FORMAL VERIFICATION OF FPGA BASED SYSTEMS

By
HONGHAN DENG, B.Eng.

A Thesis
Submitted to the School of Graduate Studies
in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software
McMaster University

© Copyright by Honghan Deng, September 11, 2011
MASTER OF APPLIED SCIENCE (2011) McMaster University
(Software Engineering) Hamilton, Ontario

TITLE: Formal Verification of FPGA Based Systems

AUTHOR: Honghan Deng, B.Eng. (McMaster University)

SUPERVISOR: Dr. Mark Lawford

NUMBER OF PAGES: x, 128
To Michael and Yilang
Abstract

In design verification, although simulation is still a widely used verification technique in FPGA design, formal verification is obtaining greater acceptance as the complexity of designs increases. In the simulation method, for a circuit with n inputs and m registers an exhaustive test vector will have as many as $2^{(m+n)}$ elements making it impractical for many modern circuits. Therefore this method is incomplete, i.e., it may fail to catch some design errors due to the lack of complete test coverage. Formal verification can be introduced as a complement to traditional verification techniques.

The primary objectives of this thesis are determining: (i) how to formalize FPGA implementations at different levels of abstraction, and (ii) how to prove their functional correctness. This thesis explores two variations of a formal verification framework by proving the functional correctness of several FPGA implementations of commonly used safety subsystem components using the theorem prover PVS. We formalize components at the netlist level and the Verilog Register Transfer HDL level, preserving their functional semantics. Based on these formal models, we prove correctness conditions for the components using PVS. Finally, we present some techniques which can facilitate the proving process and describe some general strategies which can be used to prove properties of a synchronous circuit design.
Acknowledgments

My utmost gratitude to Dr. Mark Lawford whose sincerity and encouragement I will never forget. He has supported me throughout my graduate study with his patience and knowledge whilst allowing me the room to work in my own way. One simply could not wish for a better or friendlier supervisor.

Also, I must thank Yilang Yang, my parents and my in-laws. They have always supported my studies and encouraged me to complete this thesis. With my family I have shared every day of this endeavour.
Contents

Abstract iii

Acknowledgments v

List of Figures viii

1 Introduction 1

1.1 FPGA Based Development . 2
1.1.1 Typical FPGA Design Process 2
1.1.2 Synchronous Circuits and Timing 5
1.1.3 Interfacing Simulink with FPGAs 5
1.2 Motivation . 5
1.3 Related Work . 9
1.3.1 Theorem Proving for Hardware Verification 9
1.4 Contributions . 12
1.5 Thesis Outlines . 13

2 Formalizing Hardware Implementations 15

2.1 Previous Work on Hardware Formalization 15
2.2 Assumptions . 17
2.3 Formal Models of the Netlist Level 19
2.3.1 Hardware Signal Representation 19
2.3.2 Formalization of Combinational components in PVS . . 21
2.4 Formal Models of Sequential Circuits in PVS 33
2.4.1 Formalizing Finite State Machines in PVS 35
2.5 Formal Models of the RTL HDL level 41
List of Figures

1.1 FPGA Iterative Design Process .. 2
1.2 Bluespec Design Flow .. 4
1.3 Two FPGA Formal Verification Frameworks 6
2.1 PVS Time Theory .. 16
2.2 Asynchronous Input to Synchronization Circuit 18
2.3 Signal Theory .. 19
2.4 Signal value representation .. 20
2.5 Predicate subtype for 16/32 bitvector in highest16 module 21
2.6 TCCs for addition and subtraction 22
2.7 Primitive Adder .. 23
2.8 Derivation of HDL_ADDER subtraction algorithm 23
2.9 Equivalence operator ... 25
2.10 Unsigned comparator ... 26
2.11 Signed comparator .. 27
2.12 Generic Multiplexer Definition 29
2.13 4 to 1 MUX example .. 30
2.14 PVS specification for 4 to 1 MUX application 30
2.15 Generic binary decoder definition 31
2.16 Synchronous D Flip-flop ... 34
2.17 The sequential circuit with finite state machine 35
2.18 FSM components in State Machine Viewer 37
2.19 Disjointness TCC ... 39
2.20 Coverage TCC ... 40
2.21 Formalizing FSM Transition Table 42
2.22 FSM and LESS_THAN operators 43
2.23 FSM_SHELL - the FSM output interface to the surrounding circuit .. 43
2.24 Blocking assignment example .. 49
2.25 Reversed blocking assignment example 49
2.26 Non-blocking assignment in an always block 51
2.27 A D flip-flop synthesized by a non-blocking assignment 52
2.28 simulation cycles and clock .. 53
2.29 A synchronous always block example 55
2.30 Synchronous always block formalized in PVS 56
2.31 Transformed decision tree ... 59
2.32 A more complex non-blocking assignment overriding problem 63
2.33 decision tree transformation process 64
2.34 PVS specification for Verilog in Figure 2.32 65
2.35 The circuit before and after the transformation 66
2.36 A blocking assignment sequence $m<n$ 67
2.37 Blocking assignment decision tree transformation 68
2.38 blocking assignment block with overriding 69
2.39 blocking assignment decision tree 70
2.40 synthesized circuit for Figure 2.39(a) and (c) 73

3.1 HELD_FOR operator model in Simulink 76
3.2 HELD_FOR operator netlist circuit implementation 76
3.3 The simplified version of HELD_FOR implementation 77
3.4 the Mux for Adder Input .. 77
3.5 Formalized increment sub circuit for Figure 3.6 78
3.6 Formalized toplevel circuit of HELD_FOR 78
3.7 Simulation result of HELD_FOR operator 79
3.8 HELD_FOR operator formal requirement in PVS 79
3.9 Correctness condition of HELD_FOR implementation 79
3.10 Deadband functionality of Hysteresis block 80
3.11 Formalized requirement of Hysteresis block 80
3.12 Hysteresis implementation in Matlab 81
3.13 Formalized Hysteresis Module 82
3.14 Simulation Result of Hysteresis Block 83
3.15 Formal specification of the Hysteresis Hardware Implementation 83
3.16 Correctness Condition of Hysteresis

3.17 highest16 module: Calculates sum of 16 highest of 18 input sensor values

3.18 formalize highest16 synchronous always block

3.19 highest16 decision tree before merged

3.20 highest16 decision tree after merged

3.21 highest16 simulation result

3.22 predicate is_lowANDlowest

3.23 specification of highest16

3.24 Correctness Condition of highest16

4.1 Final form of the sequence after instantiating simplifying

4.2 Induction on time proof diagram

4.3 Induction on n (t=f(n)) proof diagram

4.4 Held_For proof cases

4.5 increment property

4.6 Freeze property

4.7 counter upper boundary property

4.8 Two cases of t_j!1

4.9 Boundary property 1 of increment sub module

4.10 Boundary property 2 of increment sub module

4.11 Property reg(ini+m)<ini+m

4.12 Base case proving strategy

4.13 Induction step

5.1 The signal probe in a formal model

5.2 Observability of signal X

5.3 A case when Specification involve the internal connection

5.4 Example: Proof structure for the highest16 module

5.5 top_at_tick_3 property of highest16 module

5.6 The implementation embedded with probes

5.7 state flow example
FPGA verification can be classified into two categories: Design Verification and Implementation Verification. Design Verification is focused on finding design or coding errors as well as errors in the specification by applying simulation or formal verification. Implementation Verification is used to locate translation/synthesis errors.

In design verification, although simulation is still a widely used verification technique for FPGA designs, formal verification is obtaining greater acceptance as an additional verification technique as the complexity of designs continues to increase. One of the main reasons for this trend is the state explosion problem. In the simulation method, for a circuit with \(n \) (1-bit) inputs and \(m \) (1-bit) registers, an exhaustive test vector will have \(2^{(m+n)} \) elements, making exhaustive testing impractical for many modern circuits because test is very slow when performed at low levels of abstraction such as the gate level or the transistor level. Therefore the simulation verification method is typically incomplete, i.e., it may fail to catch some design errors due to the lack of complete test coverage. Therefore formal verification is increasingly being introduced to complement traditional verification techniques.
1.1 FPGA Based Development

In this section we provide an overview of the overall FPGA development process in order to put the work on formal verification into context.

1.1.1 Typical FPGA Design Process

A typical FPGA design process is shown in Fig. 1.1. For consumer applications developers typically iterate frequently in the upper half of the diagram, refining requirements after performing simulations based upon behavioral descriptions. Traditionally hardware designs have created their behavioral models using and HDL such as VHDL or Verilog.
Hardware Description Languages

A *Hardware Description Language* (HDL) can be used to describe a hardware design at different levels of abstraction: the gate level, the data flow level and the behavioral level. In addition to specifying hardware that can be synthesized, HDLs can typically also be used to specify test harnesses and may even make formal assertions about the desired behavior of the circuit.

In specifying hardware the desired functionality and timing may be described using a hardware description language such as VHDL or Verilog and then synthesized into the structural level for a specified device. Synthesis of hardware for an HDL involves:

1. Translation into Boolean equations,
2. Optimization for area/delay, and then
3. Mapping to a FPGA or ASIC process (library).

The physical level is then implemented automatically using a placement and routing program.

A detailed description of the principles of HDLs is beyond the scope of this document. Below we briefly mention the two industry standard HDLs and a third language that may be more amenable to formal verification.

VHDL: The name VHDL is short for VHSIC HDL = Very High-Speed Integrated Circuit Hardware Description Language. In 1981 VHDL was developed by the US Department of Defense to standardize documentation for maintenance or possible redesign. In 1987 IEEE approved the VHDL standard (1076) and since then Electronic Design Automation (EDA) companies have been using VHDL, often with enhancements, for synthesis. The language has evolved since 1987 with the IEEE updating the standard approximately every 5 years, with the most recent version approved in 2008.

Verilog: The Verilog hardware description language was originally developed by Gateway Automation (Cadence) for verification of logic. Cadence
and other EDA companies have been using Verilog with enhancements for synthesis. The original language was proprietary until it was released as an open standard in 2001. It was updated in 2005 and released as IEEE Standard 1364. Verilog should not be confused with SystemVerilog (IEEE Standard 1800-2005) which subsumes Verilog and includes additional features for verification.

Bluespec: Bluespec is a start-up company that provides a proprietary Functional Hardware Description Language based upon the functional programming language Haskell. The justification behind writing chip designs in Bluespec is that it leads to shorter, more abstract, and verifiable (provably correct) source code, as well as type-checked numeric code. In the design flow the developer writes a high level Bluespec SystemVerilog (BSV) description of the hardware. The Blue Spec Compiler (BSC) can then generate SystemC for simulation or as well as Verilog code that can then be used with conventional EDA tools.

In this thesis we will use Verilog as it is commonly used, the author is familiar with it.
1.1.2 Synchronous Circuits and Timing

Circuit timing, maximal delay path, synchronous circuits, and clock frequency

TIMING PROPERTIES OF REQUIREMENTS (functional timing)

1.1.3 Interfacing Simulink with FPGAs

Recently Model Based Design has been making inroads in software engineering. High level models of the desired system behavior are constructed using modeling tools and then used to generate code that implements the desired functionality. Mathworks Matlab/Simulink is the industry standard for modelling control systems and is used in many engineering disciplines for modeling and simulation. The code generation capabilities of Matlab/Simulink have seen it adopted as a tool for performing model based design of systems. Simulink is used to design and simulate complex systems using block sets. It can also be used to target FPGAs. Altera (DSP Builder), Xilinx (System Generator), and Actel (Synplify DSP) are three manufacturers that supply block sets to Simulink. Simulink can use the Altera and Xilinx block sets to convert the system to HDL directly, while Actel outputs to an encrypted RTL file to ensure that it can only be downloaded to an Actel device, however it can be converted to HDL using Actel’s Libero IDE software.

1.2 Motivation

Often there is a large gap between the specification and the implementation of the system. Applying formal methods to close the gap between the specification and netlist or Hardware Description Language (HDL) implementation is the main focus of this thesis. We propose two different verification frameworks depending on the abstraction of implementation.

Figure 1.3 shows two frameworks used in this thesis. In Figure 1.3 (a) there is only a single use of equivalence checking to guarantee the equivalence of the netlist models before and after the place and route tool has been applied. We use $M1[s1, s2, ..., sn]$ to denote the netlist model before place and route and $M2[s1, s2, ..., sn]$ denotes the netlist model afterwards, while
s_1, \ldots, s_n are port signals. A theorem prover is applied to verify that the netlist $M_1[s_1, s_2, ..., s_n]$ generated by the synthesis tool correctly implements the system specification $S[s_1, s_2, ..., s_n]$.

By utilizing equivalence checking we can prove:

$$\vdash M_1[s_1, s_2, ..., s_n] \equiv M_2[s_1, s_2, ..., s_n]$$

By utilizing a theorem prover we can show that:

$$\vdash M_1[s_1, s_2, ..., s_n] \Rightarrow S[s_1, s_2, ..., s_n]$$

From these two results, we can easily derive our desired correctness theorem:

$$\vdash M_2[s_1, s_2, ..., s_n] \Rightarrow S[s_1, s_2, ..., s_n]$$

Similarly, in Figure 1.3 (b), by utilizing two applications of equivalence checking, we can prove:

$$\vdash M_1[s_1, s_2, ..., s_n] \equiv M_2[s_1, s_2, ..., s_n] \land M_2[s_1, s_2, ..., s_n] \equiv M_3[s_1, s_2, ..., s_n]$$
As before, by utilizing a theorem prover we demonstrate that:

\[\vdash M_1[s_1, s_2, ..., s_n] \Rightarrow S[s_1, s_2, ..., s_n] \]

Then, we can conclude that:

\[\vdash M_3[s_1, s_2, ..., s_n] \Rightarrow S[s_1, s_2, ..., s_n] \]

Formal verification can be complicated and time consuming, however it provides additional confidence to designers. By building commonly used, pre-verified functional blocks, designers can use these modules with confidence without repeating much of the formal verification process. Alternatively, designers can build their own modules and prove the equivalence relationship between the pre-verified block and their own module.

By using a pre-verified library, the overall system verification will be more practical due to the higher level of abstraction used to reason at the module interconnect level, hence drastically reducing the complexity of the formal hardware verification task. This is the main idea behind this hierarchical verification structure described in (Melham, 1990). In this structure, each hardware module will be abstractly represented by one or more properties. It is this abstraction that hides the actual hardware module complexity.

Usually, the approach used to formalize the function model of an FPGA implementation is based on the netlist that is produced by synthesis. A more effective way is to translate the model directly from the Verilog, VHDL, or other HDL description before synthesis. Of course this requires a formal semantics for the HDL that is being used. In this thesis we consider Verilog. Although the simulation semantics for Verilog based on events is able to describe asynchronous system, it does not easily support formal verification (Gordon, 2002). On the other hand, a functional semantics for a subset of Verilog will give us simpler semantics which can be more easily supported by formal methods.

The theorem proving techniques that we will employ in this thesis will be greatly simplified if we build our implementation following some key design principles.
Similar to other engineering domains, divide and conquer is the first principle we should follow, more specifically, we will employ the structural verification of (Melham, 1990). In this approach, hardware models in lower levels are abstracted into a set of properties. Instead of composing the actual hardware models of the lower level component to create the the upper level model, in structural verification, the properties of the primitive modules form the top level model. Any properties from the lower level model can be used in the verification of properties in upper level. The biggest advantage of structural verification is that it hides the complexity of the lower level components. The challenge in this approach is to choose properties that not only simplify the hardware model, but are also strong enough to facilitate the upper level correctness condition proof.

The second principle is making the timing behaviour of the system as deterministic as possible. We will see that building a deterministic system makes the correctness theorem proof much easier. Unlike applications in other fields, safety critical systems are typically more focused on the correctness of the system rather than best case or average case performance. Current hardware platforms are usually able to provide sufficient performance to meet the system timing constrains so it is worth while exploiting performance margins to improve the verifiability of the system.

The third principle is a technique which can be used in building up the proof. Often when testing hardware implementations of circuits a debugging interface is provided to allow verification engineers to investigate internal states of the circuit. Similarly, we can define predicates to make any internal state observable at an additional signal port of the formalized model. Further, an instrument, a more complex predicate construct for a particular purpose, can be built to facilitate our proof. For example, to see if a circuit with 10 registers is in its initial state, we can introduce a new signal \(isInInitial = \land_{i=0}^{10} reg[i] = 0 \) and add it as a signal port. The newly introduced initial state indicator can be used not only to determine if the circuit is in its initial state by just observing \(isInInitial \) without considering the values of all 10 registers, but also it can be easily used to set the system to its initial state. A concrete example will be given in Section 5.1.
1.3 Related Work

1.3.1 Theorem Proving for Hardware Verification

In theorem proving environments, verifying the correctness of the system may be equivalent to proving the corresponding correctness condition theorem. For example, once the system specification is formalized as a set of formulas ϕ and the implementation is formalized as γ, the system correctness is equivalent to proving $\gamma \models \phi$ (Mandayam Srivas and Cyrluk, 1997). Usually this proving process is supported by automated theorem proving tools based on first-order or higher-order logic. Automated theorem proving consists of a theorem-proving program to mechanize a proof system which consists of a set of axioms and a set of inference rules. The automated proving process often involves guidance from human experts and typically works in an interactive fashion. Compared with model checking, which is highly automatic, theorem proving methods give users greater flexibility and control in doing the proofs. Most of the languages used in theorem provers are highly expressive and thus can easily express properties which may be hard or impossible to express in the language of a model checker. Theorem provers may also avoid the state explosion problem. One of the major disadvantages of using theorem provers is that if you fail to complete the proof of a property, the tool will not tell you whether the property is indeed unprovable or the user is not providing it with enough information to complete the proof (Kern and Greenstreet, 1999).

Using a mechanized theorem-proving system can help to ensure correct proofs and reduce tedium by automating parts of the proofs.

Automated Theorem Proving Tools

A series of theorem proving systems have been implemented and used in hardware verification distinguished by their supported proof style, the underlying mathematical logic, and the incorporated automatic-decision procedures (Kern and Greenstreet, 1999). As the largest industry application of automated theorem proving, hardware verification has produced many successful examples (Kern and Greenstreet, 1999). Three commonly used theorem provers success-
fully employed in hardware verification are briefly described below.

- **HOL (Higher Order Logic):** HOL is a general purpose theorem prover that supports both forward and goal directed backward proofs in a natural deduction style calculus. The underlying logic is a variation of Church's theory of simple types. All theorems in HOL are proven in terms of the axioms and basic inferences of the calculus. The user interacts with HOL through the functional metalanguage ML (Kern and Greenstreet, 1999). The HOL system has been applied in Bell Laboratories for hardware verification. Harrison has done extensive hardware verification at Intel using HOL for the verification of double-extended precision floating point arithmetic in the Intel IA-64 architecture (Harrison, 2000). HOL is also heavily used in HDL semantics formalization (Gordon, 2002).

- **PVS:** PVS is an interactive environment for writing formal specifications and checking formal proofs providing an expressive specification language with a sophisticated type system containing predicate subtype and dependent types. Its rich types is convenient for specification while it makes the type checking undecidable and requires the assistance of the theorem prover and possibly human intervention. PVS has a powerful interactive theorem prover/proof checker. The basic deductive steps in PVS are large, including atomic commands for induction, quantifier reasoning, and automatic conditional rewriting, etc (Crow et al., 1995). PVS supports the specific needs of hardware verification because of its expressive specification language and a bit-vector library and integration of symbolic model checking (Mandayam Srivas and Cyrluk, 1997). PVS has been successfully applied in verifying the AAMP5 microprocessor developed by Rockwell-Collins, NASA and SRI International (Miller and Srivas, 1995; Srivas and Miller, 1996).

- **Boyer-Moore:** The Boyer-Moore logic is the underlying logic of ACL2 which is a slight extension of Nqthm. It is a first order, quantifier-free logic of total, recursive functions with equality and mathematical
induction (Kern and Greenstreet, 1999). Nqthm is the best known of the batch-oriented theorem proving system used in hardware verification. It uses a fast propositional simplifier, rewriter and a linear arithmetic package (Mandayam Srivas and Cyrluk, 1997). ACL2 is an industry-strength version of the theorem prover, Nqthm. Lots of industrially-relevant result has been obtained with ACL2 such as the verification of the Motorola CAP digital signal processor (Brock et al., 1996), AMD Athlon’s elementary floating point operations (Russinoff et al., 2005), and AAMP7G microprocessor (Hardin, 2010). The drawback of such fully automatic batch-oriented theorem prover is to balance efficiency with generality since a single proof strategy is being applied to all theorems (Mandayam Srivas and Cyrluk, 1997).

Formalizing Netlist Circuit Designs Netlist circuit formalization techniques has been published in numerous papers ((Melham, 1990), (Mandayam Srivas and Cyrluk, 1997), (Hunt et al., 1992)). (Melham, 1990) described a hardware abstraction mechanism in HOL based on circuit diagrams and even lower level models such as transistor models. The hierarchical verification concept Melham proposed is still popular in this field. (Mandayam Srivas and Cyrluk, 1997) provided a concrete example of applying predicate style and functional style specifications of a pipelined CPU verification problem. Predicate style specification uses predicates to constrain the combinations of values that can appear on the external ports of the components, while the functional style specification models the output as a function of the inputs. Functional style specification made it easier for the specifier to control over the degree to which an entity is defined. That is, it allows specifier to selectively introduce properties of the components as axioms. However, it may introduce inconsistencies since it introduced axioms for the components. In functional descriptive style of specification, the burden of checking for the absence of inconsistencies in the specification falls on the specifier (Mandayam Srivas and Cyrluk, 1997).

Formalize Hardware Description Language Based Design When the netlist circuit is too complex, the formalization process process can become
very inefficient and therefore impractical. This problem can be solved by modularizing the netlist circuit implementation carefully and developing some tools to translate the circuit automatically is instead of formalizing the netlist circuit, which may involve too many details, we can formalize the HDL model. The HDL model is above the netlist circuit model in Figure 1.3 which means it is more abstract since the lower the model in the design process is closer to the real circuit.

HDL formal semantics can be simulation based or functional based. Simulation based semantics is using a very fine grained event driving model to simulate the behaviour of the HDL model in simulation cycles resolution. The expressing ability of the simulation semantics is very powerful and can accurately describe the asynchronous behaviour (Gordon, 2002). However as the concurrency essence of the hardware, the simulation scheduler is complex and not suitable to adopt in hardware formal verification.

In this case functional semantics concentrates on the functionality of the HDL model. It sacrifices some expressivity and requires extra constraints to be applied to the HDL model. For example a clock driven sequential circuit can be viewed in terms of states held in registers. In this view, the internal transition details between each clock cycle is not observable in such a semantics and the model can be translated into predicates defined at each clock edge. Obviously, we are not able to describe a level sensitive latch with this semantics, but we are capable of accurately describing the synchronous circuit constructs typically found in FPGAs.

1.4 Contributions

The main contributions of this thesis include:

1. We have formalized some of the basic hardware components (e.g., adders, relation operators, finite state machines) that occur at the netlist level in Altera’s Netlist Viewer.

2. We have formalized a small subset of the Verilog HDL based on the synchronous design assumption. The formal semantics of this Verilog
subset analyzed from both a synthesis and a simulation perspective. We also proposed a mechanism that will make the Verilog code easier to formalize by reconstructing Verilog conditional branch statements.

3. We have formalized and proven the correctness in PVS of two hardware modules HELD_FOR and HYSTERESIS based on formalized netlist circuit and a highest16 calculation based on formalization of Verilog HDL code.

4. We have proposed a general method that can be used to prove a particular type of properties of a synchronous design.

5. We have proposed a signal probe technique that can be adopted to facilitate proofs. By introducing signal probes, we can easily access the internal signals of the system and set the sequential circuit into a particular state. This is critical whenever the property to be verified involves the internal signal states of the system. We also showed how a carefully selected assumption of the property can drastically reduce the complexity of the overall correctness proof.

1.5 Thesis Outlines

Chapter 2 presents the analysis and formalization of the common components used in the Altera Netlist Viewer, including adders, relation operators, muxes, decoders, D flip flops and FSMs. Besides the formalization of netlist components, Chapter 2 also includes the analysis and formalization of a subset of the Verilog HDL. A mechanism used to pre-process the Verilog code is proposed to make the it easier to translate Verilog code into the PVS specification language.

Chapter 3 builds the correctness conditions for 3 hardware modules: HELD_FOR, HYSTERESIS and highest16. The mechanism proposed in Chapter 2 is used to pre-process the Verilog code before applying the formalization techniques to the 16highest example.
Chapter 4 describes proof strategies for the HELD_FOR and highest_16 modules and proposes a general method to prove a particular type of property of a synchronous system.

Chapter 5 proposes and describes some techniques and principles we adopted in our design and proof.
Chapter 2

Formalizing Hardware Implementations

In this chapter we first review previous research on formal models of hardware. We then state the simplifying assumptions that we make describe how we use PVS to model hardware at both the netlist level and the RTL HDL level.

2.1 Previous Work on Hardware Formalization

As a prerequisite for formal verification of hardware, we must be able to formalize the implementation by translating the hardware model into a rigorous mathematical model. As the FPGA design process has many layers from the top specification to the bottom netlist after place and route, the translation methodology depends on the abstraction level of the implementation model. Two commonly used models are the register transfer level hardware description language (RTL HDL) and netlist schematic circuit diagram.

Referring again to Figure 1.3, the model M1 in approach (a) is based on the netlist after synthesis and M1 in approach (b) is based on the RTL HDL model, while both approaches use the same development process. The higher the implementation model is located in this process, the more abstract it is. The lower the model in the process, the closer it is to the actual hardware. Thus the lowest model netlist after place and route contains the most details
compared with the upper two levels. If the timing properties involving the characteristic of physical devices need to be verified, the netlist after place and route has the most comprehensive information needed and can be used to obtain the most accurate timing information.

However, as we are focusing on the functional correctness of the implementation, in which the propagation delay and other physical characters are not considered, the more abstract netlist model after synthesis is a better choice compared with the netlist after place and route, although the later is closer to the actual hardware implementation. If we decide to use netlists after synthesis as our implementation model to formalize, a RTL netlist viewer can be used to represent a netlist by a schematic circuit diagram. This circuit diagram can then be used as our basis to build up the formal model.

In a larger system, the netlist model contains excessive detail that may cause the formalization to be infeasible because of the sheer volume of primitives elements and internal connections. As the upper level model is always more abstract, if the current model is too complex to handle, the upper level model, in this case RTL HDL, may be more manageable.

There has been considerable research dedicated to formalizing hardware implementations. Depending on the abstraction level, this work can be divided into two categories: netlist schematic circuit diagram based and RTL HDL based.

In both sequential circuit and combinational circuit, time is abstracted to the natural number. This abstraction is reasonable when all components in the circuit and all inputs are synchronized by a global clock which is typically the case in an FPGA. Figure 2.1 shows the PVS theory defining our model of time based upon (Mandayam Srivas and Cyrluk, 1997).
2.2 Assumptions

Synchronous circuit "Synchronous circuits are easier to design and used in a vast majority of practical applications" (Brown and Vranesic, 2008). In safety critical system hardware, a synchronous system is usually preferred. This is because in an asynchronous sequential circuit, a glitch caused by a hazard could make the system enter an incorrect state since the latches are level sensitive and the glitch is able to be captured by the latches. For a synchronous sequential circuit, the flip flops only change state at the clock edge where the input signals must be stable before and after the clock edge for the setup and hold times respectively of the flip flops (Brown and Vranesic, 2008). Further, it is easier to apply formal methods to synchronous circuits due to their simple deterministic timing behaviour. In an asynchronous sequential circuit, time is typically modelled as a real number since we need high timing resolution to analyze the behaviour of the circuit. In synchronous sequential circuit, the transition between states at the active clock edge can be ignored, thereby simplifying our verification model. In the research on RTL HDL level formalization, there are quite few types of formal semantics of RTL HDL capable of modelling asynchronous systems based on simulation cycles such as event semantics. However the underlying mechanism of these semantics is the use of interleaving execution of concurrent threads to simulate the concurrency of hardware of HDL (Russionoff, 2005), they may not be suitable application to the formal verification of functional correctness. If we constrain our system to be synchronous, the formal semantics of RTL HDL models can be simplified significantly and reduced to a relative small subset of possible behaviours.

In this thesis, all the models are designed to be synchronous and synchronized by the same clock. Within these systems, only combinational circuit and and flip-flops existed. The input signals can be divided into two types: signals from other systems and signals from external sensors. In the previous case, it is obvious that the inputs from other systems must be already synchronized with signals in the current system since all the systems are synchronized by the same clock (based on the unique clock assumption 2.2).

In the second case, if the signal is representing a sensor process or other
system which is not synchronized by the same clock, then we assumed there is a extra circuit to synchronize this signal as shown in Figure 2.2.

Infinite Clock The clock signal in a circuit is generated by crystal oscillator module, which will start right away after power is on, and will never stop. Thus the clock is consider to be a nature number. 0 is the time tick when the system is powered on.

Unique clock We assume there is only one globle clock used in the system. The clock skew and clock jitter problem is not in our consideration as we focus on a more abstract level. Under this assumption, the clock can be abstract as a natural number representing the number of completed clock cycles. The signal clock will not appear in the formalized model, instead, it has been embedded into the model implicitly. In such a synchronous circuit driven by a unique clock, all signals are functions whose domain is the natural numbers.

Perfect gate As we focus on the functional correctness of the circuit, all gates and internal wires are assumed to be propagation delay free. A D flip-flop will have one clock cycle delay between input and output.
signal [time,OUTPUT:TYPE]:THEORY
BEGIN
 signal :TYPE=[time->OUTPUT]
 bitsignal :TYPE=[time->bool]
END signal

Figure 2.3: Signal Theory

2.3 Formal Models of the Netlist Level

2.3.1 Hardware Signal Representation

Signal Type In PVS As variant of Signals with different bit width typically co-exist in circuits. Therefore we will use the parametrizable signal type definition of (Mandayam Srivas and Cyrluk, 1997) to facilitate specification in PVS (Figure 2.3).

Instead of using a bit-vector representation, the value of a signal at a particular time tick is represented by a decimal nature number for unsigned numbers and a decimal integer for signed numbers. This is due to the absence of bit-vector automatically reasoning strategy in PVS. Although PVS has incorporated bit-vector library, PVS’s decision procedures cannot automatically decide bitvector equalities (Mandayam Srivas and Cyrluk, 1997). It is also possible to merge 1 bit and N bit signal data type. However, being looked as a boolean value, 1 bit signal signal(t) can be directly used in a PVS proof sequent instead of use signal(t) = 1 to evaluate its state. Also, lots of signal with 1 bit data width are used for control logic purposes. Bearing a boolean data type, these signals more accurately reflect their physical meaning.

Signal Value Representation In PVS The value of a signal at a particular time tick signal(t) is represented by a natural number for unsigned value or integer number for signed number in the formalized netlist circuit model, although these values exist as bit-vectors in the hardware implementations. As shown in Figure 2.4, the arithmetic operators applied on the natural/integer numbers are realized by primitive arithmetic elements such as an adder without the carry out. All the additions will use this primitive adder and all the
subtractions will convert the subtrahend into 2’s complement and use the exact same adder to implement subtraction.

The Natural/Integer representation can be viewed as an abstract model of bit vectors. This model, however, must also be able to capture the overflow problem present in the primitive adder since the primitive adder does not have a carry out and other mechanisms to indicate an overflow situation. For example: In a calculation \(a + b = c \) where \(a, b, c \) are all 32 bit vectors in 2’s complement, to get a correct answer for \(c \), \(a + b \) must be in the range of 32 bit 2’s complement. This constraint exists in the hardware adder, but not in the abstracted natural/integer model. One approach to resolve this issue is to use predicate subtypes in PVS as shown in Figure 2.5.

In this predicate subtype, a bit vector is represented by a natural/in-
% Predicate subtype for 16/32 bits 2’s complementary
% bitvector representation
BIT16_RANGE_2C: TYPE = {t : int | t <= exp2(15) - 1 & t >= -exp2(15)}
BIT32_RANGE_2C: TYPE = {t : int | t <= exp2(31) - 1 & t >= -exp2(31)}
BIT16_RANGE: TYPE = {t : nat | t <= exp2(16) - 1}
BIT32_RANGE: TYPE = {t : nat | t <= exp2(32) - 1}

% 16/32 bits 2’s complementarity signal representation
SIGNAL16_2C: TYPE = [TIME -> BIT16_RANGE_2C]
SIGNAL32_2C: TYPE = [TIME -> BIT32_RANGE_2C]

Figure 2.5: Predicate subtype for 16/32 bit vector in highest16 module
teger number constrained by a specified bit width. The overflow problem can be captured by automatically generated type correctness conditions (TCC) in PVS. Figure 2.6 defines a primitive adder and a theorem using such an adder. Two operands and the sum are defined as 32 bit 2’s complement numbers. As a result, the sum has a potential overflow problem and this issue can captured by the automatically generated overflow_example1_TCC1 in the bottom portion of the figure. The range and value representation of bit vector addition is accomplished in a similar fashion in PVS’ specification language.

2.3.2 Formalization of Combinational components in PVS

Pins and Wires Pins and wires in a schematic diagram are modelled as signal type (see Figure 2.3).

Constant Constants are defined to be lambda functions:

\[
ZERO : [TIME -> BUS_TYPE] = (\lambda t : 0)
\]
\[
ONE : [TIME -> BUS_TYPE] = (\lambda t : 1)
\]

\(BUS_TYPE\) is defined as \(BUS_TYPE : TYPE = t : nat | t <= exp2(BW) - 1\) and \(BW\) is the bit width of the bus. In such a way, \(ONE\) and \(ZERO\) are de-
sample_OF_ADDER: THEORY
BEGIN IMPORTING time
BIT32_RANGE_2C: TYPE={t:int|t<exp2(31)-1 & t>=exp2(31)}
SIGNAL32_2C: TYPE=[TIME->BIT32_RANGE_2C]

%--------------------- PRIMITIVE ADDER AND SUB ---------------------
HDL_ADDER(bv1,bv2,sum:BIT32_RANGE_2C): bool= (sum==(bv1+bv2))
HDL_SUB(bv1,bv2,sub:BIT32_RANGE_2C): bool= (sub=(bv1-bv2))

%--------------------- TWO OVERFLOW EXAMPLES ---------------------
overflow_example1: THEOREM
FORALL (t:TIME,bv1,bv2,sum:SIGNAL32_2C) :
 HDL_ADDER(bv1(t),bv2(t),bv1(t)+bv2(t))<>TRUE
overflow_example2: THEOREM
FORALL (t:TIME,bv1,bv2,sum:SIGNAL32_2C) :
 HDL_SUB(bv1(t),bv2(t),bv1(t)-bv2(t))<>TRUE
END sample_OF

%---------------------- Generated TCC ----------------------
% Subtype TCC generated (at line 13, column 66) for
% unexpected type BIT32_RANGE_2C
% unfinished overflow_example1_TCC1: OBLIGATION
FORALL (t: TIME, bv1, bv2, sum: SIGNAL32_2C):
 bv1(t) + bv2(t) <= exp2(31) - 1 & bv1(t) + bv2(t) >= exp2(31);

% Subtype TCC generated (at line 15, column 64) for
% unexpected type BIT32_RANGE_2C
% unfinished overflow_example2_TCC1: OBLIGATION
FORALL (t: TIME, bv1, bv2, sub: SIGNAL32_2C):
 bv1(t) - bv2(t) <= exp2(31) - 1 & bv1(t) - bv2(t) >= exp2(31);

Figure 2.6: TCCs for addition and subtraction
Figure 2.7: Primitive Adder

(a) Netlist circuit for $\text{out}_1 = \text{op}_1 + \text{op}_2$

(b) Netlist circuit for $\text{out}_1 = \text{op}_1 - \text{op}_2$

Figure 2.8: Derivation of HDL_ADDER subtraction algorithm

\[
\begin{align*}
\text{out}[n + 1 : 0] &= \{\text{op}_1[n : 0], 1\} + \{\overline{\text{op}_2[n : 0]}, 1\} \land \\
\text{out}_1[n : 0] &= \text{out}[n + 1 : 1] \\
\Leftrightarrow \text{out}[n + 1 : 0] &= \text{op}_1[n : 0] \times 2 + \overline{\text{op}_2[n : 0]} \times 2 + 1 + 1 \land \\
\text{out}_1[n : 0] &= \text{out}[n + 1 : 0] / 2 \\
\Leftrightarrow \text{out}_1 &= \text{op}_1 + \overline{\text{op}_2} + 1 \\
\Leftrightarrow \text{out}_1 &= \text{op}_1 - \text{op}_2
\end{align*}
\]

Figure 2.8: Derivation of HDL_ADDER subtraction algorithm

Arithmetic Operators($(+,-)$) The most commonly used operator is the primitive adder which is represented by the symbol in Figure 2.7a. Figure 2.7b is a synthesized circuit for a subtraction in which operands are converted into 2’s complement and summed.

The subtraction circuit in Figure 2.7b is computing $\text{out}_1 = \text{op}_1 - \text{op}_2$. The conversion of op_2 into 2’s complement uses the formula with two given operands $\text{op}_1[n:0]$ and $\text{op}_2[n:0]$ derived in Figure 2.8.

By shifting and setting the least significant bit to be 1, the addition in
$\overline{op^2} + 1$ is avoided. Also, the internal bit width of the adder is 1 extra bit to fit the expanded width of both operands. It is possible to use primitive addition to define this algorithm to build the subtraction, however, it is unnecessary to include these details in the proof. Thus we simply define addition and subtraction operators as shown in Figure 2.8 with $(n=32)$.

\[
\begin{align*}
HDL_ADDER(op_1, op_2, out_1 : BIT32_RANGE_2C) : bool &= (out_1 = (op_1 + op_2)) \\
HDL_SUB(op_1, op_2, out_1 : BIT32_RANGE_2C) : bool &= (out_1 = (op_1 - op_2))
\end{align*}
\]

As the $op_1 - op_2$ could also cause an overflow when the result out_1 has the same bit width as op_1 and op_2, $overflow_example2_TCC1$ in Figure 2.6 will also be generated to prevent the result from being overflow.

We can conclude that a bit vector addition and subtraction in Figure 2.7 can be abstract to be $out = op_1 + op_2$ and $out = op_1 - op_2$ respectively, where out, op_1 and op_2 are signal type. If out_1 has the same bit width with op_1 and op_2, then the generated TCCs cannot be discharged unless $op_1 \pm op_2$ is within the range of the signal representation. If out has more bits than op_1 and op_2, then the TCC is easily to be discharged no matter what are the value of op_1 and op_2.

Relation Operators The most commonly used relation operators are \{$=, <, >, \leq, \geq$\}. Both signed and unsigned number equality operators share the same circuit as shown in Figure 2.9.
This comparator can be formalized as the following (N=32):

\[
HDL_EQUAL(op_1, op_2, out_1 : BIT32_RANGE_2C) : bool = \\
(out_1 = (op_1 = op_2))
\]

Relational operators \(<\) and \(>\) are implemented by using the same netlist circuit with switched inputs. The operator \(<_s\) for signed and \(<_u\) for unsigned numbers are the same in the netlist circuit. However the signed operands will be processed before they are fed into the unsigned comparator.

An unsigned comparator \(<_u\) in Figure 2.10(a) can be formalized as below for bitwidth N=32:

\[
HDL_LESS_THAN(op_1, op_2, out_1 : BIT32_RANGE) : bool = \\
(out_1 = (op_1 < op_2))
\]

Similarly, the \(\leq_u\) operator in Figure 2.10(b) can be formalized as (for N=32):

\[
HDL_LESS_THAN(op_1, op_2, out_1 : BIT32_RANGE) : bool = \\
(out_1 = (op_1 \leq op_2))
\]

Signed comparators are essentially the same as the unsigned comparators with two operands pre-processed. Given two signed operands \(op_1 = \)
[a_n, a_{n-1}, ... , a_0], op2 = [b_n, b_{n-1}, ... , b_0], from the knowledge of the 2’s complement representation, we have the following reasoning ($<_s$ and $<_u$ represent signed number and unsigned comparators respectively).

case1: $a_n = b_n$

$[a_n, a_{n-1}, ... , a_0] <_s [b_n, b_{n-1}, ... , b_0]$

$\iff [a_{n-1}, ... , a_0] <_u [b_{n-1}, ... , b_0]$

$\iff [b_n, a_{n-1}, ... , a_0] <_u [a_n, b_{n-1}, ... , b_0]$

case2: $a_n = 1 \land b_n = 0$

$[1, a_{n-1}, ... , a_0] <_s [0, b_{n-1}, ... , b_0]$

$\iff [0, a_{n-1}, ... , a_0] <_u [1, b_{n-1}, ... , b_0]$

$\iff TRUE$

case3: $a_n = 0 \land b_n = 1$

$[0, a_{n-1}, ... , a_0] <_s [1, b_{n-1}, ... , b_0]$

$\iff [1, a_{n-1}, ... , a_0] <_u [0, b_{n-1}, ... , b_0]$

$\iff FALSE$

By this analysis, we can make conclusion that a signed number comparator can be built by switching the MSB of two operands and then using an unsigned comparator to evaluate these processed operands.
Figure 2.11 shows netlist circuit block for \(<_s\) and \(\leq_s\) operators for signed numbers. A signed comparator \(<_s\) in Figure 2.11(a) can be simply formalized as below (N=32):

\[
HDL_LESS_THAN(op_1, op_2, out_1 : BIT32_RANGE_2C) : bool = (out_1 = (op_1 < op_2))
\]

Similarly, \(\leq\) operator in Figure 2.11(b) can be formalized to be (N=32):

\[
HDL_LESS_THAN_EQUAL(op_1, op_2, out_1 : BIT32_RANGE_2C) : bool = (out_1 = (op_1 \leq op_2))
\]

A Generic Form of Multiplexer Multiplexers commonly occur in synthesized netlists. Unlike arithmetic and relational operators which have a fixed numbers of operands, a multiplexer has a variable input width. Also,
A multiplexer input type can be an integer number or a boolean value. An appropriate definition of a multiplexer (\textit{MUX}, for short) should at least satisfy the following criteria:

- It should have a generic form which accepts both input width and input type as its parameters. For example, a 4 bits to 1 bit \textit{MUX} needs its input width to be 4 and data type to be \textit{boolean}. A generic form of a \textit{MUX} should be able to accept these two variables to make the definition of such a 4 to 1 bit mux fully specified.

- The parameters used to define types should be separated from the actual signal port definition. A standard \textit{MUX} will have \textit{data} to be selected, \textit{selection} signals, and one \textit{output}.

- The \textit{MUX} components in the circuit should be an instance of \textit{MUX} type. The name of the instance can reflect its input width and data type, such as \textit{bit_MUX_4to1}, \textit{BIT32_2C_MUX_16to1}. The previous one is a 4 to 1 multiplexer with boolean data type and the later has 16 32 bit 2's complement integers as inputs. This will facilitate formalizing the netlist circuit since it provides an easy way to build a one to one correspondence between the netlist circuit and formal specification in our naming convention.

Figure 2.12 contains the PVS theory defining the parameterized form of a multiplexer. Theory \textit{MUX} has two formal parameters: \textit{MUX_TYPE} and \textit{N}. \textit{MUX_TYPE} is used to define the predicate subtype \textit{MUX}. All muxes have a common structure defined by \textit{MUX_SELECTION_TYPE}, \textit{MUX_INPUT_TYPE} and \textit{MUX_TYPE}. A mux predicate is a boolean function with the following type signature:

\[[\text{MUX_SEL_TYPE,MUX_INPUT_TYPE,MUX_TYPE} \to \text{bool}]\]

\textit{MUX_TYPE} is the type passed by the theory formal parameter used to define the input and output type.

\textit{MUX_SEL_TYPE}: \text{TYPE} = \text{below} (\exp 2(N)) is a predicate subtype constrained by the upper boundary of the number of inputs.
This definition of mux is fully generic with its parameterized data channel type and number of channels.

MUX_TYPE: Data type of the channel. A mux could be a bit selection or data selection.

N: exp2(N) = upper boundary of the number of input channels

MUX[MUX_TYPE:TYPE+,N:posnat]: THEORY
BEGIN
MUX_SEL_TYPE: TYPE+=below(exp2(N))
%MUX selection input type. Such an input must be <exp(N)
MUX_INPUT_TYPE:TYPE+=[below(exp2(N))->MUX_TYPE]
%MUX input channel type.
MUX:TYPE+=[{mux:[MUX_SEL_TYPE,MUX_INPUT_TYPE,MUX_TYPE->bool]}|
 mux(sel,mux_in,mux_out)=(mux_out=mux_in(sel))]
END MUX

Figure 2.12: Generic Multiplexer Definition

MUX_INPUT_TYPE:TYPE+=[below(exp2(N))->MUX_TYPE] defines an array such that each element in the input can be accessed by using an index based upon the selection signals.

Figure 2.13 is an example use of a 4 to 1 mux with boolean value input and output. Depending upon the value of the state variable going into the selection signals, the block outputs either 0, the XOR, OR or AND of the two operands. A formal specification of such a circuit is defined in Figure 2.14. In this example, a MUX instance, bit_mux, is defined by bit_mux:MUX [bit_mux_type,2]. The input and output signal type are defined to be boolean and upper boundary is exp2(N). As the input type is an array, bus1 which is an assembler is introduced to merge the 4 individual bit inputs into a 4 bit width data bus. It is possible to avoid this bus1, however, this description style is more systematic and easier to read.
thesis_pvsexamples1: THEORY
begin
importing MUX
bit_mux_type: TYPE = bool
bit_mux: MUX [bit_mux_type, 2]
bit_mux_example(state: MUX_SEL_TYPE[bit_mux_type, 2], op1, op2: bit_mux_type, q: bit_mux_type): bool =
EXISTS (bus1: [below(4) -> bool]):
 bit_mux(state, bus1, q) &
 bus1(0) = FALSE &
 bus1(1) = (op1 XOR op2) &
 bus1(2) = (op1 OR op2) &
 bus1(3) = (op1 AND op2)

Figure 2.14: PVS specification for 4 to 1 MUX application
Generic Form of a Binary Decoder
Binary decoders have various input range and output width, however, unlike multiplexers, the output type of the binary decoder is always a *one-hot encoded* bit vector, i.e., there is only one bit of the n output bits set high at a time. For the definition of a binary decoder, criteria very similar to that used for multiplexers are also applicable. The parameterized PVS theory for binary decoders is shown in figure 2.15.

```
%======== DECODER ========
%The parameterized N is the used to define the
%size of input as an integer number
%For a decoder output with 2^N bits, the input
%must be a natural number within [0, 2^N-1].
DECODER[N:posnat]:THEORY
BEGIN
  DECODER_INPUT_TYPE: TYPE+=below(exp2(N))
  DECODER_OUTPUT_TYPE: TYPE+=[DECODER_INPUT_TYPE->bool]
  DECODER:TYPE+={
    decoder:[DECODER_INPUT_TYPE,DECODER_OUTPUT_TYPE->bool]|
      FORALL (dec_in:DECODER_INPUT_TYPE,
        dec_out:DECODER_OUTPUT_TYPE):
        decoder(dec_in,dec_out)=
          (FORALL (active: DECODER_INPUT_TYPE,
            inactive: {t:DECODER_INPUT_TYPE|t/=active}):
              dec_out(active)=true & dec_out(inactive)=false)}
END
```

Figure 2.15: Generic binary decoder definition

Theory `DECODER` has one formal parameter `N` which is forced to be positive natural number because the decoder has at least 2^1 outputs. `DECODER_OUTPUT_TYPE` is a predicate subtype used to constrain the input range to be $[0, 2^N-1]$. For example, for a 4-bit binary decoder with $N=2$, the input range is $[0, 3]$. `DECODER_OUTPUT_TYPE` is defined as an array type to facilitate accessing each bit of the output and its index range is defined by `DECODER_INPUT_TYPE` which is a natural number in $[0, 2^N-1]$. By using this method, the constraint imposed by formal parameter `N` is intro-
duced into the definition of the decoder. The internal variable \textit{active} is used to index the \textit{hot bit} on the output while dependent typing of \textit{inactive} is used to specify the low (false) value of the other bits. \textit{inactive} is defined as a predicate subtype which covers all the bits other than the \textit{active} bit.

For the purpose of showing that binary decoder provides the required \textit{one-hot encoding}, the following property needs to be proved:

\[\exists x (P(x) \land \forall y (P(y) \implies (x = y))) \]

This property can be formalized to as \textit{uniqueness\textunderscore fact} in the PVS theorem below:

\[
\text{DEC_WIDTH} : \text{posnat} \\
\text{decoder1 : \text{DECODER}[\text{DEC_WIDTH}]} \\
\text{uniqueness\textunderscore fact (}
\begin{align*}
\text{dec_in : \text{DECODER_INPUT_TYPE}[\text{DEC_WIDTH}],} \\
\text{dec_out : \text{DECODER_OUTPUT_TYPE}[\text{DEC_WIDTH}]): \text{bool} = } \\
\text{EXISTS (active : \text{DECODER_INPUT_TYPE}[\text{DEC_WIDTH}]):} \\
\text{(dec_out (active) = true)} \\
\text{AND} \\
\text{(FORALL (inactive : \text{DECODER_INPUT_TYPE}[\text{DEC_WIDTH}]):} \\
\text{dec_out (inactive) = true IMPLIES inactive = active)}
\end{align*}
\]

\text{DECODER_UNIQUENESS_FACT : THEOREM}

\[
\text{FORALL (}
\begin{align*}
\text{dec_in : \text{DECODER_INPUT_TYPE}[\text{DEC_WIDTH}],} \\
\text{dec_out : \text{DECODER_OUTPUT_TYPE}[\text{DEC_WIDTH}]):} \\
\text{decoder1 (dec_in, dec_out) IMPLIES} \\
\text{uniqueness\textunderscore fact (dec_in, dec_out)}
\end{align*}
\]

The property \textit{uniqueness\textunderscore fact} defines an instance of a generic form of decoder \textit{decoder1}. The theory is passed a positive natural number parameter to constrain its input range and output width. For \textit{decoder1}, it’s input range is \([0, 2^{\text{DEC_WIDTH} - 1}]\).
2.4 Formal Models of Sequential Circuits in PVS

Since the system is designed to be fully synchronous, D flip-flops are the only sequential component in the netlist circuit for the systems we are dealing with. A D flip-flop has the characteristic table as shown in Figure 2.16 (a).

The netlist view of such a D flip-flop with a synchronized reset is shown in figure 2.16b. All the signals are defined to be \textit{bitsignal} as in Figure 2.3. Obviously when \(\text{reset}=\text{false} \land \text{clk}=\text{true} \land \text{clk_en}=\text{true} \), Figure 2.16b can be simplified as in Figure 2.16c. We formalize the characteristic table based on the two following assumptions:

- The initial state of the D flip-flop is \textit{False} (logic 0).
- Signal \textit{reset} has the highest priority.

The PVS for this formalization is as follows:

\[
\begin{align*}
\text{REG}(D,Q,\text{reset},\text{clkenable} : \text{bitsignal}) : \text{bool} = \\
\text{FORALL } (t: \text{time}) : \\
\quad \text{IF } t=0 \text{ THEN } Q(t) = \text{FALSE} \\
\quad \text{ELSE IF } \text{reset}(t) \text{ THEN } Q(t) = \text{FALSE} \\
\quad \text{ELSE IF } \text{clkenable}(t) \text{ THEN } Q(t) = D(t-1) \\
\quad \text{ELSE } Q(t) = Q(t-1) \\
\end{align*}
\]

The simplified D Flip-flop in Figure 2.16c can be represented by the simplified PVS:

\[
\begin{align*}
\text{REG}(D,Q : \text{bitsignal}) : \text{bool} = \\
\text{FORALL } (t): \\
\quad \text{IF}(t=0) \text{ THEN } Q(t) = \text{FALSE} \\
\quad \text{ELSE } Q(t) = D(t-1) \\
\end{align*}
\]
(a) Characteristic Table of synchronous D Flip-flop

<table>
<thead>
<tr>
<th>clk_en</th>
<th>clk</th>
<th>D</th>
<th>Q(t+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
<td>Q(t)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>x</td>
<td>x</td>
<td>Q(t)</td>
</tr>
</tbody>
</table>

(b) Synchronous D Flip-flop

(c) Simplified Version of (a) when reset=false&clk=true&clk_en=true

Figure 2.16: Synchronous D Flip-flop
2.4.1 Formalizing Finite State Machines in PVS

Figure 2.17 is a shot of a netlist circuit in QUARTUSII Netlist Viewer with a finite state machine component represented by the yellow box. Although the whole circuit is a synchronous circuit and can therefore be viewed as a FSM, when we mention FSMs in this thesis we mean explicitly designed FSM component such as the one in the yellow box symbol that we will investigate further below.

The FSM block can be explored by the State Machine Viewer tool in Altera’s Quartus II software, which provides a view of the FSM in state diagram form instead of the register transfer level implementation. An FSM viewed by the State Machine Viewer is composed of three parts: a state transition chart, a transition table and a state encoding table. The actual implementation can be viewed by the Technology Mapping Viewer.

To formalize a FSM we do not need to deal with the implementation details in the technology mapping netlist circuit level since the correctness
of such a translation can be verified by equivalence checking tools (Altera, 2011). It is important to realize that in order to utilize equivalence checking tools such as Cadence Encounter Conformal, the style of the RTL code is of particular concern because neither tool supports some constructs, leading to potential formal verification mismatches (Altera, 2011). Of course, we can force the synthesis tool to generate the netlist circuit without extracting a FSM. In such a case, the circuit will be a sequential circuit without extracted FSM and the formal model can be constructed by using the components provided in previous sections.

In the example in Figure 2.17, the design would appear to have two registers: the PwrCond_Reg (grey) and the state register of the (yellow) state machine block. However if we check the synthesis report or the technology mapping, we will actually see that there is only one left: the is_chart register which is used for state machine. The PwrCond_Reg has been removed by the optimization process. While we can preserve both registers by adding a /* synthesis preserve */ comment after the PwrCond_Reg declaration in our original input file, typically we would want to take advantage of such optimizations. This is one of the main reasons why we choose the State Machine Viewer as the basis for formalize the FSM, since it preserves all the information we need without introducing all the unnecessary optimization details which can instead be verified using equivalence checkers.
Formalizing a FSM is equivalent to formalizing the three components given by the state machine viewer. This process can be standardized to the following steps:

- Setup the name space.
- Translate the FSM transition table as a state transition predicate called \(FSM_TRANSIT \) and embed enough information to discharge the disjoint and coverage TCCs generated by the PVS \(COND \) constructs we will use for this purpose.
- Build a FSM_SHELL to establish the FSM interface and embed the encoding information.

The following discussion describes an example of formalizing a FSM from the information given by the state machine viewer, reproduced in Figure 2.18. The first step is to define the state space according to the state diagram.
In Figure 2.18a we see that there are two states named \texttt{In_Activated} and \texttt{In_Deactivated}. The best way to describe the state space is to use an enumeration type to define the name space: \texttt{STATENAME: TYPE= \{activated, deactivated\}}. State type is a signal that switches its value from tick to tick. Thus it need to be defined as: \texttt{STATE: TYPE=[TIME->STATENAME]}.

The most important step is to formalize the transition table. In the \textit{State Machine Viewer}, "." and "+" represent the logical "AND" and "OR" operators respectively. The general form of the formalized transition table is \texttt{state(t)=f(comb(t),state(t-1))}, where \(f \) is a function defined in the transition table, \(comb(t) \) is the current value of all the combinational inputs, \(state(t-1) \) is the previous value of the FSM \texttt{state}. When time is 0, the initial value of the state is defined to be \texttt{deactivated}. The transition condition contains the signal \texttt{clock_enable} which, to simplify our encoding, we will assume is always true and thus the transition condition expressions can be simplified accordingly.

Discharging the relevant TCCs is another issue need to be address in modeling the state transition predicate. We use PVS \texttt{COND} statements without \texttt{ELSE} branches in order to force verification of the completeness and determinism of the FSM transition relation. When a \texttt{COND} construct is used disjointness and coverage TCCs such as those shown in Figures 2.19 and 2.20 are automatically generated. Typically these TCCs cannot be discharged unless the input data constraints are known inside the \texttt{FSM_TRANSIT} predicate.

As Figure 2.22 shows, the FSM has four inputs which are used to determine the next state of the FSM. If these four inputs are independent, then \(2^4\) cases must be covered in the \texttt{COND} statement defining the state transition relation to guarantee that he disjointness and coverage TCCs can be discharged. However the transition table in Figure 2.21 only covers 4 cases. It can be proved that these four cases are complete and disjoint since the four inputs \texttt{LESS_THAN0}, \texttt{LESS_THAN1}, \texttt{LESS_THAN2}, and \texttt{LESS_THAN3} are dependent. In Figure 2.22, since \texttt{LESS_THAN1} = \((\text{power}<=\text{kin})\) and \texttt{LESS_THAN0} = \((\text{kin}<\text{power})\), it is easy to see that \texttt{LESS_THAN1} = \texttt{NOT LESS_THAN0}. Similarly, \texttt{LESS_THAN2} = \texttt{NOT LESS_THAN3}. Since we assume that \texttt{kin<kout}, we also have \texttt{LESS_THAN1} = \texttt{NOT LESS_THAN2}. Other derived relations are not listed here. It is these derived relationships that reduced the
% Disjointness TCC generated (at line 55, column 12) for
% COND ((NOT lto1(t)) OR (lto1(t) AND lto0(t))) AND
% state(t - 1) = activated
% -> activated,
% (lto1(t) AND (NOT lto0(t))) AND state(t - 1) = activated ->
% deactivated,
% lto2(t) AND state(t - 1) = deactivated -> activated,
% (NOT lto2(t)) AND state(t - 1) = deactivated -> deactivated
% ENDCOND
% unchecked

FSM_TRANSIT_TCC5: OBLIGATION
FORALL (kin: {x: signal[TIME, BUS_TYPE[N]] | FORALL t: x(t) = KIN},
 kout: {x: signal[TIME, BUS_TYPE[N]] | FORALL t: x(t) = KOUT},
 pwrr: {x: signal[TIME, BUS_TYPE[N]] | FORALL t: x(t) = KOUT},
 state: STATE,
 lto0: bitsignal[TIME, BUS_TYPE[N]],
 lto1: bitsignal[TIME, BUS_TYPE[N]],
 lto2: bitsignal[TIME, BUS_TYPE[N]],
 lto3: bitsignal[TIME, BUS_TYPE[N]],
 t):
 LESS_THEN0(kout(t), pwrr(t), lto0(t))
AND LESS_THEN1(pwrr(t), kout(t), lto1(t))
AND LESS_THEN2(kin(t), pwrr(t), lto2(t))
AND LESS_THEN3(pwrr(t), kin(t), lto3(t)) AND NOT t = 0
IMPLIES
NOT (((NOT lto1(t)) OR (lto1(t) AND lto0(t)))
 AND state(t - 1) = activated AND lto1(t) AND (NOT lto0(t))
 AND state(t - 1) = activated)
AND
NOT ((((NOT lto1(t)) OR (lto1(t) AND lto0(t))) AND
 state(t - 1) = deactivated)
AND (NOT lto2(t)) AND state(t - 1) = deactivated)
AND
NOT (lto1(t) AND (NOT lto0(t)) AND state(t - 1) = activated
 AND lto2(t) AND state(t - 1) = deactivated)
AND
NOT (((lto2(t) AND state(t - 1) = deactivated) AND
 (NOT lto2(t)) AND state(t - 1) = deactivated);

Figure 2.19: Disjointness TCC
% Coverage TCC generated (at line 55, column 12) for
% COND ((NOT lto1(t)) OR (lto1(t) AND lto0(t))) AND
% state(t - 1) = activated % -> activated,
% (lto1(t) AND (NOT lto0(t))) AND state(t - 1) = activated ->
% deactivated,
% lto2(t) AND state(t - 1) = deactivated -> activated,
% (NOT lto2(t)) AND state(t - 1) = deactivated -> deactivated
% ENDCOND % unchecked FSM_TRANSIT_TCC6: OBLIGATION
FORALL (kin: {x: signal[TIME, BUS_TYPE[N]] | FORALL t: x(t) = KIN},
 kout: {x: signal[TIME, BUS_TYPE[N]] | FORALL t: x(t) = KOUT},
 pwr: {x: signal[TIME, BUS_TYPE[N]] | x(0) <= KOUT}, state: STATE,
 lto0: bitsignal[TIME, BUS_TYPE[N]],
 lto1: bitsignal[TIME, BUS_TYPE[N]],
 lto2: bitsignal[TIME, BUS_TYPE[N]],
 lto3: bitsignal[TIME, BUS_TYPE[N]], t):
 LESS_THEN0(kout(t), pwr(t), lto0(t))
 AND LESS_THEN1(pwr(t), kout(t), lto1(t))
 AND LESS_THEN2(kin(t), pwr(t), lto2(t))
 AND LESS_THEN3(pwr(t), kin(t), lto3(t)) AND NOT t = 0
IMPLIES
 ((NOT lto1(t)) OR (lto1(t) AND lto0(t))) AND state(t - 1) = activated OR
 (lto1(t) AND (NOT lto0(t))) AND state(t - 1) = activated OR
 lto2(t) AND state(t - 1) = deactivated OR
 (NOT lto2(t)) AND state(t - 1) = deactivated;

Figure 2.20: Coverage TCC
2^4 cases into four found in the transition table. Therefore, if we want to use the reduced transition table, we must embed these relation operators and their connections into the FSM, otherwise the disjointness and conjunction TCCs will not be discharged.

The way to embedded these relations is to expand the state machine to include all four LESS_THAN operators as shown in 2.21.

After the state transition relation FSM_TRANSIT has been defined, the last step is to output state encoding to the external circuit. Figure 2.17 shows that the output of the FSM is connected to a multiplexer. According to Figure 2.18b, when the FSM is in the IN_Activated state, the output to the multiplexer is a logical 1. In the actual implementation of the FSM, there are many alternative state assignment method. In our case, we do not need to consider such details since we can just output a boolean value by using the predicate in Figure 2.23. Two new variables are introduced: bool_output and testing_state_name, the boolean output value determine if the current state is equivalent to the specified state testing_state_name which is assigned to be IN_Activated. Thus whenever the FSM state is IN_Activated, the boolean output is a logic 1.

2.5 Formal Models of the RTL HDL level

When the netlist circuit is too complicated, the formalization process could be very inefficient and impractical. This problem could be solved by decomposing the netlist circuit implementation carefully, or by developing some tools to translate the circuit automatically (Mansouri and Vemuri, 2000). Another approach is, instead of formalizing the netlist circuit which may involve too much detail, to formalize the RTL HDL model. The HDL model is above netlist circuit model in Figure 1.3 which means it is more abstract. The lower the model is in the design process, the closer it is to the real circuit.

As the name implies, the functional semantics we will employ focus on the functionality of the HDL model. It sacrifices some of the expressivity of the asynchronous simulation semantics and requires extra constraints to be applied on the HDL model. As discussed in 2.2, the assumption is that we
FSM_TRANSIT(
 kin,kout,
 pwr,
 state,
 lto0,lto1,lto2,lto3):bool =
 FORALL t:
 IF t=0 THEN
 state(t)=deactivated
 & LESS_THAN3(pwr(t),kin(t),lto3(t))
 & LESS_THAN2(kin(t),pwr(t),lto2(t))
 & LESS_THAN1(pwr(t),kout(t),lto1(t))
 & LESS_THENO(kout(t),pwr(t),lto0(t))
 ELSE
 %This can be looked as a standard part to describe the constrains
 %for the terms in the FSM table which can be used to eliminate the
 %disj/comp TCCs
 LESS_THAN3(pwr(t),kin(t),lto3(t))
 & LESS_THAN2(kin(t),pwr(t),lto2(t))
 & LESS_THAN1(pwr(t),kout(t),lto1(t))
 & LESS_THENO(kout(t),pwr(t),lto0(t))
 %%%
 & state(t)=COND
 ((NOT lto1(t)) OR (lto1(t) AND lto0(t)))
 AND state(t-1)=activated
 -> activated,
 %%%
 (lto1(t) AND (NOT lto0(t)))
 AND state(t-1)=activated
 -> deactivated,
 %%%
 lto2(t) AND state(t-1)=deactivatedB
 -> activated,
 %%%
 (NOT lto2(t)) AND state(t-1)=deactivated
 -> deactivated
 ENDCOND
 ENDIF

Figure 2.21: Formalizing FSM Transition Table
Figure 2.22: FSM and LESS_THAN operators

FSM_SHELL(kin,kout,pwr,
testing_state_name,bool_output,
lto0,lto1,lto2,lto3): bool =
EXISTS (state_output: STATE):
 FORALL t:
 FSM_TRANSIT(kin,kout,pwr,state_output,lto0,lto1,lto2,lto3) &
 bool_output(t) = (state_output(t) = testing_state_name)

Figure 2.23: FSM_SHELL - the FSM output interface to the surrounding circuit
are dealing with a synchronous system driven by a unique clock and that all inputs are synchronized by the same clock. If we applied these assumptions in the HDL model, then the functional semantics will be powerful enough to describe the system and neat enough to support formal verification.

In the following sections, a subset of the Verilog HDL semantics will be discussed and a Verilog implementation will be formalized into PVS specification. More specifically, we only discuss a small subset of Verilog used to construct the synchronous sequential circuit which satisfy the following 5 rules.

1. Non-blocking assignment only occurs within blocks of the form

 \[
 \text{always @ (posedge clk) begin ... end}
 \]

2. Blocking assignments occur only within blocks of the form

 \[
 \text{always @* begin ... end}
 \]

3. No timing controls are used

4. No signals is assigned values by two distinct processes

5. The program does not contain any set of blocking or continuous assignments \(v_0 = E_0 \ldots, v_k = E_k \), such that \(v_i \) occurs in \(E_{i-1} \) for \(i = 1 \ldots, k \) and \(v_k = v_0 \).

 Note that the last principle is not necessary in a synchronous sequential circuit design as the last assumption is used to prevent the nondeterministic behaviour in a simulation in a particular simulation cycle (Russionoff, 2005). This problem is caused by sequential software execution that cannot simulate the concurrency of the hardware exactly. However this risk is only observable at the simulation level and is not observable in actual hardware synthesis and its formalization.
2.5.1 Formal Semantics of a Subset of Verilog

Wire and Reg Type Definition Both wire and reg type are defined as a signal which is a function of time. For example:

```verilog
reg signed [15:0] low;
reg signed [15:0] lowest;
reg signed [15:0] i;
```

These reg type variables can be formalized as signals type in PVS as below:

```plaintext
low, lowest, i : VAR BIT16_RANGE_2C
```

where BIT16_RANGE_2C is defined in Figure 2.5 as a signed integer, in Verilog they are represented as 16 bit 2's complement.

For the reader unfamiliar with Verilog, please note that that a reg declaration does not imply that quantities such as low will be synthesized as an actual hardware register, but rather that its value will be determined by a procedural block with sequential semantics.

Continuous assignment The continuous assignment statement and always block are the only procedures we have in the program and these blocks are concurrent. Thus all the continuous assignment can be rearranged - i.e., the synthesized hardware is independent of their order of appearance in the Verilog code. The semantics of continuous assignment is: whenever the value of the signal on the right hand side changes, the left hand side signal will be updated. As our circuit is designed to be synchronous circuit and all the changes occurred in the clock edge, we have the following formal semantics.

For a continuous assignment statement:

```verilog
wire a, b;
assign a = b;
```

It can be formalized as:

$$\forall t : a(t) = b(t)$$

where \(t \) is a natural number representing the number of positive clock edges.

In PVS, it can be formalized as:
\[a, b : \text{VAR bitsignal} \]
\[\text{FORALL } (t : \text{time}) : a(t) = b(t) \]

In practice, usually there are more than single continuous assignment statements in the design. These statements can be formalized individually and connected by conjunction because the continuous assignments are evaluated concurrently. Consider the Verilog code:

\begin{verbatim}
assign sum = sum_reg_next;
assign done = done_reg_next;
\end{verbatim}

These two continuous assignment will be formalized as:

\[\forall t : \text{sum}(t) = \text{sum}_\text{reg}_\text{next}(t) \land \text{done}(t) = \text{done}_\text{reg}_\text{next}(t) \]

and in PVS they can be written as:

\[\text{FORALL } (t : \text{time}) : \text{sum}(t) = \text{sum}_\text{reg}_\text{next}(t) \land \text{done}(t) = \text{done}_\text{reg}_\text{next}(t) \]

Blocking assignment We constrain the blocking assignment to only occur in an always block of form:

\begin{verbatim}
always @*
 begin
 . . .
 end
\end{verbatim}

This block will be synthesized as a combinational circuit if there is no implied memory occurring in this block. A block is only entered when changes occurred for the right hand side signals in the blocking assignment. Just as multiple continuous assignment statements are connected by conjunctions, the blocking assignment statements are also connected by conjunction. When the blocking assignments are formalized, their sequence should be maintained. Also, to make the formalized PVS specification more readable, each always block should be translated into a boolean function accordingly. Usually in an RTL HDL design, each always block is designed to implement some functionality. Naming these always blocks appropriately will greatly facilitate our proof in controlling
the complexity and following the instantiation steps explained later in this chapter.

For example, an always block describing the next state logic of a state machine might be of the form:

```verilog
always @* begin
    v0_next = b0;
    v1_next = b1;
    ...
    vk_next = bk;
end
```

Assuming all signals are bit signals, such a block can be formalized as a predicate in PVS named `FSM_NEXT`:

```pvs
FSM_NEXT(t: time, v0, v1, ..., vk, b1, ..., bk: bit signal): bool
forall t:
    v0_next(t) = b0(t) &
    v1_next(t) = b1(t) &
    ...
    vk_next(t) = bk(t)
```

It is possible to merge always blocks that are using blocking assignments. However, since each always block is concurrently evaluated, the sequence of the always blocks in the Verilog code is irrelevant. For example:

```verilog
always @* begin
    v0 = b0;
    v1 = b1;
    ...
    vk = bk;
end
```

```verilog
always @* begin
    x1 = a0;
    x2 = a2;
    ...
    xk = ak;
end
```
can be formalized as below as long as the internal assignment statement sequence within each always block is maintained:

\[
\text{Merged_Block}(t:\text{time}, v_0, v_1, \ldots, v_k, a_1, \ldots, a_k, x_1, \ldots, x_k, b_1, \ldots, b_k: \text{bitsignal}): \text{bool}
\]

\[
\text{FORALL } t: \\
\quad v_0(t) = b_0(t) & \\
\quad v_1(t) = b_1(t) & \\
\quad \ldots & \\
\quad v_k(t) = b_k(t) & \\
\quad x_0(t) = a_0(t) & \\
\quad x_1(t) = a_1(t) & \\
\quad \ldots & \\
\quad x_k(t) = a_k(t)
\]

An interesting question is: Can the sequence of blocking assignments be altered in an always block with the following form:

\[
\text{always @*} \\
\text{begin} \\
\quad v_0 = E_0; \\
\quad v_1 = E_1; \\
\quad \ldots \\
\quad v_k = E_k; \\
\text{end}
\]

At the moment, there are two cases to discuss (we do not consider overriding until Section 2.5.3):

- **case 1** \(v_i = E_i\) \(i=1,2,\ldots,k\) are fully independent

That is, for all \(v_i = 1,2,\ldots,k\) it is not the case that any of the variables occurring of the left hand side in the always block appears in any of the expressions \(E_j\) on the right hand side, where \(j=1,\ldots,k\). This means all the blocking assignment statements are fully independent. Obviously, the sequence
always @* begin
 v0 = E0;
 v1 = E1;
 v2 = E2 & v1;
end

Figure 2.24: Blocking assignment example

always @* begin
 v0 = E0;
 v2 = E2 & v1;
 v1 = E1;
end

Figure 2.25: Reversed blocking assignment example

of the blocking statement in such an environment does not matter and can be
freely altered without changing the semantics.

• case 2 vi = Ei i = 1, 2, ..., k are dependent

That is, at least one vi i = 1, 2, ..., k appears in some of Ej where j = 1, ..., k.
For example, in Figure 2.24, v1 occurs in the expression E2 & v1, thus v2 will
be evaluated to be the value of E2 and the updated v1 from the previous
statement. Therefore it is equivalent to the statement v2 = E1 & E2.

In Figure 2.25, we switched the blocking assignments for v1 and v2.
Then when E1 changes, v1 will be updated. Since v1 is on the right hand side
of blocking assignment for v2, v1 is in the sensitivity list. The always block
will be scheduled to be entered again in the next simulation cycle to update
v2. In Figure 2.24, v2 gets a new value in the same simulation cycle as v1
when E1 changes. In the reversed version in Figure 2.25, v2 get a new value
in the following simulation cycle after E1 has changed v1 since always block
will then be retriggered by the new value of E2 & v1. Thus the change of E1
will eventually change the value of v2, finally making the two versions of the
always blocks equivalent. That is, this transition is invisible since the system
state is only observable on clock edge based on our assumption in which the
clockcycle is long enough for the transition to settle down.
From the perspective of synthesis, the sequence of the blocking assignment in an always block with * as its sensitive list does not matter since they will all synthesized to be the same combinational circuit. For example:

```verilog
module blocking(a,c,d,e);
  input a,c;
  output reg d,e;
  always @*
  begin
    e=a&c;
    d=a&e;
  end
endmodule
```

Even if we reverse the two blocking assignment statements in this block, the code will be synthesis into the same circuit as below:

However, changing the sequence of blocking assignment statements will change the circuit in sequential always block, for example:

```verilog
always @(posedge clock)
begin
  f=x1&x2;
  g=f|x3;
end
```

In this case, reverse f,g will produce totally different circuit. However as we do not use blocking assignment in sequential circuit, this will not be discussed further.

Based on the above analysis, we can see that as long as the blocking assignment is in an always @* block, the sequence of the statements is irrelevant.
Non Blocking Assignment By the assumption state at the start of Section 2.5, non blocking assignment will only be used in always blocks of the form:

```verilog
always @(posedge clk) begin  . . . end
```

Such an always block is used to represent a synchronous sequential circuit and the variable on the left hand side inside the block will be synthesized to be registers or internal connecting wires. To focus on the formalization of non-blocking assignment, we only discuss always blocks of the form show in Figure 2.26.

```verilog
always @(posedge clk)
begin
  v0 <= E1;
  v1 <= E2;
  . . .
  vk <= Ek;
end
```

Figure 2.26: Non-blocking assignment in an always block

That is no other behaviour control such as IF ELSE statements are used in the blocks which will be discussed in the next part.

The formal semantics of non-blocking assignment can be analyzed from two perspectives: the synthesis oriented and simulation oriented. A correct formal semantics should be consistent in both views. Like other analysis in this thesis, the formal semantics of the non-blocking assignment is discussed under some assumptions and conditions. Besides the five constrains on Verilog stated at the begining of Section 2.5, we also assumed that there are no duplicate names on the left hand side. That is, there is no more than one non-blocking assignment statement which updates a particular variable anywhere in the assignment sequence in Figure 2.26.

Under this assumption we examine the formal semantics of a non-blocking assignment from the following perspective.

- Synthesis perspective
As we know that a variable on the left hand side in an always block is triggered by a clock edge, it will be synthesized to be an output of a D flip-flop. Thus the left hand side variable will get the value of expression on the right hand side at the previous clock edge. For example:

```verilog
always @(posedge clk)
begin
    a <= b;
end
```

This always block will be synthesized to be a D flip-flop with input `b` and output `a` as showing in Figure 2.27

![Figure 2.27: A D flip-flop synthesized by a non-blocking assignment](image)

We can formalize `a<=b` to be:

Version 1

FORALL t:
 IF t=0 THEN a(t)=0
 ELSE a(t)=b(t-1)

Version 2

FORALL t:
 a(t+1)=b(t)

The `posedge clk` has already been embedded into the model since time is represented by a natural number (see section 2.2). We can also add on a `clk_enable` signal to control the D flip-flop which has been omitted from this basic example.

These two formal semantics are essentially equivalent. In this thesis the first one is adopted. As `b` is a signal whose domain is a natural number,
$t - 1$ must be greater than or equal to 0 which implies t must be greater than 0, otherwise an unprovable TCC will be generated. It is easy to see that the second version does not have this problem since it is using $t + 1$ instead of $t - 1$. However the benefit of the first version is that the initial condition when $t = 0$ is forced to be explicitly stated which is usually one of the most common places where errors can be introduced.

- Simulation semantics perspective

The analysis can be start by presenting the following example:

```verbatim
always @*
begin
  b = c;
end

always @(posedge clk)
begin
  a <= b;
end
```

Consider two successive positive clock edges denoted clk_i,clk_{i+1}, and a simulation cycle sequence $tick_0,tick_1,...,tick_k$, where $clk_i \in [tick_{i-1},tick_0)$, and $clk_{i+1} \in [tick_{k-1},tick_k)$ as shown in Figure 2.28.

![Figure 2.28: simulation cycles and clock](image-url)
In the timing diagram part of section 2.2, we explained that all the signals change after the positive clock edge. It is easier to explain it with reference to Figure 2.28. When clock edge \(clk_i \) occurs, the simulation scheduler will update all the outputs of flip-flops within the next simulation cycle \([tick_0, tick_1]\). This means signal \(c \) will be scheduled to update at \(t_k \) within \([tick_0, tick_1]\) (assuming there is no timing control) because the source of \(c \) is either the output of some flip-flop or it is an input synchronized by the same clock. As \(c \) is in the sensitivity list of the combinational always block, this block will be scheduled to execute within \([tick_1, tick_2]\) or later cycles. We do not need the exact time when \(b \) is updated, as long as we know that \(t_{k+1} \) is later than \(tick_2 \). All the always blocks triggered by \(posedge \ clk \) have already been executed within \([tick_0, tick_1]\). Obviously, the new value of \(b \) will not be assigned to \(a \) until next clock edge \(clk_{i+1} \) arrives. When \(clk_{i+1} \) arrives, all the synchronous blocks will be scheduled to update the left hand side variables at \(t_{k+2} \) within \([tick_k, tick_{k+1}]\). Thus, the timing behavior of \(a \) and \(b \) can be described as:

\[
 a(i + 1) = b(i) \quad \text{or} \quad a(i) = b(i - 1).
\]

In real applications, a synchronous block usually contains \texttt{reset} and \texttt{clk_enable} signals as shown in Figure 2.29. Such a standard synchronous block can be formalized using the PVS specification language as shown in Figure 2.30.

It is possible to simplify this PVS specification, however, using this method makes the formal specification structure consistent with the Verilog structure which will facilitate reviewing the specification to see if it accurately models the Verilog code.

2.5.2 IF and CASE Statements and Implied Memory

The syntax of \texttt{IF} and \texttt{CASE} statements are very similar in Verilog and PVS, except that PVS requires \texttt{IF} statements to have an \texttt{ELSE} branch. Similarly PVS will check for complete coverage of \texttt{CASE} statements.

Implied memory could be introduced by the designer intentionally or unintentionally through incomplete \texttt{IF} statements or \texttt{CASE} statements without a default assignment. Unintentionally introduced implied memory in com-
always @(posedge clk)
 begin
 if (reset)
 begin
 low <= 0;
 lowest <= 0;
 i <= 0;
 end
 else
 if(clk_enable)
 begin
 low<=low_next;
 lowest<=lowest_next;
 i<=i_next;
 end
 end

Figure 2.29: A synchronous always block example

binational blocks can be eliminated by checking warnings from the compiler and utilizing the forced coverage checking in PVS. The formalization of IF and CASE statement can be discussed in 2 cases, recalling the constraints in section 2.5.

We typically only have two types of always block of the forms shown below:

// combinational block
always @* begin ... end

// synchronous block
always @(posedge clk) begin ... end

- In combinational always blocks

In this case there will be no latch in the design. Also, as all the HDL compilers generate a warning if a latch is synthesized, the unintentionally introduced latch can be easily removed. Thus, a combinational block without a latch must have a full coverage in all IF-ELSE and CASE branches, possibly through the
FORALL t:
 IF (reset(t)) THEN
 low(t)=0 &
 lowest(t)=0 &
 i(t)=0
 ELSE IF (clk_enable(t)) THEN
 IF(t=0) THEN % initial value
 low(t)=0 &
 lowest(t)=0 &
 i(t)=0
 ELSE
 low(t)=low_next(t-1) &
 lowest(t)=low_next(t-1) &
 i(t)=i_next(t-1)
 ENDIF
 ELSE
 IF(t=0) THEN % initial value
 low(t)=0 &
 lowest(t)=0 &
 i(t)=0
 ELSE
 low(t)=low(t-1) &
 lowest(t)=lowest(t-1) &
 i(t)=i(t-1)
 ENDIF
 ENDIF
ENDIF

Figure 2.30: Synchronous always block formalized in PVS
use of a default case assignment. The former case can be formalized into PVS directly, while the later case will be discussed in 2.5.3

- In synchronous always blocks

Synchronous blocks will synthesize all the variables on the left hand side to be D flip-flops, even if there are cases where there is a missing assignment. In such a case the a memory unit will keep its previous value when the next clock edge arrives. So for **IF-ELSE** and **CASE** statements, if all branch conditions are fully covered, then the translation into PVS can be done with a direct one to one correspondence.

Let us consider when this is not the case, such as in the following example:

```vhdl
always (posedge clk)
begin
    if (state) a <= b;
end
```

In this example, the **IF** statement is not complete. Since signal `a` is the output of an D flip-flop, its default case will be its value at the previous clock tick. Thus this code can be formalized as:

```vhdl
forall t :
    if (NOT state=0)
      then a(t)=b(t-1)
    else a(t)=a(t-1)
ENDIF
```

Figure 2.29 is such an example in which the last **IF** (**clk_enable**) statement does not have an **ELSE** branch. Thus signals `low`, `lowest`, `i` are all assigned their previous value `low(t-1)`, `lowest(t-1)`, `i(t-1)` respectively.

2.5.3 Overriding of Blocking/Non-Blocking Assignments

If a variable appears more than once on the left hand side in assignment statements, then the later assignment may override the previous one.
It is very tricky to formalize blocking/non-blocking assignment overriding. In most cases, we have to analyze the execution branch and rearrange it in the Verilog code before formalization. This is because Verilog HDL an imperative language. All the blocking assignment are evaluated in order and thus later assignment will override or replace previous ones. However, the formal specification language in PVS is based on higher order logic. The formal model of the implementation in PVS is nothing but a complex predicate defined on natural numbers (in this thesis). As we are focusing on the functional semantics of Verilog, the execution sequence of the Verilog assignments can not be supported easily. Thus, to formalize imperative style Verilog code, we must reorganize the code structure before formalization. For example in the following Verilog code:

```verilog
always @*
begin
  a=b;
  a=c;
end
```

the second assignment overrides the first one. It is obviously that we cannot translate them into:

```latex
\text{FORALL } t:
  a(t) = b(t) \&
  a(t) = c(t)
```

since this could lead to a contradiction.

In other words, we have to reorganize the code and “manually” remove the first assignment $a=b$. In typical applications, the structure in always blocks can be quite complicate. The overriding could happen in nested \textit{IF-ELSE} branches. The purpose of the discussion in this section is to find a systematic way to perform this transformation. A transformed tree should have the following form shown in Figure 2.31.
In Figure 2.31, E_1, E_2 ... are representing a sequence of assignments. For example, $E1$ could be in form of:

\[
\ldots
\]
\[
a_1 = b_1; \\
a_2 = b_2; \\
a_3 = b_3; \\
\ldots
\]

There are no assignment statements anywhere in the tree except for the leaves. The condition to reach a particular leaf is nothing but the conjunction of the subconditions along the branch from the root to the leaf. For example, the under which $E1$ is executed will be:

\[
\text{cond}_0 \text{ AND } \text{cond}_1 \text{ AND } \text{cond}_3 \text{ AND } \ldots \text{ AND } \text{cond}_j
\]

Thus, this binary tree can be formalized as:

\[
\text{FORALL } t:
\]
\[
\text{IF } (\text{cond}_0 \text{ AND } \text{cond}_1 \text{ AND } \text{cond}_3 \text{ AND } \ldots \text{ AND } \text{cond}_j)
\]
\[
\text{THEN } E_1
\]
\[
\text{ELSE IF}(\text{cond}_0 \text{ AND } \text{cond}_1 \text{ AND } \text{cond}_3 \text{ AND } \ldots \text{ AND } \text{NOT } \text{cond}_j)
\]
\[
\text{THEN } E_2
\]
It is easy to see that all conditional expressions constructed by conjunctions of subconditions along each route to different leaves are complete and disjoint.

As non-blocking assignment statements are evaluated at the end of the simulation cycle, for duplicate assignments to the same variable, the last one will be the actual effective assignment. All the previous assignment statements will be overridden. On the other hand blocking assignment overriding is much more complex since a previous assignment could affect a later assignment before it is overridden. This thesis will discuss the blocking assignment case after the non-blocking assignment formalization as it can be looked at as an expanded analysis based on the blocking assignment properties.

2.5.4 Non-blocking Assignments in Synchronous always Blocks

By assumption the synchronous block only contain non-blocking assignments. Consider the following Verilog code:

```verilog
class always @ (posedge clk) begin
    a1 <= b1;
    a2 <= b2
    if (cond)
        a1 <= b2;
    else
        a2 <= b3;
end
```

In this example, both `a1` and `a2` are overridden in the `IF - ELSE` branch. It is equivalent to the following code:

```verilog
always @(posedge clk) begin
    if (cond) begin
        a1 <= b2;
    end
end
```
a2 <= b2;
end

else begin
 a1 <= b1;
 a2 <= b3;
end
end

The following binary tree can be used to represent this transformation:

In this diagram, the decision structure in the always block is translated into a binary tree. In (a), the root is the initialization part and each node is represented by a box containing the updating statements. In (b), the original structure is the rearranged such that all the overridden assignment have been removed and the final equivalent assignment is denoted in the leaves. This example shows how the initialization assignment statements can be moved from the root to the leaves.

If there is no ELSE branch for the Verilog code:

```verilog
always @(posedge clk) begin
  if (cond) begin
    a1 <= b1;
    a2 <= b2;
  end
end
```

The tree can be represented as the following figure:
The empty node in (a) represents an empty else branch. The assignment in empty leaves will simply take the assignment in the parent node, in this example, the root.

The assignment sequence in (b) is in the final form that we can easily formalize. The remainder of this section will explore a few more example and try to conclude with some principles to inform the reader in performing this sort of transformation.

Consider the Verilog always block in Figure 2.32. We apply the transformation process shown in Figure 2.33 by applying following rules:

1. Move all the current assignment statements to the lower level. If there are overriding non-blocking assignment in the lower level, then remove the current level assignment and use the assignment statement from lower level. Otherwise, add the current non-blocking assignment to the lower level assignment sequence.

2. If there is no ELSE branch, then directly copy the assignment sequence from the parent node to its negation branch.

3. After all the non-blocking assignment statements are merged into leaves, create a list of all the variables that appear on the left hand side of the assignment statements in the synchronous always block and append default value assignments of the form \(\text{signal} <= \text{signal} \) in the leaves in which the variable list is not completely specified. After this, each variable in the list should have an assignment in each leaf.
always @ (posedge clk) begin
 if (cond0) begin
 a1 <= b2;
 if (cond1) begin
 a3 <= b1;
 if (cond2) begin
 a1 <= b4;
 end
 end
 else begin
 a2 <= b1;
 end
end
else begin
 a4 <= b4;
end

Figure 2.32: A more complex non-blocking assignment overriding problem

Figure 2.33(a) is built up exactly corresponding to the given Verilog code in Figure 2.32. There is no default assignment sequence in the root. Figure 2.33 (b) is obtained by merging $a1 <= b2$ in $E0$ to the lower level assignment sequence $E2$, $E3$ and Figure 2.33(c) is the final result by merging $E2$ to $E4$ and $E5$. The non-blocking assignment sequence is empty at node $E5$, denoted by a circle, since $E5$ corresponds to the omitted ELSE branch of the if statement evaluating cond2. As $E5$ does not have any overriding statements, $E5$ copies the assignment from its parent node $E2$ in (c). In (c), there is no assignment anywhere but in the leaves and this is the form we described in Figure 2.31.

The last step from (c) to (d) is to make explicit implicit assignments to signals in order to facilitate translation to PVS. As all the left hand side variables in the code for the synchronous circuit will be synthesized to be the outputs of a D flip-flop, then if they are not assigned by a value in a particular branch, then they will keep their value from previous clock tick. We assign a variable the value it currently holds, for example $a1 <= a1$. This is a dummy statement in synchronous non-blocking assignment, but it help us to formalize
Figure 2.33: decision tree transformation process
FORALL t:
 IF (cond_0 & cond_1 & cond_2)
 THEN
 a1(t) = b4(t - 1) &
 a2(t) = a2(t - 1) &
 a3(t) = b1(t - 1) &
 a4(t) = a4(t - 1)
 ELSE IF (cond_0 & cond_1 & NOT cond_2)
 THEN
 a1(t) = b2(t - 1) &
 a2(t) = a2(t - 1) &
 a3(t) = b1(t - 1) &
 a4(t) = a4(t - 1)
 ELSE IF (cond_0 & NOT cond_1)
 THEN
 a1(t) = b2(t - 1) &
 a2(t) = b1(t - 1) &
 a3(t) = a3(t - 1) &
 a4(t) = a4(t - 1)
 ELSE
 a1(t) = a1(t - 1) &
 a2(t) = a2(t - 1) &
 a3(t) = a3(t - 1) &
 a4(t) = a4(t - 1)
ENDIF
ENDIF
ENDIF

Figure 2.34: PVS specification for Verilog in Figure 2.32

this code. By doing so, we can translate the Verilog code according to the
decision tree as shown in Figure 2.32.

In Figure 2.33, both (a) and (d) generate the exact same circuit shown
in Figure 2.35.
Figure 2.35: The circuit before and after the transformation
2.5.5 Blocking assignments in Combinational always Blocks

Dealing with blocking assignments that are overridden in combinational always blocks is more complex. Consider a Verilog code blocking assignment sequence:

```verilog
always @* begin
    a1 = b1;
    a2 = a1;
    a4 = a2;
    a1 = b2;
    a3 = a1;
    a5 = a3;
end
```

Within the block, `a1` has two assignments at line 2 and 5 respectively. Unlike the blocking assignment in which the later assignment will be the actual effective assignment, for blocking assignment, each assignment has its valid domain. In this block, the valid domain of assignment `a1 = b1` in line 2 is from line 2 to 4, and the valid domain of `a1 = b2` in line 5 is from line 6 to 7. From this example, we conclude the following:

For a blocking assignment sequence `S` with the following form:

```
vi = Em; // line m
... 
vj = En; // line n
... 
vk = Ek; // line p
```

Figure 2.36: A blocking assignment sequence `m<n`

If `vi` and `vj` are the same variable `(i=j)`, and there is no other overriding assignment for `vi` in the sequence `S`, then the valid domain of `vi` is from line `m` to line `n-1` and the active domain of `vj` is from line `n` to line `p`. That is, the valid domain of a blocking assignment to a variable is the whole the assignment sequence after this assignment, until another overriding assignment to this variable occurs.
This is different from non-blocking assignments, since all the non-blocking assignments are evaluated at the end of simulation cycle, only the last overriding assignment is valid and its valid domain is the whole always block. A blocking assignment with complex conditional branches needs more analysis compared to the non-blocking version.

To transform a decision tree into the form in Figure 2.31, we can use the rules in Figure 2.37:

1. Move all of the assignment statements into leaves while insuring that the original assignment sequence is maintained - i.e., all the assignment statements in upper levels in the tree should be placed before any assignment statements from lower levels and the sequence of the assignment in each also level needs to be preserved.

2. If there is no ELSE branch, then the leaf corresponding to the ELSE case will contain the empty sequence.

3. For each sequence in leaves where we have an assignment sequence in the form of Figure 2.36, repeat the following two steps until there is no overriding.
 - step1: If the left hand side variable v_j in line n is not an overriding for any previous assignment, go to next line. Otherwise, if $v_j=En$ is overriding an assignment $v_i=Em$ in line m (that is v_i and v_j are the same variable), then substitute Em into all the expressions containing v_i between line $m+1$ and line $n-1$.
 - step2: Remove assignment statement in line m, that is, v_i should not appear before line n.

Figure 2.37: Blocking assignment decision tree transformation

Given a Verilog combinational always block as in Figure 2.38, since we assume there is no latch is synthesized, in every path through the block a value must be assigned to every signal that is specified by the block (i.e. appears on the left hand side of an assignment statement). One way to do this is to insure that a default value must be explicitly assigned. In the example in Figure 2.38, the default value is assigned at the beginning of the always block. The
transformation process is shown in Figure 2.39.

```verbatim
always @* begin
a1=b1;
a2=b2;
a3=b3;
a4=b4;
a5=b5;
a6=b6;
if (cond0) begin
  a1=b4+b5;
a3=a1+b2;
  if (cond1) begin
    a1=b1+b2;
    if (cond2) begin
      a3=a1+b3;
    end
  end
end
else begin
  a5=a1+b2;
end
end
```

Figure 2.38: blocking assignment block with overriding
Figure 2.39: blocking assignment decision tree
Figure 2.39(a) is built up directly from the Verilog code in Figure 2.38. Figure 2.39(b) is an intermediate step which merges the default blocking assignment to the lower level by applying the rules in Figure 2.37. Figure 2.39(c) is the result of applying rules 1 and 2 in Figure 2.37. Figure 2.39(d) is the final result after applying rule 3 in 2.37.

For Figure 2.39(c), \(E1 \) has an overriding for \(a5 \) and the old value is not used for any assignment statement before the overriding occurred, so we simply remove the old assignment \(a5=b5 \). Similarly, in \(E3 \) both \(a1 \) and \(a3 \) are overridden and the old assignment statement is removed. In \(E5 \) the assignment sequence is as shown below:

1. \(a1=b1 \)
2. \(a2=b2 \)
3. \(a3=b3 \)
4. \(a4=b4 \)
5. \(a5=b5 \)
6. \(a6=b6 \)
7. \(a1=b4\&b5 \)
8. \(a3=a1\&b2 \)
9. \(a1=b1\&b2 \)

Line 7 overrides line 1, but there is no expression referring \(a1 \) before that, thus we simply remove line 1. Similarly in line 8, \(a3 \) is overridden and then line 3 is removed. In line 9, \(a1 \) is overriding again and this time, \(a1 \) is referred to by the assignment to \(a3 \) in line 8. By rule 3 in 2.37, \(a1 \) in line 8 is replaced by its old value: \(b4\&b5 \) and after this substitution, line 7 is removed.

For \(E4 \) in Figure 2.39(c), every transform step is the same with \(E5 \) except the last assignment \(a3=a1\&b3 \) simply override the old \(a3 \).

Now considering Figure 2.39(d), we can easily formalize it into PVS as:

\[
\text{FORALL } t : \\
\text{IF } (\text{cond}_0 \& \text{cond}_1 \& \text{cond}_2) \\
\text{THEN} \\
\quad a1(t) = b2(t) \& \\
\quad a4(t) = b4(t) \& \\
\quad 71
\]
\[a_5(t) = b_5(t) \land \\
 a_6(t) = b_6(t) \land \\
 a_1(t) = (b_1(t) \land b_2(t)) \land \\
 a_3(t) = (a_1(t) \land b_3(t)) \]

ELSE IF (cond_0 \& cond_1 \& \neg \text{cond}_2)
THEN
\[a_1(t) = b_2(t) \land \\
 a_4(t) = b_4(t) \land \\
 a_5(t) = b_5(t) \land \\
 a_6(t) = b_6(t) \land \\
 a_3(t) = (b_4(t) \land b_5(t) \land b_2(t)) \land \\
 a_1(t) = (b_1(t) \& b_2(t)) \]

ELSE IF (cond_0 \& \neg \text{cond}_1)
THEN
\[a_2(t) = b_2(t) \land \\
 a_4(t) = b_4(t) \land \\
 a_5(t) = b_5(t) \land \\
 a_6(t) = b_6(t) \land \\
 a_1(t) = (b_4(t) \& b_5(t)) \land \\
 a_3(t) = (a_1(t) \& b_2(t)) \]

ELSE
\[a_1(t) = b_1(t) \land \\
 a_2(t) = b_2(t) \land \\
 a_3(t) = b_3(t) \land \\
 a_4(t) = b_4(t) \land \\
 a_6(t) = b_6(t) \land \\
 a_5(t) = (a_1(t) \& b_2(t)) \]

ENDIF
ENDIF
ENDIF

Both always block in Figure 2.39(a) and (d) are synthesized to be the exact same combinational circuit, which is shown in Figure 2.40.

Formalizing imperative RTL HDL into a formal specification language is non-trivial work. In this thesis we constrained our model to be fully syn-
chronous and we only discuss a small subset of Verilog RTL HDL. More comprehensive Verilog formal semantics is needed if the RTL model is more complex. However, sometimes in safety critical system design, to apply the formal verification methods, the designers have to find a balance between the system performance and the complexity of applying formal method on such a model.

Figure 2.40: synthesized circuit for Figure 2.39(a) and (c)
Chapter 3

Formal Verification of System Components

In this chapter we briefly review correctness conditions and show how environmental assumptions can be taken into account in verifying the correctness of system components. The technique is then applied to several components from a shutdown system.

3.1 Correctness Conditions and Environmental Assumptions

Recall that a typical correctness condition from (Melham, 1990) has the form:

\[M[s_1, s_2, ..., s_n] \implies S[s_1, s_2, ..., s_n] \]

In attempting to prove correctness conditions, usually some environmental assumption is made and thus the correctness condition becomes (Melham, 1990):

\[C[s_1, s_2, ..., s_n] \implies (M[s_1, s_2, ..., s_n] \implies S[s_1, s_2, ..., s_n]) \quad (3.1) \]

It follow from propositional logic that this correctness condition has the following equivalent form:

\[M[s_1, s_2, ..., s_n] \implies (C[s_1, s_2, ..., s_n] \implies S[s_1, s_2, ..., s_n]) \]
The above is the form of correctness condition that we will use throughout this thesis. The actual specification S holds under some assumption C. For example, for the correctness condition in 3.23, the assumption C is:

\[
(\text{FORALL}(t:\{t:\text{TIME}\,|\, t \geq \text{start_time}\}) : \text{reset}(t) = \text{FALSE}) \land \\
(\text{FORALL}(t:\{t:\text{TIME}\,|\, t \geq \text{start_time}\}) : \text{clk_enable}(t) = \text{TRUE}) \land \\
(\text{FORALL}(t:\{t:\text{TIME}\,|\, t \geq \text{start_time}\}) : \text{start}(t) = \text{TRUE}) \land \\
is_in_ini(\text{start_time})
\]

The specification S is the part implied by this assumption C. As we use implication instead of equivalence to construct the correctness condition, an inconsistent model will satisfy all the specifications. Even if we prove that $M[v_1, v_2, ... v_n]$ is consistent by using the method discussed in (Melham, 1990), it is still possible that $C[v_1, v_2, ..., v_2] \land M[v_1, v_2, ... v_n]$ is inconsistent, which will make the proving trivial since the correctness condition (3.1) is also equivalent to:

\[
(C[v_1, v_2, ..., v_2] \land M[v_1, v_2, ... v_n]) \implies S[s_1, s_2, ..., s_n])
\]

For example, a model M and the assumption C is defined as:

\[
M(\text{in, out}): \text{bool} = \\
\text{out} = \text{NOT in}
\]

\[
C(\text{in, out}): \text{bool} = \\
\text{out} = \text{in}
\]

$M(\text{in, out}) \land C(\text{in, out})$ is inconsistent since no input and output satisfy these two condition at the same time, even though $M(\text{in, out})$ is consistent. The solution to this problem is instead of proving $M[v_1, v_2, ... v_n]$ to be consistent, we prove the consistency of $C[v_1, v_2, ..., v_2] \land M[v_1, v_2, ... v_n]$.

3.2 HELD_FOR

The HELD_FOR operator of (Wassong and Lawford, 2005) is used as an infix operator, for example, $(p)\text{HELDFOR}(\text{duration})$, to determine if a boolean signal p has been True for a specified duration. Due to the limitation of counter
bit-width, the overflow problem must be considered. Since the time interval of the duration \(p \) could exceed the limit of the counter, the counter must stop incrementing after it reaches its upper boundary. That is the counter should freeze once the \((p)\text{HELD_FOR}(\text{duration}) = \text{TRUE}\). The \text{HELD_FOR} operator is designed in Matlab Simulink and and the Verilog design is generated by HDL Coder in Simulink automatically. The Simulink model is shown in Figure 3.1.

3.2.1 \text{HELD_FOR} Netlist Circuit Implementation

The generated \text{HELD_FOR} implementation at the netlist circuit level is shown in Figure 3.2 with a synchronous reset.

Depending on the properties of the system that need to be proved and the assumption we made, sometimes the model can be simplified before formalization. In our case, as we assume that \(\text{clk_enable} = \text{true} \land \text{clk} = \text{true} \land \text{reset} = \text{false} \) always holds at any time tick, Figure 3.2 can be simplified.
In Figure 3.3, input A of $ADDER$ is composed of 31 bits of 0s and the least significant bit is the inverse value from output of $LessThen0$. To avoid of bitvector reasoning, we use a mux to replace it as shown in Figure 3.4.

The HELD_FOR circuit in Figure 3.3 can then be formalized hierarchically as the *increment sub circuit* in the Figure and the *toplevel*. They are formalized in Figures 3.5 and 3.6.

The increment sub circuit updates a 32 bit unsigned binary number which will be compared with the input duration value $In2$. Once this number is greater than $In2$, HELD_FOR will output *True*. This output will be used
increment_imp_full(p, reg_out, one_zero): bool =
(EXISTS (adder_mux_out, mux_out, adder_out: signal):
FORALL t:
(REG(mux_out, reg_out)
&HDL_ADDER(reg_out(t), one_zero(t), adder_out(t))
&MUX(ZERO(t), adder_out(t), mux_out(t), p(t))))

Figure 3.5: Formalized increment sub circuit for Figure 3.6

toplevel_imp(p, duration, bool_output): bool =
EXISTS increment_out, adder_mux_out:
FORALL t:
increment_imp_full(p, increment_out, adder_mux_out)
&LESS_THEN(duration, increment_out(t), bool_output(t))
&ADDER_MUX(ONE(t), ZERO(t), adder_mux_out(t), bool_output(t))

Figure 3.6: Formalized toplevel circuit of HELD_FOR

to control the incrementing such that when duration interval is longer than
the input setting in In2, the increment subcircuit will stop counting in order
to prevent overflow from occurring.

3.2.2 HELD_FOR Correctness Condition

An example of the behaviour of the HELD_FOR operator can be seen in
Figure 3.7. The sample time is set to be 2 simulation cycles, and the pulse
width is set to be 50% of total period of 1200 simulation cycles. The duration
is set to be 200 simulation cycles. All the internal data types are set to be 8 bit
unsigned integer uint8, which constrains the maximum value of the counter to
be 255. From Figure 3.7, the output of (p) HELD_FOR(200) becomes true
after 200 sampling periods. HELD_FOR returns to FALSE at simulation time
1,002 which is 1 sampling period after when p dropped to 0. The interval in
which the output is True has lasted 351 sampling periods which exceeds the
representation range without overflow of an 8 bit unsigned integer. The one
sample delay is caused by the D flip flop between switch1 and Lessthen in
Figure 3.1.
Figure 3.7: Simulation result of HELD_FOR operator

\[
\text{Held}_\text{For}(p, \text{duration}, t) : \text{bool} = \\
\text{EXISTS}(t_j : \text{TIME}) : \\
(t - t_j \geq \text{duration}) \text{ AND} \\
(\forall t_n : \text{TIME} \mid t_n \geq t_j \text{ AND } t_n \leq t) : p(t_n)
\]

Figure 3.8: HELD_FOR operator formal requirement in PVS

The specification for the HELD_FOR operator can be formalized as in Figure 3.8 (?; ?). As the HELD_FOR implementation output has a one sample delay to respond to the input \(p\), the correctness condition is altered to that shown in Figure 3.9.

\[
\text{toplevel_overall_correctness} : \text{THEOREM} \\
\text{toplevel_imp}(p, \text{duration}, \text{bool_output}) \text{ IMPLIES} \\
(\text{bool_output}(t+1) \iff \text{Held_For}(p, \text{duration}, t))
\]

Figure 3.9: Correctness condition of HELD_FOR implementation
3.3 Hysteresis

To eliminate chatter a deadband can be used to create a hysteresis effect. A graphical illustration of a hysteresis function is shown as in Figure 3.10. Such a function can be formalized by the general tabular expression of Figure 3.11.

3.3.1 Hysteresis Netlist Circuit Implementation

A hysteresis block implemented in Matlab Simulink is shown in Figure 3.12, and its simulation result is shown in Figure 3.14.
Figure 3.12: Hysteresis implementation in Matlab
hysteresis_imp(kin,kout,pwr,pwrcond): bool =

EXISTS lto0,lto1,lto2,lto3,pmux0,pmux1,pmux2,pmux3,pmux4,
in activated,pwrregout:

FORALL t:
PwrRegNext2(pwrregout(t),ZERO(t),pmux2(t),lto3(t)) &
PwrRegNext0(pwrregout(t),ZERO(t),pmux0(t),lto1(t)) &
PwrRegNext3(pmux2(t),ONE(t),pmux3(t),lto2(t)) &
PwrRegNext1(pmux0(t),ONE(t),pmux1(t),lto0(t)) &
PwrRegNext4(pmux3(t),pmux1(t),pwrcond(t),in activated(t))&
FSM_SHELL(kin,kout,pwr,activated,in activated,lto0,lto1,lto2,lto3)&
PwrCondReg(pwrcond,pwrregout)

Figure 3.13: Formalized Hysteresis Module

The Matlab/Simulink model can be used to generate a hardware implementation via Matlab HDL Coder. The netlist circuit level of the generated hardware implementation is shown in Figure 2.17 and Figure 2.18. Hysteresis block then can be formalized as in Figure 3.13, in which FSM_SHELL is defined as in Figure 2.18c and Figure 2.23.

3.3.2 Hysteresis Correctness Condition

Assuming that the initial state of the hysteresis is set to be inactivated, then as shown in the simulation in Figure 3.14, when the amplitude of the power input passes 100 at simulation time 20, the output keeps the previous inactivated state. It maintains this until power passes kin (kin=150) at time 30. Then the output changes to be activated. The state stays in the activated state until the power input drops below kout (kout=100) at time 85.

The formal specification of Hysteresis is shown in Figure 3.11 but we need to modify it to fit our synchronous hardware as shown in Figure3.15.
Figure 3.14: Simulation Result of Hysteresis Block

\begin{verbatim}

hysteresis_spec(kin,kout,pwr,pwrcond):bool=
FORALL t:
pwrcond(t)=
 IF t=0 THEN FALSE
 ELSE
 TABLE
 | [pwr(t)<=kout(t)|pwr(t)>kout(t)&pwr(t)<kin(t)|pwr(t)>=kin(t)] |
 | FALSE | pwrcond(t-1) | TRUE |
 ENDTABLE
ENDIF

Figure 3.15: Formal specification of the Hysteresis Hardware Implementation

With this modified specification the correctness condition of the \textit{Hysteresis} module can be formalized as in Figure 3.16.

83
\[\text{KIN: } \{ x : \text{BUS_TYPE} | x > 1 \} \]
\[\text{KOUT: } \{ x : \text{BUS_TYPE} | x < \text{KIN} \} \]
\[\text{pwr: VAR } \{ x : \text{signal} | x(0) \leq \text{KOUT} \} \% \text{initial state is FALSE} \]
\[\text{kin: VAR } \{ x : \text{signal} | \forall t : x(t) = \text{KIN} \} \]
\[\text{kout: VAR } \{ x : \text{signal} | \forall t : x(t) = \text{KOUT} \} \]
\[\text{pwrcond: VAR bitsignal} \]
\[\ldots \]
\[\text{toplevel_general_correctness: } \text{THEOREM} \]
\[\text{hysteresis_imp(\text{kin, kout, pwr, pwrcond}) \ IMPLIES} \]
\[\text{hysteresis_spec(\text{kin, kout, pwr, pwrcond})} \]

Figure 3.16: Correctness Condition of Hysteresis

This condition has been verified in PVS.

3.4 Sum of Highest16 sensors/18 inputs

The *Highest16* module is designed to sum the highest 16 sensors out of 18 inputs. This model is designed in Matlab/Simulink Stateflow as shown in Figure 3.17. Instead of sorting the 18 inputs, this algorithm subtract 2 lowest inputs from the sum of all 18 inputs.

3.4.1 Highest16 sensors/18 inputs HDL Implementation

Matlab HDL Coder can automatically generate the HDL implementation from a model based design in Stateflow. The synthesized netlist circuit is quite large and impractical to formalize manually. Therefore this implementation is formalized based on the HDL model. The correctness of HDL model can propagate to lower level such as the netlist circuit before and after place and route using equivalence checking tools.

As discussed in earlier sections, the *highest16.v* module can be formalized by applying the corresponding rules in 2.5.1. One of the most important steps is to formalize the *IF-ELSE* and *CASE* statements in the always block as shown in Figures 3.18, 3.19 and 3.20.
Figure 3.17: highest16 module: Calculates sum of 16 highest of 18 input sensor values
Figure 3.18: formalize highest16 synchronous always block

Figure 3.18(a) is the decision tree for synchronous block based on the Verilog HDL implementation. Figure 3.18 (b) can be obtained by applying the rules in Section 2.5.4. We note that the initial value case $t = 0$ is added in the actual PVS specification.

The next combinational logic circuit from the Verilog model is shown in Figure 3.19. By applying the rules in Section 2.5.5, Figure 3.19 can be transformed into Figure 3.20 which is ready to formalize.
Figure 3.19: highest16 decision tree before merged
Figure 3.20: highest16 decision tree after merged
3.4.2 Highest16 sensors/18 inputs Correctness Condition

For the system modeled by the Stateflow diagram in Figure 3.17, if the system’s environment satisfies the following conditions:

1. System is not reset once the system start running

2. clock_enable is always true

3. start is always true

4. the system is in its initial state in a particular time named \(start_time\) then the system will generate the correct sum of highest 16 sensors after 36 clock cycles after \(start_time\). An example of this behaviour is shown in Figure 3.21 where signal done is set to be logic 1 at 36th simulation cycle, and the signal sum updates its value to be 740 at 72th simulation cycles.

To formalize the requirement we define predicate in Figure 3.22 to constrain the lowest two values among 18 inputs. That is there is no other inputs which is neither smaller than the lowest value nor between lowest and low value.

With the predicate \(is_low_AND_lowest\) defined the specification of the highest16 module can be formalized as in Figure 3.23.
is_lowANDlowest(lowest:BIT16_RANGE_2C,low:BIT16_RANGE_2C,
upper_bound: \{num:nat|num<18\}):bool =
(lowest<=low &
NOT EXISTS (index:{index:nat|index<=upper_bound}): (CalAcc(index)<lowest
OR (CalAcc(index)>lowest AND CalAcc(index)<low)))

Figure 3.22: predicate is_lowANDlowest

top_overall_spec(reset:[TIME->bool], clk_enable:[TIME->bool],
start:[TIME->bool], is_in_init:[TIME->bool], i_prob,
low_prob,lowest_prob: SIGNAL16_2C,
state_prob:STATE,sum_temp_prob,sum:SIGNAL32_2C):bool =
FORALL (start_time: TIME):
 ((FORALL (t:{t:TIME|t>=start_time}) : reset(t) = FALSE) &
 (FORALL (t:{t:TIME|t>=start_time}) : clk_enable(t) = TRUE) &
 (FORALL (t:{t:TIME|t>=start_time}) : start(t)=TRUE)&
 is_in_init(start_time)
IMPLIES
FORALL (N:nat):
 is_lowANDlowest(lowest_prob(start_time+36+37*N),
 low_prob(start_time+36+37*N),17)&
state_prob(start_time+36+37*N)=IN_D&
sum(start_time+36+37*N)=
D0+D1+D2+D3+D4+D5+D6+D7+D8+D9+D10+D11+D12+D13+D14
+D15+D16+D17
-lowest_prob(start_time+36+37*N)
-low_prob(start_time+36+37*N))

Figure 3.23: specification of highest16
toplevel_correctness: THEOREM
FORALL (reset: [TIME -> bool], clk_enable: [TIME -> bool],
 start: [TIME -> bool], sum: SIGNAL32_2C,
 done: [TIME -> bool],
 i_prob, low_prob, lowest_prob: SIGNAL16_2C,
 is_in_ini: [TIME -> bool], state_prob: STATE,
 sum_temp_prob: SIGNAL32_2C):
 top_implement(reset, clk_enable, start, sum, done, i_prob,
 low_prob, lowest_prob, is_in_ini, state_prob, sum_temp_prob)
IMPLIES
top_spec(reset, clk_enable, start, is_in_ini, i_prob,
 low_prob, lowest_prob, state_prob, sum_temp_prob, sum)

Figure 3.24: Correctness Condition of highest16

The specification means that lowest_prob and low_prob at time tick
start_time+36 are the lowest two values in the 18 inputs, and the state of the
system is in state IN_D. Finally, the output sum at time tick start_time+36
is the sum of 18 inputs minus the lowest 2 values that is constrained by the
predicate is_lowANDlowest as shown in Figure 3.24.
Chapter 4

Proof Strategies

In this chapter we provide some insight into how best to tackle the proof of correctness conditions. We first describe some general proof techniques in Section 4.1 and then provide details of proof techniques that were effective in proving parts of the examples from the previous chapter. In particular, Section 4.2 describes the strategies applied to the HELD_FOR module and Section 4.3 those used for the highest16 module.

4.1 General Proving Steps

4.1.1 Instantiate signal names

The first step is instantiate the signal name in the implementation model correctly. The correctness condition usually has the form:

\[M[s_1, s_2, ..., s_n] \implies (C[s_1, s_2, ..., s_n] \implies S[s_1, s_2, ..., s_n]) \]

In PVS, considering the use of probes and that the property is defined over time \(t \), the above correctness condition becomes:

\[
\begin{align*}
\text{FORALL}(s_1, \ldots, s_n, \text{probe}_1, \ldots, \text{probe}_n): \\
M(s_1, \ldots, s_n, \text{probe}_1, \ldots, \text{probe}_n) \\
\end{align*}
\]

\[
\begin{align*}
\text{FORALL}(s_1, \ldots, s_n, \text{probe}_1, \ldots, \text{probe}_n): \\
\end{align*}
\]
FORALL \(t \):
\[C(s_1, \ldots, s_n, \text{probe}_1, \ldots, \text{probe}_n) \]
IMPLIES
\[S(s_1, \ldots, s_n, \text{probe}_1, \ldots, \text{probe}_n) \]

We first need to skolemize the consequent which will generate something like:

FORALL \((s_1, \ldots, s_n, \text{probe}_1, \ldots, \text{probe}_n)\):
\[M(s_1, \ldots, s_n, \text{probe}_1, \ldots, \text{probe}_n) \]

The final step is instantiate the signal names in the implementation model \(M \) with the corresponding names in the specification. The final form of the sequent with all signals instantiated is then:

\[M(s_1!1, \ldots, s_n!1, \text{probe}_1!1, \ldots, \text{probe}_n!1) \]

4.1.2 Sequential circuit property proving

As the system is designed and modelled as a synchronous circuit, proof by induction is the most commonly used approach in proving sequential circuit properties. Depending on how the properties are defined, the induction could have the following types:

1. Induct on time tick \(t \), or

2. Induct on a variable \(n \) and time tick \(t \) is a function of \(n \), i.e., \(t = f(n) \).
Type I: Induction on time tick t

- Step 1: induct on time tick t

After we induct on t and flatten the sequent, it has the following form (to highlight the relevant variables, $s_1!1, \ldots, s_n!1, \text{probe}_1!1, \ldots, \text{probe}_n!1$ are not shown):

\[
\begin{align*}
M \\
C(t!1) & \text{IMPLIES } S(t!1) \\
C(t!1+1) \\
|-------------------------------|
S(t!1+1)
\end{align*}
\]

- Step 2: expand implementation model

As we assume that all the combinational circuits and flip flop circuits are separately coded in different always block under the assumption at the start of Section 2.5. In netlists for synchronous circuits, typically all the components other than D flip flops are combinational. Thus our synchronous circuit has the following form after instantiating signal names and expanding the model:

\[
\begin{align*}
\text{FORALL } t: \\
\text{probe}_1!1(t) &= \ldots \\
\ldots \\
\text{probe}_n!1(t) &= \ldots \\
\text{COMB}(s_1!1, \ldots, s_n!1) \\
\text{FF}(s_1!1, \ldots, s_n!1) \\
C(t!1) & \text{IMPLIES } S(t!1) \\
C(t!1+1) \\
|-------------------------------|
S(t!1+1)
\end{align*}
\]

Note that in a real application, \text{COMB} could be a conjunction of many sub modules.

- Step 3: Instantiate implementation model at $t!1$ and $t!1+1$
As we need the probe values at time tick $t!1$ and $t!1+1$, the quantifier on the implementation model needs to be eliminated by instantiating t with the skolem constant values $t!1$ and $t!1+1$. We then get the following sequent after simplification:

\[
\begin{align*}
\% = & \text{ at } t!1 = \text{-------} \\
\text{probe1!1(}t!1\text{)} = & \ldots \\
\ldots \\
\text{probem!1(}t!1\text{)} = & \ldots \\
\text{COMB}(s1!1(}t!1\text{),...}, sn!1(}t!1\text{)) \\
\text{FF}(s1!1,...,sn!1...)
\end{align*}
\]

\[
\begin{align*}
\% = & \text{ at } t!1+1 = \text{-------} \\
\text{probe1!1(}t!1+1\text{)} = & \ldots \\
\ldots \\
\text{probem!1(}t!1+1\text{)} = & \ldots \\
\text{COMB}(s1!1(}t!1+1\text{),...}, sn!1(}t!1+1\text{...)) \\
\text{FF}(s1!1,...,sn!1...)
\end{align*}
\]

\[
\begin{align*}
\% = & \text{-------------------------} \\
\text{C(}t!1\text{) IMPLIES S(}t!1\text{)} \\
\text{C(}t!1+1\text{)} \\
\mid \text{----------------------------------} \\
\text{S(}t!1+1\text{)}
\end{align*}
\]

- Step 4: Since the Flip flop module (FF) has its own quantifier for t we need to expand FF and instantiate it at $t!1+1$.

95
\% = \text{at } t!1 = \text{at } t!1 \\
\text{probe}1!1(\text{t!1})=\ldots \\
\text{...} \\
\text{probe}1!1(\text{t!1})=\ldots \\
\text{COMB}(s1!1(\text{t!1}),\ldots,sn!1(\text{t!1})\ldots) \\
\text{FF}(s1!1(\text{t!1}),\ldots,sn!1(\text{t!1})\ldots) \\
\% = \text{at } t!1+1 = \text{at } t!1+1 \\
\text{probe}1!1(\text{t!1+1})=\ldots \\
\text{...} \\
\text{probe}1!1(\text{t!1+1})=\ldots \\
\text{COMB}(s1!1(\text{t!1+1}),\ldots,sn!1(\text{t!1+1})\ldots) \\
\text{FF}(s1!1(\text{t!1+1}),\ldots,sn!1(\text{t!1+1})\ldots) \\
\% = \text{-----------------------------} \\
\text{C(t!1) IMPLIES S(t!1)} \\
\text{C(t!1+1)} \\
\mid \text{-----------------------------} \\
\text{S(t!1+1)}

Figure 4.1: Final form of the sequence after instantiating simplifying

Figure 4.1 is the final form to prove property S where all the available conditions are ready. The following step is to derive $S(t!1+1)$ from the antecedents. This typically involves a lot of case based reasoning and substitutions. Figure 4.2 shows the relationship between antecedents and subsequent in Figure 4.1. Usually $C(t!1+1)$ can be used to derive $C(t!1)$. Then $C(t!1)$ can be used to derive $S(t!1)$ since the induction assumption is given as $C(t!1) \Rightarrow S(t!1)$. For example, in increment in the HELD_FOR model:

\[
C(t!1+1) : t!1 + 1 > 0 \\
\mid \text{-----------------------------} \\
C(t!1) : t!1 > 0
\]

To derive $t!1>0$ from given $t!1+1>0$, we must exclude the case $t!1=0$ which is nothing but the base case.
Type II: Induction on n where $t=f(n)$ When the property is not directly defined on time tick t, this type of induction should be used. Proofs with this type of induction are very similar to the first type except we are inducting on n instead of t since $t=f(n)$. Assuming we have the following form of correctness condition after instantiating the signal names:

$$M(s_1!1, \ldots, s_n!1, \text{probe}_1!1, \ldots, \text{probe}_n!1)$$

$\begin{array}{c}
\forall n : \\
\text{C}(s_1!1, \ldots, s_n!1, \text{probe}_1!1, \ldots, \text{probe}_n!1) \\
\text{IMPLIES} \\
S(s_1!1, \ldots, s_n!1, \text{probe}_1!1, \ldots, \text{probe}_n!1)
\end{array}$

- step1: induct on n:

After induct on n and flatten the sequent, it has the following form (again $s1!1$, \ldots, $s_n!1$, $\text{probe}_1!1$, \ldots, $\text{probe}_n!1$ are omitted):

$$M$$

$$\text{C}(f(n!1)) \text{ IMPLIES } S(f(n!1))$$
\[
C(f(n!1+1))
\]

\[
|---|
S(f(n!1+1))
\]

- Step 2: expand implementation model

\[
\text{FORALL } t:
probe1!1(t) = \ldots
\]
\[
\ldots
probe_n!1(t) = \ldots
\]
\[
\text{COMB}(s1!1, \ldots, sn!1)\ldots
\]
\[
\text{FF}(s1!1, \ldots, sn!1)\ldots
\]
\[
C(f(n!1)) \text{ IMPLIES } S(f(n!1))
\]
\[
C(f(n!1+1))
\]

\[
|---|
S(f(n!1+1))
\]

- Step 3: Instantiate implementation model on all ticks in \([f(n!1), f(n!1+1)]\)

Instead of instantiating the model at \(t!1\) and \(t!1+1\), we need to instantiate the implementation model from \(f(n!1)\) to \(f(n!1+1)\). For example, if \(t = f(n) = 2n\), then \(M\) needs to be instantiated at all time ticks within \([f(n!1), f(n!1+1)]\), that is \([2*n!1, 2*n!1+2]\) (to simplify the sequent we ignored the probe signals):

\[
\% = = = = = = = = = \text{ at } f(n!1) = = = = = = = = =
\]
\[
\text{COMB}(s1!1(2*n!1), \ldots, sn!1(2*n!1))
\]
\[
\text{FF}(s1!1, \ldots, sn!1)\ldots
\]
\[
\% = = = = = = = = = \text{ at } f(n!1)+1 = = = = = = = = =
\]
\[
\text{COMB}(s1!1(2*n!1+1), \ldots, sn!1(2*n!1+1))
\]
\[
\text{FF}(s1!1, \ldots, sn!1)\ldots
\]
\[
\% = = = = = = = = = \text{ at } f(n!1)+2 = = = = = = = = =
\]
\[
\text{COMB}(s1!1(2*n!1+2), \ldots, sn!1(2*n!1+2))
\]
\[
\text{FF}(s1!1, \ldots, sn!1)\ldots
\]
\[
\% =
\]
\[
C(2*n!1) \text{ IMPLIES } S(2*n!1)
\]
\[
C(2*n!1+2)
\]
• Step 4: Expand FF and instantiate it on all ticks in $(f(n!1), f(n!1+1)]$ (assuming $f(n)=2^n$)

Usually we do not need to instantiate FF at $f(n!1)$ since the condition and $COMB$ have already provide the state of the system at $f(n!1)$, however when $f(n!1)=0$, we do need to instantiate FF at $t=0$ since determining the initial condition of the FF modules is necessary.

Figure 4.3 shows the relationship between terms and formulas in the sequent to be proved. Usually in this type of proof, when using induction on n, multiple steps are required to propagate the state of the system from $t=f(n!1)$ to $t=f(n!1+1)$.
4.2 HELD_FOR proving strategy

Figure 4.4 represents the behaviour of the Held_For implementation. The bool_output at \(t+1 \) indicates if the formal specification held_for shown in Figure 3.8 has been satisfied at \(t \). The counter starts to increment from 0 to duration+1 when \(P \) is True and holds this value until \(P \) becomes False.

The correctness condition used to verify the hardware implementation of Held_For is:

\[
\text{toplevel_imp_with_probe}(p,\text{duration},\text{bool_output},\text{reg_out_prob},\text{add_mux_out_prob}) \implies (\text{bool_output}(t + 1) \iff \text{Held_For}(p,\text{duration},t))
\]

This correctness condition can be decomposed into two subgoals:

Part I:

\[
\text{toplevel_imp} \implies (\text{Held_For}(p,\text{duration},t) \implies \text{bool_output}(t + 1))
\]

This property can be proved by 3 basic properties of the implementation. The first property is shown in Figure 4.5:
Figure 4.4: Held_For proof cases

\texttt{toplevel_imp_with_probe}(p,duration,bool_output,reg_out_prob,add_mux_out_prob) IMPLIES
\begin{align*}
&(\forall \text{ini}: \text{TIme}) : \\
&\forall \forall t: \text{TIme} | t \leq \text{duration} - \text{reg_out_prob}(\text{ini}) : \\
&(\forall \forall t_n: \text{TIme} | t_n \geq \text{ini} \& t_n \leq \text{ini} + t) : p(t_n) \Rightarrow \\
&\text{reg_out_prob}(\text{ini} + t) = \text{reg_out_prob}(\text{ini}) + t)
\end{align*}

Figure 4.5: increment property

In Figure 4.4, assuming the counter value at t_{j+1} is $\text{reg}(t_{j+1})$ and $\text{reg}(t_{j+1})$ is less than $\text{duration}+1$, as long as P is True within $[\text{ini}, \text{ini}+dt]$, the counter value at $\text{ini}+\text{dt}$ must be $\text{reg_out_prob}(\text{ini})+\text{dt}$.

The second property is that the implementation will freeze its counter value once it reaches $\text{duration}+1$, providing P is True in this time interval. This property can be described as in Figure 4.6.

The third property is that at all time ticks the counter value can not be greater than $\text{duration}+1$. This property can be formalized as shown in Figure 4.7.

In the correctness condition:

\begin{align*}
\text{toplevel_imp} \implies (\text{Held_For}(p,\text{duration},t) \implies \text{bool_output}(t+1)),
\end{align*}
toplevel_imp_with_probe(p,duration,bool_output,reg_out_prob,
add_mux_out_prob) IMPLIES

FORALL (ini:TIME):
 (FORALL (t:{t:TIME|t>=ini}):
 (FORALL (t_n: TIME | t_n=ini & t_n<=t):
 p(t_n) &
 reg_out_prob(ini)=duration+1)
) IMPLIES
 (reg_out_prob(t+1)=duration+1))

Figure 4.6: Freeze property

toplevel_imp_with_probe(p,duration,bool_output,reg_out_prob,
add_mux_out_prob) IMPLIES

FORALL t: reg_out_prob(t)<=duration+1

Figure 4.7: counter upper boundary property

after Held_For has been expanded and skolemized, the skolem constant t_j!l represents the assumed beginning of the interval in which P is always True. In Figure 4.8 the actual initial time when the counter starts to be incremented starting from 0 is labeled as t_ini. The position of the current time, t_j!l, can be in one of three cases according to its relationship with t_ini. Note that only two cases are shown in Figure 4.8).
Figure 4.8: Two cases of $t_{j!1}$

- case 1: $\text{reg}(t_{j!1}) = \text{duration} + 1$

In this case, $t_{j!1}$ is within $[t_{\text{ini}} + \text{duration} + 1, t]$. The counter and bool_output will hold their value until time t. This case can be proved by using the freeze property of Figure 4.6.

- case 2: $\text{reg}(t_{j!1}) < \text{duration} + 1$

In this case $t_{j!1}$ is within $[t_{\text{ini}}, t + \text{duration}]$. The counter value will increment first and then hold. This case can be proved by using increment property in Figure 4.5 and freeze property in Figure 4.6.

- case 3: $\text{reg}(t_{j!1}) > \text{duration} + 1$

This case can be proved by introducing the counter upper boundary property of Figure 4.7 which assert there is no time ticks at which counter value is greater than $\text{duration} + 1$.

Part II:

$toplevel_imp \implies (\text{bool_output}(t + 1) \implies Held_For(p, \text{duration}, t))$

The proof of this property requires the following lemma in Figure 4.9:
increment_full_counter_truth3: THEOREM
increment_imp_full(p,reg_out,one_zero) IMPLIES
FORALL (ini:TIME):
 FORALL (m:{m:TIME|m>0}):
 NOT p(ini) IMPLIES reg_out(m+ini)<m

Figure 4.9: Boundary property 1 of increment sub module

The Lemma in Figure 4.9 asserts that if \(p \) is False at time tick \(ini \), then the counter value at any tick at \(ini+m \), where \(m \) is an arbitrary time increment, must be less than \(ini+m \). That is \(reg(ini+m)<ini+m \).

We use another lemma, shown in Figure 4.10, which assert that \(reg_out(t) \leq t \) at all time ticks.

increment_full_counter_truth2: THEOREM
increment_imp_full(p,reg_out,one_zero) IMPLIES
FORALL t: reg_out(t)\leq t

Figure 4.10: Boundary property 2 of increment sub module

Figure 4.11: Property \(reg(ini+m)<ini+m \)

Figure 4.11 shows the basic strategy to prove this property: when \(bool_out \) is True, there is no time tick in the last \(duration \) interval at which \(p \) is false since that will make the counter value smaller than \(duration \) which
contradicts the premise that $bool_out$ is $True$. More specifically, it is easy to see that $(bool_out(t!1 + 1) \land p!(t!1 + 1)) \implies reg_out(t!1 + 1) = duration + 1$, where $t!1$ is representing current time tick. It is also possible to prove that $NOT \ p!(t_n!1) \implies reg_out(t_n!1 + (t!1 - t_n!1)) < (t!1 - t_n!1)$ by using the lemma in Figure 4.9. Since $t!1 - t_n!1 \leq duration$, we can conclude that $reg_out(t!1) < duration$, and with $p(t!1) = True$, we can see that $reg_out(t!1 + 1) < duration + 1$. Thus, this property can be proved by the following contradiction:

```plaintext
toplevel\_imp
reg\_out(t!1+1)=duration+1
reg\_out(t!1+1)<duration+1
```

4.3 ishighest16 Proving strategy

The highest16 module’s overall correctness condition was originally given in Figure 3.23. We use the following lemmas, described in detail below, to support its proof:

- top_at_tick_3
- top_relationship_EHFG_state_cycles
- top_EHFG_maintain_low_lowest
- top_G_sum
- top_G_sum_extended (the closed form of top_G_sum)

top_at_tick_3

The behaviour pattern of the algorithm is that it will loop between state $E/H/F$ and G, until state D is entered. State B and C are the places where this internal loop starts, so properties that hold in these two states can be viewed as the precondition of the internal loop. These properties are defined
in \(\text{top_at_tick_3} \) which means it holds at the third tick after state \textit{IDLE} is entered:

\[
\text{top_at_tick_3} (\text{reset}, \text{clk_enable}, \text{start}, \text{i_prob}, \text{low_prob}, \text{lowest_prob}, \text{state_prob}, \text{sum_temp_prob}) :=
\]
\[
\text{bool} = \forall (\text{start_time} : \text{TIME}) : \\
(\forall (t : \{ t : \text{TIME} | t \geq \text{start_time} \}) : \text{reset}(t) = \text{FALSE}) \\
(\forall (t : \{ t : \text{TIME} | t \geq \text{start_time} \}) : \text{clk_enable}(t) = \text{TRUE}) \\
(\forall (t : \{ t : \text{TIME} | t \geq \text{start_time} \}) : \text{start}(t) = \text{TRUE}) \\
\text{state_prob}(\text{start_time}) = \text{IN_IDLE} \\
\text{IMPLIES} \\
(\text{i_prob}(\text{start_time} + 3) = 2 \land \\
\text{sum_temp_prob}(\text{start_time} + 3) = \text{CalAcc}(0) + \text{CalAcc}(1) \land \\
\text{IF} \text{CalAcc}(0) \leq \text{CalAcc}(1) \text{ THEN} \\
\text{lowest_prob}(\text{start_time} + 3) = \text{CalAcc}(0) \land \\
\text{low_prob}(\text{start_time} + 3) = \text{CalAcc}(1) \land \\
\text{state_prob}(\text{start_time} + 3) = \text{IN_B} \land \\
\text{ELSE} \text{lowest_prob}(\text{start_time} + 3) = \text{CalAcc}(1) \land \\
\text{low_prob}(\text{start_time} + 3) = \text{CalAcc}(0) \land \\
\text{state_prob}(\text{start_time} + 3) = \text{IN_C} \land \\
\text{ENDIF})
\]

This property can be proved by simply instantiating the implementation model at all four time ticks within \([\text{start_time}, \text{start_time} + 3] \).

\text{top_relationship_EHFG_state_cycles}

\text{top_relationship_EHFG_state_cycles} is asserting the relationship between time ticks, states and the index of the input signals. That is, at tick \text{start_time} + 3 + N*2 + 1, the state must be in one of the three states: \(E, H \) or \(F \), and the index can only be \(N+2 \). At the following time tick, the state must be \(G \) and index equal to \(N+3 \). By this property, the state of the FSM and the index of the input can be determined easily which dramatically reduces the effort to complete the proof.
top_relationship_EHF_G_state_cycles
(reset: [TIME -> bool], clk_enable: [TIME -> bool],
start: [TIME -> bool], is_in_init: [TIME -> bool],
i_prob, low_prob, lowest_prob: SIGNAL16_2C,
state_prob: STATE, sum_temp_prob: SIGNAL32_2C): bool =

FORALL (start_time: TIME):
FORALL(N:{n:nat | n <= 15}):((FORALL(t:{t:TIME|t>=start_time}): reset(t)=FALSE)& (FORALL(t:{t:TIME|t>=start_time}): clk_enable(t)=TRUE)& (FORALL(t:{t:TIME|t>=start_time}): start(t)=TRUE)& state_prob(start_time)=IN_IDEL
 IMPLIES ((state_prob(start_time+3+N*2+1)=IN_E& i_prob(start_time+3+N*2+1)=N+2)
OR (state_prob(start_time+3+N*2+1)=IN_H& i_prob(start_time+3+N*2+1)=N+2)
OR (state_prob(start_time+3+N*2+1)=IN_F& i_prob(start_time+3+N*2+1)=N+2))& (state_prob(start_time+3+N*2+2)=IN_G& i_prob(start_time+3+N*2+2)=N+3))

top_EHFG_maintain_low_lowest

top_EHFG_maintain_low_lowest is an important property which asserts that in all four states E, H, F and G, the variable *low* and *lowest* are holding the lowest two values from the inputs scanned so far. At tick *start_time+3+N*2+1, if the state is E or H or F, then variables *lowest* and *low* are holding the lowest two elements in the input signal array, whose index is up to *N+2*. This property also holds at the following tick when the state is G.

top_EHFG_maintain_low_lowest(
 reset: [TIME -> bool], clk_enable: [TIME -> bool],
 start: [TIME -> bool], is_in_init: [TIME -> bool],

 107
i_prob, low_prob, lowest_prob: SIGNAL16_2C,
state_prob: STATE, sum_temp_prob: SIGNAL32_2C): bool =

FORALL (start_time: TIME):
FORALL(N:{n: nat | n<=15}):

(FORALL(t:{t:TIME|t>=start_time}) : reset(t) = FALSE) &
(FORALL(t:{t:TIME|t>=start_time}) : clk_enable(t) = TRUE) &
(FORALL(t:{t:TIME|t>=start_time}) : start(t)=TRUE)&
state_prob(start_time)=IN_IDEL

IMPLIES
(state_prob(start_time+3+N*2+1)=IN_E=>
 is_lowANDlowest(lowest_prob(start_time+3+N*2+1),
 low_prob(start_time+3+N*2+1),N+2))
&
(state_prob(start_time+3+N*2+1)=IN_H=>
 is_lowANDlowest(lowest_prob(start_time+3+N*2+1),
 low_prob(start_time+3+N*2+1),N+2))
&
(state_prob(start_time+3+N*2+1)=IN_F=>
 is_lowANDlowest(lowest_prob(start_time+3+N*2+1),
 low_prob(start_time+3+N*2+1),N+2))
&
(state_prob(start_time+3+N*2+2)=IN_G=>
 is_lowANDlowest(lowest_prob(start_time+3+N*2+2),
 low_prob(start_time+3+N*2+2),N+2))

top_G_sum/top_G_sum_extended

top_G_sum defines one of the most important properties: the *sum_temp_prob* at tick *start_time+3+N*2+2* is the sum of *CalAcc(N+2)* and the previous value of *sum_temp_prob* at *start_time+3+(N-1)*2+2:

(state_prob(start_time+3+N*2+2)=IN_G =>
sum_temp_prob(start_time+3+N*2+2)=
 sum_temp_prob(start_time+3+(N-1)*2+2)+CalAcc(N+2)

top_G_sum_extended is the closed form of the property *top_G_sum* asserting *sum_temp* is holding the sum of the elements of the input signals
with index up to $N+2$ whenever state G is entered at tick $start_time+3+N*2+2$:

\[
\text{state_prob}(start_time+3+N\times2+2)=\text{IN_G} \Rightarrow \text{sum_temp_prob}(start_time+3+N\times2+2)=\text{sum}(N+2)
\]

To prove the overall correctness condition we first need to prove the base case in which $N=0$ in Figure 3.23. Since this base case can be reused in the induction step, it is better to build an independent base case lemma:

base_case_lemma

\[
\text{top_spec(reset:[TIME->bool], clk_enable:[TIME->bool], start:[TIME->bool], is_in_ini:[TIME->bool], i_prob, low_prob, lowest_prob: SIGNAL16_2C, state_prob: STATE, sum_temp_prob, sum: SIGNAL32_2C): bool =}
\]

\[
\text{FORALL(start_time: TIME):}
\]

\[
((\text{FORALL(t:\{t:T|t>=start_time\}):reset(t)=FALSE}) \& \text{(FORALL(t:\{t:T|t>=start_time\}):clk_enable(t)=TRUE}) \& \text{(FORALL(t:\{t:T|t>=start_time\}):start(t)=TRUE}) \& \text{is_in_ini(start_time)})
\]

\[
\text{IMPLIES}
\]

\[
\text{is_low\&ANDlowest(lowest_prob(start_time+36), low_prob(start_time+36),17) \&}
\]

\[
\text{state_prob(start_time+36)=\text{IN_D} \&}
\]

\[
\text{sum(start_time+36)=D0+D1+D2+D3+D4+D5+D6+D7+D8+D9}
\]

\[
+D10+D11+D12+D13+D14+D15+D16+D17
\]

\[
\text{-lowest_prob(start_time+36) -low_prob(start_time+36))}
\]

Such a lemma can be proved by the strategy shown in Figure 4.12. Supporting lemma $top_EHFG_maintain_low_lowest$ and $top_G_sum_extended$ can be instantiate with $N=15$ and thus we know that the state must be G at $i=18$. In the next tick, the state will be D and $\text{sum=}\text{sum_temp-low-lowest}$. Since low and lowest are proved to be the smallest two values in the lemma $top_EHFG_maintain_low_lowest$, and sum_temp is the sum of the total 18 input signal values in top_G_sum, the base_case_lemma can be proved. The propagation from G to D is achieved by instantiating implementation model at tick $start_time+35$ and $start_time+36$.

109
Once we have proved the *base case lemma*, the overall correctness condition can be proved by applying the strategy as shown in Figure 4.13.

The proving assumption is given at $start_time + 36 + t_j!1*37$. By instantiating the implementation model at $start_time + 36 + t_j!1*37$ and $start_time + 36 + t_j!1*37+1$ the given induction assumption can propagate to the *IDLE* state. As long as the state is *IDLE*, the Base Case Lemma can directly prove the property at $start_time + 36 + (t_j!1+1)*37$ by instantiate the $start_time$ with $start_time + 36 + t_j!1*37+1$ as shown in Figure 4.13. Actually, we only use the condition $state=D$ in the induction assumption, because the *base case lemma* is very strong, only assuming an arbitrary starting time and $state=IDLE$.
Figure 4.13: Induction step
Chapter 5

Facilitating Proofs

The proof process of the correctness condition is complicated. Although PVS theorem prover is largely mechanized, it still requires a significant amount of human interaction. In the proof process, the verification engineer must be very familiar with the system’s expected behaviour. Even for an experienced verification engineer, some proof methods to facilitate verification have to be adopted to make the proof process more practical and effective.

5.1 Adding Probes

5.1.1 The Need for Probes

The need for a signal probe comes from the correctness condition we used:

\[M[s_1, s_2, ..., s_n] \implies (C[s_1, s_2, ..., s_n] \implies S[s_1, s_2, ..., s_n]) \]

Usually, the implementation model \(M \), environmental assumption \(C \) and specification \(S \) share the same interface \([s_1, s_2, ..., s_n]\). That is the assumption and the specification only constrain the interface signals of the implementation model. However, in a lot of cases we need to know the internal state of a circuit in order to derive a particular property of it. For example, to prove a sequential circuit model \(M \) can always jump from a state \(F \) to a new state \(G \) in a given condition in the next clock tick, we need to assume the current state of \(M \) to be \(F \) and then prove the next state of \(M \) is \(G \) under the given condition.
In this case, the internal registers of the implementation need to be accessed. However, they are not available at the interface of the model so a signal probe is needed. In the remainder of this section $C[s_1, s_2, ..., s_n] \implies S[s_1, s_2, ..., s_n]$ is simply represented by S unless it needs to be explicitly mentioned.

It is very common that the circuit under test provides a debugging interface to allow the verification engineer to investigate the internal state of the circuit. This debugging interface may be implemented by a variety of techniques to provide access to the internal state of the system. For example, it can be as simple as an LED on the board indicating the status of a particular internal register, or it can be a connection port for a scope. Similar techniques are also useful and may be necessary to prove the correctness condition.

Figure 5.1: The signal probe in a formal model
Since the formalized implementation in this thesis is constructed by using the external quantifier to hide the internal connections, internal connections are thus not observable outside of the model. For example, system $M1$ in Figure 5.1 can be formalized as follows:

$$M1(a, b: bool): bool = \exists (x: bool): P1(a, x) \land P2(x, b)$$

The interface of $M1$ only contains input and output signal a, b. The interconnection wire x is observable in proving the correctness condition $M1[a, b] \Rightarrow S1[a, b]$ as shown in Figure 5.2. After x is skolemized, its status can be tracked by observing $x!1$ in the proof sequent.

```plaintext
{-1}  \exists (x: bool): P1(a!1, x) \land P2(x, b!1)  [1]
      S1(a!1, b!1)

Rule? (skosimp)
Skolemizing and flattening,
this simplifies to:
Correctness1:

{-1} P1(a!1, x!1)
{-2} P2(x!1, b!1)  [1]  S1(a!1, b!1)
```

Figure 5.2: Observability of signal X
However, since x is not an external signal port, it can not be accessed from outside this model - which is necessary when the specification involves probing this signal. In Figure 5.3, specification S is a predicate based on $a, b,$ and internal state x. Model M is a predicate on a, b without x. The correctness condition will be:

\[M(a, b) \Rightarrow S(a, b, x) \]

By universal closure, such a formula equivalent to:

\[\forall a, b : M(a, b) \Rightarrow \forall x : S(a, b, x) \]

It is obvious that this correctness condition is not correctly formed since the expected correctness condition should be:

\[\forall a, b, x : M(a, b, x) \Rightarrow S(a, b, x) \]

It is very common that a property of a model involves the internal state of the system. A concrete example is given below. Figure 5.4, shows the hierarchical structure of the highest16 model.
Figure 5.4: Example: Proof structure for the highest16 module

Shadowed boxes represent lemmas which are properties of the system used to prove the overall correctness condition. For example, lemma top_at_tick3 is representing the property of the system at the 3rd tick after when system is in its initial state. It needs the internal signals i, sum_temp and state to define such property as in Figure 5.5:

top_at_tick_3(reset,start,i_prob,state_prob,sum_temp_prob)
FORALL (start_time: TIME):
 (FORALL(t:{t:TIME|t>=start_time}) : reset(t) = FALSE) &
 (FORALL(t:{t:TIME|t>=start_time}) : clk_enable(t) = TRUE) &
 (FORALL(t:{t:TIME|t>=start_time}) : start(t)=TRUE)&
 is_in_init(start_time)
 IMPLIES
 (i_prob(start_time + 3) = 2 & sum_temp_prob(start_time + 3) = CalAcc(0) + CalAcc(1) &
 IF CalAcc(0) <= CalAcc(1)
 THEN lowest_prob(start_time + 3) = CalAcc(0) &
 . . .

Figure 5.5: top_at_tick_3 property of highest16 module
It is obviously that \(i, \text{sum}_\text{temp} \) and \(\text{state} \) must be added to the interface of the top level implementation \(\text{highest16} \) to prove this property.

We can make the following conclusion about when a signal probe is required:

Whenever a specification of a system involves the internal state of the implementation, probes are needed.

5.1.2 Types of Probes

The signal probe in PVS can be categorized into two types. The first type is \textit{wire type} which simply provides accessibility to the status of a particular signal. The other type is \textit{instrument type}, which provides more complex functionality such as detecting if a sequential circuit with multiple registers is in its initial state. Both types can be defined by a predicate and then embedded with the system by conjunction as shown in Figure 5.6. These embedded probes can be accessed through the new implementation interface.

![Figure 5.6: The implementation embedded with probes](image-url)
Wire Type Probe

A wire type probe simply provides a connection between the internal signal state and a new added signal in the signal port. It can be added by the 2 steps described below:

1. Add the probe name in the signal port. For the example in Figure 5.1 concerning $M1$, the new signal port is $M1(a,b,x_{\text{probe}})$.

2. For an internal signal S add predicate $\forall t \ S(t) = S_{\text{probe}}(t)$ to original PVS implementation and connected by conjunction. The internal connection between S and S_{probe} is built by assuming the signal S and S_{probe} are equivalent whenever a positive clock edge arrives.

For example in Figure 5.1 module $M1$, probe X_{probe} can be added by adding the following predicates to the PVS implementations of $M1$:

```plaintext
M1(a,b,X_{\text{probe}}): bool =
EXISTS x:
   FORALL t:
      P1(a(t),x(t)) &
      P2(b(t),x(t)) &

%%% NEW ADDED PROBE FOR X %%%
      X_{\text{probe}}(t) = X(t)
```

Instrument Type Probe

Instrument type probes provide more complicated functionality to let the prover determine the status of the system or set the system to a particular state. Similar to the steps to define a wire type probe, an instrument type probe can also be added by the 2 following steps:

1. Add the instrument probe name to the signal port.

2. Add a predicate in the definition of the implementation that expresses the functionality that the instrument is to provide. Assuming the implementation model has the form: $M(s1,...,sn) = \forall t \ E1(t)$ and the
instrument probe is defined as $\forall t \ instrument_probe(t) = E2(t)$, where $E1$ and $E2$ is a formula of free variable t. The implementation model embedded with instrument probe will be:

$$M(s1, \ldots, sn, instrument_probe): bool =$$

$$\text{FORALL } (t):$$

$$E1 \&$$

$$instrument_probe(t) = E2(t)$$

An instrument to detect if the system with two registers is in its initial state can be added as:

$$M1(s1, \ldots, sn, is_in_ini): bool =$$

$$\text{==== ORIGINAL IMPLEMENTATION ====}$$

$$\text{FORALL } (t):$$

$$E1 \&$$

$$\text{==== NEW ADDED INSTRUMENT ====}$$

$$is_in_ini(t) = \text{reg0}(t) = 0 \& \text{reg1}(t) = 0$$

5.1.3 Using Probes

A standard correctness condition with probes embedded has the form:

$$M[v1, v2, \ldots vn, probe1, \ldots, proben] \implies (C[v1, v2, \ldots vn, probe1, \ldots, proben] \implies S[v1, v2, \ldots vn, probe1, \ldots, proben])$$

It is equivalent to:

$$(C[v1, v2, \ldots vn, probe1, \ldots, proben] \land M[v1, v2, \ldots vn, probe1, \ldots, proben])$$

$$\implies S[v1, v2, \ldots vn, probe1, \ldots, proben]$$

This means the internal state of M will be set by C through probes. A concrete example is given below to illustrate this effect.

In Figure 5.5, the instrument probe $is_in_ini(start_time)$ is set to be $True$ with assumption of the property $top_at_tick_3$. In PVS, it is equivalent to:

$$120$$
highest16(..., is_in_ini(start_time)) AND is_in_ini(start_time)
IMPLIES
specification(..., is_in_ini(start_time))

The implementation highest16 embedded with is_in_ini probe has the form:

highest16(..., is_in_ini(start_time)): bool =
...
is_in_ini(start_time) =
 (state=IDLE & sum=0 & i=0 & ...)

In the proof process, after the highest16 implementation model is expanded, the sequent has the following form:

is_in_ini(start_time!1)=state(start_time!1)=IDLE AND
 sum(start_time!1)=0 AND
 i(start_time!1)=0...
...
is_in_ini(start_time!1)
|-----------------------------
...

This is equivalent to:

state(start_time!1)=IDLE
sum(start_time!1)=0
i(start_time!1)=0
...

The implementation model is then set to be in its initial state.

The expanded interface and revised implementation model is given as shown in Figure 5.6. It gives us the power to set the internal state freely. However, this accessibility could introduce an inconsistency in the correctness condition proof.

If we examine this problem from the perspective of encapsulation, the probe can be looked at as the added accessors to the internal state of the
hardware which is originally invisible to the outside. The attempt to set the system state by probes without using the original implementation input signals could make the system inconsistent. This inconsistency is not caused by the original implementation model but is result of the direct access to the internal states.

For example, in a sequential circuit model \(M(\text{in}, \text{out}) \), as shown in Figure 5.7, the internal register \textit{state} can only have 3 values: 0, 1, 2. If the condition is \textit{state_probe} = 4 then added to the correctness condition \(M(\text{in}, \text{out}, \text{state_probe}) \land C(\text{in}, \text{out}, \text{state_probe}) \) will set the model to be an illegal state and make the proof trivial by introducing an inconsistency.

We should realize that this inconsistency is caused by the incorrect setting of the system state through the probe. If we only use the signals provided by the original implementation, the system will never reach the state 4. This is somehow similar to the concept in Object Oriented Programming, in which we should only read the object data through the accessor. In the example of \textit{highest16}, we use the \textit{is_in_ini} probe to put the system in its

Figure 5.7: state flow example
initial state. Another way, which is safer, is to use the reset signal to set the system to its initial state. However this will constrain the application of the property, since the initial state may not necessarily be entered only by triggering the reset, event but also could be entered by jumping to the next state from IN_D. If we use is_in_ini instead of reset, this property can be used for both cases.

To solve this potential problem in using probes, two things need to be examined. First the probe logic itself should not change the behaviour of the original implementation model.

In Figure 5.6, the added logic should only output internal state to probes. This can be done by following the rules:

- Any probe logic (instrument and wire type probe) can only have the form probe = f(v1, ..., vn), where v1 to vn are the internal signals of the original implementation. That is the logic operation on v1, ..., vn should only change values of the probe.

- The original implementation should not be changed and should not refer any newly added probe signals.

These two principles guarantee the newly added probe logic is isolated from the original implementation.

The second thing is that newly introduced probes should not make the system inconsistent. Consider the correctness condition after introduced probes:

\[
(C[v1, v2, ..., vn, probe1, ..., proben] \land M[v1, v2, ...vn, probe1, ..., proben]) \implies S[v1, v2, ..., vn, probe1, ..., proben]
\]

To guarantee its consistency, we must prove:

\[
\exists v1, ..., vn, probe1, ..., proben : \quad C[v1, ..., vn, probe1, ..., proben] \land M[v1, ...vn, probe1, ..., proben]
\]
5.2 Constrain the Model

The properties of a synchronous system are usually proved by induction. The pattern of the induction step directly affects the complexity of the proof.

For example in the highest16 StateFlow module of Figure 3.17, the internal loop consists of 4 states: E, H, F and G. Properties in these 4 states can be proved by induction. Assuming the algorithm does not have the idle state H, the induction step will become much more complex as the previous state of G can be E, F, G, B or C. Especially when the previous state of G is itself, the proof will be very complex due to the change of index i. However, by introducing an idle state H, the previous state of G can only be E, H or F, which is much easier as these three states will not change the index i.

The essential reason behind this is the determinism of the timing behaviour of the model. Since the model is implemented by a synchronous circuit in which time is represented by a natural number corresponding to the number of clock cycles, the more deterministic the system is, the easier the property is to define and prove. In the example of the highest16 model, with the idle state H inserted the timing behaviour of the system is much more deterministic and thus it is easier to define the property as a function of time tick t.

5.3 Make an Appropriate Assumption in the Correctness Condition

In the highest16 module (Figure 3.17), the overall correctness condition we want to prove is that the first time when sum outputs a correct result is 36 clock cycles after reset, and after that it outputs the correct result every other 37 clock cycles. Usually two properties with different conditions need two independent proofs. The two different condition means that state IDLE can be entered when either the system is reset, or state D is quit. However in both cases, the behaviour in state IDLE is the same, and only variable done is set and all the variables will be overwritten. That means both cases have the exact same behaviour in the whole process as long as the initial state is
IDLE. Thus these two conditions can be merged into a common condition:
\textit{state=IDLE}.

More specifically, the original properties based on the reset condition have the form:

\begin{verbatim}
FORALL (start_time: TIME):
 ((FORALL(t:{t:TIME}|t>=start_time}): reset(t) = FALSE) &
 (FORALL(t:{t:TIME}|t>=start_time}): clk_enable(t) = TRUE) &
 (FORALL(t:{t:TIME}|t>=start_time}): start(t)=TRUE)&
 is_in_ini(start_time)

IMPLIES
PROPERTIES
\end{verbatim}

Any proved properties in such a form can only be used when all four conditions in the antecedent are satisfied, which means it can only be used when the system is reset at \textit{start_time}. It can not be used in the case when system is returned from state \textit{D}, as none of the variables is in initial except \textit{state}. After merging the two condition into \textit{state=IDLE}, the properties have the form:

\begin{verbatim}
FORALL (start_time: TIME):
 ((FORALL(t:{t:TIME}|t>=start_time}): reset(t) = FALSE) &
 (FORALL(t:{t:TIME}|t>=start_time}): clk_enable(t) = TRUE) &
 (FORALL(t:{t:TIME}|t>=start_time}): start(t)=TRUE)&
 state_prob(start_time)=IDLE

IMPLIES
PROPERTIES
\end{verbatim}

For a particular property, the later version is much stronger since it minimized the assumption. The stronger version property can be applied not only in the case when system is reset but also when the system returns from \textit{D}. Of course, the stronger version is usually harder to prove. However, once it is proved, it will significantly reduce the complexity of other proofs.
Chapter 6

Future Work

The list below is suggested future work arising from this thesis.

• All gates are considered to be perfect in this thesis which make timing requirement verification infeasible in such an environment. By introducing the propagation delay and modelling time by real number instead of natural number, we will be able to verify timing requirement and asynchronous circuit properties.

• It will be more efficient if the netlist circuit can be translated into a formal language automatically instead of doing this manually, as was done in all the examples of this thesis. A prerequisite of such an automated translation is a complete library containing all the formalized logic elements used in the FPGA tools.

• Some properties of the circuits can be proved by following a particular pattern. Thus some degree of automated proving of these type of properties can be realized by carefully constructing PVS proof strategies which will dramatically reduce the manual effort required in the proof process.

• This thesis does not discuss equivalence checking issues which will make the top to bottom verification framework complete. As equivalence checking is highly automated and there are lot of mature commercial tools available, design verification, which is the focus of this thesis, is still the most important part in these two frameworks.
Bibliography

