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Abstract

This thesis presents a computational model of the surgical stitching tasks and a path plan-

ning algorithm for robotic assisted stitching. The overall goal of the research is to enable

surgical robots to perform automatic suturing. Suturing comprises several distinct steps,

one of them is the stitching. During stitching, reaching the desired exit point is difficult be-

cause it must be accomplished without direct visual feedback. Moreover, the stitching is a

time consuming procedure repeated multiple times during suturing. Therefore, it would be

desirable to enhance the surgical robots with the ability of performing automatic suturing.

The focus of this work is on the automation of the stitching task.

The thesis presents a model based path planning algorithm for the autonomous stitch-

ing. The method uses a nonlinear model for the curved needle - soft tissue interaction. The

tissue is modeled as a deformable object using continuum mechanics tools. This thesis

uses a mesh free deformable tissue model namely, Reproducing Kernel Particle Method

(RKPM). RKPM was chosen as it has been proven to accurately handle large deformation

and requires no re-meshing algorithms. This method has the potential to be more realistic

in modeling various material characteristics by using appropriate strain energy functions.

The stitching task is simulated using a constrained deformable model; the deformable

tissue is constrained by the interaction with the curved needle. The stitching model was

used for needle trajectory path planning during stitching. This new path planning algorithm
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for the robotic stitching was developed, implemented, and evaluated.

Several simulations and experiments were conducted. The first group of simulations

comprised random insertions from different insertion points without planning to assess the

modeling method and the trajectory of the needle inside the tissue. Then the parameters of

the simulations were set according to the measured experimental parameters. The proposed

path planning method was tested using a surgical ETHICON needle of type SH 1/2 Circle

with the radius of 8.88mm attached to a robotic manipulator. The needle was held by a

grasper which is attached to the robotic arm.

The experimental results illustrate that the path planned curved needle insertions are

fifty percent more accurate than the unplanned ones. The results also show that this open

loop approach is sensitive to model parameters.
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Chapter 1

Introduction and Problem Statement

1.1 Motivation

Robot-assisted surgical technology, which is an interdisciplinary field of medicine, biome-

chanics, and robotics technology, has become an active research area in recent years and

has tremendous possibilities for progress in the future. Its goal is to provide surgeons with

tools that enhance and complement their free-hand abilities during surgery. It is expected

that medical robotics can not only extend the ability of the surgeon, but also enhance the

quality of the surgery (Speich and Rosen, 2004), (Zamorano et al., 2004).

The superiority of the robot-assisted surgery lies in the motion’s precision and accuracy

achieved by scaling down the motion and filtering out the hand tremor. Computer assisted

or robotic surgery has the ability to provide copious, detailed and diverse information to

the surgeon.

However, it is well acknowledged that this field is still in its infancy and much research

is required in order for robots to become an ubiquitous presence in medical interventions.

Currently, medical robotic systems have little or no ability to work autonomously in a
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deformable environment. This is one of the major obstacles that needs to be addressed

if medical robotics is to be taken to the next development stage. Therefore, the realistic

modeling of surgical tasks is expected to produce algorithms that may be used to perform

those tasks automatically.

Suturing is a fundamental surgical task employed whenever tissue has to be approx-

imated. Several groups developed suturing simulators; however, most of them are not

realistic as they do not employ tissue deformation during the process (Kapoor et al., 2005)

(Lenoir et al., 2004). Moreover, most of suturing simulation research focused on the knot

tying part of the task. To the best of our knowledge, there are no published articles describ-

ing a model of soft tissue deformation during stitching.

1.2 Problem Statement and Thesis Contribution

Simple wound closure by suturing is a fundamental procedure utilized by several types of

health care providers worldwide. Researchers and developers attempted to build suturing

simulators; however, a complete simulation of the stitching task is still unavailable.

In this thesis, basic stitching is simulated using a new model-based method. We devel-

oped a suturing simulator, limited to the stitching task, that is realistic, simple to operate,

economical (runs on a single personal computer) and available for widespread use. The

simulation essentially models the interaction between a rigid curved needle and deformable

tissue.

We also aim to provide a system to help surgeons perform robotic assisted stitching.

Our objective was to perform automatic tissue piercing, or propose an optimal needle tra-

jectory to the surgeons. The proposed trajectory planner takes into account the deformation
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induced in the tissue by the needle. The desired needle path is based on the non-linear com-

putational model of the interaction between tissue and curved needle. The method does not

use real time deformation feedback during stitching. The advantage is that the implemen-

tation is simple; it does not require advanced sensors to record the position of the tissue.

However, as expected, it is sensitive to modeling errors.

1.2.1 Stitching Modeling

Several groups worked on surgical simulation in general ( (Gorman et al., 1999), (Berkley

et al., 1999)), as well as on the specific task of suturing simulation ( (OToole et al., 1999),

(Ladd, 2002)). Contributions to the suturing simulation have been made on the modeling of

sutures, needles , tissues (Pai, 2002), (Brown et al., 2004), analysis of knot-tying motion,

path planning for the knot-tying (Brown et al., 2004), development of new methods for

tying knots (Wang et al., 2008), (Kang and Wen, 2001)and investigation of mechanisms

of suturing and tying knots (Murphy, 2001), (Ustuner, 2006).

This thesis presents a novel approach for the stitching task simulation. The stitching

simulator is subsequently used in a path planning algorithm for robotic assisted stitching.

The surgeon can also use this modeling method to check if the desired exit point can be

reached from the reference entry point. He/she can simulate the needle path inside the

tissue before manual stitching and decide about optimal choice of entry point that results

in an acceptable exit point.

In contrast with the previous reported results (Nageotte et al., 2009), the proposed tra-

jectory planner takes into account the deformation induced in the tissue by the needle. The

key component of this work is a new algorithm for realistic simulation of tissue deformation

and the interaction between suturing needle and tissue.
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In this thesis, the stitching task is simulated using a constrained deformable model. The

deformable tissue is constrained by the interaction with the curved needle. The continuum

mechanics model was discretized using a mesh free Reproducing Kernel Particle Method

(RKPM). RKPM was chosen for this study as it has been proven to accurately handle large

deformation and requires no re-meshing algorithms (Chen et al., 1996). This model has the

potential to be more realistic in modeling various material characteristics by using appro-

priate strain energy functions. The proposed method can accommodate large displacements

and nonlinear material characteristics. The stitching model was used for needle trajectory

path planning during stitching.

1.2.2 Stitching path planning

Currently, the piercing of the tissue during stitching is performed manually. If the result is

unsatisfactory, the procedure is repeated which can lead to unnecessary tissue trauma. The

work presented here is a first step toward a robotic assisted suturing system with the focus

on automated tissue piercing. Our objective is to perform automatic and accurate tissue

piercing in the presence of tissue deformation, or propose an optimal needle trajectory for

the stitching to the surgeons.

We propose to compute the needle path through the tissues that limits as much as pos-

sible tissues deformations, while driving the needle towards the desired exit point. The

optimal needle path is built using the needle insertion model. The needle insertion motion

is simulated and the position of its center is adjusted such that the relative position of the

center with respect to the exit point remains constant. This ensures that the desired exit

point will remain on the needle arc; and that the needle tip will exit the tissue through the

desired exit point.
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Figure 1.1: experimental setup.

The planned trajectory was then used to perform accurate robotic stitching in the ex-

periments. The robot follows the given trajectory and inserts the needle toward the desired

exit point. Surgical ETHICON needle of type SH 1/2 Circle with the radius of 8.88mm

attached to a robotic manipulator is used for the experiments. The needle was held by a

grasper which is attached to the robotic arm. The experimental results illustrate that the

path planned curved needle insertions are fifty percent more accurate than the unplanned

ones.

Figure 1.1 shows the block diagram of different steps that carried out in the research

and how the robotic stitching is performed.

1.3 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 presents a literature review per-

taining to the integration of suturing simulation and deformable object modeling. Further,
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chapter 3 outlines a detailed description of the deformable object model for the stitching

simulation. In chapter 4, the path planning method is outlined and described in detail.

Chapter 5 describes the curved-needle insertions, path planning simulations and experi-

mental results. The final chapter is designated for conclusions and possible future works.

1.4 Related Publications

Faezeh Heydari Khabbaz, Alexandru Patriciu, Stitching Path Planning using Circular Needles-

Tissue Interaction Model, submitted to the IEEE International Conference on Robotics and

Biomimetics, ROBIO 2011.
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Chapter 2

Literature Review

Since the introduction of the suture in the 16th century by Ambroise Paré, the approxi-

mation of tissue using needle and thread has been the cornerstone of surgical techniques;

suturing is a fundamental surgical elementary task that any practitioner has to acquire. This

technique is useful for example after the resection of an organ or for closing up a wound.

Poor technique can result in sub-optimal outcomes in terms of healing, infection and cos-

metics. Although specific instruments have been developed to replace suturing with easier

gestures such as clipping, for many interventions there are no alternatives to conventional

suturing with needles.

This chapter first presents an overview of the deformable object modeling. Then, an

overview of the suturing simulation research is presented.
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2.1 Soft tissue Modeling and simulation

Surgical simulation makes new demands on the physically based computer modeling of de-

formable objects. In order for surgical simulation to be useful, it must be realistic with re-

spect to the tissue deformation, tool interactions, visual rendering, and real-time response.

Surgical tools must also be modeled accurately as they cause deformations by their ac-

tions. However, most researchers have concentrated on individual organs simulations only,

whereas the modeling of tools and interaction between tool and organ remain mainly open

research questions.

Research on modeling soft-tissue deformation has increased dramatically in the past

few years, with the focus on physically-based models for the simulation. Different models

were proposed in the literature. Terzopoulos and Waters (Terzopoulos and Waters, 1990)

argue the advantages of using anatomy and physics rather than just geometry for facial

animation, and present a mass-spring model of facial tissue with muscle actuators. They

were successful in demonstrating complex and realistic motions arising from the interaction

of deformable models with its environment.

A commonly used modeling technique is the mass-spring network. An object is mod-

eled as a collection of point masses connected by springs and dampers in a lattice structure

(Howard and Bekey, 1997). Joukhadar and Laugier (Joukhadar and Laugier, 1997) used a

mass-spring model with explicit integration techniques as the foundation of a general dy-

namic simulation system. Baraff and Witkin (Baraff and Witkin, 1998) used masses and

springs with implicit integration to simulate cloth.

These mass-spring models are characterized by fast computation and simple imple-

mentation (Cotin et al., 1999). Though effectively applied for a variety of uses, this class

of models does not perform adequately when simulations require accurate calculation of
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deformation and reaction forces (Kuhnapfel et al., 2000). The mass-spring model also re-

quires fine-tuning of physical parameters to represent certain physical characteristics, and

improper parameter values lead to system instability.

Finite element models (FEMs) have been used to model the biomechanical properties

of human tissues. Keeve et al. (Keeve et al., 1998), Koch et al. (Koch et al., 1996),

and Zachow et al. (Zachow et al., 2000) developed biological tissue models using FEMs.

Keeve et al. presented deformable tissue models integrated in an interactive surgical simu-

lation testbed. Koch et al. and Zachow et al. developed soft tissue deformation simulation

algorithms with applications to maxillofacial surgery.

The research presented in Koch et al. (1996) and Pieper et al. (1995) used FEMs to

model facial tissue and predict surgery outcomes. However, the computational demands

of finite elements are serious hurdles for real-time simulation. Therefore, numerical tech-

niques, including pre-computation of key deformations, are proposed in Bro-Nielsen and

Cotin (1996) and Berkley et al. (1999) to significantly reduce the computation.

There are too many examples of mass-spring models and FEMs for soft tissue defor-

mation simulation to cover them here. The reader can find a comprehensive review of the

deformable models used in medical simulations in Delingette (1998). Although FEMs can

be very accurate, they are not always appropriate for large deformation analysis or real-

time simulation of large geometries. Conversely, determining the proper parameters and

placements of masses and springs to adequately model a deformable object can be very

difficult.

Recently researchers focused on models that can replicate the non-linear characteristics

of the tissue. Gladilin et al. (Gladilin et al., 2003) discussed the advantages of non-

linear hypotheses. The authors compared non-linear versus linear facial tissue models.
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Their results show that the linear elastic approach implies a substantial error, especially in

the case of large deformations. Kobayashi (Kobayashi et al., 2007) used nonlinear tissue

models to build path planning algorithms for organ model-based control of needle insertion.

The proposed model used a nonlinear finite element approach. The deformation and strain

distribution were computed using a nonlinear organ model.

Most of models for predicting the forces acting on a needle during insertion into soft

organs relied on oversimplifying assumptions of linear elasticity and specific experimen-

tally derived functions for determining needle-tissue interactions. However, some authors

proposed a more general approach in which the needle forces are determined directly from

the equations of continuum mechanics using non-linear finite element discretizations. Such

models take into account large deformations and non-linear stress-strain relationship of soft

tissues.

Wittek et al. modeled needle insertion into a swine brain (Wittek et al., 2008). They

focused on the insertion phase preceding puncture of the brain meninges and obtained a

very accurate prediction of the needle force. Chentanez et al. (Chentanez et al., 2009)

presented algorithms for simulating the needle insertion through deformable tissues for

surgical training and planning. The model uses nonlinear FE and includes an efficient al-

gorithm for re-meshing during needle advancement. The simulation models the prostate

brachytherapy procedure using needles of varying stiffness; it can also accommodate nee-

dle steering around obstacles. Therefore, the proposed models can be used for robotic

needle insertion motion planning.

Within the computational mechanics community a strong research effort is focused on

the so called mesh-less methods that emerged in the last two decades. Mesh free particle

methods were developed to avoid the mesh constraints which are induced by finite element
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methods. A comprehensive review of the mesh-less approaches is presented by Li and

Liu (Li and Liu, 2002).

Mesh-less methods share some common features with the finite element methods since

both use the variational form of the deformable object model. The main difference, however

is that the mesh-less methods use global interpolants for expressing the assumed form of the

solution and the variations. This provides some distinct advantages over the FE methods

in the modeling of deformable object interactions and large deformations. The trade off is

that the shape functions are more complex than the FE shape functions, and the sparsity of

the stiffness matrix is usually lower than in a FE model.

Horton et al. (Horton et al., 2007) developed a meshless method for simulating soft

organ deformation. They simulated indentation of a swine brain and compared the results

to experimental data. Their simulated forces were accurate in magnitude but the simulation

curve appears more linear than the experimental results which may call for a higher order

hyperelastic material. Li et al. (Li and Lee, 2007) presented an adaptive meshless method

(MLM) for solving deformable contact problems. They validated the method against ana-

lytical and numerical solutions.

2.2 Suturing Task Definition

Suturing task involves the following steps:

1. (Select) Determine suitable entry and exit points for the suture needle leaving suffi-

cient space from the edge to be approximated.

2. (Align) Grasp the needle, move and orient it such that the tip is aligned with the entry

point.

11
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3. (Bite) Entry and exit bites are made such that the needle passes from one side of the

tissue to the other side.

4. (Loop) Create a suture loop to tie a knot.

5. (Knot) Secure the knot under proper tension.

Therefore, suturing can be decomposed in two main stages: stitching, i.e., the motion

that makes the needle go through the tissue, and knot tying. The surgeon first selects entry

and exit points on the surface of the tissue, on each side of the lesion to be sutured; then

he drives the tip of the needle to the entry point, pierces the tissue and drives the tip of

the needle through the tissue to the exit point. Reaching the exit point may be a difficult

subtask because it must be realized without direct visual feedback. The end of the needle

is then released after a second driver is used to grasp the tip. Finally, the needle is pulled

out of the tissue.

2.2.1 Stitching Task Definition

The first movement involved in the stitching task consists of driving the needle towards

the desired entry point until the tip of the needle reaches the surface of the tissue (step

1). The second step (step 2) consists of piercing the tissue such that the needle enters the

tissue. The objective during this step is to avoid, as much as possible, the deformation of

the tissue. This is obtained by positioning the tip of the needle along the normal to the

tissue during step 1 (Nageotte et al., 2009). The third step consists of driving the tip of

the needle towards the desired exit point (step 3). This step is especially difficult since the

needle is not visible. Next step (step 4) is dual to the step 2 and consists of piercing the

tissue such that the tip of the needle goes out of the tissue.

12



M.A.Sc. Thesis - Faezeh Heydari Khabbaz McMaster - Biomedical Engineering

2.3 Suturing Simulation

The ability to cut and suture the tissue is of primary importance for designing a surgery

simulation system. Delingette (Delingette, 1998) discussed the need for suturing simula-

tion. More recently, Marshall et.al (Marshall et al., 2005) presented a suturing simulator

for surgery operating on spring-mass surface meshes. They used geometry-based model

which includes the capability to form a knot. Kuhnapfel et.al’s (Kuhnapfel et al., 2000)

research and software is directed to the simulation of realistic interactions between surgical

tools and the organs which are modeled as deformable bodies. Their minimally invasive

surgical trainer provides several surgical interaction modules for deformable objects like

grasping, application of clips, cutting, coagulation, injection and suturing.

Kang and Wen (Kang and Wen, 2001) presented the first effort in autonomous robotic

suturing for minimally invasive surgery. They designed a motion controller for autonomous

and shared control modes and discussed autonomous robotic knot tying algorithms. Nagy

et al. (Nagy, 2004) studied the forces applied during knot tying in training conditions.

Tension of thread material and tissue parts can be measured and displayed by their system

in order to restrict force application to a tolerable amplitude. Both of these papers used

tele-manipulation with haptic feedback to perform the task.

A group at Rice University (Ladd, 2002) focused on the realistic simulation of a suture

and its behavior, while not looking at the actual suturing task. They developed a method for

simulating a suture using a spline of linear springs. Their model is able to simulate various

types of knots with the suture material.

Webster et al. created a simulation for suturing that is based on a 2D mass-spring model

(Webster et al., 2001). Their tissue model appears to be restricted to a 2D plane with the

feedback forces being calculated as a function of the depth and angle of the needle. Brown
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et al. developed a system (Brown et al., 2001) for training surgeons in the task of suturing

blood vessels. Rigid links of a fixed length are used to simulate the suture and the blood

vessels were simulated using mass-spring systems. In Brown et al. (2004), they described

a simulator allowing a user to grasp and smoothly manipulate a virtual rope and to tie

arbitrary knots.

Ladd et al. (Ladd, 2002)’s model used a spline of linear springs, adaptive subdivision

and dynamics simulation for modeling of knot tying. In Lenoir et al. (2004), the authors

proposed a surgical thread model in order for surgeons to practice a suturing task. In

LeDuc et al. (2003), various models for simulating a suture were studied, and a simple

linear mass-spring model was determined to give a good performance. However none of

these three papers focused on the stitching stage.

OToole et al. (OToole et al., 1999) designed and implemented a human performance

study to test if a surgical simulator can measure or improve parameters thought to be rel-

evant for suturing technique. The surgical simulator was comprised of surgical tools with

force feedback, a 3-dimensional graphics visual display of the simulated surgical field,

physics-based computer simulations of the tissues and tools, and software to measure and

evaluate the trainees performance. This study shows that the surgeons average performance

was significantly better than the students average performance for three of the measured pa-

rameters (total tissue damage, time to complete the task, and total distance traveled by the

tool tip.

More recently, Oshima et al. (Oshima et al., 2007) proposed a system that assesses the

suturing ability of surgical trainees. They presented the Waseda Kyotokagaku Suture No.

2 (WKS-2) system. The WKS-2 has been designed to provide detailed information of the

suturing task performance. In addition, they proposed evaluation parameters to measure the
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quality of the suture (after the task has been completed). For this purpose, they proposed

an image processing algorithm to automatically measure the width of sutures, the distance

among them and the wound area.

A research group of the Johns Hopkins Haptics Lab (Kapoor et al., 2005) addressed the

problem of the stitching task in endoscopic surgery using a circular needle under robotic

assistance. They proposed a general assistance using guiding virtual fixtures to assist the

surgeon to move towards a desired goal. A weighted multi-objective, constraint optimiza-

tion framework is used to compute the joint motions required for the tasks.

Nageotte et al. (Nageotte, 2004) presented a kinematic analysis of the entrance and exit

bites involved in a stitching task. In (Nageotte et al., 2009) they proposed a method for

computing optimal needle paths based on the kinematic analysis of the stitching task. They

assumed that the needle is maneuvered using regular 4DoF endoscopic needle-holder. The

optimal needle motion is characterized by small deformations around the entry and the exit

points simultaneously. The main limitation of the proposed approach is the assumption that

deformations are only due to the contact between the needle and the entry and exit surfaces.

In Nageotte et al. (2009) the deformation caused by the needle around entry and exit

points was represented by the distance of the point of the tissue with respect to its orig-

inal rest position. This deformation was decomposed along two directions: tangential to

the surface of the tissue, which was called longitudinal deformation, and normal to the tis-

sue, called transverse deformation. The transverse deformation depends on the dynamical

behavior of the tissues through multiple parameters such as elasticity and stiffness on the

contacts between the needle and the tissue. Also it depends on the dynamical motion of

the needle. However, they assumed a quasi-static model with no friction force between the

needle and the tissue and hence there was no transverse deformations in their model. They
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also assumed that the exit point does not move during the stitching whatever the involved

deformations of the tissue. However, this is usually not a valid assumption. Suturing in

thick tissue results in a displacement of the exit site that has to be compensated for.

Taking into account thick tissue deformations during stitching is a challenging problem

which has not been considered previously. Many works have been carried out to analyze tis-

sue deformations in interaction with long rigid or flexible needles (DiMaio and Salcudean,

2003) (OLeary et al., 2003). However, there is no study concerning the force distribution

along circular needles during tissue penetration which would be required to simulate the

resulting deformations. This thesis addresses this issue and tries to realistically simulate

the interaction between circular needles and tissue during stitching. Next chapter presents

the modeling approach used for simulations.
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Chapter 3

Modeling Method

3.1 Description of Deformable Object Model

In this thesis, we used a nonlinear model for the curved needle - soft tissue interaction

simulation. The tissue is modeled as a deformable object using continuum mechanics tools.

The modeling method uses a mesh free deformable object model, Reproducing Kernel

Particle Method (RKPM).

3.1.1 Meshless Methods

Many engineering problems in mechanics require modelling objects undergoing large de-

formations. One of the goals of meshfree methods is to facilitate the simulation of increas-

ingly demanding problems that require the ability to treat large deformations, advanced

materials, complex geometry, nonlinear material behavior, discontinuities and singulari-

ties.
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Meshfree methods are a particular group of numerical simulation algorithms for model-

ing the physical phenomena. Traditional simulation algorithms relied on a grid or a mesh;

meshfree methods in contrast use the geometry of the simulated object directly for calcula-

tions. Meshfree methods eliminate some or all of the traditional mesh-based views of the

computational domain.

Meshfree (or ’meshless’ as this term is also used) methods seem attractive as alterna-

tive to the finite element methods (FEMs) for the general engineering community, which

consider the process of generating finite element meshes as more difficult and expensive

than the remainder of analysis process (Liu and Gu, 2005).

Meshfree methods provide very flexible, robust and reliable discretization techniques

for multiscale simulations which have recently gained much attention in many different

applications. It would be computationally efficacious to discretize a continuum by only a

set of nodal points, or particles, without mesh constraints. Meshfree methods can easily

handle very large deformations, since the connectivity among nodes is generated as part of

the computation and can change with time. In meshfree methods accuracy can be controlled

easier than in FE methods, since in areas where more refinement is needed, nodes can be

added quite easily. Finally, another advantage of Meshfree discretization is that it can built

directly from the geometric representation of an object.

3.1.2 Tissue Model

Throughout the thesis we used the following conventions. The initial (un-deformed) coor-

dinate is represented by uppercase X whereas the deformed configuration is represented by

lower case x. The region occupied by the body in the initial configuration is ΩX and it has a

boundary ΓX ; in the deformed configuration is Ωx with the boundary Γx. The deformation
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of the body is a one to one function x = φ(X; t). The displacement is defined as u = x−X

or componentwise ui = xi−Xi. The deformation gradient is Fi j = ∂xi
∂X j

= ∂ui
∂X j

+ δi j; δi j is

the Kronecker Delta tensor. The determinant of deformation gradient is J = det
(

∂xi
∂X j

)
6= 0.

The directional derivative is represented using comma notation, and repeated indices indi-

cate a sum over the number of dimensions.

If the number of space dimensions is 3, the product between a second order tensor (Ai j)

and a first order tensor (bi) is represented in a compact notation as

di = Ai jb j ≡ Ai1b1 +Ai2b2 +Ai3b3 (3.1)

It is easily seen that as the index j is incremented, the multiplication takes place and

the result is added together. The repeated index j indicates that the results of the three

multiplications should be added. An example of comma notation is

f,i =
∂ f
∂xi

(3.2)

The comma in the indicial notation indicates to take the derivative of f with respect to

each coordinate xi, which is the definition of a gradient. Since there are no repeated indices,

there is no summation in this equation. The number of unique indices indicates the order

of the resulting tensor.

The deformation model is based on the continuum mechanics of hyperelastic materi-

als. A hyperelastic material is a type of constitutive model for ideally elastic material for

which the stress-strain relationship derives from a strain energy density function. For many

materials, linear elastic models do not accurately describe the observed material behavior.

Biological tissue doesn’t obey linear elasticity constitutive laws and is usually modeled as
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a hyperelastic material (Holzapfel, 2001).

Hyperelastic material models can be classified as: 1) phenomenological descriptions

of observed behavior; 2) mechanistic models derived from arguments about underlying

structure of the material; 3) hybrids of phenomenological and mechanistic models.

Ronald Rivlin and Melvin Mooney developed the primary hyperelastic models, the

Neo-Hookean and Mooney-Rivlin solids (Ogden, 1997). The simplest hyperelastic ma-

terial model is the Saint Venant-Kirchhoff model which is just an extension of the linear

elastic material model to the nonlinear regime. Hyperelastic materials are characterized by

a strain energy density function W . The strain-energy density function for the St. Venant-

Kirchhoff model is

W (E) =
λ

2
[tr(E)]2 + µtr(E2) (3.3)

where λ and µ are the Lamé constants and E is the Green-Lagrange strain. If the

number of space dimensions is 3 then

F =


F11 F12 F13

F21 F22 F23

F31 F32 F33


E =

1
2
(
FT F− I

)
The second Piola-Kirchhoff stress is provided by

S =
∂W
∂E

;Si j =
∂W
∂Ei j

(3.4)
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.

Similarly, if W̃ (F) is the strain energy density function, the 1st Piola-Kirchoff stress

tensor can be calculated for a hyperelastic material as

P =
∂W̃
∂F

(3.5)

.

If S is the second Piola-Kirchhoff stress tensor then

S = F−1 ∂W̃
∂F

(3.6)

The Cauchy stress is given by

σ =
1
J

∂W̃
∂F

FT ;J = detF. (3.7)

In terms of the Green-Lagrange strain

σ =
1
J

F
∂W
∂E

FT orσi j =
1
J

FimSmnFjn. (3.8)

For an incompressible material J = detF = 1.

The deformable model is formulated as a boundary problem using nonlinear elasticity

tools as follows. The body in the deformed state Γx is subject to body forces bi, bound-

ary traction hi on the natural boundary Γ
hi
x and boundary displacement gi on the essential

boundary Γ
gi
x . The task is to find ui(X, t) such that
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σi j, j +bi = 0 (3.9)

σi jn j = hi on Γ
hi
x

ui = gi on Γ
gi
x

for i = 1, ...,nsd

with ni the outward surface normal in the deformed configuration, u(X, t) = φ(X, t)−

X is the material displacement, σi j is the Cauchy stress and nsd is the number of space

dimensions.

Continuum mechanics problems such as elasticity problems are modeled using partial

differential equations (PDE). The strong form of a problem is formulated as a set of partial

differential equations; whereas the weak form of a problem is associated with either a

variational equation or a variational theorem. Weak formulations are an important tools

for the analysis of mathematical equations. Introduction of weak solutions allows one to

remove some of the high smoothness requirements. The weak statement is equivalent to

the strong statement.

The advantage of the weak statement is that we have reduced the order of the differential

by one. A differential equation may have solutions which are not differentiable; and the

weak formulation allows one to find such solutions. Weak solutions are important because

many differential equations encountered in modeling real world phenomena do not admit

sufficiently smooth solutions and the only way of solving such equations is using the weak

formulation.

A weak form of a set of differential equations is constructed by considering 4 steps:

22



M.A.Sc. Thesis - Faezeh Heydari Khabbaz McMaster - Biomedical Engineering

1. Multiply the differential equation by an arbitrary function which contracts the equa-

tions to a scalar.

2. Integrate the result of 1. over the domain of interest, Ω.

3. Integrate by parts using Green’s theorem to reduce derivatives to their minimum or-

der.

4. Replace the boundary conditions by an appropriate construction.

The variational version of the equation 3.9 can be formulated as mentioned above and

described in Liu and Gu (2005).

Given body force bi(x), boundary traction hi(x) and boundary displacement gi(x), find

ui(X) ∈ H1
g such that for all variations δui ∈ H1

0 , the following holds

∫
Ωx

δui, jσi jdΩ−
∫

Ωx

δuibidΩ−
∫

Γ
hi
x

δuihidΓ = 0 (3.10)

where δui represents the variations which are zero on the essential boundary, and ui

represents the test functions which satisfy the essential boundary conditions and H1
g = {v :

v ∈ H1,vi = gi on Γ
gi
x } is the set of test functions, H1

0 = {v : v ∈ H1,vi = 0 on Γ
gi
x } is the

set of variations, and H1 is a Sobolev space of degree one.

The previous equation can be expressed in body coordinates X as

∫
ΩX

δui, jFikSk jdΩ−
∫

ΩX

δui(X),bi(x(X))J(X)dΩ− (3.11)∫
Γ

hi
X

δui(X)h0
i (X)dΓ = 0
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where h0 is the surface force per unit of undeformed area on the undeformed natural

boundary Γ
hi
X , ui, j ≡ ∂ui/∂x j and ui, j ≡ ∂ui/∂X j.

The previous equations are nonlinear with respect to the unknown function u. This

equation is converted into an incremental version using a first order approximation (series

expansion) of FikSk j. The function FikSk j is a function of ui, j. Assuming small incremental

deformations as defined in Ogden (1997), the following relation holds

FikSk j(D)≈ FikSk j(D0)+
∂FikSk j

∂D
|D0∆D (3.12)

with D = ul,m = F− I the displacement gradient, ∆D = D−D0.

∂FikSk j

∂ul,m
∆ul,m =

(
∂Fik

∂ul,m
Sk j +Fik

∂Sk j

∂Eqm
Flq

)
∆ul,m (3.13)

∂Fik

∂ul,m
Sk j =

∂ui,k

∂ul,m
Sk j = δilδkmSk j = δilSm j = Di jlm (3.14)

Fik
∂Sk j

∂Eq,m
Flq = FikFlq

∂W
∂Ek j∂Eqm

= Ti jlm (3.15)

equation 3.12 can be written as

FikSk j(D)≈ FikSk j(D0)+
(
Di jlm +Ti jlm

)
∆ul,m (3.16)

with

Ti jlm = FikFlq
∂W

∂Ek j∂Eqm
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Di jlm = δilSm j

Using equations 3.12 through 3.16, the incremental version of 3.11 becomes

∫
ΩX

δui, j
(
Di jlm +Ti jlm

)
∆ul,mdΩ = (3.17)∫

ΩX

δui(X),bi(x(X))J(X)dΩ

+
∫

Γ
hi
X

δui(X)h0
i (X)dΓ−

∫
ΩX

δui, jFikSk jdΩ

This integro-differential equation can be discretized using either a FE approach or a

mesh-less approach and used in an iterative method to solve for the deformation. A mesh-

less discretization was chosen as it provides specific advantages for modeling interactions

between the needle and deformable object.

3.1.3 RKPM discretization

In computational mechanics, the finite element formulations dealing with geometric and

material non-linearities have been well developed and a significant amount of work has

been accomplished in large deformation analysis. In order to relax the constraints of

the conventional FEM, several generalized finite element methods (GFEM), that use the

meshes minimally or do not use the meshes at all, were recently introduced including

Smooth Particle Hydrodynamics (SPH), Particle in Cell Methods (PIC), Diffuse Element

Methods (DEM), Element Free Galerkin Methods (EFG), and Reproducing Kernel Particle

Methods (RKPM). Among the meshless methods, EFG and RKPM have been demonstrated

as most suitable for structural analysis.
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In this work a meshless discretization of the continuum body using reproducing kernel

particle methods (RKPM) is used (Chen et al., 1996), (Liu et al., 1995). The continuum is

discretized using NP particles distributed in ΩX and each particle has an associated shape

function NI(X).

If a finite element approach is used, the deformable body is discretized and the de-

formation u and variations are defined on each element as a linear combination of shape

functions. In a reproducing kernel particle method the deformation and the shape func-

tions are defined using global interpolants. In order for the problem to be consistent these

interpolants have to satisfy certain conditions.

The displacement u is approximated as a linear combination of the particles shape func-

tions

ui(X) =
NP

∑
I=1

NI(X)diI, i = 1, ...,nsd (3.18)

Where nsd is the number of space dimension ( 2 for planar objects and 3 for 3D objects).

A first choice for the shape functions can be

NI(X) = H(0)T M(X)−1H
(

X−XI

a

)
φa(X−XI)∆VI (3.19)

M(X) =
NP

∑
J=0

H
(

X−XJ

a

)
H
(

X−XJ

a

)T

φa(X−XJ)∆VJ (3.20)

where XI is the coordinate of particle I, aIi is the dilation parameter in direction i for the

shape function associated with particle I, H is the multidimensional basis function vector,

and φa is the multidimensional kernel function.
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H(Y ) = [1,Y1,Y2, ...,Ynsd ] (3.21)

φa(X) =
nsd

∏
i=1

(
1
a

φ

(
Xi−XIi

a

))
(3.22)

where φ(x) : R→ R is

φ(x) =


2
3 −4x2 +4|x|3, 0≤ |x| ≤ 1

2 ;

4
3 −4|x|+4x2− 4

3 |x|
3, 1

2 ≤ |x| ≤ 1;

0, otherwise.

(3.23)

From the previous equation it can be seen that two particles will have some interaction if

the distance between them is less than 2∗a. The RKPM interpolant can interpolate exactly

the functions in H in the particles locations. The choice of H has some implications on

the quality of the solution as well as the sparsity of the system matrix. From equation 3.19

and 3.20 it can be seen that M is nonsingular if any X ∈ΩX is covered by at least as many

particles as function elements in H. For the 2D case, examples of H are

H =
(

1 X1 X2

)T

or

H =
(

1 X1 X2 X2
1 X2

2 X1X2

)T

The RKPM interpolants in equation 3.19 do not have the Kronecker delta property;

therefore, they do not automatically satisfy the essential boundary conditions. The most ef-

ficient method to impose essential boundary conditions for meshfree methods is the trans-

formation method (Li and Liu, 2007). The particles are divided in two sets: essential

27



M.A.Sc. Thesis - Faezeh Heydari Khabbaz McMaster - Biomedical Engineering

boundary particles set marked with superscript b and non-boundary set marked with super-

script nb. Nb is the number of particles on the essential boundary; therefore, the number of

non-boundary particles is Nnb = NP−Nb. Furthermore, let’s assume that boundary parti-

cles indices belong to the set Λb = {Ib
1 , . . . , Ib

Nb
}; the non-boundary particle indices belong

to the set Λnb = {Inb
1 , . . . , Inb

Nnb
}; obviously Λb

⋂
Λnb = /0 and Λb

⋃
Λnb = 1,2, . . . ,NP. The

essential boundary condition provides Nb ∗nsd constraints,

ui(XI) = gi(XI); I ∈ Λb; i = 1, . . . ,nsd (3.24)

Let’s label giI := gi(XI), I ∈ Λb. Then, the displacement at X is expressed as

ui(X) =
NP

∑
I=1

NI(X)diI = ∑
I∈Λb

NI(X)diI + ∑
I∈Λnb

NI(X)diI = (3.25)

Nb(X)db
i +Nnb(X)dnb

i ; i = 1 . . .nsd

with

Nb(X) =
(

NIb
1
(X) . . . NIb

Nb
(X)

)
; (3.26)

Nnb(X) =
(

NInb
1

(X) . . . NInb
Nnb

(X)

)
; (3.27)

db
i =

(
diIb

1
. . . diIb

Nb

)
; (3.28)

dnb
i =

(
diInb

1
. . . diInb

Nnb

)
; (3.29)
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Let gi be

gi =
(

giIb
1

. . . giIb
Nb

)T

(3.30)

and

Db =


NIb

1
(XIb

1
) . . . NIb

Nb
(XIb

1
)

... . . . ...

NIb
1
(XIb

Nb
) . . . NIb

Nb
(XIb

Nb
)

 (3.31)

Dnb =


NInb

1
(XIb

1
) . . . NInb

Nnb
(XIb

1
)

... . . . ...

NInb
1

(XIb
Nb

) . . . NInb
Nnb

(XIb
Nb

)

 (3.32)

Then the discrete essential boundary conditions are satisfied if

Dbdb
i +Dnbdnb

i = gi (3.33)

Therefore, the “weights” of the essential boundary particles are db
i =(Db)−1gi−(Db)−1Dnbdnb

i .

These can be plugged back in equation 3.25

ui(X) = Nb(X)(Db)−1gi +(Nnb(X)−Nb(X)(Db)−1Dnb)dnb
i . (3.34)

Obviously, for XI; I ∈ Λb the following holds
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ui(XI) = giI; (3.35)

δui(XI) = 0

Therefore, the displacements become

ui(X) =
Nb

∑
I=1

N b
I (X)giI +

Nnb

∑
I=1

N nb
I (X)diI = N b(X)gi +N nb(X)dnb

i (3.36)

where

N nb(X) = Nnb(X)− (Nb(X)(Db)−1Dnb) (3.37)

N b(X) = (Nb(X)(Db)−1) (3.38)

.

Equation 3.36 can be seen as a new interpolant that has dirac delta property. By replac-

ing 3.36 in equation 3.17 the discrete incremental equation is obtained as presented in the

next section.

3.1.4 Derivation of Discretized Incremental Equations

The displacement u is a linear combination of the modified kernel functions

ui(X) = ∑
I∈Λnb

N nb
I (X)diI + ∑

I∈Λb

N b
I (X)giI (3.39)
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δui(X) = ∑
I∈Λnb

N nb
I (X)diI (3.40)

ui, j(X) = ∑
I∈Λnb

∂N nb
I (X)
∂X j

diI + ∑
I∈Λb

∂N b
I (X)

∂X j
giI (3.41)

δui, j(X) = ∑
I∈Λnb

∂N nb
I (X)
∂X j

diI (3.42)

∆ui, j = ∑
I∈Λnb

∂N nb
I (X)
∂X j

∆diI + ∑
I∈Λb

∂N b
I (X)

∂X j
∆giI (3.43)

By replacing the previous equations into integro-differential equation 3.17 and rear-

ranging terms we obtain

∑
M∈Λnb

diM

∫
ΩX

∂N nb
M

∂X j
(X)(Di jlm +Ti jlm)

(
∑

N∈Λnb

∂N nb
N (X)

∂Xm
∆dlN + ∑

I∈Λb

∂N b
I (X)

∂Xm
∆glI

)
dΩ

= ∑
M∈Λnb

diM

(∫
ΩX

N nb
M (X)bi(x(X))J(X)dΩ+

∫
Γ

ht
i

X

N nb
M (X)h0

i (X)dΓ−
∫

ΩX

∂N nb
M

∂X j
(X)FikSk jdΩ

)

Since the variations are arbitrary functions, the previous equation should hold for any

diM therefore
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∑
N∈Λnb

∫
ΩX

∂N nb
M

∂X j
(X)(Di jlm +Ti jlm)

∂N nb
N (X)

∂Xm
dΩ∆dlN = (3.44)∫

ΩX

N nb
M (X)bi(x(X))J(X)dΩ+

∫
Γ

ht
i

X

N nb
M (X)h0

i (X)dΓ−∫
ΩX

∂N nb
M

∂X j
(X)FikSk jdΩ− ∑

I∈Λb

∫
ΩX

∂N nb
M

∂X j
(X)(Di jlm +Ti jlm)

∂N b
I (X)

∂Xm
dΩ∆glI

for i = 1...nsd;M ∈ Λnb.

This is a linear system of equations in ∆dlN . The system is converted in a matrix form

as follows

K =



KInb
1 Inb

1
· · · KInb

1 N · · · KInb
1 Inb

Nnb
... . . . ... . . . ...

KMInb
1
· · · KMN · · · KMInb

Nnb
... . . . ... . . . ...

KInb
Nnb

Inb
1

. . . KInb
Nnb

N . . . KInb
Nnb

Inb
Nnb


KMN = KH

MN +KG
MN ; (3.45)

KMN ,KH
MN ,KG

MN ∈ Rnsd×nsd ;M,N ∈ Λnb (3.46)

(KH
MN)il =

∫
ΩX

∂N nb
M

∂X j
(X)Di jlm

∂N nb
N (X)

∂Xm
dΩ (3.47)

(KG
MN)il =

∫
ΩX

∂N nb
M

∂XM
dΩ (3.48)

(KG
MN)il =

∫
ΩX

∂N nb
M

∂X j
(X)Ti jlm

∂N nb
N

∂Xm
dΩ (3.49)

using a matrix notation the previous equations become
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KG
MN =

∫
ΩX

(BF
M)T T̃ BF

NdΩ (3.50)

T̃ =


(T1 j1m) j,m=1...3 (T1 j2m) j,m=1...3 (T1 j3m) j,m=1...3

(T2 j1m) j,m=1...3 (T2 j2m) j,m...3 (T2 j3m) j,m=1...3

(T3 j1m) j,m=1...3 (T3 j2m) j,m=1...3 (T3 j3m) j,m=1...3

 (3.51)

BF
K =


∂N nb

k
∂X1

∂N nb
K

∂X2

∂N nb
K

∂X3
0 0 0 0 0 0

0 0 0 ∂N nb
K

∂X1

∂N nb
K

∂X2

∂N nb
K

∂X3
0 0 0

0 0 0 0 0 0 ∂N nb
K

∂X1
∂N nb

K
∂X2

∂N nb
K

∂X3

 (3.52)

KH
MN = I3×3

∫
ΩX

∂N nb
M

∂X j
(X)Sm j(X)

∂N nb
N

∂Xm
dΩ (3.53)

K∆d = ∆f (3.54)

where
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∆d = (∆dInb
1

...∆dM...∆dInb
Nnb

)T (3.55)

∆f = (∆fInb
1

...∆fM...∆fInb
Nnb

)T ;∆fM ∈ Rnsd×1 (3.56)

∆ fiM =
∫

ΩX

N nb
M (X)bi(x(X))J(X)dΩ+ (3.57)∫

Γ
ht
i

X

N nb
M (X)h0

i (X)dΓ−
∫

ΩX

∂N nb
M

∂X j
(X)Fik(X)Sk j(X)dΩ−

∑
I∈Λb

∫
ΩX

∂N nb
M

∂X j
(X)(Di jlm(X)+Ti jlm(X))

∂N b
I (X)

∂Xm
dΩ∆glI(X); i = 1 . . .nsd

3.1.5 Curved Needle Interaction

Minimizing deformations due to the contact between the needle and the tissues is an im-

portant criterion for a good stitching. Deformations do arise during piercing, but they can

be limited if the tangent to the tip of the needle is aligned with the normal to the tissue at

the entry point (Nageotte et al., 2009).

Usually, the suturing needles are rigid and have the shape of an arc-circle. The needle

trajectory is described by a sequence of points ΓN = {qi, i = 1 . . .NPN} defined in the un-

deformed body coordinates. As the needle is pushed into the tissue, it interacts with it

through friction force and cutting force. This is modeled as fundamental boundary; the

needle-tissue friction and cutting forces are applied through this boundary. In addition, the

boundary motion has to be constrained to the needle trajectory. In other words, the material

has to be constrained such that it doesn’t move “across” the needle.

Assuming that ΓN is the needle trajectory within the tissue, for each point on this tra-

jectory the needle applies a force
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F(X) = FN(X)∗a0(X) (3.58)

where FN(X) is the magnitude of cutting or friction force applied by the needle at

point X; a0(X) is the tangent to the needle direction at point X. In addition the following

constraint equation has to be satisfied

|u(X)T ai(X)|= 0

(3.59)

where ais are orthogonal to a0; a1 points towards the needle center and a2 = a0× a1

(a1 and a2 are orthogonal on a0). These conditions are inserted to the variational equation

using Lagrange multipliers. The new variational form becomes

∫
ΩX

δui, jFikSk jdΩ−
∫

ΩX

δui(X),bi(x(X))J(X)dΩ− (3.60)∫
Γ

hi
X

δui(X)h0
i (X)dΓ−

∫
ΓN

δui(X)(FN(X)∗a0(X))idΓN

−
nSD−1

∑
k=1

∫
ΓN

δR j(X)ak(X) ju j(X)dΓN

−
nSD−1

∑
k=1

∫
ΓN

δui(X)ak(X)iR j(X)dΓN = 0

The function R(X) is a Lagrange multiplier; it represents the reaction between the

tissue and the needle in the directions orthogonal to the needle. Similarly with the RKPM

discretization of the deformable, it will be assumed that the Lagrange multiplier functions
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are a linear combination of some shape functions.

Ri(X) =
NPN

∑
J=1

NJ(X)Ri (3.61)

δRi(X) =
NPN

∑
J=1

NJ(X)δRi

Using Equations 3.60, 3.61 and assuming that the variational equation must hold for

any set variations, the following incremental equation is obtained

 K(d) G(d)

GT (d) 0


 ∆d

r

=

 ∆f+ fNeedle

0

 (3.62)

where K(d) is provided by equation 3.45, ∆f is provided by equation 3.56, the load due

to the friction and cutting forces is

fNeedle =
(

fNeedle
Inb
1

T
...fNeedle

M
T
...fNeedle

Inb
Nnb

T
)T

; fNeedle
M ∈ Rnsd×1 (3.63)

fNeedle
M =

∫
ΓN

NM(X)FN(X)a0(X)dΓN (3.64)

and the constraints are
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G =



GInb
1 1 · · · GInb

1 J · · · GInb
1 NPN

... . . . ... . . . ...

GI1 · · · GIJ · · · GINPN

... . . . ... . . . ...

GInb
Nnb

1 · · · GInb
Nnb

J · · · GInb
Nnb

NPN


(3.65)

GIJ =−
∫

ΓN

ΨJ(X)NI(X)
(

a1(X) · · · ansd−1(X)

)
dΓN

where nsd is the number of space dimensions, in this work it is 2. The circular needle

is inserted through a rotation around its center axis; therefore, the problem is well approxi-

mated by a 2D model. Equations 3.62 to 3.65 provides means to implement an incremental

solver for needle insertion simulation. This solver uses the nonlinear model of the tissue

together with the model of the needle-tissue interaction in an iterative way. The system

3.62 is solved using a preconditioned minimum residual (MINRES) method.

The general needle insertion algorithm is presented in Algorithm 1.

The needle is rotated inside the tissue by applying an incremental torque and enforcing

the needle trajectory. The applied force on the needle is first distributed as the friction

force along the needle; the friction force per unit length is constant for a given material and

needle. The remaining quantity is then assigned to the first segment of the needle (needle

tip) as cutting force. If the cutting force is larger than a threshold assigned to the material

in the neighborhood of the tip, a new point is added to the needle points vector ΓN .

Adding a new point to the needle trajectory has a two-fold effect. Firstly, it will re-

distribute the force applied on the needle over a greater length; secondly it will add more

constraints to the system. If the deformable model is planar, this corresponds to adding one
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Algorithm 1 General Needle Insertion Algorithm
Initialize particles data
d← 0
Choose insertion point and insertion step
Initialize Needle Points Vector ΓN
Initialize insertion force to 0 fins← 0
Initialize insertion force increment finc
while tip of the needle is inside the body do

fins← fins + finc
repeat

Distribute applied force over the needle segments
Find new displacements using equation 3.62
Update deformations, strains, and stresses
if (cutting force) > (threshold) then

add one more point to the needle points vector
end if

until no new point is added
end while

more column to the G matrix.

Two different approaches are proposed in this work to find the next tip position in

undeformed body coordinates. The first approach is suitable for small deformations but in

the case of large deformation, it does not work well and instead, an optimization method is

applied to find the new tip position.

Small deformations

In the case of small deformations we propose a method based on geometry and inverse of

deformation gradient to find next tip position in undeformed body coordinate. The algo-

rithm is described below.

If the needle advances a constant angle of θ in each step, the direction of the tangent

to the tip of the needle after n steps is tn = (cos(nθ),−sin(nθ))T in the world coordinates.

38



M.A.Sc. Thesis - Faezeh Heydari Khabbaz McMaster - Biomedical Engineering

The position of the current tip in undeformed is Xn; the deformed position is xn = Xn +

u(Xn). We can compute next tip position in deformed configuration xn+1 using simple

geometrical computation. Figure 3.1 shows the schematic configuration of the current and

next tip position.

The next tip position in undeformed coordinate Xn+1 is calculated using deformation

gradient F .

∆nB = F−1.tn (3.66)

Xn+1 = Xn +∆nB (3.67)

where tn = xn+1−xn is the vector shown in figure 3.1 and Xn is the current tip position in

undeformed coordinate.

In the case of large deformations, the above algorithm doesn’t perform well. Using the

inverse of deformation gradient for global mapping between coordinate systems is not a

good approximation for large deformations since F provides localized information about

the deformation at the tip of the needle. Hence, we propose to use a different algorithm

based on optimization of some conditions to find the real position of the tip of the needle

which described in the next section.

Large deformations

The new tip point (Xtn) has to satisfy two constraints, the distance to the needle center

(O) equals the needle radius (R) and the distance to the old needle tip (Xtn−1) equals the

insertion step (IS). If we assume that the needle advances a constant angle of θ in each step

of its advancement in to the tissue, the insertion step is IS = R×θ . The new tip position is
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Figure 3.1: Needle tip positions.

computed by minimizing the following cost function

C (Xtn) = (‖Xtn +u(Xtn)−O‖−R)2 + (3.68)

(‖Xtn−Xtn−1‖− IS)2 (3.69)

The cost function C is minimized using a Levenberg-Marquardt algorithm. The starting

point for the optimization is provided by

X̃tn = Xtn−1 +(cos(nθ)− sin(nθ))T ∗ IS; (3.70)
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This computational model was used for path planning in robotic assisted stitching.

3.1.6 Preconditioning

Minimum residual (MINERS) algorithm is used to solve the equation 3.62. This method

needs a pre-conditioner to converge in a small number of iterations. A good pre-conditioner

for the system has the following form (Rusten and Winther, 1992)

P =

 A 0

0 B

 ;P−1 =

 A−1 0

0 B−1

 ; (3.71)

where A is a pre-conditioner for K and B is a pre-conditioner for the matrix GT KG.

We start with a good pre-conditioner for matrix K and as the needle penetrates into

the tissue and K becomes larger, the pre-conditioner is also augmented. An approximate

inverse pre-conditioner (Saad, 2003) is used for the implementation.

In each iteration the MINERS algorithm computes x = PInvy where

PInv =

 KInv 0

0 (GT KG)−1

 ; (3.72)

where KInv is a pseudo-inverse of the K matrix at zero deformation. In each iteration

only (GT KG)−1 has to be recomputed as matrix G is changed when more constraints are

added to the system.

During the simulation, when more points are added to the needle trajectory, new con-

straints are added as new columns to the G matrix. Let’s assume that the needle has k points

and therefore k constraints, GT
k KGk = Qk then, if one more point is added G becomes
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Gk+1 =
(

Gk g

)
(3.73)

Qk+1 = (GT
k+1KGk+1) =

 Qk v

vT α


where Gk represents the matrix G when the needle has k points; v = GT

k Kg and α =

gT Kg. It is possible to compute Q−1
k+1 from Q−1

k , v, and α (Golub and Loan, 1996).

Q−1
k+1 =

 Q−1
k +B w

wT β

 (3.74)

where β = 1
α−vT Q−1

k v
, w = −Q−1

k vβ , and B = −Q−1
k vwT . The formulas are valid only

of the 2D case when α and β are scalars.

As more points are added to the needle trajectory and therefore more constraints are

added to the system, equation 3.74 can be used to update the pre-conditioner for solving

the system.
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Chapter 4

Path Planning method

Modeling the deformation response is an integral part of accurate robotic manipulation of

deformable objects. This is exemplified by recent developments in surgical planning ap-

plications, which require reliable methods to perform functions such as surgical incisions

or controlled needle insertions. Achieving physically realistic replicas of soft tissues or

objects, for such applications is a difficult and computationally intensive task. As a re-

sult, accurate path planning for automatic surgical procedures requires models that closely

mimic the characteristics of the operating environment.

This work is a step toward a robotic assisted suturing system which has potential bene-

fits over conventional methods of performing the task by the surgeons. In order to achieve

high positional accuracy, the method takes the tissue deformation into consideration. The

key feature of the proposed system is that it performs path planning of the needle trajec-

tory based on the non-linear model of the interaction between tissue and curved needle.

The method doesn’t use any feedback of the current deformation of the tissue. It makes

the method simpler to implement in a real robotic suturing system as this is an open loop

approach.
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This chapter outlines a model based stitching planning method. The deformable object

model is based on nonlinear elasticity described in chapter 3.

4.1 Curve Needle Path Planning

Given desirable initial and final positions, the task is to find a feasible path between these

two points. As the needle advances through the tissue, under-bites may happen due to de-

formations. Therefore, the motion of the needle should be adjusted such that it compensates

for the deformation of the tissue.

The motion of the needle is composed of a rotation around the needle center which pro-

vides the insertion motion and a translation of the needle center which changes the global

needle position. We assumed that the tip of the needle is orthogonal to the tissue at the en-

try point; exit and entry points should be on the same circle. Therefore, the needle position

should be adjusted continuously during stitching such that the tip reaches the desired exit

site. The idea is that we try to maintain constant the relative position of the needle center

with respect to the exit point.

Each time a new point is added, the center of the needle is displaced with an amount

equal with the exit point displacement, hence the distance between new deformed exit point

and center remains constant. As the Algorithm tries to keep the exit point on the curve of

the needle, we expect to have no or very small error when the needle reaches to the exit

site. The algorithm described bellow runs each time a new needle point is added to the

trajectory.

The displacement of the needle center each time it is adjusted may result in additional

displacement of the exit point. If ∆Otn+1 = O(tn+1)−O(tn) shows the amount of displace-

ment of the center of the needle at time tn+1, the displacement induced at the exit point by
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Algorithm 2 Curved Needle Path Planning Algorithm
if new needle point is added then

Find the displacement of the desired exit point u(Xexit) at time tn
Set O(tn+1) = O(t0)+u(Xexit)

end if

that displacement will be

∆utn+1
i (Xexit) = fi(∆Otn+1) (4.1)

i = 1, ..,nsd

Where f shows the function relating the displacement induced at the exit point by the

displacement of the needle center. This function mainly depends on the material properties.

The necessary condition for the algorithm to be converged is

‖∆utn+1(Xexit)‖< ‖∆Otn+1‖. (4.2)

Therefore if the displacement induced at the exit point is smaller that the displacement

of the needle center, after some iterations it will be compensated for and the algorithm will

be converged.

The trajectory of the center of the needle (O(tn)), provides the necessary information

for the motion of the robot to perform a planned stitching task. simulation results con-

firm the validity of the path planning algorithm. Next section shows the simulation and

experimental results for different needle insertion tasks.
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Chapter 5

Results

Several simulations and experiments were conducted for modeling and path planning of

the curved needle during stitching. In this chapter, the simulation and experimental results

are presented.

5.1 Simulation Results

5.1.1 Random Insertion Simulations Using first modeling approach

The first group of simulations comprised insertions from different insertion points without

planning to assess the modeling method and the trajectory of the needle inside the body.

The friction force set to be 0.02N/mm and the body was assumed to be a 10cm× 10cm

square that has a fixed boundary at x = 10cm in these experiments. As it was described

in the modeling method, the applied force is first distributed as a friction force along the

needle; the remaining quantity is then assigned to the first segment of the needle (needle

tip). If the force applied by the needle tip segment is larger than a threshold of 0.03N in
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simulations, one more point is added to the needle points vector. Material parameters were

set as λ = 9.263 and µ = 1.029 for these simulations.

The radius of the needle in this group of simulations was 2cm and with each step it

rotates 0.1rad into the tissue. In this configuration, the deformation was small and the

inverse gradient approach was applied for the simulation of the curved needle trajectory

inside the tissue.

The simulations continue until the needle tip exits the body. Figure 5.1 - 5.8 shows

different experiments in which a curved needle goes through the tissue. The condition

numbers for the matrix K (blue line) and the preconditioned matrix of the systems (red-

dashed line) are also computed for each time a needle point is added to the trajectory and

are shown in these figures. Note that K refers to the matrix of the system with constraints.

It is the left hand side matrix in equation 3.62. It can be seen that preconditioned matrices

(red-dashed plot) have smaller condition numbers compared to the K matrices ones (blue

line); however as the number of constraints became large, the difference between two plots

becomes small. It implies that the preconditioner does not work well as the number of

constraints increases.

The simulations were performed for following insertion points (o,3), (0,2.5), (0,2)

and (0,1.8) cm.

Using the same simulation parameters, next group of experiments were performed for

the path planning of the needle through the tissue. Figure 5.9 and Figure 5.10 show two in-

sertion experiments from different sides of the tissue. As the fixed boundary is on x = 10cm,

we expect more deformations for the second experiment. Figure 5.9a shows a needle inser-

tion simulation without path planning and Figure 5.9b shows a similar insertion simulation

with path planning. The final position of the desired exit point in these experiments is
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Figure 5.1: Curve needle insertion, insertion point (o,3)cm.

Figure 5.2: Condition Numbers of the system for the trajectory, insertion point (o,3)cm.

Figure 5.3: Curve needle insertion, insertion point (0,2.5)cm.
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Figure 5.4: Condition Numbers of the system for the trajectory, insertion point (0,2.5)cm.

Figure 5.5: Curve needle insertion, insertion point (0,2)cm.

Figure 5.6: Condition Numbers of the system for the trajectory, insertion point (0,2)cm.
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Figure 5.7: Curve needle insertion, insertion point (0,1.8)cm.

Figure 5.8: Condition Numbers of the system for the trajectory, insertion point (0,1.8)cm.
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(a) (b)

Figure 5.9: (a) Curve needle insertion without path planning, (b) with path planning.

(1.785cm,−0.213cm), with path planning the needle reaches to (1.760cm,−0.215cm) but

without path planning it goes to (1.437cm,−0.356cm).

Figure 5.10a shows second needle insertion simulation performed without path plan-

ning and Figure 5.10b shows a similar insertion performed with path planning. The final

position of the desired exit point in these experiments is (−0.170cm,8.093cm), with path

planning the needle reaches to (−0.194cm,8.122cm) but without path planning it goes to

(−0.352cm,8.509cm).

These results show that in this range of small deformations, the path planning algorithm

can guide the needle to the desired exit point and prevents under-bites due to deformation

of the tissue. However, as the deformation of the tissue becomes larger, the inverse gradient

approach for computing the next needle tip position can not appropriately find the trajectory

of the needle inside the tissue and there were some jumps in the trajectory. In these cases

we use our second approach based on optimization methods. Next section shows the results

of simulations and experiments conducted based on the optimization approach.
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(a) (b)

Figure 5.10: (a) Curve needle insertion without path planning, (b) with path planning.

5.2 Parameters Identification for Experiments

The proposed path planning method was tested using a surgical ETHICON needle of type

SH 1/2 Circle with the radius of 8.88mm attached to a robotic manipulator. The object

samples were made out of super soft plastic by M&F Manufacturing. The object mechani-

cal properties and needle-material interface properties were identified through a calibration

procedure.

The properties of the hyper-elastic plastic materials were determined by experimentally

deforming the object with a robot manipulator. Both the deformation of the object was

recorded as well as the interacting forces applied by the manipulator. Simulations were

then performed while tuning object parameters until the simulated deformation matched

the experimental deformation. This algorithm provides the following material parameters

values λ = 0.189151 and µ = 0.147688.

The friction between the needle and tissue was also identified using an experimental
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procedure comprising two steps. First, the needle was rotated in the air to record the force

sensor background noise. Second, the needle was inserted into the object while recording

the forces and torques applied to the robot end-effector. Figure 5.11a and Figure 5.11b show

the force recorded in those experiments. For the air experiment a linear line is fitted to the

recorded force to get the model of the noise force in the system. The difference between

these two recordings (Figure 5.11c) gives the force required for inserting the needle into

the body and the slope of the linear line fitted to this recording gives the friction force.

Six sets of similar experiments performed from different insertion points to find the

friction force. The friction force was identified as 0.0602N/mm and the cutting force was

identified as 0.7N.

In the path planning experiments we considered homogeneous objects with the follow-

ing dimensions 10cm×10cm, 10cm×5cm, 10cm×4cm, 10cm×3cm. For each dimension

a needle insertion simulation was performed in order to compute the desired needle center

path for robotic implementation.

5.2.1 Simulation Setup - Optimization Approach

The parameters of the simulations are set according to the measured experimental parame-

ters. In each step the needle rotates 0.08rad into the tissue. Figure 5.12- 5.15 shows sim-

ulations with the object size of 10cm× 10cm, 5cm× 10cm, 4cm× 10cm and 3cm× 10cm

without and with path planning. The cross in these figures shows the desired exit point. In

all of these simulations the object has a fixed boundary at x = 10cm.

Table 5.1 shows results for the simulations. For each simulation the error at the exit

site is given before and after path planning. As the object becomes smaller, it deforms

more and the error at the exit site becomes larger; however path planning algorithm could
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(a)

(b)

(c)

Figure 5.11: (a) force recorded for the air test , (b) force recorded for the body test, (c)
difference between (a) and (b).
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(a) (b)

(c)

Figure 5.12: (a) Curved needle insertion simulation without path planning for 10cm×10cm
object , (b) with path planning (c) experiment.
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(a) (b)

(c)

Figure 5.13: (a) Insertion without path planning for 5cm× 10cm object , (b) with path
planning (c) experiment.
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(a) (b)

(c)

Figure 5.14: (a) Insertion without path planning for 4cm× 10cm object , (b) with path
planning (c) experiment.

(a) (b)

Figure 5.15: (a) Curved needle insertion without path planning for 3cm×10cm object , (b)
with path planning.
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Table 5.1: Simulation Results

Object size error before planning error after planning
10cm×10cm 1.89mm 0.01mm
5cm×10cm 3mm 0.05mm
4cm×10cm 3.58mm 0.02mm
3cm×10cm 4.35mm 0.01mm

effectively compensate the deformation of the object and decreased the error to close to

zero. The computed trajectories were employed to program the robotic manipulator during

the experiments.

5.2.2 Experimental setup

Figure 5.16 shows the experimental setup with deformable object and robot manipulator.

The testing platform comprises several components. The needle is held by a grasper which

is attached to the robotic arm. To prevent friction between the object and the base plate,

the object is situated on top of many small balls that allow the object to move freely in the

plane. To simulate a restricted boundary, one entire side of the object was clamped down

onto the base plate using screws and a piece of sheet metal to distribute the force.

Figure 5.17 depicts the tool attached to the robotic arm deforming the physical object

and figure 5.18 shows the deformed object as a result of tool manipulation.

The object dimensions in the experiments were the same as the simulation ones. First

experiment was with the 10cm× 10cm object. Then this was cut to 5cm× 10cm, 4cm×

10cm and 3cm×10cm sizes. For each object, the unplanned and planned experiments were

performed at least 3 times to ensure the consistency of the results. The results were almost

the same in repeated experiments for each object size in our range of measurement.
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Table 5.2: Experiment Results

Object size unplanned error planned error reduction
10cm×10cm 0.80mm 0.35mm 56%
5cm×10cm 1.47mm 0.43mm 71%
4cm×10cm 2.69mm 1.18mm 56%
3cm×10cm 5.20mm 2.47mm 52%

At the beginning of each experiment, the robot is positioned such that the tip of the

needle is at the desired entry point. In the case of unplanned experiments, the robot manip-

ulator only rotates the needle into the tissue and follows a circular trajectory. In the case of

planned insertions, while the needle is rotated its center is moved according to the planned

trajectory. This ensures that the tip of the needle is moved toward the desired exit point.

Figure 5.12c- 5.14c shows the experiments for the 10cm× 10cm, 5cm× 10cm, and

4cm×10cm objects respectively. Since the differences between unplanned and planned in-

sertions in these experiments are about a millimeter and can not clearly depicted in pictures,

just the unplanned ones are shown. Figure 5.19 shows the experiment for the 3cm×10cm

object before and after planning. Table 5.2 shows error at the exit site for these experiments

before and after planning and percentage of the error reduction for each object size.

These results show that the path planning algorithm can guide the needle to the desired

exit point and prevents under-bites due to deformation of the tissue.
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Figure 5.16: experimental setup.

Figure 5.17: the tool attached to the robotic arm.
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Figure 5.18: the deformed object.

(a) (b)

Figure 5.19: (a) Experiment without path planning for 3cm× 10cm object,(b) with path
planning .
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Suturing is a fundamental surgical task employed whenever the tissue has to be approxi-

mated. This task comprises several distinct steps, one of them is the stitching. Reaching

the exit point is difficult in the stitching task because it must be accomplished without di-

rect visual feedback. The surgeon must often perform the stitching by trial and if the result

is unsatisfactory, the procedure is repeated which can lead to unnecessary tissue trauma.

Moreover, the stitching task is a time consuming procedure that is repeated multiple of

times during suturing.

The goal of this research was to develop a system that can perform automatic stitch-

ing. We proposed a path planning algorithm that generates the needle path by changing

the center of the needle during stitching such that the relative position between the needle

center and the exit point remains constant. The proposed method for path planning uses a

nonlinear model for the interaction between tissue and circular needle. This deformable ob-

ject model was developed and implemented using the Reproducing Kernel Particle Method
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(Chen et al., 1996).

The deformable object model was used to plan the trajectory of the needle during stitch-

ing. The path planning algorithm compensates the deformation of the object and leads the

needle to the desired exit point. This algorithm calculates the displacement of the desired

exit point by simulating the object reaction to the curved-needle insertion and finds the

desired needle center trajectory. This trajectory is recorded and transferred to the physical

system. The robot follows the given trajectory and inserts the needle toward the desired

exit point. The work presented here is a first modeling work which takes into account the

global deformation of thick tissues during stitching.

Several simulations and experiments were conducted for modeling and path planning

of the curved needle during stitching. The results from the physical system showed a

successful planned curved-needle insertions and indicate that the proposed method reduces

the error at the exit site.

The method doesn’t use real time deformation feedback during stitching; it does not

require advanced sensors to record the position of the tissue and this makes it simple to

implement. However, this open loop approach is sensitive to model parameters and the

position error which was detected is believed to have resulted from object model parameter

matching.

6.2 Future Work

The future of this work can be branched into several areas. More complicated object models

should be implemented to include holes and non-homogeneities. This may require more

complex maneuvering of the robotic manipulator.

Another future research topic is the modeling of the interaction between thread and the
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tissue during suturing. The same tissue model can be used for that. The thread follows the

computed needle trajectory. An initial derivation of the equations that model this type of

interaction is presented in appendix A3.
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Appendix A

Appendix

A.1 Physical Object

The physical object was created using products purchased from: M-F Manufacturing Co.,

INC. P.O. Box 820442 Forth Worth, Texas 76182-0442 817-281-9488 4424 Mclean Road

A.2 Model Parameters Optimization

The properties of the hyper-elastic plastic materials were determined by experimentally

deforming the object with a robot manipulator. Both the deformation of the object was

recorded as well as the interacting forces applied by the manipulator. Simulations were

then performed while tuning object parameters until the simulated deformation matched the

experimental deformation. For these objects, the second Piola-Kirchhoff stress is defined

as

S(E) = λ [tr(E)]I +2µE (A.1)

65



M.A.Sc. Thesis - Faezeh Heydari Khabbaz McMaster - Biomedical Engineering

where E is the Lagrangian Green strain and λ and µ are the first and second Lame

parameters. This is derived from the partial derivative of the strain-energy density function

W (E) =
λ

2
[tr(E)]2 + µtr(E2) (A.2)

The parameters identification comprised two steps; in the first step a grid search was

used to identify a set of parameters that matches approximately the object. Then, an opti-

mization routine was started from that point.

The cost function that is used for identifying λ and µ is defined based on the difference

between the recorded position of the control points and the positions of them in simulation.

This cost function should be minimized such that the best values for λ and µ that match

the deformation of the simulated object and the deformation recorded from the experiment

are found. Therefore this cost function is defined as

f (λ ,µ) =
n

∑
i=1
‖pi−qi‖2

2 (A.3)

where pis are the positions of the control points on the object, qis are the positions of

the control points in simulation, and n is the number of control points.

Using the above mentioned algorithm for identifying the objects parameters leads to

values of 0.189151 and 0.147688 for µ and λ , respectively. The mean error of the simula-

tion was 0.80mm with standard deviation of 0.46mm.

A.3 Thread-tissue interaction

Here, we try to model the interaction between thread and the tissue. Throughout the thesis

we found the trajectory of the needle inside the body. The thread goes through the same
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trajectory. We assume that two known forces are applied at two ends of the thread and also

the thread is assumed to be more flexible than the tissue. We have sliding constraints along

the thread.

For simulating the behavior of the thread, the equations of forces are written in each

trajectory point position as bellow

fM + fM−1 + f e
M = 0; fM−1 + fM−2 + f e

M−1 = 0; ...; f1 + f0 + f e
1 = 0; (A.4)

Where fM and f0 are known and f e
i can be found by the equation

f e
i = τni (A.5)

that comes from the tissue model with ni the outward surface normal in the deformed

configuration and τ is the Cauchy stress. The stress is computed from the constitutive

equation that connects the stress to the current strain.

Now, we should solve the incremental equations with respect to these new constraints.

The equation of the system was

K(d)∆d = ∆ f

and the equations of the new constraints have the form of

fi + fi−1 + f e
i = 0; i = 1, ...,M.
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We define the equations of the constraints as below

Q(d, fi) =



f0

0

0

.

.

.

fM


and therefore

Q1(d, f1 = τ(x1(d))n1 + f1 = f0; (A.6)

τ(x2(d))n2− f1 + f2 = 0; (A.7)

τ(x3(d))n3− f2 + f3 = 0; (A.8)

. (A.9)

. (A.10)

. (A.11)

τ(xM(d))nM− fM−1 =− fM. (A.12)

(A.13)

Using tailor expansion for τ , we can get

τ(xi(d))ni = τ(xi(d0))ni +
∂ (τ(xi(d))ni)

∂d
|d0∆d
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Therefore, these two equations are the equations of the system that should be solved

K(d)∆d = ∆ f (d0); (A.14)

∂ (τ(xi(d))ni)
∂d

|d0∆d + fi− fi−1 =−τ(xi(d0))ni; (A.15)

(A.16)

For solving these equations, we define F and gi as shown bellow using Lagrange mul-

tipliers.

F = ‖K(d0)∆d−∆ f (d0)‖2
2; (A.17)

gi(∆d, fi) =
∂ (τ(xi(d))ni)

∂d
|d0∆d + fi− fi−1 + τ(xi(d0)) = 0; (A.18)

(A.19)

which f0 and fM are known forces at two sides of the thread.

The equations derived above can be extended to the case of a general problem with n

variables and m equality constraints:

MinimizeF(X)

subject to

g j(X) = 0, j = 1,2, ...,m.

The Lagrange function, l, in this case is defined by introducing one Lagrange multiplier

λ j for each constraint g j(X) as
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L(x1,x2, ...,xn,λ1,λ2, ...,λm) = f (X)+λ1g1(X)+λ2g2(X)+ ...+λmgm(X)

By treating L as a function of the n + m unknowns, x1,x2, ...,xn,λ1,λ2, ...,λm, the nec-

essary conditions for the extremum of L, are given by

∂L
∂xi

+ τλ j
∂g j

∂xi
= 0, i = 1,2, ...,n

∂L
∂λ j

= g j(X) = 0, j = 1,2, ..,m

Above equations represent n+m equations in terms of the n+m unknowns, xi and λ j.

In our case, equations become

∂F
∂∆dk

+ τλ j
∂g j

∂∆dk
= 0; (A.20)

τλ j
∂g j

∂ fk
= 0; (A.21)

gi(∆d, fi) = 0; (A.22)

(A.23)

Note that we simulate in two dimensional space, so ∆dεR2.

Now, the function F is extended and its derivative is computed with respect to ∆d
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F = ‖K(d0)



∆d1

∆d2

.

.

.

∆dN


−∆ f (d0)‖2

2;

(K∆d−∆ f )T (K∆d−∆ f ) = ∆dT KT K∆d−2∆dT KT
∆ f +∆ f T

∆
f ;

It is known that K = KT , if the derivative is computed for ∆d we will have

∂F
∂∆d1

= 2(K∆d−∆ f )T K
∂∆d
∂∆d1

= 2(K∆d−∆ f )T K



I

0

0

.

.

.

0



=
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2(∆dT KT K−∆ f T K)



I

0

0

.

.

.

0



= 2∆dT K2



I

0

0

.

.

.

0



−2∆ f T K



I

0

0

.

.

.

0



=

2∆dT



p11

p21

p31

.

.

.

pN1



−2∆ f T



k11

k21

k31

.

.

.

kN1


Where I is the 2× 2 identity matrix and P is K2. The Lagrange multiplier equation

becomes

2
(

p11 p21 p31...

)
∆d−2

(
k11k21k31...

)
∆ f +∑λ j

∂g j

∂∆d1
= 0;
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Using these equations, the general problem to be solved is


P0Q

00θ

QT θ T 0




∆d

f

λ

=



K∆ f

0

0

.

.

.

F


Where Q is



∂τ(x1(d)n1(d))
∂d1

|d0
∂τ(x2(d)n2(d))

∂d1
|d0...

∂τ(xM(d)nM(d))
∂d1

|d0

∂τ(x1(d)n1(d))
∂d2

|d0
∂τ(x2(d)n2(d))

∂d2
|d0...

∂τ(x3(d)n3(d))
∂d1

|d0

.

.

.

∂τ(x1(d)n1(d))
∂dN

|d0
∂τ(x2(d)n2(d))

∂dN
|d0...

∂τ(xM(d)nM(d))
∂dN

|d0


And θ is
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

I− I00...0

0I− I0...0

00I− I....0

.

.

.

00...0I− I


This block matrix is M−1×M. f is



f1

f2

.

.

.

fM−1


and F is



f0− τ(x1(d)n1(d))

−τ(x2(d)n2(d))

−τ(x3(d)n3(d))

.

.

.

− fM− τ(xM(d)nM(d))



.
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For computing Q we should compute ∂τ

∂di j
. For example for i j equal to 11 it becomes

∂τi j

∂d11
=

∂ ( 1
J(d)Fim(d)Smn(d)Fjn(d))

∂d11
=

∂ ( 1
J(d))

∂d11
[Fim(d)Smn(d)Fjn(d)]+

1
J(d)

∂ [Fim(d)Smn(d)Fjn(d)]
∂d11

=
∂ ( 1

J(d))

∂d11
[Fim(d)Smn(d)Fjn(d)]+

∂Fim(d)
∂d11

Smn(d)Fjn(d)+

Fim(d)
∂Smn(d)

∂d11
Fjn(d)+Fim(d)Smn(d)

∂Fjn(d)
∂d11

For computing the derivative of the deformation gradient, J, with respect to di j, the

stack matrix of F is used

Fs = F(s)
i j =



f11

f21

f12

f22


.

J = det(F) = f11 f22− f21 f12

∂J
∂di j

=
∂J

∂Fs
∂Fs

∂di j
= [ f22− f12− f21 f11]

∂F
∂di j

s

And
∂Fi j(d)

∂dIi
=

∂ ( ∂ui
∂X j

)

∂dIi

ui = ∑NI(X)dIi
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→ Fi j = ∑
∂NI(X)

∂X j
dIi

→
∂Fi j(d)

∂dIi
=

∂NI(X)
∂X j

And

Si j =
∂W
∂Ei j

∂Si j

∂dIi
=

∂Si j

∂Ei j

∂Ei j

∂dIi

Ei j = 1/2(FT
i j Fi j− I)

→
∂Ei j

∂dIi
= FT

i j
∂Fi j

∂dIi

∂Si j(d)
∂dIi

=
∂Si j

∂Ei j
Fi j

∂NI(X)
∂X j
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