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Abstract

Image registration has become an indispensable tool in medical diagnosis and in-

tervention. The increasing need for speed and accuracy in clinical applications

have motivated researchers to focus on developing fast and reliable registration

algorithms. In particular, advanced deformable registration routines are emerging

for medical applications involving soft-tissue organs such as brain, breast, kidney,

liver, prostate, etc. Computational complexity of such algorithms are significantly

higher than those of conventional rigid and affine methods, leading to substantial

increases in execution time.

In this thesis, we present a parallel implementation of a newly developed de-

formable image registration algorithm by Marami et al. [1] using the Computer

Unified Device Architecture (CUDA). The focus of this study is on acceleration of

the computations on a Graphics Processing Unit (GPU) to reduce the execution

time to nearly real-time for diagnostic and interventional applications. The al-

gorithm co-registers preoperative and intraoperative 3-dimensional magnetic res-

onance (MR) images of a deforming organ. It employs a linear elastic dynamic

finite-element model of the deformation and distance measures such as mutual

information and sum of squared difference to align volumetric image data sets.

In this study, we report a parallel implementation of the algorithm for 3D-3D MR
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registration based on SSD on a CUDA capable NVIDIA GTX 480 GPU. Computa-

tionally expensive tasks such as interpolation, displacement and force calculation

are significantly accelerated using the GPU. The result of the experiments carried

out with a realistic breast phantom tissue shows a 37-fold speedup for the GPU-

based implementation compared with an optimized CPU-based implementation

in high resolution MR image registration. The CPU is a 3.20 GHz Intel core i5

650 processor with 4GB RAM that also hosts the GTX 480 GPU. This GPU has 15

streaming multiprocessors, each with 32 streaming processors, i.e. a total of 480

cores. The GPU implementation registers 3D-3D high resolution (512×512×136)

image sets in just over 2 seconds, compared to 1.38 and 23.25 minutes for CPU

and MATLAB-based implementations, respectively. Most GPU kernels which are

employed in 3D-3D registration algorithm also can be employed to accelerate the

2D-3D registration algorithm in [1].
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Chapter 1

Introduction

Image registration is the process of aligning multiple images of the same subject

to establish correspondence between their features. It has a wide variety of ap-

plications in weather forecasting, medical diagnoses and treatments, computer

vision, etc. In this thesis, we will focus on medical applications of image regis-

tration. Medical image registration plays a significant role in clinical interventions

such as biopsy, image-guided surgery and radiotherapy planing. In many medical

procedures, a plan of action is constructed based on preoperative medical images

obtained from the patient. Such plans often have to be updated in real-time to

account for the changes that might have occurred since the acquisition of the pre-

operative images. A surgeon can take advantage of a fast and reliable registration

algorithm to update the surgical plan during the operation to compensate for pa-

tient and tissue movements based on the information obtained from intraoperative

images.

Medical image registration can be employed in diagnoses and treatment of

breast cancer which is the most common type of cancer in women worldwide.
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In this context, X-ray, Magnetic Resonance Imaging (MRI) and Ultrasound (US)

are the primary focuses of interest for both single-modality and multi-modality

registration. While X-ray only provides a 2-D projection of breast anatomy, MRI

reveals more information about the shape, size and spatial relationships. In MRI,

a contrast agent such as gadolinium DTPA (diethylenetriamine pentaacetic acid)

is injected to enhance the signal intensity of vascular structures and suspicious

areas. Fatty and connective tissue do not enhance after the injection. By register-

ing pre- and post-contrast MR images, valuable information about the lesions are

obtained [2]. The output of a registration algorithm that employs image sets at

different time points can reveal anatomical difference (e.g., brain tumor growth),

therefore yielding more information regarding the disease progression [3].

Registration algorithms can be categorized into rigid, affine and non-rigid meth-

ods. Non-rigid registration, which includes deformable registration, can accom-

modate both rigid and non-rigid tissue transformation, hence is suitable for appli-

cations involving biological soft tissue. This thesis is concerned with deformable

image registration. The goal of registration is to find an optimal geometric transfor-

mation to maximize similarity among the images. The simplest transformation is

a rigid transformation which only has six degree of freedom(DoF), three rotations

and three translations. An affine formation has twelve DoFs adds scaling along

different coordinate axes and shearing in different planes to translation and rota-

tion. Rigid and affine registration methods are only suitable for non-deformable

tissue such as bone; Non-rigid transformations must be employed when dealing

with soft tissue such as breast, liver, brain, prostate and kidney.

Registration methods provide visual comparison of images taken at different

2
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Figure 1.1: An Image-guided system for brain surgery with an optical tracker to
monitor the position of the patient and surgical instruments (Photo courtesy of
Dr.Richard Bucholz, St.Louis University School of Medicine).

times. The time difference can range from seconds (e.g., cardiac motion) to years

(e.g., brain tumor growth). Fig. 1.1 illustrates an image-guided system for brain

surgery. An optical tracker is used to estimate the current location of the target

(e.g. brain). The images in the monitor are preoperative images and the objective

is to identify the location of a surgical instruments relative to the patient’s tissue.

Once a surgical instrument (e.g. a needle) inserts into an organ, the location of the

internal tissue (e.g. a tumor tissue) changes. An image-guided system which is

also capable of performing image registration can provide real-time (or near real-

time) information about the new location of the internal tissue with respect to the

surgical instrument by updating the preoperative images.

Fig. 1.2 illustrates three main components of a generic deformable algorithm.

In general, a deformable registration algorithm consists of the following elements [4]:

• Transformation Model: The transformation model identifies the geometric

transformation between images. Deformable transformations are classified

3
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Figure 1.2: An algorithm for nonrigid image registration involving three compo-
nents: The transformation model, similarity metric and optimizer (Photo courtesy
of Dr. Daniel Rueckert [4]).

as non-physics-based, e.g. B-Spline and Moving Least Square (MLS) or physics-

based, e.g. continuum mechanics deformation models. In this thesis, the focus

will be on physics-based models.

• Similarity/Distance Metric: A similarity metric measures the degree of align-

ment among the images to be co-registered. Some methods use the alignment

of features such as landmarks and edges to measure the similarity [5]. Other

algorithms employ image intensity-based measures such as mutual informa-

tion or image correlation [6].

• Optimization: Deformable registration can be formulated as an optimiza-

tion problem in which the goal is to find a deformation that would maxi-

mize(minimize) the similarity(distance) measure among the images. There

4
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are usually some constraints that regularize this optimization problem and

would ensure that the resulting deformation is ”reasonable”.

• Validation: In order to have an accurate and robust algorithm, a careful val-

idation is required prior to clinical use.

1.1 Problem Statement

Recently, a new deformable image registration algorithm that employs a dynamic

linear elastic deformation model in conjunction with image similarity measure

such as sum of squared difference (SSD), mutual information (MI), and correla-

tion ratio (CR) has been developed by Marami et al [1] . The algorithm involves

computationally expensive tasks such as trilinear interpolation, solving a system of

second order differential equations, finding the 3D deformation using linear shape

function on tetrahedral finite elements, and solving a large linear system of equa-

tions based on the conjugate gradient method. The improved accuracy and robust-

ness of this method over conventional rigid and affine registration techniques are

gained at the expense of its computation time. In addition to accuracy and robust-

ness, speed is a critical factor in many clinical applications such as biopsy, image-

guided surgery and radiotherapy in which real-time or near real-time performance

is expected. In this thesis, we design, optimize and evaluate a highly parallel GPU-

based implementation of the deformable registration method by Marami et al. [1]

in order to significantly reduce its computation time.

Recently Graphics Processing Units (GPUs), Field-Programmable-Gate-Array

(FPGA) devices and multiprocessor systems have been used to accelerate image

5
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registration algorithms. In [7], multiprocessor systems have been employed to

speed up image registration. Maintenance and acquisition costs are the main draw-

backs of such systems [8].

FPGA-based computing architectures are highly customizable and therefore

can significantly speed up computations, if properly designed. A study of rigid

registration using FPGAs is presented in [9]. GPUs are less expensive, and easier

to program than FPGAs, making them widely popular in scientific computing ap-

plications in recent years. Near real-time registration can be achieved with recent

advances in GPU technology [4, 10].

The gaming industry demand for sophisticated graphics has spurred great ad-

vancement in the GPU technology. Today, standard GPUs in personal computers

have higher computational performance and memory bandwidth than their host

CPUs [11]. In fact, there is a large performance gap between the GPUs and CPUs

due to fundamental difference in their design. CPUs have larger control logic unit

and cache memories whereas GPUs dedicate more chip areas to floating point cal-

culations , i.e. see Fig. 1.3. The massively parallel GPU architecture is organized

into highly-threaded multiprocessors that can run thousands of threads per appli-

cation.

It should be noted that GPUs are not good in every tasks, especially those on

which CPUs are designed to perform well. Generally, CPUs can provide better

performance in sequential tasks that require a serial implementation. The per-

formance can be significantly improved by GPUs in tasks which can be imple-

mented in parallel (e.g. Matrix by Matrix Multiplication). A good knowledge

of the strengths and weaknesses of GPUs and CPUs in performing parallel and

6
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Figure 1.3: The differences between CPU and GPU architecture design. CPUs have
larger control logic unit and cache memories whereas GPUs dedicate more chip
areas to floating point calculations; From NVIDIA’s document [13]

serial tasks is instrumental in achieving high performance in computing appli-

cations. A significant acceleration of computations is possible through a proper

utilization of both CPU and GPU resources. Compute Unified Device Architec-

ture (CUDA) is a programming model which supports joint CPU/GPU execution

(NVIDIA, 2007) [12].

As mentioned before, GPUs are capable of running thousands of threads at a

same time (parallel to each other), therefore one can take advantage of this fea-

ture to accelerate the non-sequential tasks. Image registration algorithms are a

great candidate for parallel implementation on GPUs. For instance, GPUs excel in

3D texture mapping which can be used in trilinear interpolation, one of the most

time consuming elements of registration algorithms. This and other capabilities of

GPUs in the context of parallel computing for image registration will be discussed

in details throughout the thesis.

7
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1.2 Thesis Contributions and Outline

CUDA provides a powerful and user-friendly programming environment for GPU-

based scientific computing applications including those in medical imaging. In this

work, we report an implementation of the algorithm by Marami et al. [1] for 3D-

3D MR deformable image registration based on SSD on a CUDA capable NVIDIA

GTX 480 GPU. We have carried out experiments with a realistic breast phantom

in order to volumetrically register high-resolution MR images on a single GPU.

The results of these experiments show a 37-fold speedup for the GPU-based im-

plementation compared with an optimized CPU-based implementation (written in

C) in high resolution MR image registration. The GPU implementation is capable

of registering 512 x 512 x 136 image sets in just over 2 seconds, making it suitable

for clinical applications requiring fast and accurate processing of medical images.

Furthermore, we briefly discuss how GPUs can accelerate the 2D-3D version of

Marami’s image registration algorithm. In summary the main contributions of the

thesis are:

• CUDA implementation and optimization of trilinear interpolation of the im-

age and its directional gradients using 3D texture memory. We have taken

advantage of spacial locality feature of texture memory, designed for graph-

ics applications, to perform trilinear interpolation. Assigning threads to the

3D regular grid points (one thread for each point), their grey value are mea-

sured independently.

• CUDA implementation, verification and optimization of force computation.

A system of equations in the form of Af=b is solved using the least squares

8
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and conjugate gradient method to compute the vector of nodal forces based

on the difference between the template and reference image using the SSD

metric. The main computationally intensive elements of the conjugate gradi-

ent algorithm such as sparse matrix by vector multiplication and dot prod-

ucts are accelerated in this step.

• CUDA implementation, verification and optimization of dynamic finite ele-

ment linear elastic deformation model. The Newmark method has been used

for numerical integration. Time consuming elements such as matrix by vec-

tor multiplications including both dense and sparse, and vector addition are

accelerated in this part.

• CUDA implementation, verification and optimization of the linear shape

function of the tetrahedral elements in order to find the displacement of a

finer 3D grids inside the image volume. Assigning threads to the 3D regular

points (one thread for each point), their displacements are calculated inde-

pendently by designing a parallel approach.

• Memory optimization for GPU to CPU and CPU to GPU data transfers and

analysis of its influence on the performance of the algorithm.

• Implementation of GPU kernels to link different steps of the algorithms. Im-

plementation of GPU kernels for other parts of the algorithm in which high

performance can be achieved with parallel computing(e.g., finding the coef-

ficients of each element’s shape function).

The rest of this thesis is organized as follow. In Chapter 2, we briefly review reg-

istration algorithms with emphasizes on parallel implementation for acceleration

9
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of computations. Chapter 3 presents the mathematical formulation of the regis-

tration algorithm in [1]. This chapter illustrates how the dynamic finite element

linear elastic deformation model is employed in the registration method. Chap-

ter 4 reviews the GPU hardware capabilities and introduces CUDA programming

environment for joint CPU/GPU execution. This chapter clarifies how each part

of the algorithm is accelerated using parallel implementations. Chapter 5 is ded-

icated to our experimental results using a realistic breast phantom (CIRS model

051). The GPU performance for different parts of the algorithm is compared with

those from C and the runtime of the whole algorithm is compared with both C and

Matlab execution times. The thesis is summarized in Chapter 6 with a discussion

of possible future extensions of the work.

1.3 Related Publication

H. Mousazadeh, B. Marami, S. Sirouspour and A. Patriciu, ” GPU Implementation

of a Deformable 3D Image Registration Algorithm”, Accepted for presentation at

33rd International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC 11), Boston, MA, USA, pp.4897–4900, 2011.
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Chapter 2

Literature Review

Over the last decade, image registration has played a significant role in medical

image computing. The goal of image registration is to establish special correspon-

dence between different images taken of the same patient at different times and/or

using different modalities. Registration algorithms always involve a trade-off be-

tween accuracy and speed.

Registration algorithm can be classified according to the following three crite-

ria: Dimensionality, Modality, and Transformation.

2.1 Image Dimension

In general, medical image registration methods can be divided into three groups

based on their dimensionality; 2D-2D, 3D-3D, and 2D-3D. In 2D-2D registration,

two-dimensional images of the same or different modalities are matched. An ex-

ample is the registration of x-ray radiographs of the hand with Tc methyl-diphosphonate

planar nuclear medicine images for the diagnosis of scaphoid injury. A 2D-2D

11
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intensity-based image registration algorithm with application in endoscopic sys-

tems for image distortion correction has been developed in [14]. Two different

black and white patterns, i.e. a chessboard and a concentric circles board, have

been used to test the algorithm. In [15], an automated 2D-2D pixel-based registra-

tion method has been developed for patient set-up in radiotherapy.

In 3D-3D registration, volumetric images of the same or different modalities are

compared. In [16], a 3D-3D registration methods has been developed for the local-

ization of implanted subdural electrodes in planning epilepsy surgery. Anatomical

fiducial markers have been employed for co-registration of volumetric pre-implant

brain MRI and post-implant head CT. In [17], an automated algorithm has been de-

veloped to register volumetric MR brain images taken at different times.

In 2D-3D registration, correspondence is established between 2D and 3D im-

ages of the same or different modalities. Examples are registration of volumetric

MR and 2D ultrasound and X-ray images [18]. In [19], a method for registering 2D

X-ray images to 3D MRI has been developed. The study proposes a technique

that generates pseudo-computed tomography from multi-spectral MRI acquisi-

tions which enables 2D-3D registration of X-ray to MRI. The algorithm has been

tested on ex vivo animal data.

2.2 Image Modality

Medical registration algorithm can employ data sets from the same modality (single-

modality) or data sets from multiple modalities (multi-modality). An example of

single-modality image registration can be found in [17] in which MR data sets have

been used. In [16], a multi-modality registration algorithm has been developed for

12
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co-registration of MRI and CT image sets.

2.3 Image Transformation

In general, medical image registration methods can be classified in three categories

based on the transformation that is employed in the registration algorithm. They

can employ rigid [20], affine [21], or non-rigid [22] (parametric or non-parametric)

algorithms.

In general, the goal of image registration is to find a transformation T : (x, y, z) →

(x′, y′, z′) which maps any point in the template image into the corresponding

point in the reference image. The simplest method is the rigid transformation:

Trigid(x, y, z) =



x′

y′

z′

1


=



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1





x

y

z

1


where tx, ty, tz define the translations along axes of the coordinate systems, while

rij are the result of the multiplication of three separate rotation matrices. In some

cases, it may also be necessary to correct for scaling and shearing. An affine

transformation combines rigid transformation with scaling and shearing matrices:

Taffine(x, y, z) = Tshear.Tscale.Trigid.(x, y, z, 1)
T

13
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where Tscale =



sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1


and T xy

shear =



1 0 hx 0

0 1 hy 0

0 0 1 0

0 0 0 1


.

Rigid and affine registration methods are not applicable when the underlying

tissue undergoes large deformations.

Rigid registration is suitable for rigid tissues such as pelvis, femur and might

be also applicable to those tissues which their movement is constrained by a rigid

tissue (e.g. brain motion which is constrained by skull). It should be noted that

both rigid and non-rigid methods have been used for brain image registration.

Non-rigid transformations, which include parametric and non-parametric models,

can be used in the case where large deformation is expected, e.g. in soft tissues

such as breast and liver.

Some nonrigid parametric registrations methods use a set of basis functions to

present the deformation field. Bookstein [23] introduced the application of thin-

plate splines for medical image registration. Registration methods that use splines

assume that a set of landmarks points (referred as control points) can be identified

in the template and reference images. Spline-based transformations are used to

calculate displacements that map the location of the control points in the template

image into their corresponding counterpart in the reference. The control points

have a global influence on the transformation making it undesirable for cases in

which local deformations are required. To solve this problem, control points must

be distributed such that deformation is limited to desired regions [22].
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An alternative approach for medical image registration based on free-from de-

formations (FFDs) has been proposed by Rueckert et al [24]. In spline-based FFDs,

a 3D mesh of control points with uniform spacing is applied on the image domain.

In such approaches, changing the control points only affects the transformation

in the local neighborhood of those control points, therefore making them suitable

for local deformations [18]. Simple changes may sometimes require adjustment of

many control points, therefore precise modification of curves can be effortful. It

should be noted that the complexity of these methods is increased by adding more

landmarks as control points.

Thirion [25] proposed Demons, a deformable medical image registration algo-

rithm. The algorithm is based on the optical flow method which can track small

deformations in temporal sequences of the image volume; a displacement field is

computed that would move the floating image so that it can match the static im-

age. In this iterative method, the displacement vector is calculated based on the

intensities of voxels in moving and static volumes and intensity gradient vector of

the static image.

Physics-based image registration algorithms provide the greatest amount of

flexibility compare to non-physics-based registration methods, however they are

usually computationally expensive [3]. Mass-spring systems and finite element

method (FEM) are two techniques that are widely employed to model deformable

objects. A main advantage of models that use FEM over those that employ mass-

spring systems is that they treat deformable objects as a continuum. In fact they

provide more accuracy and reliability in modeling deformation of non-rigid ob-

jects [26].
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2.4 Registration Validation

Registration algorithms should be validated prior to clinical use. The validation

process is a complicated task due to lack of a gold standard [27]. This should

be done both through visual assessment and also quantitative numerical analy-

sis. Validation is not unique to image registration and has to be carried out for

other medical image processing methods such as segmentation, visualization, and

calibration [28]. A biomechanical-based algorithm which employs finite element

method has been proposed in [29]. The algorithm assesses the accuracy of a previ-

ously developed non-rigid registration algorithm with application to MR mam-

mography [24]. The accuracy of the registration algorithm in [24] were evalu-

ated by simulating voxel displacements and considering the elastic behavior of

the breast tissue. The authors claim that their proposed method can be adopted to

patient-specific anatomy and has the ability to assess the accuracy of other algo-

rithms. In [30], a validation process has been developed for retinal image registra-

tion. In diagnosis of ophthalmologic disorders, it is common to perform a registra-

tion process on multiple images to provide images with larger field of view. The

validation method assesses the geometric misalignment of the overlapping regions

with a coordinate system of a reference standard.

2.5 Image Similarity/Distance Measures

In medical image registration, a metric is required to compute the similarity of

images being compared. This measure can evaluates how closely the images are
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aligned. In general, registration algorithms employ corresponding points, corre-

sponding surfaces [31], or image intensities in calculating image similarity [6, 32].

2.5.1 Feature-based Measures

These measures employ corresponding points or/and surfaces to assess the simi-

larity of images. A popular metric is the sum of the distances between each corre-

sponding point in the images. These points can be artificial landmarks such as pins

or markers affixed to the patient, e.g. attached to the skin or screwed into bone, or

anatomical features [5,18]. The advantage of such measures is that the registration

error only depends on the fiducial localization error (FLE), therefore, the clinical

accuracy of registration can be assessed using realistic phantoms [33].

The distance between corresponding surfaces in the images can also be used as

similarity measure. “Head and Hat” method is a widely used algorithm in which a

set of points are identified in contours that are drawn on images [18]. An iterative

algorithm is employed to compute the sum of squares of the distances between

the corresponding points until this value reaches a minimum. Image registration

of the brain in cortical region should deal with complex network of sulci and gyri.

Purely intensity-based algorithms are unable to provide accurate results for this

region [34]. A volumetric registration method has been developed in [34] for the

cortical region that employs surface constraints. First, a map is computed to align

the folding patterns of the sulci. Second, an intensity-based registration algorithm

is carried out to complete the mapping and align the subcortical structures. The

authors claim that their method has better accuracy than volumetric registration

algorithms without surface constraints.
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2.5.2 Intensity-based Measures

Voxel/Pixel intensity-based similarity measures employ all or a large portion of

the image data and therefore usually yield more robust and accurate registration

results than those achievable in feature-based methods. [18].

Sum of squared intensity difference (SSD) is a simple similarity measure that is

widely used in single-modality image registration [35–37]. The SSD of two images

is given by

SSD =
1

N

∑
xA ∈ ΩT

A,B

| A(xA)−BT (xA) | 2 (2.1)

where xA is the voxel location in image A within an overlap domain ΩT
A,B that has

N voxels. BT represents the iteratively transformed image. SSD is sensitive to

a small number of voxels that have very large intensity difference. For instance,

when a contrast agent is injected to one of the images, the intensity differences of

some voxels are increased. To diminish this sensitivity, sum of absolute difference

(SAD) may be used.

SAD =
1

N

∑
xA ∈ ΩT

A,B

| A(xA)−BT (xA) | (2.2)

Correlation coefficient (CC) is another similarity measure that can be used in

medical registration algorithms, especially when the images are from the same

imaging modality. The formulation, which is described in [18], involves multipli-

cation of corresponding image intensities.

CC =

∑
xA ∈ ΩT

A,B
(A(xA)− Ā).(BT (xA)− B̄)

{
∑

xA ∈ ΩT
A,B

(A(xA)− Ā)2.
∑

xA ∈ ΩT
A,B

(BT (xA)− B̄)2}1/2
(2.3)
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where Ā and B̄ are the mean voxel values in images A and B within the domain

ΩT
A,B , respectively.

Recently, mutual information has been considered as a similarity measure in

multi-modality image registration. The concept dates back to the work of Shan-

non’s definition of entropy [38]. Since this measure makes no assumption about

the functional relationship between image intensities, it is widely used in multi-

modality image registration. Mutual information is defined as follows:

I(A,B) = H(A) +H(B)−H(A,B) (2.4)

where H(A) and H(B) are the marginal entropy and H(A,B) is the joint entropy

of A and B.

2.6 High Performance Computing for Image Registra-

tion

In general, “degrees of freedom” of a registration model refer to the number of

parameters of the registration transformation [18]. A rigid registration changes

the position and orientation without changing the shape and size between the two

scenes. The degrees of freedom of rigid registration algorithm is six, three for trans-

lation and three for rotation in 3D-3D. Affine registration adds scaling and shear-

ing to translation/orientation, resulting in twelve degrees of freedom. Parametric

non-rigid algorithms require more degrees of freedom. Physics-based methods

have been developed to reduce the number of parameters [3, 18].

19



M.A.Sc. Thesis - M.H.Mousazadeh McMaster - Biomedical Engineering

2.6.1 Multi-processor Systems

In [7], multiprocessor systems have been employed to speed up image registra-

tion. Parallel processing with 64 CPUs using a shared memory architecture, aver-

age runtime of 67 seconds and 89 seconds for nonrigid registration in intraopera-

tive brain deformation analysis and contrast-enhanced MR mammography were

reported, respectively. Multiprocessor systems although powerful, are expensive

because of their high Maintenance and acquisition costs [8].

2.6.2 FPGA-based Systems

FPGA-based computing architectures are highly customizable and are capable of

accelerating computations, if properly designed. An Altera Stratix EP1S10F780C5

FPGA has been employed in [9] to design and implement a mutual information-

based affine registration algorithm. The authors stated that their architecture is

reconfigurable to handle various image data sets. The speed-up results of the pro-

posed design were not reported in this study. An FPGA-base implementation has

been developed in [39]. A mutual information-based deformable registration algo-

rithm has been employed in this study. The design reduced the registration time

from hours to minutes for 256× 256× 256 abdominal CT and PET images.
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2.6.3 GPU-based Systems

Registration algorithms are often computationally intensive. In recent years GPUs

have emerged as a powerful platform for high-performance computing applica-

tions. GPUs offer a flexible programming environment and compact and inexpen-

sive hardware for massive parallel computing in scientific applications. We will

briefly review the literature GPU-based implementations of various elements of

image registration algorithms.

GPU-based Rigid and Affine Registration

To the best of our knowledge, GPU-based medical image registration was initially

introduced in 1998 by Hastreiter et al [40]. A rigid transformation has been used

in their studies for head data sets registration. The registration was based on Mu-

tual Information and intuitive visualization of medical data sets. The hardware

was mainly employed to accelerate the trilinear interpolation parts of the algo-

rithm. Their proposed implementation was a factor of 2-3 faster compared to simi-

lar studies for 3D-3D rigid registration of head data sets running on a conventional

CPU.

In [41], a rigid 2D-3D medical image registration algorithm has been imple-

mented on a NVIDIA GeForce GTX 8800. The GPU implementation was devel-

oped under RapidMind software. The entire algorithm has been implemented on

a single GPU and a runtime of about 3 seconds has been reported for 128 × 128 ×

128 CT data sets. A GPU-based implementation for a rigid medical image regis-

tration algorithm has been proposed and compared with cluster based methods
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in [42]. Real spine and femur phantom data sets have been employed for exper-

imental analysis. The authors mentioned that the maintenance and power con-

sumption costs of the GPU implementations are much less than cluster computing

approaches, therefore, GPUs can be used successfully in many clinical applications

such as computer-aided surgery.

A GPU-based implementation of 2D and 3D rigid and nonrigid registration

algorithms with focus on SSD was presented in [10]. The algorithm was coded

by OpenGL and ran on a GeForce 6800 GPU. A CUDA implementation of a de-

formable registration algorithm based on SSD was proposed in [43]. The accuracy

and speed of the same registration algorithm were compared by running it on a

single CPU, single GTX 8800 GPU, and a cluster of GPUs. The authors stated that

computation acceleration can be achieved at the expense of accuracy. This is due

to the fact that at the time of implementation, GPUs were optimized for single

precision floating point operations.

Researchers have investigated acceleration of MI-based multi-modal image reg-

istration methods on GPUs [21]. In [44], a CUDA capable GPU has been used to

accelerate a mutual information-based registration algorithm. The authors imple-

mented the registration algorithm in MATLAB and CUDA environments. The op-

timization of their registration cost function was carried out in MATLAB on the

host CPU whereas transformation and bilinear interpolation were performed on

GPU. For 256×256×176 MR images, the authors reported an approximate runtime

of 27 seconds for their GPU-based rigid registration algorithm which constitutes

14-fold speedup compared with a CPU-based implementation. In [20], a MI-based

rigid registration algorithm was accelerated using a NVIDIA Geforce 7300 GPU.
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The GPU implementation of the algorithm was tested for 256×256×100 CT image

sets and a 7-fold speed up was reported compared with a dual-core CPU imple-

mentation. The registration was performed in about 40 seconds with a single GPU.

A CUDA-based implementation for 3D-3D affine transformation based on Mu-

tual Information has been proposed in [21]. A novel algorithm for efficient calcu-

lation of Mutual Information on GPU has been developed in this study. The main

focus of their work has been on multi-modal image registration between CT and

MR images, therefore Mutual Information has become the cost function of choice

in their studies. Using a GTX 280 GPU with 30 multi-processors and 8 cores per

multi-processor and taking advantage of texture memory for interpolation, their

result shows that the proposed implementation is able to register multi-modal im-

ages in less than one second; This is about fifty times faster than similar works

based on serial computing on conventional CPUs. The authors also compared

their results using GTX 8800 and GTX 280 NVIDIA devices with different number

of multiprocessors. This was done to show that with future advances in the GPU

technology, even faster implementation of complex image registration algorithms

will be feasible.

GPU-based Non-Rigid Registration

A 3D image registration program, denoted as Accelerated Image Registration with

CUDA (AIRWC) has been developed based on the B-Spline method in [45]. Nor-

malized correlation and normalized Mutual Information have been used as cost

functions of the registration algorithm. The implementation was tested and ana-

lyzed by using human and mouse brain MR images.
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Sharp et al. [46] implemented the Demons deformable registration algorithm

in the Brook programming environment on an NVIDIA GeForce 8800 GPU. GPU

times of 4 seconds and 13 seconds were reported for the registration of 256× 128×

128 and 428× 180× 150 images of swine lung.

In [47], Demons algorithm has been implemented on NVIDIA’s Quadro FX

5600 GPU with CUDA environment. In this work, the algorithm has been divided

into five parts that are suitable for parallel implementation and CUDA kernels

have been developed for each part. These include gradient, interpolation, dis-

placement, smoothing, and correlation computations. Since the hardware-based

trilinear interpolation was not accessible at that time from CUDA interface, their

interpolation kernel was developed without using the texture memory. This GPU

implementation yielded a factor of 55 speed-up over an optimized CPU imple-

mentation for registration of 3D CT images of the lung. The GPU-based imple-

mentation of the algorithm takes about 13 seconds to complete 3D registration of

high resolution 512 × 512 × 54 images. The authors of this paper claim 10% faster

runtime with CUDA compared to what was achieved in the Brook programming

environment.

In [48], a 2D non-rigid registration algorithm for cardiac motion estimation

based on FEM and SSD was implemented on NVIDIA 7700 and 7950 GTX. The

code was developed in OpenGL. The authors reported 5-fold speed-up compared

to a CPU-based implementation; the total time of registration was about 52 sec-

onds.

Recently, Joldes et al. [49], proposed a GPU implementation of a biomechanical

model to find the displacement field that can be applied to register preoperative

24



M.A.Sc. Thesis - M.H.Mousazadeh McMaster - Biomedical Engineering

and intraoperative brain images to have a real-time prediction of brain shift. The

algorithm uses a patient-specific brain mesh, and therefore requires segmentation

of preoperative images. The implementation is capable of registering 3D brain MR

images in about 4 seconds on a CUDA capable GPU. The resolution of the image

and the model of the GPU were not reported in this study.
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Chapter 3

Deformable Registration Algorithm

This chapter contains the mathematical formulation of the new 3D registration al-

gorithm in [1]. We will focus on the SSD as the distance measure because it is

computationally efficient and works relatively well in single modality registration.

The registration algorithm uses a dynamic finite element continuum mechanics

model of tissue deformation. The algorithm involves computationally intensive

tasks such as interpolation, solving a system of second-order differential equa-

tions, finding the 3D deformation using linear shape functions on tetrahedral fi-

nite elements, and solving a large system of equations based on the conjugate gra-

dient method. Therefore, it is impossible to achieve anything that comes close to

real-time registration using conventional CPU-based implementations. In the next

chapter we will discuss how many of these computations can be accelerated by a

parallel computing kernels running on a GPU.
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3.1 Physics-based Deformation Modeling

In this section we briefly discuss the fundamentals of tissue deformation model-

ing based on the continuum mechanics. The reader is referred to [50] for a full

treatment of this problem. In continuum mechanics-based models, the object de-

formation depends on the external forces and object’s material properties. The

object is in its equilibrium state when Π, its potential energy, is at a minimum:

Π = Λ−W, (3.1)

where Λ is the total strain energy of the object, the energy stored in the body as

the material deforms and W denotes the work done by external loads on the de-

formable object [26]. The system potential energy reaches a minimum when the

derivative of Π with respect to the displacement function is zero which leads to a

continuous differential equilibrium equation that must be solved to find the dis-

placement. FEM, divides the object into a set of elements to approximate the equi-

librium equation over each element. The following steps describe how FEM com-

putes the object deformation:

• Derive the equilibrium equation from the potential energy equation.

• Divide our objects into elements and choose an appropriate shape function.

• Re-define the equilibrium equation for each element based on the interpola-

tion function and nodal displacement.

• Solve the system for the nodal displacement.
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• Having the displacement of nodal points and considering the shape function,

the displacement of any point within the element can be found.

To minimize 3.1, Λ and W are expressed in terms of the material displacement:

Λ =
1

2

∫
V

σT ε dV =
1

2

∫
V

εTDε dV , (3.2)

where σT = (σxx, σyy, σzz, σyz, σzx, σxy) and εT = (εxx, εyy, εzz, εyz, εzx, εxy) are the

vectors of the stress and strain. For a linear elastic material, D is a matrix which

represents the stress-strain relationship according to the Hooke’s law.

For small deformations, normal and shear strains are related to the displace-

ment vector u=(u, v, w)T as:

εxx =
∂u

∂x
εyy =

∂u

∂y
εzz =

∂u

∂z
, (3.3)

εyz =
∂u

∂z
+

∂u

∂y
εzx =

∂u

∂x
+

∂u

∂z
εxy =

∂u

∂y
+

∂u

∂x
, (3.4)

The work done by the external force f(x,y,z) is equal to the dot product of the

applied force and the material displacement u:

W =

∫
V

u.f dV, (3.5)

The choice of elements and interpolation functions depends on the shape of

the object and required accuracy. In fact, there is a trade-off between the accuracy

and computation. Using shape function and having the displacement of nodal

points, the 3D displacement vector u of a point (x, y, z) can be expressed as a linear
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combination of interpolation functions applied to the nodal displacement:

u =


u

v

w

 = HU (3.6)

where U = (u1, v1, w1, u2, v2, w2, ..., uN , vN , wN)
T . N is the number of nodal points

in the element, H is a 3 × 3N matrix denoting the interpolation function (which

depends on the type of the element) and U is the vector of nodal displacement.

Having 3.3, 3.4 and 3.6, the strain ε at (x, y, z) can be written as a function of

nodal displacement:

ε = BU, (3.7)

where B depends on the shape function. The strain energy in the element can be

written as a function of the nodal displacement U :

Λ =
1

2

∫
V

UTBTDBU dV =
1

2
UT (

∫
V

BTDB dV )U, (3.8)

Similarly, the work done by an external force f(x, y, z) can be written as a func-

tion of nodal displacement:

W =

∫
V

UTHTf dV = UT (

∫
V

HTf dV ), (3.9)

Substituting 3.8 and 3.9 into 3.1, the potential energy of our deformable object

can be written as:
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Π =
1

2
UT (

∫
V

BTDB dV )U + UT (

∫
V

HTf dV ), (3.10)

The above equations are for a single element. In order to minimize the potential

energy the partial derivatives ∂Π
∂Ui

is set to zero which yields a linear equation in the

form of KelU el = F el, Kel is the stiffness matrix and F el is the vector of concentrated

nodal forces for each element. The stiffness matrix and vector of nodal forces are

computed for each element and are then assembled in a global system as KU = F .

The image registration methods in [1] is based on a dynamic model which ex-

presses the object motion/deformation as it moves toward its equilibrium shape.

A dynamic linear elastic deformation model comprised of a set of second-order

differential equations for nodal displacements as:

MÜ + CU̇ +KU = F, (3.11)

where M , C and K are the mass, damping, and stiffness matrices respectively, F is

the vector of external forces and U represents the nodal displacement.

3.2 Mathematical Formulation of the Registration Al-

gorithm

The registration problem can be formulated as finding the displacement field u

that minimizes the following cost function:

J(u) = D(T [u], R) + αS(u); α ∈ ℜ+ (3.12)
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where D is a distance measure between the reference R and the deformed template

T [u] images. In this work, SSD which is suitable for single modality registration

has been employed as a distance measure. The second term, S is a regularization

term based on a physical model for the deformation that would ensure that the

resulting solution is “reasonable”. α weights the importance of the regularization

term compared with the distance measure.

In a linear elastic continuum with no initial stress or strain, the potential energy

of a body subject to externally applied forces can be expressed as [51]:

E =

∫
Ω

σT ϵdΩ +

∫
Ω

uTfdΩ; (3.13)

where f is the vector of forces applied to the elastic body, u the displacement field,

and Ω is the body of the elastic object. ϵ and σ are the strain and stress vectors

respectively.

Considering 3.8 and 3.13, our registration problem can be written as:

J(u) = D(T [u], R) +
α

2
uTKu; α ∈ ℜ+; (3.14)

where K =
∫
Ω
BTDBdΩ is the global stiffness matrix associated with the volu-

metric mesh, D is the elasticity matrix characterizing the material’s property and

B depends on the shape function of the finite element. It should be noted that

based on the concept of finite element discretization, a volume of elastic body is

approximated as an assemblage of discrete finite elements interconnected at nodal

points.

The nodal displacements are propagated to any point x of the template image
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volume using the shape function of the element containing the point:

uin(x) =
4∑

i=1

N el
i (x)u

el
i (x) (3.15)

where uin(x) is the displacement for the internal point and ue
i l(x) is the displace-

ment of the nodal points of the element. N el
i (x) is the shape function of the ele-

ments which will be explained more in this chapter. If J in 3.14 has a minimum at

u, its first derivative mush vanish, i.e.

∂J(u)

∂u
=

∂D(T [u], R)

∂u
+ αKu = 0 (3.16)

This equation can be written as a set of nonlinear equilibrium equations for

static analysis

Ku = f(u) (3.17)

where f(u) = − 1
α
∂D(T [u],R)

∂u
is the vector of concentrated nodal forces applied to the

volumetric mesh. The solution to 3.17 will provide the displacement field corre-

sponding to the global minimum of the objective function 3.14.

3.3 Incorporating Dynamic Deformation Model into

Registration

The force vector f(u) in 3.17, is a nonlinear function of the displacement field u.

An iterative numerical method has to be employed to solve the nonlinear system

of equations in 3.17. To this end, we consider the second-order dynamic model for
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the motion/deformation of deformable object in Eq. 3.11 with U = u and F = f(u).

The steady-state equilibrium of this dynamic system is the solution to the static

system of equation 3.17. In 3.11, the dynamic forces Mü and Cu̇ tend to smoothly

drive the system towards this equilibrium. The dynamic system of equations can

be solved using existing explicit or implicit numerical integration routines such as

the Newmark method [50].

A dynamic model also allows for real-time intraoperative registration of a dy-

namically changing organ. Real-time MR based biopsy interventions, for instance,

can take advantage of this feature to provide correlation model for deformation of

soft tissue due to the force of needle insertion [1].

3.4 How Does the Algorithm Work?

In each iteration of the algorithm, the nodal force f(u) have to be computed and

then used to drive the dynamical system in 3.11. The registration solution is ob-

tained when the system reaches its steady state. In this study we use the SSD as

the distance measure because it is computationally efficient and works relatively

well in single modality registration. To compute the force applied at nodal points

in each iteration, we need to compute the derivative of the distance measure at

those points. Therefore, the force vector at any nodal point can be computed as:

f(ui) = − 1

α
(T (pi + ui)−R(pi))∇T (pi + ui) (3.18)

where f(ui) is a 3× 1 vector, ∇T (pi + ui) is the gradient of the deformed template

image at the deformed nodal point pi + ui. T (pi + ui) , R(pi) and ∇T (pi + ui) are
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computed using the trilinear interpolation algorithm at each iteration. When 3.11

reaches to its equilibrium point, the displacement of the finite element nodal points

u can be used to calculate the displacement of the regular 3D high-resolution grid

of the template image based on the shape function based on Eq. 3.15.

Eq. 3.18 shows that the force vector is computed based on the pixel values and

the gradient of the template image only at the nodal points. Obviously, the reg-

istration accuracy is improved by increasing the resolution of the finite element

mesh at the expense of a greater computational load.

In order to use the whole information of the reference and template images,

displacements which are computed in a finer 3D regular grid xp inside the image

volume are used to find the nodal point forces. The displacement of the regular

grid are computed according to 3.18, i.e. △x = −κ(T (xp+u) − R(xp))∇T (xp+u),

where κ ∈ ℜ+, xp and xp+u represent the original and the deformed grid points in

each iteration. Nodal forces can be approximated based on △x using the inverse of

the shape function. This requires solving a system of linear equation, i.e. Af = b,

where A is a long matrix derived from the linear shape function of tetrahedral

elements and vector b results from △x of the regular grid.

In the next chapter, we will explain each step of the algorithm in more details

and and present parallel computing kernels that can significantly speed up the

registration process.
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Chapter 4

GPU-based Parallel Implementation

of the Image Registration Algorithm

In this chapter, we discuss how to accelerate the deformable image registration

algorithm in Chapter 3 by designing parallel kernels and taking advantage of ex-

ecution resources and high-bandwidth memories of a CUDA capable GPU. First,

we review the GPU architecture and CUDA programming model. Thread organi-

zation, thread assignment, and GPU memories are discussed in this context. Sec-

ond, we divide the image registration algorithm into five steps and explain how

each step is implemented and optimized (e.g., shared memory vs. global memory)

using the CUDA programming model and the GPU resources.

4.1 GPU Architecture

A CUDA capable GPU consists of highly threaded streaming multiprocessors, each

with a number of streaming processors that share some units such as control logic
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Figure 4.1: CUDA capable GPU architecture, G80; from [12].

and instruction cache, e.g. see Fig. 4.1. The number of processors depends on

the generation of the GPU. For instance, the G80 that introduced the CUDA archi-

tecture in 2006, has 16 streaming multiprocessor each with 8 streaming processor,

yielding a total of 128 cores. In CUDA, the CPU (host) and GPU (device) have

separate memory spaces. In fact, GPUs have their own graphics double data rate

(GDDR) DRAM, known as global memory. These memories are capable of hold-

ing graphics information such as video images and texture. They can be used as

high-bandwidth off-chip memories in massively parallel non-graphics application,

known as General-Purpose Computing on Graphics Processing Unit (GPGPU).

The memory bandwidth of CUDA capable GPUs has grown by a factor of two
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since their early generations. G80 (Nov 2006) had 86.4 GB/s of memory band-

width compared to 177.4 GB/s for GTX 480 (March 2010). Each core in GPU is

equipped with a multiply-add (MAD) unit and an additional multiply unit. Some

floating point functions such as square root have their own dedicated units. PBMS

in Fig. 4.1 refers to per-block shared memory which will be discussed shortly.

Joint CPU/GPU execution is one of the main advantages of CUDA programming

model. As mentioned before, CPUs are optimized for sequential tasks. In another

words, not all the tasks can be accelerated in GPUs. One can achieve high level

of computing performance by assigning serial tasks to CPU and parallel tasks to

GPU [12].

The GPU hardware provides support for the execution of thousands of threads

in parallel. The threads are grouped in blocks and the blocks are organized in a

grid. A typical CUDA program starts with the host code and when a GPU function

(kernel) is invoked, thousands of threads will take advantage of GPU execution

resources to perform the parallel task. In this model, serial code executes on the

host while parallel code runs on the device, i.e. see Fig. 4.2.

4.2 Thread Organization

Once a CUDA kernel is launched, a grid of threads are created to execute the cor-

responding kernel. As stated before, these threads are grouped into a two-level

hierarchy. A thread can be addressed using its unique coordinate. Two built-in

variables, ”blockIdx” and ”threadIdx” identify the thread coordinate. A grid (top

level) can form a 1D or 2D array of blocks and each block (bottom level) can shape a
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Figure 4.2: CUDA programming model; from NVIDIA’s document [13].
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Figure 4.3: Thread organization; from NVIDIA’s document [13].

1D, 2D or 3D array of threads. Two more built-in variable, ”gridDim” and ”block-

Dim”, provide the block and grid dimensions.

There are some constraints for the maximum dimension of a block/grid. These

constraints vary from one device into another. Fig. 4.3 shows a 2D grid of thread

blocks where each block is organized in 2D threads. For GTX 480, the maximum

x (gridDim.x) or y (gridDim.y) dimension of a grid of thread blocks is 65536. The

maximum x (blockDim.x) or y (blockDim.y) dimension of a block is 1024. The

maximum z (blockDim.z) dimension of a block is 64. Moreover, the number of

threads per block cannot be more than 1024. Therefore, blockDim.x×blockDim.y×
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Figure 4.4: CUDA transparent scalability ; from NVIDIA’s document [13].

blockDim.z must be less than 1024 in a GTX 480.

All threads in a block can synchronize their tasks using ” syncthreads( )” func-

tion. This function is invoked inside the kernel and coordinates parallel execution

of the threads. It does not allow any threads in a block to move on to the next step

unless all threads in the block have completed the current step. This process is

called ”Barrier Synchronization”.

Due to lack of synchronization between blocks, CUDA runtime system can ex-

ecute blocks in any order. In fact a program that is partitioned in to multiple blocks

can be scaled in various ways. GPUs with different number of cores (Fig. 4.4) can

take advantage of this ”Transparent Scalability” feature by running a number of
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blocks at the same time according to their execution resources. Therefore a GPU

with a greater number of cores can execute the program faster than a GPU with

less cores [52].

4.2.1 Thread Assignment

After kernel invocation, threads are assigned to execution resources. Our GPU,

GTX 480, has 15 multiprocessor and each multiprocessor can accomodate up to 8

blocks at a same time. These blocks are called ”resident blocks”. Therefore, we

can have up to 120 resident blocks. The maximum number of resident threads

per multiprocessor is 1536. This is twice as the number of threads that an early

generation device such as G80 can handle. These threads can be organized in 6

blocks of 256, 3 blocks of 512, etc. A good understanding of the limitations of the

execution resources is needed in order to optimize the computing performance.

In our implementation, we have tried to improve the performance by changing

the grid size and block size. This ”Dynamic Partitioning” feature, allows us to

optimize our implementation by appropriate utilization of recourses. In fact, we

have chosen the configuration which can efficiently occupy the thread slots and

block slots in each multiprocessor, as illustrated in Chapter 5. Although constraints

are different in various GPUs, the same application code can be run in all CUDA

capable GPUs without any change. For instance, our implementation can be run

in any CUDA capable GPU with compute capability 2.0 or more.

When a kernel is called, thousands of threads are queued up for work. All

threads are divided in 32-units called ”warps”. In fact, threads are scheduled in

warp units. Having so many warps, CUDA runtime system does not need to wait
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Figure 4.5: CUDA device memory model ; from NVIDIA’s document [13].

for threads that are busy with a time consuming operation and can assign work to

warps that are on standby. This mechanism is called ”latency hiding”.

4.3 Memory Types

Several types of memory are supported in CUDA, as shown in Fig. 4.5 and briefly

discussed below.

• Registers: These are on-chip high-speed memories. Each thread in a block

has access to its own register for placing automatic variables.

• Shared Memory: All threads within a block can share information through

the shared memory. Shared memory can be used in many applications to
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reduce the global memory access and increase the performance. In Section

4.4.2, we clarify how this type of memory is used in our implementation.

• Constant Memory: This memory is cached as read-only memory and would

be suitable for constant variables.

• Texture Memory: This is a read-only type memory but can be used efficiently

to increase the performance of computing applications. Later in the thesis,

we will demonstrate how texture memory is employed in our algorithm to

implement the interpolation step.

• Global Memory: In contrast with constant and texture memories, threads

can read from and write into global memory. Too much global memory ac-

cess can deteriorate the performance because the computation throughput

is constraint by the loading speed from the global memory [12]. Since the

global memory of the GPU is not cached, the performance of an application

can be decreased due to memory contention. There are techniques available

for reducing global memory access to increase the overall computing perfor-

mance. We will clarify how shared memory can be employed to reduce the

global memory access in Section 4.4.2 of the thesis.

4.4 GPU Implementation of Single-Modality 3D-3D De-

formable Registration Algorithm

The 3D-3D image registration algorithm consists of the following five steps (see

also Fig. 4.6):
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Figure 4.6: Registration algorithm flowchart.

1. Trilinear interpolation

2. Compute force

3. Displacement of nodal points

4. Displacement of 3D grid

5. Distance measure

In what follows, we will discuss how a CUDA capable GPU has been employed

to accelerate the registration algorithm. CUDA kernels have been written for each

step of the algorithm and then linked together to implement the whole algorithm.
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4.4.1 Step 1: Trilinear Interpolation

As previously discussed about Eq. 3.18, the algorithm requires to compute the tri-

linear interpolation of the deformed template image (one interpolation of the gray

value) and its directional gradients at xp+u (one interpolation for each x, y and z

direction). Therefore a total of four trilinear interpolations are required in each it-

eration of the algorithm. In this step the 3D regular grid points (see Section 3.3)

are interpolated based on the 512× 512× 136 MR voxels. As mentioned in Section

3.3, the accuracy of the algorithm increases by increasing the number of regular

grid points. We have employed a 3D regular grid of 6000 points (20×30×10) for

the 3D-3D single modality registration algorithm.

Texture memory is a cached on-chip read-only memory which is designed by

NVIDIA for the OpenGL and DirectX rendering pipelines. Texure memory is de-

signed for graphics application; however one can take advantage of this sophisti-

cated feature of GPU for those tasks in which “spatial locality” access is a necessity

for memory access [53].

In this step we exploit the linear filtering mode of the texture memory to ac-

celerate the trilinear interpolations. The trilinear interpolation (Fig. 4.7) can be

formulated as a weighted sum of the values of the neighboring points [13]. The

formulation can be described as follows [54]:

G(x, y, z) = c0 + c1∆x+ c2∆y + c3∆z + c4∆x∆y+

C5∆y∆z + c6∆z∆x+ c7∆x∆y∆z;

(4.1)

where ∆x, ∆y, and ∆z are the relative distance of the 3D regular grid point G with
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Figure 4.7: 3D regular grid point, G, is interpolated based on the MR voxels,
M0,0,0 − M1,1,1. Using auxiliary points A0 − A5, the trilinear interpolation can be
illustrated as the combination of seven linear interpolations.

respect to the MR voxel point M0,0,0 along the x, y, and z directions in Fig. 4.7. ci

are constants and are defined based on the gray values of MR voxels [54]:

∆x = (x− x0)/(x1 − x0),∆y = (y − y0)/(y1 − y0),∆z = (z − z0)/(z1 − z0)

c0 = M0,0,0, c1 = (M1,0,0 −M0,0,0), c2 = (M0,1,0 −M0,0,0)

c3 = (M0,0,1 −M0,0,0), c4 = (M1,1,0 −M0,1,0 −M1,0,0 +M0,0,0)

c5 = (M0,1,1 −M0,0,1 −M0,1,0 +M0,0,0)

c6 = (M1,0,1 −M0,0,1 −M1,0,0 +M0,0,0)

c7 = (M1,1,1 −M0,1,1 −M1,0,1 −M1,1,0 +M1,0,0 +M0,0,1 +M0,1,0 −M0,0,0)

(4.2)
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The texture bound to the texture refrence is represented as an array T of N ×

M × L texture pixels (texels) that is fetched using texture coordinates x, y and z.

It should be noted that the maximum width, height, and depth for a 3D texture

reference bound to linear memory or a CUDA array is 4096 × 4096 × 4096 for the

GTX 480. The texture Reference structure is defined as follow [13]:

struct textureReference{

int normalized;

enum cudaTextureFilterMode filterMode;

enum cudaTextureAddressMode addressMode[3];

struct cudaChannelFormatDesc channelDesc;

}

All above parameters and structures will be discussed shortly. A CUDA kernel

is written in order to call texture fetches. In this kernel, we have adjusted the 3D

grid point coordinates according to the texture coordinates:

newx =
(x+ abs(w1))N

abs(w1) + abs(w2)
(4.3)

where newx is the new x coordinate of the 3D grid point and Ωx = (w1, w2) is the

domain of the MR image along x. newy and newz can be calculated similarly.

The texture reference must be initialized before being used in the kernel. In the

initialization, output data type (e.g. integer, float), dimensionality (1D, 2D, 3D),

and Read mode (output with/without conversion) are three features of texture

reference that must be determined.“cudaReadModeElementType” returns output

without any conversion. These following texture parameters are employed in our

implementation:
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texture<float, 3, cudaReadModeElementType> texRef;

Assuming a texture of N ×M ×L, all texture coordinates can be either mapped

in the range of [0,1] which is the normalized mode or in the range [0, N-1], [0,M-

1], and [0, L-1] which is the non-normalized mode. In our implementation, we

used the non-normalized mode, although the normalized mode also could be used

in this step. Two filtering modes are available in the current version of CUDA,

“nearest-neighbour interpolation” and “linear interpolation”. In contrast with the

linear interpolation which employs all eight neighbour voxels (see Fig. 4.7), the

returned value in the nearest-neighbour mode is the voxel whose coordinates are

the closest to the 3D grid point. In our implementation, the “linear interpolation”

mode has been used in 3D to perform multiple trilinear interpolations in each it-

eration of the algorithm. The out-of-range data are clamped to a valid range using

the “adressMode” in three dimensions. “channelDesc” specifies the format of re-

turning data which is floating point type in our implementation. These additional

parameters are set as:

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();

texRef.addressMode[0] = cudaAddressModeClamp;

texRef.addressMode[1] = cudaAddressModeClamp;

texRef.addressMode[2] = cudaAddressModeClamp;

texRef.filterMode = cudaFilterModeLinear;

texRef.normalized = false;

We have used cudaMalloc3DArray to allocate a 3D memory arrays to our tem-

plate image and its gradients along x, y, and z coordinates (see Eq. 3.18). Our image

sets which are stored in 1D arrays must be mapped into 3D array. make cudaExtent(512,
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512, 136) creates 3D volume that specifies the size of our 3D array:

cudaExtent volumeSize = make cudaExtent(512, 512, 136)

cudaArray* cuArrayx=NULL;

cudaMalloc3DArray(& cuArraygx, & channelDesc, volumeSize);

Using cudaMemcpy3DParams, several parameters can be initialized in order to

make this 3D mapping. First, source data which is a 1D array and destination data

which is a 3D array are specified. It is also necessary to determine that the mapping

is from host to device. Finally, cudaMemcpy3D performs the data transfer. The

process is as follows:

// copy data to 3D array

cudaMemcpy3DParms copyParams = 0;

copyParams.srcPtr = make cudaPitchedPtr((void*)h data,

volumeSize.width*sizeof(float), volumeSize.width, volumeSize.height);

copyParams.dstArray = cuArraygx;

copyParams.extent = volumeSize;

copyParams.kind = cudaMemcpyHostToDevice;

cudaMemcpy3D(& copyParams);

Before reading from texture and writing to global memory, the texture reference

must be bound to a texture using the following command:

cudaBindTextureToArray( texRef, cuArraygx, channelDesc); After the

binding, the ”tex3D” function is called inside the kernel to perform the trilinear in-

terpolation. The returned value is the linear interpolation of eight texels whose

texture coordinates are the closest to our 3D grid point coordinate (input).
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As mentioned before, texture memory is generally designed for graphics appli-

cation. It is cached on chip memory and its “spatial locality” feature significantly

accelerates the interpolation step. Arithmetically, in trilinear interpolation eight

voxels are read per each 3D grid value. In the serial implementation (using a CPU)

and even global memory implementation (using a GPU) these eight voxels are not

stored consecutively. Therefore, this non-consecutive access pattern decreases the

performance of the interpolation kernel. The more 3D grid size, the more speed-up

is provided by the texture memory. Speed-up analysis will be provided in Chapter

5 of this thesis.

4.4.2 Step 2: Compute force

The displacement of the regular grid are computed according to Eq. 3.18, i.e. △x =

−κ(T (xp+u)−R(xp))∇T (xp+u), where κϵℜ+, and xp and xp+u represent the original

and the deformed grid points in each iteration. Nodal forces can be approximated

based on △x using the inverse of the shape function [1,55]. This requires solving a

system of linear equations in the form of Af = b, where A is a long matrix derived

from the linear function of tetrahedral elements and vector b results from △x of the

regular grid points. The system of equations must be solved at each iteration. The

linear tetrahedral shape function is discussed in detail in Step 4.

Although the structure (location of zero and non-zero elements) of the sparse

matrix A is constant in our registration algorithm, the values change in each it-

eration. Therefore direct solvers based on matrix factorization may not be very

efficient in our application. They produce large matrices which are not as sparse

as our A matrix and require larger memory storage space. The conjugate gradient
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method is a powerful iterative algorithm for solving optimization problems as well

as systems of equations. The main computations of this algorithm are one sparse

matrix by vector multiplication and two dot products of dense vectors. Before the

start of the iterations, an initial guess for the solution (could be a zero vector) is

specified and residue and initial search direction are calculated. In the iterative

part, the search direction and step length are updated and used in the calculation

of a new approximate solution. This process continues until the residual error is

small.

Considering A a real, symmetric, positive-definite matrix, the algorithm for

solving Af = b is given in the following pseudo-code:

f = f0 //initial guess

r0 = b− Af0 //residue

d0 = r0 //initial search direction

i = 0

while ( ∥ri+1∥22 > threshold and i < MAX)

αi =
rT

i ri

dT
i Adi

//step length

fi+1 = fi + αidi //approximate solution

ri+1 = ri − αiAdi //residue

βi =
rTi+1ri+1

rTi ri
//improvement

di+1 = ri+1 + βidi //new search direction

i = i+ 1

end

As mentioned before, this algorithm requires one sparse matrix-vector multipli-

cation and two dot products of dense vectors, as highlighted in the pseudo-code. It
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should be noted that other computations such as scalar multiplication and vector

addition are also written in CUDA to take advantage of parallel computations.

For the dot product of two vectors, one kernel is required to calculate the element-

wise product of the vectors. Another kernel then computes the sum of the ele-

ments of the result vector. A parallel reduction algorithm, discussed in Step 5, is

employed to accelerate the dot product computation.

Sparse-matrix multiplication is discussed in Step 3. Our sparse matrix which is

derived from the inverse of the shape function must be updated in each iteration.

Since the structure of the matrix is constant, a parallel kernel is designed to update

the values. We will present a solution to this problem can be handled in Step 3. In

this section, we explain how CUDA carries out dense matrix-by-matrix multipli-

cation and the critical role of shared memory in this process. The shared memory

will also be employed in other sparse matrix operations.

A serial matrix multiplication in host requires three loops to perform AB = C,

whereas a parallel multiplication in a CUDA capable device needs only one loop,

i.e. the innermost loop of the serial code (see Fig. 4.8):

Instead of having two outer loops, one over row and another over the column of

the matrix, a two-dimensional grid of threads can be used in CUDA to perform the

same operation. When the multiplication kernel is invoked, each thread performs

a dot product of a row of A and a column of B (arrows in Fig. 4.9) to calculate one

element of the C matrix. This process is parallel for all the threads.

Since the multiplication kernel in Fig. 4.9 does not employ the “blockIdx” (see

Section 4.2), the largest matrix size that can be handled by this kernel for our device

is 32× 32 = 1024 elements. The reason is that the maximum number of threads in
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Figure 4.8: Matrix multiplication serial and parallel pseudo-code.

a block is 1024 for a GTX 480.

Larger matrices can be handled using multiple blocks. For a GTX 480, the max-

imum x or y dimension of a grid of thread blocks is 65535. This means that we can

have a grid of 65535× 65535 thread blocks and each block can accommodate up to

1024 threads. It should be noted that this does not mean that all of these threads can

run in parallel. Obviously memory access and limited execution resources restrict

the number of threads running in parallel. In GTX 480, the maximum number of

resident threads and blocks per multiprocessor are 1536 and 8 respectively. Hav-

ing a knowledge of these limitations, one can properly employ CUDA resources to

achieve the best performance possible in a GPU implementation.

In order to use ”blockIdx”, our example in Fig. 4.9 can be divided into 4 blocks

such that each block has 4 threads (Fig. 4.10). In this case, thread (0, 1) of block (1, 0)

performs the dot product between Row 1 of A and Column 2 of B to calculate C2,1.

Although large matrices can be handled with this technique, global memory access

contentions can significantly degrade the performance of such implementation.

Using only global memory in Fig. 4.10, thread (0,1) and thread (1,1) of block
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Figure 4.9: Matrix multiplication without using blocks.

(1,0) both access the first row of A possibly at the same time, causing global mem-

ory access conflicts. The larger the matrix, the more global memory access and the

bigger the possibility of memory contention. Since the tile in our example is 2× 2,

each block loads a row of A matrix twice; the same argument applies to the column

of B.

Using shared memory, all threads in a block can share data, reducing global

memory access and improving the overall computing performance. In this case,

thread (0,1) and thread (1,1) of block (1,0) load the first row of A from the global

memory only once, reducing memory access by a factor of two.

In general, the matrix by matrix multiplication involves the following steps:
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• First, threads of a block load a subset of elements from global memory into

shared memory.

• Second, synchthreads() (see Section 4.2) ensures that data is loaded for all

threads that are in a block.

• Third, the threads perform a dot product between the loaded subset row of

A and column of B (inner loop); the size of this inner loop is equal to the tile

width.

• Lastly, synchthreads() is called to make sure that the previous step is com-

pleted for all threads of a block.

Since only threads that are in a block can communicate with each other, a loop

is required to load the next subset of elements [13]. This outer loop encompasses

all the above steps. The size of this outer loop is equal to M
N

, where M is the matrix

size and N is the tile size.

As illustrated in the previous matrix multiplication with 2 × 2 tiles, the global

memory access was reduced by a factor of 2. Therefore, having N × N tiles, the

global memory access can be reduced by 1
N

. Shared memory is small, high speed,

and on chip. Increasing N leads to reducing the global memory access, however,

the size of shared memory is very limited. Excessive use of shared memory lim-

its the number of threads assigned to each streaming multiprocessor [12]. In GTX

480, the maximum amount of shared memory per multiprocessor is 48 kilobytes

(KB). In order to be able to assign the maximum number of blocks to each multi-

processor, each block can use up to 4KB of the shared memory. If each block uses

more than this number, the total number of resident blocks in each multiprocessor
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is reduced.

Figure 4.10: Matrix multiplication using multiple blocks.

The NVIDIA CUBLAS library which is provided by NVIDIA for basic linear

algebra operations [56] has been employed in parts of our implementation for

matrix and vector operations. CUBLAS provides some “helper functions” to ini-

tialize the library and to transfer vectors and matrices between CPU and GPU. It

also provides functions to allocate memory in GPU (similar to cudaMalloc() ). This

part of the memory is a device memory and can also be used in other GPU ker-

nels. In general, the library has three types of functions for vector-vector (BLAS1),

matrix-vector (BLAS2), and matrix-matrix (BLAS3) operations.
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In Section 4.4.3, we will discuss sparse matrix and vector operations used in

Step 2 and 3 of our registration algorithm.

4.4.3 Step 3: Displacement of Nodal Points

Displacement of nodal points are calculated in this step of the registration algo-

rithm. The dynamic finite element model is solved using the Newmark integration

scheme [50]. We briefly overview this numerical integration algorithm.

The deformation/motion dynamics equations at time t+∆t can be written as:

MÜt+∆t + CU̇t+∆t +KUt+∆t = ft+∆t (4.4)

The position and velocity at time t+∆t can be approximated as:

U̇t+∆t = U̇t + [(1− δ)Üt + δÜt+∆t]∆t

Ut+∆t = Ut + U̇t∆t+ [(
1

2
− α)Üt + αÜt+∆t]∆t2

(4.5)

where δ ≥ 0.50 and α ≥ 0.25(0.5 + δ)2 guarantee the numerical stability of the

numerical integration [50]. Constants can be calculated as follow:

a0 =
1

α∆t2
; a1 =

δ

α∆t
; a2 =

1

α∆t
; a3 =

1

2α
− 1;

a4 =
δ

α
− 1; a5 =

∆t

2
(
δ

α
− 2); a6 = ∆t(1− δ); a7 = δ∆t

(4.6)

The equations in 4.5 can be solved for U̇t+∆t and Üt+∆t as follows:
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Üt+∆t = a0(Ut+∆t)− a2U̇t − a3Üt

U̇t+∆t = U̇t + a6Üt + a7Üt+∆t

(4.7)

Substituting 4.7 into 4.4, and considering K̂ = K + a0M + a1C and f̂t+∆t =

ft+∆t +M(a0Ut + a2U̇t + a3Üt) + C(a1Ut + a4U̇t + a5Üt), it can be shown that:

K̂Ut+∆t = f̂t+∆t (4.8)

Step 2 and 3 involve large sparse matrix by vector (SpMV) multiplications.

SpMV is known as a memory-bounded problem [57]. In dense operations, a CUDA

kernel can be designed such that the memory divergence is decreased. This will

happen when threads within a warp load(store) from(to) memory locations that

are not far from each other. Scattered access can be avoided in dense matrix by

vector multiplication. For instance, when all threads in a warp (32 threads) ac-

cess the first 32 elements of an array in order, the number of memory transactions

would be equal to 1. This would result in a fully coalesced access, with a data

transfer rate that would be close to the peak global memory bandwidth. Unlike

dense operations, SpMV operation has non-coalesced memory access patterns. In

this section, we compare well-known compact storage formats for sparse matrices.

These storage formats are designed to store non-zeros and their locations in a com-

pact format, avoiding non-coalesced memory access in sparse matrix operations.

Diagonal Format: This format is suitable for sparse matrix representation when

the nonzero elements are matrix diagonals (may include other diagonals than the

main). Instead of storing the whole sparse matrix, only two arrays, one for nonzero
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elements (values) and one for the offset of each diagonal from the main diagonal

(offsets) are stored. This representation is not capable of handling matrices that do

not have sparse diagonal pattern.

ELLPACK Format: A more general representation for an i × j sparse matrix is

the ELLPACK (ELL) in which two i × k matrices (values and indices) are stored,

where k is the maximum nonzero elements over all rows. In order to construct

the value matrix, all zeros are removed and the nonzero elements are shifted to

the leftmost location so the width of the value matrix is equal to the maximum

number of nonzero elements per row. The indices matrix has an identical structure

to the value matrix and its elements are the corresponding column index of the

value matrix elements. This sparse representation format is not suitable for cases

in which the ratio of k to the average nonzero elements per row is a large number.

Compressed Sparse Row (CSR) Format: This is a popular efficient storage

scheme for sparse matrices. Assuming an i × j sparse matrix with nnz nonzero

elements, one value array and one indices array of length nnz are stored. The in-

dices array indicates the columns of nonzero elements. In addition to these two

arrays, a third array of row pointers that has length i + 1 is used. The first i ele-

ments of this array hold the indices of the first nonzero elements row and the last

element of this array is equal to nnz. The example below illustrates this sparse

matrix representation.
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A =



0 2 0 3

1 0 0 0

0 7 4 0

0 0 0 5


data = [2 3 1 7 4 5]

col = [1 3 0 1 2 3]

ptr = [0 2 3 5 6]

Using ptr array, the number of nonzero elements in ith row is equal to ptr[i +

1] − ptr[i]. We have used the CSR format for sparse matrix-vector multiplication

because it allocates less memory to store our sparse matrices.

Consider Ax = y where A is a sparse matrix and x and y are in general dense

vectors. The serial algorithm [57], which requires the number of rows of A matrix

and the three CSR arrays plus x and y vectors, can be summarized as follows:

• Loop over the rows of the sparse matrix (A matrix).

• Find the number of nonzero elements per row by using the ptr array to indi-

cate the start and end points for an inner loop.

• Use an inner loop to calculate the dot product of nonzero elements per row

and their corresponding elements in x vector.

Since all rows can independently perform the dot product, a thread can be as-

signed to each row so that the CUDA kernel performs the serial dot product loop
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(inner loop) in parallel for all rows of the A matrix; therefore the outer loop is re-

moved from the algorithm. This kernel is known as “CSR scalar kernel”. When the

numbers of nonzero elements per row are highly variable, it is probable that some

threads in a warp (which are assigned to rows with less nonzero elements) are idle

and waiting for other threads in that warp (which are assigned to rows with more

nonzero elements) to finish their inner product.

In order to resolve the CSR scalar kernel problem, “CSR vector kernel” has been

developed [57]. In the CSR vector kernel, one warp is assigned to each matrix row.

In the scalar kernel only one thread per row performs the inner product, whereas,

in the vector kernel multiple threads in a warp perform the inner product and then

a parallel reduction is carried out to sum the result of each thread in a warp. Par-

allel reduction in CUDA is discussed in Step 5 of this chapter. Although the CSR

vector kernel alleviates the thread divergence problem of the scalar kernel, it has

been shown that the scalar kernel provides better performance when the number

of nonzero elements per row is less than 32 [57]. This might be due to the fact

that each warp consists of 32 threads. Therefore in the vector kernel, some threads

follow another instruction path resulting in thread divergence. Hence the perfor-

mance might be decreased in the case where the number of nonzero elements per

row is less than 32.

CUSPARSE library has been used for sparse operations in Step 2 and 3 of our

registration problem. In Step 3, the sparse matrices are constant in all iterations.

These matrices are derived from the finite element mesh (such as M , C, and K

in 3.11) and can be converted to CSR format off-line; therefore the conversion time

does not affect real-time performance of our registration process. In Step 2, the
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structure of the sparse matrix is constant in all iterations but its values are chang-

ing. This matrix is derived from the linear shape function of tetrahedral elements

(see 3.15). Since the coefficients of this function change per iteration, the values of

the matrix also change from one iteration to another. The two arrays of the CSR

format (ptr and col) can be calculated off-line. Based on these two arrays, a CUDA

kernel has been written to fill and update the nonzero elements of the sparse matrix

in parallel. The values of our sparse matrix are updated on the fly as the algorithm

progresses.

From a computational perspective, the Newmark method can be divided into

“initial calculations” and an “iterative” part. The initial calculations which are

carried out off-line include Uo , U̇0, Ü0 and the parameters in 4.6. Also the effective

stiffness matrix K̂ and its inverse are computed off-line.

The online computations in the iterative steps of the algorithm are summarized

as follows:

• Calculation of f̂ which requires two SpMV and multiple vector additions (see

f̂t+∆t in Section 4.4.3 ). In addition to SpMV, a kernel has been written to add

all vectors in parallel.

• Computation of the nodal displacement which requires a dense matrix by

vector multiplication. Equation 4.8 has been used to calculate Ut+∆t, the in-

verse of K̂ is computed off-line and remains constant in all iterations.

• Calculation of the velocity and acceleration in 4.7 which requires multiplica-

tion of scalar coefficients and vectors, and vector addition/subtraction oper-

ations.
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Figure 4.11: Linear shape function on tetrahedral elements.

4.4.4 Step 4: Displacement of 3D Grid

Having computed the displacement of the nodal points (u), the deformed 3D grid

in the template image can be obtained from the deformed finite element mesh us-

ing the linear shape function of the tetrahedral elements. In this section, we discuss

how the linear shape function on tetrahedral elements (3.15) can be implemented

on GPU.

The displacement of point p in Fig. 4.11, up, can be approximated as a linear

shape function [58]:

up(xp, yp, zp) = a+ bxp + cyp + dzp (4.9)

Assuming u1, u2, u3, and u4 are the displacement vectors of four vertices of the

tetrahedral element, the following system of equations can be constructed:
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u1 = a+ bx1 + cy1 + dz1

u2 = a+ bx2 + cy2 + dz2

u3 = a+ bx3 + cy3 + dz3

u4 = a+ bx4 + cy4 + dz4

(4.10)

Solving 4.10 for the four coefficients a, b, c, and d yields:

a =
1

6V

∣∣∣∣∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
u1 −

1

6V

∣∣∣∣∣∣∣∣∣∣
x1 y1 z1

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
u2

+
1

6V

∣∣∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
u3 −

1

6V

∣∣∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣∣∣
u4

= a1u1 + a2u2 + a3u3 + a4u4

(4.11)
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b =− 1

6V

∣∣∣∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣
u1 +

1

6V

∣∣∣∣∣∣∣∣∣∣
1 y1 z1

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣
u2

− 1

6V

∣∣∣∣∣∣∣∣∣∣
1 y1 z1

1 y2 z2

1 y4 z4

∣∣∣∣∣∣∣∣∣∣
u3 +

1

6V

∣∣∣∣∣∣∣∣∣∣
1 y1 z1

1 y2 z2

1 y3 z3

∣∣∣∣∣∣∣∣∣∣
u4

= b1u1 + b2u2 + b3u3 + b4u4

(4.12)

c =
1

6V

∣∣∣∣∣∣∣∣∣∣
1 x2 z2

1 x3 z3

1 x4 z4

∣∣∣∣∣∣∣∣∣∣
u1 −

1

6V

∣∣∣∣∣∣∣∣∣∣
1 x1 z1

1 x3 z3

1 x4 z4

∣∣∣∣∣∣∣∣∣∣
u2

+
1

6V

∣∣∣∣∣∣∣∣∣∣
1 x1 z1

1 x2 z2

1 x4 z4

∣∣∣∣∣∣∣∣∣∣
u3 −

1

6V

∣∣∣∣∣∣∣∣∣∣
1 x1 z1

1 x2 z2

1 x3 z3

∣∣∣∣∣∣∣∣∣∣
u4

= c1u1 + c2u2 + c3u3 + c4u4

(4.13)
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d =− 1

6V

∣∣∣∣∣∣∣∣∣∣
1 x2 y2

1 x3 y3

1 x4 y4

∣∣∣∣∣∣∣∣∣∣
u1 +

1

6V

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x3 y3

1 x4 y4

∣∣∣∣∣∣∣∣∣∣
u2

− 1

6V

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x4 y4

∣∣∣∣∣∣∣∣∣∣
u3 +

1

6V

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
u4

= d1u1 + d2u2 + d3u3 + d4u4

(4.14)

and V is the volume of the tetrahedral given by:

V =
1

6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.15)

Considering the linear shape function on tetrahedral elements 4.9, and Equa-

tions 4.11 to 4.14, the displacement vector of point p inside the tetrahedron can be

written as:

up(xp, yp, zp) =


u1x u2x u3x u4x

u1y u2y u3y u4y

u1z u2z u3z u4z





a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4





1

xp

yp

zp


(4.16)

The order of multiplication in 4.16 is an important factor in increasing the speed
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of computation. up(xp, yp, zp) can be computed in one of the following two ways:

1. A matrix by matrix multiplication and then one matrix by vector multiplica-

tion. This approach requires 60 multiplications and 45 additions for each 3D

grid point.

2. Two matrix by vector multiplications. This approach requires 28 multiplica-

tions and 21 additions for each 3D grid point.

The second approach has been chosen for Step 4. Two CUDA kernels perform

the matrix by vector multiplications. For each 3D grid point, the corresponding

tetrahedron and its four nodal points must be extracted. These nodal points have

been used multiple times in the kernel to load the coefficients and directional dis-

placements from the global memory. It should be noted that the nodal points have

been stored in registers to minimize global memory access and increase the per-

formance of the algorithm. At the end, the final result, i.e. displacements of 3D

grid points, are added to the positions of the 3D grid points to calculate their new

positions. The process can be summarized as follows:

Kernel 1

1. The position of each 3D grid point and its corresponding coefficients are

loaded from global memory into registers.

2. Four threads are assigned to each 3D grid point to compute a 4× 4 matrix by

a 4×1 vector multiplication and store the result in C, a 4×1 vector (see 4.16).

Kernel 2
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1. For each 3D grid point, the corresponding elements of the C vector and nodal

displacements are loaded into registers.

2. Three threads are assigned to each 3D grid point to compute a 3 × 4 matrix

by a 4×1 vector multiplication. The result represents the displacement of the

3D grid point.

3. The new position of each 3D grid point is obtained by adding the old posi-

tion of each 3D point to the result that is obtained in Step 2 of Kernel 2 (i.e.

previous step).

In contrast with the GPU implementation which is capable of computing all

above steps in parallel, the CPU implementation computes the 3D displacement

of grid points in serial. The displacement of each grid point is a 3D vector repre-

senting the displacement in three separate directions. Therefore not only the cal-

culations of displacement vector for each grid point can be parallelized, but also

the directional displacement can be computed independently. This will take the

maximum advantage of GPU execution resources.

4.4.5 Step 5: Distance Measure

The SSD between the deformed template and the reference image is computed

in this step. The iterations stop when the relative error in the SSD falls below a

threshold, i.e.

g(u) =
|SSD(ut)− SSD(ut−1)|

SSD(ut−1)
< δ (4.17)
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where ut and ut−1 are the displacement vectors at the current and previous itera-

tions, respectively. First, a CUDA kernel computes the squared difference between

the two vectors and stores the result into a third vector. Then another kernel cal-

culates the sum of the elements of the third vector. In the first kernel, one thread is

assigned to each element of the 3D data which are projected into a 1D array. This

thread calculates the squared difference between one element in the deformed tem-

plate and its corresponding element in the reference image. The tasks consists of

the following steps:

• The corresponding elements from the deformed template and reference im-

ages are loaded from global memory in to registers.

• One thread computes the squared difference of the two elements and stores

the result in a third vector.

A reduction algorithm then is used in the second kernel to calculate the sum of

the elements in the result vector. The algorithm can be summarized as follows:

• One thread block is assigned to one section of the array (in GTX 480, up to

1024 threads can be placed in a block)

– Each thread loads one element from global memory into shared mem-

ory.

– Barrier synchronization statement ( syncthreads() ) ensures that the

loading task is completed for all threads within a block.

– Parallel reduction task is performed using a tree-based approach (see

Fig. 4.12) in shared memory. An array with eight elements is shown in
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Figure 4.12: Parallel sum reduction.

Fig. 4.12; three steps are required to calculate the sum of its elements.

In general, the algorithm requires log2 (n) steps to perform this task for

an array with n = 2k elements, k = 0, 1, 2, .... Active threads compute

partial sums in each step and the number of active threads is reduced

from one step to another.

– syncthreads() is used again to ensure that the partial sums are com-

pleted in one step before running the next step.

• The results from multiple blocks are added together to calculate the final

result. If the array is very large, the same parallel sum reduction algorithm

can be used to find the final result.
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Fig. 4.12 illustrates the parallel sum reduction kernel. Since the values are

stored in shared memory, threads that are not idle have access to the previous

results. When all non-idle threads complete one step, the stride is multiplied by 2

for the next iteration.

As mentioned in Section 4.2.1, the GPU executes an instruction for all threads

that are grouped in a warp. In Fig. 4.12, we have 8 threads that are grouped in

a warp. Obviously the kernel has an if statement and that is why some of the

threads execute one instruction while others are idle. This causes a divergence in

the execution paths. In fact some threads follow one path, while others follow a

different one. Since the GPU handles these paths in a sequential form, the ”thread

divergence” can add to the execution time.

The above situation decreases the performance especially when the array is

large. A change in the position of threads, which perform the reduction task, can

alleviate the thread divergence problem. Fig. 4.13, shows a revised parallel sum re-

duction method [12]. Instead of considering two threads that are neighbors (most

likely in one warp), two threads that are far from each other (most likely in two

separate warps) have been chosen to calculate the sum in each iteration. There-

fore, threads that are in a warp follow the same instruction and this will reduce

the thread divergence in most steps. Although in most iterations we do not have

thread divergence, this problem still exists in the final steps when threads in a warp

do not follow the same path. ”cublasSasum” function can also be used to perform

the summation task.

71



M.A.Sc. Thesis - M.H.Mousazadeh McMaster - Biomedical Engineering

Figure 4.13: Revised parallel sum reduction.

4.4.6 Other Computations

In addition to the above steps, there are some other computations that require ma-

trix and vector operations. Although the runtime of these tasks is much less than

the runtime of the five main steps, their time has been considered in the results

presented in Chapter 5.

One time consuming task that must be completed before the conjugate gradi-

ent in Step 2 is computing the coefficients that are used to find the inverse of the

shape function. The coefficients are needed in the calculation of the matrix A in

the conjugate gradient algorithm. They are computed according to Equations 4.11

to 4.14. Since the position of nodal points change per iteration, these coefficients
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must be updated in each iteration. The task has been parallelized for each tetrahe-

dral elements. A “device function” has been written for 3 × 3 determinant and is

called inside a kernel to calculate sixteen coefficients per element a1, a2, ..., d4. The

positions of the nodal points are placed in registers to decrease the global memory

access. The process of computing a1, a2, ..., d4 coefficients can be shown as follows:

• Nodal points’ positions are loaded from global memory into registers for

each finite element element.

• A device function which is written to perform the 3× 3 determinant is called

to compute the coefficients.

• The results are written in a 1D array in the device.
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Chapter 5

Performance Analysis, Optimization

and Experimental Results

In this chapter, we present the performance results of the GPU kernels that are

implemented in different steps of the registration algorithm. We also study the

performance of other kernels such as matrix by matrix multiplication to explain

the techniques that can be used for design optimization. A comparison between

GPU and CPU-based registration also has been conducted to demonstrate the GPU

capability in accelerating the image registration algorithm.

We have used the MR image sets of abdomen from [59] shown in Fig. 5.1 to

illustrate the performance of the GPU-based implementation and how such per-

formance can be optimized across different GPU kernels. The GPU execution re-

sources, high-bandwidth memories, and CUDA flexible programming techniques

have helped us significantly accelerate our computationally intensive image regis-

tration algorithm.

We studied the performance of the proposed implementation in accelerating
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Figure 5.1: MR images of abdomen showing the liver; the reference (right) and
template (left) images.

the whole registration algorithm using a realistic breast phantom tissue. The main

advantage of this data sets over the abdominal MR images is that it involves large

deformation. Therefore, both the algorithm and its GPU implementation can be

examined in the case of such large tissue deformations are relevant in applications

such as breast biopsy.

5.1 Computing Performance as a Function of 3D Grid

Size

As discussed in Sections 3.1 and 3.3, a regular 3D grid has been used in the reg-

istration algorithm. The displacement and gray value of the grid points must be

calculated at each iteration of the algorithm. The size of the 3D grid and the reso-

lution of the finite element mesh affect the outcome of the registration. In general,

the accuracy can be improved by increasing the resolution of the finite element
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mesh and number of 3D grid points since more image information is available in

a finer grid. Obviously there is a trade-off between the runtime of our GPU ker-

nels and the size of the 3D grid. The appropriate choice of the 3D regular grid size

depends on the application and available computational resources.

In this section, we explain how the size of the 3D regular grid can directly af-

fect the interpolation (Step 1) and displacement (Step 4) kernels. It should be noted

that the grid size also affects the size of some other matrices and vectors in other

steps of the algorithm. We compare the performance of two GPU 3D interpolation

kernels, with and without texture memory, with the performance of a serial imple-

mentation in the trilinear interpolation of a 512× 512× 136 image. The serial code

is written in standard C and runs on a 3.20 GHz Intel core i5 650 processor. The

results are given in Table 5.1. In all three implementations, the computation time

3D grid size GPU (Texture) GPU (without Texture) CPU

Time (ms) GFLOP/s Time (ms) GFLOP/s Time (ms) GFLOP/s

64×64×25 0.15 29.35 0.49 8.98 47 0.09

128×128×50 0.28 125.80 0.92 38.28 251 0.14

256×256×50 0.52 270.96 1.68 83.87 547 0.25

Table 5.1: The performance of trilinear interpolation using GPU with texture mem-
ory, GPU without texture memory, and CPU for different 3D grid sizes.

and GFLOP/s increases by increasing the 3D grid size. Although GPUs are able

to run thousands of threads in parallel, execution resources are limited. Therefore

in a large 3D grid size, not all the tasks can be performed in parallel. In fact, some
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tasks should wait until execution recourses become available. It should be noted

that the relationship between the 3D grid size and the execution time is not linear

in all three implementation. For instance when the grid size becomes four times

larger, the execution time does not increase by a factor of 4. One may argue that the

computation time should remain unchanged for a parallel implementation. This

is not true since the execution resources, e.g. number of resident threads per mul-

tiprocessor, are limited in GPU hardware. In fact, the interpolation task cannot be

performed for all grid points at a same time when we have a large 3D grid which

requires more than the maximum amount of execution resources. It is evident that

one can achieve significant speed up by using the hardware built-in 3D texture tri-

linear interpolation feature of the GPU. In contrast with the CPU implementation

which computes the values of the regular 3D points sequentially, both GPU imple-

mentations provide a parallel approach to calculate the trilinear interpolation for

all regular points.

It should be noted that, the eight voxels that are involved in computing the

value of a regular point (see Fig.4.7) are not placed consecutively in the global

memory. GPU texture memory increases the performance of the interpolation ker-

nel by providing a different access pattern which takes the spatial locality of those

voxels into account. It should be also noted that by this time the texture interpola-

tion feature is not available for double floating-point data.

The size of the 3D regular grid also affects the displacement kernel in Step 4.

The performance of this kernel as function of the grid size for a volumetric mesh

with 2335 tetrahedral elements and 515 nodes, encompassing a 512×512×136 im-

age ( abdominal MRI in Fig. 5.1 ), is shown in Table. 5.2. As we can see in the table,
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3D grid size CPU (ms) GPU (ms) Speed Up

128×128×50 312 2.15 145.11

64×64×50 78 0.59 132.2

32×32×40 16 0.18 88.88

16×16×20 2 0.096 20.83

Table 5.2: The performance of the kernel that calculates the displacements of 3D
grid points as a function of the grid size.

there is almost a linear relationship between the 3D grid size and the CPU serial

implementation. For instance when the grid size becomes 8 times larger, i.e. from

16 × 16 × 20 to 32 × 32 × 40, the CPU times increases by a factor of 8. In this case,

the time is changed by a factor of 1.8 in our GPU; meaning that there is not a linear

relationship between the 3D grid size and the GPU runtime. As the 3D grid size

becomes larger, the relationship between the GPU runtime and the 3D grid size

becomes almost linear. For instance, when the grid size changes from 64× 64× 50

to 128 × 128 × 50, i.e. 4-fold increases in the grid size, the GPU runtime changes

from 0.59 to 2.15 milliseconds, i.e. 3.64-fold time increases. This might be due

to large amount of registers that were employed to implement the displacement

kernel. Using additional registers can reduce kernel performance.

5.2 Shared Memory and Performance

In this section, we compare three approaches in matrix by matrix multiplication

kernel for multiple dimensions. We report the performance and runtime of the
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multiplication kernel with global memory, shared memory and cublasSgemm from

the CUBLAS library. Fig. 5.2 shows that using shared memory we can achieve

higher performance compared to the matrix multiplication kernel in which only

global memory is used. As mentioned in the previous chapter, shared memory

reduces the global memory access and improves the performance by reducing its

runtime. In fact, the kernel is designed such that the number of loadings from

global memory into shared memory for a given matrix element is much less than

the number of floating point calculations performed on that matrix element. CUBLAS

not only employs shared memory but also uses other optimization techniques to

enhance the multiplication performance. CUBLAS outperforms other two GPU

implementations at larger matrices (see Fig. 5.2 and Table. 5.3). In this section

some possible techniques that might have been used in CUBLAS library are ana-

lyzed. We also discuss about possible reasons that may cause CUBLAS to have less

performance than the two others in performing multiplication for small matrices.

In contrast with the shared and global kernels, CUBLAS employs non-square

blocks; yielding in better usage of execution resources (e.g. thread slots and block

slots). CUBLAS also provides better memory access pattern (this will be discussed

shortly). These features might be the reasons that the global and shared kernels

saturate earlier than CUBLAS; i.e. when the dimension becomes more than 512. In

the case when the matrix dimension is 512×512, the block size is set to 16×16=256

threads in both the global and shared kernel. Since the maximum resident threads

in a multiprocessor is 1536, 1536
256

= 6 blocks can be placed in each multiprocessor.

Because there are 15 multiprocessor in a GTX 480, 15×6 = 90 blocks can reside in

the GPU. It should be noted that the total number of blocks in this case is 1024 (i.e.
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Figure 5.2: Performance results on multiplying two N×N matrices on GTX 480.

512
16

= 32 in each dimension) but only 90 blocks can reside in the multiprocessors at

a same time. Many blocks should wait until the resources become available. This

waiting time is much more than the waiting time in a case when smaller matrices

(e.g., 256×256) are considered. Assuming the same block size, the total number

of blocks in the case when the matrix dimension is 256×256 is 256
16

= 16 in each

dimension yielding in a total of 256 blocks.

In the matrix multiplication kernel that uses shared memory (see Section 4.4.2),

there is a dot product for each thread in a block. This requires a loop to com-

pute the dot product of a subset of matrix elements with the corresponding subset

of another matrix. The loop adds extra instructions such as loop counter update
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and performing conditional branch which increase the kernel runtime. The loop

unrolling technique can be employed to eliminate those extra instruction and en-

hance the performance. Loop unrolling may result in more than 20% performance

improvement [12].

Matrix Size Global Memory Shared Memory CUBLAS

Time (ms) GFLOP/s Time (ms) GFLOP/s Time (ms) GFLOP/s

64×64 0.063 8.257 0.051 10.199 0.188 2.766

128×128 0.112 37.302 0.069 60.549 0.233 17.930

256×256 0.435 76.985 0.201 166.611 0.430 77.881

512×512 3.763 71.265 1.207 222.181 0.768 349.184

1024×1024 30.321 70.790 9.137 234.916 3.469 618.747

1536×1536 89.352 81.088 30.614 236.669 9.501 762.593

2048×2048 243.491 70.539 72.552 236.736 22.742 755.24

Table 5.3: The Performance of matrix multiplication with different approaches in
GPU.

Another technique is data prefetching in which additional automatic variables

(registers) are used to load the next step data from the global memory into regis-

ters right before the dot product computation (see Section 4.4.2). These registers

hold data that will be consumed in next iteration, thus the amount of time that is

required for global memory access is reduced. The result of multiplication kernel
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with CUBLAS has been shown in Fig. 5.2 and Table. 5.3. Although the cublasS-

gemm function employs shared memory and optimization techniques to gain per-

formance close to peak performance (1.35 Tflops in GTX 480), the shared memory

kernel provides better performance for smaller matrices. As mentioned before,

registers decrease the amount of time that is required for global memory loading.

On the other hand, additional registers can decrease the number of resident blocks

on a multiprocessor [12]. Therefore there is a trade-off between the number of

resident blocks and the time each thread waits for global memory loading. One

possible reason that CUBLAS library has less performance than the two others in

performing multiplication for small matrices might be due to insufficient use of

block and thread slots. As discussed in Section 4.2.1, underutilization of these re-

sources can decrease the performance of the kernels.

5.3 Memory Transfer and Performance

In most GPU implementations, it is required to exchange data between CPU (host)

and GPU (device). In this section we show the host memory configuration can af-

fect the overall computation performance. In our implementation, we have data

transfers at the beginning and end of our algorithm. We have chosen the kernel

for calculating the displacement of 3D grid point as an example to illustrate the

dependency of the kernel runtime on the type of data transfer and memory con-

figuration. The memory transfer time is included in the overall reported runtime

of the GPU implementation.

Fig. 5.3 shows the execution time for our kernel based on different host mem-

ory configurations. The memory transfer portion, memcpy in the figure includes
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Figure 5.3: Total execution time (memcpy + kernel) is shown for the displacement.
Three types of host memories have been used. M1 is the regular pageable memory,
M2 is the mapped memory and M3 is the write-combined memory.

both CPU (host) to GPU (device) and GPU to CPU transfers. The regular page-

able memory, M1, has the highest runtime of 19.32 ms which includes the kernel

time plus the memory transfer time. The mapped memory, M2, maps a block of

page-locked host memory into the device. This block has two addresses in host

and device thus, in contrast with M1, the programmer does not need to explicitly

allocate a block in GPU for memory transfer. In fact this data transfer is implicitly

performed by the kernel and its time is included in the kernel time. The write-

combined memory configuration, M3, exhibits the best performance of all three

with a total runtime of 10.43 ms. M3 transfers data across the Peripheral Com-

ponent Interconnect Express (PCIe) more quickly and increases the performance

especially when GPU reads the buffer that is written by CPU.
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5.4 Thread Organization and Performance

GPU provides support for massive parallel computing but the execution resources

are obviously limited and shared between the execution threads. The block size

and grid size (Section 4.1 and 4.2) can have a great influence on the execution per-

formance. CUBLAS and CUSPARSE functions automatically set block size and

grid size. The performance of other kernels in our implementation depend on

their block and grid size. The performance of a few possible CUDA thread or-

ganizations in the same kernel of the algorithm as in Section 5.3 are compared in

Table. 5.4.

Configuration 3 has the best performance in terms of kernel execution time.

This is due to the fact that the kernel can fully occupy each multiprocessor in our

Config Block Size (B), Grid Size (G) GFLOP/s time (ms)

1 B(1,64), G(1,38400) 25.84 1.87

2 B(1,128), G(1,19200) 28.94 1.67

3 B(1,256), G(1,9600) 29.65 1.63

4 B(1,512), G(1,4800) 26.55 1.82

5 B(1,1024), G(1,2400) 22.48 2.15

Table 5.4: GPU runtime and GFLOP/s of the CUDA kernel for 3D grid displace-
ment field.

GPU. The maximum number of resident threads per multiprocessor is 1536 in a

GTX 480. Each multiprocessor can have up to 8 resident blocks. In Configuration

3, we have 1536/256 = 6 blocks which is less than 8; each block has 256 threads,

hence 6×256=1536 threads can fully occupy the thread slots of a multiprocessor.
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Configurations 1 and 2 are less effective than Configuration 3 due to insufficient

use of threads. For instance in Configuration 2, each block has 128 threads and

1536/128 = 12 blocks are needed to fully occupy a multiprocessor; but we can only

have up to 8 blocks resulting in 8×128 = 1024 threads, less than the maximum

number of resident threads which is 1536 in a GTX 480. Similarly Configurations 4

and 5 are not as efficient because of inefficient use of execution resources. It should

be noted that these limits are device dependent.

5.5 3D-3D MR Registration of Breast Phantom

A triple modality biopsy training breast phantom (CIRS model 051) has been used

for obtaining 3D volume high-resolution (512×512×136) MR images in both the

un-deformed and the deformed states. Fig. 5.4.a shows an MR compatible plex-

iglass structure with four mounted capsules of vitamin E as landmarks to match

the coordinates of the deformed and un-deformed images. Fig. 5.4.b illustrates the

deformed and un-deformed images. The goal of the algorithm is to deform the un-

deformed image so that the two image sets can be aligned. COMSOL Multiphysics

and Simulation software is used just to create a cubic finite element mesh of 7502

linear tetrahedral elements with 1601 nodal points. The deformation model serves

as a tunable constraint on the registration process and therefore exact material and

geometrical properties of the tissue are not required in the algorithm. The cubic

FE mesh encompasses the whole volume of deformed and un-deformed data and

a 20×30×10 regular grid with no need for image segmentation.
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(a) (b)

Figure 5.4: (a) the apparatus, (b) x-y views of un-deformed (top) and deformed
(bottom) images.

5.5.1 Execution Time

The registration algorithm converges to a solution after 15 iterations. The CPU ex-

ecution time for the 3D high resolution image registration is 82.83 sec. compared

to only 2.19 sec. for the GPU, i.e. a 37-fold speedup is achieved. The CPU im-

plementation which is written in standard C runs on a 3.20 GHz Intel core i5 650

processor with 4GB RAM. The compositions of the GPU and CPU execution times

are given in Table 5.5. It should be noted that the algorithm runtime in MATLAB

is about 23 minutes with the same CPU.

Step 1 includes GPU kernels which compute the coefficients of the tetrahedral

shape function (Equations 4.11 to 4.14). This step also involves four trilinear inter-

polation, exploiting the hardware built-in 3D texture trilinear interpolation. Step 2,

which computes the force vector of nodal points, involves the conjugate gradient
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Steps GPU (ms)/itr CPU (ms)/itr Speed Up

1 2.21 892 403.61

2 120 2797 23.3

3 12.7 1828 143.93

4 0.11 4 36.36

5 0.65 1 1.53

GPU others 10.54 – –

Total 146.21 5522 37.76

Table 5.5: Execution times for various steps of 3D/3 registration for 512×512×136
MR images.

method (takes 70 ms) and some sparse matrix operations. Step 3 includes the im-

plementation of the displacement of nodal points. As mentioned in the previous

chapter, the dynamic finite element model is solved using the Newmark integra-

tion scheme in this step. CUSPARSE library has been used in Steps 2 and 3 for

sparse operations. Linear shape function on tetrahedral elements 3.15, has been

implemented in Step 4. SSD is computed in Step 5 and “GPU others” refers to

memory transfer and other computations.

Step 2 of the algorithm is the most time consuming part in both the CPU and

the GPU implementation. The highest speed-ups were achieved in Step 1 and 3 of

the registration algorithm, respectively.

5.5.2 Quality of Registration

The 3D preoperative image in Fig. 5.5 (top left) and the 3D intraoperative image

in Fig. 5.5 (top right) are the inputs of the registration algorithm. Fig. 5.5 (bottom
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Figure 5.5: Visual comparison of GPU and CPU registration. 2D (y− z view) slices
of the preoperative (template) image (top left), intraoperative (reference) image
(top right), deformed preoperative image after registration on GPU (bottom left)
and deformed preoperative image after registration on CPU (bottom right). Note
that the phantom has been compressed along x-axis (see Fig.5.4) which has caused
image elongation in y−z plane and also movements of image features in the image
plane.
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left) and Fig. 5.5 (bottom right) are the outputs of GPU and CPU-based imple-

mentations, respectively. The SSD between the intraoperative and the deformed

preoperative data are 285.11 and 282.08 for the GPU and CPU implementation,

respectively. These numbers are normalized by the image size.

The small difference between the GPU and CPU results is due to the double-

precision floating point operations in CPU implementation versus the single-precision

floating point operations in the GPU implementation. As mentioned before, some

features such as linear filtering are only supported in single-precision operations

on GPU. In this thesis, all kernels are designed for single-precision floating point

operation.

5.6 Scalability of Solutions

CUDA programming environment provides flexible implementations. The grid

size and block size and other execution and memory resources can be easily modi-

fied to compensate for various sizes of the input/output data. Our implementation

can be run in any other CUDA capable GPU with compute capability 2.0 or more.

In order to optimize the implementation to take full advantage of the recourses of

newer GPUs, one should have a good knowledge of the GPU device.

Our implementation is capable of handling problems with larger sizes. For

instance, the size of the finite element mesh, the resolutions of the reference and

template images, and the 3D grid size can be easily increased by changing the

memory sizes and the GPU block and grid sizes. This might be required when

the accuracy of the image registration algorithm should be increased for a specific

application.
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Figure 5.6: Main steps in 3D-3D and 2D-3D registration algorithms.

We believe that newer GPUs can be employed in the future to accelerate our

implementation by adding more cores, providing more execution resources, and

increasing the memory bandwidths.

5.7 GPU Implementation of the 2D-3D MR Registra-

tion

In this thesis, we designed, optimized and implemented GPU kernels to accelerate

the 3D/3D deformable MR registration algorithm in [1]. An algorithm for 2D/3D

deformable registration also is discussed in [1]. Fig. 5.6 illustrates the main steps of

each registration algorithm. From a numerical and computational points of view,

all the GPU kernels designed for the 3D/3D algorithm also applies to the 2D/3D

method. As discussed in Chapter 3, the displacement of the 3D grid points must
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be computed in each iteration of the 3D/3D algorithm. The 3D regular grid points

are distributed within the finite element mesh and each point is located inside

a tetrahedral element. An off-line search algorithm identifies the index of each

tetrahedral element that encompass one or more 3D regular grid point/points.

The indices then are stored in an array and are exploited by multiple GPU kernels

in the iterative sections (i.e. online sections) of the algorithm.

In contrast with the 3D/3D registration algorithm, 2D/3D registration method

in [1] requires designing a GPU kernel to compute the indices in each iteration.

Since the focus of this thesis is on 3D/3D, the search kernel remails as a possible

future work. The kernel must search all or some tetrahedrons (depends on the

search algorithm) for each 3D regular grid point to see whether the point is inside

or outside the tetrahedrons.

It should be noted that in 3D/3D registration method, an intraoperative 3D im-

age is transferred from CPU to GPU before starting the registration process. On

the contrary, in 2D/3D registration method, a set of 2D slices of the intraopera-

tive images are continuously transferred to GPU which may increase the overall

runtime.
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Chapter 6

Conclusions and Future Work

Medical image registration has become an integral part of many diagnostic and in-

terventional procedures. In applications such as image-guided surgeries, biopsy,

and radiotherapy, the task must be completed within a relatively short period of

time. However advanced registration methods, particularly those that account for

tissue deformation, are computationally expensive, restricting their use. The goal

of this research was to study GPU-based parallel computing for fast deformable

image registration. We have developed and tested a parallel implementation of

the model-based image deformable image algorithm in [1]. The algorithm can take

into account large deformations and is merely based on voxel intensities; there-

fore it does not require feature extraction or image segmentation to accomplish

the registration. A GPU-based parallel implementation of the algorithm yielded

37-fold speedup over an optimized CPU implementation for registration of 3D

512 × 512 × 136 MR images. This was accomplished through massive paralleliza-

tion of the computationally intensive elements of the registration algorithm such
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as interpolation, displacement, and force calculation on a GTX 480 GPU. The ex-

ecution and memory resources were also analyzed and optimized to improve the

performance. While MATLAB and CPU implementations take 23.25 and 1.38 min-

utes respectively, the GPU platform is capable of registering the same MR image

sets (512×512×136) in 2.19 seconds. It should be mentioned that the parallel im-

plementation can run on any other CUDA capable GPU with compute capability

of 2.0 or more.

The results of our work show that near real-time registration can be achieved

with recent advances in the GPU technology. GPUs have unique features such

as texture memory which can significantly accelerate operations such as trilinear

interpolation. They are much less expensive and much more compact than large

multi-processor systems which require a large number of CPUs communicating

through shared memory and/or over a netowrk. GPUs are also easier to program

than FPGAs, making them widely popular for scientific general-purpose comput-

ing on GPU (GPGPU). One can easily modify the registration algorithm in case it

is necessary for a specific medical application. Due to high demand of gaming in-

dustry, it is expected that the memory bandwidth and computational peak perfor-

mance of GPUs will continue to increase in future, making real-time applications

of advanced medical registration algorithms even more feasible.

Although the results presented in this study are very encouraging, there are

still various possibilities for further studies:

• Comprehensive analysis of the CPU and GPU implementation accuracy and

precision of in-vivo image sets instead of phantom image sets.
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• Extension of the work to allow 3D to 2D registration of single and multi-

modality images.

• Using multiple-GPU to further accelerate the computations in medical image

registration algorithms.

• A comparative study of the speed and accuracy of the implemented registra-

tion algorithm with other well-known methods such as Demons [25], etc.

• Extension of the current implementation to use other similarity measures

such as mutual information (MI) and correlation ratio. The algorithm in [1]

is capable of working with these metrics.
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