modulation are in contention. This leads to saturation in the real and reactive sensitivity. 



M. Waleed Shinwari                                            McMaster University-Electrical and Computer Engineering 

119 

4.5.3 Steric Effects 

In Chapter 3, it was shows how steric effects can significantly influence the sensitivity of 

the BioFET. Here, it is desired to see if a similar effect holds when sensing using the 

impedance change of the BioFET. Firstly, the steric model of Chapter 3 only applied in 

equilibrium. The solution in the case of AC measurements is not in equilibrium. Thus, a 

mean-field kinetic model is required that accounts for steric effects. One such model is 

derived by Kilic et al  [90] . The derivation results in a modified Nernst-Planck Equation: 
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where the last term in the brackets accounts for the repulsion flux density suffered by ion 

crowding, such that over-crowding of ions is not possible. This modification term can be 

intuitively reasoned out without resort to rigorous proof. The denominator represents the 

space in 1cm3 of the solution that is unoccupied by ions. The higher the denominator, the 

more dilute the solution is and the less significant this modification term becomes. In the 

numerator, the steric repulsion of a species will depend on its own concentration, and the 

direction of this repulsion will be towards the more vacant locations, which is modeled by 

the gradient term. This last term adds an extra degree of coupling and results in a severely 

nonlinear system of equations. Applying the Fourier transform on Equation (4.17) and 

linearizing the result, we obtain: 
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where: 
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The quantity K therefore represents the AC current flux due to steric repulsion. In 

the bulk of the solution, the contribution of K is small due to the diminishing values of the 

DC ion concentration gradients in Equation (4.19). However, as the concentration of any 

species goes higher, the value of this steric repulsion current increases. This is generally 

quite important at interfaces where double layers are present, as in the case of the active 

insulator’s surface in the BioFET. 

Although steric effects help with the DC sensing of the BioFET, this is not readily 

true for impedance measurements. Steric effects will indeed help with the inversion of the 

channel and allow for a higher transconductance. However, the steric effects will add 

impedance to the Debye layer closer to the DNA layer and the sensitive surface. If 

hybridization of DNA does not significantly alter this layer, the impedance of this layer 

can dominate the total impedance, thereby desensitizing the BioFET to the hybridization. 

In order to study this effect, a simulation was carried out with the steric effects (Equation 

(4.18)) included. To properly incorporate the steric effects and to allow convergence, the 

steric factor K must be re-written in terms of the quasi-Fermi levels, instead of the AC 

charge. Using the following definitions for the AC charge density and its gradient: 
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we arrive at the following expression: 
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Figure 4.13 shows the results of the simulations as conducted with and without 

steric effects included in the AC formulation. Steric effects on the DC solution (which 

was discussed in Chapter 3) were not included here. This was done so that we could focus 

on the role of steric hindrance in perturbing the AC solution alone. For all ranges of 

frequencies, and all levels of inversion, the curves of Figure 4.13 almost overlap for the 

two cases with and without steric effects included. In reality, the AC admittance will 

change more, but only due to the effect of the steric hindrance on the DC solution. Thus, 

the only apparent effect of steric interactions is a small shift in the threshold voltage, and 

a change in the value of the transconductance. 

 
Figure 4.13 Relative change in the admittance of the BioFET due to hybridization, with and without 

steric effects included 

A final note about steric interactions: although we have demonstrated that the 

modified Nernst-Planck equation (Equation (4.17)) is redundant in the case of small-

signal AC analysis, this result does not hold true with large signals, such as those 

conducted in cyclic voltammetry. Small signals do not cause significant local current 

overcrowding, and the steric repulsion term is minute. However, if large signals are to be 
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modeled, then the steric interactions can be large. In this case, the linearized AC 

equations will also fail, and the complete time-dependent solution would have to be 

integrated by numerical means. 

4.6 Summary 

This chapter introduced the dynamic AC modeling of DNA BioFETs. It is based on the 

linearized frequency-domain partial differential equations of the transport equations in the 

semiconductor and the electrolyte, as well as linearized first-order kinetics of the 

reactions on the surface of the sensor. Using the AC model, EIS diagrams were generated. 

These diagrams allowed the identification of optimum operating frequency and 

electrolyte concentration. It is concluded that using impedance to measure the 

hybridization of the FET can be superior to regular DC measurements for the same 

environmental conditions. The AC model developed here can be extended to include 

several other side-effects and cross-reactions, as well as different reaction kinetics. 
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Chapter 5 

MONTE-CARLO SIMULATIONS 
ON DNA BIOSENSORS 

5.1 Introduction 

DNA sensors and other biosensors are known to possess an inherent variance in the 

sensed signal. The source of this variance is yet unknown, but is generally attributed to 

poor microfabrication techniques and lack of control of the post-processing of these 

sensors  [156] . While these are definitely important factors in the design of reliable 

biosensors, we study in this chapter some other, more fundamental causes of the 

variation. Firstly, we identify the motion of single-stranded tethered DNA as a source of 

temporal variation in the sensed signal. The motion of the DNA is studied using a 

simplified model and Monte-Carlo Metropolis analysis, coupled with the Finite-Element 

Method (MCM-FEM). Another source of variation in DNA biosensors, and especially 

nanowires, is the position of the DNA probes within the sensitive area. The asymmetry of 

the sensitivity of different regions within the BioFET (briefly introduced in Chapter 3) 

will cause variations in the sensed output. This variation is quantified using simulations, 

and useful conclusions are deduced. 

5.2 MCM-FEM Model of DNA Conformation 

As mentioned in Chapter 1, there are several proposed methods by which the BioFET 

operates, with enough evidence (simulation or experimental) to justify these methods. We 

have studied in Chapters 3 and 4 how some often simple and overlooked phenomena can 

considerably affect the sensitivity of the biosensor. It is therefore established that the 
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sensitivity of the BioFET is due to combined contribution from many processes, all of 

which have to be considered. 

One method that has not received much attention, and which seems critical 

enough to warrant further research, is the conformational change of DNA upon 

hybridization. So far, most simulation works (including our own) have considered the 

tethered oligonucleotides as frozen cylinders whose charge merely doubles upon 

hybridization. One geometric aspect of the permeability of the DNA cylinder was 

considered in Chapter 3. Here, it is acknowledged that the single-stranded DNA does not 

possess the structural integrity of a helical DNA molecule. Several bonds within the DNA 

are free to rotate and bend with different energy penalties. In a double-stranded DNA, the 

hydrogen bonds of the paired bases and the base stacking dispersion forces add rigidity to 

the DNA molecule, such that the allowed degrees of freedom are only vibrational for a 

tethered double-stranded short DNA. All bonds and sub-molecular geometry of the DNA 

have been extensively studied, and such data is extensively used to tweak molecular 

dynamics force-field parameters to probe the fine kinetic details of DNA segments over 

short time periods  [157] . 

It is proposed here that the conformational change of DNA, from a swollen ion-permeable 

irregular average shape to a rigid cylinder, is a main contributor to the sensitivity of the 

BioFET. Hybridization compacts the charges that were otherwise somewhat diffuse 

within a small extension into the bulk solution. Small changes in the distance between 

these charges and the insulator’s surface can lead to large variations in the image charge 

in the semiconductor’s channel. This is shown in the following sub-section. 

5.2.1 Hemispherical Model 

To assess whether including geometrical details is necessary or not, we use a simplified 

model for a single-stranded DNA molecule. A model for short oligonucleotides 

suspended in a solution  [158] is to treat the molecule as an ion-permeable sphere, with 

radius of gyration in the order of n3/5, where n is the number of bases on the DNA. We 

will assume that this approximation is valid for tethered single-stranded DNA molecules, 
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but with a hemispherical shape due to interaction with the substrate.  As shown in Figure 

5.1, the hybridization of the DNA converts the shape from a flailing chain to a rigid rod. 

In practical DNA experiments, the target is not of the same length as the probe, and a 

small section of the target might remain unhybridized. This residual DNA could help with 

the sensitivity, as it adds negative charge to the sensitive surface. However, the length of 

this unhybridized segment is unknown, and this adds uncertainty in the observed signal. 

On the other hand, if the electrolyte’s concentration is made such that the Debye length 

only extends to the end of the hybridized segment, then the flailing end can be screened 

and will not be sensed. It is assumed in this chapter that this indeed is the case. 

 
Figure 5.1 Conformation of single and double-stranded tethered DNA 

The charge density inside the hemisphere is assumed to be uniformly distributed 

within the hemisphere, and given by: 

3
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qn
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ρ
π

−
= , (5.1) 

where r is the radius of gyration of the tethered DNA oligonucleotide. Of course, this is a 

big approximation, since the charge distribution for a tethered probe is not uniform. In 

particular, the averaged charge is taken to account for the random thermal motion of the 

DNA and represent it by a mean-field. However, it is intuitive that the point of attachment 

does not randomly move, whereas the points close to the periphery of the hemisphere are 

the most parts that move. Thus, the charge density is expected to be less concentrated at 

the end of the DNA. A more accurate charge density would be a radial function. 

However, to simplify the calculations, the uniform model will be used. 
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The FEM model is the same as that described in Chapter 2. However, in this case, 

only the double-stranded DNA is modeled as an impermeable cylinder. The single-

stranded DNA is modeled as a diffuse, ion permeable hemisphere of radius (ln3/5), where l 

is the length of the monomer. This length can be roughly calculated by summing up all 

the bonds between two consecutive phosphate groups in the DNA. We use l=7 angstroms, 

and n=25 bases in our simulation. Successful hybridization is modeled by changing the 

conformation of the DNA hemisphere into a cylinder. It is expected that the packing of 

the charges closer to the insulator’s surface will have an enhanced effect on sensitivity. 

Figure 5.2 shows the simulation results of the change in the BioFET drain current 

for three different electrolyte concentrations. The curves with filled points correspond to 

the normal simulations (those conducted in Chapter 3) without any change in the DNA 

concentration. The hollowed curves, on the other hand, correspond to the anomalous 

decrease in the current due to hybridization, when the hemispherical conformation of the 

oligonucleotides is taken into consideration (hollowed curves have been mirrored about 

the x-axis to save space). 

 
Figure 5.2 Comparison of the simulated BioFET signal with and without geometry considerations 

At first, the anomalous result of current decrease seems to be inexplicable. There 

are no consistent reports of a positive threshold shift in a p-type BioFET due to DNA 

hybridization. However, since the model is based on physical phenomena, this effect must 
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have some physical roots. A deeper inspection of the geometry can shed some light into 

the issue. With the aid of Figure 5.3, the source of this negative signal can be seen. 

Although the charges have indeed been brought closer to the surface after hybridization, 

their lateral extent has also shrunk. The region directly beneath the DNA anchor point has 

an increased inversion charge, but the regions adjacent to it, which were under the 

hemisphere, are no longer under the influence of DNA charges, and their inversion charge 

is reduced. Since the current is passed laterally along the BioFET, the distribution of the 

inversion charge along the direction of current travel is the most important factor that 

determines the sensitivity, and not the total inversion charge. Therefore, even though the 

total inversion charge is larger when the conformational change is taken into account, the 

non-uniform distribution of this charge causes the total resistance of the channel to 

increase, and the total current is reduced. 

 
Figure 5.3Illustration of charge distribution before and after hybridization of the hemispherical 

DNA, showing the regions of local depletion (see text) 

5.2.2 Basic Statistical Model of DNA Polymers 

The hemispherical model predicts incorrect results, indicating that this model is not 

appropriate for tethered oligonucleotides. Proper analysis of the conformational properties 

of the DNA requires elaborate molecular dynamics models, with sophisticated models for 

all the chemical interactions and potentials. Molecular dynamics simulations can give 

accurate time evolution of the motion of the DNA. However, they are computationally 
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exhaustive and cannot be used for conformational studies of the DNA since this would 

require large computational time. Several coarse-grained models for the DNA allow 

processes with longer times to be simulated, but can still not be used to adequately sample 

the conformational space of the DNA and produce reliable results. 

The other method of modeling DNA molecules is macroscopic thermodynamics. Often, 

the thermodynamic properties are deduced from simple “toy” models of the molecule 

under consideration. Using these models, statistical expressions can be deduced for the 

energy and configurational entropy, which then allow the calculation of the most probable 

(stable) states of the molecule. 

The model generally used for the DNA is the Freely-Jointed Chain (FJC) model. 

This model is used to extract thermodynamic information from polymers, and its use was 

first pioneered by P. Flory  [159] - [161] . Using the FJC model, models for the osmotic 

pressure  [162] , entropy  [163] , and hydrodynamic properties  [164] , and many others, 

have been estimated. The FJC model assumes that the polymer is made up of n discrete 

segments of length l each. The links are free to rotate without any energy penalty, and the 

chain is able to cross itself (i.e. the chain occupies zero volume in space). The FJC is 

depicted in Figure 5.4. If statistical derivation alone is used, it can be shown  [165] that the 

end-to-end distance of the polymer has a distribution given by the spherical Gaussian 

distribution: 

2 2
3

( ) b rbf dV e dV
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−⎛ ⎞
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This leads to an expected root-mean-square distance given by: 

2r l n= . (5.4) 

This result is valid for the ideal chain model. In general, a slightly different 

formula n3/5l is used, which gives a larger root mean radius of gyration. This increased 

radius is attributed to the effect of the solvent in spreading out the polymer chain by 
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means of hydrophilic interactions with the chain’s wall. The exponent value of 3/5 is 

Flory’s calculated value for good solvents. 

 
Figure 5.4 Freely-Jointed Chain model, showing the links and the nodes 

For the BioFET, we are primarily interested in the average conformation and 

space occupancy of the single-stranded DNA, as well as the distribution of the charges 

throughout this volume. Since the chain’s conformation is free of any energy penalties 

and does not suffer from volume exclusion, the Gaussian expression for the end of the 

chain can be applied to any subsection of the chain. This means that any joint of the chain 

can be considered as the end point of a smaller chain. If one charge unit is present in each 

joint, the total charge density profile is given by: 
2
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with the normalization condition: 

( )dV nρ =∫ r . (5.6) 

The fact that the tethered DNA molecule cannot span an entire sphere (due to the 

impermeable tethering surface) allows us to arbitrarily multiply Equation (5.5) by a factor 

of 2 to account for a hemispherical occupancy. Equation (5.5), although not Gaussian, 

still has the main characteristics of a Gaussian function (Figure 5.5), but with a higher 

standard deviation. 
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Figure 5.5 Comparison of the spherical Gaussian distribution (Equation 5.2) and the summed 

Gaussian (Equation 5.5) 

Unfortunately, even when the distribution function of Equation (5.5) replaces our 

earlier assumed uniform distribution, the anomalous results of reduction in the drain 

current upon hybridization still persist, but to a lesser extent (results not shown). This 

indicates that there are still some problems with the conformation of the single stranded 

DNA. Some of the reasons why the FJC model might not suffice are given below: 

1. The FJC model still seems to predict a spherical shaped average conformation of the 

DNA. We have reasoned earlier that this might be the one reason for getting a 

negative signal. It is expected that single-stranded DNA molecules would have a 

more “mushroom” like shape, as predicted in other works  [158] . Furthermore, the 

effect of the sensor’s surface on prohibiting the motion of the DNA is ignored in the 

FJC model. 

2. Most of the work in the literature that use the FJC to model DNA molecules consider 

very long strands of double-sided DNA molecules. The persistence length of a DNA 

molecule is in the range of 50nm  [166] , much longer than the extended length of our 

oligonucleotides. Thus, many of the approximations given in other works, and that 

give simple analytical results; do not apply in our case. 
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3. Allowing overlap of the chain molecules might be an appropriate approximation for 

short DNA segments, since the volume occupied by the bases and the backbone is of 

the same order of the total average volume occupied by the oligonucleotide. Thus, 

steric effects must be included. There has been some work that address steric effects 

 [167] ,  [168] , but the models used are generally applicable to longer polymer 

molecules. 

4. DNA is a charged polymer, and at the very least, electrostatic repulsion energy 

between the bases has to be considered. The FJC model does not consider the 

charged nature of the molecule  [161] . 

5. The interaction of the DNA with the shielding salt molecules must be considered. 

This has been partially addressed before  [169] . However, a linear model for the 

shielding was used for each monomer. We have demonstrated that the linear model 

does not suffice for a highly charged polyelectrolyte. Furthermore, the overlap of the 

screening charges might have an energetic effect (often stabilizing, as will be seen 

later) on the entire molecule. This “sticky” behavior of the screening charge was not 

included in the work of  [169] . 

5.2.3 Simplified Model of DNA 

The approach we use here is to combine the FEM model of the electrolyte and 

semiconductor with a chain model of the DNA. The chain model used is what is generally 

referred to as the “ball and stick” model. Shown in Figure 5.6, this model allows the DNA 

molecule to possess a volume, and to be susceptible to steric effects. The molecule is 

taken to have 25 segments, each containing a ball in the middle that represents the van-

der-Waals steric radius of that unit. In reality, this is a very coarse approximation. The 

backbone of the DNA molecule is shown in Figure 5.7. Between every two adjacent 

phosphate groups, there are six bonds (α through ζ). These bonds can twist with various 

ranges  [157] , but the cumulative bending angle between subsequent phosphate groups 

does not exceed 90⁰. Thus, we simplify the problem by joining all of these degrees of 

freedom into one single angle (two in the case of 3-D modeling), and setting a maximum 
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range of fluctuation of this angle to span the range from -90⁰ to 90⁰. At any segment, the 

angle 0⁰ is measured from the extension of the previous segment. 

 
Figure 5.6 Ball and stick model used for the MCM simulation 

The spheres are meant to approximate the tetrahedral phosphate groups. The van-

der-Waals radius of the spheres is taken to be 0.3 nm. This is larger than the reported 

 [157] P−O bond length of 0.171 nm. The reason for enlarging the radius is twofold: 

firstly, the van-der-Waals radius of the molecule is larger than the bond length, since the 

bond length merely considers the center-to-center atomic distance, without considering 

the outer electron cloud. Secondly, a larger sphere will prevent the DNA chain from 

crossing itself. The alternative would be to model the connecting rods as rigid elements. 

However, this is computationally and geometrically inefficient. To model the connecting 

rods, a fixed distance of 0.61nm was imposed upon the adjacent spheres. This number 

was chosen as the sum of the bond lengths of all the links between the two phosphate 

groups in Figure 5.7, namely, two ester bonds, an aromatic C-C bond, and a single C-C 

bond. Of course, this is another approximation since these links are not fully extended. 
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Figure 5.7 Atomic organizational structure of a DNA backbone 

The DNA molecule model is fixed on top of the insulator and a semiconductor. 

Steric interactions are accomplished using brick-wall volume exclusion. In software, this 

was done by counting the number of subdomains for each DNA conformation. A legal 

conformation would result in 28 subdomains (25 for each sphere in the DNA molecule, 1 

for the electrolyte, 1 for the insulator, and 1 for the semiconductor). If the counted 

domains increase (two intersecting spheres making 3 subdomains, or the sphere 

intersecting the insulator layer), or decrease (two or more completely overlapping spheres 

counting as one), then this conformation is rejected as a high-energy state. 

The equations to model this system are the same as those discussed in Chapter 3. 

The nonlinear Poisson-Boltzmann equation is used for the electrolyte solution, and the 

nonlinear transport equations, i.e. Equation (3.9), are used for the semiconductor. The 

spheres are assumed each to have a charge of –q. Thus, Poisson’s equation is used to 

model potential variation within the sphere. It is acknowledged that the internal electronic 

structure and more advanced water models are needed to properly model the average 

conformation of DNA at these small length scales. However, our goal here is to see if 

pure classical electrostatics can suffice to predict a more realistic conformation of the 

DNA. 
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To predict the conformation of the DNA molecule, we perform a Monte-Carlo 

simulation by selecting random bending angles for each segment in the DNA model. 

Instead of choosing a completely new angle each time, the randomized value is the 

change in the angle. The value is chosen uniformly within a small range from the current 

value, while respecting the overall limits of -90⁰ to 90⁰ from the extension of the previous 

link. This is done so that once the DNA has been “trapped” into a conformation of low 

energy; it cannot immediately come out of it. The average conformation has to be taken 

after the DNA molecule has settled into a low energy conformation. It is important, 

therefore, that once a low-energy conformation is achieved, only thermal agitation can 

cause the DNA molecule to temporarily be released from it, and not the Monte-Carlo 

algorithm. 

For each Monte-Carlo step, a complete FEM problem is solved to find the 

potential and ionic distribution in the solution, as well as the electron and hole 

distribution within the semiconductor. The Monte-Carlo-Metropolis algorithm calculates 

the total free energy of the ensemble of DNA, ions, electrons, and holes to estimate the 

free energy of the conformation. Firstly, the electrostatic energy of the DNA molecule, in 

electron volts, is given by: 

( )1 ( )
2DNA DNA n ref

n
E N V V d= −∑ ∫ r r , (5.7) 

where NDNA is the charge density of each DNA sphere, Vref is the reference potential in the 

bulk of the solution, and the variable n sums over all DNA segments. Similarly, the 

electrostatic energy contributions of the ions and carriers in the semiconductor are given 

by: 

( )( )( )( )0
1 sinh ( ) ( )
2ions ref refE zc z V V V V dβ= − −∫ r r r , (5.8) 

and 

( ) ( )( )( )( ) ( )1 ( )
2

F body F bodyV V V V
carriers i bodyE n e e V V dβ φ β φ− + − − += − −∫

r r r r , (5.9) 
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respectively, where φF is the Fermi level of the semiconductor and Vbody is the potential of 

the bulk. In addition, there is energy associated with the fixed impurity charges in the 

semiconductor Nimp. This is given by: 

( )( )1 ( )
2

F F
dopants i bodyE n e e V V dβφ βφ−= − −∫ r r . (5.10) 

In addition to the energy calculations, the entropy of the ions and carriers must be 

included. The PB equation guarantees the ionic configuration that will maximize the 

entropy (hence, places the system in equilibrium). However, the value of this entropy is 

not known, and it becomes necessary to know so as to decide on which DNA 

conformation is more likely. The expression for the entropy of a real solvated ion can be 

very complex. Here, we adopt the entropy expression for an ideal gas of many 

components ci, given by: 

( )lnions i i i
i

S k c c c d= − −∑∫ r . (5.11) 

Equation (5.11) gives the entropy of the ideal gas, correct to a constant factor. 

This unknown constant factor does not matter in our calculations since the MCM method 

only converges based on the change of the total free energy change of the system. For the 

ions, Equation (5.11) becomes: 

( ) ( )( )( ) ( ) ( )( )( )( )0
0 01 ln( ) 1 ln( )ref refV V V V

ions ref ref
kc

S e V V c e V V c d
q

β ββ β− − −−
= − − + + − − − +∫ r , (5.12) 

whereas for the carriers, the formula is 

( ) ( )( )( ) ( ) ( )( )( )( ) ( )( ) 1 ( ) 1F body F bodyV V V Vi
carriers body body

kn
S e V V e V V d

q
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⎝ ⎠∫
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The total free energy is then given by: 

( )ions DNA carriers dopants ions carriersG E TS E E E E T S S= − = + + + − + . (5.14) 

We notice here that the entropy of the dopants and that of the DNA are not 

included. The dopants are considered immobilized such that they cannot change their 

configurational entropy upon change of bias, and hence have no entropy component. As 

for the DNA, this model treats it within a microscopic model, unlike the mean-field ions 
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and carriers. The concept of entropy is an extensive macroscopic thermodynamic 

property, and only has meaning when the internal configurations of the molecule are 

considered in an average sense. After the MCM simulation stabilizes, the DNA molecule 

will continue to hop between low-energy configurations. The more these configurations 

there are, the higher will be the entropy of this molecule. 

5.2.4 Results 

The simulation was run for electrolyte concentration of 1mM and flat-band bias, to 

remove the effect of the double layer in which the DNA is immersed. The simulation was 

carried out twice, for 100,000 iterations each. The simulation took a week of a single PC 

execution time. The main reason for the long simulation is that most randomized 

conformations had to be discarded due to overlap of subdomains. A “smart” 

randomization scheme is possible, but such a scheme might contaminate the attempt to 

replicate a truly thermodynamic system. For the first simulation, all Monte-Carlo steps 

were used, whereas for the second simulation, the MCM algorithm was invoked, in which 

lower energy conformations are immediately selected, whereas conformations with larger 

energy are selected with a decaying exponential probability that depends on the energy 

difference, thus accomplishing equilibrium thermal fluctuations. Figure 5.8 shows 

superimposed images of the locations of the DNA nodes throughout both simulations. For 

the figure on the left, it can be seen that the conformation seems indeed to be spanning a 

hemispherical shape. When the energetic bias is included, we can see from the figure on 

the right that the “mushroom” shape of the DNA is apparent. This means that the DNA 

molecule prefers to be more vertical near the base, whereas the ends conform to a locally 

hemispherical shape. This average conformation dramatically changes the expected signal 

from the BioFET, since the edges of the single-stranded DNA are not close to the 

semiconductor. The result is independent on the starting position, as the same result was 

obtained with the starting DNA molecule being completely vertical or completely 

horizontal. 
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Figure 5.8 Superimposed conformation profile of the single stranded DNA molecule throughout the 

Monte Carlo simulation, without energy bias (left) and with energy bias (right). 

From Figure 5.8, we can conclude that the DNA molecule is forced to a more 

vertical position by means of the Debye layer of the ions shielding it. Thus, the single-

stranded DNA prefers to be surrounded by ions than semiconductor carriers. This makes 

sense since the ions are much closer to the DNA than the carriers. Paradoxically, this 

causes the sensitivity of the BioFET to be larger as the conformation of the DNA changes 

to the cylindrical, double stranded shape. 

Figure 5.9 shows the radial and angular histograms of the DNA nodes, which are 

indicative of the probability distributions of these quantities. As seen, the radial histogram 

is very different from that of Equation (5.5), supporting our hypothesis that a radial 

distribution function is not appropriate for describing the average charge distribution in 

the DNA hemisphere. The histogram is not monotonically decreasing, but seems to be 

somewhat flat in the middle. This suggests that while the initial nodes of the DNA (closer 

to the tethering point) have a stretched profile, the end tends to curl on itself and increase 

the local charge density. A snapshot of one of the MCM conformations is shown in 

Figure 5.10. The maximum radial distance of the DNA is around 15 nm, which is almost 

double the expected 8.5nm from a 35 base pair coiled up DNA. The angular histogram 

also shows that the DNA segments are within around 30⁰ from the vertical position. This 

means that the hemispherical model is indeed incorrect for tethered DNA molecule. 
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Figure 5.9 Histogram of the simulated radial (left) and angular (right) positions for the DNA 

segments. 

 
Figure 5.10 A sample conformation from the MCM-FEM algorithm 

It is interesting to see whether a reference electrode bias would have any influence 

on the conformational properties of the BioFET. At first, one might expect the potential to 

attract or repel the DNA molecules and make them more flat or more vertical. However, 

in reality, the double layer that screens the DNA molecule, as well as the double layer on 

top of the insulator, can combat the effect of the applied potential in changing the 

conformation of the molecule. This phenomenon is interesting to observe because if it is 

shown that bias can severely change the conformation of the DNA, this would give 
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another technique of sensing DNA hybridization that has the potential of being extremely 

sensitive. One could monitor the variation of a low-frequency cyclic voltammogram 

before and after hybridization. CV experiments are often used to detect the prevalence of 

certain reactions. In this case, however, the CV measurement would give information 

about the conformational change of the DNA molecule. A hybridized layer would not 

change conformation with the applied potential and would have minimal effect on the 

voltammogram, whereas a nonhybridized layer would be more flexible and could 

potentially cause severe changes to the voltammogram. 

The MCM-FEM simulation was carried out under a reference electrode bias of -

1V. Figure 5.11 shows the simulated radial and angular distribution of the DNA nodes. 

The results seem very similar to those of Figure 5.9. However, there are subtle 

differences. Firstly, by comparing the radial histogram to that of Figure 5.9, it is clear that 

the average moves towards lower values. In particular, the second peak has moved from 

around 11 nm to 9 nm. The overall swelling of the DNA molecule has not changed, but 

the distribution of the charges within the occupied volume is different. This is explained 

by a net repulsion of the DNA due to the bias on the reference electrode. This 

phenomenon can lead to a reduction in the sensitivity of the BioFET, as the main 

influence of the conformational change is to bring the charges closer to the surface of the 

insulator. The angular distribution also supports this repulsion by predicting a more 

distributed angular span than that which is seen by Figure 5.9. The repulsion of the DNA 

serves to “flatten” the mushroomed top and bring it closer to the surface. However, the 

overall change does not appear so dramatic, as a change of 2nm in the presence of 18nm 

of insulation will lead to a very small change in sensitivity. It is not expected, therefore, 

that the DNA charge distribution will be changed significantly with the applied bias. 
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Figure 5.11 Histogram of the DNA conformation with a reference electrode bias of -1V. 

To summarize the results of this simulation, the main reason for the negative 

signal received with the simulation results of Figure 5.2 is that the hemispherical model 

of DNA is not appropriate to describe the average conformation of the DNA. 

Additionally, the DNA molecule is more swollen and extends deeper into the solution. 

These two observations indicate that the change in the conformation, from a flailing coil 

to a compact stiff cylinder, is the main cause of high sensitivity in the BioFET. 

5.3 MCM-FEM Model of DNA Distribution within the BioFET 

Here, the Monte-Carlo-Metropolis simulation is used to investigate the effect of varying 

the positions of the DNA probes on the sensor’s output signal. It was demonstrated in 

Chapter 3 how the sensitivity is not uniform throughout the surface of the insulator, 

especially when the device is operated in saturation. It was also shown that for a uniform 

distribution of molecules, the sensitivity is optimum. Here, we wish to get a measure of 

the severity of this variation in the sensed signal. This variation can be seen as a source of 

“noise” in DNA microarrays. Of course, this noise source is expected to be constant 

randomized shifts in the sensed signal between cells. However, if the probe DNA 

molecules are capable of diffusing laterally within the sensor’s surface, then this noise 

becomes a random process and will be characterized by its power spectral density. In this 
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simulation, we assume that the probes are frozen in place, and focus on the amount of 

variations in the sensed signal as the positions of the probes are varied. 

5.3.1 Evidence for DNA aggregation 

Before we proceed with the simulations, it is important to discuss whether there is need to 

conduct this study. DNA probes are generally transported to the sticky surface by 

isotropic diffusion. For very low density DNA coverage, it has been shown  [109] that 

Langmuir’s isotherm explains the experimentally observed immobilization yield, 

suggesting that there are no lateral interactions between the probes and that it is expected 

that the coverage will be uniform. On the other hand, even at moderate densities generally 

used in DNA microarrays, correction factors have to be included to Langmuir’s model to 

account for probe-probe interaction  [109] . Furthermore, it has been shown that bulk long 

DNA molecules have the tendency to aggregate together  [170] in spite of their repulsive 

electrostatics. We wish here to investigate the energetics of this aggregation and whether 

or not it is of significance in DNA biosensors. 

A simplified, top view model of DNA cylinders is used for the simulation. The 

cylinders (circles using a top view) are given a charge density consistent with that of a 

single-stranded DNA. Then, the PB equation is solved for the entire structure. Equations 

(5.7), (5.8), (5.12), and (5.14) are used to calculate the free energy of the ensemble. Six 

DNA molecules are placed as shown in Figure 5.12. The FEM simulation is repeated as 

these DNA molecules are brought closer to each other, and the total energy is plotted as a 

function of the distance between probes in Figure 5.13. 



Chapter5: Monte-Carlo Simulations of DNA Biosensors 

142 

 
Figure 5.12 Simulated potential profile with six DNA molecules 

The result of Figure 5.13 shows that there exists a potential minimum at a specific 

inter-probe spacing. This is an interesting observation seeing how both DNA molecules 

are negatively charged. The attractive force, however, comes from the energy 

contribution of the shielding ions. When the shielding ions are shared amongst two or 

more DNA molecules, their energies are decreased since they spend most of their time 

close to a negative charge. This is very similar to the bonding orbital that results from 

solving Schrödinger’s equation for a covalent bond, even though the physics in these two 

cases has completely different origins. 
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Figure 5.13 Total free energy of the system of six DNA molecules as a function of their inter-distance, 

at different electrolyte concentrations 

The potential minimum in Figure 5.13 depends on the electrolyte concentration. 

Lower electrolyte concentrations result in larger separations. Since immobilization and 

hybridization experiments are generally conducted under high salt conditions, the 

equilibrium distribution of DNA molecules is expected to aggregate due to the low 

energy close packing evidenced by the results of Figure 5.13. Additionally, it is also 

expected that there might be several of these aggregates at several different locations 

within the BioFET. This can be seen by examining the depth of the potential wells in 

Figure 5.13. We can see that the potential well changes from just around 0.1eV at high 

electrolyte concentrations up to 0.5eV or more at low concentrations. Thus, it is more 

possible for the free DNA probe to break loose of the gravitational field of neighboring 

immobilized probes. At lower electrolyte concentrations, fewer numbers of aggregates 

will occur since the potential well is deeper and it will be harder for molecules to break 

free of them by thermal energy alone. However, the aggregation will be more disperse, as 

the energy minimum occurs at a larger distance. 

Since the thermal energy at room temperature is around 25meV, these potential 

wells are significant, and the issue of DNA aggregation at different locations on the 
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biosensor’s surface should not be disregarded. Of course, one could elongate the 

incubation time for the DNA molecules to tether and create a uniform film. However, 

higher probe density can severely hinder hybridization  [60] due to crowding of 

molecules. Additionally, as nano-biosensors emerge, attention is being focused to 

detecting the smallest number of molecules. This can be accomplished when the number 

of probes is deliberately made small in a nano-sensor. In all these cases, therefore, it is 

essential to study the variation of the sensed signal with the position of the DNA probes. 

5.3.2 Monte Carlo Model 

The 3-D model of the BioFET is used for this simulation, since it is essential to capture 

the full 3-D shielding effect of the ions to get accurate estimates of the free energy. The 

structure and equations of the BioFET have already been presented in Chapter 3. Here, 

we randomize the positions of the DNA molecules on the insulator’s surface. This can 

lead to many practical problems in meshing and modeling. To make the problem more 

tractable, the randomized locations of the DNA probes on the surface of the insulator 

were restricted to fall within a grid of square cells shown in Figure 5.14. Each cell 

allowed a tolerance of 0.2 nm on all sides such that adjacent occupied DNA cells do not 

share a DNA’s cylinder edge, as this could cause very low quality meshing and 

divergence of the solution. 

 
Figure 5.14 Grid used to place the randomized DNA molecules 

The computational requirements for this MCM simulation are immense. On the 

one hand, the size of the BioFET must be made relatively large (400nm length, 10nm 
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slice width) to de-emphasize short channel effects. Compared to the DNA molecules, this 

is a very large surface area, and can potentially host several hundreds of DNA molecules. 

Computational restrictions, however, only allowed the accurate simulation of up to 50 

molecules. To relax the computational burden, linear element shape functions were used. 

This can dramatically reduce the number of degrees of freedom. The mesh was chosen 

coarse enough to comply with the memory constraints, but fine around the DNA 

molecules to allow convergence. 

5.3.3 Results 

The simulations were carried out for DNA counts of 5, 10, 20, 30, and 50. In each case, 

the current is calculated before and after hybridization, and the signal is taken as the 

current change between these two values for various different values of VDS. The MCM-

FEM algorithm was repeated 1000 times in each case. Figure 5.15 shows the mean signal 

of all the Monte Carlo runs for the different DNA densities. As expected, higher DNA 

densities and deeper saturated operation give a higher mean signal. However, we notice 

that a sharp increase in the mean signal is observed with 50 DNA molecules than the 

other cases. This sharp increase is due to the more even distribution of DNA along the 

channel at this density. Conduction of current in a channel is a collective process 

involving the DNA molecules along the current direction (from source to drain). The 

DNA density increase in the perpendicular direction (along the width of the transistor) is 

of smaller effect than its increase over the longitudinal direction. This can be 

demonstrated with a simple example: Let the channel’s conductance associated with the 

presence of each DNA be given by Gi, with i being the index of the DNA, and let there be 

3 DNA molecules along the length of the channel, and one extra DNA molecule along the 

width. The conductive network is shown in Figure 5.16. If all the conductance values are 

the same, then the total conductance change with respect to a change in the longitudinal 

DNA molecules is given by: 
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( )( ) ( )( )2 2 21 12 1 1 11
1 1 2 4 3 1 2 4 1 3

1 1 1 0.16
2.51

G
G G G G G G G G G G G− −− − −

∂
= = = =

∂ + + + + + +
, (5.15) 

whereas the conductance change with respect to a change in G4 is: 

( ) ( )( )2 21 1
4 2 4 1 2 4 3

1 1 0.04
51

G
G G G G G G G− −

∂
= = =

∂ + + + +
. (5.16) 

We can see, therefore, that G1 is more important than G4 in determining the total 

conductance. With 50 DNA molecules, and with our chosen geometry, the probability of 

many of them contributing to the lateral conductance starts to be considerable, and the 

total sensed current sharply increases. 

 
Figure 5.15 Mean BioFET signal for different DNA probe densities 

 
Figure 5.16 Resistor network used to examine the conductance sensitivity of the BioFET’s channel to 

parallel and series image charges 
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Figure 5.17 shows the standard deviation of the sensed current, for the different 

DNA molecule counts, plotted against the source-drain bias. It is shown that the variance 

increases with the bias. Moreover, the rate of increase in saturation seems to vary slightly 

for lower DNA concentrations. As the DNA concentration is increased, however, the 

variance begins to flatten out. This is an expected behavior at very high concentrations, at 

which the number of different permutations for the DNA locations is limited. In our case, 

the maximum fill factor is below 10%, and still many permutations of the DNA locations 

are possible. The flattening of the variance in saturation might also be the result of 

desensitization of a portion of the channel to the presence of DNA molecule due to pinch-

off  [139] ,  [141] ,  [171] . This results in a smaller effective area for the sensed DNA, and 

fewer permutations. 

 
Figure 5.17 Calculated standard deviation of the observed BioFET current for different Monte Carlo 

runs 

In a parallel micro-array, the variations between cells can severely contaminate 

the data. Noise in microarrays can be attributed to several factors, including biological 

process-related noise and measurement noise  [172] ,  [173] . Our calculated variance of 

the signal due to random placements of the DNA is also a source of variation between the 

cells. This variation can be static, as in the case of covalently tethered DNA probes, or 

can be present as stochastic processes such as in the case of physisorption of probes, or 

surface diffusion of unhybridized targets  [174] . In such a case, our simulation can only 



Chapter5: Monte-Carlo Simulations of DNA Biosensors 

148 

give an estimate of the total power of the noise and not its complete power spectral 

density. Molecular dynamics simulations can be used if such detail is needed. 

The simulated Signal-to-Noise Ratio (SNR) of the BioFET cell, due to random 

placement of the DNA probes, is shown in Figure 5.18. Once again, it is intuitive that the 

higher DNA density will result in higher SNR. The simulation sets a limit to how low the 

density of DNA should be, before the low SNR value can render the microarray 

unreliable. We can see that a DNA count of 10 within our simulation domain, which 

corresponds to coverage of 0.4%, will result in a low value of SNR (below 10). While this 

might seem to be a low coverage, it is worth mentioning that steric hindering of DNA 

hybridization can start at coverages as low as 12%  [60] . Single molecule sensors and 

nanosensors can have much lower coverage ratios. Additionally, the other sources of 

variation (such as doping profile variation or post-processing variations) can introduce 

their own noise, forcing the minimum coverage to be well above our simulated values. 

Finally, single-stranded DNA probes do not generally occupy the same area as double-

stranded ones, and may swell as a result of their thermodynamic motion. Thus, an 

apparent coverage, as measured by scanning tunneling microscope probes, might be 

larger than the actual coverage (the mushroom regime as in  [158] ). 

 
Figure 5.18 Signal-to-noise ratio, as simulated for different DNA densities. Inset: magnified signal-to-

noise-ratio for 50 DNA molecules as a function of source-drain bias 
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The magnified inset of Figure 5.18 also shows that the drain-source bias can affect 

the SNR value. The maximum value is achieved at the onset of saturation, at which a 

balance is achieved between the device’s transconductance and the desensitization of the 

BioFET’s bioactive surface due to pinch-off. As we transition into deeper saturation, this 

balance is disturbed and we notice a local minimum of SNR, which quickly begins to pick 

up again as the pinch-off region ceases to advance farther into the channel. Thus, for 

maximum desensitization to DNA charge, one should bias the BioFET at the onset of 

saturation. The generally used ISFET source-drain follower  [175] , which keeps the 

BioFET in linear region, is therefore very susceptible to variations in output signal due to 

random placement of DNA molecules. 

The histogram of the Monte-Carlo trials can also yield valuable information about 

the performance of the BioFET. Figure 5.19 shows sample histograms of the 

hybridization signal for the Monte Carlo simulations done for 30, 20, 10, and 5 DNA 

probes within our area of simulation, and for three different electrolyte concentrations: 

10mM, 1mM, and 100μM. Whereas the histograms for the 10mM concentrations show 

symmetry with respect to the mean value (as expected from an unbiased Monte Carlo 

simulation), we notice a gradual departure from symmetry and migration of the mean 

signal to the higher end of the spectrum. This phenomenon is very evident at high DNA 

concentration but is almost absent for very low DNA coverage. This can be explained by 

noting that as the electrolyte concentration is decreased, the double layer condensation 

around the DNA strands thickens, and the opportunity for counter-ion sharing increases. 

We have shown that this charge sharing is associated with a decrease in the free energy, 

making it more probable. However, we also see from the histogram that the signals 

registered by the conformations that contain overlaps, and which are more likely at lower 

electrolyte concentrations, result in signals that fall higher in the spectrum. This shows 

that charge sharing between adjacent DNA probes works in favor of the BioFET sensor, 

and that more inversion charge is induced in the channel of the semiconductor than in the 

electrolyte region when the counter-ions are shared. This result encourages post-

hybridization dilution of the solution, as this will not only result in an increase in the 
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mean sensed signal, but will also lower the variance due to random placement of DNA 

probes. 

 
Figure 5.19 Comparison of the signal histograms for different DNA probe densities, at different 

electrolyte concentrations 

5.4 Conclusion 

In this chapter, the Monte Carlo-Metropolis algorithm was augmented with the Finite-

Element method to model problems of practical significance in the design of the BioFET. 

This includes the average conformation and charge distribution of the unhybridized DNA 

probes, and the variation of the output signal with different placements of the DNA 

probes. It is concluded that the change in the conformation of the DNA molecule, rather 

than the charge doubling, is the main driving force behind the sensed signal, even though 

both of these phenomena give signals of roughly the same order. It is also concluded that 

for low-density sensors, such as nanowire sensors, the variation in the positions of the 

DNA probes can cause the SNR to fall as low as 10, which severely compromises the 

operation of the sensor. Thus, there is a dire need for very well-controlled experimental 

environment to achieve reliable performance for biosensors, and the needs become more 

stringent as the device size decreases. 
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Chapter 6 

SUMMARY, CONCLUSIONS, 
AND FUTURE WORK 

6.1 Thesis Summary and Main Contributions 

This thesis presented a theoretical study of several phenomena that are prevalent in DNA 

biosensors and that contribute greatly to the lack of control over fabrication of such 

sensors. The models presented in this thesis addressed the need for higher-dimensional 

modeling of biosensors and providing accurate geometries. Thus, reliable compact 

modeling of DNA biosensors is not an option at the current time, but complete physical 

modeling is necessary. We have shown that several often neglected effects, such as ionic 

crowding and permeability of the DNA molecules, can have large effects on the sensed 

outcome. These phenomena become more important as the size of the device shrinks, and 

with current quantum devices such as DNA nanowires and quantum dot sensors, such 

effects become extremely important. 

The first main contribution of this work is to provide a computational framework 

for calculating performance parameters of interest for DNA biosensors, such as 

sensitivity, optimum electrolyte and bias conditions, and others. The finite-element 

method has been shown to possess the flexibility to deal with the complex geometries and 

sharp function gradients often encountered in biochemical systems. Furthermore, with the 

availability of several mean-field expressions for side-effects that affect the performance 

of the biosensor, incorporating them and studying their effects becomes an easy task in 

our models. 

The second major contribution was the development of a small-signal AC model 

for the BioFET. As attention is directed towards detection by impedance changes, the 
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community desperately needs physical models for the transient behavior of the DNA 

BioFET. To our knowledge, our AC model is the first to be successfully developed and 

that can be used to predict the magnitude of impedance change and determine optimum 

frequency operation points for the BioFET. 

Our third major contribution is the study of the effects of randomness in the 

distribution of DNA probes on the sensitivity of the biosensor. Although a similar study 

was conducted for distributions of dopants in a nanowire biosensor  [176] , no such 

simulation was carried out for the DNA molecules themselves. Our simulation allowed us 

to propose a method of operation of the BioFET and an optimum biasing condition to 

maximize the signal-to- noise ratio, thus increasing the reliability of BioFET microarrays. 

The fourth major contribution is to use simulations to identify the change of DNA 

conformation as a major factor that explains the operation of the BioFET. Monte-Carlo 

studies show that the distribution of charges for the single-stranded DNA is not 

hemispherical, as that would cause an anomalous negative signal. The single-stranded 

DNA molecule is shown to have a more vertical, mushroom shaped conformation with a 

non-uniform radial charge distribution. It is also shown that this distribution is only very 

slightly dependent on the reference electrode bias, but more on the solution concentration. 

6.2 Future Work 

The field of biosensors is one of the fastest growing fields in modern biomedical research, 

and many newer architectures and techniques of sensing are being discovered. Modeling 

will have an extremely deep impact on the success of these new designs. As the sensor 

sizes decrease, more detailed physics will be needed to properly model the operation of 

these sensors. Additionally, system-level simulations will be needed as these sensors are 

integrated with microfluidic chips into a fully integrated biosensor. Some of the identified 

possible areas of research in this field are listed here: 
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6.2.1 Quantum Modeling of Nanowire Sensors 

As nanowire biosensors gain momentum in experimental research, the theoretical aspects 

are expected to follow closely. Nanowire sensors were proposed as superior biosensors 

due to their large surface area-to-volume ratio. This allows fewer DNA molecules to 

cause a severe change in the conductive properties of the nanosensor. However, although 

the main mode of sensing is often cited as field-effect, this is not obvious. In most cases, 

the native insulator layer that grows naturally on silicon is not altered. This insulator layer 

is thin enough to allow Faradaic reactions to take place. It is therefore possible that the 

DNA molecule alters the semiconductor by allowing Faradaic reactions to take place. To 

our knowledge, this possibility has not been explored in silicon nanowires. 

Another issue when modeling nanowire sensors is that the classical transport 

equations no longer predict how the carriers transport current in the nanowire (except for 

thick nanowires in excess of 100 nm diameters). A quantum transport formulation is 

needed. Generally, this is done either using a Schrödinger-Poisson self-consistent solver 

and a phenomenological quantum transport model, or using a complete quantum transport 

model such as the NEGF formalism. The Schrödinger-Poisson solver is generally used for 

systems at equilibrium or very close to equilibrium. One would start by solving 

Schrödinger’s wave equation for the eigenstates ψ: 

( ) ( ) ( ) ( )
2

2
*2

qV
m

ψ ψ εψ−
∇ − =r r r r= . (6.1) 

The eigenstates are filled according to Fermi’s function, and their squared 

amplitudes give the charge density, taking into account the spin degeneracy: 

( ) ( ) ( )( )2
2*

i i F
i

n f Eεψ β ε= − −∑r r , (6.2) 

where: 

( ) ( )( ) 1
1 expf x x

−
= + . (6.3) 

The calculated charge density is then used in Poisson’s equation: 
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( )( ) ( ) ( )( )s V q n Nε−∇ ⋅ ∇ = +r r r , (6.4) 

and the potential is substituted back into Equation (6.1) until convergence. Once the 

potential and charge profiles have been calculated, a suitable transport model is used for 

current calculation. This can be, for example, Landauer’s model: 

( ) ( )( ) ( ) ( )2
R L

qI f E f E M E T E dE
h

μ μ= − − −∫ , (6.5) 

where μR and μL are the electrochemical potentials of the right and left contacts, 

respectively, M(E) is the number of transmission modes, and T(E) is the transmission 

function. Landauer’s formula assumes a continuum of states due to the long channel 

dimension along the direction of current travel. Each one of these states, however, can 

manifest with different transverse modes, and this is captured by M(E). Additionally, 

scattering centers at the contacts or within the device can cause change of the state of the 

electron. This is generally described by a scattering matrix. 

For devices far from equilibrium, Landauer’s approach does not suffice, but 

instead, the NEGF method needs to be employed. In the NEGF formulation, the Green’s 

function for the Schrödinger equation is evaluated: 

[ ] ( , ') ( ')E H G δ− − Σ = −r r r r , (6.6) 

where H is the unperturbed Hamiltonian of the system, E is the energy, δ is the Dirac 

delta function, and Σ is the self-energy of different processes such as the contacts or the 

scattering centers within the device. The scattering self-energy allows for broadening of 

the energy spectrum, which models dissipative processes within the device. The Green’s 

function has to be evaluated over many different energies of interest. Regardless of the 

type of numerical computation, the result can always be formulated as a matrix inversion 

problem: 

( ) 1
( )E E E

−
⎡ ⎤= − −⎣ ⎦G I H Σ . (6.7) 

With the Green’s function evaluated, the carrier density can be calculated from: 
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( )( )1 ( )
2

f E E dEβ μ
π

∞

−∞

= −∫ρ A , (6.8) 

where the spectral function is defined as: 

†( ) ( ) ( ) ( )E E E E=A G Γ G , (6.9) 

and the broadening function is given by: 

( )†( ) ( ) ( )E i E E= −Γ Σ Σ . (6.10) 

Using Equations (6.7)-(6.10), the density matrix is obtained, from which the carrier 

density can be obtained: 

( )( )n Tr=r ρ . (6.11) 

The carrier density is inserted into Poisson’s equation to calculate the self-

consistent field, which is then used iteratively in the Hamiltonian of Equation (6.7) until 

convergence. After convergence, the current is calculated using Equation (6.5) with 

M(E)=1 and transmission coefficient given by the following formula: 

( ) ( ) ( ) ( ) ( )( )1 2 †T E Tr E E E E= Γ G Γ G . (6.12) 

One of the problems with using the NEGF formulation with FEM for the 

numerical simulation is the non-orthogonality of the basis functions in FEM. This 

requires modification of the basis to maintain the validity of all the previous equations. 

Specifically, the density matrix cannot be represented in the finite-element basis, but must 

instead use the following transformation: 

†
new =ρ LρL , (6.13) 

where the matrix L is the Cholesky decomposition (square root) of the FEM overlap 

matrix S: 

†=S LL . (6.14) 

Quantum simulation requires formidable computation power for even simple 

geometries and systems, and often uses parallel supercomputers for the simulations. 
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However, such simulations become very necessary when the performance of nanoscale 

sensors is to be examined. These quantum simulations can be used with nanoelectrodes to 

determine electrode reaction kinetics. This can be useful for AC modeling of nanoscale 

sensors. The NEGF provides a framework of computation that is adaptable to many 

different transport scenarios, which makes it a very valuable tool. However, the details of 

the calculation of the different quantities involved depend on the nature of the problem. 

6.2.2 Hybrid Methods 

Even though the Finite-Element Method is adaptable to problems of varying geometries, 

it becomes inefficient when the molecular structure details are needed, in addition to bulk 

material models. Molecular geometries are often conveniently solved using ab-initio 

techniques that rely on non-localized basis functions, whereas the FE method uses 

localized shapes. To properly model nanosensors, the interface between the sensor and 

the molecules will have to be simulated using hybrid methods. There have been some 

attempts at this  [177] ,  [178] . However, such methods have not been generalized to 

realistic geometries of DNA biosensors. 

Another possibility at hybrid models is the use of a combined FEM model with 

molecular dynamics, depicted in Figure 6.1. This can be used to examine the fluctuations 

at the sensor’s interfaces due to random thermal motion and particularly to examine the 

variations in the electrical double layer. The geometry is generally too large for a 

complete molecular dynamics simulation. Therefore, only a small portion of the domain 

will be modeled in MD, whereas the rest of the domain will be modeled using FEM. At 

the interface between these two domains, special boundary conditions must be used that 

allow energy and matter conservation across the interface. This method is very useful in 

simulation of biosensors and has been the subject of a few studies  [179] ,  [180] . 
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Figure 6.1 Possible hybrid FEM/MD model for the BioFET, emphasizing variations in the double 

layer through accurate MD simulations 

The hybrid FEM/Ab-initio method requires special treatment of the boundaries. 

As shown in Figure 6.2, the non-localized elements belonging to the Ab-initio model 

diffuse into the FEM region. Thus, additional overlap integrals are required between the 

elements of the FEM model and those of the Ab-initio model. This can complicate proper 

boundary modeling. Additionally, the expressions for the derivatives of the Ab-initio 

elements are complicated, unlike those of the FEM elements. This makes Neumann 

conditions harder to implement in a systematic fashion, and special attention must be 

made to accommodate the boundary conditions. 

 
Figure 6.2 Illustration of the overlap between nonlocalized Ab-initio elements and FEM elements in a 

hybrid model 
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6.2.3 Modeling Reaction Kinetics of the Biosensor 

In addition to higher sensitivity, an advantage of making the sensor smaller is to speed up 

the settling time for the biosensor. This is because of the fewer hybridization events 

needed to cause a significant signal modulation in the sensor. While nanosensors are 

generally assumed to provide the ultimate performance in low-concentration detection, 

the settling time can be prohibitively large for low target concentrations. This is because 

the probability of collision between the probe and a target is much smaller, and the target 

might be in an almost perpetual diffusion, in search of the probe. A good kinetic model 

would allow one to determine the optimum device geometry for best compromise 

between low detection limit and speedy settling time. 

For hybridization of targets with higher concentrations, such as post-PCR DNA 

assays, the rate-determining step is usually the reaction kinetics. The more complicated 

the geometry of the molecule, the slower the reaction will progress. This is shown in 

Figure 6.3, wherein the hybridization can be hampered by intermediary partial 

hybridizations, or misalignments in the mutual orientation of the molecules. Mean-field 

models for hybridization have proven to be inaccurate because of many side-effects in the 

reaction of molecules with complex geometries  [109] , or the presence of secondary 

structures in the targets  [181] . However, it is possible to extract mean-field parameters 

from a more detailed molecular dynamics model as a first step in the model. On the other 

hand, coarse-grained DNA models could be used directly to extract reaction constants, 

since they can be used in long time molecular dynamics simulations. 

 
Figure 6.3 Different possibilities during DNA probe-target hybridization 
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Another possible area of research is to study the effects of the DNA sequence on 

the reaction rate. It is known that G-C bonds have lower bond energies than A-T bonds. 

Thus, it is expected that the hybridization of G-C rich molecules will be faster. However, 

this is not strictly the case. While the denaturation of G-C rich molecules is less likely, the 

hybridization rate is almost independent of the bases. This is most probably due to the 

fact that DNA probes initially recognize their targets at one or a few neighboring bases, 

and then zipper up, completing the hybridization. Thus, the orientation alignment is more 

important than the energetics of creating the bond. Molecular dynamics simulations can 

be used to determine the conditions under which such reasoning is valid. Additionally, 

research has shown  [182] that the hybridization of the synthetic Peptide Nucleic Acids 

(PNA) to DNA targets is much stronger and more stable than DNA-DNA binding, and 

results in better hybridization yield. Molecular dynamics models can be used to examine 

the conditions under which such enhancements in performance are observed. This will 

lead to design and operation recommendations for best biosensor performance. 

6.2.4 Modeling of Filtration and Purification of DNA 

The DNA sensor is expected to be part of a total integrated system that includes pre-

processing steps such as cell lysing and DNA extraction and purification chambers. It is 

critical to the successful readout of the DNA sensor that the targets are of similar length. 

Thus, any purification step, such as gel electrophoresis chambers, should provide high 

selectivity for DNA molecules of similar lengths. This depends on the applied voltage, 

dynamics of DNA in the viscous medium, and the presence of any nanoparticles in this 

chamber. It is necessary to couple molecular-level models of DNA with mean-field fluid 

mechanics equations to predict the performance of the filtration and transport process. An 

example of this was done in  [183] , wherein the variation in the electrophoretic mobility 

of DNA segments with the buffer solution used was examined. This was accomplished by 

simultaneously solving the mean-field Navier-Stokes equation and Poisson’s equation in 

the presence of a detailed DNA molecule. 
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Another simulation was carried out in  [184] , wherein the effect of different 

microfluidic channel structures on the transport of DNA was studied. Using a channel 

with a slotted structure, it was observed that the transported DNA could travel in a fast 

mode using the bulk of the solution, or along the slotted surface in a slower fashion that 

depends on the length of the DNA. This can be used in electrophoresis chambers for 

higher separation yield of DNA fragments of differing lengths. The simulations carried 

out here were a combination of mean-field Poisson’s equation and a coarse-grained 

molecular-dynamics level simulation of the DNA molecules. In a similar study  [185] , a 

simplified model for DNA electrophoresis through a porous membrane was studied. The 

effect of the pore sizes and the DNA length on the quality of the separation was deduced 

using this simulation. 

Hydrodynamic simulations can also be used to help with the design of stable and 

reliable microfabricated reference electrodes. By using novel materials such as 

nanoporous membranes or other coatings, the diffusion process can be limited to 

potential-determining ions, while other ions are prevented. This causes a more stable 

potential on the reference electrode. Simulations can be used to study the effect of the 

electrode of choice, pore size, and distribution on the performance of the electrode. Thus, 

every aspect of the design of the biosensor can benefit from physical modeling, and such 

models will help guide the design and fabrication of the most stable integrated lab-on-

chip. 
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