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Abstract 

!

Molecular dynamics (MD) simulations performed on two-phase simulation cells 

were used to compute the Austenite (FCC) / Ferrite (BCC) boundary mobility in pure iron 

(Fe) over the temperature range of 600K - 1400K.  An embedded atom method 

interatomic potential was used to model Fe and the driving force for interface motion is 

the free energy difference between the two phases, which was computed as a function of 

temperature using a thermodynamic integration technique.  For low index FCC/BCC 

crystallographic orientations, no interface motion was observed. But for slight 

misorientations steps were introduced at the interphase and sufficient mobility was 

observed over MD time scales.  A new interphase mechanism was found that instead of 

the moving of structure disconnection by diffusion control, growing of misfit dislocations 

in each steps were observed (interphase control). The interphase velocity could reach 2 

m/s and the mobility at 1000K was approximately 0.001 mol-m/J-s.  In agreement with 

previous MD studies of grain boundary mobility, we found that the activation energy for 

the austenite-ferrite boundary mobility was much lower than the values found from 

previous experiments.   
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Chapter 1  

Introduction 

The kinetics of phase transformation in metallic alloys has been studied 

extensively, especially the transformations that are governed by the long-range diffusion 

of alloying element and interface mobility. It has long been a generally accepted 

assumption that diffusional phase transformations appear under local equilibrium at the 

migrating interface [1]. On the other hand, the massive transformation is participating at 

the initial moment (before the concentration gradient emerges) and it is accepted that its 

rate is controlled by the mobility of the interface.!Although a general insight into the 

kinetics of these phase transformations has been developed, observations of the actual 

atomic processes take place at the interface during the transformation are still very scarce. 

Since the speed of the interface movement is very fast, no experimental technique is 

capable of observing the atomic motion that taking place during this phenomenon. 

Therefore, there remains a largely unanswered question on the fundamental character of 

the austenite – ferrite transformation. This question is not only of scientific interest, but 

also of great practical importance for martensite formation in steel and in shape-memory 

alloys. At present, simulation by means of molecular dynamics (MD) seems to be one of 

the very few methods available to acquire information about the nature of the austenite – 

ferrite transformation. Since the transformation is very fast, the actual transformation time 

can be covered in an MD timescale (0.001ps ~ 1000ns). The growth kinetics will be 

outlined in Section 1.1 and the basic model of massive transformation will be discussed in 

Section 1.2.  Finally, the organization of this thesis is provided in Section 1.3.   
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1.1 Transformation kinetics  

In the literature, the growth kinetics of pro-eutectoid ferrite formation in Fe alloys 

is often modeled assuming thermodynamic equilibrium conditions at the !/"! interphase 

boundary, also known as the local-equilibrium assumption [2]. Therefore, the volume 

diffusion velocity of the impurity is rate limiting for the growth kinetics. The growth 

kinetics is then said to be diffusion controlled. The other extreme in modeling the " – !!

phase transformation is to assume an infinitely fast diffusion of impurity in austenite. In 

other words, the long-range diffusion effect is ignored in the "! phase. The growth is 

governed by the rate at which Austenite (FCC) iron transforms into Ferrite (BCC) iron, 

which is reflected in the intrinsic mobility of the interface. The growth kinetics is then 

called the interface controlled.!In reality, the force creased by the diffusion of the solute 

atoms and the migrating interfaces are always combined together. It thus will be difficult 

to estimate the reaction of the two forces individually. Therefore, the fundamental 

atomistic mechanisms and characters of the pure interface controlled transformation are 

poorly understood. In this thesis, the MD method is used to simulate the austenite to 

ferrite (" – !)!phase transformation for pure iron (Fe) to avoid the effect of long-range 

diffusion. Using this method, a detail image of the interfaces controlled transformation 

can be created. With all the information, one can gain a deeper understanding on the 

initial state of the " – !!phase transformation, before the solute concentration gradients 

occur in the "! phase. Future researches like martensitic transformation and diffusion 

control transformation can be conduced 

1.2 Interface mobility model 

 During the austenite – ferrite transformation, the transformation rate is controlled 

by the interface mobility, which is usually defined as the constant of proportionality in the 

rate equation: 



4&:!5;20"0!<3./-"=/1",-! ! %&'&()&!*!+&!(,-.!*!%)%/0123!

!

! :!

v = M ! "Gm                                                             (1) 

In Eq.1, v identifies the velocity of the interface, which is the average speed of the atoms 

when rearranging from Austenite (FCC) lattice to ferrite (BCC) lattice. !Gm is the net 

driving force per mole of the growing phase. It is obvious that the mobility of the 

interface M is related to these two factors. Therefore, the way to determine the interface’s 

velocity for a given driving force for calculating the mobility is the key point of this 

research. On the other hand, the driving force for the transformation is the free energy 

difference between the !!and!" phases. It is very important that the free energy difference 

has to be identified before starting any simulations. For this research, the embedded atom 

method has been used as the interatomic potential for pure Fe. Based on the method and 

theory discussed below, the interface’s mobility and free energy difference determined in 

the simulation should be a function of temperature. The activation energy for the mobility 

can be calculated from the results at different temperatures.  

1.3 Thesis organization!

! This thesis presents a new method to research the austenite to ferrite phase 

transformation of pure iron. The remainder of the thesis is organized as follows. Chapter 

2 gives a description of massive transformation; introduces molecular dynamics and the 

embedded atom method. In addition, the Nishiyama – Wasserman (NW) crystallographic 

relationship and the grain boundary defect disconnection will also be illustrated in 

Chapter 2. Chapter 3 provides a review of previous works concerning the Austenice to 

Ferrite transformation. Both experimental and simulation-based works will be discussed 

in detail in this chapter. Chapter 4 elaborates the parameters such as the selected potential 

energy, the interface relationship and boundary condition of the simulation system used in 

this research. Chapter 5 discusses the detailed method for tracking and calculating the 

interface velocity, mobility and activation energy. Chapter 6 focuses on analyzing the 

interface atomic mechanisms. Finally, the suggestions for further work and conclusion are 

given in Chapter 7 and Chapter 8 respectively. 
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Chapter 2 

General Theory 

!

The background knowledge and general theory, which are used in this research, 

will be discussed in this chapter. The iron Austenite to Ferrite transformation means the 

transformation from the FCC (!) phase to the BCC (!) phase (2.1). There are two 

modalities for this transformation: the martensitic transformation (2.1.1) and massive 

transformation (2.1.2). The objective of this research is to use computer simulation 

techniques to investigate the massive transformation process in pure iron, study its 

mechanism and identify the interface mobility and activation energy. Due to the 

difference of the lattices parameters, a steps structure is applied to connect the FCC and 

BCC phases and create both the interface dislocation (2.2.1) and disconnection (2.2.2). 

The closed pack interface relationship, named Nishiyama-Wasserman (NW) and 

Kurdjumow-Sachs (KS) relationship (2.3) are related to our interface orientation and used 

to connect the FCC and BCC phases. Chapter 2.4 will introduce the Molecular Dynamics 

(MD) method, which is selected to simulate the transformation process. Under the MD 

method, three ensembles:  microcanonical ensemble (NVE) (2.4.1), canonical (NVT) 

(2.4.2) and isothermal-isobaric ensemble (NPT) (2.4.3) are used to control the pressure, 

temperature, volume and the number of atoms in the structure. In this research, we use the 

Embedded atom method (EAM) (2.5) to identify the interatomic energy. After comparing 

several iron potentials (2.6), the Fe-Cu potential presented by Ackland et al. 1997 [15] is 

selected for our EAM method.!
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2.1 The iron FCC to BCC transformation 

There are at least four allotropic forms of iron, known as #, !, $, and %. % is a 

hexagonal close-packed (HCP) structure, which exists under high temperature and  high 

pressure condition. In this research, we will not be discussing this special phase of iron. 

At 1 atm pressure and up to a temperature of 1184 K pure iron has the body centered 

cubic (BCC) crystal structure also known as Ferrite (a). Between 1184 K and 1665 K, 

iron exists in the face centered cubic (FCC) structure, which is called Austenice  (!). 

From 1665 K to its melting point, again it has the BCC structure. During this project, the 

focus is on the transformation from metastable FCC to BCC at low temperature range 

(600 K – 1200 K). 

Two transformation mechanisms: massive and martensitic transformations can be 

studied with in the embedded atom method (EAM) molecular dynamics simulation time 

frame. Since the MD method can only simulate the atomic behaviors in the short time 

frame from 0.001 picoseconds up to several hundreds of nanoseconds, long-range 

diffusion is not feasible using MD method.!

2.1.1 Martensitic transformation 

The Martensitic transformation is a diffusion-less transformation, which always 

occurs in the quenching process for alloy. During the transformation, the movement of a 

single atom is less than one interatomic spacing. Therefore, during the transformation, the 

atoms have to move in a coordinated fashion. One of the difference between martensite 

and austenite is that martensite has a body-centered tetragonal (BCT) structure, whereas 

austenite has a face-centered cubic (FCC) structure. Besides, martensite has a lower 

density than austenite, so the martensitic transformation results in a relative change of 

volume [3]. Because of the incongruent volume change from BCT to FCC, it creates the 

shear strain, which has a magnitude of about 0.26 and determines the shape of the plates 

of martensite. The volume change also explains why the martensitic transformation will 
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create a shear of the atom structure. In the transformation, the interface velocity can reach 

the speed of sound in the solid. The rapid transformation speed is independent of thermal 

activation. Since the high transformation speeds make experimental observations 

difficult, the exact mechanism of this transformation is still not completely understood. 

Some of the previous researches will be discussed in Chapter 3, but the martensitic 

transformation is not the focus area of this study. 

2.1.2 Massive transformation 

 The Massive transformation is a composition-invariant nucleation-and-growth 

formation of a solid phase from another solid phase [1]. In this research, the atomic 

structure during the transformation for pure iron is studied. In iron, BCC grains tend to 

nucleate on grain boundaries. This grain growth during transformation requires a larger 

driving force: the Gibbs free energy difference between the FCC and BCC phases. The 

growth speed, or the interface velocity is completely determined by the free energy 

difference and the interface mobility. The interface mobility depends on how easily the 

atoms can cross the interphase boundary. In order to cross the interphase boundary, an 

atom has to gain enough energy by thermal fluctuations to overcome the activation 

energy Q associated with detaching from the FCC lattice and attaching to the BCC lattice. 

If the interface velocity v is assumed to be proportional to the free energy difference !G 

[1], it can be written as 

 
  

! 

! 
v =
! 

M 0 exp "
Q

RT

# 

$ 
% 

& 

' 
( )G                                                    (2) 

Where M0 is the pre-exponential factor of mobility, R is the gas constant and T is the 

temperature. According to J.W. Christian [38], the value of the pre-exponential facter M0 

can also be written in from of  

             

! 

! 
M 

0
=

k
! 
" 

hR
                                                             (3) 
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In which, h and k are the Planck and Boltzmann constant respectively, # is the local 

displacement of the interface due to the crossing of one iron atom, and R is the gas 

constant. M0 can also be seen as an adjustable parameter. In order to obtain the activation 

energy Q, a range of mobility M in different temperatures have to be identified. Eq.1 

shows that the mobility M relates to the transformation speed v and the driving force !G 

at a given temperature. Therefore, the way to identify the velocity v and !G is the focus 

of this research and will be discussed in detail in Chapter 4.  

Based on the research from Asta and Hoyt el [6], a method, which monitored the 

total potential energy of the system as a function of simulation time, is used to extract the 

velocity of the solid-liquid interface in solidification of Ni. The same idea could be used 

in solid-solid interface in massive transformation of iron. As shown in Eq.4!

                          

! 

v = "
1

2a#L

dE

dt
                                                        (4)

where a is the area of the interface, L is the latent heat, which in this case is the potential 

energy difference (per atom value) and " is the volume per atom in the FCC phase. The 

first derivative of the potential energy 

! 

dE

dt
 is the average slope of the function potential 

energy versus simulation time, which can be obtained directly from Lammps (“Large-

scale Atomic/Molecular Massively Parallel Simulator") [6]. Therefore, the interface 

velocity can be estimated from this information. 

2.2 Dislocations and Disconnections  

 A dislocation is a kind of crystallographic defect or irregularity, which is first 

proposed by Vito Volterra in 1905. Formally, dislocation can be defined in terms of the 

Burgers circuit and described by the Burgers vector b. Ledges on free surfaces are 

topologically connected with dislocation and adding a perfect surface onto an equivalent 

one containing a right-angled ledge creates a pure edge dislocation. Steps with ledge-like 
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character can also exist at internal interfaces. In the remaining parts of this thesis, we will 

use ledge for free surfaces and steps for internal interfaces to distinguish between the two 

cases. From recent researches, several examples showed a new kind of defects with both 

the pure step character and the pure dislocation character. Because these defects have 

partial dislocation and a partial step character, it is neither a pure dislocation nor a pure 

step. These defects are named disconnections by J.P.Hirth (1994) [19]. 

2.2.1 Interface Dislocations 

In materials science, a dislocation is a crystallographic defect or irregularity, 

which commonly exists in grain boundary and free surface. Burgers vectors are the most 

prevalent method to identify these defects. Both circuit procedures and the 

symmetry/dichromatic complex methods [20] for determining Burgers vectors are 

discussed by Pond and Hirth [19]. In this research, all of the initial dislocations are 

presented in the FCC – BCC interface. These interface dislocations are created by the 

misfit defect, which is caused by the lattice parameters difference between the FCC and 

BCC phase. Figure 1 shows a misfitting surface for a crystal. In Figure 1, # and &!are 

two crystal structures with different lattice parameters, which can be considered as the 

FCC and BCC atomic structure. They build up an aincommensurate interface. Figure 1(b) 

represents the crystals strained to the coherent or commensurate state. A Burgers circuit is 

drawn in Figure 1(c) showing an unstrained reference state of the crystal structure. This 

condition is considered to release all the coherency force on the interface as shown in 

Figure 1(b). For this case, the Burgers vector is the minimum size dislocation of the 

dichromatic structures [19], i.e. the superposition of the # and & lattices. The coherency 

strain can be removed by superposing a misfit dislocation with Bergers vector that has 

equal magnitude and opposite directions to that of the coherency dislocation as illustrated 

in Figure 1(d). Under the same idea, the strain also can exist by combining two opposite 

direction dislocations, as shown in Figure 1(e). In this case, the Burgers circuit can still be 

used to determine its Burgers vector.!
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2.2.2 Disconnection!

Disconnection is another kind of crystallographic defect caused by the mismatch 

of crystal orientation or lattice parameter on the ledge structure. As illustrated in Figure 

2(a), to form a disconnection we consider connecting two crystals with opposing ledge 

directions. In Figure 2, the crystal surface with a smaller lattice parameter ($) as the 

terrace plane is shown [19]. The vector n is normal to the terrace surface, and a step is 

identified as positive if the step translates the terrace in the direction of n. l is the ledge 

translation vector, which can either be normal or have some angle to the terrace surface. 

Therefore, the step height h can be determined as h = n • l. In order to form a 

disconnection, the two sides of the crystal structure have to have at least one of the 

differences in lattice parameters, namely atom types or orientations. Otherwise, the 

986 J. P. HIRTH 

Fig. 1. The sense vector r points out of the page for (a)-fd): (a) ledge on simple cubic crystal and circuit; 
(b) circuit of (a) in perfect reference crystal; (c) ledge on monoclinic crystal, (d) circuit of (c) in perfect 

reference crystal; (e) ledge changing into dislocation. 

3. INTERFACIAL DEFECTS Burgers vectors are discussed by Pond and Hirth [5]. 

An example is given in Fig. 2 for a (5/6) [IOO] 
3.1. besot d~~~c~ti~~ misfitting (010) surface for a tetragonal crystal. 

Both circuit procedures and the symmetry/ Figure 2a represents the incommensurate interface. 

dichromatic complex methods [2] for identifying Figure 2b represents the crystals strained to the 

i  
_,‘s 

T-T  T F  

(4 

B 

- -- 

cx 

~ 

Fig. 2. { points out of the page: (a) incommensurate interface in tetragonal crystal; (b) reference lattice 
strained to lattice parameter of a; (c) circuit of(b) in relaxed reference; (d) lattice of(b) relaxed in presence 

of misftt dislocation; (e) lattice of (d) with both phases strained to normal lattice parameter of a. 

Figure 1. [19] 

(a). Incommensurate interface in crystal; (b) Relating strained to lattice parameter of a; (c) 
Relaxed reference of (b) and Burgers circuit; (d) Lattice of (b) relaxed in presence of misfit 
dislocation; (e) Lattice of (d) with both phases strained to normal lattice parameter of a. 
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connection will form a single crystal without any defect. Figure 2(a), (b) and (c) show a 

diverse lattice parameter example. The ledges translation vectors la and l! are normal to 

the terrace surface, which mean the ledge heights h% is equal to |l%| and h$ is equal to |l$|. 

The crystals are rigidly brought into contact in Figure 2(b). Since the lattice parameter for 

the two sides are different (la ' l!), it must leave a gap to the right of the step. Then the 

gap is closed by intermolecular forces and creates a disconnection. This disconnection has 

both step characters (the contact region in Figure 2(b)), and dislocation characters (arising 

from the gap closure). Here, the Burgers vector b and the step translation vector l of the 

disconnections are respectively: 

!
  

! 

! 
b =
! 
l " +
! 
l # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!(5) 

 
  

! 

! 
l " = #

! 
l $                                                               (6) 

Figure 2. (d) – (f) illustrate a less simple step formation. In this case, the ledge 

vector l! is inclined to the terrace normal of $, so the ledge height is the projected length 

(h = n • l). In order to close the gap in Figure 2(e), atom displacements need to be both 

parallel and perpendicular to the interface. As a consequence, the disconnection has both 

components b1=h and b2=m, which are horizontal and vertical to the terrace plane. The 

Burgers vector is the net vector of b1 and b2, which can be calculated by Eq.5. In general, 

a component b3 can be presented in the 3-dimensions case; more interface defect analysis 

will be discussed in Chapter 6.2. 
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2.3 Nishiyama-Wasserman and Kurdjumow-Sachs crystallographic 

relationship 

 Most of the transmission electron microscope (TEM) investigations demonstrate 

that FCC austenite and BCC ferrite has huge mismatch even under the crystallographic 

condition specified by the experimentally determined conjugate habit planes and lattice 

orientation relationship. The critical length requirement to consider a tiny defect as a 

Dislocations, steps and disconnections at interfaces 987 

Fig. 3. < points out of the page: (a) crystals of a: and p with ledges; (b) crystals in (a) rigidly brought into 
contact; (c) relaxed version of (b); (d) crystals of a and /I with ledges; (e) crystals in (c) rigidly brought 

into contact; (f) relaxed version of (e). 

coherent or commensurate state. A circuit drawn 

in Fig. 2b and then repeated in the unstrained 

reference state of Fig. 2c gives the total Burgers 

vector content [loo] (referred to c() of the coherent 

interface. This content can be thought of as 

being partitioned on coherency dislocations i[ 1001 

distributed on the interface as shown in Fig. 2b. 

For this case, the dislocations i[lOO] are the 

minimum size dislocations of the dichromatic 

complex [2], i.e. the superposition of the GI and p 

lattices. The coherency strain can be removed by 

superposing a misfit dislocation with Bergers vector 

equal and opposite to that of the coherency 

dislocations, Fig. 2d. Alternatively one could 

imagine straining Fig. 2d to the equal lattice 

parameter state of LX, Fig. 2e, and performing a 

conventional Burgers circuit to determine its Burgers 

vector [loo]=. 

The configuration of Fig. 2d is conventionally 

viewed as a positive dislocation with its extra half- 

plane residing in u, although it could equally well be 

regarded as a negative dislocation with its missing 

half plane in 8. We adopt the former view for 

convenience in defining a procedure for the circuits in 

the following cases. 

3.2. Disconnections 

In the procedure for steps, misorientation dislo- 

cations and connections, we wish to suppress effects 

associated with coherency and misfit strains. 

Therefore in the subsequent treatment, we use the 

coherently strained reference states of Fig. 2b and e. 

Any necessary misfit dislocations can be determined 

separately from the defects now considered. To form 

a disconnection we imagine two crystals with oppos- 

ing ledges as in Fig. 3a. Conventionally, we choose tl 

as the crystal with the largest ledge height since we 

wish to associate the step height of the disconnection 

with the height of the p ledge. The ledge vectors 1, 

and I, are determined by the procedure described 

previously. The crystals are rigidly brought into 

contact, Fig. 3b, leaving a gap to the right of the step. 

The gap is closed, Fig. 3c, creating a disconnection 

with both step character, the contact region in 

Fig. 3b, and dislocation character, arising from the 

gap closure. With, these prescriptions, the Burgers 

!"#$%&'()'*+,-'

(a) crystals of # and & with ledges; (b) crystals in (a) rigidly brought into contact; (c) 
relaxed version of (b); (d) crystals of # and & with ledges; (e) crystals in (c) rigidly 
brought into contact; (f) relaxed version of (e).  
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misfit dislocation is very small when compared with the mismatch between the FCC and 

BCC lattices. Therefore, the defect commonly exists in the interface. The mismatch and 

resulting elastic strain energy is too large to permit the existence of a misfit dislocation 

structure and to create an essentially disordered boundary [30]. 

 In order to reduce the mismatch strain energy, a special interface orientation is 

required to match up as many atoms as possible. Therefore, two superposition interface 

relationships were proposed in this projection. They are the Nishiyama-Wasserman (N-

W) relationship and the Kurdjumow-Sachs (K-S) relationship and are described as 

follows: 

Nishiyama-Wassermam (N-W): (110)bcc // (111)fcc and [001]bcc // 

! 

[11 0] fcc 

Kurdjumow-Sachs (K-S): (110)bcc // (111)fcc and 

! 

[11 1]
bcc

 // 

! 

[11 0] fcc  

Both of these relationships have the closest packed planes in each phase in contact 

{111}fcc // {110}bcc, but N-W has a 5.26° rotation about the plane normal. Figure 3 shows 

the rhombic unit cells difference between the K-S and N-W orientation. In this figure, 

each corner of the rhombic represents an atom in the K-S or N-W system. Figure 3 

assumes the atom A is overlapping in both K-S and N-W relationship and setting up two 

2-D coordinates (x, y) and (x’, y’). The (x, y) coordinate is employed for the K-S system 

and CB [111]bcc is parallel to QP 

! 

[11 0] fcc, and coordinate (x’, y’) is applied to the N-W 

system. If the CA [001]bcc is parallel to AQ [011]fcc, Figure 3 will be converted to a N-W 

orientation. Therefore, if (($-%)=0°, the system indentifies the N-W relationship. On the 

other hand, if (($-%)=5.26°, it denotes the K-S relationship. 
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 Hall et al. [32] reported that even with a chosen close-packed interface 

relationship, only 8% of the atoms in the interphase boundary should be regarded as 

coherent as depicted in Figure 4. The coherent atoms were found to be grouped into small 

regions whose sizes and distributions were sensitive to the precise rotation of the parallel 

planes {111}fcc and {110}bcc. Therefore, a huge strain exists on the interface because of 

the misfit dislocation in the system. Hall et al is still trying to find a better method to 

connect these two phases in order to reduce the interface strain. 

1200 van der MERWE and SHIFLET: STRUCTURAL LEDGES AT PHASE BOUNDARIES---III 

A 

Fig. 1. Diagram showing the rhombic unit cells in the Kurdjumov-Sachs orientation. ABCD for {110} 
b.c.e, and APQR for {Ill} f.c.e. 

The atomic row spacings d, and db, the reference 

lattice parameter ca and the misfit fr.s in the KS 

orientation have been given in Part II, equations (2) 

and (3), and are related by the misfit ratio r of atomic 

diameters a and b as 

2v/2a v/3b rda 
d , = a s i n 2 c t = - - - ~ ,  db= 2 =r~--s' 

b _ 4x/~ 
r = - ,  rr, s - -  ~ ~ 1.089, 

a 

2d~ d b 2db _ x/~rrKs a 

Cd-do+db =l  +r/rKs- r +rKs ' 

2(db-da) 2 ( r - r g s )  6 = _ _ ~ ( r _ l ) d .  ' 
A s =  -- 

(3) 

where 6. = b ~ - a s  is the mismatch normal to the 

interface. 

Inspection of the atomic stacking in consecutive 

f.c.c. {111} and b.c.c. {110} planes reveals that the 

pattern advances, in the notation of Parts I and II, are 

given by 

6 x -F~d~ b_ _ +~d~ lrda a =  6 x - -  = " J I - - ~ ,  

6,=-13:-6~[=~da(1-2--~2r),  

a 6,~ = +a/3, 6~x = +_b/2 (4) 

for x-ledges, i.e. ledges normal to the x-axis. Note 

that [6:[ = (8/3)t/216~[/r is greater than [rbx[ for all 

r ~ 1.633 which covers all meaningful values of  r in 

the KS orientation. 

As for the NW-x orientation we may limit the 

considerations to the inverval 1 < r < 1.14 < ry and 

conveniently divide this into the intervals 1 < r < r~cs, 

containing "down" steps, and rm < r  < 1.14, con- 

taining the "up" step. The condition for terrace 

periodicity in I(5) may be written as 

fLxd a - 6: = Lxd b - 6~ 1 < r < rm 

lX=(Lxda+6:=Lxdb+6~, rgs<r <1.14 
(5a) 

where Lx is the number of  atomic rows in a terrace. 

The geometrical nature of  the relations (5a) is rep- 

resented by the diagrams in Fig. 2. This yields the 

results 

6 ~  - -  6~ 1 3rKs -- 2r 

Lx=[db-d , [ -6  I r m - r  I 

1 d~db (3: 6 ~ =  rd~ 

[db-d,l\da d j  6 l r - r m l  

x/~ra (5b) 
9lr - r~l  

It follows that near fKs = 0 (r = rm) the matching 

is good (db ~do)  and terraces very extensive, for 

example, L x ~ 2, 4, 21, 28, 16 and 3 for r = 1.00, 1.04, 

1.08 (rm ~ 1.089), 1.095, 1.10 and 1.14 respectively. 

This also shows that at the selected extremeties r -- 1 

and 1.14 (fgs ~ -0 .085 and 0.046) the terrace widths 

become too small to be meaningful. Another notable 

feature is that 3z > 0 i.e. b~ > as for r > 1 so that the 

extra atomic plane, defining the TMD, is in the b.c.c. 

crystal A. 

The superper iod/ i  x for TMDs must be selected 

with care. In the interval 1 < r < ry < 1.633 of interest 

[see also equation 11(4)] the extra atomic plane 

sa 

b Lxdb 8bx 
l J---~ 

Lxda B~: 

Fig. 2. Diagrams illustrating how the periodicity criterion 
can be satisfied for (a) 1 < r  <rgs and (b) rKs<r < 1.14. 

Figure.3 [31] 

A unit cell shows the relation between the Kurdjumov-Sachs (K-S) and Nishiyama-
Wassermam (N-W) orientation. ABCD for {110}bcc and APQR!for {111}fcc. Coordinate 
(x’, y’) is applied for the N-W system and (x, y) coordinate is employed for the K-S 
system. The angle (($-%)=5.26° discriminate the two relationships.!
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Fig. 6. Superposed plots of the atomic configurations in the {l I I& and {I 10)bCr: planes. 
(a) ~ishiyama-Wasserman orientation relationship. 

(b) Kurdjumov-Sachs orientation relationship. 

common lattice parameter ratio, u~~/u~~, of 1.25. It is readily seen that in 

both cases, a good fit is not obtained between the two interface planes over 

large areas of the interface. More detailed examination discloses, however, a 

diamond-shaped region of relatively good fit* in fig. 6a(delineated with dash- 

* The atoms in this region are within a displacement of 15 ‘A of the interatomic spacing. 

Similar habit plane geometries would be derived, however, using a more stringent con- 

dition. 
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common lattice parameter ratio, u~~/u~~, of 1.25. It is readily seen that in 

both cases, a good fit is not obtained between the two interface planes over 

large areas of the interface. More detailed examination discloses, however, a 

diamond-shaped region of relatively good fit* in fig. 6a(delineated with dash- 

* The atoms in this region are within a displacement of 15 ‘A of the interatomic spacing. 

Similar habit plane geometries would be derived, however, using a more stringent con- 

dition. 

Figure.4 [32] 

Superposed plots of the atomic configurations in the {111}fcc and {110}bcc planes.  
(a) Nishiyama-Wasserman orientation relationship.  
(b) Kurdjumov-Sachs orientation relationship.  

!
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Based on their research, Hall et al also found that the insertion of monatomic ledges 

between coherent regions in the FCC/BCC boundary increased the frequency of repetition 

of these regions and raised the proportion of coherent atom in the boundary to around 

25%. As shown in Figure 5, the ledges increase the repeating frequency of these matching 

regions in the interface by creating a N-W relationship in each step. More detail about 

these step structures can be found in Chapter 4.  

 

Figure.5 [30] 

A Nishiyama-Wasserman oriented fcc/bcc interface with structure ledges and misfit dislocation 

misfit dislocs.

Accommodate most of misfit strain in 

direction || to structural ledges

row of diamonds

where lattices fit
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2.4 Molecular dynamics simulations (MD)!

The molecular dynamics simulation method is based on Newton’s second law or 

the equation of motion, F = m ! a, where F is the force vector exerted on the particle, m 

is its mass and a is its acceleration. From knowledge of the force on each atom, it is 

possible to determine the acceleration of each atom in the system. Integration of the 

equations of motion then yields a trajectory that describes the positions, velocities and 

accelerations of the particles as they vary with time. From this trajectory, the average 

values of properties can be determined. This method is deterministic; once the positions 

and velocities of each atom are known, the state of the system can be predicted at any 

time instant.  

As shown in Eq.7.  

  

! 

! 
a 

i
=

! 
F 

i

m
i

                                                              (7) 

with                                                     
   

! 

! 
F i = " #$ij

i

%                                                          (8) 

where Fi denotes the force acting on atom i, and! is the interatomic potential energy. 

Therefore, the force Fi is the sum of potential energies acting on atom i by a distance over 

all its neighbor atom j. ai is the acceleration of atom i and mi is the mass of atom i, with 

the index i running over all atoms in the system. All the information needed by these 

equations include an initial list of atomic positions and velocities, and a model of the 

atomic interactions with which ! can be calculated given the positions ri.  

One frequent source of confusion is the meaning of temperature in MD. 

Commonly we have experienced with macroscopic temperatures, which involve a huge 

number of particles. But temperature is a statistical quantity. If there are a large enough 
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number of atoms, statistical temperature can be estimated from the instantaneous 

temperature, which is found by equating the kinetic energy of the system to nkBT/2 where 

n is the number of degrees of freedom of the system. A temperature-related phenomenon 

arises due to the small number of atoms that are used in MD simulations. For example, 

consider simulating the growth of a copper film starting with a substrate containing 500 

atoms and a deposition energy of 100 eV. In reality, the 100 eV from the deposited atom 

would rapidly be transported through and shared among a large number of atoms (1010 or 

more) with no big changes in temperature. When there are only 500 atoms, however, the 

substrate is almost immediately vaporized by the deposition. Therefore, a large system!

that contains more than 106 of atoms should be used to avoid the temperature effect 

during the transformation. 

 

!"#$%&'.'

Figure 6 shows a highly simplified description of the molecular dynamics 

simulation algorithm. The simulation proceeds iteratively by alternatively calculating 

forces and solving the equations of motion based on the accelerations obtained from the 

new forces. In practise, almost all MD codes use much more complicated versions of the 

algorithm that including two steps (predictor and corrector) in solving the equations of 

motion and many additional steps for e.g. temperature, volume and pressure control, 

analysis and output. The following sections 2.4.1 ~ 2.4.3 will discuss some of these 

algorithms which are going to be used in this studying. 
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2.4.1 Isenthalpic ensemble (NPH) 

In the isenthalpic, or NPH ensemble, the system is isolated from changes in moles 

(N), pressure (P) and enthalpy (H). Enthalpy is a measurement of the total energy of a 

thermodynamic system. Therefore, this ensemble corresponds to a process with no energy 

exchange with the environment. A microcanonical molecular dynamics trajectory may be 

seen as an exchange of potential and kinetic energy, with total energy being conserved. 

For a system of N particles with coordinates X and velocities V, the first order differential 

equations may be written in Newton's notation Eq.7 & 8. The temperature of the system 

in NPH is naturally raised due to the latent heat generation during the melting of metal 

such as iron in this research. In the NPH ensemble simulates the condition, only the 

exchange of potential and kinetic energy and no energy transmits in or out of the system. 

This ensemble can be used to stabilize the solid – liquid interface and identify the melting 

point as will be detailed in Chapter 4. !

2.4.2 Canonical ensemble (NVT)!

In the canonical ensemble, moles (N), volume (V) and temperature (T) are 

conserved. It is also called constant temperature molecular dynamics (CTMD). In NVT, 

the energy of endothermic and exothermic processes is exchanged with a thermostat. A 

variety of thermostat methods are available to add and remove energy of an MD system 

in a more or less realistic way, approximating the canonical ensemble. It is a popular 

technique to control temperature includes velocity rescaling. The ensemble is not trivial 

to obtain a canonical distribution of conformations and velocities using these algorithms. 

On one hand, this ensemble fixes the box volume, boundary and temperature, which is 

advantageous to maintain the atomic framework and avoids the shearing and twisting of 

the structure caused by the initial stress. On the other hand, the atoms in the box can 

vibrate and adjust the distance between each other. Therefore, NVT ensemble is 

commonly used during equilibrium step, as will be discussed in section 4.3.3.!
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2.4.3 Isothermal-Isobaric (NPT) ensemble 

In the isothermal-isobaric ensemble, moles (N), pressure (P) and temperature (T) 

are conserved. In addition to a thermostat, a barostat is needed. It corresponds more 

closely to laboratory conditions with a flask open to ambient temperature and pressure. 

NPT ensemble is commonly used in the system equilibrium step. During equilibrium, the 

system is first under going NVT ensemble to limit the huge vibration of the atoms, and 

then NPT ensemble with 0 pressure is used to let the system adjusts its box dimension to 

release all the external pressure. Besides, NPT pressure controls not only occur under 

constant membrane area (NPAT) but also constant surface tension "gamma" (NP"T). 

NP!T means only applies pressure controls and boundaries movement in the ! direction 

(could be single or multi dimensions) but fixes the boundaries in other direction. In order 

to avoid the external pressure effect on the simulation result, NP"T ensemble with 0 

pressure in the direction perpendicular to the interphase is used during the transformation 

step in our simulation. !

Readers interested in the numerical algorithms used to solve the equations of 

motions (algorithms that make the atoms move) are referred to Appendix A. 

2.5 The Lennard – Jones (L-J) and Finnis-Sinclair embedded atom 

method formalism (EAM-fs) 

 In MD simulation, Lennard – Jones and embedded atom method are two of the 

potential theory; both are mainly applied to simulating the metal behavior. Lennard-Jones 

potential [39] (also known as L-J potential or 6-12 potential) was first proposed by John 

Lennard-Jones in 1924. L-J potential is a mathematically approximation model that 

describes the interaction between a pair of neutral atoms or molecules.  As shown in the 

Eq.9, the potential energy of an atom VLJ is the combination of the repulsive force and 
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attractive force acting on this atom. r represents the distance between two atoms. The r-12 

term, which is the repulsive term, describes the repulsion at short ranges due to 

overlapping electron orbitals and the r
-6 term, which is the attractive long-range term, 

describes the long ranges attraction. ) is the cut off distance at which the interatomic 

potential is far enough to be considered as zero.  

!

! 
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 Figure 7 is a sketch of a L-J potential graph. In the figure, & is the depth of the 

potential well, and rm is the distance at which the potential reaches its minimum. At rm, 

the potential function has the value -# that means the distances are related as rm = 21/6
$. 

However, since the L-J potential only calculates the distance between pair atoms but 

ignores the effect of the atomic structure, it is not adapted to simulation the FCC to BCC 

phase transformation in this research.  

!

 

!

!

Figure 7 [40] 

A figure shown the L-J potential profile. The potential energy V(r) is the sum of the attractive 
function –B/r6 and the repulsive function +A/r12. The potential well depth & is the minimum 
potential energy an atom can have, when it locate at its equilibrium position.  

!"#

%!
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The embedded atom model (EAM) is another approximation describing the 

energy between two atoms. The original model was first developed by Murray Daw and 

Mike Baskes [7, 8] in 1983. In the basic model, the energy is a function of a sum of 

functions of the separation between an atom and its neighbors. The starting point of the 

EAM is the observation that the total-electron density in a metal is reasonably 

approximated by the linear superposition of contributions from the individual atoms. The 

electron density in the vicinity of each atom can then be expressed as a sum of the density 

contributed by the atom in position plus the electron density from all the surrounding 

atoms.  

 Finnis-Sinclair [10] is a specific type of EAM model for metals. Based on the 

normal EAM framework, the energy of an assembly of N atoms is given by 

 

! 

E =
1

2
Vij Rij( )

i" j=1

N

# $ F
i= j

N

# % j( )                                                      (10) 

with 

 

! 

"i = # Rij( )
j

$
 

                                                    (11) 

In this expression, the total potential energy in the EAM is divided into two contributions, 

namely a pairwise part and a local density part. In these equations, the subscripts i and j 

label distinct atoms, N is the number of atoms in the system, Rij is the separation between 

atoms i and j, 'i is the electron density at atom i due to the remaining atoms of the system, 

*(Rij) is the energy to embed atom i into the background electron density ' and V(Rij) is 

the core-core pair repulsion between atoms i and j separated by the distance Rij. F is an 

embedding function that represents the energy required to place atom i into the electron 

cloud. In Finnis-Sinclair, the embedding function is

! 

F = " #
i
. Therefore, by combining 

Eq.10 & 11, the Finnis-Sinclair EAM expression can be written as: 
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E =
1

2
Vij Rij( )

i" j=1

N

# $ %ij Rij( )
j=1

N

#
& 

' 
( ( 

) 

* 
+ + 

i= j

N

#
1/ 2

''''''''''''''''''''''''''''''''''''''''''''''''' (12)

A cutoff radius Rc has been chosen to limit the number of atomic interactions. When Rij is 

greater than Rc, the value of V has already become very small and the potential is set to 

zero at this distance. The cut off radius has been chosen as 

! 

R
c

= R
2e

+
R
3e
" R

2e

2
 with R2e 

and R3e as the second and third neighbor distances. Comparing with the L-J potential, 

EAM-fs is a multibody potential. EAM-fs not only calculates the pairwise effect of atoms 

but also considers the structure and electron cloud contribution for the atomic system. 

Therefore, EAM-fs is more proper to simulate the FCC-BCC transformation than L-J 

formalism. For More detail on the algorithm about EAM-fs can be found in references [7-

11]. 

2.6 The choice of potential  

 Empirical potentials are commonly determined by fitting a proposed functional 

form to available data. These data may be obtained from either experimental 

measurements or first – principles calculations. Generally, the input data include such 

quantities for perfect crystals as lattice parameter, cohesive energy, elastic constants and 

unrelaxed vacancy formation energy. Based on previous researches, there are several 

extant potentials for iron like Johnson 1964[11], Pak and Doyama 1969[13], Osetsky et 

al. 1995[14], Ackland et al. 1997[15], and Mendelev et al. 2003[12]. Unfortunately, no 

single form of these potentials can completely simulate all transformation and 

solidification situation of iron. For example, the Johnson 1964, Pak and Doyama 1969 

and Osetsky et al. 1995 potentials are purely pairwise which means that they assume the 

elastic constants C12 = C44 and the unrelaxed vacancy formation energy is equal to the 

cohesive energy [12]. However, most of the experiments show that the vacancy energy is 

about one third of cohesive energy.  
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Ackland et al. 1997 and Mendelev et al. 2003 potentials are of the “pair-

functional” form [16] based on the EAM and second-moment tight-binding model. The 

Ackland et al. 1997 potential was derived by fitting to the static properties of BCC Fe at 

zero temperature, whereas Mendelev et al. 2003 potential also incorporates interatomic 

force information for the liquid derived from ab initio calculations. However, the FCC ! - 

iron is an unstable phase in all simulation temperature as will be discussed in Chapter 4. 

Figure 8 shows the comparison of Lennard-Jones potential with the Ackland et al. 1997 

and Mendelev et al. 2003 potentials.  

 

 

 

 

 

 

 

 

In the inset figure, the Lennard-Jones potential chooses the same well depth and 

equilibrium atomic spacing as the Ackland et al. 1997 potential. It is obvious that the 

Ackland et al. 1997 potential is significantly shorter in range and less repulsive at short 

distances. It is the main reason why the Ackland et al. 1997 potential can obtain much 

better equilibrium FCC phase than the Mendelev et al. 2003 potential. 

!"#$%&'/'*+0-!

Effective-pair potentials derived from the Ackland et al. 1997 (solid line) and Mendelev et 
al. 2003 (dashed line) many-body potentials for Fe. The inset compares the Ackland et al. 
1997 pair potential (solid line)!with a Lennard-Jones (LJ) potential (dashed)!having the 
same well depth and equilibrium interatomic separation. (D.Y. Sun et al. 2004[17]) 
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Therefore, the Ackland et al. 1997 potential is selected as the EAM-fs potential to 

process the movement of the #-! interphase. However, since the EAM-fs formalism still 

does not account properly for magnetic effect, the Ackland et al. 1997 potential will 

probably not reproduce the iron phase diagram quantitatively. Based on the Ackland et al. 

1997 potential, the free energy of the BCC phase is always lower than the FCC phase in 

the whole temperature profile (shown in Chapter 4), which is not matching the 

experiment profile. However, it is not the real problem. As long as the free energy 

difference for these two phases is predicted reasonably well in the simulated temperature 

range, this EAM-fs potential is very likely to be useful in the interphase mobility. More 

information about the algorithm and results of the Ackland et al. 1997 potential can be 

found in Appendix B.  
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Chapter 3 

Previous work 

!

This chapter will review some previous works on the kinetics of the #/! phase 

transformation. These works will be discussed in term of the experimental research (3.1) 

and simulation area (3.2) separately. 

3.1 Experimental research  

 The #/! phase transformation was discovered hundreds of years ago and ever 

since then many experiments, theories and models have been done in this area. However, 

most of these experiments focused on the martensite formation of the Fe alloy, which 

limited the experiments to be conducted at low temperature (<1000 K) and could not use 

pure iron as the experimental element. In an early publication of the mobility of #/! 

interfaces, Hillert [21] was forced to base his discussion on the assumption that the 

mobility is essentially the same for #/# grain boundaries and #/! phase interfaces in an 

isothermal transformation. It was estimated as: 

M = 0.035exp(-147000/RT) m
4
/J-s                                       (13) 

However, most of the latter studies showed that the mobility of the interface in the #"! 

transformation was several orders of magnitude below the values stated in Eq.13. For 

example, Krielaart and Van Der Zwaag [22] measured the rate of the massive 

transformation in a Fe-Mn alloy without C and evaluated the mobility of the interface to 

be: 

M = 0.058exp(-140000/RT) m*mol/J-s                                  (14) 
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Using the molar volume Vm = 7+10-6 m3/mol. found by Hillert [21], Eq.14 can be written 

as: 

M = 4+10-7exp(-140000/RT) m4
 /J-s                                    (15) 

 

This value was then applied successfully to describe the growth rate in the Fe-C alloys. 

Another new result reported by Wits et al. [23] gave somewhat higher values. They used 

Fe–X alloys, where X represents successively about 1 or 2 at.% of Co, Cu, Mn, Cr or Al, 

and proposed the following expression: 

M = 2.4exp(-140000/RT) m*mol/J-s 

   = 1.7+10-5exp(-140000/RT) m4
 /J-s                                  (16) 

 

Furthermore, Vooija et al. [24] presented even higher values in the Fe-Co and Fe-Cu 

alloy, which were still far below the proposed expression for #/# grain boundary given in 

Eq.13. Figure 9 shows the collection of these Fe-alloy experimental results by Hillert and 

Höglund [1].  

 

 

Figure 9 [1] 
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In Figure 9, Eq.13, 14 and 16 are indentified in the form of Log(M) versus 

10000/T. Although the discrepancy is large, most of the data still lie between the lines of 

Eq.14 and 16, which is far below the proposed expression for #/# grain boundaries given 

in Eq.13. Only the data from Speich et al. [25] is somewhat closer to the values in Eq.13. 

However, the M#/#=M#/! assumption and Eq.13 [1] are derived from Speich’s results. 

Therefore, such data cannot be considered as a reference point. Moreover, due to the 

technical difficulties to use pure iron as experimental element and industrial interest, all 

of these results are based on the Fe-alloy. Even though the experiments are under the 

massive transformation condition, the diffusionless impurities still act as solute drag to 

slow down the interface velocity and reduce the mobility.   

In order to further judge Hillert’s assumption, more accurate data are needed. 

Figure 10 compares the new evaluation of the mobility of the #/! interface in high pure 

Fe (99.98wt.%) cases collected by Liu et al. [26], [27] together with the data from Jones 

et al [28]. An interesting result from Jones and Pumphrey [28] shows that the mobility is 

not much different for the #"! and !"# transformation. The general impression from 

their information is that the temperature dependence is very weak. However, it should be 

emphasized that the massive transformation character becomes more obviously towards 

lower temperature. Therefore, one data point of the low temperature range (10000/T = 

17.4) is very close to the line depicted by Eq.13 in Figure 10. However, because of the 

effect in low temperature, more detail research needs to focus in this area before making 

the conclusion. In addition, most of the data points are around the line described by 

Eq.16. Thus, Hillert and Höglund [1] concluded in their publication that the actual 

mobility values were much lower than that given by Eq.13.  !
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Furthermore, Hillert and Höglund [1] also tried to use the current information to 

build up a model for fitting the experimental data. According to their assumption, The 

total chemical driving force for the diffusionless ! - # transformation is assumed to start 

from zero at some temperature, Tstart, below the equal Gibbs energy temperature T0, as 

shown in Eq.17. 

! 
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)                                  (17) 

All # nuclei are assumed to start growing spherically at Tstart and combining with Eq.1 we 

obtain 

! 

R = vdt
tstart

t

" = vdT /C = (M /CV
m
) #G

m
(T)dT

Tstart

T

"
Tstart

T

"                           (18) 

If the mobility M and the cooling rate C are considered as constant and using 

Kolmogorov’s analysis [48] of impingement, the # phase fraction can be expressed as: 

Figure 10[1] 
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In which, N is the number of % grains in the whole system and R0 is the average size of 

the final % grains. Inserting R from Eq.18 as Ri calculates the fraction transformation.  

Hillert and Höglund tried to validate this model by comparing their results with one of the 

experimental curves published by Liu et al. [26]. As shown in Figure 11, it evidented that 

the complete curve is not reproduced very well.  

 

 

 

This simple model shows an obviously unrealistic result at low and high degrees of 

transformation. One of the reasons that caused these deviations could be the mobility and 

the interface velocity!parameter. Since these parameters are hard to be detected in the 

experiment, more studies are needed to focus on these areas to improve the model.!

 

However, the aim was just to obtain a reasonable value of
the mobility and it was assumed that the model would be
reasonably accurate around 50% transformation. It was
thus essential just to reproduce the slope of the central part
of the experimental curve. The result was M = 1 ·
10!12 m4/J s at 1168 K. An attempt was made to fit the first
part of the transformation curve better by delaying the
start to a lower temperature but using the old value of Tstart

in the evaluation of the driving force. However, that mainly
displaced the whole curve to lower temperatures without
changing the shape very much.

It is known that the massive transformation cannot
occur unless the temperature falls well below the T0 tem-
perature [14] and Tstart was introduced in the present anal-
ysis in order to account for such an effect. A pile-up of
solute atoms in front of the migrating interface as well as
solute drag inside the interface has been proposed as expla-
nations. The fitting parameter Tstart served to place the
transformation curve in the experimental range of temper-
ature and Wits et al. [6] used a similar method. On the
other hand, Liu et al. evaluated what the net driving force
should be in order to yield the mobility expected from Eq.
(2). Since that mobility is several orders of magnitude
higher than the value obtained if the total driving force is
used, it is evident that almost all the driving force must
be subtracted. Liu et al. thus arrived at the conclusion that
the dissipation by interfacial energy and transformation
stresses must be very close to the chemical driving force
at any temperature, degree of transformation and alloy
content.

On the other hand, Liu et al. [9] reported the growth rate
as a function of the fraction of a obtained from their
model. Combining their value at 50% transformation with
the total chemical driving force we obtain M = 2 ·
10!12 m4/J s. It is in reasonable agreement with the result
of the present analysis and the difference is not critical. It
thus seems that the present method is robust enough for

its purpose. This conclusion was further supported by a
similar analysis of curves for 1.79 mol% Co and
2.26 mol% Mn, respectively, from Ref. [8].

The new method was also tested on some information
from Wits et al. [6] and Vooija et al. [7] by simply reading
the temperatures for 10, 50 and 90% transformations.
Almost the same mobility values were obtained as those
reported by those authors. It was thus concluded that the
new method could be used with some confidence in order
to evaluate the mobility from kinetic information that only
gives the temperatures for 10%, 50% and 90% transforma-
tion. Such data were reported by Jones and Pumphrey long
ago [15]. They studied both the a ! c and c ! a transfor-
mations in a large number of Fe–Mn and Fe–Ni alloys.
Those data can thus be used to estimate the mobility
of the a/c interface over a wider range of temperature than
the more recent studies. Unfortunately, they did not report
the grain size, nor did they give details about the annealing
before the cooling experiments. For a similar experiment
on an Fe–Mn alloy Liu et al. [10] reported an a grain size
of 24.8 lm after the transformation. Without any good jus-
tification, a value of 16 lm was chosen for the analysis of
results from Jones and Pumphrey, the only reason being
that they did not mention any special annealing period
before starting the cooling operation and it thus seemed
likely that their annealing was less effective.

All the new evaluations of the mobility of the a/c inter-
face are collected in Fig. 3. An interesting result from the
information from Jones and Humphrey is that the mobility
is not much different for the a ! c and c ! a transforma-
tions, nor for Fe–Mn and Fe–Ni alloys. The general
impression from their information is that the temper-
ature dependence is very weak. However, it should be
emphasized that the massive transformation may change

Fig. 2. Transformation curve for c! a in Fe. The calculated curve was
obtained with the parameter values Tstart = 1184.5 K and M = 1.0 ·
10!12 m4/J s.

Fig. 3. New information on the mobility of a/c interfaces obtained from
the massive transformation. (+): c! a in Fe, Liu et al. [9], (s): c ! a in
Fe–Co and ( ): c! a in Fe–Mn, Liu et al. [7], (j): a ! c in Fe–Ni, ( ):
c! a in Fe–Ni, (m): a! c in Fe–Mn and ( ): c! a in Fe–Mn [15].

M. Hillert, L. Höglund / Scripta Materialia 54 (2006) 1259–1263 1261

Tranformation curve for !"# in Fe. The measured values was obtained 
using a continue cooling method, and the calculated curve was base on 
the parameter values Tstart=1184.5K and M=1.0+10-12m4/J-s 

Figure 11. [1] 

'
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The above discussion illustrates that there is still deficiency in previous 

experiments. First of all, most of the up-to-date experiments still focus on Fe alloys. This 

gives uncertainty when determining if the specimen did transform by a purely massive 

mode, and how much does the impurity drag affect the interface. That is why Hillert and 

Höglund also suggested in their review paper that, “The effect of the interstitial content 

should be studied and one should in general use the lowest possible impurity contents”. 

[1] Secondly, all of the previous results were obtained by the continuous cooling method. 

That means the interface is not moving in an equilibrium state. However, all of the 

assumption and model were built under an equilibrium state. As a result, more studies are 

still required in order to understand the effect of this continuous cooling and the cooling 

rate. 

 In summary, based on these experimental results, the activation energy was 

identified to be around 140 kJ/mole and the mobility was 10-6 ~10-9 m*mol/J-s. However, 

the model still does not fit to the measurement very well. The impurity and the 

unequilibrium state are the main reasons that lead to the variance. In this thesis, we 

assume that the massive transformation for pure iron can be considered as the initial state 

of the Fe !"# transformation. At that moment, all the driving fore is applied to activate 

the transformation and the transformation is purely interface control. In addition, the 

results for pure iron can be used to build the basic model for the transformation. The 

effect of the impurity can be represented as parameters and added to the model for the 

pure iron case. Therefore, finding the mobility and activation energy in pure iron is the 

foundation to build a universal model for the Fe !"# transformation. It is also the main 

objective of this research.!
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3.2 Simulation area  

With the continuous development and improvement of computational technology, 

use of the computers to simulate and study the massive transformation process becomes 

prossible. The advantage of using simulation technology is that simulation can avoid the 

effect of the experimental environment like impurities in the sample and can maintain an 

isothermal conditional. Thus, this method can simulate the massive transformation in an 

ideal situation. !

 The most recent simulation investigation of the #/! phase transformation was 

performed by Bos, Sietsma and Thijsse [33]. In their simulation, Bos et al. used the MD 

method and the Johnson-Oh EAM potential for Fe to successfully build up a system to 

simulate the martensite transformation in pure iron case. In Bos’s simulation system, full 

periodic boundary conditions were not used. As shown in Figure 12, in order to let the 

atomic structure to be sheared, at least one pair of the boundaris which are perpendicular 

to the #/! interface have to be free surface. They tested the boundary setting in two 

different interface orientations which are A. {100}fcc//{110}bcc, <100>fcc//<011>bcc and B. 

{111}fcc//{110}bcc, <112>fcc//<011>bcc. Both of these boundaries setting had the flat 

interface surfaces. They didn’t observe any #/! phase transformation phenomenon in full 

periodic boundary condition. 
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In addition, Bos et al. observed an incubation time before the transformation 

started. They consider that the incubation time is caused by the rearrangement of the 

interface atoms, since the BCC and FCC have 0.2% lattice parameter difference. 

Therefore, the time period, which is required to let the interface deform and release the 

interatomic stress, is the incubation time. For the same reason, in the full periodic 

boundary condition, there is no free surface to allow the flat interface to distort and 

release the misfit interatomic stress. Thus, no interface mobile is observed in a flat FCC – 

BCC interface setting under the full periodic boundary condition. In addition, Bos defined 

that the transformation speed relates to the temperature and the volume to surface area 

ratio (V/A). However, because the free surface is used in the simulation box, the 

activation energy is actually reduced. Therefore, Bos et al detected a high interface 

velocity and mobility up to 400 m/s and 0.3 m*mol/J-s. According to their results, the 

activation energy is only around 5.8 kJ/mole. Since the objective of Bos’s research was to 

simulate the martensite transformation, their results are still inapplicable in the massive 

transformation model. In our research, we try to use the full periodic boundary to simulate 

the massive transformation and the results will be compared to both of the experiment and 

simulation data in Chapter 5.!

CHAPTER 4. EXPERIMENTAL SETUP 25

Figure 4.8: A typical start configuration for interface type C, a system with only one
non-periodic direction (the y-direction). Blue is bcc and green is fcc.

Figure 4.9: The initial mismatch for interface
type D. Blue is bcc and green is fcc.

Figure 12 [33] 

A typical simulation box used in C.Bos et al. research. The x direction in the figure coincides with the 
fcc [110] direction, y with fcc [010], and z with fcc [001]. The two yz-boundary are non-periodic (free 
surface).   
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Chapter 4 

Approach!

!

 The approach for computing the mobility of the massive transformation is based 

on the time dependence of the changing potential energy. As shown in Eq.4, the interface 

velocity can be calculated by the first derivative of the potential energy. On the other 

hand, the driving force controls the interface speed and determines the mobility according 

to Eq.2.  Therefore, the simulation box setting must have the possibility to obtain these 

potential energy and driving force information. First of all, the melting point (4.1), which 

based on the Ackland et al. [15] iron potential has to be identified. Then, a reasonable 

temperature range can be chosen to do the simulation. The melting temperature also will 

be useful in calculating the driving force. Second, the free energy function can be built up 

by comparing the potential energy difference between the solid and liquid phases. The 

free energy difference between the FCC and BCC phases is the driving force (4.2) of the 

transformation, which can be identified at a given temperature. Meanwhile, the lattice 

parameters for FCC and BCC can be measured at the same time and this information will 

be used in the interface set up. Third, in order to resemble the reality, we try to establish 

full periodic boundary conditions to simulate the transformation. Therefore, the interface 

orientation (4.3.1) and the dimensions of the simulation box for each phase (4.3.2) have to 

be selected carefully to avoid an external stress, which can affect the result. Finally, the 

system has to be equilibrated (4.3.3) before acquiring the data.!
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4.1 Melting temperature 

 In MD simulation, the melting temperature of the material depends on the EAM 

potential that is chosen. Measuring the melting temperature is always the first step to 

prepare for a MD simulation. Since the free energy of the solid and liquid phases is equal 

to the melting temperature (Tm), an accurate determination of Tm provides a convenient 

reference point from which the free energies versus temperatures can be specified. In this 

research, we use the Ackland et al. 1997 [15] iron potential. Since the austenite – ferrite 

transformation occurs in the low temperature range, the simulation temperature range has 

to be far away from the melting point. On the one hand, low temperature can reduce the 

effect of the high kinetic energy of the atoms and approach the real massive 

transformation temperature range. On the other hand, simulating in the low temperature 

range can also avoid the grain boundary premelting [34] to happen on the to #/! interface 

to effect the transformation. 

 In this thesis, a coexistence simulation method, which has been developed by 

Morris and Song [35] is used to identify the melting point. In their method the solid and 

liquid phases are equilibrated in one coexistent system to determine the melting 

temperature. The basic algorithm is to use equilibrium free energy calculation [35], which 

means calculating the zero Gibbs free energy temperature of both phases, the melting 

temperature is determined directly using the relationship 

gs (P,Tm) = gl (P,Tm),                                                  (20)!

where g(P,T) is the Gibbs free energy per atoms, the subscripts s and l indicate the solid 

and liquid phases, and  Tm(P) is the melting temperature at a given pressure. Typically, 

the system evolves in a microcanonical ensemble (NPxH) system, which means constant 

pressure, number of atoms and enthalpy. In this case, if the system’s temperature is 

initially higher than the melting temperature, then some of the solid phase will melt. This 

requires latent heat, and therefore converts some of the kinetic energy to potential energy 
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and reducing the temperature. In this way, the system is stable at its melting temperature 

from above. Using the same idea, if the initial temperature is too low, it will approach to 

the melting temperature from below. 

 In our temperature range, iron has two solid phases: #-BCC and !-FCC. They 

have different melting temperatures. Therefore, we have to calculate their melting 

temperatures separately. To start the simulation, two simulation boxes with the identical 

dimension 30 by 10 by 10 unit cells are set up separately with # and ! phase pure iron.  

Then the two boxes are performed near the estimated melting temperature individually, to 

achieve an approximately equilibrated initial condition. Next, a liquid region is created, 

by melting half of the original solid box with a temperature 50% above the estimated 

melting temperature. After that the liquid part is cooled down to the estimated melting 

temperature slowly. If the liquid part solidifies in a short MD time scale, we need to raise 

the estimated melting temperature. Otherwise, we use the full periodic boundary 

conditions and zero pressure Isothermal-Isobaric (NPT) ensemble to equilibrate the whole 

box (both the solid and liquid part) for 10000 MD time step. During this step, the 

interatomic force adjusts the distance between solid and liquid atoms and creates two 

solid-liquid interphases boundaries. Due to the zero pressure NPT ensemble, the pressure 

on the box boundaries will be reduced to zero by automatically!adjusting the box 

dimensions. Finally, the system is allowed to equilibrate using an NPxH ensemble. As the 

system is closed, the temperature and total energy will evolve. If the system achieves a 

coexistence condition, it naturally evolves to the equilibrium melting point. Otherwise, if 

the energy is too high (or too low), the system will melt (or solidify) to adjust its 

temperature and maintain the constant total energy by exchanging the potential and 

kinetic energy. During this melting temperature determent process, one has to avoid the 

condition where the whole system melts or solidifies which means the estimated melting 

temperature is too far away from the real situation, and has to be reset with a new 

estimated melting temperature to redo the simulation. Figure 13 is an example of the 

equilibrated FCC coexisting system with 12000 atoms. Figure 14 is the temperature 
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profile when the system is approaching equilibration for both FCC and BCC phases in 

NPxH ensemble.  

 

 

!

!

 

Figure 14 

NPH temperature profile to identify the melting point of FCC and BCC phase. 

Solid   Liquid 
Figure 13 

FCC coexisting system with 12000 atoms and full periodic condition. Tow S-L interfaces exist 
in the box. The atoms are colored according the centro-symmetric parameter. !
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Base on this method, the melting temperature of FCC and BCC phases are 2236 K and 

2358 K with the Ackland et al. 1997 [15] iron potential. Therefore, the simulation 

temperature range is selected from 600K – 1400K with 200K increments. These 

temperature ranges include 2 samples in low temperature cases (600K & 800K), 2 

samples (1000K & 1200K) around the critical temperature for the !-# transformation 

1185K, and one sample in the high temperature case. All of these temperatures are at least 

800K lower than the melting point.  
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4.2 Driving force and lattice parameter 

The driving force and lattice parameter in each simulation temperature have to be 

determined, before we start to set up the simulation box. In the austenite – ferrite 

transformation the main driving force is the free energy difference between the FCC 

(austenite) and BCC (ferrite) phases. As shown in the Eq.1, identifying the initial lattice 

parameter and the free energy difference !G precisely is very important for the following 

steps. Therefore, two individual simulation boxes are set up with the size of 20+20+20 

unit cells. One is in the FCC structure and the other is in the BCC structure. Then, the two 

boxes are equilibrated separately in five different simulation temperatures. The boxes are 

first run under the NVT ensemble (constant the number of atoms, volume, and 

temperature) for two nanoseconds, followed by another six nanoseconds under NPT 

ensemble (constant the number of atoms, pressure, and temperature). Figure 15 is one of 

the examples to equilibrate the BCC phase at 1000K case. The BCC phase runs for a total 

time of eight nanoseconds. The fluctuation rate of the potential energy decreases and 

stabilizes in a certain range (-129827 eV ~ -129870 eV for 32000 atoms). After the 

system reaches the equilibrium state, lattice parameters and potential energy are recorded 

as shown in Table 1. 



A&9!E3"#"-.!6,3)2!/-G!F/11")2!P/3/72123! ! %&'&()&!*!+&!(,-.!*!%)%/0123!

!

! :I!

 

 

!

1234&'+'

  

Base on the Gibbs-Helmholtz Equations [36] (Eq.21), at the constant temperature 

condition, the free energy in the single phase system relates to its enthalpy difference at a 

specified temperature.  

Temperature 
(K) 

Lattice 
Parameter 

(Å) 

Potential 
Energy 

(eV/atom) 

Lattice 
Parameter 

(Å) 

Potential 
Energy 

(eV/atom) 

 BCC FCC 
600 2.8833 -4.2384 3.6842 -4.1844 
800 2.8888 -4.2113 3.6874 -4.1590 
1000 2.8946 -4.1821 3.6911 -4.1337 
1200 2.9006 -4.1539 3.6953 -4.1073 
1400 2.9070 -4.1235 3.6999 -4.0809 

Lattice parameter and potential energy for FCC and BCC phases in five different simulation temperatures. 

Figure 15 

Potential energy graph for equilibrating BCC phase 
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Thus, Eq.21 can be integrated from the known melting point to obtain: 

'

! 

"G

T
=

H
S
(T) #HL

(T)

T
2

dT
T

Tm

$ ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(22)'

In Eq.22, "G is the free energy difference between the solid and liquid phases for either 

FCC or BCC. H(T) is the enthalpy as a function of temperature T. The superscripts S and 

L refer to solid phase or liquid phase and Tm is the melting point. The numerator Hs
(T) – 

H
L
(T) is the difference in enthalpy between the solid and liquid. To measure the latent 

heat, another two super cooling liquid simulation boxes are crated for BCC and FCC 

phases. These two boxes are set to pure BCC and FCC phases initially and melted at 

3000K, and then they are slowly cooled down and equilibrated at the specified 

temperature. A comparison of the results is shown in Table 2.!

Enthalpy 
(eV/atom) 

Enthalpy 
(eV/atom) 

Enthalpy 
(eV/atom) Temperature 

(K) 
Liquid 

Solid 
(BCC) 

Solid 
(FCC) 

1800 -3.8778 -4.0588 -4.0254 
1900 -3.8531 -4.0420 -4.0107 
2000 -3.8282 -4.0243 -3.9958 
2100 -3.8028 -4.0066 -3.9804 
2200 -3.7774 -4.3980 -3.9646 

Table 2 

 

 

Comparing result of the enthalpy for solid and liquid states for individual FCC and 
BCC phases. The temperature range is from 2200K to 1800K. Below 1800K the super 
cooling liquid phase is unstable.!
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From Table 2, in the super cooling range, the enthalpy for BCC is always lower than the 

FCC phase, and the enthalpy difference is very small. Based on above data, the linear 

enthalpy function can be identified as shown in Table 3. Based on the Eq.17, the FCC 

solid – liquid free energy function is calculated to be G=7.540e-5
T-0.16907 and the BCC 

function is G=8.296e-5
T-0.19714. Both of these values are in the unit of eV/atom. As 

shown in Figure 16, the red line identifies the FCC function and the blue is the BCC 

function. The distance between these two lines is their free energy difference, which is the 

driving force for the transformation.  

 BCC  FCC 
TM 2358 K TM 2236 K 

L 
(eV/atom) 

HL = 0.251T - 4.330 
L 

(eV/atom) 
HL = 0.251T - 4.330 

H(T) 
S 

(eV/atom) 
HS = 0.177T - 4.378 

H(T) 
S 

(eV/atom) 
HS = 0.151T - 4.299 

Table 3 

 

In Figure 16, the two solid-liquid free energy functions are linear, which does not 

agree with the experiment value. In the experiment, because of the effect of the magnetic 

force in the iron atom, the FCC free energy function is a curve and the FCC phase can be 

stabilized at a certain temperature range. However, MD potential still cannot simulate the 

effect of the magnetic force even to this days, the EAM-fs potential will probably not 

reproduce the iron phase diagram quantitatively. This needs not to be a real problem. The 

objective of this research is to study the interface mobility in the FCC to BCC phase 

transformation; the central quantity is the free energy difference in the BCC stable 

temperature range. So if the free energy difference is predicted reasonably well for this 

temperature, this EAM-fs potential is very likely to be useful in the simulation of 

interface mobility. More improvement and future researches will be discussed in Chapter 

7. 

Melting temperature and the potential energy function for individual BCC and FCC phases. 

!
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Figure 16 

Free energy graph of temperature, which the red line is represent the FCC phase and the blue is the 
BCC phase. The distance between these two lines is the free energy difference between the FCC and 
BCC phases. 
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4.3 Simulation settings 

 After obtaining the necessary background information, we can start to choose the 

size of the simulation box and orientation. The interface set up, the boundary condition 

and the method of equilibration of the system will be discussed in detail in this section.  

4.3.1 Interface !

 As discussed in Sections 2.5 and 2.6, the close packing interface Nishiyama-

Wasserman (N-W) relationship with the disconnection step structure is used to connect 

the FCC and the BCC phase. Figure 17 is the side view of the interface setting and 

looking from the Z direction. Based on the N-W relationship we set the X direction as the 

growth direction that is perpendicular to the interface. That means the three coordinate 

directions for each phase are  

BCC: X [1 1 0], Y [-1 1 0], Z [0 0 1]  

and  

FCC: X [1 1 1], Y [1 1 -2], Z [-1 1 0].  

 

Furthermore, instead of rotate the FCC with X-axis in the real N-W relationship, we tilt 

the XY-plane of FCC box for 4.04° with the Z-axis fixed to create the step disconnection 

structure; In this strategy, three single atom height steps are created in the FCC interface 

and the three coordinate directions are transferred to be  

X [7 7 6], Y [3 3 -7] and Z [-110]. 
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This disconnection structure is the key point to activate the transformation. First 

of all, the step structures increase the density of the matching atoms by creating perfect 

matching area in each ledge (Figure 5). In this way, inserting the monatomic ledge 

between coherent regions in the FCC/BCC boundary increases the frequency of repetition 

of these regions and raises the proportion of coherent atom in the boundary to around 

25%. Second, the secondary disconnection forming in each terrace plane releases the 

plane stress created by the misfit dislocation [37], which will be discussed in Chapter 6. 

As shown in the Figure 17, bx is the vector of this plane strain in the terrace plane and by 

is the vector defining the step strain, which is created by the disconnection. When the 

dislocation creeps to the edge of each step, the plane strain encounters with the step 

strain. Combining these two strains, now the net vector is perpendicular to the habit plane 

and the plane strain bx is no longer acting on the terrace plane. In this way, some of the 

plane stress is released by the disconnection structure. Third, the tilted FCC box with the 

periodic boundary condition transmits the disconnection through the transformation. We 

did not observed any !-#!

! !

W!

!!!!X!!!!!Y!

@??! >??!

Figure 17 

2D view of the left end side of the simulation box. Looking downward in Z direction. 
FCC box is 4.04° tilted form the N-W relationship. Three single atom height steps 
structure are created in FCC interface with 14 layers of atoms in each steps. 
BCC: X [1 1 0], Y [-1 1 0], Z [0 0 1]. 
FCC: X [7 7 6], Y [3 3 -7], Z [-1 1 0]. 
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transformation in the planar interface with periodic boundary condition. However, using 

the step structure as shown in Figure 18 creates a low energy boundary to let the BCC 

phase nucleate and then activate the transformation. In addition, the step structure and the 

misfit stress form a secondary disconnection structure in each terrace planes to guide the 

growing of the BCC phase (discussed in Chapter 6). !

4.3.2 System dimension  !

In this research, we use full periodic boundary condition for the box, which means 

the simulation geometry is periodic in all three dimensions and without any free surfaces.  

In this way, the model can simulate an infinite boundary situation and resembles more 

closely to the reality. Using the two Y-direction boundaries as an example, since the 

periodic condition once the atom moves past the top boundary under the periodic 

condition, it will appear back to the box from the bottom boundary and the atoms sitting 

on the top boundary will consider the atom on the bottom boundary as its neighbor 

(Figure 17). Thus, the dimension of the box needs to be selected carefully to avoid huge 

initial stress, which is created by the overlapping atoms, or too close to the boundary. 

Figure 18 [37] 

Schematic illustration showing the disconnection content of an interface, with Burgers vector 
components resolved in the terrace (upper) of the BCC phase and habit plane (lower) of the 
FCC phase. The terrace plane is inclined at an angle h to the horizontal habit plane. Coherency 
strain is represented by the equivalent ‘‘coherency” defect content bx.  



A&:!("7QF/1",-!0211"-.! ! %&'&()&!*!+&!(,-.!*!%)%/0123!

!

! AC!

This is especially important for the FCC phase. Since the FCC box is tilted from its 

regular orientation, the atomic plane is no longer flat but contains steps in the X-direction. 

Besides, the atoms on the upper and lower Y directions periodic boundary have to fit in 

their lattice to evade the initial stress. !

As shown in Figure 19, the whole simulation box is set up in a sandwich structure, 

in which the two sides of the box are BCC (ferrite) and the middle part is FCC (austenite). 

Since the lattice parameters for BCC and FCC are around 22% difference, the box size 

needs to be chosen carefully to make the interface fit to each other and avoid the stress 

during the phase transformation.  

 

!

!

Therefore, the interface size in the BCC phase is chose as 21 unit cells in the Y-direction 

and 27 unit cells in the Z-direction to match the FCC interface with 14.65 unit cells in the 

Y-direction, which is corresponds to 15 lattices in the untilted Y-direction and 15 unit 

cells in the Z-direction (Table 4). There are 180 layers of atomic planes in total in the X-

direction, which are parallel to the interface, in the FCC phase. Based on our dimension 

setting, the difference of the interface lengths between FCC and BCC phases are less than 

0.4% which will not cause an obviously effect in the initial pressure.  

 

 

 

 

Figure 19 

A sketch of the whole box setting. A miss match of the interface size can create a external 
stress, which can effect the final results.  
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4.3.3 Equilibrate the system  

 Before starting the phase transformation simulation, the systems have to be 

equilibrated in their specified temperature to avoid the affect of the extra stress and the 

huge flustration of the potential energy. During the equilibration step, the atoms vibrate 

and adjust their positions to release their interatomic stress under isothermal-isobaric 

condition. With the temperature being constant, the atoms will vibrate and adjust their 

position until they reach the equilibrant state. In this research, since the free energy 

gradient is always exist between the FCC and BCC phases. The two phase boxes have to 

be equilibrated separately in the five experimental temperatures before joining them 

together. Based on the above setting, a FCC phase box and two identical BCC phase 

boxes are run in NVT ensemble for 2 nanoseconds to stabilize the atomic structure, and 

then equilibrate in NPxT ensemble with 0 external pressure for another 6 nanoseconds. 

(Since the FCC box has much more atoms than the BCC box, it may require twice of the 

equilibrating time). NPxT means fixing the Y and Z dimensions but only changes the box 

length in the X-box length. This ensemble can equilibrate the system without changing 

our initial interface dimension (Y-Z plane), which can avoid creating the misfit in the 

Phase 
Size 

(NO. of unit cell) 
Orientation NO. of atoms 

X ( -4   4) X [1 1 0] 
Y ( 0   21) Y [-1 1 0] BCC 
Z (0   27) Z [0 0 1] 

18144 

X (-30.14   30.14) X [7 7 6] 
Y (0   14.65) Y [3 3 -7] FCC 

Z (0   15) Z [-1 1 0] 
206190 

Table 4 

Dimension and orientation of BCC and FCC phase boxes and the number of atoms base on this setting 
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interface when connecting the two phases. After the equilibration the whole box is 

connected as shown in Figure 20.  

!

!

 

 

Figure 20 

A schematic of the whole simulation box. Two BCC (golden atom) phase connecting 
two sides of the FCC (grey atom) phase to create two !/# interfaces. The dimension 
of the box is 448.84Å + 85.6Å + 78.7Å with total 241344 atoms. 
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Chapter 5 

Results: interface velocity, mobility and activation 

energy  
 !

 Based on the theory and the set up from the pervious chapters, we can start to 

simulate the austenite to ferrite transformation and analyze the results. As discussed 

before, the potential energy profile (5.1) can be directly captured during the 

transformation. According to Eq.4, the interface velocity and mobility (5.2) can be 

calculated from the potential energy profile and simulation box dimension. Finally, the 

activation energy and the pre-exponential mobility factor (5.3) are obtained and will be 

compared with the experimental data.  

Based on the selecting temperature range (600K – 1400K), 5 samples are 

separated into 3 groups. These groups include 2 samples in low temperature range (600K 

& 800K), 2 samples (1000K & 1200K) around the critical temperature for the !-# 

transformation (1185K), and one sample (1400) in the high temperature range. All of the 

five simples are established with identical box dimension, number of atoms (241344 

atoms) and interface setting to do the compaction. Furthermore, all of the samples are 

equilibrated under their specified temperatures before starting the transformations. 

After all the preparations, five samples are run in LAMMPS and repeated at least 

three times for each temperature. In each run, the initial ensemble of atom velocities [6] is 

changed to get average values. Figure 21 (a)-(d) is an example of the !-# transformation 

process for the 800K case. Figure 21 (a) shows the initial state of the 800K simulation 

box. Two BCC phase boxes connect to the two sides of a long FCC phase box and there 

are three step structures on each interface. Figure 21 (b) is the snapshot after 5 nano-

seconds of simulation runtime. The three step structures on the interface created three 
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disconnection defects shooting into the FCC phase and glided following their Burgers 

vector direction during the transformation (More detail information about the interface 

mechanism will be discussed in Chapter 6). Figure 21 (c) shows the last state of the 

transformation, where concave structures are observed in both of the two interfaces when 

the two interfaces are very close to each other. The concave structures of the interface 

show a partial individual steps growing behavior and a slightly unbalance growing speed 

in each step, which make some of the steps grow faster than the others (more detail in 

Section 6.4).  Figure 2. (d) shows the transformation already fully completed after 15ns. 

The whole simulation box is stabilized in pure BCC phase and without any defects.    
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(a) 0 ns 

 

(b) 5 ns 

 

(c) 10 ns 

 

(d) 15 ns 

Figure 21 

An example of the !-# transformation process for the 800K case. (a) is the initial state of the simulation 
box showing a sandwich structure with 2 BCC phases connecting the two sides of a FCC phase. (b) and 
(c) shows the moving of the interfaces. (d) is the equilibrium BCC phase after the transformation.!



B&4!\,12-1"/F!2-23.O!72/0Q3272-1! ! %&'&()&!*!+&!(,-.!*!%)%/0123!

!

! B9!

5.1 Potential energy measurement 

As shown in the free energy graph in Figure 16, since the BCC phase has the 

lowest energy state, the driving force will lead to a rearrangement of the FCC lattice to 

the BCC lattice. During the transformation, the total energy of the system will decrease. 

However, since both of the two phases are equilibrated at the simulation temperature 

before the transformation, the kinetic energy is already equilibrated to the steady state at 

that temperature. In addition, the NPxT ensemble stablizes the temperature of the system. 

Therefore, the variation of the total energy of the system is according to the change of the 

potential energy. The potential energy is one of the thermodynamic quantities, which can 

be directly obtained from the LAMMPS [6]. Thus, the potential energy versus time can be 

used to monitor the austenite to ferrite transformation. !

5.1.1 Low temperature case (600K & 800K) 

 Figures 22 & 23 show the total potential energy versus time for the 600K and 

800K cases. The total potential energy decreases as the interface moving. The potential 

energy fault at 16.8 nanosecond for 600K and 13.7 nanosecond for 800K is showing the 

moment at which the two interfaces contact each other. At this low temperature most of 

the iron alloys have undergone the martensitic transformation. However, since pure iron 

is simulated in these simulations, and we use the full periodic boundary condition, even in 

this low temperature regime the system still transform by a massive nature. For both 

potential energy graphs Figure 22 & 23, the level of decrease of the potential energy is 

fluctuating. At these temperature ranges, the low kinetic energy causes slowly moving of 

atoms. Sometimes, the interfaces have to slow down or even stop (for example the 

horizontal steps around the 5th nanosecond in Figure 22 and the 10th nanosecond in Figure 

23) to let the interface atoms to grain energy and rearrange their positions. This long 

interface fluctuation time affects the final result significantly. For example in the 600K 

case, the shortest transformation time is 16ns but the longest transformation time requires 
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30ns. Thus, to minimize the fluctuation effect, only the 3 median values during the 5 runs 

for the same simulation boxes (only change the initial atoms’ velocity) will be taken in 

the 600K case. The trend lines in both figures are fitted to the transforming part of the 

potential energy profile. The slopes of the trend lines identify the decreasing rate of the 

potential energy, which is also the 

! 

dE

dt
 term in Eq.4.  
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Figure 22 

The potential energy Vs simulation time graph for 600K.  
Trend line function: y = -561.5x – 1010871 
dE/dt = -561.5 eV/ns 
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5.1.2. Normal transformation temperature 1000K and 1200 K"!

 From 1000K to 1200K is the normal temperature for the austenite – ferrite 

transformation. Compared with the low temperature cases, the transformation time is less 

in 1000K and 1200K cases. Further more, the potential energy versus time shown in 

Figures 24 & 25 are smoother than the low temperature cases (Figures 22 & 23). That 

means the high temperature increases the kinetic energy of the BCC iron atoms and 

speeds up the interface velocities. The high temperature also gives the iron atoms higher 

capability to cross the interphase boundary and reduces the fluctuation effect.  Therefore, 

the interface velocities are more linear in this normal transformation temperature, which 

reflects on the profile as a smoother potential energy line and higher the energy 

decreasing rate. 
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Figure 23 

The potential energy Vs simulation time graph for 800K.  
Trend line function: y = -674.8x – 1004736 
dE/dt = -674.8 eV/ns 
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Figure 25 

The potential energy Vs simulation time graph for 1200K.  
Trend line function: y = -1504.4x – 992279 
dE/dt = -1504.4 eV/ns 

!

Figure 24 

The potential energy Vs simulation time graph for 1000K.  
Trend line function: y = -991.6x – 998618 
dE/dt = -991.6 eV/ns 
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5.1.3 High temperature 1400K"!

 In most of the experiments, the austenite – ferrite transformation temperature is 

around 1184 K and the melting point of the # BCC is 1809 K. However, since pure iron is 

used as the only element in this research, base on the Ackland et al. 1997 potential [15] 

the melting point of the # BCC is up to 2358 K. And according to the free energy profile 

shown in Figure 16, the free energy line for BCC is always lower than that for the FCC in 

the whole solid range. Therefore, the transformation can also be simulated in the 1400 K 

temperature case. 

 Figure 26 is the potential energy Vs the simulation time graph for the 1400 K 

case. With the same dimension set up and has identical number of atoms as the 4 previous 

samples. The 1400 K case has the deepest decreasing slope and the smoothest potential 

energy profile, which means the fastest interface speed and therefore, as will be discussed 

in Section 6.3 it has the highest nucleation rate of BCC islands in the five samples. Since 

the driving force %G is almost constant during the transformation temperature range 

(Figure 16) while the kinetic energy is increasing with the temperature, based on Eq.1, the 

mobility can be written in form of 

 

! 

M = M0 exp "
E

kT

# 

$ 
% 

& 

' 
(                                                   (23) 

in which the interface mobility is!proportional to the temperature. Therefore, the mobility 

is under temperature control.!It illustrates that the high kinetic energy let the atoms have 

greater capability to cross the interphase boundary. In addition, this high temperature 

transformation simulation also denotes that driving force %G identifies the probability of 

the nucleation in the interface and this driving force can be adjusted base on the EAM 

potential. Therefore, the velocity of the interface can be predicted in a reasonable 

temperature range, as long as we have precise driving force information. 
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Figure 26 

The potential energy Vs simulation time graph for 1400K.  
Trend line function: y = -1504.4x – 992279 
dE/dt = -1504.4 eV/ns 
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5.2 Interface velocity, mobility and activation energy"!

To calculate the velocity and the mobility of the interface during the 

transformation, we have to recall the dynamic function mentioned in Chapter 2 and 

combine our simulation box dimension with the driving force discussed in Chapter 3. A 

detailed calculation of 1000K cases will be analyzed as an example in here. 

5.2.1 Interface velocity 

Based on Eq.4, 

! 

v = "
1

2a#L

dE

dt
 where the 2 in the denominator considers the two 

interfaces in the simulation box. a is the area of the interface. Since the y and z boundaries 

are fixed by the NPxT ensemble, the interface area is equal to the y-z plane area, which 

can be calculated by the number of unit cell (Table 4) in the Y and Z direction times the 

lattice parameter (Table 1). The parameter L is the latent heat, which is the potential 

energy difference between the two phases (Table 1) and $ is the volume per atom in the 

FCC phase, which is calculated by the volume of the unit cell (cubic of the lattice 

parameter Table 1) divided by the number of atom per cell (4 atom/cell for FCC phase). 

Finally, the first derivative of the potential energy 

! 

dE

dt
 is the slope of the potential energy 

profile shown in Figure 24 for the 1000 K case. 

a – area of the interphase: 6737.0878 Å2 

L – latent heat: -0.04842 eV/atom 

$ - volume per atom in the FCC phase: 12.5717 Å3/atom 

! 

dE

dt
 - slope of the function potential energy profile: -991.6 eV/ns 

Then, 
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v = "
1

2a#L

dE

dt
=

1

2 $ 6737.08(A
2
) $12.57(A

3
/atom) $ ("0.048eV /atom)

$ ("991.6eV /ns)

 

= 19.1 Å/ns  

=1.91 m/s 

5.2.2 Mobility 

From Figure 16, the free energy function for FCC and BCC phases are indentified 

as: 

         GFCC = 7.5396e
-5

T – 0.16907                                           (24) 

and 

 GBCC = 8.2961e
-5

T – 0.19714                                            (25) 

Therefore, at 1000K the free energy difference "G = GFCC(1000) – GBCC(1000), which is 

equal to 0.0205 eV/atom.  

 In Eq.2, the 
  

! 

! 
M 0 exp "

Q

RT

# 

$ 
% 

& 

' 
(  term can be considered as mobility M. Then Eq.2 can 

be converted to  

! 

M = "
v

#G
=

1.91m /s

0.0205eV /atom
$

1

1.0602 $10
"19
eV /J $

1

6.0221$10
23
mol /atom 

= 9.657e-04 m*mole/J-s 

Table 5 shows the driving force, velocity, and the mobility in the five different 

temperature cases based on the calculation method list above. 
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Temperature (K) 600 800 1000 1200 1400 
Driving Force (%G) 

(eV/atoms) 
0.024 0.0220 0.0205 0.0190 0.0175 

Velocity  
(m/s) 

0.7±0.201 1.3±0.710 2±1.028 3±1.391 3±1.720 

Mobility (e-03) 
(m*mole/J-s) 

0.31±0.089 0.6±0.334 1.0±0.520 1.4±0.759 2.±1.020 

Table 5 

5.2.3 Activation energy and pre-exponential factor M0!

 From the mobility data of the five different simulation temperatures, we can start 

estimate the activation energy. By taking the natural logarithm of the mobility term in 

Eq.1, a new linear function 

! 

lnM = "
Q

R

1

T
+ lnM

0
is obtained. In summary all the five 

temperature cases, and the lnM Vs 1/T graph is shown in Figure 27. In Figure 27, the 

slope of the best fit line is the term 

! 

"
Q

R
 (R is the gas constant), and the Y-intersect is the 

lnM0. Therefore, the activation energy Q and pre-exponential factor of mobility M0 are 

calculated as 16 kJ/mole and 7.2&10-3 m*mol/J-s respectively.  

 Figure 27 

The natural logarithm of the mobility versus one over temperature graph, with a best fit line function  
f(x) =  -1919.7x – 4.9350; 

y = -1919.7x – 4.9350 

"#$!%&!'()!

Driving force, velocity, and the mobility in the five different temperature cases  
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5.3 Results and discussion 

The transformation can be envisioned as the movement of atoms across the 

interphase boundary. Long – range diffusion does not occur in massive transformation. 

Therefore, the transformation rate can be described solely by means of the interface 

mobility. As introduced in Chapters 2 and 5, the interface mobility is defined as the 

proportionality factor between the interface velocity and the driving force for the 

transformation. In addition, in the isothermal condition the interface velocity of massive 

transformation will be constant throughout the transformation [4]. Then we can use a 

linear relationship trend to fit the transforming potential profile in Figures 22 – 26. Figure 

28 shows a comparison of the potential energy during the transformation for five different 

temperature cases. All the samples have identical number of atoms, orientation and unit 

cell. However, because of the temperature variations, there are various in starting and 

equilibrium potential energy and transformation time.  

The interface mobility and velocity model (Eq.2) uses three quantities to describe 

the phase transformation: the activation energy Q, the free energy difference !G and the 

pre-exponential factor M0. The activation energy Q is expected to be comparable to the 

value for nucleation rate of BCC crystal in pure iron [41]. Meanwhile, the nucleating 

energy relates to the composition, orientation and the driving force.  In a certain 

orientation with single element condition, the transformation time decreases as the 

temperature raises, and when the driving force is constant. That is because based on the 

Ackland et al. 1997 iron potential, the change in driving force related to the temperature 

is very small. Comparing to the temperature effect to atomic kinetic energy, the 

temperature effect to our driving force is almost neglectable. Furthermore, in the identical 

composition, orientation and constant driving force situation, the higher temperature, the 

higher the total energy (both the potential and kinetic energy) of atoms, which means the 

atoms have more capability to across the interphase boundary. In this way, the high 
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temperature directly causes high interface mobility and hence reduces the transformation 

time. Thus, the interface mobility in our simulation is under temperature control. !

 

 

 

The activation energy bases on our condition setting is 16 kJ/mole which is much 

smaller than the experimental value Q =140 kJ/mole as shown in Table 6. However, some 

precious simulation studies shown that the activation energies values obtained from 

atomistic simulations are significantly smaller than those found in experiments (even in 

high purity materials) [9]. The difference comes from the affect of impurity and 

dislocations in the crystals. Most of the experimental values from researches are based on 

the iron alloy with adding the solute drag, which will increase the activation energy [51].  

Figure 28 

The potential energy profile during the "-!!transformation for five different simulation 
temperatures with the same setting of orientation, dimension and number of atoms. 
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In simulation area, due to the low activation energy Bos’s et al. detected a high 

interface velocity at 810 K to be around 400m/s (close to the martensitic transformation 

speed), and high mobility around 0.3 m*mol/J-s. However, our simulation box uses full 

periodic boundary without any free surface, so the activation energy (16 kJ/mole) is much 

higher then theirs, at 800K our mobility is 6.5&10-4 m*mol/J-s and the interface velocity 

is 1.4 m/s, which is more close to the massive transformations. 

The most relevant experiment is approached by Liu et al [52]. During their 

experiment, 99.98 wt.% of pure iron is used as pattern to analyze the austenite-ferrite 

transformation behavior. Under an isochronal (continuous cooling) condition, Liu et al 

determined the average interface migration velocity is around 3+10-6 m/s and Q = 147 

kJ/mole. However, that unknown 0.02 wt.% impurity can affect the interface velocity 

significantly. Rutter and Aust’s [53] measure the grain boundary migration rate in Pb 

bicrystals as a function Sn content in one of their study. They demonstrate that even a 

0.006 wt.% of impure Sn can slow down the grain boundary velocity by magnitude of 4. 

Therefore, more study should be focused on the!influence of the impurity. Besides, the 

continuous cooling method induces a fluctuation of the net driving force, which leads to 

the irregular nature of the interface velocity, and affect the activation energy. Furthermore, 

Winning and Rollett declare that the dislocations in the grain impact the motion of the 

grain boundary [54]. During their experiment, the grain boundary is drove by the external 

stress in pure Al. Winning and Rollett found that the low and high angle grain boundaries 

show different behaviors when they cross the lattice dislocation. For the low angle 

boundaries sample, the grain boundary needs to climb over the dislocation by diffusing 

vacancies through the dislocation. It will take an extra activation enthalpy by 110 kJ/mole. 

For high angle grain boundaries, the dislocation can be absorbed by the grain boundaries 

and these processes require a lower activation enthalpy by 64 kJ/mole. In these simulation 

study, we have difficulty to identify the !-# interphase boundary is belong to low or high 

angle. However, both of the cases required a!much larger amount of energy compared 

with the energy activating the interface motion. Therefore, the impurity and dislocation 

are the main reasons cause the mismatch between experimental and simulation values. 
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Since in our simulation, the system is set in an ideal condition with 100 wt.% iron and 

none dislocation in the FCC phase. Indeed, the experimental activation energy is an 

average value for all grain boundaries [1]. However, some studies have shown that the 

transformation behavior is a strong function of the grain boundary orientation. In MD 

simulation, we can arbitrarily choose the grain boundary orientation. The interface 

relationship that is used in this study may be one of the low energy boundary 

relationships. Thus, a low activation energy is detected and directly contributes a high 

interface velocity and mobility. Therefore, the Q = 16kJ/mole is consider as the primary 

activation energy to start the Austenite to Ferrite transformation and before the interface 

hit to and impure atoms or dislocations. Further studies relate to the influence of impurity, 

dislocation and interface orientations are processing.   

Around 800K 
Velocity 

(m/s) 
Mobility 

(m*mol/J-s) 
Activation energy 

(kJ/mol) 
Massive transformation 

(Simulation) 
1.4 6.2+10-4 16 

Martensitic transformation [33] 
(Simulation)  

400 0.3 5.8 

Diffuse control  
phase transformation [1] 

(Experiment) 
10-3 10-7 140 

 

 

 According to our study, using the MD method to study the "-! massive 

transformation is feasible. Further study will focus on the following areas. First of all, 

new grain boundary orientations have to be tested to identify the effect of the orientations 

to the activation energy. Second, some impurity like carbon (C), manganese (Mn) or 

copper (Cu) can be added to study the possible effect of solute drag. Although the MD 

method cannot simulate the long-range diffusion process during the transformation, under 

the high interface speed situation, the solute drag can stay in their original position 

without diffusion with the interface. Some previous studies predicted that solute drags 

could act as a pin to slow down the movement of the interface. Therefore, clarifying the 

Table 6 

Compare the velocity, mobility and activation energy values from massive, martensitic and diffuse 
control phase transformation. 
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property of the impure solute drags is helpful to explain the variance between simulation 

and experimental values. Third, dislocation can be created in the FCC phase to test the 

climbing or absorbing processing of the low and high angle boundary during the 

transformation. Finally, as discussed in Section 5.3, the driving force significantly affect 

the transformation behavior. The driving force in MD simulation is controllable by 

adding potential energy in specified lattice. For example, we can add the potential energy 

to the atoms belong to the FCC phase. In this way, we can adjust the driving force (Free 

energy difference between FCC and BCC phases) to match the experimental values and 

study the effect of the driving force to the transformation. 

5.4 Summary!

 A molecular dynamic method to simulate the pure iron austenite – ferrite 

transformation has been demonstrated. Five different temperatures samples, from 600K to 

1400K with 200 temperature increments are tested. The interface velocity and mobility 

are identified to be around 2m/s and 1e-03m*mole/J-s based on the potential energy 

profile during the transformation. The activation energy is 16 kJ/mol, which is much 

lower than that found in previous experiments. The activation energy and interface 

velocity are related to the driving force, interface orientation and composition but also 

affect by the impurity and dislocation in the crystal. Based on the setting of our system 

and simulation method, further simulation research can be attempted to explain the 

character of driving force, interface orientation, lattice defect and composition during the 

massive transformation. 
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Chapter 6!

Interface atomic mechanisms!

!

 With the MD method discussed in the previous chapters, the macroscopic data 

like the total potential energy, interface velocity and mobility are obtained. Now we can 

focus on some micro-phenomenon. The MD simulations can identify the coordinates of 

each atom and thus, track their motion during the transformation. In order to observe the 

moving interface, a centro-symmetry parameter is introduced in Section 6.1 to determine 

whether a given atom belongs to FCC or BCC phase. Based on previous studies, a step 

ledge growing behavior (6.2) is observed in some of interface orientations. However, 

according to our interphase boundary orientation, moving misfit dislocations also 

participate during the transformation (6.3).!

6.1 Determine the interface 

The # and ! grain boundary is a solid – solid interface. The difference of 

structures and the atom distances between the two phases are not as obvious as the solid – 

liquid interface. The common interface determining methods like the atom density or 

average atom distances are not precise enough to identify this solid – solid interface. 

Thus, a centro-symmetry (CS) parameter is applied in this study to distinguish the BCC 

and FCC phase. 

Centro-symmetry parameter is first discussed by Kelchner et al [42], which is 

used to determine defects from the extensive elastic deformation in the thin film.  
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i=1

N / 2

"
 
                                                  (26) 

As shown in Eq.26 [42], N is an input parameter and indentifies how many nearest 

neighbors of each atom are found in ideal lattice. For example, in the FCC phase N is 12 

but in the BCC phase N will change to 8. Ri and Ri+N/2 are vectors from the central atom to 

a particular pair of nearest neighbors. The N nearest neighbor vectors for each atom is 

first determined in an ideal bulk lattice with the orientation of the slab. According to the 

atom positions in the ideal lattice, the first group of N/2 nearest neighbor vectors (Ri) 

from a center atom is generated by finding those neighbors in our simulation box with 

vectors closest in distance to the ideal nearest neighbor. Then the computer algorithm 

looks for the other groups of N/2 vectors (Ri+N/2), which are on the centro-symmetry 

positions of the first group. Each pair of centro-symmetry (Ri and Ri+N/2) vectors will be 

added up and the centro-symmetry number CS is the sum of the squares of N/2 resulting 

vectors calculated [42]. In the ideal lattice each pair of centro-symmetry vector are equal 

and opposite, thus Ri + Ri+N/2 is equal to zero and cause the centro-symmetry number also 

equal to zero. In the real simulation box, however the atoms have thermal perturbations of 

a perfect lattice the centro-symmetry number will be a small positive number in a unity 

phase cell. 

 In this research, the number of nearest neighbors is fixed in the FCC phase (N=12). 

Therefore, the centro-symmetry will be small if the atom lies in the FCC phase. The BCC 

phase also have the centro-symmetry property, but since we check 12 neighbors, only 

four pairs of these atoms in the BCC phase match their centro-symmetry positions. The 

centro-symmetry number for atoms in the BCC phase will be larger than those in the FCC 

phase. Finally, since the atom sitting on the interface have no centro-symmetry property; 

these atoms will have the largest centro-symmetry numbers. Figure 29 shows an example 

of a centro-symmetry number profile for the 1400K simple. Using the centro-symmetry 

method, we determine the atoms with the CS number from 3.7 to 5.9 to be in the BCC 
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phase. The atom with a CS number lower than 3.7 is in the FCC phase. And all other 

atoms with a CS number greater than 5.9 are identified as interface atoms. 

!

Figure 29 

The centro-symmetry number (CS) profile for the 1400K simple. Each dot in the figure presents an atom in 
the simulation box. The x-axis locates the x position of atoms in units of angstrom. y-axis is the CS number 
of each atom. Two sides of the box are the BCC phases, which has a CS number from 3.7 to 5.9. The 
middle part is the FCC phase with a CS number lower than 3.7. All the atoms with a CS number greater 
than 5.9 are identified on the interface. 
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6.2 Planar interface growth and step ledge growth 

 Some pervious studies of the solidification processes show that the solid phase 

grows in a plane structure. One of the examples is the solidification of Silicon (Si) along 

the facetted <111> direction. During the solidification, the solid Si will first nucleates in 

certain faceted terrace interface orientation like (111) plane. Then, once the nucleus 

become larger than the critical size, it will start to grow in a dish shape. Mostly, these 

nucleus dishes would have one atomic height and grow in a great speed though the whole 

interface. After the first nucleus dish fills the whole interface plane, the second plane 

layer will start to nucleate and grow on the first plane according to the same method [Un 

published research by Hoyt]. We call it planar structure growth. This layer-by-layer 

growing process is also observed in Bos’s et al [33] martensitic transformation. Bos’s et 

al. described that before the transformation started, the interface atomic plane had to build 

a screw dislocation network for the transformation to go through the entire interface 

plane. This screw dislocation network is a nucleus for the solid-solid interface. Similar to 

the Si solidification process, after the first layer of FCC plane completely transforms to 

the BCC phase, the screw network will start to build up and transform the next layer and 

so on. In our research, the interface also exhibits a planar structure growth property. As 

shown in Figure 21, the three ledges structure in the FCC phase separates the interface 

into three disconnections. During the transform, the interface remains fairly planar. Even 

though there are small fluctuation in the positions of the step in the X-direction, a large 

convex is not observed. In addition, where the BCC phase nucleates in the FCC phase and 

how the BCC steps grow are the questions that will be analyzed next.   

 One of possible mechanisms is the step ledge growth, which is described by Howe 

et al [43]. According to their experimental observation using transmission electron 

microscopy on several examples of FCC to BCC phase transformations. They found that 

the disconnection ledges could grow in the Burgers vector direction and cause the 

movement of the FCC-BCC interface. As introduced in Section 2.2.2, the Burgers vector 
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can be simply expressed as b = l% + l$!#Eq.5) in a homogeneous boundary. Figure 30 

shows an example of a single step disconnection structure. If the , and µ phases are in the 

same interface orientation, it is considered as a homogeneous boundary. Thus, the 

Burgers vector of the disconnection is the sum of the defect translation vectors in each 

phase. However, if the , and µ phases are in a different interface orientation, Eq.5 has to 

be extended to form: 

!
  

! 

b = "(
! 
t # + P

coh

! 
t $ )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(27) 

In Eq.27, the t( and tµ are the translation vectors in their own coordinate orientation, 

which are the vectors along the Burgers circuit in each phase. Pcoh is a coherence matrix 

to convert a µ  vector into the , coordinate frame.!Therefore, the Burgers vectors also can 

be estimated in a boundary of arbitrary orientation.!

 

In the dislocation defect, the Burgers vector is the gliding direction for the 

dislocation under an external stress. During dislocation motion, a half plane of atoms is 

slipped in response to shear stress by the breaking and reforming of a line of bonds, one 

(or a few) at a time. The energy required to break a single bond, which is in the Burgers 

vector direction is far less than that to break all the bonds on an entire plane of atoms at 

once [44]. Similarly, the disconnection also prefers to glide or grow following its Burgers 

array is outlined using crystal plasticity theory [44]. Section 3 deals with kinetic aspects of disconnec-
tion models of transformations. These aspects are the magnitude of diffusional fluxes, constraints on
diffusionless processes, and kink formation and motion. Experimental observations of martensitic
transformations are presented in Section 4 and those of disconnection processes in diffusional trans-
formations are presented in Section 5. These findings are discussed in view of the theoretical under-
standing reported in Sections 2 and 3. Discussion and a summary are set forth in Section 6.

2. Structural properties of defects

2.1. Dislocation and step character of interfacial defects

Consider a bicrystal where a planar surface of one crystal, designated ‘‘white” (k), abuts the surface
of a ‘‘black” (l) one. The topological character of an admissible defect that can be superimposed on
this reference structure is given by a combination of symmetry operators, one from each of the crystals
[38]. Using the matrix formalism for symmetry operators set out in the International Tables for Crys-
tallography [45], we find that the operator characterising a defect is given by

Qij ¼ WðkÞiW
$ðlÞ%1

j ; ð1Þ

where WðkÞi and WðlÞj are the relevant operators and the asterisk implies that WðlÞj has been ex-
pressed in the k coordinate frame. The set of defects defined by expression (1) includes dislocations
that have reached the interface from either of the crystals and also a range of other defects peculiar
to the interface. In the former case, a perfect white crystal dislocation is represented by
Qij ¼ WðkÞi ¼ ðI; tðkÞiÞ, where I represents the identity operation and t(k)i is the translation vector
equal to the dislocation’s Burgers vector, b. An interfacial defect arises, for example, when dislocations
from both crystals coincide at the interface; then Qij ¼ ðI; tðkÞi % t$ðlÞjÞ, or, in other words, the defect
exhibits dislocation character with b ¼ tðkÞi % t$ðlÞj. Hirth and Pond [30] have defined the ‘‘overlap”
step height, h, associated with such a defect to be the smaller of n & tðkÞi and n & t$ðlÞj, where n is
the unit normal to the interface pointing into the k crystal. When h is finite, the defect is a disconnec-
tion, characterised by (b, h), as depicted schematically in Fig. 1. Disconnections are perfect, when they
separate energetically degenerate regions of interface, and partial otherwise; a subset of perfect dis-
connections separate degenerate regions inter-related by rotation or mirror operations [38]. Since
there is no overlap step when only one crystal dislocation is present, such a defect is characterised
by (b, 0).The description of the disconnection in terms of b and h is the only plausible choice. The
long-range elastic field is that of the dislocation, while the overlap step produces no long-range elastic
field but does produce an offset of the interface. There are other types of defects of this type, including
line-force disconnections and spacing defects [46,47], but these are more relevant for grain boundaries
than for interphase interfaces and are not considered here in detail. Also, for disconnections with large

Fig. 1. Schematic illustration of a perfect disconnection formed by bonding incompatible surface steps on the k and l crystals
[38]. If the k and l surfaces to the left of the defect are bonded first, a Volterra operation Qij is needed to correctly juxtapose the
surfaces on the right hand side before joining to form a degenerate interface.

J.M. Howe et al. / Progress in Materials Science 54 (2009) 792–838 795

!"#$%&'56'*75-'

Schematic illustration of a single step disconnection cause by bonding misfit surface ledges on the , 
and µ phases. If the ,-µ interface on the left side of the defect are bonded first, there must be a gap on 
the right side due to the difference of the 13/-0F/1",-!vector in each phases. The perfect Burgers vector 
for the disconnection is the sum of the translation vector in , and µ phases. 
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vector. Since this direction requires low energy to break and rebuild the bond. Figure 31 

is a high resolution TEM image showing an example of a disconnection in Au [45 & 46]. 

Based on Eq.27, the Burgers vector is calculated as shown in Figure 31. The coherent 

terraces can extend in the Burgers vector direction during the growth of the µ phase. In 

this way, the whole ,-µ interface moves in the direction of the vector %  (Figure 31). 

!

!

 However, this step ledge growth phenomenon is not applicable in our interphase 

boundary setting. As shown in Figure 32, our #-! boundary is an incoherent interface 

[47]. Since the BCC phase is a perfect single crystal without any defect, its defect 

translation vectors is equal to zero. On the other hand, the FCC phase is set up with three 

ledges structure, which has a defect translation vector tFCC . Therefore, according to Eq. 

27 the Burgers vector for the disconnection is equal to the -tFCC (-bp = tFCC + Pcoh!0), 

which has a 66.5° angle with the BCC interface plane. Even though the disconnection still 

transforms along the Burgers vector (Figure 21), because of the angle between the 

Burgers vector and the interface, disconnection terraces cannot grow along its habit plane 

Figure 31 [45], [46] 

A HRTEM image showing interfacial disconnections. Base on Equation 23, the Burgers vector is 
calculated directing as showing in the figure. Each disconnection steps can glide and grow following 
their Burgers vector direction. The net effect causes the transforming of the ,-µ interface to the %  

vector direction. 

!"

!"
!"

"% "
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direction. Thus, another kind of interface growing mechanics is required to support the 

plane structure growing behavior.  

 

!

!

!

!

! !
Figure 32 

2-D side view of the simulation box setting. BCC phase is a perfect single crystal without defect. FCC phase has 
three ledges defect on the x-direction surfaces. According to Eq.27, the disconnection structure has burger bp as 
showing in the figure. 

W!
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6.3 Planar secondary disconnection growth 

In the following we will refer to the disconnection structures of Figure 32 on the 

interface as the “primary disconnections”, with the vector bp. Since the Burgers vector of 

the primary disconnection has a 66.5° tilt from the BCC habit plane, the growth of the 

primary disconnection cannot be parallel to the planar direction. However, the processing 

of the transformation still exhibits planar growth behavior (Figure 21). Therefore, more 

studies should focus on the atomistic phenomenon in the disconnection terrace plane. 

6.3.1 Misfit dislocation in the terrace plane 

  Based on the simulation box geometry, the lattice parameter difference between 

the FCC and BCC phases forms periodic misfit dislocations on the interface. Table 7 lists 

the real lattice spacing in each orientation for the FCC and BCC phases. The normal view 

of 

Figure 32 shows the ideal initial state of the #-! interface, which assumes that all the 

atoms are located on their ideal lattice. In Figure 33, only two layers of the interface 

atoms are shown. The gray atoms belong to the FCC phase and the yellow atoms are in 

the BCC phase. As we mentioned in section 2.6, with the N-W close-packed interface 

     Spacing 

Temp (K) 

FCC 
(Unit b) 

BCC 
(Unit b) 

Orientation 
X 

(7 7 6) 
Y 

(3 3 -7) 
Z 

(-1 1 0) 
X 

(1 1 0) 
Y 

(-1 1 0) 
Z 

(0 0 1) 
600 6.3721! 5.8575! 5.2158 4.0773 4.0773 2.8853!

800 6.3782 5.8631 5.2208 4.0855 4.0855 2.8882 

1000 6.3834 5.8678 5.2250 4.0930 4.0930 2.8942 

1200 6.3911 5.8750 5.2313 4.1034 4.1034 2.9015 

1400 6.3990 5.8822 5.2378 4.1112 4.1112 2.9070 
Table 7 

The real lattice spacing in each orientation for the FCC and BCC phases. 
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relationship, only 8% of the atoms can be considered as coherent in a flat plane interface. 

The coherent atoms were found to be grouped into small rhombic regions as shown in 

Figure 6 (a). Based on our interface geometry, our close-packed relationship relates to the 

N-W relationship and has the similar rhombic coherent region. Meanwhile, the 3 primary 

disconnection steps in the FCC phase raise the proportion of coherent atoms to around 

25% by increase the frequency of repetition of the rhombic coherent regions (Figure 33). 

Moreover, according to the lattice spacing difference between the two phases on the 

interface plane (Table 7), the Burgers vector direction of these misfit dislocations are 

calculated to be around 37º tilt from the (-1 1 0) direction of the BCC orientation, which !

 

 

 

are shown as the vector bs in Figure 33. These misfit dislocations locate on the interspaces 

between two adjacent!coherent rhombic areas in each terrace plane and extend to the 

steps edge of the primary disconnection. 

3 disconnections 
step edges 

=!

$!
O!

!$"!$"

Figure 33 

 

Cross section view normal to the interface in the ideal initial state. The gray atoms identify the FCC 
phase and the yellow atoms are in the BCC phase. Three disconnection steps separate the whole 
interface into three terrace plans. The rhombic area in each terrace plane is the atom matching area in 
each terrace. The misfit dislocation local in the interspaces between the rhombic area and the Burgers 
vectors (bs) is around 37º tilt from the (-1 1 0) direction of the BCC orientation. 
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6.3.2 Secondary disconnection formation and growth in terrace plane 

As we mentioned in the pervious chapter, the misfit dislocation caused by the 

lattice spacing difference between the FCC and BCC phase creates an interatomic stress. 

In order to release this stress, the terrace plans form another disconnection structure. 

Compared with the primary disconnection, which is created on the FCC – BCC interface, 

we call the disconnection located on each terrace plane to be “secondary disconnections”. 

 Figure 34 is a cross-section view of the simulation box, which is normal to the 

interface and only depicts the atoms belong to the BCC phase. As shown in Figure 34, 

three primary disconnections are gliding into the FCC phase follow along with their 

Burgers vector bp. Some small kinks structures are forming around the primary 

disconnections step edges. It shows that the new BCC crystals prefer to nucleate on these 

primary disconnections steps edges. In addition, secondary disconnection structures can 

be observed in each terrace planes. These secondary disconnections have the Burgers 

vectors, which are identical as the misfit dislocations in the initial state. During the 

transformation, the kinks first nucleate on the primary disconnections steps edges, and 

then start to grow in a plane shape, forming the secondary disconnections. These 

secondary disconnections will extend along with their Burgers vectors until they fill in the 

whole terrace plane. Two to three secondary disconnections can arise at the same time in 

the same terrace plane but growth follows the plane order, which means the second 

secondary disconnections grows only when the secondary disconnections completely 

cover the whole terrace plane. Furthermore, the Burgers vectors of the secondary 

disconnection lay on the BCC habit plane. Therefore, the secondary disconnection steps 

have a plane growing behavior, which is parallel to the BCC habit plane. Thus,!this 

secondary disconnection growth mechanic not only explains why the interface still shows 

plane growing behavior, even though the primary disconnections have a 66.5° tilt from 

the BCC habit plane, but also validates the disconnection growth theory introduced in 

previous investigations.  
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Figure 34 

3D – cross section view of the interface during the transformation with only the BCC atoms 
indicated. There are kinks nucleated on the edge of the primary disconnection steps. Several 
secondary disconnection are growing in their Burgers vectors direction in each terrace plane. 

3 primary 
disconnections 
step edges 
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steps 

Nucleation kinks 
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6.4 Analysis and discussion 

 According to an observation of interface snapshots during the transformation, the 

transformation mechanics become more intelligible. The step edges of the primary 

disconnection create a heterogeneous site to allow the BCC crystal to nucleate on the 

interface. Most of the nuclei will shrink and disappear once they nucleate. Only the nuclei 

that are greater than the critical size will grow as a kink on the primary disconnection step 

edge. Then the kinks try to form a secondary disconnection structure in each terrace 

planes to release the interatomic stress that are created by the misfit dislocations on the 

BCC-FCC interphase boundary. After that, the secondary disconnections grow in their 

Burgers vectors direction, which is parallel to the BCC habit plane and go though the 

whole terrace plane.  

In order to further analyze the nucleation and transformation process, a 

microscopic!potential energy profile is zoomed into one atomic plane level. At the initial 

snapshot, one side of the interface is located at -192.21 in the x-axis. Two individual 

observing windows are opened at -76.5Å ~ -74.3Å and  -65.7Å ~-63.7Å in the x-axis, 

which are parallel to the FCC-BCC interface. Each window only contains one plane of 

atoms. Figure 35 is a potential energy versus time of these two layers of atoms as the 

interface passes by.!Layer 1 is located on X-position -76.5Å ~ -74.3Å, which is closer to 

the interface than the Layer 2 at -65.7Å ~-63.7Å. When the interface approaches, the 

atoms will vibrate more and more strongly and depart!from their original lattice position 

(FCC), which cases an increase of potential energy (Figure 35). At the same time, the 

BCC kinks nucleate and shrink on the primary disconnection edges. Once their potential 

energy crosses the activation energy, the kinks start to grow in the plane shape following 

the direction of secondary disconnection Burgers vectors. Then the potential energy 

decreases during the planar transformation. The three jumps in each layer’s energy profile 

identify the complete transformation of the three terrace planes in the interface. These 

potential energy jumps show a partial independent transformation behavior in each 



C&A!'-/FO0"0!/-G!G"0)Q00",-! ! %&'&()&!*!+&!(,-.!*!%)%/0123!

!

! DH!

terrace plane that means the transformation can occur on each terrace in different time 

and one terrace can grow surpass or behind to another. This partial independent 

transformation also explains the alternation between concave and convex structures of the 

interface during the transformation.  

 

 

However, the growing difference between each terrace plane is less than 3 atom planes 

(Figure 21), otherwise the interface will slow down to wait for the trailing terrace plane. 

Thus, the interface speed is non-uniform during the transformation, which can be 

reflected as the nonlinear decrease of the potential energy in the total potential graph 

(Figure 22-26). Combining with the fluctuation effect, the transformation speed for each 

plane can be significantly different (Figure 35). After the transformation, the potential 

energy equilibrates to the BCC phase level. !!
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Figure 35 

A potential energy profile of two individual layers of atoms. Each layer only contains 1 plane 
of atoms, which is parallel to the FCC-BCC interface. Layer 1 locate on x-position -76.5Å ~ -
74.3Å and Layer 2 is at -65.7Å ~-63.7Å. 
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6.5 Summary 

By means of! molecular dynamic method and computational simulation 

techniques, the interface growth mechanism during the !-# massive transformation is 

found. Based on our analysis, the primary disconnection is acting as seedbed to create a 

heterogeneous site to let the BCC kinks nucleate. The BCC kinks prefer to form a 

secondary disconnection in each terrace plane to release the dislocation stress caused by 

the mismatch of FCC and BCC lattice. Once the atoms gain enough energy to cross the 

activation energy barrier, the BCC kinks will grow in a plane shape following the 

directions of the secondary disconnection burgers vectors. During the transformation, the 

interfaces show a partial independent transformation behavior in each terrace plane and 

cause a non-uniform moving speed of the interfaces (Figure 22-26), which is more 

obvious in the low temperature cases. Since the massive transformation avoids the 

diffusion effect of the solute drag, its transformation speed shows a strong nucleation rate 

dependent. Future research can focus on the nucleation step and the effect of the driving 

force to the nucleation to further explain how the transformation speed relates to 

temperature. 
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Chapter 7 

Future research 

!

 With the successful setting of the basic model to simulate the austenite – ferrite 

transformation in pure iron, further research can be approached. 

1. Some previous researches on the !-# transformation have suggested a strong 

interface orientation dependence. Thus, new interface close-pack relationships can 

be tested like the N-W and K-S relationship, to check the transformation behavior 

under different lattice orientations. 

2. As discussed in Section 6.3, the transformation follows a planar secondary 

disconnection growth mechanism and the BCC kinks nucleate on the primary step 

edge. Therefore, on one hand, changing the number of steps will directly affect the 

BCC nucleation rate. On the other hand, adjusting in the length of each ledge 

should change the speed of the planar secondary disconnection growth. Both ways 

will influence the interface velocity and mobility under the same temperature and 

driving force condition. Thus, a future study can focus on the effect of the primary 

and secondary disconnection structure to the transformation. 

3. Since the MD cannot simulate the iron magnetic effect, the driving force based on 

the Ackland et al. 1997 potential does not represent the real circumstance!

accurately. However, in MD simulations, the driving force can be adjusted based 

on experimental values by adding potential energy to one of the phases (FCC or 

BCC) in the system. Therefore, new observations can use the experimental driving 

force to compare the results between the simulation and experiment, and analyze 

the significant activation energy difference between them. 
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4. Impure atoms like Cu, Mn, C can be added in the system as solute drag elements. 

Even though, during the massive transformation, the interface moves so fast that 

no diffusion should be observed during the transformation, the effect of these 

impure atoms are still worth studying to further research the massive 

transformation behavior in the alloy system. 

5. During this research, all the observations are based on a single crystal FCC – BCC 

simulation setting. Future studies can extend the system and create a multi-crystal 

simulation box to study the influence between the grain boundaries and improve 

the authenticity of the simulation. 
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Chapter 8 

Conclusion 

 

 In summary, Austenite(!) to Ferrite(#) massive transformation for pure iron has 

been studied using MD simulation based on the Ackland et al. 1997 iron alloy potential. 

A method to determine the grain boundary velocity and mobility during the 

transformation has been demonstrated. The interphase boundary uses a close-pack 

orientation, which is 4.04° tilted in Z-direction [-1 1 0] plane of the FCC box based on the 

N-W relationship. In this way, two kinds of disconnection structures are created. The 

primary disconnection created by the tilting interface geometry establishes heterogeneous 

sites to allow the BCC crystal to nucleate on the interface. Moreover, because of the 

incoherence of the FCC – BCC interface, there are misfit dislocation located on the 

interface in the initial moment. Thus, secondary disconnections form in each terrace plane 

to release the stress created by those dislocations. During the transformation, the kinks 

nucleating on the step edge of the primary disconnection will grow in the Burgers vector 

direction of the secondary disconnections in each terrace plane. The secondary 

disconnections glide through the whole terrace plane and show a strong planar growth 

mechanism. 

According to the potential energy profile during the transformation. The interface 

velocity and mobility obtained in five simulation with temperature range 600 K to 1400 K, 

are around 2 m/s and 10e-03 m*mol/J-s. The activation energy calculated based on this 

result is 16kJ/mole, which is much lower than the experimental value. Therefore, based 

on our models, further research will focus on multi-crystal structure and adding solute 

drag impurities to the system to explain the variance between the simulation value and the 

experimental.!
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Appendix A 

Classical Mechanics of MD simulation 

Newton’s equation of motion is given by 

 

! 

F
i
= m

i
a
i
                                                         (A.1) 

where Fi is the force exerted on particle i, mi is the mass of particle i and ai is the 

acceleration of particle i. The force can also be expressed as the gradient of the potential 

energy, 

 

! 

F
i
= "#

i
U                                                         (A.2) 

Combining these two equations yields 

 

! 

"
dU

dr
i

= m
i

d
2
r
i

dt
2

                                                     (A.3) 

where U is the potential energy of the system. Newton’s equation of motion can then 

relate the derivative of the potential energy to the changes in position as a function of 

time. 

Newton’s Second Law of motion: a simple application 

  
 

! 

F = m " a = m "
dv

dt
= m "

d
2
x

dt
2

                                          (A.4) 

Taking the simple case where the acceleration is constant, 

 

! 

a =
dv

dt
                                                           (A.5) 
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we obtain an expression for the velocity after integration 

 

! 

v = at + v
0
                                                        (A.6) 

and since 

 

! 

v =
dx

dt    
                                                        (A.7) 

we can once again integrate to obtain 

 

! 

x = v " t + x
0
                                                      (A.8) 

Combining this equation with the expression for the velocity, we obtain the following 

relation which gives the value of x at time t as a function of the acceleration, a the initial 

position, x0 and the initial velocity v0. 

 

! 

x = a " t
2

+ v
0
" t + x

0
                                                (A.9) 

The acceleration is given as the derivative of the potential energy with respect to the 

position r, 

 
 

! 

a = "
1

m

dE

dr
                                                     (A.10) 

Therefore, to calculate a trajectory, one only needs the initial positions of the atoms, an 

initial distribution of velocities and the acceleration, which is determined by the gradient 

of the potential energy function. The equations of motion are deterministic, e.g., the 

positions and the velocities at time zero determine the positions and velocities at all other 

times t. The initial positions can be obtained from experimental structures, such as the x-

ray crystal structure of the protein or the solution structure determined by NMR 

spectroscopy. 
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The initial distribution of velocities are usually determined from a random 

distribution with the magnitudes conforming to the required temperature and corrected so 

there is no overall momentum, i.e., 

 

! 

P = m
i
v
i

i=1

N

" = 0                                                   (A.11) 

The velocities, vi, are often chosen randomly from a Maxwell-Boltzmann or Gaussian 

distribution at a given temperature, which gives the probability that an atom i has a 

velocity vx in the x direction at a temperature T. 
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The temperature can be calculated from the velocities using the relation 

 

! 

T =
1

(3N)

P
i

2m
ii=1

N

"                                                 (A.13) 

where N is the number of atoms in the system. 
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Appendix B 

Ackland et al. 1997[15] EAM Finnis-Sinclair potential   

 In the framework of the Finnis-Sinclair formalism, the energy of an assembly of N 

atoms is given by  

 

! 

Etot =
1

2
Vij (xij )

i" j=1

N

# $ %ij xij( )
j=1

N

#
& 

' 
( ( 

) 

* 
+ + 

1/ 2

i=1

N

#                                  (B.1) 

in which Vij identify the pairwise repulsive part of the potential and )(xij) is the cohesive 

term also a pairwise function. The iron-iron potential was derived by the fitting method 

discuss by Ackland et al. 1987 [18], with fits to the lattice parameter a0, elastic constants 

C11, C12 and C44, and cohesive energy Ec of #-iron and an estimated unrelaxed vacancy 

formation energy of 1.89eV. Since the Finnis-Sinclair formalism cannot process the 

magnetic effect or changes in shape of the local electronic density of states. Thus, it does 

not reproduce the iron phase diagram quantitatively. Base on above input parameters, the 

model provide a stable BCC structure over the FCC in the whole temperature profile. 

However, the ! (FCC phase) iron can still be stabilized and equilibrated individually with 

the Ackland et al. 1997 potential.  That is why Ackland et al. 1997 potential was chose in 

this project. 

 The Ackland et al. 1997 potential was first developed for simulating Fe-Cu alloy. 

Therefore, for a binary alloy system of atom species A and B, the potential function can 

be denoted VAA, VBB, VAB, )AA, )BB and )AB. However, in this project, we only use the 

Fe-Fe metallic bond data. For these parameterizations, the pairwise function and local 

density function can be expressed as: 
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In this notation, H is the Heaviside step function, and other parameters are list in the 

(Table B. 1). 
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To obtain further data, we appealed to the results of electronic structure calcula- 

tions. Whilst these are too computationally intensive to use directly for radiation 

damage simulation, for example, they are very reliable for predicting properties of 

single unit cells of alloys. Following the method of Yan etal. (1993) we generated 

properties of the fictitious L12 alloys Fe3Cu and Cu3Fe, and fitted YAB to them in 
the same way as would have been done with experimental data. The cohesive energy 

and lattice parameter of these two alloys, together with the experimental SSI ener- 

gies, provided a sufficient data set for the fit of YAB. 

The electronic structure calculations were carried out using the LMTO code of 

Methfessel (1988) and Methfessel, Rodriguez and Anderson (1989). The LDA 

approximation is known to introduce a small systematic underestimate of the lattice 

parameter. Calculations for pure copper and iron showed this to be 3.8% and 2.6%, 

respectively, relative to the fitted values, and so for consistency we took the LMTO 

lattice parameters for the alloys and multiplied by the weighted average of this error 

prior to the fitting process. The data used for fitting the cross potential YAB are given 

in table 1. 

The various parameters for all three sets of potential functions are listed in table 

2. For pure metals they are given in units of eV and ao, whereas for the alloy the units 

are eV and A. 

Table 1. Data from the LMTO calculations used to fit the pair term VAB of the Fe-Cu cross 
potential. 

LMTO alloying 
L12 compound Energy energy Lattice parameter 

Fe3Cu -3.991 7 eV +0.125eV 3.6493 A (LMTO: 3.546 A) 
Cu3 Fe -3.6168eV +O. 102 eV 3.6795 A (LMTO: 3.555 A) 

Table 2. Parameters for the many-body potentials for iron, copper and iron-copper. For 
pure metals they are given in units of eV a i 3 ,  eV2 {i3, a. and a. for ak, Ak, rk and Rk,  

respectively, whereas for the alloy lengths are in A. 

Fe-Fe cu-cu Fe-Cu 

a1 -36.559853 29.059214 0.855556 
a2 62.4 16005 -140.05681 - 1.208212 
a3 - 13.155649 130.0733 1 0.483 162 
a4 -2.721 376 - 17.48 135 0.925402 
a5 8.761986 3 1.82546 2.592094 
a6 100~0000 7 1.58749 5.000000 
A ,  72.868366 9.806694 
A2 - 100.9448 15 16.774638 
YI 1.180000 1.2247449 3.200000 
r2 1.150000 1.1 547054 3.000000 

r3 1~080000 1.1180065 2.950000 
r4 0.990000 1~0000000 2.850000 
r5 0.930000 0.8660254 2.500000 
r6 0.866025 0.7071068 2.475000 
R, 1.300000 1.2247449 

ao (A) 2.8665 3.615 
R2 1~200000 1 ~0000000 
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