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Abstract

Mathematical modelling has become a powerful tool used to predict the

spread of infectious diseases in populations. Successful analysis and modelling

of historical infectious disease data can explain changes in the pattern of past epi-

demics and lead to a better understanding of epidemiological processes. The lessons

learned can be used to predict future epidemics and help to improve public health

strategies for control and eradication.

This thesis is focused on the analysis and modelling of smallpox dynamics

based on the weekly smallpox mortality records in London, England, 1664-1930.

Statistical analysis of these records is presented. A timeline of significant historical

events related to changes in variolation and vaccination uptake levels and demo-

graphics was established. These events were correlated with transitions observed in

smallpox dynamics. Seasonality of the smallpox time series was investigated and

the contact rate between susceptible and infectious individuals was found to be sea-

sonally forced. Seasonal variations in smallpox transmission and changes in their

seasonality over long time scale were estimated. The method of transition analysis,

which is used to predict qualitative changes in epidemiological patterns, was used

to explain the transitions observed in the smallpox time series. We found that the

standard SIR model exhibits dynamics similar to the more realistic Gamma dis-

tributed SEIR model if the mean serial interval is chosen the same, so we used the

standard SIR model for our analysis. We conclude that transitions observed in the

temporal pattern of smallpox dynamics can be explained by the changes in birth,

immigration and intervention uptake levels.



This thesis is dedicated to my father, who nourished my curiosity in

science and encouraged my pursuit of a Ph.D. degree.
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Chapter 1

Introduction

Infectious diseases are among the leading causes of death in the world, contributing

an overwhelming 15 million deaths each year to global human mortality (WHO,

2004). Even when a person survives an infection, decreased productivity, risk

of morbidity and diminished quality of life pose a great burden on society. De-

spite high-tech innovations in the modern era, great improvements in sanitation and

health care, tremendous research efforts made in the virology and epidemiology

of infectious diseases, and great advances in treatment and prevention of infec-

tious diseases, we still cannot prevent most infections. So far only one disease

– smallpox – out of thousands of infectious diseases affecting humans, has been

eradicated. Newly emerging diseases (SARS, West Nile virus, Ebola) and previ-

ously suppressed diseases (cholera, malaria, tuberculosis, E.coli, etc.) are currently

on the rise (WHO, 1996). At the same time the possibility of a biological attack

that could involve some of the deadliest viruses (smallpox, anthrax, plague) poses

additional threats. Therefore, now more than ever, research dedicated to a greater

understanding of infectious diseases is extremely valuable.

Mathematical models have become an effective tool that is extensively used

to explain invasion and spread of infectious diseases through populations. Vari-

ous deterministic and stochastic models have been developed to capture the main

1
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characteristics of disease dynamics and have contributed enormously to the selec-

tion and implementation of optimal control measures (Anderson and May 1991;

Hethcote 2000).

The birth of epidemiological modelling is often attributed to the work of

Daniel Bernoulli, who developed a differential equation model to evaluate the im-

pact of variolation on public health, and argued that it would increase a person’s

life expectancy by about three years (Bernoulli 1766; Blower and Bernoulli 2004;

Dietz and Heesterbeek 2000, 2002). Since the introduction of this first model the

area of study of infectious diseases through mathematical modelling has advanced

immensely (Hethcote 2000): from the work of Hamer on measles epidemics and his

introduction of the “law of mass action” to reflect the contact between individuals

(Hamer 1906a,b,c); to the work of Sir Ronald Ross on malaria models (Ross 1911);

to the work of Kermack and McKendrick, who formulated the notion of epidemic

threshold - a critical density of susceptibles in a population for an epidemic to oc-

cur (Kermack and McKendrick 1927); to the stochastic models of Soper (Soper

1929), Barlett (Bartlett 1957a, 1960) and Bailey (Bailey 1964, 1975); to the exten-

sive study of various models by Anderon and May (Anderson and May 1991); to the

sophisticated present-day models that incorporate age structure, social and spatial

structure of modern society, as well as various scenarios of public health interven-

tions (Bozzette et al. (2003a); Kaplan et al. (2003); Burke et al. (2006); Riley and

Ferguson (2006), Longini et al. (2007); Glasser et al. (2008) just to name a few).

The most standard models used to describe the course of an epidemic are

the Susceptible–Infectious–Recovered and Susceptible–Exposed–Infectious–Reco-

vered models, or in short the SIR and SEIR models (Anderson and May 1991;

Kermack and McKendrick 1927). These models are widely used and extremely

popular among researchers because of their simplicity for mathematical analysis,

easy implementation and effectiveness. Incorporation of seasonal forcing into the

models (i.e. that the contact rate between individuals varies seasonally) allows for
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the analysis of the complex dynamics of the recurrent epidemics (London and Yorke

1973; Olsen and Schaffer 1990).

The temporal structure of recurrent epidemics varies significantly across

times and places, and among diseases (London and Yorke (1973); Anderson and

May (1991); Earn et al. (1998); Earn et al. (2000a); Grenfell et al. (2001); Bauch

and Earn (2003b)). For example, the New York City (NYC) measles time series

(1928–1972), which has been investigated using numerous mathematical models

(London and Yorke (1973); Yorke and London (1973); Olsen and Schaffer (1990);

Bolker and Grenfell (1993); Earn et al. (2000a); Bauch and Earn (2003a,b), and

also analyzed in Chapter 2), shows transitions from a 2–3-year cycle to a strictly

biennial cycle and then to a 3–4 year cycle. One of the goals of mathematical

modelling is to predict and explain such changes in the historical incidence patterns

of infectious diseases. The ability to predict the timing of the transitions from one

type of periodic structure to another can lead to a better understanding of the nature

of these transitions and provide a valuable insight about the factors that cause the

spread of epidemics in populations. As a consequence, the knowledge obtained can

be helpful in predicting current epidemics and in improving public health strategies

for control and eradication.

The main goal of the current research is to analyze and model smallpox dy-

namics in historic London, England over almost three centuries. The method of

transition analysis introduced by Earn and colleagues (Earn et al. (2000a); Bauch

and Earn (2003a,b)) is used to predict and explain changes observed in the tem-

poral pattern of smallpox time series. Transition analysis was designed to predict

qualitative changes in epidemic dynamics induced by demographic and behavioural

changes in the host population. Previously, this analysis was performed with the

seasonally forced SIR and SEIR models. One implicit assumption built into the

SIR-type models is that the lengths of time individuals spend in each disease stage

(latent and infectious) are exponentially distributed. While this assumption sim-
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plifies the mathematics it does not correspond to reality, where the distributions of

the infectious and latent stages are narrow and do not resemble exponentials. We

propose to use more realistic Gamma distributed SIR and SEIR models. In Chap-

ter 2 we revisit the method of transition analysis and investigate how the shape of

the disease stage distributions affects predictions of this method. As an illustrative

example, we apply the transition analysis to the well-known weekly NYC measles

incidence time series (Yorke and London 1973). In Chapter 5 we use transition

analysis to explain changes in smallpox dynamics in London, 1664-1930.

The study of epidemic patterns would not be possible without access to his-

torical incidence or disease mortality records. Available outbreak data, including

some recent individual-based records, create a myriad of puzzles to be solved by

mathematical modellers, e.g., why some infectious disease exhibit rare outbreaks

with extinction and re-emergence (e.g. 17th century plague in London) and some

show recurrent epidemics (e.g. measles in NYC), why epidemic patterns change

from place to place and from time to time, etc. (Earn 2009). Moreover, the data

are absolutely necessary for model validation and estimation of parameter values.

Analysis of published records that cover relatively short periods of time (up to 100

years) have allowed researches to make many interesting discoveries (Anderson and

May 1991; Bartlett 1957a; Earn et al. 2000a; Fine and Clarkson 1982). However

longer data sets, which could potentially lead to a deeper understanding of epidemi-

ological processes, have not been accessible. Recently, the weekly London Bills of

Mortality spanning over three centuries were digitized at McMaster University by

the Earn’s research group. This rich data set provides a unique opportunity to study

historical records of many infectious diseases. Note that, while data from the Lon-

don annual bills were previously available, they did not provide the same level of

detail. We are particularly interested in the study of smallpox epidemics, which

are likely to be among the most accurate records in the bills due to the unique and

easily identifiable presentation of the disease.
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Smallpox, almost forgotten now, was considered to be one of the most ter-

rifying infectious diseases because of its high mortality and morbidity rate (Fenner

et al. 1988). During its circulation, smallpox caused devastation, killing thousands

of people each year and often leaving its survivors scarred or disabled for life. Some

historians have even argued that this disease was responsible for events that changed

the course of human history (Hopkins 1983; Macaulay 1866; McNeill 1998; Razzell

1977). For example, the outcome of the war between the native population of Mex-

ico and Cortez’s army during the Spanish invasion of the 16th century was decided

after the introduction of smallpox to the previously unexposed populations of the

Aztec and Inca civilizations. The virus killed nearly half of the native population in

less than six months.

Chapters 3, 4 and 5 are devoted to an in-depth analysis of the London

smallpox mortality time series. Detailed statistical analysis of the data is presented

in Chapter 3. First we investigate the history of smallpox to get a better under-

standing of how the disease spreads among populations. In particular, we discuss

the origin and early history of smallpox, the invention of various preventative mea-

sures and the story of its eventual eradication. We also describe the natural history

of smallpox infection, which is necessary to understand for further modeling work.

Since our data set was specifically collected from London we outline the history

of smallpox in England. This allows us to establish a timeline of important histor-

ical events related to implementation of control measures, population movement,

wars, etc., which may have influenced smallpox dynamics. Using standard statis-

tical tools we analyze and describe the temporal pattern of smallpox epidemics.

We are also able to correlate the established timeline with the observed changes in

smallpox dynamics.

The analysis of the seasonal structure of smallpox time series performed

in Chapter 3 suggested the presence of seasonality in the observed data. Since

seasonal variation in the infectious disease transmission is a key driver of epidemic
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dynamics (London and Yorke 1973), in Chapter 4 we estimate the amplitude and

the seasonal pattern of the smallpox transmission rate from the smallpox time series.

In order to do so we develop a simple and computationally efficient method that

allows us to estimate seasonality of the transmission rate for long data sets, such as

the London smallpox time series.

Chapter 5 of this thesis attempts to determine if demographic and behav-

ioral changes can explain the transitions observed in the temporal pattern of small-

pox epidemics in London. By applying the method of transition analysis to the

smallpox mortality data we investigate if the changes in the rate of susceptible re-

cruitment in the population could have triggered observed transitions in smallpox

dynamics.

A summary of our major results and future research directions are presented

in Chapter 6.

Chapters 2, 3, 4 and 5 are preliminary versions of independent papers that

are intended to be submitted for publication. They are therefore formatted as sepa-

rate papers.



Chapter 2

Effects of the infectious period

distribution on predicted transitions

in childhood disease dynamics

Abstract

The population dynamics of infectious diseases occasionally undergo rapid quali-

tative changes, such as transitions from annual to biennial cycles or to irregular dy-

namics (Anderson and May 1991; Olsen and Schaffer 1990). Previous work based

on the standard seasonally forced SEIR (susceptible, exposed, infectious, removed)

model has found that transitions in the dynamics of many childhood diseases result

from bifurcations induced by slow changes in birth and vaccination rates (Bauch

and Earn 2003b; Earn 2009; Earn et al. 2000a). However, the standard formulation

of the SIR and SEIR models assumes that the stage durations (infectious and latent

periods) are exponentially distributed; while mathematically convenient, the expo-

nential distribution is far from the biological reality of narrow distributions centred

around the mean. Much recent work has indicated that realistically distributed stage

durations strongly affect the dynamical structure of the seasonally forced SIR model

(Black and McKane 2010a; Conlan et al. 2010; Keeling and Grenfell 2002; Lloyd

7
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2001a,b; Nguyen and Rohani 2008; Wearing et al. 2005). We investigate whether

inferences drawn from analyses of epidemiological transitions based on the SIR

and SEIR models are robust to the shapes of the stage duration distributions. We

find that with a fixed mean infectious period in the SIR model, the dynamical struc-

ture (and predicted transitions) vary substantially as a function of the shape of the

infectious period distribution. In contrast, with fixed mean latent and infectious pe-

riods in the SEIR model, the shapes of the stage duration distributions have a less

dramatic effect on model dynamical structure and predicted transitions. Finally, we

find that all these results can be understood most easily by considering the distribu-

tion of the disease generation interval, as opposed to the distributions of individual

disease stages. For a given mean generation interval, the dynamics of the SIR and

SEIR are nearly equivalent and are very insensitive to the shapes of the disease

stage distributions.

Keywords: SIR model, Gamma distribution, Erlang distribution, ordinary

differential equations, delay differential equations, bifurcation theory, serial interval

2.1 Introduction

Mathematical modelling has proven to be an extremely powerful tool for under-

standing epidemiological patterns and predicting how demographic changes and

control measures influence infectious disease dynamics (Anderson and May 1991;

Earn 2009; Hethcote 2000). The most commonly used framework for modelling

transmission dynamics involves dividing the population into compartments based

on disease status and using ordinary differential equations (ODEs) to specify flows

between the compartments. For diseases that confer permament immunity, the sim-

plest case is the SIR model (Anderson and May 1991; Kermack and McKendrick

1927), in which the compartments represent Susceptible, Infectious and Removed

individuals, while the SEIR model also includes an Exposed compartment, contain-
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ing individuals who are in a latent stage (infected but not yet infectious). These

simple models implicitly assume that the time an individual spends in each disease

stage (e.g., latent or infectious) is drawn from exponential distributions (Brauer

2008; Hethcote 2000), which are unlike real distributions of disease stage dura-

tions.

The dynamical effects of exponential versus more realistic distributions of

stage durations have been explored extensively in the literature (Lloyd (2001a,b);

Keeling and Grenfell (2002); Wearing et al. (2005); Nguyen and Rohani (2008);

Black and McKane (2010a); Conlan et al. (2010)), which has revealed that chang-

ing the shapes of these distributions while keeping their means fixed can have a

large impact on predicted dynamics. Consequently, it is important to re-evaluate

any inferences drawn about real data from models that assume exponentially dis-

tributed stage durations. In this paper we will investigate how the shapes of latent

and infectious period distributions affect our predictions concerning epidemiolog-

ical transitions (e.g., from annual to biennial epidemic cycles) and compare our

results with conclusions previously made based on bifurcation theory applied to

exponentially distributed models (Bauch and Earn 2003a,b; Earn et al. 2000a).

The shapes of real distributions of disease stage durations

Many authors have estimated infectious period distributions by fitting standard

probability distributions (e.g., Normal (Bailey 1956a,b; Gough 1977), Log-normal

(Nishiura 2007a; Nishiura and Eichner 2007), Gamma (Eichner and Dietz 2003;

Wearing et al. 2005) or Fixed (Bailey 1956a,b)) to empirical data. For transmission

modelling, a Gamma distribution with an integer shape parameter—also known as

an Erlang distribution—is strongly preferred on theoretical grounds: the Erlang

distribution is equivalent to a sequence of independent and identically distributed

exponential distributions (Anderson and Watson 1980; Bailey 1964; Lloyd 2001a;

Ma and Earn 2006), so compartmental transmission models with Erlang-distributed
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stage durations can be expressed as ODEs (as opposed to the integro-differential

equations required to express compartmental models with arbitrarily distributed

stage durations).

The Erlang distribution with shape parameter n and scale parameter nγ,

Erlang(n, nγ), has probability density

f (x; n, nγ) =
(nγ)n

(n− 1)!
x(n−1)e−nγx, x > 0, n ∈ N. (2.1)

The mean is 1/γ and the variance is 1/nγ2.

The Erlang distribution is more restricted in shape than the general Gamma

distribution, but it is sufficiently flexible to provide a good approximation of realis-

tic stage duration distributions. Figure 2.1 shows the probability density function

of the Erlang distribution with mean 1
γ

= 13 days (dashed vertical line) and various

shape parameters (n = 1, 2, 3, 5, 8, 20, 100).

We write SInR and SEmInR to refer to the Erlang distributed SIR and SEIR

models, where m and n refer to the shape parameters of the latent and infectious

period distributions, respectively. Thus SI1R (n = 1) and SE1I1R (m = 1, n = 1)

denote the standard SIR and SEIR models with exponentially distributed latent and

infectious periods. Estimated values of n and m can be inferred from appropriate

clinical data and vary widely for different infectious diseases, e.g., m = 2, n = 3

for SARS and m = 20, n = 20 for measles (Wearing et al. 2005).

Dynamics of epidemic models with Erlang-distributed stage du-

rations

In the past 20 years, the SInR and SEmInR models—and other more general models—

have received a great deal of attention. Equilibrium stability analyses have been

conducted on “unforced” models that assume constant contact rates (Feng and

Thieme 2000a,b; Hethcote and Tudor 1980; Lloyd 2001a,b; Zhang et al. 2008),
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Figure 2.1: Probability density functions for Erlang distributions with mean of 13 days (ver-
tical dashed line) and shape parameter n (equation (2.1)). Note that n = 1
yields the exponential distribution and n → ∞ yields the Dirac delta distribu-
tion.

and bifurcation analyses have been conducted on “forced” models in which con-

tact rates vary seasonally (Black and McKane 2010a; Conlan et al. 2010; Grossman

1980; Keeling and Grenfell 2002; Lloyd 2001a,b; Nguyen and Rohani 2008; Wear-

ing et al. 2005). Lloyd (2001b) found that the biennial pattern observed in the SI1R

model is reproduced by the SInR model but with much weaker seasonality.
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Nguyen and Rohani (2008) found that complex dynamics of whooping cough could

be understood based on the multiple co-existing attractors of an SE1I5R model,

whereas the simple SE1I1R model with the same parameter values always predicts

an asymptotically annual cycle. Wearing et al. (2005) argued that the traditional

assumptions of exponentially distributed latent and infectious periods may lead to

underestimation of the basic reproduction number, R0, and hence to underestima-

tion of the levels of control required to curtail an epidemic.

The primary theme of recent work on SInR and SEmInR models has been

that the shapes of stage duration distributions can significantly affect the qualitative

dynamics of infectious diseases. Given this, it is important to re-examine previous

work that has attempted to explain observed disease dynamics based on SI1R or

SE1I1R models, and determine whether the conclusions of these previous studies

remain valid when the analyses are repeated using models with more realistically

distributed stage durations. Our particular focus in this paper is on epidemiological

transition analysis, by which we mean predicting qualitative changes in epidemic

dynamics induced by demographic and behavioural changes in the host population

(Bauch and Earn 2003b; Earn 2009; Earn et al. 2000a). As an illustrative example,

we analyze measles incidence in New York City for the period 1928–1972, which

was first investigated by London and Yorke (London and Yorke 1973; Yorke and

London 1973) and has been the subject of numerous studies over the last 40 years

(Bauch and Earn 2003b; Bolker and Grenfell 1993; Earn et al. 2000a; Olsen and

Schaffer 1990).

We begin by describing the SInR and SEmInR models in Section 2.2 and

the method of transition analysis in Section 2.3. In Section 2.4 we apply transition

analysis, based on SInR and SEmInR models, to measles dynamics in New York

City from 1928 to 1972. We consider the role of the distribution of the disease

generation interval (as opposed to the latent and infectious periods) in Section 2.5

and summarize our results in Section 2.6.
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2.2 Models

2.2.1 SI1R and SE1I1R

Assuming the population is large and homogeneously mixed, the (unforced) SI1R

model can be cast as a simple system of nonlinear ordinary differential equations

(Anderson and May 1991; Kermack and McKendrick 1927):

dS

dt
= Φ− βSI − µS , (2.2a)

dI

dt
= βSI − γI − µI , (2.2b)

dR

dt
= γI − µR . (2.2c)

Here, S, I and R are the numbers of susceptible, infectious, and recovered (im-

mune) individuals in the population. The µ, β and γ are the rates of per capita

death, transmission and recovery, respectively. µ quantifies death from “natural

causes” (disease-induced mortality is assumed to be negligible). Φ denotes the

number of births per unit time, which is often time-dependent in practice (He and

Earn 2007). If Φ = µN , where N = S + I + R is the total population size,

then births balance deaths and the population size remains constant. β is the rate at

which contacts between susceptible and infectious individuals cause new infections

(per susceptible per infected), so βSI is the number of new infections that occur per

unit time (the incidence rate). Note that equations (2.2a) and (2.2b) do not depend

on R. Therefore they completely specify the system dynamics and equation (2.2c)

can be ignored.

For our purposes, the birth term (Φ) is particularly important because secular

changes in this term can induce dynamical transitions (Bauch and Earn 2003a,b;

Earn 2009; Earn et al. 2000a). We estimate Φ based on demographic data and do

not assume that it scales with population size (e.g., we do not assume Φ = µN ).

Nevertheless, it is convenient to express Φ in units that are similar to those of the



14 Ph.D. Thesis - Olga Krylova

per capita death rate µ. We therefore write Φ = νN0, where N0 is the population

size at a particular “anchor time” t0 (see also Section 2.3.2). ν represents births per

capita at time t0, but not at other times. We rewrite equation (2.2) as

dS

dt
= νN0 − βSI − µS , (2.3a)

dI

dt
= βSI − γI − µI , (2.3b)

dR

dt
= γI − µR . (2.3c)

A fundamental characteristic of an infectious disease is its basic reproduc-

tion number, R0, which is defined as the mean number of susceptible individuals

infected by one infectious individual in a completely susceptible population (An-

derson and May 1991). This number determines whether the infection dies out

(R0 < 1) or spreads (R0 > 1) in a population. For the SI1R model,

RSI1R
0 =

νN0

µ

β

γ + µ
. (2.4)

The first factor here (νN0/µ) does not normally appear in formulae for R0 because

it is typically assumed that births balance deaths, and the population size is typically

absorbed into the transmission rate β. We assume that ν changes slowly enough that

it can be regarded as constant for the purposes of defining R0 at a given time.

The SI1R model can easily be extended to the SE1I1R model, which includes

a latent stage, by replacing equation (2.3b) with the two equations:

dE

dt
= βSI − σE − µE , (2.5a)

dI

dt
= σE − γI − µI . (2.5b)

The latent period is defined to be the time from initial infection to becoming infec-

tious. In equations (2.5a) and (2.5b) E represents the number of exposed individ-
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uals (individuals in the latent stage). For the SE1I1R model, the basic reproduction

number is

RSE1I1R
0 =

νN0

µ

βσ

(σ + µ)(γ + µ)
. (2.6)

In the standard SI1R and SE1I1R formulation (equations (2.3) and (2.5)),

the lengths of the latent and infectious stages are exponentially distributed. To see

this, suppose that during the infectious stage the only process occurring was recov-

ery from infection. Then equation (2.3b) would reduce to dI/dt = −γI , which

implies that the distribution of time spent in the infectious class (the infectious pe-

riod) is exponential with mean 1/γ (if I0 individuals are infectious at time 0 then

I0e
−γt are still infectious at time t). Similarly the latent period is exponentially

distributed with mean 1/σ.

2.2.2 SInR and SEmInR

Arbitrarily distributed stage durations can be included into SIR and SEIR mod-

els via integro-differential equations (Feng and Thieme 2000a; Hethcote and Tu-

dor 1980; Ma and Earn 2006). Unfortunately, the resulting dynamical systems

are mathematically and computationally difficult to study. To avoid the complica-

tions involved with integro-differential equations, most research on epidemic mod-

els with non-exponentially distributed stage durations has restricted attention to a

convenient class of realistic (but not arbitrary) distributions, namely Gamma distri-

butions with integer shape parameter (also known as Erlang distributions) (Ander-

son and Watson 1980; Bailey 1964; Lloyd 2001a; Ma and Earn 2006). The idea

is to exploit the fact that the sum of a sequence of independent exponentially dis-

tributed random variables is Gamma distributed (Therrien and Tummala 2011). If

we break up the infectious stage into a sequence of n substages, each exponentially

distributed with mean 1/(nγ), then the full infectious period distribution will be the

Erlang distribution with shape parameter n and scale parameter nγ, Erlang(n, nγ).
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The resulting SInR model can then be represented by a simple system of ODEs:

dS

dt
= νN0 − βSI − µS , (2.7a)

dI1

dt
= βSI − (nγ + µ)I1 , (2.7b)

dI2

dt
= nγI1 − (nγ + µ)I2 , (2.7c)

...

dIn

dt
= nγIn−1 − (nγ + µ)In , (2.7d)

and the basic reproduction number is (Feng et al. 2007)

RSInR
0 =

νN0

µ

β

nγ + µ

n−1∑
j=0

(
nγ

nγ + µ

)j

. (2.8)

Note that the number of individuals in the infectious stage (I) is the sum of all

individuals currently in each infectious substage,

I =
n∑

j=1

Ij . (2.9)

Division into n subclasses is purely a mathematical device and has no biological

meaning.

The two extreme cases of the SInR model occur for n = 1, in which case

the model reduces to the standard SI1R model (equation (2.3)), and the limit as

n → ∞, which yields a fixed infectious period of τ = 1/γ (equation (2.1), see

also Figure 2.1), (i.e., the infectious period has a Dirac delta distribution δ(t− τ):

all individuals who become infectious at time t recover at exactly time t+τ ). In this

limit, the system becomes a delay differential equation, which can be seen directly

as follows. Since the incidence rate at time t is β(t)S(t)I(t) and the probability

that an individual alive at time t survives to time t + τ is e−µτ (Hethcote and Tudor

1980), the recovery rate at time t is β(t−τ)e−µτS(t−τ)I(t−τ). Thus, in the limit
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n →∞, the SInR model approaches the system

dS

dt
= νN0 − β(t)S(t)I(t)− µS(t) , (2.10a)

dI

dt
= β(t)S(t)I(t)− β(t− τ)e−µτS(t− τ)I(t− τ)− µI(t) , (2.10b)

dR

dt
= β(t− τ)e−µτS(t− τ)I(t− τ)− µR(t) . (2.10c)

We obtain the SEmInR model (with mean latent period τE = 1/σ and mean infec-

tious period τI = 1/γ) by subdividing the exposed class into m subclasses (Keeling

and Grenfell 2002; Nguyen and Rohani 2008),

dS

dt
= νN0 − βSI − µS , (2.11a)

dE1

dt
= βSI − (mσ + µ)E1 , (2.11b)

dE2

dt
= mσE1 − (mσ + µ)E2 , (2.11c)

...

dEm

dt
= mσEm−1 − (mσ + µ)Em , (2.11d)

dI1

dt
= mσEm − (nγ + µ)I1 , (2.11e)

dI2

dt
= nγI1 − (nγ + µ)I2 , (2.11f)

...

dIn

dt
= nγIn−1 − (nγ + µ)In . (2.11g)

In the limit that m → ∞ and n → ∞ we obtain the delay differential equation

(Keeling and Grenfell 2002),
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dS

dt
= νN0 − β(t)S(t)I(t)− µS(t) , (2.12a)

dE

dt
= β(t)S(t)I(t)− β(t− τE)e−µτES(t− τE)I(t− τE)− µE(t) , (2.12b)

dI

dt
= β(t− τE)e−µτES(t− τE)I(t− τE)− (2.12c)

− β(t− τI)e
−µτIS(t− τI)I(t− τI)− µI(t) , (2.12d)

dR

dt
= β(t− τI)e

−µτIS(t− τI)I(t− τI)− µR(t) . (2.12e)

For the SEmInR modelR0 can be computed by the following formula (Feng

et al. 2007):

RSEmInR
0 =

νN0

µ

(
mσ

mσ + µ

)m
β

nγ + µ

n−1∑
j=0

(
nγ

nγ + µ

)j

. (2.13)

Note that the basic reproduction number is the product of the mean transmission rate

and the mean duration of infectiousness. Altering the distribution of the infectious

period alters the probability that an infectious host will die before transmitting. This

death-delay interaction changes the mean duration of infectiousness, which results

in the differences in the formulae for R0 above. For diseases of short duration such

as measles and smallpox, the mean host lifetime is much longer than the duration

of infectiousness. Consequently, µ � σ and µ � γ, so R0 can always be written:

R0 ≈
νN0

µ

β

γ
. (2.14)

2.2.3 Seasonal forcing

Exponential distribution of disease stage durations is one unrealistic assumption

used in standard SIR-type models. Another is treating the transmission rate β as

a constant. More realistic seasonally forced models are implemented by allowing
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the transmission rate to vary periodically with a period of one year. The two most

commonly used seasonal patterns are sinusoidal forcing (Aron and Schwartz 1984;

Grossman 1980; Keeling and Grenfell 2002; Olsen and Schaffer 1990),

β(t) = β0(1 + α cos (2πt)) , (2.15)

with mean β0 and amplitude α (0 ≤ α ≤ 1) and term-time forcing (Bauch and

Earn 2003b; Earn et al. 2000a; Finkenstadt and Grenfell 2000; Keeling and Grenfell

2002; Nguyen and Rohani 2008; Schenzle 1984)

β(t) =

 βH school days,

βL non-school days,
(2.16)

where βH > βL (the transmission rate is high when school is in session and low

otherwise). Earn et al. (2000a) found that the qualitative dynamics of the term-time

forced SE1I1R model are essentially equivalent to the dynamics of the sinusoidally

forced SE1I1R model but with lower seasonal amplitude, α. The same is true for the

SI1R model. Since our focus is on qualitative dynamics, we use sinusoidal forcing

for simplicity.

In the next section (Section 2.3) we will discuss in detail the transition

analysis used to predict changes in the qualitative pattern of infectious disease time

series. In Section 2.4, we use the Erlang distributed SInR and SEmInR models

described above to understand how the shape of the stage duration distributions

influences predictions of transition analysis.
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2.3 Predicting epidemiological transitions

Many infectious disease time series display occasional, rapid changes in qualitative

dynamics, such as transitions from annual to biennial cycles or to irregular dynam-

ics (Anderson and May 1991; Olsen and Schaffer 1990). Previous work has shown

that these transitions appear to be driven by demographic and behavioural changes

since they induce bifurcations in the SE1I1R model (Bauch and Earn 2003b; Earn

2009; Earn et al. 2000a). We would like to know whether the qualitative infer-

ences made previously based on the SE1I1R model remain valid when the analysis

is repeated with more realistic SEmInR models.

Earn et al. (2000a) used the SE1I1R model to show that knowing the changes

in birth and vaccination rates—or, more generally, changes in the rate at which

susceptible individuals are recruited into the population—it is possible to predict

the occurrence of bifurcations that change the period of epidemic cycles. We briefly

revisit that argument here in the more general context of the SEmInR model.

2.3.1 Theoretical motivation for transition analysis

In equation (2.11a), the term (ν) was formulated as the birth rate but can be thought

of more generally as the susceptible recruitment rate. Suppose that this rate changes

to ν ′, which might occur because the birth rate has changed or because we have

begun to vaccinate a proportion p of the population (in which case ν ′ = ν(1−p)). To

understand the dynamical effect of this change from ν to ν ′, consider the following

simple change of variables:

S ′ =
ν

ν ′
S , E ′

j =
ν

ν ′
Ej , I ′k =

ν

ν ′
Ik , for 1 ≤ j ≤ m, 1 ≤ k ≤ n. (2.17)

If we insert these expressions in equation (2.11) and solve for the equations
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for the primed variables we obtain, for example,

dS ′

dt
= νN0 − β

ν ′

ν
S ′I ′ − µS ′ . (2.18)

That is, the equations for the primed variables are identical to the original equations

(with the original susceptible recruitment term ν), but with the transmission rate

changed from β to βν ′/ν. Thus the dynamical effect of a change in susceptible

recruitment by a given factor is identical to the dynamical effect of changing the

transmission rate by exactly that factor,

ν → ν ′

ν
=⇒ β → β

ν ′

ν
and R0 → R0

ν ′

ν
. (2.19)

Consequently, we can use a bifurcation diagram with the transmission rate β, or

equivalently the basic reproduction number R0 (since R0 is proportional to β),

as the control parameter to predict transitions in dynamical behaviour induced by

changes in susceptible recruitment rate. Figure 2.2 shows such a bifurcation dia-

gram based on the sinusoidally forced SI1R model (equation (2.3)) with parameters

chosen to correspond to measles (and with an estimated value of R0 = 17 at some

given time, say t0, marked with a dotted vertical line). If the susceptible recruit-

ment rate was ν0 at time t0 and ν1 at time t1 then we would predict that at time t1

the system would behave as if the basic reproduction number had changed by the

factor ν1/ν0, i.e. the effective reproduction number at time t, is

R0,eff = R0
ν1

ν0

. (2.20)

There is an important subtlety upon which our ability to predict transitions

depends critically. In the equation for dS/dt (equations 2.3a, 2.7a, 2.11a, 2.10a,

2.12a) the susceptible recruitment rate appears as a constant (ν does not depend

explicitly on time t or population size N ) and we use mass-action incidence (βSI)
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Figure 2.2: Asymptotic and perturbation analysis of the sinusoidally forced SI1R
model (2.3,2.15) parameterized for measles (γ−1 = 13 days, ν = 0.02 yr−1,
α = 0.08). The top panel (asymptotic analysis) shows the bifurcation diagram
for the model with control parameter R0. The ordinate shows the proportional
prevalence of infection at the start of each year, so annual cycles (black) are
indicated by a single point at each R0, biennial cycles (red) by two points,
triennial cycles (green) by three, and so on. Coloured curves correspond to sta-
ble cycles while grey curves indicate unstable cycles. A dotted vertical line is
drawn at R0 = 17, indicating the estimate of the basic reproduction number at
the “anchor time” t0. Two types of bifurcations occur in this diagram: period
doublings (also called pitchforks or flips) and tangent bifurcations (also called
folds or saddle-node bifurcations). The bottom panel shows the natural period
of damped oscillations (the transient period) onto each attractor, as described
in step 2 of §2.3.2. The transient period curves are coloured according to the
corresponding attractor in the top panel. The grey line indicates a region where
the annual cycle is unstable.

rather than standard incidence (βSI/N ). If the susceptible recruitment term were

taken to be νN rather than νN0, and we were to use standard incidence then the
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variable change in equation (2.17) would have no effect (the differential equa-

tions are invariant to the scaling transformation given by equation (2.17)) and we

would never predict dynamical transitions resulting from changes in the susceptible

recruitment rate. One can debate on theoretical grounds whether one model formu-

lation or another is most plausible biologically (Heesterbeek and Metz 1996); we

favour our formulation because it leads to correct predictions concerning dynami-

cal transitions (Bauch and Earn 2003b; Earn et al. 2000a). We are interested in the

effects of changes in ν over time, but the changes of interest occur slowly compared

with the epidemic time scale, which is why we can treat ν as constant in the dS/dt

equation.

2.3.2 The method of transition analysis

Given a time series of reported disease incidence or mortality (for a disease for

which we have estimates of the mean latent and infectious periods), a full transition

analysis proceeds as follows (Bauch and Earn 2003b; Earn et al. 2000a). First, in

order to clarify what needs to be explained, plot the disease time series together with

its estimated frequency structure at each time point (e.g., Fourier power spectra for

subsets of the full time series or, preferably, a wavelet spectrum for the full time

series (Bauch 2008; Grenfell et al. 2001)). Second, for some “anchor time” t0 in

the time series, obtain an estimate of the basic reproduction number R0, preferably

using data other than the focal time series (e.g., annual age-specific data (Anderson

and May 1991)). Third, estimate the susceptible recruitment rate ν at each point

of the disease time series and infer the effective reproductive number R0,eff at all

times by inserting the estimated ν values into equation (2.20) (where ν0 = ν(t0)

and ν1 = ν(t) for an arbitrary time t). Fourth, identify time intervals during which

ν is roughly constant (hence during which the dynamical features of the disease

time series can be expected to be approximately stationary). Finally, based on the

estimated value of R0,eff in each of the “dynamically stationary time intervals”,
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predict transitions in qualitative dynamical behaviour (e.g., changes in the structure

of the wavelet spectrum, especially the positions of peaks), as follows.

1. Asymptotic analysis (to identify the periods of attractors of the model, which

are reached asymptotically) (Earn et al. (2000a); Bauch and Earn (2003a,b);

Nguyen and Rohani (2008)): Construct a bifurcation diagram with R0 as the

control parameter, over a range of R0 that includes the value estimated for

time t0 and the full range of R0,eff determined via equation (2.20) (e.g., top

panel of Figure 2.2). From this diagram, we can easily infer the periods

of cyclical attractors of the system. We call these resonant periods because

they are exact subharmonics (i.e., integer multiples) of the period of seasonal

forcing (one year). (See Appendix 2.6 for a step-by-step guide to creating

diagrams like Figure 2.2 using XPPAUT (Ermentrout 2002).)

2. Perturbation analysis (to estimate the periods of the transients associated

with each attractor): Over the same range of R0 as in the asymptotic anal-

ysis, plot the periods of the transients associated with—i.e., the periods of

damped oscillations onto—each cyclical attractor (e.g., bottom panel of Fig-

ure 2.2). We call these non-resonant periods because they can take any real

value and are not entrained by seasonal forcing. Non-resonant periods may be

detected in observed epidemic time series because transients can be sustained

by demographic stochasticity (Bartlett 1957b; Bauch and Earn 2003b). Non-

resonant periods can be calculated by linearizing about the fixed points and

cycles of the model’s one-year-stroboscopic map (Bauch and Earn 2003a,b).

If the period of a given attractor is k and the dominant eigenvalue of the as-

sociated k-cycle of the stroboscopic map is λk (which is complex for typical

disease parameters) then the associated transient period is

Tk =
2πk

|Arg(λk)|
. (2.21)
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3. Stochastic analysis (to estimate the relative importance of transient versus

asymptotic dynamics): The wavelet spectrum has peaks at the most impor-

tant periods in the time series (which we attempt to predict with steps 1 and 2

above) but also shows the magnitude of the peaks, which cannot be estimated

by asymptotic and perturbation analysis of a deterministic model. The rel-

ative magnitudes of spectral peaks of observed time series can be estimated

from spectra of simulations of stochastic realizations of the model, with the

expectation that smaller population sizes (which are subject to greater de-

mographic stochasticity) will stimulate more transient dynamics, leading to

larger spectral peaks at non-resonant periods (Bauch and Earn 2003b; Earn

2009). Because the stochastic analysis addresses the details rather than the

main features of dynamical transitions, we do not conduct it in this paper

(though we make occasional reference to stochastic effects). We note, how-

ever, that understanding these details is an area of very active research, and

powerful analytical approaches for estimating power spectra for recurrent epi-

demic processes have been developed recently (Alonso et al. 2007; Black

and McKane 2010a,b; Lima 2009). Ultimately, a complete transition theory

would need to account for all the dynamical characteristics of stochastic epi-

demic models, which include alternation between asymptotic and transient

behaviour (Bauch and Earn 2003b), switching between different attractors

(Earn et al. 2000a; Schwartz and Smith 1983), phase-locked cycles at one

fixed period (He and Earn 2007) and interactions with repellors (Rand and

Wilson 1991).

In Section 2.4 we use the SInR and SEmInR models to conduct transition

analysis of the well known New York City measles time series (Yorke and London

1973). Our main question is: Do we predict different transitions if we base our

theoretical analysis on the SInR rather than the SI1R model, or the SEmInR rather
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than SE1I1R model?

Another question that we will address is: Can we approximate the dynamics

of the SEmInR model using the SInR model? This question is motivated by the fact

that the dynamics of the SE1I1R model can be approximated using the SI1R model.

It is well-known that the equilibrium and stability properties (e.g., the period of

damped oscillations onto the equilibrium) of the unforced SI1R and SE1I1R models

correspond if the mean infectious period in the SI1R model is associated with the

sum of the mean latent and mean infectious periods in the SE1I1R model (p. 668,

Anderson and May (1991)). The measles bifurcation diagram shown in Figure 2.2

for the sinusoidally forced SI1R model is virtually identical to the term-time forced

SE1I1R measles bifurcation diagram produced previously by Earn et al. (2000a).

Therefore, we analyze the SInR model with mean infectious period 1/γ = 13 days

(the sum of the real mean latent period of 8 days and the real mean infectious period

of 5 days for measles).

2.4 Transition analysis using SInR and SEmInR

models

In this section, we use the well-known measles incidence time series for New York

City (1928–1972) as an illustrative example with which to compare the results of

transition analysis using SInR and SEmInR models with stage duration distributions

varying from exponential to fixed. The New York City measles data were originally

digitized and studied by London and Yorke (London and Yorke 1973; Yorke and

London 1973). Previous transition analysis of these data (Bauch and Earn 2003b;

Earn et al. 2000a) has been restricted to the pre-vaccine period (up to 1963). Here,

we are able to extend our analysis to 1972 using vaccination data for 1963–1972

(see Appendix 2.6).
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2.4.1 Description of the data

Reported incidence and inferred frequency structure

The upper panel of Figure 2.3 shows monthly reported cases of measles in New

York City (together with estimated susceptible recruitment rate) and the lower panel

shows the frequency structure of the data over time as a wavelet spectrum. Two

spectral peaks are evident for the full duration of the time series, one at a period

of one year and a second at a period that changes over time (2–3 years from 1928

to about 1946, exactly 2 years from about 1946 to 1965, and 2–4 years from about

1965 to the end of 1972).

Estimated susceptible recruitment

Based on age-incidence and age-seroprevalence data for England and Wales (1950–

1968), the basic reproduction number for measles has been estimated to beR0 ' 17

in a pre-vaccination era (Anderson and May 1991, Figures 3.9 and 3.10, and Ta-

ble 4.1, p. 70). Since in New York City the birth rate was approximately the same

as in England and Wales (also in pre-vaccination era), we use this value as an esti-

mate for R0 in New York City in 1960, which we take to be our “anchor time” t0.

Measles vaccine was introduced in the United States in 1963 (CDC), so sus-

ceptible recruitment until 1963 can be taken to be associated entirely with births.

However, newborns do not enter the well-mixed susceptible pool immediately, for

two reasons: (i) maternally acquired immunity can take up to a year to wane (An-

derson and May 1991, p. 50), (ii) before entering pre-school, children typically have

much lower contact rates with other susceptibles. Hence the impact of changes in

birth rate on transmission dynamics is delayed, approximately by the time between

birth and entering the well-mixed susceptible pool. We took this delay, τS , to be 2

years, but our conclusions are not sensitive to this parameter (e.g., taking it to be

0 or 5 years makes little difference (light red/blue curves in Figure 2.3)). Notice
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Figure 2.3: Measles in New York City, 1928–1972. The upper panel shows monthly re-
ported measles incidence (black) and annual susceptible recruitment relative to
the population size in 1960 (red). Before the introduction of vaccination in
1963, annual susceptible recruitment coincided with annual births (blue). We
shift the recruitment curve forward by 2 years to account for the delay between
birth and entering the well-mixed population. Light red and light blue curves
show the susceptible recruitment rate without delay and with a delay of 5 years.
The line segments at the top of the upper panel highlight time intervals with dis-
tinct effective R0, calculated with equation (2.20). The lower panel shows the
wavelet power spectrum of the measles incidence time series (log-transformed
and normalized to unit variance). The white curves show the local maxima of
wavelet power (squared modulus of wavelet coefficients (Cazelles et al. 2008,
p. 291)) at each time. The dot-dashed curves indicate 95% confidence re-
gion, estimated from 1000 bootstrapped time series generated by the method of
(Cazelles et al. 2008, pp. 292–293). Below the “cone of influence” (Torrence
and Compo (1998);(Cazelles et al. 2008, p. 291)), the calculation of wavelet
power is less accurate because it includes edges of the time series that have been
zero-padded to make the length of the series a power of 2. The wavelet spec-
trum was computed using MATLAB code kindly provided by Bernard Cazelles
(Cazelles et al. 2007, 2008; Torrence and Compo 1998).
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that τS should be < 5 since the mean age at infection is 5 years (Anderson and May

1991, Fig. 8.1, p. 156). Thus, we take the susceptible recruitment rate in 1960 to be

the ratio of the number of births in 1958 (B(t0 − τS) = 167, 660) to the estimated

population of New York City in 1960 (N0 = 7, 781, 984), i.e., ν(t0) ' 0.02. At

other times t,

ν(t) =
B(t− τS)

N0

(
1− p(t− τS)

)
, (2.22)

where p(t) is the proportion of new recruits at time t who were vaccinated before

entering the well-mixed susceptible pool. Note in equation (2.22) that it is N0, not

N(t) that appears: recruitment is normalized relative to the population size at the

“anchor time” t0 (Earn et al. 2000a). After 1963, the susceptible recruitment rate is

substantially reduced by the introduction of vaccination (Figure 2.3).

The birth and measles vaccination data that we insert in equation (2.22)

are discussed in Appendix 2.6. The resulting annual susceptible recruitment rate is

shown in the top panel of Figure 2.3. There are three distinct periods during which

the recruitment rate was roughly constant: 1929–1946 with ν ≈ 0.015, 1950–1963

with ν ≈ 0.02, and 1966–1971 with ν ≈ 0.008. Therefore, from equation (2.20),

we estimate the effective reproduction number to be R0,eff ≈ 12 for 1928–1946,

R0,eff ≈ 17 for 1950–1963 and R0,eff ≈ 7 for 1966–1971.

2.4.2 Asymptotic and Perturbation analysis

Previous transition analyses of the New York City measles incidence time series

were based on the SE1I1R model with the mean latent and infectious periods τE = 8

days and τI = 5 days respectively (Bauch and Earn 2003b; Earn et al. 2000a). Given

data from which the full latent and infectious period distributions can be estimated

(rather than just their means), it would be sensible to fit Erlang distributions to

the actual stage duration distributions and begin the transition analysis from the

corresponding SEmInR model. For example, Wearing et al. (2005) used measles
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case data from Gloucestershire, UK, for the period 1947–51 (Hope-Simpson 1952)

to estimate τE = 8 days with the shape parameter m ≈ 20 and τI = 5 days with

the shape parameter n ≈ 20. Even in situations in which only the means of the

stage duration distributions can be estimated, an SEmInR model (with m > 1 and

n > 1) is likely to be a more accurate representation of reality than an SE1I1R

model. So, for example, Keeling and Grenfell (2002) considered an SEmInR model

with m = 8 and n = 5, i.e., one day on average in each latent and infectious

substage, as a reasonable improvement of the SE1I1R model.

Our primary question, however, is how the predictions of transition analysis

vary as a function of stage duration distribution and whether the previous transition

analyses based on the SE1I1R model have led us to correct or incorrect inferences.

We therefore consider the full range of Erlang distributions for the latent and infec-

tious periods and study the SEmInR model with 1 ≤ m ≤ ∞ and 1 ≤ n ≤ ∞.

Note that we chose the mean latent and infectious periods to be fixed (1/σ = 8

days; 1/γ = 5 days). Because our general goal is to evaluate the robustness of

dynamical inferences to model structure, we begin by analysing the simpler SInR

model with 1 ≤ n ≤ ∞.

Predictions of the SInR model

Asymptotic analysis

Figure 2.4 shows a sequence of SInR bifurcation diagrams for various val-

ues of the shape parameter (n = 1, 3, 10,∞) together with the corresponding distri-

butions of the infectious period (each with a mean of 13 days). Stable branches are

colour-coded according to the period of the attractor. Unstable branches are shown

in grey. The case n = 1 (top panel) is identical to the top panel of Figure 2.2. As n

increases from 1 to∞, each of the branches undergoes further bifurcations. Chaotic

attractors (superimposed in light grey) are evident for n = 10 and dominate for a

substantial range of R0 for n = ∞.
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Figure 2.4: SInR measles bifurcation diagrams as a function of R0 for several values of
the shape parameter of the infectious period distribution (n = 1, 3, 10, ∞),
with other parameters fixed (mean infectious period 1/γ = 13 days, birth rate
ν = 0.02/year, seasonal forcing amplitude α = 0.08). Colours represent at-
tractors with different periods. Light grey curves show unstable branches. Cir-
cles represent period doubling (flip) bifurcations while squares denote tangent
(saddle-node) bifurcations of the main branch. Dashed vertical lines highlight
R0,eff = 7, 12 and 17, which correspond to the estimated effective reproduc-
tion number for measles in New York City for the year ranges indicated, as in
Figure 2.3. Each right panel shows the corresponding probability distribution
of the infectious period and a box plot showing the 5%, 25%, 50%, 75% and
95% quantiles and the distribution; a vertical red line shows the mean infectious
period (13 days). (continued on the next page)
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Figure 2.4: For finite n, the bifurcation diagrams were computed using standard contin-
uation software (XPPAUT, Ermentrout (2002)), whereas the fixed-delay limit
(n = ∞) was computed by “brute force”, i.e., by numerical integration of the
delay differential equation (2.10) until convergence on an attractor; hence un-
stable branches are not shown in the limit n = ∞. Brute force bifurcation
diagrams were also computed for finite n to reveal regions of chaotic behaviour
which are also shown in light grey.

The vertical dashed dark grey line at R0 = 17 in Figure 2.4 corresponds

to the estimated basic reproduction number for the year t0 = 1960. The effec-

tive reproduction number is also estimated to be 17 throughout the 13 year period

t =1950–1963, since the birth rate did not change appreciably during this time and

measles vaccine was not yet invented. The other two vertical dashed grey lines at

R0 = 7 and R0 = 12 correspond, respectively, to the estimated effective repro-

duction number during the periods t =1928–1946 and t =1966–1971, as computed

from equations (2.20) and (2.22).

The bifurcation tree of the standard SI1R model (n = 1) shows a biennial

cycle for R0 = 17, coexistence of annual and triennial cycles for R0 = 12, and

coexistence of annual and 4- and 5-year cycles for R0 = 7. Hence, the model

correctly predicts the biennial pattern observed from 1950 to 1963 in New York

City, but appears at first sight to predict incorrectly that there are multiple coexisting

non-annual cycles at other times. However, in the ranges of R0 for which multiple

attractors coexist, and in particular forR0 = 12 andR0 = 7, stochastic simulations

spend almost all of their time in the basin of the annual attractor (Bauch and Earn

2003b). Thus, the resonant period of one year observed in New York City from

1928 to 1946 and from 1966 to 1971 is also consistent with the SI1R model.

Because of the series of bifurcations that occur rapidly as n is increased, the

SInR model for any n > 1 exhibits more complex dynamics than the SI1R model

and is harder to reconcile with the observed transitions in New York City measles.

More often than the SI1R model, the SInR model with n > 1 has coexisting long-
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period stable cycles that are not observed in practice. As with the SI1R model,

stochastic simulations can be expected to remain primarily in the vicinity of the

“primary” attractor, but unlike the SI1R model, the primary attractor of the SInR

with n > 1 often predicts the wrong resonant period for New York City measles.

For example, for n = 10, the dominant attractor for R0 = 17 has a period of four

years (not two years) and the dominant attractor for R0 = 12 has period two (not

one). In the presence of noise, the four year cycle may be difficult to distinguish

from a two-year cycle, but the predicted two-year cycle for R0 = 12 is nothing like

the measles data it ought to explain.

Perturbation analysis

Just as perturbing an orbit away from a stable equilibrium can induce tran-

sient, damped oscillations onto the equilibrium, perturbing an orbit away from a

periodic attractor can induce transient, damped oscillations onto the stable cycle.

Although more cumbersome to calculate for a non-equilibrium attractor (Bauch

and Earn 2003b), transient orbits in the vicinity of a periodic attractor have a well-

defined characteristic period of oscillation. Figure 2.5 summarizes the transient

dynamics of the SInR models for n = 1, 3 and 10. For each periodic attractor,

the non-resonant period, i.e. the period of damped oscillations onto the attractor,

is plotted on the y-axis as a function of R0. The curves are colour-coded accord-

ing to the colours of the corresponding attractors in Figure 2.4. Dotted grey lines

are used in ranges of R0 where the corresponding periodic orbits are unstable; in

these regions, the model displays phase-locked transient dynamics at the indicated

period (i.e., the transient period is fixed and is the same as the period of the stable

attractor), which is a prerequisite for a period-doubling bifurcation (He and Earn

2007).

In the case of the SI1R model, the non-resonant periods associated with

all the non-annual attractors are too long to be observable in the New York City

measles time series. The non-resonant period associated with the annual attractor
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does agree well with the wavelet spectrum shown in Figure 2.3. For the SInR

models with n > 1, the non-resonant periods associated with multi-year attractors

are shorter and often should be observable in principle. For example, forR0,eff = 12

the SI10R model (n = 10) predicts a transient period of 4.5 years. However, it is not

observed in the incidence power spectra (Figure 2.3). The lack of any indication of

non-resonant periods associated with non-annual attractors in the wavelet spectrum

for measles in New York City appears to cast further doubt on the usefulness of the

SInR model for measles.

Summary of SInR transition analysis

Overall, from the point of view of measles transition analysis, the SI1R

model is just as successful as the SE1I1R model studied previously (Bauch and

Earn 2003b; Earn et al. 2000a). However, the SInR model with n > 1 is far less

successful; as n increases the dynamical structure of the model becomes more and

more complex and the predicted resonant and non-resonant periods stray further

and further from the observed spectral peaks in the New York City measles time

series.

The upper panel of Figure 2.6 summarizes our asymptotic analyses of the

full sequence of SInR measles models (n = 1 to ∞) with a two-parameter (R0, n)

bifurcation diagram for the main branch of the bifurcation tree in Figure 2.4. The

boundaries of the colour-coded regions in Figure 2.6 correspond to the major bifur-

cation points highlighted with circles (for flips) and squares (for saddle-nodes) in

Figure 2.4. As n →∞ (i.e., as the infectious period distribution approaches a delta

function), the main branch of the bifurcation tree undergoes a period doubling cas-

cade in the grey region (R0 ∼ 12–15). The lower panel of Figure 2.6 also describes

the (R0, n) plane, but shows contours of constant non-resonant periods associated

with the annual cycle on the main branch (this is the most likely non-resonant pe-

riod to be observable since it is the shortest; see Figure 2.5). The hatched region is

characterized by phase-locked transient dynamics at a period of two years.
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Figure 2.5: Transient dynamics of the measles SInR model for n = 1, 3 and 5 as a function
of R0. This figure complements Figure 2.4. Each panel shows the transient
periods associated with the periodic attractors shown in the same colour in Fig-
ure 2.4 (e.g., the black curve shows the transient period associated with the
annual attractor). The light grey lines show ranges of R0 where the associated
periodic cycles exist but are unstable. Dashed vertical lines correspond to the
values of R0,eff = 7, 12 and 17. As in Figure 2.4, the right panels show the
associated infectious period distribution.

Note that because n is a discrete parameter it cannot be used as a continua-

tion parameter in XPPAUT, hence we had to resort to separate continuation analyses

for each n. The sequence of main-branch bifurcation diagrams that we constructed

for the SInR measles model (using 24 values of n from 1 to ∞) is shown in Ap-

pendix 2.6.
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Figure 2.6: Dynamical structure of the SInR model with a mean infectious period 1/γ = 13
days. Upper panel: Two-parameter (R0 vs n) bifurcation diagram correspond-
ing to the main branch of the one-parameter bifurcation diagrams shown in
Figure 2.4. Circles represent period doubling (flip) bifurcations while squares
denote tangent (fold) bifurcations as in Figure 2.4. Regions of different colours
indicate different asymptotic dynamics on the main branch: a single annual
attractor (dark grey), a single biennial attractor (red), a single four-year attrac-
tor (blue), a single eight-year attractor (yellow), a single sixteen-year attractor
(light blue), co-existence of annual and biennial attractors (green), co-existence
of two distinct biennial attractors or co-existence of biennial and four-year at-
tractors (brown), and coexistence of annual and four-year attractors (dark blue).
In the light grey region, there are cascades of further period doublings that ap-
pear to end in chaos as n →∞. The stars indicate bifurcation points that were
estimated by extrapolation to n = ∞ rather than by direct calculations based
on the fixed delay model, equation (2.10). Lower panel: Contours of constant
transient period (associated with the annual cycle) in the (R0, n) plane (cf. black
curves in the bottom panel of Figure 2.2 and in each panel of Figure 2.5). In
the hatched region, the transient period is phase-locked at precisely two years
(He and Earn 2007), whereas the transient period changes smoothly between
the other contours.
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Predictions of the SEmInR model

We now apply precisely the same analyses to the more realistic SEmInR models.

Figures 2.7–2.9 for the SEmInR models correspond to Figures 2.4–2.6 for the SInR

models.

Since we are now modelling both the latent and infectious stages directly,

we can use accepted estimates for their mean durations (mean latent period 1/σ = 8

days, mean infectious period 1/γ = 5 days (Wearing et al. 2005). In addition, we

now have two shape parameters (m for the latent stage and n for the infectious

stage). We examine several illustrative m, n values studied previously in the liter-

ature: m = 1, n = 1 (Anderson and May 1991; Earn et al. 2000a), m = 8, n = 5

(Keeling and Grenfell 2002) and m = 20, n = 20 (Wearing et al. 2005).

Figure 2.7 presents asymptotic analysis of the SEmInR model. The bifur-

cation structure of the model changes as m and n are increased, but the changes are

less substantial than Figure 2.4 shows as n is increased in the SInR model. Fig-

ure 2.8 presents the results of perturbation analysis of the SEmInR model. Again,

narrowing the stage duration distributions alters the transient periods, but less than

Figure 2.5 shows for the SInR model.

The degree of dependence of SEmInR dynamics on stage duration distribu-

tions is clearest from the two-parameter bifurcation diagrams and transient-period

contour plots shown in Figure 2.9, which should be compared with Figure 2.6 for

the SInR model. Regardless of the shapes of the stage duration distributions, the

predicted resonant and non-resonant periods are very similar. Regardless of m and

n, for R0 = 17 we predict a resonant period of two years and an unobservably

long non-resonant period (> 7 years), for R0 = 12 we predict a one-year resonant

period and a 2–3 year non-resonant period, and for R0 = 7 we predict a one-year

resonant and 3–4 year non-resonant period. Consequently, transition analysis based

on any of these SEmInR models is consistent with the New York City measles time

series and wavelet spectrum (Figure 2.3) as well as for the other measles time series
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Figure 2.7: SEmInR bifurcation diagrams as a function ofR0 for several values of the shape
parameters of the latent and infectious period distributions. The mean stage du-
rations are chosen to correspond to measles (mean latent period 1/σ = 8 days,
mean infectious period 1/γ = 5 days). The other fixed parameters are the
birth rate (ν = 0.02/year) and the amplitude of (sinusoidal) seasonal forcing
(α = 0.08). Colours represent attractors with different periods. Light grey
curves indicate unstable branches. Circles represent period doubling (flip) bi-
furcations while squares denote tangent (fold) bifurcations on the main branch.
Dashed vertical lines highlight R0,eff = 7, 12 and 17 for year ranges indicated
in Figure 2.3. The right panels show probability densities and box plots of the
latent and infectious periods, with means highlighted by vertical lines (orange
for latent period, red for infectious period).

considered previously (Bauch and Earn 2003a,b; Earn et al. 2000a).

We are led to conclude that transition analysis is robust to the shapes of the

distributions of the latent and infectious periods (provided we include both).
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the corresponding periodic cycles exist but are unstable. Annotation is as in
Figure 2.7.

2.5 The role of the serial interval distribution in the

dynamics of the SInR and SEmInR models

It is surprising that narrowing the infectious period distribution in the SInR model

(apparently making it more realistic) makes the model worse as a predictor of dy-

namical transitions (Figure 2.6). Since the effect of narrowing the shapes of the la-

tent and infectious period distributions in the SEmInR is much smaller (Figure 2.9),

it is tempting to infer that the inclusion of a latent stage is essential for producing
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Figure 2.9: Two-parameter bifurcation diagrams and transient-period contour plots for the
measles SEmInR model (mean latent period 1/σ = 8 days, mean infectious
period 1/γ = 5 days). Each panel corresponds to different values of the shape
parameter (m) of the latent period distribution. Annotation is as in Figure 2.6.

a robust model of an infection that really does have a significant latent period. In

fact, in this section, we identify the key factor that changes the structure of the

SInR bifurcation diagram as n gets larger, and we argue ultimately that any SInR or

SEmInR model is as good as any other from the point of view of transition analysis

(including the SI1R or SE1I1R models) provided they are parameterized appropri-

ately.
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When using an SIR rather than SEIR model, we chose the mean infectious

period to be 13 days, the sum of the actual mean latent (8 days) and mean infectious

(5 days) periods. Our motivation was that it is well known that the dynamics of the

unforced SI1R model is almost identical to that of the unforced SE1I1R model if

this association is made. In particular, the period of damped oscillations about the

equilbrium is then identical in the SI1R and SE1I1R models (Anderson and May

1991, p. 668).

It is instructive to note that the mean disease generation time or serial in-

terval1 in the SE1I1R model is equal to the sum of the mean latent and infectious

periods. So the association we have made between the mean infectious period in

the SI1R model and the sum of the mean latent and infectious periods in the SE1I1R

model amounts to making sure both models have the same mean serial interval. But

for more general SEmInR models, the mean serial interval is not equal to the sum

of the mean latent and infectious periods. Indeed, the mean serial interval in an

SEmInR model is (Svensson 2007, Eq. 5.9)

Tserial =
1

σ
+

(
n + 1

2n

)
1

γ
. (2.23)

From this formula we see that the mean serial interval does not depend on the shape

of the latent period distribution (only its mean 1/σ), but decreases as the infectious

period distribution gets narrower (i.e., as n increases) if the mean infectious period

is kept fixed. If the mean serial interval is the key factor affecting the dynamics

of the SEmInR model then we can now easily see why Figure 2.6 shows so much

more variation than Figure 2.9: the mean serial interval Tserial decreases from 13 to

6.5 days as n increases from 1 to ∞ in the SInR model (1/σ = 0, 1/γ = 13 days),

whereas Tserial decreases only from 13 days to 10.5 days as n increases from 1 to∞

1The serial interval is also called the generation interval, the generation time, or the case-to-case
interval. It is the time from initial infection of a primary case to initial infection of a secondary case
Fine (2003).
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in the SEmInR model (1/σ = 8 days for any value of m, 1/γ = 5 days).

Figure 2.10 shows another version of the two-parameter (R0 vs n) bifurca-

tion diagram for the SInR model. Rather than fixing the mean infectious period as

in Figure 2.6, for each n we set the mean serial interval to be the same as that in

SEmInR model with the same value of n. The result in Figure 2.10 is now negligi-

bly different from each of the panels of Figure 2.9.
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Figure 2.10: Two-parameter bifurcation diagram and transient-period contour plot for the
measles SInR model with the mean serial interval chosen to be the same as in
SEmInR model. Annotation is as in Figure 2.6. Notice that it is very similar
to the SEmInR model diagrams in Figure 2.9.

Finally, in Figure 2.11 we show yet another version of the R0 vs n bifur-

cation diagram for the SInR model, this time keeping the mean serial interval fixed

at 13 days for all values of n. From this diagram (some details of which are dis-

cussed in Appendix 2.6), it is now clear that from the point of view of transition

analysis—and to a large extent more generally for understanding the dynamics of
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SEmInR models—the key parameter that needs to be estimated is the mean serial

interval, not the mean latent or mean infectious period themselves and certainly not

the shapes of these distributions. For a given mean serial interval, it makes little

difference which SInR or SEmInR model we use, so we might as well work with

the simplest, the SI1R model.

Basic Reproduction Number, R0

Sh
ap

e 
pa

ra
m

et
er

, n

∞∞

100
50

20

10

5

3
2
1 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

stable period 1

stable 
period 2

stable 
period 1 and 2

stable 
period 1

Infectious period, days

n

0

2.6
3.6

5.5

7.5

9.7

11.3
12.3
13

0 10 20 30 40

Standard deviation, σσ, days

Infectious period, days

| |
|
|

|

|

|
|

|

se
q(
−5

, 5
)

0 5 10 15 20 25 30 35

Basic Reproduction Number, R0

Sh
ap

e 
pa

ra
m

et
er

, n

∞∞

100
50

20

10

5

3
2
1 7

7
7

7

7

7

7
7

6
6
6

6

6

6

6
6

5
5
5

5

5

5

5
5

4
4
4

4

4

4

4
4

3
3
3

3

3

3

3
3

2
2
2

2

2

2

2
2

2
2
2

2

2

2

2
2

 
 
 

 

 

 

 
 

1.6
1.6
1.6

1.6

1.6

1.6

1.6
1.6

Figure 2.11: Two-parameter bifurcation diagram and transient-period contour plot for the
measles SInR model with fixed mean serial interval, Tserial = 13 days. An-
notation is as in Figure 2.6. Notice that the main period doubling bifurcation
point from annual to biennial cycle occurs for approximately the same value
of R0 regardless of the shape (n) of the infectious period distribution. The
transient dynamics shown in the bottom panel are also the same for all values
of n.
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2.6 Discussion

We set out to determine whether the results of previous “transition analyses” of

recurrent epidemic patterns of childhood diseases (Bauch and Earn 2003b; Earn

2009; Earn et al. 2000a) were robust to the assumed shapes of the latent and infec-

tious period distributions (which were taken to be exponential in previous work).

We undertook a systematic analysis of the sequence of SInR and SEmInR mod-

els, parameterized for measles, and concluded that for a given mean serial interval,

transition analyses based on any SInR or SEmInR model will lead to the same pre-

dictions. Consequently, transition analyses of measles dynamics can be safely con-

ducted using the very simplest SI1R model. It is important to emphasize, however,

that the mean serial interval must be estimated correctly for this to work; in partic-

ular, it is not true that the real mean serial interval is the sum of the mean latent and

infectious periods.

The key graph that establishes that SInR dynamics are nearly invariant if the

mean serial interval is fixed is Figure 2.11 (where the mean serial interval is set to

13 days). In future work, the equivalent graph should be created for a sequence of

mean serial intervals that covers the range of typical recurrent infectious diseases, in

order to verify that transition analyses of other diseases can also be safely conducted

with the simple SI1R model.

Consistent with previous work (Lloyd 2001a,b; Nguyen and Rohani 2008),

we found that if we fix the mean infectious period (rather than the mean serial in-

terval) then narrowing the infectious period distribution (which reduces the mean

serial interval) leads to more complex dynamics. Previous work has also investi-

gated the stochastic dynamics of SInR and SEmInR models and examined charac-

teristics such as the critical community size for disease persistence (Conlan et al.

2010; Lloyd 2001a). In future work, inferences concerning the stochastic dynamics

of these models should be re-examined in light of the now-evident importance of

the mean serial interval for their deterministic dynamics.
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Appendix A: Vaccination level calculations

Live measles virus vaccine was licensed in the US in 1963 (CDC). A national cam-

paign to eliminate measles was launched by the Center for Disease Control (CDC)

in October of 1966 (Witte and Axnick 1975). The campaign aimed to target in-

fants at approximately one year of age and all remaining susceptible children when

they enter kindergarten, the first grades of elementary school or other places of

gathering (Conrad et al. 1971; Dull and Witte 1968). We thus assume that the in-

dividuals targeted for vaccination were children of one year (infants), four years

(pre-kindergarten), five years (kindergarten) and six years (first year of elementary

school) of age (USE). For example, the targeted population in 1963 (column 4 of

Table 2.1) is the total number of children born in 1962 (one year old), 1959 (four

years old), 1958 (five years old), and 1957 (six years old):

4, 167, 362 + 4, 295, 000 + 4, 255, 000 + 4, 308, 000 = 17, 025, 362 (2.24)

Since the data on the distribution of measles vaccine by cities was not avail-

able, we used the vaccination level calculated for the whole US (column 5 of

Table 2.1) as an estimate of the vaccine coverage in New York City (Figure 2.3).

For the years after 1963 we had to account for vaccination being imple-

mented already. Hence the size of the targeted population was still the total number

of one, four, five and six year olds, but now reduced by the number of children

already vaccinated. For example, the targeted population in the year 1964 (column

4 of Table 2.1) is the total number of children born in 1963 (one year old), 1960

(four years old), 1959 (five years old), 1958 (six years old) reduced by the number

1Source: Department of Health and Human Services, National Center for Health Statistics
http://www.infoplease.com/ipa/A0005067.html

2Source: Witte and Axnick (1975)

http://www.infoplease.com/ipa/A0005067.html
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Year Births, US 1 Vaccine doses 2 Size of targeted Estimated
population vaccination level

1957 4,308,000
1958 4,255,000
1959 4,295,000
1960 4,257,850
1961 4,268,326
1962 4,167,362
1963 4,098,020 3,200,000 17,025,362 0.187955
1964 4,027,490 3,800,000 15,298,855 0.248385
1965 3,760,358 6,000,000 14,724,270 0.407490
1966 3,606,274 7,900,000 12,196,284 0.647738
1967 3,520,959 6,400,000 9,657,979 0.662665
1968 3,501,564 5,300,000 8,695,492 0.609511
1969 3,600,206 4,900,000 7,999,115 0.612568
1970 3,731,386 4,500,000 7,833,993 0.574420
1971 3,555,970 8,300,000 14,618,977 0.567755
1972 3,258,411 8,200,000 10,138,244 0.808819

Table 2.1: Vaccination level for measles in the United States.

of children already vaccinated in 1963, ≈19% of five and six year olds:

4, 098, 020 + 4, 257, 850 + 4, 295, 000 + 4, 255, 000−

−(4, 295, 000 + 4, 255, 000) · 0.187955 = 15, 298, 855
(2.25)

We then estimate the vaccination level as the ratio of the distributed vaccine doses

to the size of targeted population.

In 1971 the combined measles, mumps and rubella (MMR) vaccine was li-

censed (Banatvala and Brown 2004). Since it was a new vaccine that protected

against three infectious diseases, we assume that the targeted population in 1971

was again all children of one, four, five, and six years old even if they were pre-

viously vaccinated with measles vaccine. Table 2.1 summarizes our calculations

of the vaccination level for the US. Note that we did not consider vaccine efficacy

(Linnemann 1973), migration of the population, or other factors that could have in-
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fluenced the proportion of those vaccinated who were actually immunized. Despite

the limitations of our methods, our estimates are in excellent agreement with the

only two published annual vaccination rates we have found: 61.4% in 1969 and

57.2% in 1970, as reported by the United States Immunization Survey (Landrigan

and Conrad 1971).

Appendix B: Main bifurcation point of the SEmInR

model vs SInR model with the same mean serial interval

From the point of view of understanding transitions in measles dynamics, the most

important bifurcation is that the first period doubling (from annual to biennial cy-

cles) that occurs as R0 is increased in the SInR and SEmInR models (e.g., Fig-

ure 2.9). In this appendix, we examine the precise value of R0 at which this bifur-

cation occurs in a sequence of SInR and SEmInR models, all with the same mean

serial interval (Figure 2.10). In order to keep the mean serial interval constant as

we narrowed the shape of the infectious period distribution (i.e., increasing n), we

used equation (2.23) to determine by exactly how much we needed to lengthen the

mean infectious period (1/γ); the mean latent period was set to 8 days in all the

SEmInR models. For example, for n = 2,

T SEmI2R
serial = 8 +

2 + 1

2 · 2
· 5 = 11.75 days (2.26)

1

γSI2R
= 11.75 · 4

3
≈ 15.67 days (2.27)

Table 2.2 lists the value of R0 at the key period doubling point on the main

branch of the bifurcation trees of the SEmInR and SInR models for the same given

mean serial interval of 13 days. The values of R0 differ at most by 0.26 (SE64I1R

vs SI1R), which shows that the SInR model is a good approximation of the SEmInR

model if the mean serial interval is chosen appropriately.
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n SE1InR SE8InR SE20InR SE64InR SInR Tserial

1 15.6432 15.5490 15.5418 15.5386 15.7980 13.00
2 13.9431 13.8693 13.8639 13.8613 13.9870 11.75
3 13.3869 13.3186 13.3135 13.3112 13.3999 11.33
5 12.9453 12.8811 12.8764 12.8742 12.9349 11.00
10 12.6159 12.5548 12.5503 12.5482 12.5897 10.75
20 12.4520 12.3921 12.3877 12.3857 12.4180 10.63
50 12.3537 12.2947 12.2904 12.2889 12.3151 10.55
100 12.3211 12.2622 12.2601 12.2592 12.2809 10.53

Table 2.2: The value of R0 at the first period doubling point on the main branch of the
bifurcation diagram of SEmInR and SInR models with the same mean serial
interval, Tserial = 13 days. The mean serial interval can be expressed in terms of
the mean latent and infectious periods using equation (2.23). The same formula
(equation (2.23)) with 1/σ = 0 gives the mean serial interval in the SInR model
and allows us to choose a mean infectious period (1/γ) that will yield a given
serial interval.

Appendix C: Main branch of the SInR model with the

fixed mean infectious period, 1
γ = 13 days

We plotted the main branch of the bifurcation tree of the SInR model (prevalence

vs R0) for n = 1, 2, . . . , 20, 30, 50, 100, ∞
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Appendix D: Step by step guide to creating a bifurca-

tion diagram of the seasonally forced SIR model using

XPPAUT

This guide extends unpublished notes written by Maystruk (2006) as a supplement

to her undergraduate Arts & Science thesis at McMaster University ((Maystruk

2006)).

The model

Consider a seasonally forced SIR model:

dS

dt
= µ− β(t)S(t)I(t)− µS(t), (2.28a)

dI

dt
= β(t)S(t)I(t)− γI(t)− µI(t), (2.28b)

dR

dt
= γI(t)− µR(t), (2.28c)

where

β(t) = β0(1 + α cos(2πt)) (2.29)

and S, I , and R are proportions of the population in each epidemiological state.

We want to investigate how dynamics of system 2.28 changes with respect to

the changes in the basic reproduction number, R0. Thus we write equation (2.28)

in terms of R0:

R0 =
β0

γ + µ
, (2.30)

which implies that

β0 = R0(γ + µ), (2.31a)

β(t) = R0(γ + µ)(1 + α cos(2πt)). (2.31b)
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A bifurcation diagram is a summary of the asymptotic dynamics (attractors) of a

dynamical system as a function of a bifurcation parameter. It is helpful to start

analysis of a model with a brute force bifurcation diagram, which is constructed

strictly by simulations. This diagram will show stable branches of periodic orbits

and will identify regions of possible chaotic behavior.

STEP 1: Brute force bifurcation diagram

Creating file bruteforceSIR R0.ode

In order to compute solutions of any model in XPPAUT we need to create a file-

name.ode file that will specify the system of differential equations. This can be

done in any text editor and should be saved with an extension .ode. For example,

bruteforceSIR R0.ode.

############################################
## bruteforceSIR_R0.ode
## Author: Olga Krylova
## Created: 26 Nov 2009
## Brute force bifurcation diagram
## for seasonally forced SIR model
############################################

## EQUATIONS:
beta=Rzero*(gamma+mu)*(1 + a*cos(2*pi*t))
s’=mu-beta*s*i-mu*s
i’=beta*s*i-(gamma+mu)*i

XPPAUT allows us to define initial conditions and different parameters:

## INITIAL CONDITIONS:
init S=0.9, I=0.001

## PARAMETERS:
## 1/mu=50 years, 1/gamma=13 days=0.0356 years
par mu=0.02, gamma=28.08, Rzero=17, a=0.08

Using this program we can plot solutions of the SIR model for various initial con-

ditions and parameter values in the XPPAUT window (see Ermentrout (2002) for
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detailed explanations of working with XPPAUT). Now we want to plot the solu-

tion of the system for a given range of values of the bifurcation parameter, R0, on

the horizontal axis and a particular state variable on the vertical axis, log10 I . We

choose log10 I instead of I since the proportion of infectious becomes very small,

and it is convenient to use a logarithmic scale for a better visual representation of

the results. XPPAUT allows us to produce such a plot with the help of auxiliary

variables.

Auxiliary variables: any quantities in terms of state variables or parameters

## AUXILIARY VARIABLES:
## R0 is defined as an auxiliary variable so we can plot
## bifurcation diagram as a function of parameter Rzero
aux R0=Rzero
aux log10s=log10(s)
aux log10i=log10(i)

## XPP SET UP:

## PLOT OPTIONS:
## xp=variable on x axis, yp=variable on y axis
@ xp=R0, yp=log10i
## limits on plot
@ xlo=0, xhi=40, yhi=0, ylo=-25

The seasonally forced SIR model exhibits periodic solutions, so if we plot

the complete solution for I(t) for each particular value of R0 we will get straight

vertical intervals corresponding to the range of the I(t) at a particular R0. Such a

diagram would be more confusing than useful. It is more convenient to use the

Poincaré stroboscopic map. Choosing the strobing interval to be one year, the

Poincaré map will return just one point for a period-one orbit, two points for a

period-two orbit and so on. This representation of the results is much more intu-

itive since it allows us to show all periodic solutions of the model and their periods.

In the XPPAUT Poincaré map can be set up in the following way:
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## POINCARE MAP SET UP:
@ poimap=section,poivar=t,poipln=1
## range set up
@ range=1, rangeover=Rzero, rangestep=3000
@ rangelow=0, rangehigh=30, rangereset=no

We also should take into account that at the very beginning of the integra-

tions, model solutions may exhibit transient dynamics (i.e., it takes some time to

converge to a stable periodic orbit). Hence we choose the total time of integration

to be 650 years and the transient to be 600 years, which will allow the solution to

converge.

## INTEGRATION OPTIONS:
## total time of integration
@ total=650,
## transient time
@ trans=600
## step of integration
@ dt=0.001

## STORAGE and DATA SAVING OPTIONS
## storage info
@ maxstor=2000000
## background color of the plot
@ back=white
## saving data
@ output=bruteforceSIR_R0.dat
done

The ode file can be executed from the terminal window using -silent mode with the

following command:

xppaut bruteforceSIR_R0.ode -silent

It will produce a bruteforceSIR_R0.dat file with all necessary data:



McMaster - Mathematics and Statistics 57

column 1 time

column 2 S

column 3 I

column 4 R0

column 5 log10 S

column 6 log10 I

Now we can plot this data using any program we like. For example, .

Plotting brute force diagram

The following bruteforceSIR_R0.R file will produce Figure 2.12.

##########################
## bruteforceSIR_R0.R
## Author: Olga Krylova
## Created: 28 Nov 2009
## Read data file created by XPPAUT and
## create pdf picture of brute force bifurcation diagram
## wrt R0 for the cos forced SIR model
##########################
rawdata <- read.table("bruteforceSIR_R0.dat");

## define variables
time <- rawdata[,1];
S <- rawdata[,2];
I <-rawdata[,3];
R0 <- rawdata[,4];
log10S <- rawdata[,5];
log10I <- rawdata[,6];

## plot set up
pdf("bruteforceSIR_R0.pdf",width=8, height=6);
par(mar=c(5,4,0,2));
plot(R0,log10I, type="p",
xlab=expression(paste("Basic Reproduction Number, ", R[0])),
ylab=expression(paste(plain(log)[10],"I")),
col="black", pch=".", cex=1, ylim=c(-8,-1));
dev.off()
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To run the bruteforceSIR_R0.R file execute the following command:

R CMD BATCH --vanilla bruteforceSIR_R0.R
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Figure 2.12: Brute force bifurcation diagram of the seasonally forced SIR model

Figure 2.12 clearly shows the existence of periodic orbits of periods one to seven.

STEP 2: AUTO bifurcation diagram

The AUTO part of XPPAUT is a very powerful tool that allows us to track bifur-

cation curves for steady-state and periodic systems (Doedel 2007). In particular,

we can use AUTO to follow stable and unstable branches of periodic orbits. The

disadvantage of this method is that AUTO’s default settings only allows us to plot

either the maximum, minimum, mean or period of the cycle. It is easier to visualize
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the bifurcation structure when plotting the diagram as a Poincaré map, similar to

the brute force diagram. This way, annual cycles will be displayed as a single solid

line, biennial cycles as a double line, cycles of period 3 as triple line, etc (Kuznetsov

1995; Wiggins 2003). Hence we will use AUTO to study the discrete time system,

or Poincaré map, associated with our original continuous time system. We can an-

alyze the discrete system, keeping in mind that a fixed point of a Poincaré map

corresponds to a periodic orbit of the original system. The problem of stability of

the periodic orbits is reduced to the problem of stability of fixed points of the map,

which is determined by eigenvalues of the map linearized about the fixed points.

Constructing Poincaré map using C-libraries

Using a C-program we can create a function that solves the system of ODEs numer-

ically via the Euler or Runge-Kutta method for a given period of time. In our case

we will use a period of one year. Our function uses initial conditions specified in

our .ode file or in the XPP window and returns the integrated values after one year

as output. This way we are creating a discrete map that can be easily analyzed in

XPPAUT. The file SIRmap.c will be used in conjunction with the file SIR.ode,

the file that specifies all initial values and parameters.

/∗ ∗∗
P o i n c a r e map o f t h e s e a s o n a l l y f o r c e d SIR model
Crea ted : 02 Dec 2009
Author : Olga Kry lova
∗∗ ∗ /

# i n c l u d e <math . h>

/∗ ∗∗
IMPORTANT NOTE:
We found t h a t t h e f u n c t i o n must be w r i t t e n
as one e n t i t y , w i t h o u t u s i n g c a l l e d f u n c t i o n s .
∗∗ ∗ /

# d e f i n e T i m e s t e p 0 .0005 /∗ i n u n i t s o f y e a r s ∗ /
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# d e f i n e DAYS PER YEAR 365
# d e f i n e TWO PI 6.2831853071795864769252867665590
# d e f i n e Real double

/∗ ∗∗ We c a l l e d our f u n c t i o n SIRmap ∗∗ ∗ /
SIRmap ( double ∗ in , double ∗ out , i n t nin ,

i n t nout , double ∗ var , double ∗ con )
/∗

i n = i n i t i a l and parame te r v a l u e s we g e t
from t h e ode f i l e ( s , i , R0 , alpha , gamma , mu )

o u t = what we are r e t u r n i n g ( sp , i p ) :
c a l c u l a t e d v a l u e s o f S and I a f t e r one year

n i n = d i m e n s i o n o f i n [ ]
nou t = d i m e n s i o n o f o u t [ ]
var and con are a r r a y s t h a t Bard s a i d t o i n c l u d e . . .
∗ /
{

/∗ d e f i n e s t a r t i n g v a l u e s i n l o g base 10 ∗ /
double s= i n [ 0 ] , i = i n [ 1 ] ;
/∗ c o n v e r t i n g back t o t h e o r i g i n a l v a l u e s ,

n o t i n l o g ∗ /
s=pow ( 1 0 , s ) ;
i =pow ( 1 0 , i ) ;

/∗ d e f i n e parame te r v a l u e s ∗ /
double R0= i n [ 2 ] , a l p h a = i n [ 3 ] , gamma= i n [ 4 ] , mu= i n [ 5 ] ;
double ds , d i ;
Rea l s e a s o n a l b e t a , n o n l i n t e r m ;
double t ime ; /∗ i n u n i t s o f y e a r s ∗ /
long i s t e p , n s t e p s ;

/∗ number o f s t e p s i n a year ∗ /
n s t e p s = ( i n t ) ( 1 / T i m e s t e p + 0 . 5 ) ;

/∗ i n t e g r a t i n g f o r one year ∗ /
f o r ( i s t e p =0; i s t e p < n s t e p s ; i s t e p ++) {

t ime =( double ) ( i s t e p )∗ T i m e s t e p ;

s e a s o n a l b e t a =R0∗ ( gamma+mu)∗ ( 1 + a l p h a ∗ cos ( TWO PI∗ t ime ) ) ;
n o n l i n t e r m = s e a s o n a l b e t a ∗ s ∗ i ;

/∗ Compute Xdot ∗ /
ds = mu − n o n l i n t e r m − mu∗ s ;
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d i = n o n l i n t e r m − (mu + gamma )∗ i ;

/∗ E u l e r method ∗ /
s = s + ds ∗T i m e s t e p ;
i = i + d i ∗T i m e s t e p ;

}
s = log10 ( s ) ;
i = log10 ( i ) ;
o u t [ 0 ] = s ; /∗ Outpu t i n l o g 1 0 ∗ /
o u t [ 1 ] = i ;

}

This C code should be compiled as a shared object library file using the command

gcc -dynamiclib -o SIRmap.so SIRmap.c

Creating file AutoSIR.ode

This file links C-library SIRmap function to XPPAUT.

## ODE file for Poincare map of
## the seasonally forced SIR model
## (used in conjunction with SIRmap.c library)
## Created: 05 Dec 2009
## Author: Olga Krylova

## DEFINE LEFT HAND-SIDE
s’ = sp
i’ = ip
sp = 0
ip = 0

## LINK TO THE C-LIBRARY
## i.e. pass the values {s0, i0, R0, alpha, gamma, mu}
## and ask it to return {sp, ip}
## Note that the order of export must agree with
## the order of in[] and out[]
## in arrays in the C function
export {s, i, R0, alpha, gamma, mu} {sp, ip}

## define a library to be used
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## and a corresponding function
@ dll_lib=SIRmap.so dll_fun=SIRmap

## SET INITIAL CONDITIONS for each periodic orbit
## Note that, for convenience, s and i below
## are really log(s) and log(i)
## nOut sets the number of iterations of the map
## it should be changed for each periodic orbit
set p1 {init s=-1.4139113,

init i=-3.1684341, R0=27.059999, nout=1}
set p2 {init s=-1.250071,

init i=-2.776037, R0=19.950001, nout=1}
set p3 {init s=-1.1593947,

init i=-4.3912416, R0=12.58, nout=1}
set p4 {init s=-0.91435295,

init i=-4.8151603, R0=9.5299997, nout=1}
set p5 {init s=-0.74093175,

init i=-5.1411638, R0=5.75, nout=1}
set p6 {init s=-0.71477449,

init i=-2.272049, R0=5.5300002, nout=1}
set p7 {init s=-0.69836187,

init i=-2.1395164, R0=5.1900001, nout=1}

## PARAMETER VALUES
## Note the order here determines the
## "main" parameter for AUTO
## alpha = amplitude of seasonal forcing
## R0 = basic reproduction number
## gamma = recovery rate; 1/gamma = mean infectious period
## mu = mean death/birth rate; 1/mu = average life time
par R0=30, alpha=0.08, gamma=28.076923, mu=0.02
aux Rzero=R0

## XPP SETUP
## this is a discrete map not an ODE
@ meth=discrete
## total=20 mean 20 iterations of the map in total
@ total=20, yp=i
## line type = dots
@ lt=0
## plotting options
@ xlo=-1, xhi=21, ylo=-9, yhi=-1
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## AUTO SETUP
## set range for R0, our control parameter:
@ parmin=1.1, parmax=32
## set range of vertical axis variable
## and set which variable it is:
@ autoymin=-9,autoymax=-1,autovar=i
## set horizontal axis plot range:
@ autoxmin=0, autoxmax=32
## set step size for continuation
## of the control parameter:
## (here, ds=standard step size,
## others are max and min step size)
## (the sign of ds controls
## the direction of continuation)
@ dsmax=0.1, ds=0.003, dsmin=0.0000003
## set a few other techinical
## aspects of the continuation:
@ Nmax=20000, Npr=2000, epsl=1e-6, epsu=1e-6, sepss=1e-4
## above:
## Nmax = maximum number of steps
## to take along a branch before stopping
## Npr = number of steps
## before labelling a point (which can help with
## continuing from points
## without having to start everything all over)
## eps... = various tolerances

done

We need to point out a few important commands that were used in the .ode file.

– Set up initial conditions for the SIRmap.c file and read its output:

export {in} {out}

where {in} indicates initial values and parameters to be passed to the exter-

nal function and {out} defines returning values.

– Specify which C-library (file.so) and function to load by including the fol-

lowing line in the ODE file:

@ dll_lib=file.so dll_fun=function_name
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– Define set of initial conditions for each periodic orbit

Initial conditions for the state variables should be specified in the ODE file as

well. Note that to compute a periodic orbit in AUTO, we should start running

AUTO from a point on this periodic orbit. But how would we know where to

start? That is where the brute force diagram becomes very handy. The data

from the brute force diagram contains points that lie on stable periodic orbits.

Therefore we can extract points on the period 1-, 2-, 3-, 4-, 5-, 6-, 7-year

cycles from the brute force data file and then specify them in .ode file.

The following R file reads the data from the previously generated brute force

data file and creates the set of initial conditions that will be used to calculate

each periodic orbit in AUTO.

##########################
## bruteforceSIR_R0_IC.R
## Author: Olga Krylova
## Created: 28 Nov 2009
## Read data generated by
## brute force bifurcation diagram;
## determine the period of each periodic orbit
## and create a set of
## initial conditions to be used in AUTO
##########################
## read data
raw.data <- read.table("bruteforceSIR_R0.dat",
col.names=c("time", "S", "I", "R0",
"log10S", "log10I"));

## we use data only for last 15 years
## of each integration from 634 to 649
index <- which(raw.data$time==634|raw.data$time==635|
raw.data$time==636|
raw.data$time==637|
raw.data$time==638|
raw.data$time==639|
raw.data$time==640|
raw.data$time==641|
raw.data$time==642|
raw.data$time==643|
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raw.data$time==644|
raw.data$time==645|
raw.data$time==646|
raw.data$time==647|
raw.data$time==648|
raw.data$time==649);
new.data <- as.data.frame(raw.data[index,]);

## for small values of R0 the proportion
## of infectious people is very small.
## It is easier to find stable branches for R0>4
new.data <- new.data[which(new.data$R0>=4),];

## calculating period
period <- array(NA);
i <- 1;
while (i<=length(new.data$time))
{

## determine how many unique values are
## present for each integration step
period[i:(i+15)] <-
length(which(duplicated(
round(new.data[i:(i+15),6],5))==FALSE));
i <- i+16;

}

## adding column of period values to the data frame
new.data <- as.data.frame(cbind(new.data, period))

## randomly choosing initial conditions
## corresponding ot each periodic orbit
index1 <- sample(which(period==1),1)
set1 <- new.data[index1,]

index2 <- sample(which(period==2),1)
set2 <- new.data[index2,]

index3 <- sample(which(period==3),1)
set3 <- new.data[index3,]

index4 <- sample(which(period==4),1)
set4 <- new.data[index4,]
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index5 <- sample(which(period==5),1)
set5 <- new.data[index5,]

index6 <- sample(which(period==6),1)
set6 <- new.data[index6,]

index7 <- sample(which(period==7),1)
set7 <- new.data[index7,]

## saving data in a setIC.csv file
setIC <- as.data.frame(rbind(set1, set2, set3, set4,

set5, set6, set7))
write.table(setIC, "setIC.csv",
row.names=FALSE, col.names=TRUE, sep=",")

The set of points on each periodic orbit is saved in setIC.csv:

time S I R0 log10 S log10 I period

639 0.038555704 0.00067852496 27.059999 -1.4139113 -3.1684341 1

647 0.056224938 0.0016748 19.950001 -1.250071 -2.776037 2

. . . . . . . . . . . . . . . . . . . . .

Notice that we can define many sets of initial data, parameter values and

options in the ODE file using the command:

set name {parameter values, initial data, options}

These sets can be invoked while running XPPAUT with the

File→Get par set

command. For example, the set for period one orbit is

set p1 {init s=-1.41, init i=-3.17, R0=27.06}

– It is convenient to set up all necessary AUTO plotting options in the ODE file so

that we can plot the bifurcation diagram right away. For example, we can set

the range of bifurcation parameters by using commands
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@ parmin=#, parmax=#

or set the axis with
@ autoymin=#, autoymax=#, autoyvar=variable_name
@ autoxmin=#, autoxmax=#

Following periodic orbits

We have everything ready to compute the bifurcation diagram in AUTO.

• Run XPPAUT

xppaut AutoSIR.ode

• Find period one orbit

– Choose the first set of initial values called p1

(F)ile→(G)et par set

– Integrate the system to reach an equilibrium

(I)nitialconds→(G)o

We should get 20 points in a straight horizontal line, indicating that the

system is at equilibrium. To assure that the system indeed converged to

an equilibrium, check data values by clicking the Data button on the

top panel of the XPP window. Data values of S and I are still different

after the third decimal place, which shows that we have not converged

to the fixed point yet. Hence we need to integrate the system a few

more times by pressing (I)nitialconds→(L)ast until we get

repeating values for S and I . After repeating I L two more times we

find an equilibrium.

• Load AUTO

(F)ile→(A)uto

• Continue the branch in both directions

– Hit Run to follow the period one branch in a positive direction (R0

increases).
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– Change the sign of parameter Ds in the Numerics menu of AUTO to

continue computations in the opposite direction (R0 decreases). Select

the initial point with Grab and press Run again.

Numerics→Ds:-0.003

Grab→<Return>→Run

We have computed the period one orbit.

• Save data

File→All info→name file branch1allinfo.dat

• Clear memory for the new branch

File→Reset diagram→hit OK and erase data

• Compute period two branch

– Integrate the system to reach an equilibrium

F→G→choose set p2→I→G→I→L→I→L. . .

Integration results in two horizontal dotted lines indicating that we hit a

period two cycle. Check the Data window to verify that the values of

S and I oscillate between two constant values.

– Define the period of the orbit. To continue branches of periodic points of

the Poincaré map we have to indicate how many times the map should

be iterated before returning the value of the map. This can be done

using parameter n(O)utput from the n(U)merics menu. For ex-

ample, setting n(O)utput to two allows us to see all of the branches

up to period two. Note that the previous value of n(O)utput was one,

which allowed us to plot only period one orbits.

n(U)merics→n(O)utput→type 2→<Return>

– Run AUTO

F→A→Run

We want to have separate data files for each periodic orbit, so that we

can plot them later in different colours. Therefore, when computing
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period 2 orbit, we have to hit the ABORT button very quickly to avoid

plotting period one points.

– Save data

File→All info→name file branch2allinfo.dat

• Compute period three branch

– Integrate the system to reach an equilibrium

F→G→choose set p3→I→G→I→L→I→L. . .

Three horizontal dotted lines are plotted in the XPP window indicating

that we hit a period three cycle. In the Data window, values of S and I

oscillate between three constant values.

– Define the period of the orbit

n(U)merics→n(O)utput→type 3→<Return>

– Run AUTO

F→A→Run

You will see that AUTO computed only one of the three branches of

the period three orbit. Since the branches of the period three orbit are

disconnected (we see that from the brute force diagram), AUTO can de-

tect only a branch based on the initial conditions. Hence to compute the

other two branches we must start running AUTO from points on these

branches. This can be achieved by using Data recorded in the main

XPP window from our integrations. Back in the main XPP window,

click the Data button. That window contains three distinct values of

S and I . To set one of them as the initial point, make that line the first

line in the XPP Data window and press Get. While this operation

will assign appropriate values to S and I , the value of the bifurcation

parameter R0 will not be changed accordingly and that must be done

manually. Click on the Param button in the XPP top menu to change

the value of R0 to the one saved under the column Rzero in the Data
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window. Do not forget to click ok in the Parameter window, which

is necessary to set parameter values to the original value.

– Save data

File→All info→name file branch3allinfo.dat

• Repeat procedure to compute periodic cycles of period four, five, six and

seven.

1. in the XPP window: F→G→choose set p#→I→G→I→L→I→L. . .

2. in the XPP window: U→O→specify n_out #→<Return>→<ESC>

3. in the AUTO window: R→hit ABORT

4. in the XPP window:

(a) open the Data window→ scroll down so that the second line is the

first line of the window→press Get

(b) copy the value of Rzero from the Data window

(c) open the Param window→set the value of R0 as in (b)→ hit Ok

5. in the AUTO window: Run→No to destroy diagram → ABORT to stop

integration

6. repeat steps 4-5 for each branch of the orbit

7. in AUTO: F→A→save file branch#allinfo.dat→Ok

8. in AUTO: F→R→YES

Plotting AUTO bifurcation diagram

The following R file can be used to create a nice plot as in Figure 2.13 using all the

data we computed in XPPAUT.

## plot AUTO output

pdf("AutoSIRBifDiag.pdf", width=8, height=6)
#quartz()
plot(seq(1:10), type="n", main="",
xlim=c(0,33), ylim=c(-9,0),
xlab=expression(paste
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("Basic Reproduction Number, ", R[0])),
ylab="Incidence I/N",
yaxt="n");
y.ticks <- c(seq(0, -8));
y.label <- c(0, expression(10ˆ-1), expression(10ˆ-2),
expression(10ˆ-3), expression(10ˆ-4), expression(10ˆ-5),
expression(10ˆ-6), expression(10ˆ-7), expression(10ˆ-8));
axis(2, at=y.ticks, las=2, label=y.label);
auto<-lapply(1:7, function(.indx)
read.table(paste("branch",.indx,"allinfo.dat", sep="")));
for (i in 7:1)
{

# type of point
n <- auto[[i]][,1];
# branch number
b <- auto[[i]][,2];
# first active parameter
R0 <- auto[[i]][,3];
# second active parameter
alpha <- auto[[i]][,4];
period <- auto[[i]][,5];
shi <- auto[[i]][,6];
ihi <- auto[[i]][,7];
slo <- auto[[i]][,8];
ilo <- auto[[i]][,9];
# real part of first eigenvalue
ev1.re <- auto[[i]][,10];
# imaginary part of first eigenvalue
ev1.im <- auto[[i]][,11];
ev2.re <- auto[[i]][,12];
ev2.im <- auto[[i]][,13];
stable.pts <- which(n==1);
unstable.pts <- which(n==2);
points(R0[unstable.pts],
hi[unstable.pts],col=i,pch=".");
points(R0[stable.pts],
ihi[stable.pts],col=i,pch=19, cex=0.4);

}
segments(17,0, 17,-8, col="red", lty=2);
dev.off()
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Figure 2.13: AUTO bifurcation diagram of the seasonally forced SIR model



Chapter 3

The temporal pattern of smallpox

mortality in London, England,

1664-1930

Abstract

Smallpox is one of the most terrifying and devastating infectious diseases that has

affected humans. It was declared eradicated by the World Health Organization

in 1979 (WHO, 2011 a). However, smallpox still presents a potential threat as a

biological weapon because of its high fatality rate, the lack of population immu-

nity and the lack of an effective treatment (Kemp 2005). Modelling public health

responses to the potential release of smallpox virus has been in the spotlight re-

cently. Nevertheless, relatively little attention has been given to the analysis of

historical epidemics of smallpox. The London Bills of Mortality, which provide

weekly records spanning several centuries, present a unique opportunity to study

historical epidemics of many infectious diseases. The smallpox records are likely

among the most accurate in the Bills, because smallpox was easily recognized.

Moreover smallpox was constantly present in London with frequent and often dev-

astating epidemics since its first recorded outbreak in 1610 (Creighton 1965). Our

73
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study presents detailed analysis of London’s weekly smallpox mortality records

from 1664 until the end of 1930. We describe these data using standard statisti-

cal tools and correlate shifts in the temporal structure of smallpox outbreaks with a

number of historical events and government interventions related to implementation

of various control strategies.

Keywords: smallpox; London Bills of Mortality; smallpox in London;

wavelet diagram; seasonality.

3.1 Introduction

Smallpox is an extraordinary research subject. During its existence smallpox had

been directly responsible for many history changing events and was probably ac-

countable for more deaths than any other illness, including bubonic plague and

cholera (Hopkins 1983; Macaulay 1866; McNeill 1998; Razzell 1977). According

to the London Bills of Mortality, over the last three centuries smallpox killed over

320,000 people in London alone.

This paper presents a detailed analysis of smallpox death records from the

Weekly London Bills of Mortality over almost three hundred years. This data set

starts from the early time of smallpox appearance in London, when only the nat-

urally acquired virus existed and no control measures were available, and runs

through the periods when various preventative measures and government regula-

tions regarding smallpox control were implemented. Our time series ends in 1930,

after which smallpox deaths were extremely rare in London. Using methods of time

series analysis, we identify major characteristics of smallpox dynamics in histori-

cal London. We also propose mechanisms that could have been responsible for the

persistence of smallpox epidemics, their severity, and changes in their patterns. Pre-

vious studies of smallpox mortality data from the London Bills of Mortality were

carried out by Duncan et al. (1996). However their work was based on aggregated
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yearly data, which limit the epidemiological details that can be estimated. The

weekly data that we examine provide a unique opportunity to investigate in much

greater details mortality from smallpox and the slopes of epidemic curves including

seasonal changes.

In the following subsections, we briefly discuss the origin and early history

of smallpox, invention of preventative measures against smallpox and the story of

eventual eradication success, which made smallpox the first infectious disease erad-

icated by human efforts. We finish the introduction with a description of smallpox

virology and its natural history. Section 3.2 outlines the history of smallpox in

England, highlights important historical events related to smallpox control, and es-

timates variolation and vaccination uptake levels. We provide a detailed description

of the available data set and also examine changes in London’s population over the

period for which we have smallpox data in Section 3.3. Description of the methods

we have used for the time series analysis of the data, our principal findings and

conclusions are presented in Section 3.4. We summarize our analysis and future

research directions in the last section of the paper (Section 3.5).

3.1.1 Origin and early history

The origin of the smallpox virus is not known. It probably coexisted with human

beings for thousands of years. It has been hypothesized that smallpox first appeared

in Asia or Africa sometime after 10,000 BC and then spread to India and China

(Hopkins 1983). Egyptian mummies from the Eighteenth and Twentieth Dynasties

(1570 to 1085 BC) are probably the earliest credible evidence of smallpox existence

in the ancient world (Fenner et al. 1988; Hopkins 1983). The mummified head of

Egyptian Pharaoh Ramses V (died 1157 BC) clearly shows scars that could have

been caused by smallpox (Figure 3.1). It is generally assumed that the pharaoh

died of smallpox, but scientists have not been able to prove or disprove this assertion

(Hopkins 1983). DNA analysis of a tissue sample that would be relatively easy to
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Figure 3.1: The mummified head of Egyptian pharaoh Ramses V depicts pock marks that
could have been caused by smallpox virus. The pharaoh presumably died of
smallpox in 1157 BC. Photo source: WHO, 2011 (b)

perform in modern laboratories might reveal the presence of smallpox. However,

the mummy is located in the Cairo museum of Egypt and is considered a national

treasure by Egyptian authorities, hence any examinations of the mummy are not

permitted (Geddes 2006; Hopkins 1983).

After its establishment in Egypt, India and China, smallpox spread to Athens

and Persia. By the eighth century AD the virus had reached Japan in the East

and Europe in the West (Hopkins 1983). In the fifteenth century, smallpox was

widespread throughout Europe (Fenner et al. 1988). The Spanish invasion of Mex-

ico in the sixteenth century brought smallpox to the previously unexposed popula-

tions of the Aztec and Inca civilizations. Devastating epidemics killed nearly half of

the native population of Mexico in less than six months after its first appearance in

April of 1520 (Hopkins 1983). Two centuries later, smallpox had become a major

endemic disease everywhere in the world.
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3.1.2 Invention of preventative measures (variolation and vacci-

nation)

Smallpox was directly responsible for the death of hundreds of thousands of people

each year during the Early Modern period (1500-1800) in Europe (Razzell 1977). In

many cases surviving victims were left blinded or disfigured for life (WHO, 2011

a). Smallpox also could have been a major cause of infertility in male survivors

(Hopkins 1983; Razzell 1977). The only defense against this “speckled monster”

was a procedure called inoculation. It was introduced in Europe only in 1721 de-

spite being successfully used in China and India for centuries before. Inoculation

is now known by the more specialized term variolation and can be described as

an injection of the smallpox virus (taken from a pustule or dried scabs of a person

suffering from smallpox) into a healthy individual (Razzell 1977). The discovery

of vaccination by Edward Jenner in 1796 provided a safer and much cheaper al-

ternative to variolation. Vaccination was originally an injection with cowpox virus,

which also provided immunity to smallpox. This discovery was a major milestone

in modern medicine as it laid the ground for all future vaccination strategies. Even

the word “vaccine” takes its origin from the latin “vacca” meaning cow and was

first used by Jenner to describe his new method of “vaccine inoculation” (Jenner

1801).

3.1.3 Eradication success

The existence of a vaccine was the key factor that made eradication of smallpox an

achievable goal. Other important factors were the absence of an animal reservoir,

easy recognition of the disease from symptoms, and non-existence of asymptomatic

cases (Center for Global Development). The World Health Organization launched

its eradication campaign in 1967 (Fenner et al. 1988; Geddes 2006). Ten years later

the world’s last endemic smallpox case was registered in Somalia (Figure 3.2).
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Figure 3.2: 23-year-old Ali Maow Maalin, Merka, Somalia (1977). The last recorded small-
pox case in the world. Photo source: CDC, 2009 (b)

In 1979, a Global Commission declared the eradication of smallpox (WHO, 2011

b). The only remaining viral samples were stored in laboratories in Russia and the

United States. The world was finally free of “the greatest killer” (Hopkins 1983).

This was the first disease to be eradicated entirely by human efforts.

3.1.4 Modern challenges

Unfortunately, the tragic events of September 11 2001 and the anthrax scare of

2001 led to widespread concern about bioterrorism and reminded us that small-

pox still presents a potential threat as a bioweapon. In fact, its high case fatality

rate, person-to-person transmission and limited immunity in the population make

smallpox more dangerous than anthrax. It is classified as a Category A bioweapon

agent by the Centers for Disease Control and Prevention (CDC), which confirms its

potential hazard (CDC, 2009 a). Vaccination is the only available measure to pro-

tect against this virus, but it is not effective after 4 days of infection (WHO, 2011
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a). Currently the majority of the world’s population is completely unprotected. As

routine vaccination was stopped in the 1970s, everybody born since then is fully

susceptible. In addition, the level of immunity in people vaccinated before 1970

is probably very low. While naturally acquired smallpox and variolation in most

cases produce life-long immunity, vaccinia virus provides complete immunity only

for a short period of time, 3 to 5 years, after which the immunity wanes rapidly

(Fenner et al. 1988; Ryan and Ray 2004). Long term vaccine-induced immunity is

uncertain. However, even after 20 years the case fatality rate in vaccinated persons

is much smaller than in the unvaccinated (Fenner et al. 1988).

Currently available vaccine is not considered safe because of very rare but

extremely dangerous complications that include severe eczema, progressive vac-

cinia that could lead to death, and postvaccinal encephalitis (inflammation of the

brain). During routine vaccination in the United States six to eight children died

each year because of various vaccine complications (Hopkins 1983, p.294). More-

over smallpox vaccination is not safe for people with weakened immune systems

(e.g. pregnant women, HIV-positive individuals and cancer patients). Consequently,

mass vaccination is not performed because the risks of complications are perceived

to be much greater than the risk of a bioweapon attack.

3.1.5 Smallpox virology

In this section we review major characteristics of the smallpox virus and present the

natural history of smallpox infection. Proper understanding of a disease virology

is very important for any infectious disease study and particularly for modelling

work. For example, Kaplan et al. (2002) and Halloran et al. (2002) aimed to deter-

mine optimal control measures in the case of smallpox bioterrorism. However they

used inaccurate biological assumptions and hence their final conclusions were con-

sidered to be dubious (Cooper 2006; Eichner and Dietz 2003). Most recent papers

make more realistic assumptions (Eichner 2003; Longini et al. 2007).
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Variola virus

Smallpox is caused by the Variola virus (Figure 3.3), which takes its name from

the latin word varius meaning spotted or varus meaning pimple. The commonly

accepted term “small-pox” was first used in England at the end of the 15th century

to distinguish it from syphilis, which was known as “great-pox” (Hopkins 1983,

pp.22-29).

Variola virus is a member of the genus of orthopoxviruses, which also in-

cludes cowpox, monkeypox, buffalopox, vaccinia and many other members (Hop-

kins 1983, p.6; Fenner et al. 1988, pp.69-120). There are two distinct variants

of Variola virus that can cause smallpox: Variola major and Variola minor (Fen-

ner et al. 1988, pp.1-68; Hopkins 1983, pp.3-9; Ryan and Ray 2004, pp.525-527).

These two smallpox variants differ substantially in severity of symptoms and case

fatality rate.

Figure 3.3: Vriola major virus. Photo source: CDC, 2009 (b)

Variola major, which has a case fatality rate of 5-25% and occasionally

higher (Fenner et al. 1988, p. 4), was the only known smallpox type until the begin-

ning of the 20th century. Depending on strain virulence and host response, the fol-

lowing clinical types of variola major were defined (Fenner et al. 1988, pp.1-121):

• ordinary-type was the most common clinical type of variola major (about
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80% of cases), with a case fatality rate of about 20%;

• modified-type was milder than ordinary-type with an accelerated course of

infection and occurred mostly in previously vaccinated persons;

• variola sine eruption was a rare type that occurred in vaccinated persons

through contact with smallpox patients and was characterized by high fever

without rash eruption;

• flat-type was characterized by lesions that remained flat. It was a rare type

and usually fatal;

• haemorrhagic type is distinguished from other types by very severe symp-

toms, short incubation period and high fatality rate of about 96%. It was

rare, occurred mostly in adults, and at the early stage of infection was hard to

distinguish from the ordinary-type or modified-type smallpox.

Variola minor was first recognized by Korte in 1904 (Hopkins 1983). Later

investigations showed that it appeared around 1894 in North America and then

spread to South Africa, Europe and Australia (Fenner et al. 1988, pp.1-121). Vari-

ola minor causes a milder, less virulent form of smallpox and has a mortality rate of

about 1% or less. Variola minor was the only endemic type of smallpox present in

England after 1920 (Hopkins 1983, pp.8, 97; Fenner et al. 1988, pp.243). In 1935

England became smallpox-free for the first time since its introduction, and further

cases of smallpox arose only from importation.

Natural history of smallpox infection

Smallpox is very acute, highly contagious and frequently fatal. It is characterized

by high fever and a distinctive skin rash that often leaves pock scars after scabs

fall off (WHO, 2011 a). Infection usually occurs via the respiratory tract through

air droplets if exposure occurs from face-to-face contact with an infectious person.

Direct contact with virulent rash, bodily fluids, or bedding, blankets, or clothing

used by an infectious individual can also, in rare cases, result in smallpox infection
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(Hopkins 1983, p.3; Fenner et al. 1988, pp.121-168).
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Figure 3.4: The natural history of smallpox infection. The prodrom stage begins with fever
but the patient is very rarely contagious. Early rash is the most contagious stage,
when the rash develops and transforms into bumps. During the pustular rash
stage bumps become pustules, which then turn into scabs during the pustules
and scabs stage and fall off during the resolving scabs stage. The infected
person is contagious until the last scab falls off.

The course of a single smallpox infection (its natural history) depends on

variant type, clinical type, and vaccination status of the host individual. Since the

ordinary type of Variola major was the most common type of smallpox, we will

describe its natural history here (Figure 3.4).

There is an incubation period during which the infected person has no

symptoms and is not contagious. The duration of this stage can vary from 7 to

19 days but in most cases is about 12 days. The prodrom stage begins with the

onset of fever and sometimes includes vomiting and diarrhea, and is rarely con-

tagious. The rash appears 2-4 days after the onset of fever. It starts as small red

spots on the tongue and in the mouth that grow into sores that break open within

24 hours of their appearance. At this point, a large amount of virus is contained

in the mouth and throat of the infected host, making him/her extremely contagious.

Then the rash spreads rapidly all over the body and in a few days transforms into

bumps filled with thick fluid. This early rash stage continues for about 4 days.
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It is followed by a pustular rash stage (average duration is 5 days) during which

bumps become pustules. Over the next 5 days (pustules and scabs stage), pustules

turn into scabs. Scabs fall off during the resolving scabs stage (6 days duration),

often leaving pock marks on the skin. The overall duration of the illness is about

23 days (CDC, 2004). In fatal cases, the majority of deaths occur on the 10th-16th

day from the beginning of symptoms (Fenner et al. 1988, p.22). The usual cause

of death is severe toxemia, which produces a lethal concentration of circulating im-

mune complexes and viral antigens (Fenner et al. 1988, p.130; Gantz et al. 2005,

p.345).

3.2 Smallpox in England

The London Bills of Mortality used in this study provide smallpox mortality records

spanning an extremely long period of time (276 years). Such an extensive data set

requires not only comprehensive statistical analysis but also a thorough examination

of the smallpox history in England. Understanding the historical background, which

is presented in the following subsections, will allow us to create a timeline of sig-

nificant historical events related to implementation of control measures, population

movement, wars, etc., that may have influenced smallpox dynamics (Figure 3.5).

Creating this timeline is also necessary for estimating the level of variolation and

vaccination uptake during the 17th-20th centuries in England.

3.2.1 Control-free era (1610-1721)

Smallpox first appeared in Europe around the sixth century AD. By the end of the

sixteenth century it was well established in almost all of Europe (Hopkins 1983).

Shortly thereafter it had become one of the major causes of death, exceeding in

numbers plague, leprosy and syphilis (Hopkins 1983; Landers 1993; Mercer 1990).

The first recorded outbreak in England is dated to August 12, 1610 (Creighton 1965,
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Figure 3.5: London’s population and weekly smallpox mortality from 1664 until 1930
against the timeline of historical events related to the smallpox history in Eng-
land. (continued on the next page)
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Figure 3.5: The top panel shows estimates of the London population for inner London
(dashed black line) and total London (solid black line). The main panel
starts with indication of data sources. Smallpox mortality data were collected
from two sources: i) London bills of mortality, where smallpox deaths were
recorded from 1664 until 1701 under the name “flox and smallpox” (light blue
background colour) and under the name “smallpox” (light yellow background
colour) from 1701 until 1841; ii) Registrar General’s Weekly Returns (light grey
background colour) used from 1842 until 1931. Intervention uptake levels are
shown as colour bars: yellow green-dark olive for variolation with yellow green
indicating the lowest level and dark olive the highest; and yellow-red for vac-
cination with light yellow indicating the lowest level and red the highest level.
Digitized records of weekly smallpox mortality from the London Bills of Mor-
tality are presented in dark blue. The trend of weekly births are plotted in dark
red. The transition from one registration system to another during 1796-1842
resulted in reduced accuracy of the data records. Dashed dark red line shows
fitted birth trend during this period. The bottom panel shows the timeline of
historical events related to the smallpox history in England: text in black colour
indicates events that influenced uptake of control measures; brown text shows
events that influenced people behaviour; dark green shows the period when data
accuracy is reduced.

p.435), after which it became endemic.

The registration system introduced in some European countries around the

end of the 16th century presented indisputable evidence of the increasing impact of

smallpox on population dynamics. Statistical records of smallpox mortality were

first used in 1580 by the authorities in Geneva. In England, the weekly reports of

church burials by cause of death were recorded by parish clerks from the end of the

16th century. In London, weekly bills of mortality were first recorded in 1592.

3.2.2 Variolation era (1721-1808)

There were no available preventative measures in use against smallpox until the in-

troduction of variolation, which came to England from Turkey in the beginning of

the 18th century. Lady Mary Wortley Montagu, one of the most influential women

of her century, a writer and a poet (Grundy 2001), had her daughter professionally
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variolated in London in April 1721. She is given all the credit for introducing var-

iolation to Great Britain (Fenner et al. 1988; Geddes 2006; Hopkins 1983; Razzell

1977). Since its first appearance and until the 1740s the practice of variolation was

not very popular among the British population. Only 857 people were variolated in

the whole of Great Britain from 1721 to 1727 and only 37 in 1728 (Creighton 1965).

After 1728 the numbers are unknown but assumed to be low. English medical prac-

titioners implemented variolation very crudely with deep incisions (deep injection

technique) that caused severe symptoms, morbidity and high mortality (up to 2%).

It took more than two decades for the general public to overcome its fear of this new

technique and understand the benefits it offered. At the beginning of the 1740s var-

iolation was affordable only to rich people. Nevertheless the number of variolations

started to grow. Charitable variolation began with the establishment of the London

Smallpox and Inoculation Hospital in 1746. This hospital was one of the first places

to provide free variolation and care for poor patients with natural smallpox and for

variolated persons during the time of their infectiousness.

Before the 1760s, variolation was usually preceded by four to six weeks

of preparation, which included purging, bleeding and a restricted diet with limited

amount of food, very little meat and low alcohol consumption. Variolation was

followed by an isolation period of two or more weeks. Throughout all this time

variolated persons were placed in inoculation houses specifically built for this pur-

pose (Fenner et al. 1988; Razzell 1977, p.255). The lengthy preparation period was

proven to be unnecessary after Robert Sutton’s innovation of variolation through

light incisions in 1762. Sutton’s new method dramatically decreased the severity

of symptoms and death and reduced the cost due to the shorter preparation period.

Consequently, variolation was offered more often free of charge to the poor popu-

lation. Robert Sutton also believed that isolation after variolation was unnecessary

(Razzell 1977, p.28). He was not aware of the fact that variolated individuals could

also spread the infection to the unprotected population (Fenner et al. 1988, p.255).
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As a result, elimination of the isolation period, while reducing the cost of the pro-

cedure, also had the potential to seed new smallpox outbreaks.

Sutton’s new variolation technique spread quickly around England and be-

came very popular in rural areas. When the threat of a new epidemic became

highly probable, “general variolation” of entire villages and communities was per-

formed. In large towns and cities the situation was quite different. In London,

the use of variolation was very irregular and attempts to perform “general vario-

lation” were sporadic and very rare. The only possibility for poor Londoners to

be variolated was through Smallpox Charities. They performed public variolation

in batches, separately for males and females, approximately 8 to 12 times a year

(Creighton 1965, p.506), but this was insufficient to control smallpox. The charities

did not admit children under 7 years of age, despite the fact that the vast majority of

smallpox cases at that time were in children under 3 years of age. The full extent of

variolation in London after the Suttonian innovation is unclear, though figures from

London Hospital show that the number of variolated individuals increased dramat-

ically from 29 in 1750 to 653 in 1767 and almost doubled the following year to

1084 (Creighton 1965, p.506). This was in large part due to the increasing practice

of the Suttonian method. Studying various historical reports, Razzel concluded that

variolation gained considerable popularity in London at the very end of the 18th

century and the beginning of the 19th century (Razzell 1977, p.72).

The Industrial Revolution, which started in the 1780s, brought thousands

of immigrants to London and the population grew rapidly. In London and other

densely populated cities of England, outbreaks of smallpox were recurrent and the

disease never died out completely. Rural areas were relatively smallpox free be-

tween epidemics (Duncan et al. 1994a; Fenner et al. 1988). Hence young adults

migrating from rural cities were at great risk of acquiring the infection and con-

tributed continuously to the recruitment of susceptibles into London.
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3.2.3 Vaccination era (1796-1931)

Despite the growing popularity of variolation and its widespread practice in Europe,

by the end of the 18th century smallpox still remained endemic in London with in-

creasingly severe outbreaks (Figure 3.5). The discovery of vaccination by Edward

Jenner in 1796 was the crucial first step towards smallpox eradication. Jenner was

practicing medicine in Berkley, Glucostershire. Being a rural doctor he knew that

milkmaids, who had blisters on their hands from cowpox, did not catch smallpox.

This fact gave him the idea that infection with cowpox may possibly give immunity

to smallpox. On May 14, 1796 he injected a small boy from his village, James

Phipps, with cowpox virus taken from a milkmaid, who had recently acquired the

infection from a cow. The boy developed a pustule around the area of injection but

had no other reaction. A couple of weeks later Jenner inoculated the boy again, but

this time with smallpox virus, which had no effect on the boy. Jenner submitted his

findings to the Royal Society in 1797. However, his work was accepted with great

skepticism and even ridicule. Despite this reaction from his colleagues, Edward

Jenner continued his experiments again in 1798 with a larger group of individuals

and found the same results. This time his work was accepted more widely (Fenner

et al. 1988; Hopkins 1983).

Offering almost no risk to the vaccinated person, no preparation period and

reduced cost, the new prevention method against smallpox became widely adopted

by the public much faster than variolation (Fenner et al. 1988). Initially vaccination

had many problems associated with ineffective methods of vaccine distribution and

storage, shortage of cowpox virus, vaccine efficacy and religious and philosophical

objections. Despite these difficulties, more and more people were vaccinated, which

resulted in a dramatic decline of smallpox mortality by the end of the 19th century

(Figure 3.5).

Unfortunately, vaccinations were poorly recorded until the end of the 19th

century. Available data are misleading, incomplete, uncertain and inconsistent. For
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example, the figures from the London Smallpox and Inoculation Hospital show the

percentage of vaccinated patients admitted to the hospital increasing steadily from

32% in 1825 to 73% in 1856 (Hardy 1983, p.114). Mercer (1990) referenced the

Royal Commission on Vaccination, which found that only 25% of newborns were

vaccinated by 1820 and about 70% in some parishes by 1840. Mooney (1997) states

that from 1854-1856 the percentage of vaccinated infants might have ranged from

28% to 81%. Another source indicates that infant vaccination rates for London

during the period 1845-1890 were much lower than the national average and never

increased above 500 per 1,000 live births (i.e. 50%) (Mooney 1997). Data for

vaccinations of older age groups during this period do not exist. It is hypothesized

that many adults escaped vaccination, and thus, the numbers appear to be very

inconsistent (Hardy 1983). Still, some rough inferences can be made about the

vaccine uptake level from these sources.

State involvement in the control of smallpox in England began with the

foundation of the National Vaccine Establishment in 1808. It provided free vac-

cination in its London stations and distributed vaccine to other parts of England

(Hennock 1998). Around this time, the London Smallpox and Inoculation Hospi-

tal ceased variolation of its out-patients and began vaccination in greater numbers.

The next decade was characterized by very mild smallpox outbreaks, which were

believed to be due to the growing popularity of vaccination. Striking epidemics

occurred in London in 1817-1819 and 1837-1838, the latter growing into a Europe-

wide pandemic. Both large smallpox epidemics coincided with massive typhus

outbreaks (Creighton 1965; Hopkins 1983, p.87), which were presumably a coin-

cidence. The authorities in England realized that some radical measures had to be

taken, which led to the first Vaccination Act of 1840, providing vaccination free of

charge and banning variolation. It was followed by the Vaccination Act of 1853,

which made the vaccination of every child during the first four months of life com-

pulsory. The Vaccination Act of 1867 introduced penalties for not complying with
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the compulsory vaccination.

The Franco-Prussian war started in late July 1870 and is believed to have

initiated the worst pandemic of smallpox in all of Europe in the 19th century, which

resulted in at least half a million deaths. England lost more than 40,000 people.

Thanks to compulsory vaccination, the fatality rates in England were three times

lower than in Prussia, Austria and Belgium (Hopkins 1983, pp.87-91). The im-

mediate response of the English government to this devastating pandemic was the

Vaccination Act of 1871. It enforced very strict control (through the courts) of the

implementation of previous Acts.

In the second half of the 19th century, many problems that arose in the early

stages of vaccination had been resolved. Arm-to-arm vaccination 1, which was used

as the main method of vaccine distribution at the beginning of the century, was

replaced by the new technique of passing cowpox from cow to cow. Arm-to-arm

vaccination was in many cases very dangerous since it could transmit other diseases

such as syphilis. The new method of vaccine distribution was first introduced by

Negri of Naples in 1843. However it arrived in England only in 1881. Another

important discovery was made in 1891 by Monckton Copeman. He showed that

adding glycerine to smallpox vaccine reduces bacterial contamination, making it

more efficient and reliable. The dangers associated with arm-to-arm vaccination

finally resulted in its complete outlaw in 1898 (Hopkins 1983).

The main objection to Jennerian vaccination was uncertainty in the dura-

tion of immunity it provided. Evidence of smallpox cases in previously vaccinated

individuals was noticed as early as 1804. It brought up the question of vaccine ef-

ficacy and the probable need of revaccination. Unfortunately Jenner’s false belief

of life-long vaccine induced immunity was very well accepted in England and was

not questioned at all. Hence revaccination there started much later than in other

1Arm-to-arm vaccination was the method of vaccine distribution, which involved vaccine trans-
fer from the infectious pustule of vaccinated individual to a non-vaccinated individual, and so on
(Fenner et al. 1988)
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European countries. Germany was the first country to recognize the necessity for

revaccination and began so in 1829. Revaccination came to England only at the end

of the 19th century.

Until the beginning of the 20th century, smallpox was endemic in London.

The last large outbreak of Variola major occurred in London in 1901-1902, after

which very small outbreaks occured very rarely and were mostly imported from

other countries. The new type of smallpox virus, Variola minor, was first noticed in

England in 1901 and was well established by 1919. It appeared in London for the

first time in 1928 and was then endemic until 1934 (Fenner et al. 1988).

In 1967 the World Health Organization launched its global smallpox eradi-

cation campaign, and by 1979, smallpox was certified as the first infectious disease

to be eradicated by human efforts.

3.3 Data description

In this study, we use digitized records of the weekly London bills of mortality.

We examine weekly births, smallpox and all-cause mortality in London from the

week of October 18, 1664 until January 1, 1931. The data were collected from

the Guildhall Library, British Library, Wellcome Library, and London Metropolitan

Archive. The bills of mortality were used for the years 1664 to 1841. The Registrar

General’s Weekly Returns for London had been printed since 1837, but the records

found in the Guildhall Library begin in 1842. They represented the data source from

1842 until 1931 (Figure 3.5). The following subsections present a more detailed

description of the available data.

3.3.1 London mortality data

A death registration system was introduced in England at the end of the 16th cen-

tury. It was created to keep track of deaths from plague and alert the city authorities
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at the onset of plague epidemics. Bills of mortality were collected by the Parish

Clerk Company and included information about weekly baptisms and church buri-

als, as well as causes of death, gathered from the individual Anglican parish regis-

ters (Finlay 1981; Mercer 1990). In London, weekly mortality records were pub-

lished regularly from 1604 (Creighton 1965). In addition, annual summary bills

were published from 1629 (Creighton 1965). Annual all-cause mortality (1629-

1837) as well as smallpox mortality (1629-1893) from these bills can be found in

Creighton (1965) and is reproduced in Figure 3.6.

From the first available records until 1701, the original disease category

used to record smallpox deaths in the London bills of mortality was “flox and small-

pox” (Figure 3.5). “Flox” is an old term for the haemorrhagic type of smallpox

(p.436 Creighton 1965; Schmidt 2011). After 1701 the name “smallpox” was used

consistently to distinguish it from all other causes of death (Figure 3.5). Some

confusion was created by the presence of “bloody flux” and “flux” as the cause of

death in the records, which could have also been related to smallpox. Razzell (1977)

suggested that “bloody flux” was a name used for haemorrhagic smallpox and was

considered a separate disease (Razzell 1977, p. 104). However Creighton (1965)

described it as an old name for dysentery and not as something related to small-

pox (Creighton 1965, p.774). A Glossary of Archaic Medical Terms also defines

“bloody flux” as dysentery and “flux” as diarrhea (Schmidt 2011). In any case, the

mortality from “bloody flux” and “flux” is negligible compared to smallpox (total

of 4679 deaths from “bloody flux” and “flux” compare to 322,219 total smallpox

deaths). Therefore, even if they were related to smallpox deaths, they would not

significantly influence our findings. Hence we used the sum of “flox and smallpox”

and “smallpox” records and did not include “bloody flux” and “flux” in our data.

The bills of mortality were the only official registration system used in Eng-

land until the introduction of national records, the Registrar General’s Weekly Re-

turns, in 1837. The necessity for improvement of the methods of data collection
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Figure 3.6: Annual smallpox mortality data in London, England: 1629-1779 (top panel)
and 1780- 1930 (bottom panel). (continued on the next page)
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Figure 3.6: The data were gathered from two sources: annual smallpox mortality records
from the Annual Bills of Mortality (Creighton 1965) and annual sums of weekly
digitized mortality records from the Weekly Bills of Mortality. The white bars
show the data from the Annual Bills, which were missing in the Weekly Bills.
The differences between the two data sets are shown as white stack bars if values
in the Annual Bills are larger, and black stack bars if values in the Weekly Bills
are larger. Note that smallpox mortality data for the period 1637-1646 were not
available (Creighton 1965). Also there is a significant difference between the
two sources of information during the period of transition from one registration
system to another (1837-1841).

became evident at the end of the 18th century. The accuracy of the old system of

parish records had been compromised by the rapid growth of London’s population

from the beginning of the industrial revolution and a lack of expansion in Anglican

parishes. Parish clerks simply could not keep up with the increasing flow of infor-

mation. As a result, the General Register Office was created with the main purpose

of keeping birth and mortality records more complete and covering all sectors of

the population (Mercer 1990).

Even a cursory examination of the weekly pattern of deaths from smallpox

in the bills of mortality reveal that for the period 1796-1842, the last week of the

reported year, which at that time was the first week of December, had an unusually

high number of reported deaths (Figure 3.5). The reason for this appears to be a

backlog. As mentioned earlier, this was also the beginning of the tremendous pop-

ulation growth in London. Parishes became overwhelmed and, as a result, the bills

of mortality became increasingly inaccurate. To address this problem, we replaced

the records showing strikingly high mortality with the average of the previous and

following weeks. Then the difference between original and replaced values was

uniformly distributed throughout the year.

The continuous historical records available to us go back as far as 350 years

to 1662. Not surprisingly reports from some weeks have been lost. Fortunately, all
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gaps are very small (typically 1-5 weeks) with the largest gap of 9 weeks. These

gaps were replaced with linearly interpolated values to obtain time series without

missing values.

3.3.2 London population data

London population data (Table 3.1) was gathered from many different sources. Fin-

lay and Shearer (1986) estimated the total population of London for every half of

the century from 1500 until 1700, based on information about the population North

and South of the River Thames. They also took into account inaccuracies in data

collection. We noticed that (Finlay and Shearer 1986, Tables 2 and 3) contain pop-

ulation data for the North and South of the River not just for every 50 years, but

also for some other years. Hence we repeated calculations of Finlay and Shearer

(1986) to estimate the population of London for these extra years. Note that Finlay

and Shearer (1986) (Table 5) estimate for 1650 appears to be inaccurate due to an

arithmetic error (it should be ≈400,000 instead of 375,000 (Table 3.1)). Popula-

tion data for 1700-1800 were reproduced from Landers (1993), who estimated the

population for every decade from 1730 until 1800. Census data, which is available

for each decade since 1801, were the source of remaining values (Census). The re-

sulting data (Table 3.1 of Appendix 3.5) are plotted in the top panel of Figure 3.5.

3.4 Time series analysis

In this section we identify changes in the temporal pattern of smallpox dynamics in

London using methods of time series analysis. We also correlate these changes in

smallpox dynamics with historical events outlined earlier.
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3.4.1 Time plot

The time plot of the raw data is presented in the Figure 3.5. It shows significant

differences in the structure, amplitude and temporal frequency of epidemics over

different periods of time. However, the raw data can be misleading since it does

not account for changes in population growth and inconsistency of data sources.

For example, the epidemic of 1871 appears to be the largest one over the whole

period. However it was not the most significant relative to the population size.

Surprisingly, the epidemic of 1838, a major outbreak in the 19th century that is

frequently mentioned in the literature (Creighton 1965; Hopkins 1983), is not easily

identifiable in the raw data. The reason may be the use of different data sources:

our annual totals of smallpox mortality differ substantially from data in Creighton

(1965) for 1838-1841.

3.4.2 Normalized data

To control for changes in population size, city boundaries and data collection meth-

ods, we normalized the smallpox data by the trend of the weekly all-cause mortality

in London (Figure 3.7).

To calculate the trend, we used the recently developed method of Empirical

Mode Decomposition (EMD), which is considered to be the most appropriate ap-

proach for finding trends in nonlinear and highly non-stationary time series (Huang

et al. 1998; Vatche and Sharple 2008; Wu et al. 2007). It was developed to overcome

the flaws of other commonly used methods such as moving averages or other lin-

ear filters, or linear regression, which may perform poorly on non-stationary data.

EMD decomposes a signal (in our case the time series) into several components

with a well defined instantaneous frequency, termed “intrinsic mode functions”

(IMF). IMFs are basically zero-mean oscillation modes present in the data: the

first IMF captures the high frequency (shorter period) oscillations while all subse-
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Figure 3.7: Weekly all-cause mortality and its trend, London, England (1661-1930). The
trend was estimated by Empirical Mode Decomposition applied separately to
the periods 1661-1842 and 1842-1930, which correspond to different data
sources. The largest peak of all-cause mortality occurred during the Great
Plague of London (1664-1665), which killed over 8,000 people in one week.
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quent IMFs have lower average frequency (longer period). Each IMF is extracted

recursively starting from the original time series until there are no more oscillations

in the residue. The last residual component of this process can be considered as an

estimate of the trend (Wu et al. 2007). Figure 3.7 shows the trend for the weekly

all-cause mortality in London (1661-1930) computed by EMD. (See Appendix 3.5

for a detailed description of the EMD method.)

The normalized weekly smallpox time series (Figure 3.8) provides a more

consistent representation of smallpox dynamics. For example, the epidemic of 1838

is now easily identifiable, and the epidemic of 1871-1872 is similar in magnitude

to typical epidemics of the 18th century (though still the largest of the 19th cen-

tury). Figure 3.8 also shows the general trend in smallpox mortality calculated by

the EMD method. The trend is nonlinear and shows that the smallpox mortality

rate was increasing steadily from 1664 until its peak in approximately 1770, after

which we see a gradual decline until its complete elimination. The decline can be

associated with the growing popularity of variolation in the late 1760s inspired by

the Suttonian innovation. Despite the rapidly growing London population, small-

pox mortality continued to decrease even further and at a much greater rate after the

discovery of vaccination at the end of the 18th century.

The time plot of the normalized smallpox deaths clearly shows the presence

of different time frequency components in the series. From the earliest data in the

series, the epidemics appear to be very severe and exhibit regular oscillations. The

changes in variolation uptake after 1770 seem to modify the general pattern and the

epidemics occur with almost constant periodicity. After the introduction of vaccina-

tion in 1796, the amplitude of epidemics is dramatically reduced and periodicity of

the time series changes. During the period when variolation and vaccination were

both in use (1796-1840), the data appear to be noisier and outbreaks occurred more

frequently. After the outlawing of variolation in 1840 there is another change in

the pattern: the inter-epidemic period increases and epidemic peak heights decline,



McMaster - Mathematics and Statistics 99

except for the large epidemics in 1871, 1876 and 1902.

3.4.3 Spectral analysis

Further analysis was performed to quantify periodicity in the pattern of smallpox

epidemics and how the frequency structure changed over time. By comparing this

spectral timeline with estimated levels of variolation and vaccination uptake, we are

able to frame hypotheses concerning how these preventative measures influenced

smallpox dynamics.

Fourier (spectral) analysis is the classical technique used to determine the

frequency components of observed time series (Anderson and May 1991; Bauch

2008; Bauch and Earn 2003a; Chatfield 1989; Earn 2009; Shumway and Stoffer

2006). It helps to identify major periodic modes present in the data. The Fourier

spectral density of the normalized smallpox mortality is plotted in Figure 3.9 as a

function of period (inverse of frequency). It reveals the existence of major periods

at 1, 2.2, 2.4, and 3 years. A larger period of about 5.1 and 6 years also appear to

be detected.

The Fourier transform determines all major periodic components that are

present in the data but does not reveal any information about the time of their occur-

rence. The wavelet transform (Addison 2002; Cazelles et al. 2007, 2008; Torrence

and Compo 1998) is a much more sophisticated method of time series analysis that

overcomes this problem and is more appropriate for the analysis of non-stationary

data. It provides a detailed picture of how the periods change over time. This

technique has recently become very popular in the analysis of epidemiological data

(Bauch 2008; Cazelles et al. 2007; Grenfell et al. 2001; Magney et al. 2007).

The method of wavelet analysis can be briefly summarized as follows. First,

we select the basic shape function called the wavelet function or analyzing wavelet,

which depends on two parameters: time and scale. The scale parameter allows us to

narrow the wavelet function to represent high-freuqency modes or widen for low-
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Figure 3.8: Time plot of weekly smallpox mortality normalized by the trend of weekly all-
cause mortality. The trend (solid black curve) was estimated by Empirical Mode
Decomposition. Red dots denote the peaks of the epidemics of 1838 and 1871-
1872, the most significant smallpox epidemics of the 19th century. Annotation
is as in Figure 3.5.
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Figure 3.9: Classical Fourier transform of the normalized weekly smallpox mortality time
series for London, England (1664-1930). Before computing the Fourier spec-
trum the time series was detrended and square root transformed (Chatfield
1989). The Fourier spectrum was smoothed using a Daniel window (weighted
moving average transformation) (Chatfield 1989).

frequency structure. The analyzing wavelet is localized at a particular scale and

time and then matched with the data by computing the convolution of the wavelet

function with the time series. If the wavelet correlates well with the signal at a

specific time and location, a larger value of the wavelet transform is obtained. Oth-

erwise it does not correlate well with the signal and one obtains a smaller value of

the wavelet transform. Moving the wavelet function along the time-series and over

a continuous range of scale parameter allows us to obtain a 2-dimensional diagram

(often called a wavelet scalogram) (e.g. Figure 3.10), which shows a time series

decomposed into the time and frequency domain.

The resulting wavelet diagram of the London smallpox data is shown in Fig-

ure 3.10. The wavelet transform values are colour coded: blue represents the lowest

power and dark red the highest. The algorithm used to compute the wavelet power

spectrum requires that the length of the analyzed series is a power of two. Therefore,

zero-values are added (“zero padding”) to bring the number of time points in the

data to the closest power of two. This creates an artificial discontinuity at the ends

of the data. Hence the accuracy of the wavelet transform is reduced at the edges
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Figure 3.10: Wavelet transform of the normalized weekly smallpox mortality time series
(square root-transformed and normalized to unit variance) for London, Eng-
land (1664-1930) and its correlation with the historical timeline. (continued
on the next page)
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Figure 3.10: The white curves show the local maxima of wavelet power (squared modulus
of wavelet coefficients (Cazelles et al. 2008, p.291) at each time. The colours
of the wavelet diagram vary from dark blue, which corresponds to low power,
to dark red for high power. The thin black line indicates the 95% confidence
region, estimated from 1000 bootstrapped time series generated by the method
of (Cazelles et al. 2008, p.292-293). Below the cone of influence (Cazelles
et al. 2008; Torrence and Compo 1998), the calculation of wavelet power is
less accurate because it includes edges of the time series that have been zero-
padded to make the length of the series a power of 2. The wavelet spectrum
was computed using MATLAB code kindly provided by Bernard Cazelles.

of the time series. To show the regions with lower accuracy a “cone of influence”

is drawn. The data outside this cone should be interpreted with caution. Statistical

significance of the results is computed based on 1,000 Markov bootstrapped series

(Cazelles et al. 2007, 2008) and the 95% confidence region is presented as a thin

black line on the diagram.

The wavelet transform of the smallpox mortality data is presented in Fig-

ure 3.10. It shows how the periodicity of smallpox epidemics changed over the cen-

turies (the white curves highlight the period with greatest power at each timepoint).

From 1664 until 1700 the dominant period is 3–4 years. Around 1705 dominant

period shifts to 2–3 years. After the introduction of variolation, changes in period-

icity are evident: the wavelet power weakens and the dominant period lengthens.

Around 1740 a 3-year mode dominates until 1770. We can recognize the coexis-

tence of multiple cycles of 1 and 2-3-years in the period between 1770 until around

1810. After 1820 the annual cycle disappeared and after 1840 the major period

smoothly evolves into a longer cycle of 3-4 and then 4-8 years. Interestingly, these

changes coincide with the onset of the vaccination era in 1800 and later The Vac-

cination Act of 1840 that banned variolation and made vaccination free of charge.

The increase in vaccination uptake could have been responsible for the increase in

inter epidemic intervals during the vaccination era and for the disappearance of the

annual cycle. Such effects of vaccination on infectious disease dynamics have been
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suggested before in the theoretical modeling work (Anderson and May 1991; Earn

et al. 2000b) as well as in time series analysis of different epidemiological data sets

(Earn et al. 2000b; Grenfell et al. 2001). For example, Grenfell et al. (2001) de-

scribed similar features in measles data and explained less frequent epidemics with

lower amplitude by the introduction of vaccination .

3.4.4 Seasonality

Seasonality of disease outbreak patterns is of great interest from a strictly biological

perspective (Nelson et al. 2002). It also has dynamical significance since seasonal

forcing can be responsible for the recurrence of epidemics and changes in their pe-

riodicity (Bauch and Earn 2003a; Earn et al. 2000a). Previous work on seasonality

of smallpox (Duncan et al. 1996; Fenner et al. 1988; Nishiura and Kashiwagi 2009)

concluded that in temperate climates the majority of smallpox incidence occurred

in winter and spring, but in tropical climates seasonality was not as distinctive. The

general conclusion was that smallpox incidence always increases when the weather

is cool and dry, which influenced the planning of the eradication campaign in In-

dia and helped to improve its efficiency (Fenner et al. 1988, p.179-181). Previous

seasonality studies were mainly based on data from the 19th and the 20th centuries

when preventative measures were already implemented to various degrees (Fenner

et al. 1988; Nishiura and Kashiwagi 2009). Our data set is of particular interest

since it includes a period when only naturally acquired smallpox immunity existed.

Consequently, we can compare early and later periods and access the impact of

intensive preventive measures on smallpox seasonality.

Figure 3.11 shows the seasonal structure of smallpox mortality in London.

It suggests the presence of seasonality in the observed time series and illustrates

how it changed over the centuries. During the period when mostly naturally ac-

quired smallpox immunity existed (1664-1740), the maximum number of smallpox

deaths occurred in the summer and autumn. Then the peaks of the outbreaks shifted
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Figure 3.11: Seasonal variations of smallpox mortality in London, England (1664-1930).
(continued on the next page)
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Figure 3.11: The top panel shows weekly smallpox mortality normalized by the trend of
all-cause mortality together with variolation and vaccination uptake levels.
The red circles show the major peaks in the data as detected by visual inspec-
tion. The main panel shows the seasonality of smallpox epidemics colour
coded so that dark red represents the week with the highest mortality and dark
blue with the lowest. The bottom panel shows the timeline of historical events
related to the smallpox history in England.

to the winter months until about 1770. After that the majority of deaths mostly

occurred in autumn and winter. Seasonal patterns became very irregular during the

period 1808-1840. After 1840, as vaccination levels gradually increased, epidemics

occurred regularly with the majority of deaths occurring in winter and spring. The

peaks of epidemics are hard to detect and to correlate with seasonal changes be-

cause of the noisiness of the data and the large variance in the amplitude of the

outbreaks. However, the low points of the outbreaks are much more visible in Fig-

ure 3.11. From the earliest data until about 1853, spring was the period when the

fewest deaths occurred. But after 1853, the year when compulsory vaccination was

introduced by the Vaccination Act, spring and occasionally winter became the sea-

sons of highest mortality.

Our analysis of the weekly London smallpox time series reveals a strong

correlation between changes in smallpox dynamics and historical events that influ-

enced variolation and vaccination levels. Even before these measures succeeded

in reducing the severity of epidemics, our wavelet analysis shows they affected the

periodicity of smallpox outbreaks (Figure 3.10) and our seasonality analysis (Fig-

ure 3.11) shows they affected the seasonal pattern of smallpox outbreaks.

3.5 Discussion

This study presents a statistical description of weekly smallpox mortality in Lon-

don, England, over almost three hundred years. Time series analysis revealed the
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simultaneous coexistence of multiple periodic modes as well as the evolution of the

relative importance of different periodic components. We also detected changes in

the seasonal pattern of smallpox epidemics. We established a timeline of impor-

tant historical events related to changes in variolation and vaccination uptake and

correlated them with changes in smallpox dynamics.

Previous studies of historical smallpox in London analyzed annual small-

pox mortality data from the London Bills of Mortality over the period 1647-1893

(Duncan et al. 1996, 1994a,b). Those studies computed major periodic components

of the annual data using spectral analysis. To identify changes in periodicity they

divided the time series into six different time intervals. However, those intervals

are not defined by any historical events, which may be why the authors were led to

conclude that changes in smallpox periodicity were caused by changes in birth rate

and nutrition status. Our study shows direct correlation between changes in small-

pox periodicity and the implementation of preventative measures and legislation

regarding those measures. Another difference between previous studies and ours

is the data set used. The annual data analyzed by Duncan et al. (1996) masks the

presence of annual periodicity and seasonality in the data. Our analysis detected the

presence of weak annual cycles from 1664 to 1768 and strong annual cycles from

1768 to 1820. We were also able to identify seasonal changes in the peak times and

to correlate them with historical events.

In a companion paper, we use a mathematical model to investigate how im-

plementation of different preventative strategies, rapid growth of the population,

improvement of sanitary conditions and increases in life expectancy influenced the

dynamics of smallpox epidemics in London. This study provides a good founda-

tion for modeling work by identifying time periods during which model parameters

were relatively constant. Our historical timeline allows us to approximate parameter

values (e.g. rates of birth, variolation and vaccination) in successive time intervals

and thereby reduce uncertainty in model specifications.
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Appendix A: Population of London (1550-1931)

Year Total London Outer London Inner London Source
1550 120,000 120,000 Finlay and Shearer (1986)
1560 140,800 140,800 Estimated1

1580 180,400 180,400 Estimated1

1600 200,000 200,000 Finlay and Shearer (1986)
1620 297,000 297,000 Estimated1

1640 390,500 390,500 Estimated1

1650 391,450 391,450 Estimated1

1660 392,400 392,400 Estimated1

1680 468,600 468,600 Estimated1

1700 490,000 490,000 Finlay and Shearer (1986)
1735 660,000 660,000 Landers (1993)
1745 670,000 670,000 Landers (1993)
1750 675,000 675,000 Finlay and Shearer (1986)
1755 680,000 680,000 Landers (1993)
1765 730,000 730,000 Landers (1993)
1775 780,000 780,000 Landers (1993)
1785 859,234 826,502 Landers (1993)
1795 1,007,703 909,507 Landers (1993)
1801 1,096,784 959,310 137,474 Census
1811 1,303,564 1,139,355 164,209 Census
1821 1,573,210 1,379,543 193,667 Census
1831 1,878,229 1,655,582 222,647 Census
1841 2,207,653 1,949,277 258,376 Census
1851 2,651,939 2,363,341 288,598 Census
1861 3,188,485 2,808,494 379,991 Census
1871 3,840,595 3,261,396 579,199 Census
1881 4,713,441 3,830,297 883,144 Census
1891 5,571,968 4,227,954 1,344,014 Census
1901 6,506,889 4,536,267 1,970,622 Census
1911 7,160,441 4,521,685 2,638,756 Census
1921 7,386,755 4,484,523 2,902,232 Census
1931 8,110,358 4,397,003 3,713,355 Census

Table 3.1: Population of London, England (1550-1931).

1Estimated based on (Finlay and Shearer 1986, Tables 2, 3) data.
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Appendix B: A note on computing trends of demo-

graphic and epidemiological data by Empirical Mode

Decomposition

Why should we use EMD?

Identifying temporal trends is very important in time series analysis. In many in-

stances we are interested in long term smooth changes in data that can be seen from

its trend. For example, the all cause mortality trend or the total births trend are

important quantities we rely on while analyzing or modeling epidemiological time

series. We also often require the removal of a trend from the data (detrending), for

example when computing wavelet or Fourier power spectra.

The observed demographic and epidemiological time series that we usually

work with while studying epidemics are often non-linear, noisy and highly non-

stationary (frequency and amplitude change over time). Empirical Mode Decom-

position (EMD) (Wu et al. 2007) is a recently developed tool that can be effectively

used to find a non-linear trend in non-stationary data. It overcomes the flaws of

other commonly used methods such as moving average, filtering and regression

analysis, which may perform poorly when applied to noisy and non-stationary time

series.

Moving average is argued not to be very useful for non-stationary processes

since it requires a predetermined time scale, but a local time scale is unknown a

priori for non-stationary signal (Wu et al. 2007). Moreover, the moving average

method has a “boundary problem”, i.e. the trend cannot be computed for some por-

tions of the data at the beginning and the end of the time series. That can potentially

be a problem. If the aim is to have a very smooth trend, the moving average win-

dow may be too long and we might lose many data points because of this. In the

example I have considered below, moving average (MA) produces a trend similar to
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the EMD trend. However the MA trend is noisier and loses 12 years of trend data.

Regression analysis and filtering, which are based on linear and stationary

assumptions, use specific models and curve fitting to determine a trend. However

the driving mechanisms in epidemiological and demographic data are complex and

often unknown a priory. Therefore a non-parametric and adaptive EMD method is

preferable.

EMD Approach

The main idea behind the EMD method is that any signal (or time series) consists

of several components with a well defined instantaneous frequency. EMD decom-

poses a signal into a set of “intrinsic mode functions” (IMFs). IMFs are basically

zero mean oscillation modes present in the data: the first IMF captures the higher

frequency oscillations while all subsequent IMFs have a lower average frequency.

Each IMF is extracted recursively starting from the original time series until there

are no more oscillations in the residue. The residual components of this process can

be considered to be estimates of the trend (Wu et al. 2007).

The algorithm to find IMFs starts with computing successive extrema of the

signal (min and max). These extrema are then connected by cubic splines to form

the upper and lower envelopes. The mean of these envelopes is then computed.

Ideally after subtraction of the mean from the original data we would get the IMF;

however that is not always the case, the extracted component may not satisfy the

IMF criteria. The repetition of the above process, which is called sifting, is needed

to find the right IMF (Huang et al. 1998; Rilling et al. 2003). The number of siftings

used to extract each IMF should be chosen with caution, since over-iteration may

result in over-decomposition (Wu et al. 2007).

package “EMD” allows to compute trends by EMD method for any data

(EMD). There also exists a MATLAB package for this purpose (Rilling et al. 2003).
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EMD Algorithm:

To find the trend of a time-series x(t) the following steps are performed (Rilling

et al. 2003; Wu et al. 2007):

1. all local extrema of x(t) (min and max) are identified;

2. interpolating using cubic spline between minima and maxima, the envelopes

emin and emax are created;

3. low-frequency part is then computed as the mean, mj(t) = (emin + emax)/2;

4. high-frequency part is computed as the difference, h1(t) = x(t)−m1(t);

5. steps 1 to 4 (sifting process) are iteratively repeated on the component hj(t),

until the stopping criterion is met. Note hj+1(t) = hj(t)−mj(t);

6. when stopping criterion is met the sifting process is repeated some finite num-

ber of times, k. The last hk(t) is defined as the Intrinsic Mode Function;

7. the residue is then ri(t) = x(t)− IMFi, i ∈ 1, . . . , n;

8. above steps are iteratively repeated again on the residue, ri(t), until another

IMF is obtain and so on until the residue becomes a monotonic function from

which no further IMFs can be extracted.

At the end the data is decomposed into several components: from the highest fre-

quency, IMF1, to the lowest frequency, IMFn and residue, rn.

x(t) =
n∑

i=1

IMFi(t) + rn(t) (3.1)

the total number of IMFs is close to log2 N where N is the total number of data

points.

The following is based on the help page of the EMD Package (function

emd) to which I’ve added some information.



112 Ph.D. Thesis - Olga Krylova

Function emd
There are many useful functions inside of the EMD package. For computing

the trend of the time series, use the emd function (EMD).
Description

This function performs empirical mode decomposition.
Usage

emd(xt, tt=NULL, tol=sd(xt)*0.1ˆ2, max.sift=20,
stoprule="type1",boundary="periodic", smlevels=c(1),
sm="none", spar=NA, weight=20, check=FALSE,
max.imf=10, plot.imf=TRUE, interm=NULL)

Arguments

xt observation or signal observed at time tt
tt observation index or time index
tol tolerance for stopping rule of sifting
max.sift the maximum number of sifting

(the sifting process stops if the max.sift is reached or
stopping criteria for obtaining IMF is met)

stoprule stopping rule of sifting has two options:
type 1: (|hi(t)| < tol) and

type 2:
∑

t

(
hi(t)−hi−1(t)

hi−1(t)

)2

< tol

boundary used to eliminate boundary effect of the data
(specifies the adjusting method of the boundary from:
“none” - no boundary adjustments,
“wave” - constructs a wave,
“symmetric” or “periodic” - assumes data is symmetric or periodic,
“evenodd” - see Kim and Oh (2009) for explanations)

smlevels specifies which level of the IMF is obtained
by smoothing other than interpolation

sm specifies whether the envelope is constructed by smoothing spline
spar specifies user-supplied smoothing parameter of spline
weight the smoothness of spline is determined by weight

times smoothing parameter of GCV
check specifies whether the sifting process is displayed

(if check=TRUE, click the plotting area to start the next step)
max.imf the maximum number of IMFs
plot.imf specifies whether each IMF is displayed

(if plot.imf=TRUE, click the plotting area to start the next step)
interm specifies vector of periods to be excluded from the IMFs
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Value

imf IMFs
residue residue signal after extracting IMFs from observations xt
nimf the number of IMFs

Examples

As an example we will identify the trend in all-cause mortality data from London,

UK (1661-1930) by EMD.

## read data
data <- read.table

("your_data_file", header=TRUE, sep = ",");
## define time verctor
time <- data$numdate;
## observed acm
acm <- data$acm;
## plot
plot(time, acm,

type="l", xlab="Time", ylab="ACM");

Visual analysis of the data plotted in Figure 3.12 gives the following obser-

vations:

• There is an enormous spike in mortality in 1665, which corresponds to the

time of Great Plague of London epidemic.

• There is an obvious discontinuity in observations in 1842, which occurred due

to using two different data sources: London Bills of Mortality (1661-1842)

and Registrar Generals Weekly Returns (1842-1931).

It seems that the best approach to calculate the trend of this time series would be

to compute it separately for periods 1661-1842 and 1842-1931. The spike in 1665

should also be removed and replaced with, for example, interpolated data, so that

trend calculation would not be effected by abrupt discontinuities of the original data.
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Figure 3.12: London all-cause mortality, 1661 - 1930.

The following code produces Figure 3.5, which then will be used to determine

a trend.

## spike during 1665 plague epidemic was removed
## and replaced with linearly interpolated values
## new data:
acm <- data$acm.no.plague;
## identify beginning of new registration system
index2 <- which(round(time,0)==1842)[1];
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#######################
## COMPUTING TREND ###
#######################
## load EMD package
library(EMD);
##
## Compute trend for the part 1 of the data (1661-1841):
## save all produced pictures in pdf
pdf("file_name.pdf");
## set plotting window
par(mfcol=c(3,2), mar=c(2,2,2,2));
## compute emd
emd.out.part1 <- emd(acm[1:index2], time[1:index2],

boundary="wave", max.imf=20, max.sift=20, plot.imf=TRUE);
## close pdf
dev.off();
## compute trend as 8th residue
acm.trend.part1 <-

acm[1:index2]-rowSums(emd.out.part1$imf[ ,1:8]);
## plot original data
plot(time[1:index2], acm[1:index2],

type="l", ylab="ACM", xlab="Time");
## plot trend
lines(time[1:index2], acm.trend.part1, col="red", lwd=2);
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From visual examination we conclude that all 8th to 11th residues can be

considered as reasonably good trends. We would like the trend to capture some

variability of the data and choose residue 8th as a trend for part 1 (Figure 3.13).

Note: It is not trivial to choose the right boundary option. We have tried all

possible choices for the parameter boundary of the emd function from “none”

to “evenodd” and concluded that the “wave” option works the best in this case.
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Figure 3.13: London all-cause mortality, 1661 - 1842.

Similarly we have computed the trend for part 2 of the data (1842-1931).

## Compute trend for part 2 of the data (1842-1931):
## save all produced pictures in pdf
pdf("file_name.pdf");
## set plotting window
par(mfcol=c(3,2), mar=c(2,2,2,2));
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## compute emd
emd.out.part2 <- emd(acm[(index2+1):length(time)],

time[(index2+1):length(time)], boundary="evenodd",
max.imf=20, max.sift=20, plot.imf=TRUE);

## close pdf
dev.off();
## compute trend as 8th residue
acm.trend.part2 <-

acm[(index2+1):length(time)]-rowSums(emd.out.part2$imf[ ,1:8]);
## plot original data
plot(time[(index2+1):length(time)],

acm[(index2+1):length(time)],
type="l", ylab="ACM", xlab="Time");

## plot trend
lines(time[(index2+1):length(time)],

acm.trend.part2, col="red", lwd=2);

The boundary parameter option was chosen to be “evenodd” and the

trend was identified as 8th residue (Figure 3.14).
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Figure 3.14: London all-cause mortality, 1842 - 1930.
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Figure 3.15: London all cause mortality (1661 - 1930) and its trend computed by EMD.

Figure 3.15 shows the end result: the trend for complete time series.

I have also compared this result with the moving average of 6 years in Fig-

ure 3.16. The EMD method was better at producing a smother trend and not losing

any info at the boundaries. Notice that since we computed the trend separately for

two parts of the data set, the MA method produced 12 years of missing values.

#######################
## TREND by MA Method
#######################
## 6 years (or 2*156 weeks) ma
## for part 1
ma1 <- filter(acm[1:index2],

filter=rep(1/(2*156+1),2*156+1));
## for part 2
ma2 <- filter(acm[(index2+1):length(time)],

filter=rep(1/(2*156+1),2*156+1));
## plot original data
plot(time, data$acm.no.uhp, type="l",
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ylab="ACM", xlab="Time", ylim=c(0,3000));
## plot trend
lines(time[1:index2], ma1, col="blue", lwd=2);
lines(time[(index2+1):length(time)], ma2, col="blue", lwd=2);
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Figure 3.16: London all-cause mortality (1661 - 1930) and its trend computed by moving
average (6 years window).

Where to look for more info

A more detailed description of EMD can be found in the following sources:

• Wu et al. (2007) - great starting point. This short paper will give you a good

idea what is EMD and how it can be used. Authors also propose a definition

of the trend of nonlinear and non-stationary data and define the process of

data detrending;



126 Ph.D. Thesis - Olga Krylova

• EMD - EMD package in . Package description provides great examples

of how to use different functions inside the package;

• Kim and Oh (2009) - offer more detailed explanations of the EMD package

in . It is very useful;

• Rilling et al. (2003) - description of the numerical algorithm for computing

EMD used in MATLAB package;

• http://www.commsp.ee.ic.ac.uk/∼mandic/research/emd.htm

- various recently published papers about EMD;

• Huang et al. (1998); Vatche and Sharple (2008) - more on analytical approach

used for developing EMD.

http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm


Chapter 4

Estimating the seasonal pattern of

smallpox transmission in London,

England, 1664-1930

Abstract

Seasonal variation in infectious disease transmission is a key determinant of epi-

demic dynamics. Estimation of the amplitude and seasonal pattern of the transmis-

sion rate is necessary for the development of accurate epidemiological models. In

this paper we use a simple and computationally efficient method to estimate the

transmission rate, β(t), for smallpox in London, England, from 1664 until 1930.

Our analysis reveals that seasonality of β(t) changed significantly over the cen-

turies. The events associated with lowest transmission change from the annual har-

vest in the 17th century to the summer school holiday in the 19th century. After

the introduction of public schools at the end of the 19th century, variations in the

smallpox transmission rate are similar to the variations in the measles transmission

rate in England and Wales (1950-1977), which were previously associated with

school terms (Fine and Clarkson 1982; Finkenstadt and Grenfell 2000). Our results

suggest that the contact rate among individuals, particularly children, who became

127
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the primary victims of smallpox in the 18th century (Creighton 1965; Fenner et al.

1988; Razzell 1977), was the driving force of smallpox transmission in London.

Keywords: smallpox; seasonal pattern; transmission rate; differential equa-

tion model

4.1 Introduction

The study of epidemiological time series via mathematical modeling opened a route

for understanding the biological processes that drive the spread of infectious dis-

eases in populations. The complicated mechanism of transmitting infection be-

tween susceptible and infected individuals, which depends on the type of popula-

tion mixing, contact pattern between individuals, the type of contact and various

other factors, is typically approximated in S(usceptible)-I(nfectious)-R(ecovered)-

type models by a simple term, βSI . The transmission rate, β, is the product of

probability of a susceptible individual acquiring infection if a contact with an in-

fected person occurs and the rate at which pairwise contacts occur in the population.

For many infectious diseases the transmission rate varies seasonally (Altizer et al.

2006) and for childhood diseases it often mimics the school-term pattern (Conlan

et al. 2010, 2011; Eames et al. 2011; Fine and Clarkson 1982; Hooker et al. 2011). It

has been shown that the shape of the seasonal variation of β determines the dynam-

ical structure of the SIR-type models (Earn et al. 2000a) and therefore influences

inferences and predictions derived from the models. Hence obtaining adequate es-

timates of the seasonal pattern of the transmission parameter, β, is very important.

Moreover, estimated seasonality of the transmission rate could help to identify the

driving forces of the spread of infectious diseases (e.g. changes in the contact rate

between individuals, seasonal variations in temperature and humidity, etc.).

Most studies that aim to estimate the disease transmission rate seasonal-

ity are based on relatively short data sets (20-50 years) (Fine and Clarkson 1982;
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Finkenstadt and Grenfell 2000; He et al. 2010; Hooker et al. 2011; King et al. 2008)

and therefore cannot provide information about long-term changes in the seasonal-

ity of disease transmission over centuries. Such information could help to clarify the

fundamental epidemiological processes that affect epidemic patterns. The Weekly

London Bills of Mortality, analyzed in this study, present a unique opportunity to

examine changes in the seasonality of smallpox transmission over 267 years. The

main purpose of the current work was to use this extremely rich data set to estimate

and analyze the seasonal pattern of the smallpox transmission rate and make some

inferences about major forces that drive smallpox seasonality.

Over the last three decades various methods of estimating the transmission

rate from observed data have been proposed (Cauchemez and Ferguson 2008; Fine

and Clarkson 1982; Finkenstadt and Grenfell 2000; Hooker et al. 2011; King et al.

2008; Metcalf et al. 2009; Xia et al. 2005). One of the earliest methods was de-

veloped by Fine and Clarkson (1982). They obtained plausible estimates of the

measles transmission rate (Figure 4.1) using a crude discrete-time approximation

of the deterministic SIR model. This method was later modified by Finkenstadt and

Grenfell (2000), who developed a discrete time stochastic version of the SIR model

termed the TSIR (time series SIR) model and estimated the transmission rate by fit-

ting this model to measles data. The resulting estimated seasonal pattern of measles

transmission (Figure 4.3) was very similar to the one obtained earlier by Fine and

Clarkson (1982) (Figure 4.1). Recently, more sophisticated methods that take into

account observation error, demographic noise, non-linearity and non-stationarity of

the underlying biological process, have been developed (He et al. 2010; Hooker

et al. 2011; Ionides et al. 2006; King et al. 2008).

While these methods represent state-of-the-art statistical techniques they are

often computationally demanding and time consuming to implement. Since our

main purpose was to estimate seasonality of the smallpox transmission from an

extremely long time-series (13889 data points) we required a computationally ef-
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ficient method that could be implemented in a reasonable time frame. Therefore,

we developed a simple approach of estimating the transmission parameter based on

the continuous-time SEIR model. Our resulting formulas resemble the ones used by

Fine and Clarkson (1982). However, our method takes into account reporting delay,

which was ignored in Fine and Clarckson’s approach, and can be applied not only

to case notification, but also to disease mortality data. It is also free of the assump-

tion that the generation time is equal to the observation interval, and therefore does

not require unnecessary temporal aggregation of the data (tri-weekly in the case of

smallpox). The method is straightforward in implementation and very efficient. It

produces accurate results when tested on simulated data, and when applied to the

data sets used previously in the literature for estimating disease transmission rates

(it reconstructs the same seasonal pattern as other more sophisticated methods).

In the next section we describe our approach. We apply the method to small-

pox mortality data and present our principal findings in Section 4.3. We summa-

rize our results and future research directions in the last section of the paper (Sec-

tion 4.4).

4.2 Methods

Consider the standard SEIR model:

dS

dt
= (1− p(t))ν(t)− β(t)S(t)I(t)− µ(t)S(t) , (4.1a)

dE

dt
= β(t)S(t)I(t)− (σ + µ(t))E(t) , (4.1b)

dI

dt
= σE(t)− (γ + µ(t))I(t) , (4.1c)

dR

dt
= γI(t)− µ(t)R(t) , (4.1d)

where S(t), E(t), I(t), and R(t) are continuous stable variables that represent the

proportions of individuals who are Susceptible, Exposed, Infectious and Recovered,
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and β(t) is the (per capita) transmission rate. All other parameters are explained in

Table 4.1.

Symbol Definition
1/σ Mean latent period
1/γ Mean infectious period
β Per capita transmission rate
ν Birth rate
µ Death rate
p Proportion of newborns immunized, p = pvar + pvacc

pvar Proportion of newborns successfully immunized by variolation
pvacc Proportion of newborns successfully immunized by vaccination
∆t Time interval between successive incidence samples
Zt Number of new infections at time t
St Number of susceptible individuals at time t
S1 Initial number of susceptible individuals in the population
Bt Number of births at time t
Ct Number of reported cases at time t
Mt Reported disease mortality at time t
T Mean time from initial infection to recovery,

T = k∆t, where k = 1, 2, 3, . . .
Treport Mean time from initial infection to its reporting,

Treport = m∆t, where m = 1, 2, 3, . . .
η Case fatality proportion
ρ Reporting rate (proportion of cases reported)

Table 4.1: Notation used in this paper.

If we assume that the disease dynamics in a population are governed by the

mechanisms captured in this model, we can estimate the transmission rate β from

incidence data using equation (4.1) in the following manner. Let Zt be the number

of new infections aggregated over some time interval, ∆t. This number can be

derived from the rate of increase in the latent class (equation (4.1b)) as:

Zt =

∫ t

t−∆t

β(τ)S(τ)I(τ)dτ, (4.2)
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or, if we take into account that individuals who where infected at time t leave the

infectious class at time t + T on average (where T is the mean time from initial

infection to recovery, T = 1
σ

+ 1
γ

), the number of new infections, Zt, aggregated

over the time interval, ∆t, can be derived from the rate of decrease in the infectious

class (equation (4.1c)):

Zt =

∫ t

t−∆t

(γ + µ(τ + T ))I(τ + T )dτ. (4.3)

Assuming that β(t), S(t), I(t) and µ(t) are almost constant over the short time

interval, ∆t, equations (4.2) and (4.3) can be rewritten as:

Zt
∼= βtStIt∆t, (4.4)

and

Zt
∼= (γ + µt+T )It+T ∆t. (4.5)

Equation (4.5) yields a formula for It:

It =
Zt−T

(γ + µt)∆t
, (4.6)

which can be inserted into equation (4.4) to obtain:

Zt = βtSt
Zt−T

γ + µt

. (4.7)

Hence the transmission rate βt can be obtained from the incidence time series (Zt)

via

βt =
1

St

Zt

Zt−T

(γ + µt), (4.8)

where St, based on equation (4.1a), is:

St+∆t = St + (1− pt)Bt − Zt+∆t − µtSt. (4.9)
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Note that equation (4.8) reconstructs the transmission parameter, βt, from the num-

ber of new infections, Zt (i.e. infections that occurred between t − ∆t and t). In

general, infections (Zt) are not observable and only case notification data or disease

mortality data are collected. Therefore we have to account for a delay (Treport) be-

tween the time of infection and the time of case notification or death and treat only

a proportion ρ < 1 as reported. Assuming that both parameters, Treport and ρ, are

constant, reported cases, Ct, can be estimated as:

Ct = ρZt−Treport , Treport ∈ {∆t, 2∆t, . . .}. (4.10)

Similarly, if the case fatality proportion, η, is constant, equation (4.10) can be

altered for mortality data, Mt:

Mt = ρηZt−Treport , Treport ∈ {∆t, 2∆t, . . .}. (4.11)

Equations (4.10)mortality allow us to rewrite equations (4.8) and (4.9) in terms of

reported cases, Ct,

βt =
1

St

Ct+Treport

Ct+Treport−T

(γ + µt), (4.12a)

St+∆t =St + (1− pt)Bt −
1

ρ
Ct+∆t+Treport − µtSt, (4.12b)

or reported disease induced deaths, Mt:

βt =
1

St

Mt+Treport

Mt+Treport−T

(γ + µt), (4.13a)

St+∆t =St + (1− pt)Bt −
1

ρ

1

η
Mt+∆t+Treport − µtSt. (4.13b)

Before estimating the transmission rate, β, from the reported data (equations (4.12)

and (4.13)) we need to determine the initial number of susceptibles in the popula-

tion, S1. We assume that the average level of susceptibles should be roughly con-
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stant over a 5–10 year period. Therefore we choose S1 (from the range sN1, where

0 < s < 1 and N1 is the initial population size) so that the reconstructed time series

of St (equations (4.12b) and (4.13b)) for the 5–10 years period has no long-term

trend.

Using equations (4.12) and (4.13) we estimate the transmission parameter,

βt, for the whole time series. To identify the seasonal component of βt, we remove

the long-term trend using the EMD method (Wu et al. 2007), which we have found

to be the best for determining the trend in noisy, non-stationary data. The seasonal

pattern changes from year to year, but is roughly constant for periods of many years.

Hence we divide the time series into a sequence of time intervals during which the

seasonal pattern is approximately constant. For each of these time intervals, we

estimate the annual seasonal pattern to be given by the mean across all years in the

interval (e.g. the annual pattern of βt on 1 January is β1 Jan = 1
n

∑n
i=1 β1 Jan,i, where

n is the number of years in the focal time interval). We use the same approach to

estimate a biennial and a triennial pattern, taking averages across biennia or triennia,

respectively. We then compare the estimated annual, biennial and triennial patterns

to examine whether there is evidence for seasonal forcing on a timescale longer

than one year. If the seasonal pattern we estimate is still noisy, we smooth it using

a moving average or EMD. When plotting the estimated seasonal pattern, we also

show the upper and lower quartiles (calculated across years) to indicate the degree

of variation in the seasonal pattern with each time interval with roughly constant

seasonality.

Note that equations (4.12a) and (4.12b) are similar to the ones used by Fine

and Clarkson (eq. 2–3). However, equation (4.12a) includes the term (γ + µt) and

accounts for a reporting delay, which were omitted in Fine and Clarkson (1982).

Our method does not rely on the assumption that the generation time is equal to the

sampling interval, and therefore does not require unnecessary temporal aggregation

of the data. However there is a limited flexibility in the choices of Treport and T ,
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which must be constant multiples of the sampling interval, ∆t.

To check the validity of our method, we tested it on simulations of the stan-

dard deterministic SEIR model (equation (4.1)) as well as its stochastic version

(Gillespie simulations) with fixed and sinusoidally forced β(t). The reconstructed

β(t) was identical to the one used in simulations. We also applied the method to

the weekly measles case notification data from England and Wales (1950-1965),

used previously by Fine and Clarkson (1982) and Finkenstadt and Grenfell (2000),

to check that our method produces comparable results. Our estimated seasonality

of βt presented in Figure 4.2 (annual seasonal pattern (blue curve) with its upper

and lower quartiles (grey region)) are very similar to the results obtained by Fine

and Clarkson (1982) (panel B of Figure 4.1) and Finkenstadt and Grenfell (2000)

(Figure 4.3). Note that we plot β/γ, rather than β, so the vertical scale has the units

of the basic reproduction number, R0, for easier interpretation. We also were able

to reproduce the seasonal pattern of βt obtained by Hooker et al. (2011) for weekly

measles incidence data for Ontario, Canada (1939-1965). (Figure 4.4 shows results

from Hooker et al. (2011) and Figure 4.5 shows the estimated β/γ obtained by our

method). Note that there is a significant difference between the estimated mean of

β/γ (the red dotted line in Figure 4.5 and Figure 4.2) for measles in Ontario (mean

β/γ ≈ 27) and measles in England and Wales (mean β/γ ≈ 11). This can be ex-

plained by different reporting rate (ρ) used in these studies (ρ ≈ 27% in Hooker

et al. (2011) vs. ρ ≈ 66% in Fine and Clarkson (1982)). If we choose the same

reporting rate, the estimated mean β/γ is almost identical in both cases. The above

comparisons indicate that despite its simplicity, our method produces results that

are consistent with the outputs of other methods.
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Figure 4.1: Seasonality of measles transmission, reprinted from Fine and Clarkson (1982)
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Figure 4.2: Estimated seasonality of β/γ for measles in England and Wales (1950-1965).
Blue dots show the annual seasonal pattern of β/γ estimated by our method
while the grey region shows the upper and lower quartiles. The red dotted
line shows the mean value of β/γ. Parameter values were chosen as follows:
S1 = 4.5 · 106, Bt = 12, 300 week−1, µ = 0 year−1, pt = 0, ρ = 66% (the
above parameters are as in Fine and Clarkson (1982)), Treport = T = 2 weeks,
1/γ = 5 days.

Figure 4.3: Seasonality of measles transmission, reprinted from Finkenstadt and Grenfell
(2000).
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Figure 4.4: Seasonality of measles transmission, reprinted from Hooker et al. (2011).
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Figure 4.5: Estimated seasonality of β/γ for measles in Ontario, Canada (1939-1950). Blue
dots show the annual seasonal pattern of β/γ estimated by our method while
the grey region shows the upper and lower quartiles. The red dotted line shows
the mean value of β/γ. Parameter values were chosen as follows: Bt - monthly
birth data from the province of Ontario, Canada, S1 = 4.5 · 105, 1/γ = 5 days,
µ = 0 year−1, pt = 0, ρ = 30% (the above parameters are as in Hooker et al.
(2011)), Treport = T = 2 weeks.
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We also carried out a sensitivity analysis to determine the robustness of our

method with respect to changes in the number of births (Bt), the initial number of

susceptibles in the population (S1), the death rate (µt), the reporting rate (ρ), the

case fatality proportion (η) and the mean time from initial infection to its reporting

(Treport). This analysis has shown that estimated seasonal variation of the transmis-

sion rate, β, are not significantly affected by changes in these parameters. However

the mean of the estimated transmission rate strongly depends on the initial number

of susceptibles in the population (S1), the reporting rate (ρ) and the case fatality

proportion (η). Since usually there is great uncertainty in these parameters, the

estimated mean value of β should be treated with caution.

In the next section we apply the method described above to the weekly Lon-

don smallpox mortality data and estimate the seasonality of the smallpox transmis-

sion rate for the period 1664-1930.

4.3 Seasonality of the smallpox transmission rate

The London Bills of Mortality represent a remarkably rich data set on epidemics of

many infectious diseases. Our particular focus is smallpox. In this section we use

smallpox mortality data to estimate the seasonal pattern of smallpox transmission

and investigate how it changed across the centuries.

Data and parameter estimates

The London Bills of Mortality (1664-1930) provide weekly data on three processes:

birth (total christened), death (all-cause mortality) and smallpox mortality (that we

consider deaths due to smallpox). Given smallpox mortality data (Mt), we used

equation (4.13) to estimate the seasonality of the smallpox transmission rate, βt.

The number of weekly births, Bt, was estimated as a trend of reported weekly

births using Empirical Mode Decomposition (Wu et al. 2007). The death rate, µt,
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was calculated as a trend of reported weekly death rate (Total deaths/N , where N is

London population’s size, as estimated in Chapter 3). Variolation and vaccination

rates (pvar
t and pvacc

t respectively) were estimated based on the historical analysis

discussed in Chapter 3 and are summarized in Table 4.2.

Year pvar pvacc p = pvar + pvacc

1721 0.01 0 0.01
1728 0.03 0 0.03
1740 0.10 0 0.10
1768 0.15 0 0.15
1790 0.20 0 0.20
1797 0.25 0.05 0.30
1808 0.30 0.10 0.40
1835 0.13 0.40 0.53
1840 0.10 0.50 0.60
1841 0 0.60 0.60
1850 0 0.65 0.65
1870 0 0.75 0.75
1880 0 0.80 0.80
1930 0 0.80 0.80

Table 4.2: Variolation (pvar) and vaccination (pvacc) uptake level for smallpox in London,
England (1664-1930). The variolation and vaccination rates were estimated
based on the historical analysis presented in Chapter 3. Linear interpolation
method was used to obtain estimates for the rest of the years.

We estimated the initial number of susceptible individuals (S1) as 0.3 ·N1664

(for 1664), which is plausible, assuming the system is close to equilibrium

(Sequilibrium = 1/R0, where 3 ≤ R0 ≤ 10 (Anderson and May 1991; Eichner and

Dietz 2003; Gani and Leach 2001) implying that 0.1 ≤ Sequilibrium ≤ 0.3). The

low number of susceptibles during 1665–1675 could have resulted from the Great

Plague of 1665-1666, if the plague killed a disproportionate number of young peo-

ple.

Smallpox mortality records are likely to be accurate due to the fact that

smallpox was an easily recognizable disease (Hopkins 1983). Therefore we assume

that the death reporting rate, ρ, was close to 100%. All other parameter values and
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their sources are described in Table 4.3.

Parameter Description Value Source
1/σ Mean latent period 15 days Chapter 3
1/γ Mean infectious period 7 days Chapter 3
∆t Sampling interval 1 week
T Mean time from initial

infection to recovery 3 weeks T = 1/σ + 1/γ
Treport Mean time from initial

infection until death due to smallpox 3 weeks Chapter 3
η Smallpox fatality rate 20% (Fenner et al. 1988)
ρ Reporting rate 100% (Fenner et al. 1988)
S1 Initial number of susceptible

individuals in the population 0.3 ·N1664 Estimated

Table 4.3: Parameters and their values.

Results

Figures 4.6–4.7 summarize the results of our analysis and show the estimated sea-

sonal pattern of the smallpox transmission rate (blue solid line in subfigures (a)-(i))

together with 25% and 75% quartiles (the grey region) for the period 1664-1930.

Unlike the measles transmission pattern in the 20th century (Figure 4.2), which

clearly shows three distinct peaks associated with the school terms, the smallpox

transmission rate does not have such an obvious and easily identifiable pattern. Sea-

sonality is much harder to detect. To the eye the reconstructed transmission rate is

very close to the mean (red dotted line) and its pattern can be argued to be generated

by noise and not seasonality. Figure 4.8 shows the estimated β/γ (grey lines) for

each year corresponding to the time intervals in Figures 4.6–4.7. The pattern of the

curves show considerable stochastic variations. To understand if estimated small-

pox transmission rate is indeed seasonal we computed its wavelet spectrum. The

wavelet spectrogram (Figure 4.9) shows a periodic component of one year, most
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prominently for 1768–1820. The spectral peak at one year indicates that smallpox

transmission varied seasonally. Clearly, more careful investigation of this question

is required in the future. For our present purpose we take the median of β(t) (blue

lines in Figures 4.6–4.7) to be our best estimate of seasonal variations in smallpox

transmission.

Figures 4.6–4.7 suggest that the seasonal pattern of the smallpox transmis-

sion rate changed over time and the following features can be observed.

• Throughout the period when only naturally acquired immunity for smallpox

existed (Figure 4.6, panels (a)-(b)), the transmission rate exhibits a decline

during August-September, which could have been caused by seasonal migra-

tion of Londoners to the countryside for harvesting (Clark 1979). After 1721

this decline can no longer be detected.

• During 1768-1840 the transmission rate exhibits a deep trough during the

first two weeks of December (Figure 4.7, panels (e)-(g)). Such trough is not

evident during other periods. Another trough is noted in February and then

an annual rise in March.

• After 1840, the rise in transmission occurs in the beginning of September

(Figure 4.7, panels (h)-(i)), unlike previous years. The obvious question is:

could it be the effect of school opening in September? There was very limited

schooling prior to the mid 19th century, when only wealthy families sent their

children to schools. However, during the second half of the 19th century, the

number of schools started to grow. Since by the 18th century smallpox have

become primarily a childhood disease (Creighton 1965; Fenner et al. 1988;

Razzell 1977), contacts among school children could have been a key driver

of the smallpox transmission.

• During the period 1875-1895, the seasonal pattern of smallpox transmission

shows three peaks (Figure 4.7, panel (i) and Figure 4.10) similarly to the sea-

sonal pattern of measles in England and Wales, 1950-1965, which was driven
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Figure 4.6: Estimated seasonal variation of smallpox transmission rate in historic London,
England (1664–1768). (continued on the next page)
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Figure 4.6: The top panel shows smallpox mortality data normalized by all-cause mortal-
ity (black curve) together with variolation and vaccination uptake levels (yellow
green-dark olive colourbar for variolation with yellow green indicating the low-
est level and dark olive the highest; and yellow-red colourbar for vaccination
with light yellow indicating the lowest level and red the highest level). The
bottom panel shows estimated seasonal variation of the transmission rate for
specific time intervals. Solid blue curves represent the annual seasonal pattern
of β/γ estimated by our method while the grey region shows the upper and
lower quartiles. The red dotted line in each sub-panel shows the mean value of
β/γ.

by school terms (Figure 4.2). The history of the school system in England

shows that thousands of schools were opened after the Elementary Education

Act of 1870, which introduced public schools in England (Middleton 2010).

This could have had a tremendous effect on the contact pattern in children.

• The smallpox seasonal transmission pattern in panel (i) of Figure 4.7 does

not match the school-term dates as well as the seasonality of measles trans-

mission (Figure 4.3). This can be explained by different starting dates of the

school terms in 19th and 20th century England. While we did not find the ex-

act days of the school terms in England in the 19th century to match with the

seasonality of smallpox transmission, we did find that the schools were closed

during the Christmas holidays (two weeks), Easter holidays (one week) and

four or five weeks over the summer (Middleton 2010), which seems to coin-

cide with the troughs in Figure 4.10.

• Intervention uptake levels did not seem to influence the seasonality of small-

pox transmission. However, the mean of the transmission rate (the red dot-

ted line in subfigure (a)-(i) Figures 4.6–4.7) declines drastically as variola-

tion and vaccination uptake levels grow at the end of the 18th century (Fig-

ure 4.7). It appears that variolation on its own did not help to control small-

pox transmission and mean β/γ was increasing. The introduction of vacci-

nation seems to have played a major role in the reduction of the effective R0,
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Figure 4.7: Estimated seasonal variation of smallpox transmission rate in historic London,
England (1768-1930). Annotation is as in Figure 4.6.
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Figure 4.8: Estimated seasonal variation of smallpox transmission rate in historic London,
England (1664-1930) Light grey curves are estimated β/γ for each year in the
time interval according to Figures 4.6–4.7, so that subplot (a) shows estimated
β/γ for each year from 1664 until 1692 together with their median (blue curve)
and upper and lower quartiles (black curves). The red dotted line in each sub-
panel shows the mean value of β/γ.
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Figure 4.10: Estimated seasonality of β/γ for smallpox in London, England (1875-1895).
The blue dots show the annual seasonal pattern of β/γ estimated by our
method while the grey region shows the upper and lower quartiles. The red
dotted line shows mean value of β/γ.

which resulted in a significant decrease of the severity of smallpox epidemics

and their final elimination from London near the beginning of the 20th cen-

tury (Figure 4.7).

4.4 Discussion

The main goal of our study was to estimate and analyze changes in the seasonality

of smallpox transmission in London, England. We have presented a simple method

based on the continuous time SEIR model, which allows one to estimate the disease

transmission rate from large case notification or mortality data sets. Compared with

state-of-the-art methods (He et al. 2010; Hooker et al. 2011; Ionides et al. 2006;

King et al. 2008) it provides an algorithm that is easy to implement and is not com-

putationally demanding. Although the method is naive and lacks a solid statistical

foundation we found that it performed very well on simulated data and real data

previously analyzed by other methods. Applying our method to the smallpox mor-

tality records from the Weekly London Bills of Mortality, we were able to estimate
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the seasonal pattern of smallpox transmission rate over the period 1664-1930.

We have shown that seasonal variations of the underlying transmission pa-

rameter change significantly over the centuries. The seasonal pattern of the trans-

mission rate seems to be related to seasonality of population behaviour, such as

migration of Londoners to the countryside during harvesting season, and (after the

introduction of public schools in 1870) variation in contacts among children gener-

ated by school terms.

Variolation and vaccination uptake levels do not seem to influence season-

ality of the transmission rate. These finding echo conclusions drawn previously for

measles: seasonality of measles transmission had the same pattern for both pre-

and post-imminization periods (Fine and Clarkson 1982; Finkenstadt and Grenfell

2000). However, it appears that vaccination played a major role in reducing the

mean value of the smallpox transmission rate in the 19th century. This eventually

reduced smallpox to the level where there were no longer recurrent epidemics and

only occasional outbreaks seeded by immigration.

Seasonal variations in temperature, which significantly changed over these

centuries, might also have had an impact on smallpox transmission. Future research

may reveal if these environmental changes had any effect on smallpox seasonality.



Chapter 5

Modelling transitions in smallpox

dynamics in London, England,

1664-1930

Abstract

Many infectious disease time series display changes in epidemiological pattern,

such as transitions from an annual cycle to a biennial cycle, or to irregular dynam-

ics. Such dynamical transitions have previously been associated with changes in

the rate at which new susceptible individuals enter a population. Previous transition

analysis has been restricted to epidemics of the 20th century over 50-70 year time

intervals (Bauch and Earn 2003b). We investigate whether demographic and be-

havioural changes influenced transitions of smallpox dynamics in London, England

over almost three centuries. We show that the periodic structure of the smallpox

epidemics is associated with the period of damped oscillations onto the annual at-

tractor of the SIR model for smallpox. Further, our analysis reveals that the changes

in smallpox dynamics can be related to changes in birth rate, immigration to Lon-

don, and in uptake of various control measures.

150
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5.1 Introduction

The tragic events of September 11, 2001 generated great interest in modelling the

potential release of smallpox virus and possible scenarios for public health re-

sponses to it (Aldis and Roberts 2005; Bauch et al. 2003; Burke et al. 2006; Eichner

2003; Ferguson et al. 2003; Glasser et al. 2008; House et al. 2010; Kaplan et al.

2002, 2003; Longini et al. 2007; Meltzer et al. 2001; Nishiura and Tang 2004; Riley

and Ferguson 2006; Zenihana and Ishikawa 2010). Nevertheless, relatively little at-

tention has been given to the analysis of historical epidemics of smallpox (Duncan

and Gyongy 2006; Gani and Leach 2001; Nishiura 2007b; Nishiura and Kashiwagi

2009). One of the major reasons for the limited study of historical outbreaks is the

lack of available data. Recently digitized weekly Bills of Mortality have allowed us

to study smallpox epidemics in London, England over almost three centuries. This

data set is of particular interest since it covers almost 100 epidemics triggered by

variola virus from October 1664 until December 1930.

Statistical analysis of the weekly London Bills of Mortality, presented in

Chapter 3, revealed significant variations in the amplitude and temporal frequency

of smallpox epidemics over different periods of time. Analysis of the smallpox his-

tory in England, also described Chapter 3, led us to believe that these changes in

the epidemiological pattern of smallpox epidemics were correlated with significant

historical events related to the implementation of the control measures (i.e. vario-

lation and vaccination), population movement, wars, etc. In this paper we confirm

our observations using mechanistic mathematical modelling.

Previous theoretical work (Bauch and Earn 2003a,b; Earn 2009; Earn et al.

2000a; He and Earn 2007) established that transitions from oscillations of one peri-

odic cycle to another, often observed in epidemiological time series, are determined

not by chance but by the rate of recruitment of susceptible individuals into the pop-

ulation. Birth rate and vaccination levels are the two major factors associated with

the input of new susceptibles into the population and, therefore, can be seen as
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the main drivers of the changes in disease dynamics. In the current work we use

the method of transition analysis explained in detail in Chapter 2, to investigate

if indeed the observed demographic and behavioural changes triggered changes in

smallpox dynamics. We determine the rate of input of new susceptible individuals

into the population from birth and immigration and correlate changes in this rate

with the changes in the temporal pattern of smallpox mortality. We also show that

transient dynamics, and specifically damped oscillations onto the annual attractor,

are the key elements determining the periodic structure of the London smallpox

time series.

In the next section we describe the model we used to conduct transition

analysis and its parameterization. In Section 5.3 we apply transition analysis to

smallpox dynamics in London, England (1664-1930). We summarize our results

and highlight future research directions in Section 5.4.

5.2 The model

A variety of complicated multi-stage deterministic (Kaplan et al. 2002), stochas-

tic (Bozzette et al. 2003b; Eichner 2003; Halloran et al. 2002; Longini et al. 2007;

Meltzer et al. 2001), individual-based computational (Burke et al. 2006), integral-

equation (Aldis and Roberts 2005), age-structured and socially/spatially structured

(Glasser et al. 2008) models have been developed recently to study smallpox trans-

mission. These models have been used to evaluate different scenarios for public

health response in the event of a smallpox bioterrorism attack. Researchers mod-

eled realistic features of the current social and spatial structure of the population

as well as various scenarios for smallpox release, which resulted in extreme model

complexity. Much simpler SEIR (susceptible, exposed, infectious, recovered)-type

models (Anderson and May 1991) have been used to study historic smallpox mor-

tality (Duncan et al. 1996; Duncan and Gyongy 2006; Gani and Leach 2001).
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The standard SEIR model, which is based on the assumption of a large

and homogeneously mixed population, appears to adequately approximate small-

pox transmission dynamics and will be used to model smallpox dynamics in historic

London. To make the model more realistic we consider a realistic distribution of the

latent and infectious periods, which can be approximated by the Erlang distribution

with the shape parameter m = 40 for the latent period and the shape parameter

n = 4 for the infectious period (Wearing et al. 2005). This more realistic model

would then include 45 disease stages and therefore 45 equations. Our work on the

Erlang distributed models presented in Chapter 1 has shown that the dynamics of

this complex system can be successfully captured by the classic SIR model (Ander-

son and May 1991; Kermack and McKendrick 1927) if the mean serial interval1,

Tserial, which is the time from initial infection of a primary case to initial infection of

a secondary case (Fine 2003)), is the same for both models. Therefore in our anal-

ysis we use the SIR model (equation (5.1)) that the includes mean serial interval:

dS

dt
= ν(t)N0 − β(t)S(t)I(t)− µS(t) , (5.1a)

dI

dt
= β(t)S(t)I(t)− 1

Tserial
I(t)− µI(t) , (5.1b)

dR

dt
=

1

Tserial
I(t)− µR(t) , (5.1c)

where, S, I and R are the numbers of susceptible, infectious and recovered (im-

mune) individuals in the population respectively. The parameters ν, µ and β are the

rates of birth, per capita death and transmission respectively. Tserial is computed by

the formula (Svensson 2007):

Tserial = Tlatent +

(
n + 1

2n

)
Tinf, (5.2)

1The serial interval is also called the generation interval, the generation time, or the case-to-case
interval.
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where Tlatent is the mean latent period, Tinf is the mean infectious period, and n is

the shape parameter of the infectious period distribution.

The natural history of smallpox infection was described in Chapter 3. Small-

pox has a mean latent period Tlatent of 15 days and a mean infectious period (with

multiple stages) of about 20 days. An infected person is extremely infectious during

the first four days after the rash appearance, after which the infectiousness wains

rapidly. We assume that the time during which the infectious individuals can trans-

mit infection, Tinf, is about 7 days on average (Fenner et al. 1988). Substituting

these estimates in equation (5.2) implies that Tserial ≈ 19 days.

Statistical analysis preformed in Chapter 3 showed the presence of season-

ality in the observed smallpox data, which suggested that the transmission rate β

was seasonally forced. In Chapter 4, we estimated seasonal variation in smallpox

transmission for various time intervals. We will use those estimates in our model.

All other parameter values used in the model are listed in Table 5.1.

Parameter Description Value Source
Tlatent Mean latent period 15 days Fenner et. al. (1988)
m Shape parameter of the 40 Wearing et. al. (2005)

Erlang distributed latent period
Tinf Mean infectious period 7 days Fenner et. al. (1988)
n Shape parameter of the 4 Wearing et. al. (2005)

Erlang distributed infectious period
Tserial Mean serial interval ≈ 19 days Estimated (equation 5.2)

β Seasonal transmission coefficient Fig. 4.6-4.7 Estimated in Chapter 3
ν Susceptible recruitment rate (for 1671–1684) 0.05 Estimated from our data
µ Death rate 0.045 Estimated from our data

Table 5.1: Parameter notations and estimates.

5.3 Transition analysis

To identify transitions that occurred in smallpox dynamics we start with the descrip-

tion of the data and the analysis of its frequency structure. We estimate the suscep-
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tible recruitment rate and infer the effective reproduction number, R0,eff based on

this estimate. Then we perform asymptotic and perturbation analysis of the SIR

model with the mean serial interval estimated for smallpox. Finally, using the es-

timated value of R0,eff and the results of the asymptotic and perturbation analysis

we predict the changes in qualitative dynamical behaviour of smallpox incidence.

Comparing our predictions based on the SIR model with the wavelet power spec-

trum of the smallpox mortality time series we try to establish whether demographic

and behavioural changes triggered the transitions in smallpox dynamics observed

in the data.

5.3.1 Description of the data

Reported mortality and inferred frequency structure

The time series of the weekly smallpox mortality in London (1664–1930) is shown

in the upper panel of Figure 5.1. The data were normalized by the trend of the

weekly all-cause mortality to account for the changes in the population size, city

boundaries and data collection methods. Figure 5.1 clearly shows the presence

of different frequency components in the series. The smallpox pattern changes

from frequent (2-3 year) periodic oscillations of large magnitude in the 18th century

to periodic cycles of much longer (4-8 year) periods with dramatically reduced

epidemic peaks right after the mid 19th century, except for the three large epidemics

in 1871, 1876 and 1902.

The frequency structure of the analyzed time series is presented as a wavelet

spectrogram in the lower panel of Figure 5.1. It shows how the periodicity of small-

pox epidemics changed over the centuries (the white curves highlight the period

with greatest power at each timepoint). From 1664 until 1700 the dominant period

is 3–4 years. For most of the 18th century (1705–1808) a 2–3 year period domi-

nates. However it shifts from being nearly 2-years in 1705–1728 to about 3 years in
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Figure 5.1: Smallpox mortality in London, England (1664-1930). (continued on the next
page)
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Figure 5.1: The upper panel shows weekly smallpox mortality normalized by the trend of
weekly all-cause mortality (black). Annual susceptible recruitment relative to
the population size in 1671-1684 is shown as a red curve. The period when
data accuracy is reduced is shown in dotted line. We shift the recruitment curve
forward by 5 years to account for the delay between birth and entering the well-
mixed population. The line segments at the top of the upper panel highlight
time intervals with distinct effective R0, calculated with equation (5.10). In-
tervention uptake levels are shown as colour bars: yellow green-dark olive for
variolation with yellow green indicating the lowest level and dark olive - the
highest; and yellow-red for vaccination with light yellow indicating the lowest
level and red - the highest level. The lower panel shows the wavelet power
spectrum of the weekly smallpox mortality (square root-transformed and nor-
malized to unit variance) for London, England (1664-1930) and its correlation
with the historical timeline. The white curves show the local maxima of wavelet
power (squared modulus of wavelet coefficients (Cazelles et al. 2008, p.291) at
each time. The colours of the wavelet diagram vary from dark blue, which
corresponds to low power, to dark red for high power. The dot-dashed curves
indicate the 95% confidence region, estimated from 1000 bootstrapped time se-
ries generated by the method of (Cazelles et al. 2008, p.292-293). Below the
cone of influence (Cazelles et al. 2008; Torrence and Compo 1998), the calcu-
lation of wavelet power is less accurate because it includes edges of the time
series that have been zero-padded to make the length of the series a power of 2.
The wavelet spectrum was computed using a MATLAB code kindly provided
by Bernard Cazelles. In the timeline panel the text in black colour indicates
events that influenced uptake of control measures; brown - events that influ-
enced people behaviour; dark green shows the period when data accuracy is
reduced.

1740–1762 and back to almost 2 years in 1768–1808. Between 1808 and 1842 the

wavelet spectrogram shows no prominent period, suggesting irregular dynamics or

simply low signal to noise ratio in the data. This time interval coincides with the

progressive collapse of the parish registration system, triggered by the rapid growth

of London’s population and lack of expansion in Anglican parishes. Therefore the

data during this period may not be very accurate. The introduction of the new reg-

istration system in 1837 significantly improved the accuracy of the data and we

assume that the data obtained from this source (after 1842) is reliable. From 1842

onward the dominant period smoothly evolves to a longer cycle of 3–4 years and

later to 4–8 years. Traces of an annual cycle are evident along the whole time series
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with the most prominent spectral peak from 1768 to 1805.

Estimated susceptible recruitment

The susceptible recruitment rate is the rate at which susceptible individuals are

entering the population. We assume that recruitment of individuals susceptible to

smallpox in London was associated with two major demographic processes, birth

and immigration, and also with the smallpox control level (i.e. uptake of variolation

and vaccination). We can estimate the annual rate of susceptible recruitment, Sin,

by the following formula:

Sin(t) = B(t− τS) ·
[
1− p(t)

]
− Imm(t) ·

[
1− κ(t)

]
, (5.3)

where B(t) is the annual number of births, shifted by τS ≈ 5 years to account for

the delay between the time of birth and the time of entering a well-mixed suscepti-

ble pool; p(t) is the proportion of people immunized by vaccination or variolation

before entering the susceptible pool; Imm(t) is the the annual immigration rate and

κ(t) is the level of immunity in immigrants.

Based on the data available to us and analysis of the literature on the pop-

ulation of historical London we estimate the birth rate, variolation and vaccination

uptake levels and immigration below.

Births

The London mortality records are an excellent source of information on the

weekly number of births in London. However, before the introduction of the na-

tional registration system in 1842, the London Bills of Mortality recorded only the

weekly number of infants baptized (Bap(t)) in Anglican churches 8–30 days af-

ter birth (Wrigley and Schofield 1981), and not the total number of infants born

(B(t)) during that week. Therefore we must account for the number of infants

who died between birth and baptism and infants who were not baptized due to
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belonging to a different religion (Landers 1993; Wrigley and Schofield 1981). Lan-

ders (1993)[p.162–207] conducted a comprehensive analysis of the London Bills of

Mortality and estimated the birth under-registration rate, which took into account

the aforementioned factors. We use his estimates of the correction factor, ρBap,

shown in Table 5.2, to estimate the number of births from the weekly baptisms

published in the bills
(
B(t) = ρBap(t)Bap(t)

)
. We assume that during the period

1842–1930, after the introduction of the new registration system, reported births

accurately reflect true births.

Year Correction factor
birth, ρBap death, ρACM

1680s 1.0276 1.0110
1690s 1.0321 1.0128
1700s 1.0350 1.0140
1710s 1.0382 1.0153
1720s 1.0397 1.0159
1730s 1.0409 1.0164
1740s 1.0459 1.0183
1750s 1.0511 1.0204
1760s 1.0567 1.0229
1770s 1.0620 1.0248
1780s 1.0980 1.0490
1790s 1.1266 1.1081
1800s 1.2172 1.2078
1810s 1.2870 1.3109
1820s 1.2262 1.1756

Table 5.2: Correction factors to account for birth and death under-registration, reproduced
from Landers (1993) Table 5.3, p.166.

Intervention uptake level

In historic London the principal control measures related to smallpox pre-

vention were variolation and vaccination. Variolation is considered to be the pre-

decessor of vaccination and was in practice from 1721 until 1840. Vaccination was

introduced in London in 1796. Data on the number of variolated or vaccinated
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individuals are very limited and most sources provide only rough descriptive infor-

mation (i.e. high or low level). Based on analysis of the literature on the population

of historical London in Chapter 3, we have created a timeline of the significant his-

torical events related to the implementation of various control measures (see lower

panel of Figure 5.1). We estimate the variolation and vaccination proportions (pvar

and pvacc respectively) according to that timeline. Our estimates are presented in

Table 5.3.

Year pvar pvacc p = pvar + pvacc

1721 0.01 0 0.01
1728 0.03 0 0.03
1740 0.10 0 0.10
1768 0.15 0 0.15
1790 0.20 0 0.20
1797 0.25 0.05 0.30
1808 0.30 0.10 0.40
1835 0.13 0.40 0.53
1840 0.10 0.50 0.60
1841 0 0.60 0.60
1850 0 0.65 0.65
1870 0 0.75 0.75
1880 0 0.80 0.80
1930 0 0.80 0.80

Table 5.3: Variolation (pvar) and vaccination (pvacc) uptake level for smallpox in London,
England (1664-1930). The variolation and vaccination rates were estimated
based on the historical analysis presented in Chapter 2. Linear interpolation was
used to obtain estimates for the rest of the years.

Immigration

Births were not the only source of new susceptible individuals in London.

Immigration to London also contributed significantly to the input of new suscepti-

bles. Thousands of people were immigrating to London each year. Many of these

immigrants were from rural towns, where smallpox outbreaks were relatively rare

(happening only every 5–10 years (Duncan et al. (1994a); Fenner et al. (1988);
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McNeill (1998))). Therefore young adults migrating from rural areas were at great

risk of acquiring smallpox. Unfortunately there are no reliable data for tracking

people migrating to and from London. We can only obtain a very crude estimate of

the amount of immigration based on annual population growth:

N(t + 1)−N(t) = B(t)−D(t) +
(
Imm(t) + Emm(t)

)
, (5.4)

where B(t) and D(t) are the annual births and deaths already adjusted for under-

reporting
(
B(t) = ρBap(t)Bap(t) and D(t) = ρACM(t)ACM(t)

)
; Imm(t) and Emm(t)

are the number of people immigrating to and emmigrating from London respec-

tively. We assume Emm(t) is much smaller than Imm(t)
(
Emm(t) � Imm(t)

)
.

N(t) is London’s population size estimated in Chapter 3. For simplicity we as-

sume that Imm(t) is roughly proportional to births,

Imm(t) ≈ η(t)B(t), (5.5)

where η(t) ≥ 0. Using equation (5.5) and assuming that the proportion of im-

migrants who were immune κ(t) � 1 in equation (5.3) (i.e. the majority of im-

migrants to London were susceptible), equation (5.3) and equation (5.4) can be

rewritten as:

Sin(t) = B(t− τS) ·
[
1− p(t)

]
+ η(t)B(t) , (5.6)

and

N(t + 1)−N(t) = B(t)−D(t) + η(t)B(t) . (5.7)

We estimate the trend of η(t) from equation (5.7), and use in equation (5.6) to

calculate the annual number of susceptible individuals entering the population.

Susceptible recruitment rate

The susceptible recruitment rate, ν(t) is calculated relative to the population
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size at an “anchor time”, t0, as:

ν(t) =
Sin(t)

N0

. (5.8)

The “anchor time” is the time for which we can obtain a reliable estimate of the

basic reproduction number R0. An independent estimate of R0 (e.g. based on age-

incidence or age-seroprevalence data) is always desirable (Bauch and Earn 2003a,b;

Earn et al. 2000a). Unfortunately such data for London during 1664-1930 were not

available to us. For our “anchor time” we choose the period 1671–1684, which

is the first time interval where the birth rate was relatively constant and therefore

we would assume that R0 would also be approximately constant. The value of

R0 for smallpox, as previously estimated in the literature, varies between 3 and

10 (Ferguson et al. 2003; Gani and Leach 2001) with the most common estimate

being within the 3–6 range (Anderson and May 1991). We assumeR0 to be 4 at the

“anchor time” 1671-1684. In the Section 5.3.2 we explore the range 3 ≤ R0 ≤ 6

and examine the sensitivity of our results to the choice of R0.

Equation (5.8) implicitly assumes that new susceptibles are dispersed uni-

formly within a region of a constant area. In London, the transition from one reg-

istration system to another resulted in inclusion of new areas in the reports. The

data recorded in the parish registers (1664-1841) covered 15,000 acres (calculated

from the geographic information system (GIS) shapefiles of the historic parishes of

London), while the Registrar General (1842-1930) collected data from an area of

78,000 acres (as reported in the Registrar General’s annual returns). If the popula-

tion density were identical in the area covered by parish registers and the Registrar

General we could simply adjust equation (5.8) by a factor A(t)
A(t0)

. However popula-

tion density varied considerably, with the highest density in the original core of the

city covered by the old registration system and a lower density in the areas added

in the new registration system. Therefore we also need to account for non-uniform
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density, which we do by introducing a factor ζ and rewriting equation (5.8) as

ν(t) =
Sin(t)

N0

(
ζ(t) A(t)

A(t0)

) . (5.9)

Since the area does not change for 1664–1841, ζ(t) for this period is equal to 1.

For 1842-1931 we estimate ζ(t) based on the assumptions that it is constant, the

R0 is at least 1 in 1931 when our time series ends, and the fact that any change in

R0,eff corresponds to a change in the susceptible recruitment rate (Bauch and Earn

2003a,b; Earn et al. 2000a):

R0,eff = R0
ν(t)

ν(t0)
. (5.10)

AssumingR0,eff(1931) ≥ 1 we can obtain the value of ν(1931) from equation (5.10):

ν(1931) =
R0,eff

R0

ν(t0) ≥ 0.0125. (5.11)

We plugged this value into equation (5.9) and estimated ζ(1931) ≤ 2
5
. We make

an assumption that ζ(1931) ≈ 2
5

for 1842–1931.

The resulting annual susceptible recruitment rate (equation (5.9)) is shown

in the top panel of Figure 5.1 (red line).

Effective basic reproduction number, R0,eff

Based on our estimates of the susceptible recruitment rate we identify time

intervals during which ν(t) is relatively constant, hence during which the dynamical

features of the disease time series can be expected to be approximately stationary.

The effective basic reproduction number, R0,eff, is then estimated for each of these

intervals using equation (5.10). Periods when the susceptible recruitment rate was

roughly constant are plotted in the top panel of Figure 5.1 together with the corre-

sponding R0,eff. It indicates that R0,eff fluctuated between 4–6 from 1664 until the
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1870s, after which it smoothly decreased.

We estimated the susceptible recruitment rate and the corresponding R0,eff

to the best of our ability. However, the accuracy of our estimates is compromised

by uncertainty in variolation and vaccination levels and our crude estimates of the

effects of immigration and population size. Asymptotic and perturbation analysis

will reveal if we can correctly predict changes in the periodic dynamics of smallpox

epidemics based on these rough estimates.

5.3.2 Asymptotic and perturbation analysis

The results of our asymptotic and perturbation analyses based on the SIR model

with mean serial interval 19 days are presented in Figures 5.2–5.3. The top panel

of each figure shows the wavelet spectrogram together with R0,eff estimated based

on the susceptible recruitment curve (Figure 5.1). The asymptotic and transient

dynamics of the SIR model are shown in the bottom panel of each figure. Note that

the seasonality of the transmission rate, estimated in Chapter 4, varied across the

centuries. Since we included these estimates in our model, we have 9 diagrams that

correspond to 9 time regions, where the seasonal pattern of smallpox transmission

stayed roughly the same. We also matched the dynamics of the SIR model with the

estimated seasonality to the sinusoidally forced SIR model by choosing an appro-

priate sinusoidal forcing amplitude α. The estimated amplitudes are shown in each

corresponding sub-panel of Figures 5.2–5.3.

Our asymptotic analysis is presented as bifurcation diagrams in subplots

(a)-(i) of Figures 5.2–5.3), which shows that for the biologically plausible values

of R0 for smallpox (3 ≤ R0 ≤ 6) there is only one periodic attractor, an annual cy-

cle. Therefore, asymptotic analysis correctly predicts the existence of the resonant

period-one cycle observed in the wavelet spectrum. The period of damped oscilla-

tions onto the annual attractor (transient period) is used to explain the appearance

of non-resonant periods in the wavelet spectrogram. The dashed red lines in each
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Figure 5.2: Transition analysis of the smallpox mortality time series for London, England
(1664-1768). (continued on the next page)
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Figure 5.2: The top panel shows wavelet power spectrum as described in Figure 5.1 with
corresponding values of R0,eff. Seasonal amplitude α of the corresponding
sinusoidal forcing is stated in right top conner of each subplot. The lower
panel shows a sequence of “transition diagrams” produced for every time inter-
val when seasonality of the transmission rate β, determined in Chapter 3, was
roughly the same. Each subplot shows the changes in the asymptotic dynamics
(bifurcation diagram with stable cycle in black and unstable in grey) and tran-
sient dynamics (period of damped oscillations onto the annual attractor) as a
function of R0. The red dashed line indicates predicted non-resonant period.

of the subplots of Figures 5.2–5.3 show the period predicted by the model. Com-

paring these predicted non-resonant periods with the dominant mode of the wavelet

power spectrum (the white line in the wavelet spectrogram) we observe that the

transitions from one periodic cycle to another coincide with the changes in R0,eff.

Thus the trend of the changes in the peak values of the wavelet power spectrum are

captured by our model.

The predictions of the SIR model appear to be very accurate for 1664–1710.

However for 1710–1840 the model predicts 3-4 year non-resonant periods while

we observe 2-3 year periods in the wavelet spectrogram. This discrepancy may be

related to the low accuracy of our estimated susceptible recruitment rate. It appears

that for this period (1710–1840) we underestimated the susceptible recruitment and

thereforeR0,eff, and therefore predicted longer periods than were actually observed.

Especially interesting dynamics occurred after 1850, when a long 3-4 and later 4-8

year period is observed in the wavelet spectrum. These changes are predicted by

the decline inR0,eff from 3.5 to 1, which implies a lengthening of the predicted non-

resonant period from 4 to 6. The correlation between the predicted and observed

periods are shown as different symbols for each time interval in Figure 5.4. Since

we did not have a reliable estimate of R0 at the “anchor time” (initially we used

R0 = 4), we repeated our analysis with R0 = 3, 5, 6. The grey bars represent the

uncertainty in the intrinsic R0 (i.e. R0 at the “anchor time” ) with longer periods

predicted with intrinsic R0 = 3 and shorter periods predicted with R0 = 6. The
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Figure 5.3: Transition analysis of the smallpox mortality time series for London, England
(1768-1930). Annotation is as in Figure 5.2
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best fit (defined by minimum sum of distances to the “predicted=observed” line) is

obtained for R0 = 4.
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Figure 5.4: The correlation between observed and predicted periods of non-resonant peaks
of the wavelet power spectrum. The line of slope 1 indicates where the points
would lie if there is a perfect agreement between predicted and observed peaks.
R0,eff could not be determined precisely, but was given some small range. The
black bars correspond to the min/max values of the predicted transient period
for such range of R0, while points shows the period corresponding to the most
frequent values of R0. The grey bars shows the predicted periods for the range
of 3 ≤ R0 ≤ 6 and represent uncertainty in the choice of R0 at the “anchor
time”
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5.4 Discussion

The goal of our current analysis was to determine if demographic changes induced

by variations in birth rate and population movement, as well as behavioral trends

that influenced the level of immunity in the population, can explain the changes in

the temporal pattern of smallpox epidemics in London, England. We conducted

a transition analysis based on the SIR model with the mean serial interval chosen

for smallpox and seasonal forcing as estimated from the smallpox time series (see

Chapter 4). Previous transition analyses were successfully used to explain a variety

of outbreak patterns (Bauch and Earn 2003a,b; Earn et al. 2000a). When applied to

the London smallpox mortality time series, transition analysis has also proven to be

a powerful method that can correctly predict changes in the frequency structure of

smallpox epidemics.

We began our analysis with a statistical description of the data. The periodic

structure of smallpox epidemics in London showed very weak power at the only res-

onant period – one year. Much stronger signals in the wavelet spectrum were ob-

served for non-resonant peaks (i.e. non-integer periods such as 2-3 and 3-4 years).

These findings are consistent with conclusions, previously drawn by Bauch and

Earn (2003a,b), that diseases with small basic reproduction number (3 ≤ R0 ≤ 6

for smallpox) can be expected to have more power in non-resonant peak.

We based our asymptotic and perturbation analyses on the seasonally forced

SIR model. To understand how the amplitude of seasonal forcing changed over

time we matched the dynamics of the model produced with the seasonal forcing

as estimated in Chapter 4 with the sinusoidally forced SIR model. Figures 5.2–

5.3 show that the amplitude changed significantly over time and fluctuated between

0.032 to 0.12. Previously, analysis based on time series spanning 30-50 years have

shown that the amplitude of seasonal forcing, α, does not seem to vary significantly

for a particular disease, even when compared between different places. Therefore

it was concluded that α can be considered constant (Bauch and Earn 2003a,b).
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Our results suggest that the amplitude of seasonal forcing can change significantly

with time. Since this parameter influences the dynamics of the model, it should be

carefully estimated from data if possible.

Asymptotic analysis has shown that for biologically plausibleR0 the model

has only one attractor (an annual cycle), which correctly predicts a resonant one-

year period observed in the wavelet spectrogram. Perturbation analysis was less ac-

curate: some of the periods were predicted very well while the others were poorly

matched (Figure 5.4). However the trend of the highest peak power of the wavelet

power spectrum was accurately predicted. We believe that inconsistency in the ac-

curacy of our predictions is mainly caused by our very crude estimate of susceptible

recruitment. Uncertainty in the population size, immigration and variolation and

vaccination uptake, dramatically reduced the precision of our estimates of suscepti-

ble recruitment, which are vital for obtaining accurate predictions. Further analysis

of the historical data as well as sensitivity analysis of our results to various param-

eter values, should help us to refine estimates of the recruitment rate and should be

addressed in future research.

Behavioral and demographic changes induced by changes in intervention

uptake level, births and immigration had affected the level of susceptibles in the

population and therefore were major drivers of the transitions observed in the small-

pox time series. The discovery of vaccination in 1796 and its continuously increas-

ing uptake level helped drastically reduce the number of susceptibles in the second

half of the 19th century. Introduction of variolation failed to produce a similar ef-

fect: when variolation was widely used (1768-1810), smallpox epidemics of high

magnitude occurred every 2-3 years. Note that even at its highest level, variolation

never exceeded 30% while vaccination was over 50% after 1840 (according to our

estimates). Moreover variolated individuals were also a source of smallpox infec-

tion for a short period of time (Fenner et al. 1988) and therefore contributed to the

spread of infection to the unprotected population. A more realistic model that cap-
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tures this mechanism could also improve our predictions and should be considered

in future research.



Chapter 6

Conclusions

Predicting the course of an epidemic and providing public health authorities with

timely and accurate analysis during disease outbreaks have become principle ob-

jectives of mathematical epidemiology. These goals can be achieved only through

understanding the mechanisms by which infectious diseases spread in populations.

This thesis continues the work of Earn and colleagues (Bauch and Earn 2003a,b;

Earn et al. 2000a) on the analysis of complex patterns of infectious diseases and

the use of mathematical models to predict dynamical transitions induced by secular

changes in demographic and behavioural parameters. We have investigated factors

that influenced changes in the temporal structure of smallpox epidemics. Our anal-

ysis is based on historical data from the digitized weekly London Bills of Mortality

and Registrar General’s Returns – an extensive data set that covers a time period

much longer than any other time series that has been analyzed to date.

Chapter 2 described the SIR and SEIR models with Gamma distributed

disease stages (SInR and SEmInR), which more accurately represent reality than

the standard exponentially distributed models. We also revisited the method of

transition analysis, which is used to predict changes in the periodic structure of

epidemics. We investigated how the shape of the stage duration distributions in-

fluences the predictions of the transition analysis by systematically analyzing the

172
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sequence of Gamma distributed SIR and SEIR models. As an illustrative applica-

tion we used the well-known New York City weekly measles incidence data. We

discovered that the key parameter that determines the predictions of the transition

analysis is the mean serial interval, i.e. SEmInR models exhibit similar behaviour

for a given mean serial interval for any shape parameter values m and n. This dis-

covery is extremely helpful, since it allows one to model disease dynamics using

the simpler SIR model, if the mean serial interval is estimated correctly. Our anal-

ysis was based on the mean serial interval for measles. While we can surmise that

the above conclusion holds true for the range of values of the mean serial interval,

a detailed analysis should be done in the future to verify that the simpler SIR model

can be used for other typical recurrent infectious diseases.

Chapters 3, 4, and 5 were focused on the study of the London weekly

smallpox mortality data. In Chapter 3 we presented a statistical description of the

observed time series. We also established a timeline of important historical events

related to changes in intervention uptake levels, population movement and wars,

and correlated them with the transitions observed in smallpox dynamics. Histor-

ical sources allowed us to estimate the variolation and vaccination levels as well

as to build hypotheses about what may have caused the observed changes in the

magnitude and periodicity of smallpox epidemics. This study provided a necessary

foundation for modeling work, which we presented in Chapter 5.

The statistical analysis in Chapter 3 also explored the seasonal structure of

the smallpox data. It revealed seasonality in the observed time series, suggesting

that the transmission rate (β) between susceptible and infectious individuals was

seasonally forced. Since seasonal variations in infectious disease transmission have

been found to be a major determinant of epidemic dynamics, it was necessary to

estimate the seasonality of β from the observed time series, which we did in Chap-

ter 4. This task proved to be nontrivial, due to the long length of our data set. The

majority of methods found in the literature aim to estimate the disease transmis-
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sion rate for relatively short data sets (20-50 years) and if applied to a long data set

would be very time consuming and require considerable computational resources.

We have presented a simple, easy to implement, and not computationally demand-

ing method based on the continuous-time SEIR model. We applied this method

to the smallpox mortality records and estimated the seasonal pattern of smallpox

transmission in London for 1664–1930.

Chapter 5 aimed to explain the changes observed in smallpox dynamics

over the centuries. Using the method of transition analysis and the standard SIR

model with mean serial interval for smallpox, we showed that changes in inter-

vention uptake levels, birth rate and immigration appear to have caused transitions

observed in the temporal smallpox pattern. We concluded that transition analy-

sis can be successfully applied to long data sets and is able to predict changes in

the smallpox temporal pattern. The major limitation in accuracy of the predictions

arises from uncertainty in the estimated susceptible recruitment rate.

A major modelling tool not employed in this thesis is stochastic epidemic

modelling and simulations. The inferences made in Chapter 2 were based on the

deterministic dynamics of the SInR and SEmInR models. Further work should be

done to investigate the stochastic versions of the SInR and SEmInR models and

determine whether the shapes of stage duration distributions affect the stochastic

dynamics of those models. In addition, stochastic simulations of the SIR model

for smallpox should be conducted to verify the robustness of our explanations of

the observed time series, and examine finer details (Bauch and Earn 2003a,b; Earn

2009).

This thesis also includes a practical guide to constructing bifurcation dia-

grams with XPPAUT software (Appendix 2.6). We have used the seasonally forced

SIR model as an illustrative example. We hope that this guide will be a useful learn-

ing tool for studying dynamcis of deterministic epidemic models. Another guide in-

cluded in the thesis (Appendix 3.5) explains how to compute a trend in a nonlinear
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and nonstationary time series using Empirical Mode Decomposition. This is a so-

phisticated method, which is becoming popular to analyze neural (Liang et al. 2005)

and climatological (Lee and Ouarda 2011) data, and various other types of temporal

signals (Bouzid and Ellouze 2004; Mutlu and Aviyente 2011). To our knowledge,

we are the first to use this method for estimating trends of epidemiological time

series.

In conclusion, transition analysis is a powerful mathematical tool that can

be used to understand and predict changes in infectious disease dynamics, and has

been particularly helpful in the analysis of the London smallpox mortality data.

We hope that our findings and research results will inspire further mathematical

analysis of historic time series of infectious disease data.
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