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Abstract

This thesis presents two practical coding schemes based on low-density generator

matrix (LDGM) codes, for two cases of the multiple description (MD) problem. The

first one is for the two description problem for finite-alphabet sources with Hamming

distortion measure. The proposed MD code targets the Zhang-Berger region, which is

the best inner bound known so far for the corresponding MD rate-distortion region.

The coding scheme can be regarded as a practical implementation of a theoretical

sequential coding system for the corner points of a related rate-region, where the

random codebooks are replaced by multilevel LDGM codebooks and the encoding

at each stage is performed via a message passing algorithm. This coding system is

further applied in three notable cases: 1) no excess sum-rate case for binary sources;

2) successive refinement for general finite-alphabet sources, 3) no excess marginal rate

for uniform binary sources. Furthermore, in order to assist the code design in the no-

excess sum-rate case for binary sources, the exact expression of the distortion region

and of the auxiliary variables needed to achieve its boundary, are derived, which is

another important contribution of the thesis.

The second proposed MD code is for the case of L descriptions with individual

and central distortion constraints, for the memoryless Gaussian source with squared

distortion measure. It is shown first that the coding problem for an arbitrary point
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on the dominant face of an L-description El Gamal-Cover (EGC) rate region, can be

converted to that for a vertex of aK-description EGC rate region for someK ≤ 2L−1,

where the latter problem can be solved via successive coding. The practical coding

scheme reduces each successive coding step to a Gaussian quantization operation, and

implements this operation using multilevel LDGM codes.

The LDGM-based coding schemes are extensively tested in practice for all afore-

mentioned cases. The experimental results show very good performance, verifying

that the proposed schemes can approach the theoretical rate-distortion bounds.
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Chapter 1

Introduction

In the multiple description (MD) problem, a source sequence is compressed into two

or more descriptions, which are constructed in such a way that an adequate recon-

struction of the source is possible based on each description while any larger number

of descriptions combined together can lead to better reconstruction quality.

In this thesis, we present two practical coding schemes based on low-density gen-

erator matrix (LDGM) codes for the MD problem. Interestingly, although the MD

coding problem itself is a source coding problem, it was first posed at Bell Labora-

tories in the 1970s in the context of a communication problem due to unavoidable

outages of transmission links over the telephone network [1]. As time went by, the

circuit-switched telephone network was replaced by the packet-switched network—

the Internet. The Internet protocol provides best-effort service, in other words it

does make the best effort to transfer the packets, but it takes no action when packets

are lost. Therefore, in order to achieve reliable transmission, several approaches were

established to combat the packet loss, with MD being one of them. In the first section

of this chapter, we compare these approaches, and highlight the benefit of MD coding
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over the others. The following section briefly reviews previous work on practical MD

codes and the use of LDGM codes for compression. Section 1.3 presents the infor-

mation theoretical formulation of the MD problem for the case of two descriptions

and L descriptions with individual and central distortion constraints, and relevant

theoretical results. The contribution of this thesis is described in section 1.4, and the

last section presents the thesis organization.

1.1 Why use Multiple Description Coding?

In practical multimedia communication applications, the reliable data transmission

over best-effort packet-switching networks such as the Internet, is quite challenging.

The data messages are first segmented into packets of fixed size before transmission.

A header which is used by the network to route the packet is added to the front of

each packet. The packets are sent over the network and stored at intermediate nodes

before being forwarded to other nodes through internal network links. If a packet is

not received within a specific time duration, then it is assumed to be lost. Packet loss

is the main factor of unreliable delivery occurrence on the Internet. Some packets

have to be dropped in the following scenarios: 1) the transmission rate does not

match the link capacity; 2) router buffers with limited size at a time, overflow and

are marked as congested by Transmission Control Protocol (TCP); 3) the dynamic

routing mechanism causes dynamic transmission delay. Due to network topology

complexity, packet loss may happen at any part of the communication process and

at different points in the network. Packet loss becomes unpredictable and random

in this case. To alleviate the effect of packet loss, several well-known technologies

incorporated in error control transmission systems aim to protect media data.

2
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One way to handle the packet loss is the automatic repeat request (ARQ) protocol,

which is a peer-to-peer protocol providing reliable transmission. The simplest case of

ARQ includes acknowledgements (ACK)s, which acknowledge the successful receipt

of packets, and a time-out mechanism. The receiver transmits an ACK to inform

the sender that it has received the packet, and it does nothing if it fails to receive

the packet. If the ACK can not be received by the sender due to time-out or receipt

failure by the receiver, then the packet will be retransmitted. ARQ is very effective in

the case of low loss rate, but when the loss rate is relatively high, each retransmission

can cause longer delay, at least of one round-trip time, and increase the congestion

which will introduce large bandwidth overhead. Although ARQ is very useful in

point-to-point transmission, it requires a feedback channel, therefore, it is infeasible

for multicast, broadcast and point-to-point transmission without a feedback channel.

The second approach is forward error correction (FEC) with erasure correcting

codes, such as Reed-Solomon (RS) codes. The basic idea of FEC is to exploit an

error recovery mechanism to recover all transmitted data without sending a request

for missing packets. In FEC with systematic codes, first k redundant data packets are

generated from the n original data packets, then they are inserted into the original

data packets to form a block/frame corresponding to one RS code. If the number

of lost packets among a block is not greater than k, then the original data packets

can be completely recovered by the RS code. FEC needs no retransmission, thus it

is suitable for no feedback channel and short delay transmission cases. But if the

number of lost packets among a block is greater than k, eg. burst packet loss, the

whole block data can not be recovered, which results in awful final decoded quality.

Because of this, the number of redundant packets usually is set for the worst case
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scenario, which in turn will increase the bandwidth overhead and cause longer delay.

The third approach is packet loss concealment (PLC), which estimates the lost

data packets at the destination side, then provides data packets for the decoder if the

actual packets are lost, via particular methods, such as repeat/replay last received

packet, or implement interpolation to replace the lost packet. This is a best effort

technique, which does not offer a quality guarantee.

Finally, another approach is multiple description coding (MDC). MDC was pro-

posed as a source coding scheme which is very robust against high loss rate. In MDC,

the source data is encoded into several streams, which are called descriptions, and

each description is transmitted to the same destination through the network. The

more descriptions received, the higher reconstruction quality achieved. The robust-

ness of MDC lies in the fact that all descriptions have correlation with one another so

that even if some of the descriptions are lost, the source can still be reconstructed with

acceptable quality from the available descriptions. It is unlikely that all descriptions

are lost, therefore it is impossible to have the cliff effect with MDC.

1.2 Previous Work

Due to its robustness, flexibility and wide range of applications for transmission net-

works, MDC has been intensively investigated. Some popular practical coding tech-

niques are MD quantization, MD based on correlating transforms and PET-MD (MD

based on priority encoding transmission). In MD quantization, separate descriptions

are created by using quantizers, e.g., scalar quantizers [2–9], trellis-coded quantiz-

ers [10], vector or lattice vector quantizers [11–16], or Delta-Sigma quantizers [17]. In

MD based on correlated transforms [18,19], transform methods are used to introduce
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correlation between descriptions. PET-MD is obtained by combining a progressive

source code with uneven erasure protection [20]. The related redundancy allocation

problem is addressed in [21–24], while in [25, 26], an improvement to PET-MD is

proposed by dissociating the single progressive stream into independent sub-streams.

As highlighted above, the existing practical code designs for MDC mostly fo-

cused on the case of continuous-alphabet sources with squared error distortion, while

the case of discrete-alphabet sources with Hamming distortion measure has been ne-

glected so far. Even for the former case, the performance of existing MD code designs

can not approach the known MD rate-distortion inner bounds arbitrarily close. Mo-

tivated by this, this thesis addresses the problem of practical MD code construction

to approach the known fundamental limits. Inspired by the success of low density

generator matrix (LDGM) codes for the single description problem, we apply them

in our proposed MD coding schemes. Next we present a brief review of the prior use

of LDGM codes in source coding.

LDGM codes are dual code of low density parity check (LDPC) codes, which

were first introduced by Gallager [27] in 1963, along with a message passing decod-

ing algorithm. Later Tanner introduced in [28] a bipartite graph model to represent

LDPC codes. This model facilitated a new way of interpreting the message passing

algorithm by iteratively decomposing the entire process into a series of partial sub-

processes at a type of nodes level. The success of sparse-graph codes like turbo and

LDPC codes in channel coding, which were proven to approach the channel capac-

ity under optimal decoding, has generated interest in applying sparse-graph codes

for compression. The authors of [29, 30], construct LDPC, respectively, dual LDPC

codes (i.e., LDGM codes), and prove that they approach the rate distortion limit for
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the binary symmetric source [29], respectively binary erasure source [30], by using

the maximum likelihood channel decoder as the optimal source encoder. In [31], the

authors propose a hybrid LDPC-LDGM code and prove that it approaches the rate

distortion bounds for the uniformly distributed source if optimum encoding is used.

Later, the authors of [32], prove that an LDGM-based code construction, termed mul-

tilevel LDGM code, can achieve the rate distortion bound for general finite alphabet

memoryless sources with general distortion measure under optimum encoding as well.

A condition for this is that the number of 1’s in each row of the generator matrix is

unbounded as the source block length n grows, but it scales sub-linearly with n.

All established optimality results for LDGM-based source codes hinge on optimal

encoding, in other words selecting the reconstruction sequence which minimizes the

distortion. Unfortunately, optimal encoding is infeasible in practice. On the other

hand, the simple belief propagation (BP) algorithm, which is successful in channel

decoding, is not satisfactory in LDGM-based source coding. To circumvent this prob-

lem, the more sophisticated survey propagation algorithm (SP), originally introduced

for solving random satisfiability problems, was adopted in [33, 34], showing excellent

practical performance. Interestingly, it was shown in [35,36] that SP can be regarded

as a form of BP with decimation, where the underlying probability distribution is

defined on a larger space of so-called generalized codewords. Alternatively, in [37],

the authors verify empirically that the simpler BP with decimation, where the un-

derlying probability distribution is defined only on the set of normal codewords, has

very good practical performance.
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1.3 Multiple Description Coding From Informa-

tion Theory Perspective

In this section we provide a brief background on the MD problem from information

theoretical point of view. First we review the fundamental result on rate distor-

tion trade-off in single description source coding. Then we present the MD problem

formulation and the relevant achievable rate distortion regions for the case of two

descriptions, and for the L-description case with individual and central distortion

constraints.

1.3.1 Single Description Source Coding

Consider a sequence Xn = (X(1), X(2), · · · , X(n)) drawn from an i.i.d. source X

with generic distribution pX . Let d : X × X̂ → [0,∞) be a distortion measure,

where X and X̂ are the source alphabet and the reconstruction alphabet, respectively.

Assume that the alphabets X and X̂ are finite. The rate distortion pair (R,D) is

said to be achievable, if for any ε > 0 and any n sufficiently large, there exists an

encoding mapping

f (n) : X n → {1, 2, · · · , b2nR+εc}

and a decoding function

g(n) : {1, 2, · · · , b2nR+εc} → X̂ n

7
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such that

E

[
1

n

n∑
l=1

d(X(l), X̂(l))

]
≤ D + ε

where X̂n = g(n)(f (n)(Xn)).

The rate distortion region is the closure of the set of all achievable (R,D) pairs.

The rate distortion function R(D) is the infimum of rates R such that (R,D) is in

the rate distortion region, for a given distortion D. The source coding theorem [38]

states that

R(D) = min
p(x̂|x)

I(X; X̂),

where the minimum is taken over all test channels p(x̂|x) which satisfy the distortion

constraint Ed(X, X̂) = p(x)p(x̂|x)d(x, x̂) ≤ D.

1.3.2 Multiple Description Problem

The multiple description (MD) source coding problem was first posed by Wolf, Wyner,

Ziv, Ozarow and Witsenhausen at the 1979 IEEE Information Theory Workshop.

Some of the early results on this problem appear in [39–43]. Since then various

information theoretical approaches have been exploited in an attempt to characterize

the MD rate-distortion region, but the complete characterization has not been found

yet, not even for the case of two descriptions. In this thesis we restrict our attention to

the two description case, and L-description case with individual and central distortion

constrains. Note that the former is a special case of the latter, therefore we present

the MD problem for the latter case.

8
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The formal definition of the L-description problem with individual and central dis-

tortion constraints is given as follows. The rate-distortion tuple (R1, · · · , RL, d1, · · · , dL, d{1,··· ,L})

is said to be achievable, if for any ε > 0 and all sufficiently large n, there exist encoding

function f
(n)
` : X n → {1, · · · , b2n(R`+ε)c}, ` = 1, · · · , L, and decoding functions g

(n)
{`} :

{1, · · · , b2n(R`+ε)c} → X̂ n, ` = 1, · · · , L, and g
(n)
{1,··· ,L} :

∏L
`=1{1, · · · , b2n(R`+ε)c} → X̂ n

such that

E

[
1

n

n∑
t=1

d(X(t), X̂{`}(t))

]
≤ d{`} + ε, ` = 1, · · · , L, (1.1)

E

[
1

n

n∑
t=1

d(X(t), X̂{1,··· ,L}(t))

]
≤ d{1,··· ,L} + ε, (1.2)

where X̂n
{`} = g

(n)
{`}(f

(n)
` (Xn)), ` = 1, · · · , L, and X̂n

{1,··· ,L} = g
(n)
{1,··· ,L}(f

(n)
1 (Xn), · · · , f (n)

L (Xn)).

Finally, the rate-distortion region is defined as the closure of the set of all achievable

tuples (R1, · · · , RL, d1, · · · , dL, d{1,··· ,L}).

1.3.3 Inner Bounds for the Two Description Rate-Distortion

Region

Let us denote by RD the rate-distortion region in the two description case. The

first inner bound of RD, referred to as the EGC region, was provided by El Gamal

and Cover in [41]. This was shown to be tight for the no excess sum-rate case by

Ahlswede [43]. Later Zhang and Berger [42] proposed a different inner bound, termed

the ZB region, and showed that it contains points not included in the EGC region.

Recent work of Wang et al. [44] proves that the ZB region includes the EGC region

and establishes the ZB region as the best inner bound known to date.

9
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The EGC region, denoted by RDEGC, is defined as the convex closure of the set

of quintuples (R1, R2, d1, d2, d0), where d0 = d{1,2}, for which there exist auxiliary

random variables Xt, t = 0, 1, 2, jointly distributed with X such that

Rt ≥ I(X;Xt), t = 1, 2,

R1 +R2 ≥ I(X;X0, X1, X2) + I(X1;X2),

E[d(X,Xt)] ≤ dt, t = 0, 1, 2.

It was proved in [41] that RDEGC ⊆ RD. Moreover, it was shown by Ahlswede [43]

that the previous relation holds with equality in the no excess sum-rate case.

The ZB region, denoted byRDZB, is defined as the set of quintuples (R1, R2, d1, d2, d0)

such that there exist random variables Xc, X1, X2 jointly distributed with X and

functions ψt, t = 0, 1, 2, satisfying

Rt ≥ I(X;Xc, Xt), t = 1, 2, (1.3)

R1 +R2 ≥ 2I(X;Xc) + I(X;X1, X2|Xc) + I(X1;X2|Xc),

Ed(X,ψt(Xc, Xt)) ≤ dt, t = 1, 2,

Ed(X,ψ0(Xc, X1, X2)) ≤ d0.

Let RDEGC∗ denote the convex closure of the set of quintuples (R1, R2, d1, d2, d0)

for which there exist random variables X1 and X2 jointly distributed with X and

10
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functions ψt(·), t = 0, 1, 2, such that

Rt ≥ I(X;Xt), t = 1, 2, (1.4)

R1 +R2 ≥ I(X;X1, X2) + I(X1;X2),

E[d(X,ψt(Xt))] ≤ dt, t = 1, 2,

E[d(X,ψ0(X1, X2))] ≤ d0.

RDEGC∗ is referred to as the EGC* region and is attributed to El Gamal and Cover

as well. Although RDEGC∗ appears to be weaker than RDEGC, it was shown in [44]

that the two regions are equivalent and both of them are contained in RDZB, i.e.,

RDEGC∗ = RDEGC ⊆ RDZB.

1.3.4 EGC Region for L-Description Case

Recall that the EGC region is a general inner bound of the two description rate-

distortion region. Ozarow [39] proved that the EGC region is tight in the quadratic

Gaussian case. In fact, it has been shown, by refining and generalizing Ozarow’s proof

technique, that a natural extension of the EGC region to the L-description case is

tight for Gaussian multiple description coding with individual and central distortion

constraints [45–47].

Define the EGC region for the L-description case with individual and central dis-

tortion constraints, as the convex closure of the set of tuples (R1, · · · , RL, d{1}, · · · , d{L}, d{1,··· ,L})

such that there exist L auxiliary random variables U{1}, · · · , U{L} jointly distributed

with the generic source variable X, and functions g{`}, ` = 1, · · · , L, and g{1,··· ,L},

11
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satisfying

∑
`∈A

R` ≥
∑
`∈A

H(U{`})−H(U{`}, ` ∈ A|X), ∅ ⊂ A ⊆ {1, · · · , L}.

and

E[d(X, g{`}(U{`}))] ≤ d{`}, ` = 1, · · · , L,

E[d(X, g{1,··· ,L}(U{1}, · · · , U{L}))] ≤ d{1,··· ,L}

Notice that technically, the above definition corresponds to the EGC∗ region, however,

in view of [44], the two regions coincide.

1.4 Contribution

In this thesis, we present two practical coding schemes based on LDGM codes, for the

MD problem for two important cases. The first coding scheme is for the case of two

descriptions, finite-alphabet sources and Hamming distortion measure. It consists of

three sequential encoders, one for the common part of the two descriptions, and the

other two for the remaining component of the first, respectively second description.

This scheme is applicable to corner points of a certain rate region derived from the

ZB rate-distortion region of two description, but this is not a limitation since any

other rate pair can be obtained through timesharing of two such corner points. At

each encoding stage a multilevel LDGM code is used to generate each codebook,

whose construction needs the knowledge of the auxiliary variables involved in the ZB

region. Finally, message passing algorithm on the associated factor graph is employed

12
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to perform the encoding at each stage. We discuss in detail the application of this

coding scheme to the following cases of the two description problem with Hamming

distortion measure.

1. No excess sum-rate case for binary sources. In this case the coding scheme is

simplified consisting only of two sequential encoders. The characterization of

the MD region is available, as the EGC region, therefore the rate-distortion

limits are computable. However, their computation is not an easy task, and

analytical expressions are only partly available for the uniform binary source.

In order to aid the code design we provide the exact expression of the distortion

region and of the auxiliary variables necessary to achieve its boundary. This

result is another important contribution of this thesis.

2. No excess marginal rate for the uniform binary source. For this case Zhang

and Berger proposed in [48] a method to compute an upper bound for the

central distortion given the values of the side distortions. We improve Zhang

and Berger’s result by providing the analytical expression of this upper bound.

3. Successive refinement (SR) for general finite-alphabet sources. This is another

special case of the MD problem, where the fundamental limits are known [49–

51]. In this case the second description is of no interest alone, but only in

conjunction with the first description. Thus, the first description constitutes

the base layer, while the second description is the refinement layer. However,

practical SR coding for the discrete source with Hamming distortion has not

been attempted so far. In this thesis, we also show how the proposed LDGM-

based coding scheme can be adapted to the SR problem.
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The second coding scheme is for the case of L descriptions with individual and cen-

tral distortion constraints, for Gaussian sources with squared error distortion. This

scheme can be regarded as an alternative implementation of the Gaussian two descrip-

tion code proposed in [52] with lattice codes replaced by multilevel LDGM codes, as

well as the extension to the general L-description case. Although we follow the gen-

eral strategy of [52, 53] by reducing the Gaussian multiple description problem to

a sequence of Gaussian quantization problems via Gram-Schmidt orthogonalization,

there are several noteworthy conceptual differences.

1. We exploit the special structure of the covariance matrix associated with the

sum-rate optimal EGC region, which not only simplifies the calculation of the

coeffficients, but also leads to an efficient implementation of Gram-Schmidt

orthogonalization.

2. We give a new interpretation of the quantization splitting method developed

in [52,53] by eliminating the use of conditional codebooks.

Finally, the effectiveness of all proposed schemes is verified through extensive simu-

lation experiments.

1.5 Organization of the Thesis

The thesis is organized as follows. In Chapter 2 we describe the proposed coding

scheme for the ZB region for the two description case. First the theoretical sequen-

tial coding scheme based on random codebooks is presented. Then the details of

the multilevel LDGM codes used at each stage are addressed, together with the as-

sociated factor graph and message passing encoding algorithm. Chapter 3 presents
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the application of the proposed coding system for three cases of the two description

problem with Hamming distortion measure, including the no excess sum-rate case for

general binary sources, no excess marginal rate case for the uniform binary source and

successive refinement for finite-alphabet sources. A notable result presented in this

chapter is the analytical expression of the distortion region in the no excess sum-rate

case for binary sources with Hamming distortion. Chapter 4 describes the proposed

LDGM-based successive coding scheme for Gaussian quadratic L description cod-

ing with individual and central distortion constraints. Experimental results for all

proposed codes are presented in Chapter 5. Finally, Chapter 6 concludes this thesis.
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Chapter 2

Practical LDGM-based Coding

Scheme for the ZB Region

Although the question whether RDZB is tight is an open problem, RDZB is the best

inner bound known so far for RD. Therefore, in this chapter we propose a practical

coding scheme based on LDGM codes, tailored for the ZB region. The chapter first

presents a theoretical sequential coding system using random codebooks. Next the use

of multilevel LDGM codes is proposed to generate the codebooks. The previous result

of [32] implies the asymptotic optimality of this scheme when used in conjunction

with the strong typicality encoding rule. However, such an encoder is impractical,

therefore an efficient suboptimal encoding algorithm is proposed. For this the encoder

problem is first formulated as an unconstrained optimization problem similar in spirit

to the problem in the single description case. Then, the belief propagation algorithm

with decimation is presented as a heuristic solution. Finally, an upper bound on the

performance gap of the algorithm is established, in terms of the error introduced in

the computation of marginal probabilities. The chapter ends with a discussion of the
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efficient implementation of multilevel LDGM codes needed in the scheme.

2.1 Sequential Coding System

Given the auxiliary random variables Xc, X1, X2 jointly distributed with X, specified

by the ZB region, i.e. obeying relations (1.3), the distortion triple (d{1}, d{2}, d{1,2})

can be achieved by the set of rate pairs (R1, R2) satisfying

R1 ≥ I(X;Xc, X1),

R2 ≥ I(X;Xc, X2),

R1 +R2 ≥ 2I(X;Xc) + I(X;X1, X2|Xc) + I(X1;X2|Xc).

Let us denote by R(pXcX1X2|X) this rate region, and by F(pXcX1X2|X) its dominant

face, which is defined as the set of rate pairs (R1, R2) ∈ R(pXcX1X2|X) for which

R1 + R2 = 2I(X;Xc) + I(X;X1, X2|Xc) + I(X1;X2|Xc). Without loss of generality,

we shall focus on F(pXcX1X2|X) since every point in R(pXcX1X2|X) is dominated, in

a componentwise sense, by some point (R1, R2) ∈ F(pXcX1X2|X). Moreover, the two

corner points E1 and E2 of R(pXcX1X2|X) (i.e., the end points of F(pXcX1X2|X)) are

of particular importance. Specifically, one can achieve an arbitrary point on the

dominant face by timesharing E1 and E2. Precisely, the coordinates of E1 are

R1 = I(X;Xc) + I(X;X1|Xc)

R2 = I(X;Xc) + I(X;X2|Xc, X1) + I(X1;X2|Xc)

= I(X;Xc) + I(X,X1;X2|Xc).
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The coordinates of E2 are obtained by swapping indices 1 and 2 in the above relations.

Next we present a sequential coding scheme for the corner point E1. This system

consists of three encoders, labeled 0, 1 and 2. We mention that a similar sequential

coder, consisting of only two encoders, was described in [52] for the corner rate points

related to the EGC region.

Codebook generation. Encoder 0 randomly generates a codebook C0 = {xnc,i}2n(I(X;Xc)+ε1)

i=1

according to the distribution
∏n

l=1 pXc(·), where ε1 depends on ε and ε1 → 0 as ε→ 0.

For each index i, 1 ≤ i ≤ 2n(I(X;Xc)+ε1) in C0, encoder 1 randomly generates a condi-

tional codebook C1,i = {xn1,i,j}2n(I(X;X1|Xc)+ε1)
j=1 according to the conditional distribution∏n

l=1 pX1|Xc(·|xc,i(l)). Further, for each index i, 1 ≤ i ≤ 2n(I(X;Xc)+ε1) in C0, encoder 2

randomly generates a conditional codebook C2,i = {xn2,i,k}2n(I(X,X1;X2|Xc)+ε1)

k=1 according

to the conditional distribution
∏n

l=1 pX2|Xc(·|xc,i(l)).

Encoding. Given the source sequence xn, encoder 0 finds a codeword xnc,i which is

jointly strongly typical with xn, if such a codeword exists.

Encoder 1 has knowledge of index i picked by encoder 0, and it chooses an index

j such that the codeword xn1,i,j is jointly strongly typical with (xn, xnc,i), if possible.

Encoder 2 has knowledge of both indices i and j picked by encoders 0 and 1, and

it chooses an index k such that the codeword xn2,i,k is jointly strongly typical with

xn, xnc,i and xn1,i,j, if such a codeword exists.

The pair of indices (i, j) forms description 1, and the pair (i, k) forms description

2.

Decoding. Decoder 1 receives the index pair (i, j) and takes g
(n)
1 (i, j) = (ψ1(xn1,i,j(l)))

n
l=1

as the reconstruction of xn.

Decoder 2 receives index pair (i, k) and takes g
(n)
2 (i, k) = (ψ2(xn2,i,k(l)))

n
l=1 as the
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reconstruction of the source sequence xn.

The central decoder obtains the reconstruction of xn according to decoding func-

tion g
(n)
0 (i, j, k) = (ψ0(xnc,i(l), x

n
1,i,j(l), x

n
2,i,k(l)))

n
l=1.

Since the probability that the encoder finds a triple of indices (i, j, k) such that

xnc,i, x
n
1,i,j, x

n
2,i,k are jointly strongly typical with xn, approaches 1 as n→∞, it follows

that relations (1.1) and (1.2) are satisfied for sufficiently large n.

Following the above theoretical coding system we propose a practical coding

scheme for the corner rate points E1 and E2. At each encoding stage a multilevel

LDGM code is used to generate the codebook, and a message passing algorithm is

used to perform the encoding. Multilevel LDGM codes were used in [32] to generate

codebooks with codewords of non-uniform empirical distribution and it was shown

that they are able to achieve the rate-distortion bound for single description coding

when used with the strong typicality encoding rule. Next we describe the multilevel

LDGM code employed at various encoding stages, by considering a general encoding

scenario which covers all three encoders 0, 1, 2.

2.2 Multilevel LDGM Code for General Encoding

Scenario

Let Y and Z be jointly distributed random variables over the alphabets Y and Z,

respectively. Consider the probability distributions p1(·), · · · , pn(·) over the alphabet

Z. Given the input sequence yn, the goal of the encoder is to select a binary sequence

vm such that zn(vm) is jointly strongly typical with yn. The first key step of encoding

is generating a codebook C = {zn(vm)|vm ∈ {0, 1}m}, where m = Rn, and R > 0,
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such that the marginal empirical distribution of the l-th symbol zl approximates the

distribution pl(·), for all 1 ≤ l ≤ n.

To see that this general setting covers all three encoders 0, 1, 2, note that for

encoder 0, the variables Y and Z are X and Xc, respectively, and the distributions

p1(·), · · · , pn(·) are identical to pXc(·). The input sequence is the source sequence,

i.e., yn = xn, and R = I(X;Xc) + ε1. For encoder 1, we use different LDGM codes

for different indices i selected by encoder 0. In each case, the two inputs xn and xnc,i

are modeled as a single input sequence yn ∈ {X × Xc}n, where y(l) = (x(l), xc,i(l))

for 1 ≤ l ≤ n, and Xc is the alphabet of Xc. Consequently, Y = (X,Xc) and Z = X1.

Moreover, pl(·) = pX1|Xc(·|xc,i(l)), 1 ≤ l ≤ n, and R = I(X;X1|Xc)+ε1). For encoder

2, again we use a different LDGM code for each index i selected by encoder 0. In

each case, we have yn ∈ {X ×Xc×X1}n, with y(l) = (x(l), xc,i(l), x1,i,j(l)), 1 ≤ l ≤ n,

where j is the index output by encoder 1. Consequently, Y = (X,Xc, X1), Z = X2,

pl(·) = pX2|Xc(·|xc,i(l)) for all l and R = I(X,X1;X2|Xc) + ε1.

Let us go back to the general setting. To generate the codebook C we use a multi-

level LDGM code constructed as follows. Consider a low-density generator matrix A

of dimension nω ×m, with elements in the binary field GF (2), where ω is a positive

integer. The choice of the integer ω will be clarified shortly. The matrix A is used to

generate nω-length bit sequences which are further mapped into n-length sequences

over the alphabet Z via a mapping Φ : {0, 1}nω → Zn. Φ is defined based on some

mappings φl : {0, 1}ω → Z, 1 ≤ l ≤ n, as follows. For every cnω ∈ {0, 1}nω, the l-th

symbol of the sequence Φ(cnω) equals φl(c(l), c(l+ n), c(l+ 2n), · · · , c(l+ (ω− 1)n)).

Finally, the mappings φl(·) are constructed to ensure that the marginal distribution

of the l-th symbol of the codewords zn ∈ C approximates the distribution pl(·). To
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this end the positive integer ω is chosen such that 2ωpl(b) is approximately an integer

for all 1 ≤ l ≤ n and b ∈ Z. Moreover, the positive integers ql,b are selected such that

pl(b) ≈ ql,b
2ω

and
∑

b∈Z ql,b = 2ω, for all 1 ≤ l ≤ n and b ∈ Z. Further, for each l, the

function φl(·) is designed to map exactly ql,b ω-length bit sequences to every symbol

b ∈ Z. Finally, the codebook C is defined as

C = {Φ(Avm)|vm ∈ {0, 1}m},

where Avm is the product between the matrix A and the column vector vm over the

binary field GF (2).

Based on the result of [32, Theorems 1 and 2], for a code ensemble using random

generator matrices at each encoding stage, with entries selected independently ac-

cording to Ber(pn), where pn → 0 and npn →∞ as n→∞, the expected distortion

at each decoder satisfies the constrains (1.1) and (1.2) asymptotically as n→∞ and

ω →∞, when the strong typicality encoder is used.

2.3 Encoder Optimization Problem

In previous work on LDGM-based source coding [32,33,37], the purpose of the encoder

is, given the input sequence yn, to select the information sequence vm such that the

distortion between the corresponding codeword zn(vm) and the input sequence to be

minimized. In other words, a cost is assigned to each vm and the encoder’s task

is to solve the unconstrained optimization problem of minimizing this cost. Since

the optimal solution is intractable, this problem is solved heuristically using various

message passing algorithms on the associated factor graph [32–34, 37]. Specifically,
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the authors of [37] assign a probability to each information sequence vm such that

sequences with smaller cost have higher probability, and use belief propagation with

decimation in a attempt to find the sequence with highest probability.

We will follow this idea, and therefore we need first to define a cost function mean-

ingful for our case. Recall that the objective of the encoder is to select a codeword

zn = zn(vm) which is jointly strongly typical with the input sequence yn. There-

fore, let us first review the definition of joint typicality. For each pair of symbols

(a, b) ∈ Y × Z consider the indicator function Ia,b : Y × Z → {0, 1}, defined as

Ia,b(y, z) = 1 if and only if y = a and z = b. Extend this function to pairs of se-

quences as follows Ia,b(y
n, zn) =

∑n
l=1 Ia,b(yl, zl). Let us assume that pY Z(a, b) > 0

for all (a, b) ∈ Y × Z. Then, according to [38], sequences yn and zn are said to be

jointly ε-strongly typical if

−ε/ν < Ia,b(y
n, zn)/n− pY Z(a, b) < ε/ν for all (a, b) ∈ Y × Z, (2.1)

where ν denotes the size of Y × Z. Consider now the set S ⊆ Zn of sequences zn

satisfying the following relations

Ia,b(y
n, zn)/n− pY Z(a, b) ≤ ε/(ν2) for all (a, b) ∈ Y × Z. (2.2)

We will show that for any zn ∈ S, the inequalities in (2.1) are satisfied. Indeed, the

second inequality in (2.1) holds obviousily. In order to prove that the first inequality

is valid too, assume that there is a pair of symbols (a0, b0) ∈ Y × Z such that
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−ε/ν ≥ Ia0,b0(y
n, zn)/n− pY Z(a0, b0). Then we obtain that

ε/ν ≤ 1− Ia0,b0(yn, zn)/n− (1− pY Z(a0, b0))

=
∑

(a,b)∈Y×Z\{(a0,b0)}

(Ia,b(y
n, zn)/n− pY Z(a, b))

≤ (ν − 1)ε

ν2
< ε/ν,

which is a contradiction.

According to the above discussion, in order to ensure that sequences yn and zn are

jointly ε-strongly typical, it is enough to require that inequalities (2.2) be satisfied.

Intuitively, such a sequence zn can be found by minimizing a weighted sum of the

quantities Ia,b(y
n, zn)/n, with higher weights assigned to pairs (a, b) with smaller

pY Z(a, b), in other words, by solving the problem

minzn∈C
∑

(a,b)∈Y×Z ρ
′(a, b)Ia,b(y

n, zn), (2.3)

for some nonnegative values ρ′(a, b) ≥ 0, (a, b) ∈ Y × Z. The above formulation also

has an interpretation using Lagrangian multipliers as follows. Consider the problem

of minimizing Ia0,b0(y
n, zn)/n for some fixed pair (a0, b0), subject to the constraints

(2.2) . Assume that this problem has a solution zn0 corresponding to a point on

the boundary of the convex hull of the set P , where P , {(Ia,b(yn, zn))(a,b)∈Y×Z :

zn ∈ C}. Then, according to [54], [55], there are nonnegative values ρ′(a, b) ≥ 0,

(a, b) ∈ Y × Z \ {(a0, b0)}, such that zn0 is also a solution to problem (2.3), where

ρ′(a0, b0) = 1.

Guided by the previous discussion we will adopt the formulation (2.3) for the
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optimization problem at the encoder. Notice that a further simplification of the cost

function can be obtained based on the observation that for each a ∈ Y , the summation∑
b∈Z Ia,b(y

n, zn) equals Ia(y
n), which is fixed. Thus, by defining b(a) for each a ∈ Y ,

to be an element of Z for which

ρ′(a, b(a)) ≤ ρ′(a, b) for all b ∈ Z,

and by denoting ρ(a, b) = ρ′(a, b) − ρ′(a, b(a)), for all a ∈ Y , and b ∈ Z \ {b(a)}.

problem (2.3) becomes equivalent to

min
zn∈C

∑
a∈Y

∑
b∈Z\{b(a)}

ρ(a, b)Ia,b(y
n, zn). (2.4)

Note that all ρ(a, b) in (2.4) are nonnegative. It is easy to see that the problem

of distortion minimization for single description coding is a special case of (2.4).

Precisely, in such a case, the symbol b(a) is such that d(a, b(a)) = 0, and λ(a, b)

coincides with d(a, b).

Although the above argumentation is intended to support the proposed problem

formulation, we were not able to prove, that such values ρ(a, b) exist which to en-

sure that the solution to (2.4) satisfies the constraints (2.2), in other words to prove

that the lower boundary of the convex hull of set P contains points corresponding

to codewords zn satisfying the strong typicality condition. However, this approach

proved itself successful in our experiments. In order to find appropriate values of the

parameters ρ(a, b), we use an input training sequence, and tried different parameter

values until the solution zn obtained via the message passing algorithm, satisfied the

constraints (2.1) for some small enough ε.
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On the other hand, the strong typicality condition (2.1) imposed at the encoder

may be too strong in some cases. For example, encoder 2 only needs to choose

a codeword such that the distortion of the second description and of the central

distortion to satisfy certain constraints. This problem can be formulated as the

minimization of a weighted sum of the two distortions, which also has the form

of (2.4), but with a smaller number of unknown parameters (only one parameter

corresponding to the ratio of the two weights). Such a formulation simplifies our

task because the number of parameters which need to be appropriately set is smaller.

Whenever such simplification in the problem is possible we will take advantage of it.

On the other hand, the simplified problem still fits into the general form of (2.4).

In conclusion, after having set the parameters ρ(a, b), we formulate the encoder

task as the task to solve problem (2.4). Next we present the factor graph and the

message passing algorithm as a suboptimal solution to the problem (2.4).

2.4 Factor Graph Representation

The multilevel LDGM code is associated with a factor graph (Figure 2.1). A factor

graph consists of factor (or function) nodes, variable nodes, and edges connecting

factor nodes to variable nodes [56]. In our case there are three types of factor nodes:

1) nω check nodes C1, · · · , Cnω, 2) n network nodes N1, · · · , Nn, and 3) n source

nodes S1, · · · , Sn. We also distinguish between three types of variable nodes: 1) m

information variable nodes V1, · · · , Vm, 2) nω check variable nodes CV1, · · · , CVnω and

3) n network variable nodesNV1, · · · , NVn. For convenience, the notations introduced

in this section are summarized in Table (2.1).

Each source node Sl represents the l-th symbol y(l) in the input sequence yn. Note
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Symbol Explanation Page

yn input sequence 25

vm information sequence(index of codeword) 26

zn output sequence(codeword on network nodes) 26

cnω the sequence of check nodes values 26

n length of input sequence 25

m number of variable nodes, m = nR 26

ω number of check nodes connecting with one network node 25

A low density generator matrix of dimension nω ×m 26

Sl source node 25

Nl network node 25

C` check node 25

Vk information variable node 25

CV` check variable node 25

NVl network variable node 25

CV(`) the set of indices ` such that CV` is connected to Nl 26

V(`) the set of indices k such that Vk is connected to C` 26

C(`) the set of indices ` such that C` is adjacent to Nl 26

fSl(.) the compatibility function at source node Sl 26

fC`(.) the compatibility function at check node C` 27

fNl(.) the compatibility function at network node Nl 27

λ(.,.) parameter used in the message passing algorithm 26

γ parameter used in the message passing algorithm 26

ρ(.,.) parameter used in the encoding optimization problem 26

φl(.) mapping from adjacent check nodes to network node Nl 27

I(.,.) indicator function 28

Table 2.1: Table of notations used in Section 2.4 and page number where they were
introduced.
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that y(l) is not a variable. Each information variable node Vk is associated with the

variable v(k) which represents the k-th bit in the information sequence vm. Thus, the

variable v(k) can take values in the set {0, 1}. The node Vk is connected by an edge to

every check node C` such that the entry of generator matrix A(`, k) = 1. Each check

variable node CV` is associated with the variable c(`) which represents the `-th bit

in the sequence cnω = Avm. Consequently, c(`) takes values in {0, 1}, too. Node CV`

is connected by an edge to check node C` and to network node Nl where l = ((`− 1)

mod n) + 1. Each network variable node NVl is associated with the variable z(l)

which represents the l-th symbol of the codeword zn. Thus, the variable z(l) takes

values in Z. Node NVl is connected to the source node Sl and to the network node

Nl. Note that, according to this description, each node Nl is connected to variable

nodes NVl and CVl, CVl+n, CVl+2n, · · · , CVl+(ω−1)n.

For each network node Nl, denote by CV(l) the set of indices ` such that CV` is

connected to Nl, i.e., CV` = {l, l+n, l+2n, · · · , l+(ω−1)n}. Further, for each check

node C`, denote by V(`) the set of indices k such that Vk is connected to C`. Finally,

for each variable node Vk let C(k) denote the set of indices ` such that C` is adjacent

to Vk.

Each factor node is assigned a function of the variables associated with the adja-

cent variable nodes. This function is called compatibility function. The compatibility

function at source node Sl is

fSl(z(l)) =

 1, if z(l) = b(y(l))

exp(−λ(y(l), z(l))), otherwise
, (2.5)

for all z(l) ∈ Z, 1 ≤ l ≤ n, where λ(a, b) = γρ(a, b) for all a ∈ Y and b ∈ Z \ {b(a)},
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Figure 2.1: Factor graph of a multilevel LDGM code

for some positive value γ. The significance of the parameter γ will be revealed shortly.

The compatibility function at the check node C` is

fC`(c(`), (v(k))k∈V(`)) =

 1, if c(`) = ⊕k∈V(`)v(k)

0, otherwise
, (2.6)

for all c(`) ∈ {0, 1}, and (v(k))k∈V(`) ∈ {0, 1}V(`), where ⊕ denotes modulo 2 addition.

Finally, the compatibility function at each network node Nl is

fNl(z(l), (c(`))`∈CV(l)) =

 1, if z(l) = φl((c(`))`∈CV(l))

0, otherwise
, (2.7)

for all z(l) ∈ Z, and (c(`))`∈CV(l) ∈ {0, 1}CV(l).

By assigning a value to the variable associated with each variable node, from its

corresponding space of values, a triple of sequences (vm, cnω, zn) ∈ {0, 1}m×{0, 1}nω×

28



Ph.D. Thesis - Ying Zhang McMaster - Electrical Engineering

Zn, is obtained. Such a triple is said to be compatible if and only if the compatibility

function at each check and network node takes the value 1. It is easy to see that a triple

(vm, cnω, zn) is compatible if and only if cnω = Avm and zn = Φ(cn). Thus, a sequence

zn is a codeword if and only if there are vm and cnω such that the triple (vm, cnω, zn)

is compatible. Let us denote by T the space of compatible triples (vm, cnω, zn) and let

us define a conditional probability distribution over T , conditioned on yn, as follows

pT (vm, cnω, zn|yn) =
exp(−γF (zn))

Z
(2.8)

where

F (zn) =
∑
a∈Y

∑
b∈Z\{b(a)}

ρ(a, b)Ia,b(y
n, zn)) (2.9)

and Z is a normalization constant. Then any solution the following problem

max(vm,cnω ,zn)∈T pT (vm, cnω, zn|yn) (2.10)

provides a solution to problem (2.4) as well.

Further notice that equations (2.5), (2.8) and (2.9) lead to the factorization of

pT (vm, cnω, zn|yn) as follows

pT (vm, cnω, zn|yn) =

∏n
l=1 fSl(z(l))

Z
. (2.11)

The next step is to extend the probability distribution pT to a probability distribution

29



Ph.D. Thesis - Ying Zhang McMaster - Electrical Engineering

p over the set of all triples (vm, cnω, zn) ∈ {0, 1}m × {0, 1}nω ×Zn by letting

p(vm, cnω, zn|yn) =

 pT (vm, cnω, zn|yn), if (vm, cnω, zn) ∈ T

0, otherwise
. (2.12)

With this notation the optimization problem (2.10) becomes

max(vm,cnω ,zn)∈{0,1}m×{0,1}nω×Znp(v
m, cnω, zn|yn). (2.13)

Based on (2.11),(2.12), and using the compatibility functions (2.6),(2.7) associated to

the factor nodes, the conditional probability p(·|yn) can be factorized as follows

p(vm, cnω, zn|yn) =

∏n
l=1 fSl(z(l))

∏nω
`=1 fC`(c(`), (v(k))k∈V(`))

∏n
l=1 fNl(z(l), (c(`))`∈CV(l))

Z
.

Consequently, the factor graph represents the factorization of the conditional prob-

ability distribution p(·|yn). This factorization is crucial in designing the message

passing algorithm as a heuristic solution to problem (2.4).

2.5 Message Passing Algorithm

As in [37] we employ belief propagation with decimation as our message passing

algorithm on the associated factor graph. The algorithm proceeds in a series of rounds.

Each round consists of two phases: 1) the message passing phase and 2) the decimation

phase. During the message passing phase, messages are transmitted between graph

nodes in a series of iterations. At the end of this phase the marginal probabilities

pVk(·) at information variable nodes are computed. During the decimation phase, the
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information variable nodes Vk for which the bias of pVk(·) is greater than a certain

threshold η are fixed and removed from the graph.

For the message passing phase we use the sum-product algorithm of [56], which

is equivalent to belief propagation. Consequently, assuming that the graph has large

cycles, the sum-product algorithm can be used to approximate the marginal distri-

butions of variables. During each iteration, messages are passed from each variable

node to each adjacent factor node, then from each factor node to each adjacent vari-

able node. The message passed from some variable node U to some factor node F ,

denoted by MU→F (u), is a function of the variable u associated to node U . Likewise,

the message from F to U , denoted by MF→U(u), is also a function of the variable

u. Thus, because the variables associated to the information variable nodes and to

check variable nodes are binary, the messages passed from and to these nodes can be

regarded as vectors consisting of two values. On the other hand, the messages passed

to and from the network variable nodes are vectors of |Z| values.

The message to be passed by a node along some edges is computed based on the

latest messages received by that node along the other edges, according to the sum-

product update rules in [56, Eq. (5,6)]. Applying these rules to our factor graph

yields the message equations in Figure 2.2. Note that network variable nodes NVl

and check variable nodes CV` only forward messages. Precisely, each NVl forwards

to Nl the message received from Sl and vice versa. Thus, to expedite the algorithm

we can skip the intermediate node NVl and directly pass messages between Sl and

Nl. Further, we can simplify the graph by removing the node NVl and its adjacent

edges and replacing them by an edge between Sl and Nl. Likewise, since the node

CV` only forwards the message received from C` to node Nl, and vice versa, where
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MSl→NVl(z(l)) =fSl(z(l)),

MNVl→Nl(z(l)) =MSl→NVl(z(l)),

for all z(l) ∈ Z, 1 ≤ l ≤ n,

MNl→CV`(c(`)) =
∑
z(l)∈Y

MNVl→Nl(z(l))
∑

(c(κ))κ∈CV(l)\{`}

fNl(z(l), (c(κ))κ∈CV(l))
∏

κ∈CV(l)\{`}

MCVκ→Nl(c(κ)),

MCV`→Nl(c(`)) =MC`→CV`(c(`)),

for all c(`) ∈ {0, 1}, 1 ≤ l ≤ n, 1 ≤ ` ≤ nω, with l = ((`− 1) mod n) + 1,

MCV`→C`(c(`)) =MNl→CV`(c(`)), where l = ((`− 1) mod n) + 1,

MC`→CV`(c(`)) =fC`(c(`), (v(k))k∈V(`))
∏
k∈V(`)

MVk→C`(v(k))

for all c(`) ∈ {0, 1}, 1 ≤ ` ≤ nω,

MC`→Vk(v(k)) =
∑
c(`)

MCV`→C`(c(`))
∑

(v(j))j∈V(`)\{k}

fC`(c(`), (v(j))j∈V(`))
∏

j∈V(`)\{k}

MVj→C`(v(j)),

MVk→C`(v(k)) =
∏

κ∈C(k)\{`}

MCκ→Vk(v(k)),

for all v(k) ∈ {0, 1}, 1 ≤ ` ≤ nω, 1 ≤ k ≤ m, such that A(`, k) = 1.

Figure 2.2: Equations of messages passed in the factor graph.

l = ` mod n, we can remove CV` and its adjacent edges and replace them by an edge

between C` to node Nl. The simplified graph is illustrated in Figure 2.3. The messages

passed between adjacent nodes in the simplified graph are computed according to the

formulae in Figure 2.4. At the initialization phase, the source nodes transmit messages

computed as in Figure 2.4, and the check nodes transmit the constant vector (0.5, 0.5).

After that, the message passing schedule at each iteration is the following. First the

network nodes send messages to check nodes, then the information variable nodes

transmit messages to the check nodes. Finally, the check nodes and source nodes
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Figure 2.3: Simplified graph associated to the multilevle LDGM code.

send messages to the network nodes.

The message passing phase ends when all the messages MVk→C`(0) converge or a

maximum number of iterations, typically 100, is reached. Then the marginal proba-

bility distributions pVk(·) are computed according to the following equation

pVk(v(k)) =
1

Tk

∏
`∈C(k)

MC`→Vk(v(k)), (2.14)

where Tk is a normalization factor which ensures that pVk(0) + pVk(1) = 1. Further,

during the decimation phase we fix the information variable nodes whose bias is

greater than a certain threshold η (i.e. |pVk(0) − pVk(1)| > η). If no such variable

node exists then we fix the one with highest bias. After that we remove the fixed

variables from the graph. The message passing during the next round proceeds on

the modified graph. Any check node C` whose adjacent variable nodes are all fixed

(hence removed from the graph) computes the message to be sent to the adjacent
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MSl→Nl(z(l)) =fSl(z(l)),

for all z(l) ∈ Z, 1 ≤ l ≤ n,

MNl→C`(c(`)) =
∑
z(l)∈Y

MSl→Nl(z(l))
∑

(c(κ))κ∈CV(l)\{`}

fNl(z(l), (c(κ))κ∈CV(l))
∏

κ∈CV(l)\{`}

MCκ→Nl(c(κ)),

where l = ((`− 1) mod n) + 1

MC`→Nl(c(`)) =fC`(c(`), (v(k))k∈V(`))
∏
k∈V(`)

MVk→C`(v(k)),

for all c(`) ∈ {0, 1}, 1 ≤ l ≤ n, 1 ≤ ` ≤ nω, with l = ((`− 1) mod n) + 1,

MC`→Vk(v(k)) =
∑
c(`)

MCV`→C`(c(`))
∑

(v(j))j∈V(`)\{k}

fC`(c(`), (v(j))j∈V(`))
∏

j∈V(`)\{k}

MVj→C`(v(j)),

MVk→C`(v(k)) =
∏

κ∈C(k)\{`}

MCκ→Vk(v(k)),

for all v(k) ∈ {0, 1}, 1 ≤ ` ≤ nω, 1 ≤ k ≤ m, such that A(`, k) = 1.

Figure 2.4: Equations of messages passed in the simplified graph.

network node Nl as follows

MC`→Nl(0) = (1− c) exp(δ) + c exp(−δ), (2.15)

MC`→Nl(1) = c exp(δ) + (1− c) exp(−δ), (2.16)

where c is the result of modulo-2 addition of the values of all adjacent variable nodes,

and δ > 0. The encoding process ends till all variable nodes are fixed, at that time,

the information sequence vm is obtained.

Notice that in belief propagation, after using the message equations in Figure

2.2, the components of each message are normalized. As pointed out in [56] this

normalization is not necessary. Precisely, the same result is obtained in (2.14) with
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or without normalization of messages in Figure 2.4, provided that normalization is

applied in (2.14). This observation implies that we can multiply the source node

compatibility function given in (2.5) by exp(µ(y(l))), for any function µ : Y → R,

without changing the output of the algorithm. With such a change the messages

passed by the source nodes acquire a form similar to that used in prior work [33],

[37], [32].

The message passing algorithm is presented in Figure 2.5 in pseudo code form. In

order to evaluate the time complexity of this algorithm, we assume that each message

is computed in constant time. Now, recall that at each iteration in the message

passing phase, one message is passed along each edge in each direction. Therefore the

total time complexity is O(E ·MI ·MR), where E is the number of edges in the factor

graph, MI is the maximum number of iterations and MR is the number of rounds.

Furthermore, MI can be considered a constant, while MR can be upper bounded by

m = R × n, this bound being achieved when only one variable node is decimated at

each round. Notice that E equals ωn plus the number of ones in the generator matrix

of the LDGM code, which is bounded by its dimension m×ωn. However, this bound

is loose, because the matrix is sparse. Finally, according to the above discussion and

by considering R a constant as well, it follows that a loose upper bound on the time

complexity of the message passing algorithm is O(ωn3).

2.6 Bound on Algorithm Performance Gap

In this section we derive an upper bound of the performance gap of the proposed

message passing algorithm, in terms of the parameters γ and the maximum absolute

error δ in the computation of the marginal probabilities at the information variable

35



Ph.D. Thesis - Ying Zhang McMaster - Electrical Engineering

nodes, under the assumption that δ < 1
2

and a single variable is decimated at a time.

An immediate consequence of this result is that, if there exists some δ0 > 0 such that

δ < 1
2
− δ0 for all γ > 0, then the algorithm is optimal for γ large enough (since the

space of feasible solutions is finite).

Proposition. 2.1 Assume that only one variable is decimated at every decimation

phase and that the marginal probabilities of the information variable nodes computed

by the algorithm after every message passing phase, are within a value δ, 0 ≤ δ < 1/2,

from the true probabilities. Let Fopt denote the optimal cost of problem (2.4) and let

F ∗ denote the cost corresponding to the solution output by the algorithm. Then the

following relation holds

F ∗ ≤ Fopt +
m

γ
((m+ 1)/2 ln 2− ln(1− 2δ)), (2.17)

where m is the number of information variable nodes.

Proof. For each vm ∈ {0, 1}m let F (vm) = F (zn(vm)), where zn(vm) is the codeword

corresponding to vm. For each 0 ≤ t ≤ m − 1, let Ut denote the set of information

sequences remaining in the search range for a solution, after the t-th decimation

phase. In other words all sequences in Ut have the bit values on the t positions which

were decimated during the first t decimation phases, equal to the bit values already

decided for these positions. Further, let Ft denote the smallest cost F (vm) over all

vm ∈ Ut. We will first show that

Ft ≤ Ft−1 +
(m− t+ 1) ln 2− ln(1− 2δ)

γ
, (2.18)

for every t, 0 ≤ t ≤ m− 1. Let us fix some t and assume by contradiction that (2.18)
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does not hold. This implies that

F (vm) > Ft−1 + ξ, for all vm ∈ Ut, (2.19)

where ξ = (m−t+1) ln 2−ln(1−2δ)
γ

.

Assume now that at the t-th decimation phase, variable v(k) is chosen to be

decimated and its assigned value is b. Let pVk(v(k)) denote the marginal probability

computed after the message passing phase, and let PVk(v(k)) denote the true marginal

probability. Then pVk(b) ≥ 1/2, and, by the hypothesis, one has |pVk(b)−PVk(b)| ≤ δ.

These inequalities imply that

PVk(b) ≥ 1/2− δ. (2.20)

Further, one has

PVk(b) =(a)
∑
vm∈Ut

1

Zt
exp(−γF (vm))

<(b) 2m−t

Zt
exp(−γ(Ft−1 + ξ))

<(c) 2m−t

exp(−γFt−1)
exp(−γ(Ft−1 + ξ))

= 2m−t exp(−γξ), (2.21)

where Zt =
∑

vm∈Ut−1
exp(−γF (vm)). Equality (a) follows from the definition of the

marginal probability, (b) follows from (2.19) and (c) from Zt > exp(−γFt−1). Finally,

(2.20) and (2.21) lead to

2m−t exp(−γξ) ≥ 1/2− δ, (2.22)
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which implies ξ < (m−t+1) ln 2−ln(1−2δ)
γ

, and thus contradicts the definition of ξ.

Finally, we will show that

F ∗ ≤ Fm−1 +
1

γ
ln

2

1− 2δ
. (2.23)

If F ∗ = Fm−1 then (2.23) is trivially satisfied. Assume that F ∗ > Fm−1, and let

v(κ) be the non decimated variable after the first m− 1 decimation phases. Further,

let b′ denote the bit value assigned to v(κ) after the m-th decimation phase. Since

Um−1 has only two elements, then PVκ(b′) = exp(−γF ∗)
exp(−γF ∗)+exp(−γFm−1)

< exp(−γF ∗)
exp(−γFm−1)

. By

the hypothesis, we have PVκ(b′) ≥ 1/2− δ, and further, combining with the previous

relation, we obtain exp(−γ(F ∗ − Fm−1)) > 1/2− δ, which, in turn, implies (2.23).

To conclude the proof, note that Fopt = F0, and relation (2.17) follows by com-

bining (2.18) for all t, 0 ≤ t ≤ m− 1, and (2.23). �

2.7 Decoding Process

The final step of single source coding is the decoding process. This is very easily

performed on the simplified graph. Given the information sequence vm, the bit value

v(k) is assigned to each information variable node Vk. Further, each value c(`) is

computed at the check node C` as the modulo-2 sum of the bit values at adjacent

information variable nodes. At last, each codeword symbol z(l) is computed at the

network node Nl based on the bit values at adjacent check nodes, via the mapping

φl(·).
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2.8 Efficient Implementation of Multiple LDGM-

based Codes at Encoders 1 and 2

As emphasized in previous subsection, for each t = 1, 2, encoder t needs 2n(I(X;Xc)+ε1)

different multilevel LDGM-based codes. This fact apparently raises space complexity

concerns. To address these concerns we choose a common value of the integer ω and

a common low density generator matrix A for all these codes. It is clear then that

the associated graphs are identical, consequently a single graph needs to be stored.

What differs from one code to another are only the compatibility functions at network

nodes. However, their storage need is not an issue either, since these functions are

chosen from a small pool containing only |Xc| functions.

Another way of simplifying encoders 1 and 2 is by replacing the multiple codebooks

by a single codebook of the same size, via a variable substitution as follows. According

to the Variable Substitution Lemma [44, Lemma 1], there exist random variables Ut,

t = 1, 2, taking values in the finite sets Ut, respectively, with |Ut| ≤ |Xc|(|Xt| − 1) + 1,

t = 1, 2, and the functions πt : Xc × Ut → Xt, such that

C1) Ut is independent of Xc;

C2) Xt = πt(Xc, Ut);

C3) X − (Xc, X1)− U1, and (X,X1)− (Xc, X2)− U2 form Markov chains.

The above relations imply [44] that

I(X,Xc;U1) = I(Xc;U1) + I(X;U1|Xc) = I(X;X1|Xc),

I(X,Xc, X1;U2) = I(Xc;U2) + I(X,X1;U2|Xc) = I(X,X1;X2|Xc).
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Then encoders 1 and 2 can be modified as follows. Encoder 1 randomly generates

codebook C1 = {un1,j}
n(I(X,Xc;U1)+ε1)
j=1 , according to the distribution

∏n
l=1 pU1(·). En-

coder 2 randomly generates codebook C2 = {un2,k}
n(I(X,Xc,X1;U2)+ε1)
k=1 , according to the

distribution
∏n

l=1 pU2(·). Given the input sequence xn and index i selected by encoder

0, encoder 1 finds an index j such that un1,j is jointly typical with xn and xnc,i. Further,

encoder 2 finds an index k such that un2,k is jointly typical with xn, xnc,i and un1,j. On

the decoder side, decoder 1 reconstructs the codeword xn1,i,j based on un1,j and xnc,i by

setting x1,i,j(l) = π1(xc,i(l), u1,j(l)), 1 ≤ l ≤ n. Decoder 2 reconstructs the codeword

xn2,i,k based on un2,k and xnc,i by setting x2,i,k(l) = π2(xc,i(l), u2,k(l)), 1 ≤ l ≤ n.

The two methods described in this subsection for simplifying encoders 1 and 2

are conceptually equivalent. The slight difference between them is not significant

theoretically, but it could raise practical concerns. Next we analyze the connection

between these two methods.

Let W denote a uniform variable over the alphabet W = {0, 1}ω. Let Ct,lin =

{cnω = Atv
m|vm ∈ {0, 1}m} be the linear codebook used in the construction of

method 1, where At is a low density generator matrix. By identifying each bit se-

quence cnω with an n-length sequence wn over the alphabet W as follows w(l) =

(c(l), c(l + n) · · · , c(l + (ω − 1)n)), Ct,lin can be regarded as a codebook representing

the variable W . Then each conditional codebook Ct,i is actually obtained from Ct,lin

via a component-wise mapping function applied to the codewords wn.

In method 2 the conditional codebooks are constructed based on the common

codebook Ct via componentwise mapping functions. By implementing the common

codebook with a multilevel LDGM code, Ct is derived from Ct,lin using a component-

wise mapping function, thus the conditional codebooks are also derived from Ct,lin
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based on component-wise mapping functions. It is clear now that the conditional

codebooks in method 2 can be obtained via method 1. On the other hand, notice

that the linear codebook Ct,lin in method 1 can be regarded as the common codebook

Ct for some choice of the variable Ut satisfying conditions C1-C3 (but not necessarily

the cardinality condition on Ut).

Thus, both methods ensure equivalent construction of the conditional codebooks

(if we remove the cardinality constraint on Ut in method 2). The only difference

between them consists in the encoding procedure. In method 2, the encoder searches

for a codeword un in the common codebook, while in method 1 the encoder looks for

a codeword in the conditional codebook directly . This difference is not significant

theoretically, but it could be in practice. Precisely, if the size of alphabet Ut is larger

than the size of Xt, then the message passing algorithm for method 2 is more complex

since the messages passed by the source nodes have more components. Moreover,

additional complexity arises at the design phase since more parameters need to be

selected to define the source messages. On the other hand, if Ut and Xt have equal

sizes, then the message passing algorithms have equal complexity. In our simulations

we chose to implement method 2 whenever the latter case arises.
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1: maxiter ← 100, η ← 0.9
2: C(k) ← {`|A(`, k) = 1}, V(`) ← {k|A(`, k) = 1}, for all k = 1, · · · ,m, and
` = 1, · · · , nω

3: NV ← {1, · · · ,m}
4: for l = 1 to n do
5: Compute MSl→Nl as in Fig. 2.4
6: for s = 0 to ω − 1 do
7: MCl+sn→Nl ← (1

2
, 1

2
)

8: for k ∈ V(l + sn) do
9: MCl+sn→Vk ← (1

2
, 1

2
)

10: end for
11: end for
12: end for
13: while NV 6= ∅ do
14: for i = 1 to maxiter do
15: Compute MNl→Cl+sn , MVk→Cl+sn as in Fig. 2.4
16: for all l = 1, · · · , n, s = 0, · · · , ω − 1, k ∈ V(l + sn) ∩NV .
17: for l = 1 to n do
18: for s = 0 to ω − 1 do
19: if V(l + sn) ∩NV 6= ∅ then
20: Compute MCl+sn→Nl as in Fig. 2.4
21: for k ∈ V(l + sn) ∩NV do
22: Compute MCl+sn→Vk as in Fig. 2.4
23: end for
24: else
25: Compute MCl+sn→Nl as in Eq. (2.16)
26: end if
27: end for
28: end for
29: if MC`→Vk converge for all ` = 1, · · · , nω, k ∈ V(`) ∩NV then
30: Break
31: end if
32: end for
33: for k ∈ NV do
34: Compute pVk(v(k)) as in Eq.(2.14)
35: if |pVk(0)− pVk(1)| > η then
36: NV ← NV − {k}
37: b̂← argmaxb∈{0,1}pVk(b), v(k)← b̂

38: MVk→C`(b̂)← 1, MVk→C`(1− b̂)← 0, for all q ∈ C(k)
39: end if
40: end for
41: end while

Figure 2.5: Message passing algorithm. NV denotes the set of indices k of currently
non-decimated variable nodes Vk.
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Chapter 3

Applications of the Proposed

Coding Scheme

In this chapter we discuss the application of the proposed practical coding scheme to

approach the theoretical rate-distortion limits or known bounds for three cases of the

MD problem with Hamming distortion measure:

1) No excess sum-rate case for general binary sources. For this case the character-

ization of the MD rate-distortion region is known as the EGC region. However,

analytical expressions are partly available only for the uniform source. To aid

the code design, we derive the exact expression of the distortion region and of

the auxiliary variables necessary to achieve its boundary.

2) No excess marginal rate case for the uniform binary source. We improve an

analytical expression of the upper bound of central distortion.

3) Successive refinement for finite-alphabet sources.
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3.1 No Excess Sum-rate Case for Binary Sources

The term no excess sum-rate for the two descriptions problem refers to the case

when R1 + R2 = R(d0), where Rt is the rate of description t, for t = 1, 2, and

R(·) denotes the rate-distortion function. Since in this case the MD rate-distortion

coincides with the EGC∗ region, and the EGC∗ region is a particular case of the

ZB region, corresponding to Xc constant, we can readily apply the coding scheme

proposed in Chapter 2 to approach its boundary provided that the auxiliary variables

X1 and X2 are known. However, the computation of the boundary points and of the

variables X1 and X2, achieving them is not an easy task, and analytical expressions

are available only in part for the uniform binary source with Hamming distortion.

Our next result represents some progress in this direction by providing the expression

of the distortion region for general binary sources.

First we introduce some notations. Let D denote the distortion region for the no

excess sum-rate case. Precisely, D is defined as

D = {(d1, d2, d0) : ∃(R1, R2) such that R1 +R2 = R(d0) and

(R1, R2, d1, d2, d0) ∈ RD}.

For d0 ≥ 0 let us additionally define

D(d0) = {(d1, d2) : (d1, d2, d0) ∈ D}.

Clearly, D = ∪d0:d0≥0{(d1, d2, d0) : (d1, d2) ∈ D(d0)}. Since D(d0) is convex, it suffices

to characterize its supporting lines. Two of the supporting lines are already known,
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namely the lines of equations d1 = d0 and d2 = d0. Therefore, to complete the task,

it is enough to solve the following optimization problem

min
(d1,d2)∈D(d0)

αd1 + d2 (3.1)

for all α > 0.

As shown by Ahlswede in [43] the EGC region is tight for the no excess rate case.

Specifically, we have

{(R1, R2, d1, d2, d0) ∈ RD : R1 +R2 = R(d0)}

= {(R1, R2, d1, d2, d0) ∈ Q : R1 +R2 = R(d0)}, (3.2)

where Q denotes the convex closure of the set of quintuples (R1, R2, d1, d2, d0) for

which there exist auxiliary random variables Xt, t = 0, 1, 2, jointly distributed with

X such that

I(X1;X2) = 0,

Rt ≥ I(X;Xt), t = 1, 2,

R1 +R2 ≥ I(X;X0, X1, X2),

dt ≥ E[d(X,Xt)], t = 0, 1, 2.

Now we proceed to characterize D(d0) for binary sources with Hamming distortion

measure (i.e., d(x, x̂) = dH(x, x̂) = 0 if x = x̂, and 1 otherwise). Let X = X̂ = {0, 1}

and pX(0) = δ, where 0 < δ ≤ 1/2. With no loss of generality, we shall assume
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0 ≤ d0 < δ. In this case R(d0) is a strictly convex function of d0. Furthermore, if

R(d0) = R1 +R2 ≥ I(X;X0, X1, X2),

d0 ≥ E[d(X,X0)],

then one must have X = X0⊕Z, where ⊕ denotes the modulo-2 addition operation,

and Z ∼ Ber(d0) is independent of (X0, X1, X2). Therefore, it suffices to specify

pX1X2|X0 in order to determine pXX0X1X2 due to the fact that pXX0 is completely

determined once d0 is given and that X −X0 − (X1, X2) form a Markov chain.

Now in view of (3.2), it can be readily shown that

min
(d1,d2)∈D(d0)

αd1 + d2

≥ min
pX1X2|X0

:I(X1;X2)=0
αE[d(X,X1)] + E[d(X,X2)].

It turns out that the inequality can be replaced by an equality. To see this, for any

pX1X2|X0 such that the induced X1 and X2 are independent, let

R1 = I(X;X1),

R2 = I(X,X1;X2) + I(X;X0|X1, X2),

dt = E[d(X,Xt)], t = 0, 1, 2.

It can be verified that (R1, R2, d1, d2, d0) ∈ RDEGC and R1 +R2 = R(d0). Therefore,
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(3.1) is equivalent to

min
pX1X2|X0

:I(X1;X2)=0
αE[d(X,X1)] + E[d(X,X2)]. (3.3)

The next result is proved in Appendix A.

Proposition 3.1 The following relation holds

D(d0) = {(d1, d2) : (d1 + 1− 2d0 − δ)(d2 + 1− 2d0 − δ)

≥ (1− d0 − δ)(1− 2d0), d1 ≥ d0, d2 ≥ d0}.

Moreover, for each α > 0, the solution (d1, d2) to (3.1) is unique, and a corresponding
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solution to (3.3) is specified by

pXX1X2(0, 1, 1) =
d0

1− 2d0

(1− δ − d0), (3.4)

pXX1X2(1, 0, 0) =
d0

1− 2d0

(δ + d0 − d1 − d2),

pXX1X2(1, 1, 0) =
d0

1− 2d0

(d1 − d0),

pXX1X2(1, 0, 1) =
d0

1− 2d0

(d2 − d0),

pXX1X2(0, 1, 0) =
1− d0

1− 2d0

(d1 − d0),

pXX1X2(0, 0, 1) =
1− d0

1− 2d0

(d2 − d0),

pXX1X2(0, 0, 0) =
1− d0

1− 2d0

(δ + d0 − d1 − d2),

pXX1X2(1, 1, 1) =
1− d0

1− 2d0

(1− δ − d0),

X0 = ψ0(X1, X2) =

 1, X1 = X2 = 1

0, otherwise
;

furthermore, when δ < 1/2, the solution to (3.3) is also unique, while for δ = 1/2 and

d1 6= d0, d2 6= d0, there is only one alternative solution, which is obtained by swapping

0 and 1 in (3.4).

Note that for the case of uniform binary source part of the result of Proposition

3.1 can be inferred from [42, Section IV]. Figure 3.1 depicts the distortion region

D(d0) for a binary source with pX(0) = 1/4, d0 = 0 and d0 = 0.013. Consider now

a distortion pair (d1, d2) on the lower boundary1 of D(d0) and let pX0X1X2|X be the

joint conditional distribution specified by (3.4). Since X0 is a function of X1 and X2,

it follows that X1 and X2 are the auxiliary variables in (1.4) achieving the distortion

1The lower boundary of D(d0) is defined as the set of solutions to (3.1) for α > 0.
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Figure 3.1: Distortion region D(d0) for a binary source with pX(0) = 1/4, d0 = 0 and
d0 = 0.013.

triple (d1, d2, d0), with ψt being the identity function, for t = 1, 2, and ψ0 defined as

in Proposition 3.1. Define the rate region

R(d1, d2, d0) , {(R1, R2) : R1 +R2 = R(d0), and (R1, R2, d1, d2, d0) ∈ RD}.

It can be shown by leveraging Proposition 3.1 that R(d1, d2, d0) coincides with the
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set of rate pairs satisfying

R1 ≥ I(X;X1)

R2 ≥ I(X;X2)

R1 +R2 = R(d0).

Thus, R(d1, d2, d0) coincides with the dominant face F(pXcX1X2|X) defined in Section

2.1, where Xc is a constant. Thus, the two corner points E1 and E2 are the extremities

of R(d1, d2, d0).

Let us analyze now the application of the coding scheme of Section 2 for the corner

point E1. Since Xc is a constant, clearly the scheme does not need the encoder 0.

Encoder 1. This encoder needs only one non conditional codebook C1 = {xn1,j}
n(I(X;X1)+ε1)
j=1

randomly generated according to
∏n

l=1 pX1(·). The multilevel LDGM code for this

codebook is designed as described in Subsection 2.2, for (Y, Z) = (X,X1). The distri-

butions pl(·), 1 ≤ l ≤ n, are all identical to pX1(·). The input sequence is yn = xn and

the output sequence is zn = xn1 . The encoder needs to select the codeword xn1 ∈ C1

jointly typical with xn according to the distribution pXX1 . We set b(0) = 0 and

b(1) = 1. Then the optimization problem (2.4) has the form

minxn1∈Cλ(0, 1)I0,1(xn, xn1 ) + λ(1, 0)I1,0(xn, xn1 ).

It can be easily verified that pX1|X(1|0) > pX1|X(0|1). Therefore, guided by the intu-

ition that λ(a, b) should be inverse proportional to pX1|X(b|a) we set these parameters

such that λ(0, 1) < λ(1, 0).

Encoder 2. This encoder also needs a single codebook C2 = {xn2,k}
n(I(X,X1;X2)+ε1)
k=1
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randomly generated according to
∏n

l=1 pX2(·). The multilevel LDGM code for this

codebook is constructed as described in Section 2.2, for Y = (X,X1) and Z = X2.

Note that Y = {0, 1}2, and that the input sequence is yn with y(l) = (x(l), x1(l)),

1 ≤ l ≤ n, where xn1 is the codeword selected by encoder 1. The strong typicality

condition is too strong for this encoder since all we are interested in is to obtain low

central and side 2 distortions. Thus, the optimization problem can be formulated as

minxn2∈C2β0d
(n)
H (xn, xn0 ) + β2d

(n)
H (xn, xn2 ), (3.5)

for some non-negative weights β0 and β1, where xn0 is the central reconstruction,

hence x0(l) = 1 if x1(l) = x2(l) = 1, and 0 otherwise, 1 ≤ l ≤ n, and d
(n)
H (xn, yn) ,∑n

l=1 dH(x(l), y(l)). It follows that

d
(n)
H (xn, xn0 ) = I(0,1),1(yn, xn2 ) + I(1,1),0(yn, xn2 ) + I(1,0),0(yn, xn2 ) + I(1,0),1(yn, xn2 ),

= I(0,1),1(yn, xn2 ) + I(1,1),0(yn, xn2 ) + I(1,0)(y
n),

d
(n)
H (xn, xn2 ) = I(0,0),1(yn, xn2 ) + I(0,1),1(yn, xn2 ) + I(1,0),0(yn, xn2 ) + I(1,1),0(yn, xn2 ).

Since I(1,0)(y
n) depends only on the input yn, consequently is a constant for the

optimization problem, problem (3.5) becomes

minxn2∈C2(β0 + β2)(I(0,1),1(yn, xn2 ) + I(1,1),0(yn, xn2 )) + β2(I(0,0),1(yn, xn2 ) + I(1,0),0(yn, xn2 )).

This cost function fits under the framework of (2.4) by setting b(0, 1) = 0, b(1, 1) =

1, b(0, 0) = 0, b(1, 0) = 1, λ((0, 1), 1) = λ((1, 1), 0) = β0 + β2 and λ((0, 0), 1) =

λ((1, 0), 0) = β2.
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3.2 No Excess Marginal Rate for the Uniform Bi-

nary Source

The term no excess marginal rate refers to the case when R1 = R(d1) and R2 = R(d2).

An interesting question in such a case is, given the distortion pair (d1, d2), what is

the minimum distortion d0? Precisely, let us define d0(d1, d2) as follows

d0(d1, d2) , min{d0 : (R(d1), R(d2), d1, d2, d0) ∈ RD}.

Zhang and Berger proposed in [48] an upper bound for d0(d1, d2) by choosing the

auxiliary random variables Xc, X1, X2 specified by the ZB region such that X−X1−

Xc, X − X2 − Xc, and X1 − (X,Xc) − X2 form Markov chains, I(X;Xt) = R(dt),

E[d(X,Xt)] ≤ dt and ψ(Xt, Xc) = Xt, for t = 1, 2.

Further they showed that for the uniform binary source with Hamming distortion

this upper bound is strictly better than the upper bound derived from the EGC

region, namely than min(d1, d2). Precisely, let

P(Xt = X|X) = 1− dt, t = 1, 2,

P(Xt 6= X|X) = dt, t = 1, 2,

P(Xc = X|X) = 1− s,

P(Xc 6= X|X) = s,

P(Xc = Xt|X) = 1− st, t = 1, 2,

P(Xc 6= Xt|X) = st, t = 1, 2,
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for some s such that max(d1, d2) ≤ s ≤ 1/2, and st = s−dt
1−2dt

, t = 1, 2. Then the upper

bound is computed in [48] as

UB(d1, d2) = inf
s:max(d1,d2)≤s≤1/2

P(X 6= ψ0(Xc, X1, X2)). (3.6)

The mapping ψ0 used in [48] is defined as follows

ψ0(xc, x1, x2) =

 x1, x1 = x2

xc, otherwise
.

We argue that this mapping is not optimal and provide the optimal mapping ψ0

which minimizes the central distortion, along with the optimal value of s0 which

achieves the infimmum in (3.6). Let us assume without restricting the generality that

d1 ≤ d2. Define α(d1, d2) , d1(1−d2)
d1+d2−2d1d2)

. Then relations d2 ≤ α(d1, d2) ≤ 1/2 hold.

In Appendix B we show that the mapping ψ0 which minimizes the central distortion

is the following

ψ0(xc, x1, x2) =


x1, x1 = x2

1− xc, if x1 6= x2, d2 ≤ s ≤ α(d1, d2)

x1, if x1 6= x2, α(d1, d2) < s ≤ 1/2

. (3.7)

Then the upper bound UB(d1, d2) (3.6) becomes

min
s:d2≤s≤α(d1,d2)

(
1− s− (1− d1)(1− d2)(1− s− d1)(1− s− d2)

(1− s)(1− 2d1)(1− 2d2)
+
d1d2(1− s− d1)(1− s− d2)

s(1− 2d1)(1− 2d2)

)
.

(3.8)

Define β(d1, d2) , d1+d2−2d1d2
d1d2(1−d1)(1−d2)

. As proved in Appendix B, the value s0 achieving
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the above minimum is

s0 =
1

2
− 1

2

√
1− 4

√
1 + β(d1, d2)− 1

β(d1, d2)
. (3.9)

Then the value of UB(d1, d2) can be recovered by replacing s by s0 in the expression

to be minimized in (3.8).

In order to approach in practice the upper bound UB(d1, d2) we will use the

coding scheme proposed in Chapter 2. At each encoder we formulate the optimization

problem as minimization of distortion between the source sequence xn and the output

sequence of that encoder.

Notably, in this case, the variables Ut, t = 1, 2 introduced in Subsection 2.8 for

the purpose of simplifying encoders 1 and 2, take values in the binary alphabet.

Precisely, we have Ut = Xc ⊕ Xt and Xt = πt(Xc, Ut) = Xc ⊕ Ut, t = 1, 2. Since

dH(x, xt) = dH(x ⊕ xc, xt ⊕ xc), the optimization problem at the simplified encoder

t can be equivalently formulated as minimizing d
(n)
H (∆xn, unt ) over all unt ∈ Ct, where

∆x(l) , xc,i(l) ⊕ x(l), for 1 ≤ l ≤ n, i being the index output by the base layer

encoder. In conclusion, at encoder 0, Y = X holds, while at encoders t, t = 1, 2,

Y = ∆X holds, where ∆X , X ⊕ Xc. Thus, we have Y = Z = {0, 1} at each

encoder t = 0, 1, 2, and we set b(a) = a for a = 0, 1, and λ(0, 1) = λ(1, 0) > 0.

3.3 Successive Refinement

Successive refinement (SR) can be regarded as a special form of multiple description

coding in which the distortion constraint on the second description (i.e., d2) is not

imposed. In this scenario it is common to refer to the first description as the base
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layer and the second description as the refinement layer.

The successive refinement coding rate-distortion region RDSR is given by

RDSR = {(R1, R2, d1, d0) : (R1, R2, d1,∞, d0) ∈ RD}.

As shown in [51], RDSR is equal to the set of quadruples (R1, R2, d1, d0) for which

there exist auxiliary random variables X0 and X1, jointly distributed with the generic

source variable X, such that

R1 ≥ I(X;X1),

R1 +R2 ≥ I(X;X0, X1),

E[d(X,Xt)] ≤ dt, t = 0, 1.

It is easy to see that RDSR is equivalent to RDEGC with X2 set to be a constant.

An important case is when (R(d1), R(d0)−R(d1), d1, d0) ∈ RDSR. The sources for

which this relation holds for all d1 > d0 ≥ 0, are called in [50] successively refinable

sources. Equitz and Cover showed in [50] that (R(d1), R(d0)−R(d1), d1, d0) ∈ RDSR

if and only if there are random variables X0 and X1, jointly distributed with the

generic source variable X, such that

R(d1) = I(X;X1),

R(d0) = I(X;X0, X1),

E[d(X,Xt)] ≤ dt, t = 0, 1,

and X−X0−X1 form a Markov chain. They further proved, based on results of [57],
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that finite-alphabet sources with Hamming distortion are successively refinable and

the joint distribution pXX1X0 is specified by

pXt(x) =
(pX(x)− λt)+∑
x′∈X (pX(x′)− λt)+

, x ∈ X , t = 0, 1,

pX|X0(x|x0) =


1− d0, x = x0 ∈ X+

0

λ0, x 6= x0, x ∈ X+
0 , x0 ∈ X+

0

pX(x) x /∈ X+
0 , x0 ∈ X+

0

,

pX0|X1(x0|x1) =


1−d1−λ0
1−d0−λ0 , x0 = x1 ∈ X+

1

λ1−λ0
1−d0−λ0 , x0 6= x1, x0 ∈ X+

1 , x1 ∈ X+
1

pX(x0)−λ0
1−d0−λ0 x0 ∈ X+

0 , x0 /∈ X+
1 , x1 ∈ X+

1

,

where λ0 ∈ [0, λ1] and λ1 are determined by

∑
xt∈X+

t

pXt(xt)pX|Xt(x|xt) = pX(x), x ∈ X , t = 0, 1,

and X+
t = {x ∈ X : pX(x)− λt > 0}, t = 0, 1.

The following theoretical coding scheme for SR was suggested in [50].

Codebook generation. For the base layer, the codebook C1 = {xn1,i}2nR1

i=1 whereR1 =

I(X;X1) + ε1, is randomly generated according to
∏n

l=1 pX1(·). For the refinement

layer, for each index i, 1 ≤ i ≤ 2nR1 , a codebook C0,i = {xn0,i,j}2nR2

j=1 , where R2 =

I(X;X0|X1) + ε2, is randomly generated according to the conditional distribution∏n
l=1 pX0|X1(·|x1,i(l)).

Encoder for the base layer. Given the source sequence xn, the encoder of the base

layer finds the index i, 1 ≤ i ≤ 2nR1 , which minimizes d
(n)
H (xn, xn1,i).

Encoder for the refinement layer. This encoder has knowledge of the index
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i of the base layer, and it chooses the index j, 1 ≤ j ≤ 2nR2 , which minimizes

d
(n)
H (xn, xn0,i,j).

Decoder. The decoder of the base layer receives index i and takes xn1,i as the recon-

struction of xn. When additionally the refinement index j is received, the decoder

takes xn0,i,j as the reconstruction of xn.

As justified in [50], this theoretical coding scheme is able to achieve the distortion

pair (d1 + ε, d0 + ε), as n grows to infinity.

Note that this encoding scheme resembles the succession of encoders 0 and 1 for

the ZB region. The main difference resides in the fact that in the successive refinement

case, the output of each encoder forms a separate description.

Our practical coding scheme for the SR problem uses multilevel LDGM codes

for the encoder of each layer as described in Subsection 2.2. Precisely, for the base

layer we have (Y, Z) = (X,X1), mR1, and the distributions pl(·) are identical to

pX1(·). At the encoder for the refinement layer we have (Y, Z) = (X,X0), mR2 and

pl(·) = pX0|X1(·|x1,i(l)), 1 ≤ l ≤ n. The optimization problem at each encoder is

formulated as minimization of the Hamming distortion between the input and output

sequences, in other words, we set b(a) = a for any a ∈ X for both encoders and let

λ(a, b) = δ1 > 0 for first encoder and λ(a, b) = δ2 > 0, for the second encoder, for all

a, b ∈ X with a 6= b.

Moreover, the second encoder can be simplified as described in Subsection 2.8 by

substituting variable X0 by a variable U0 over the same alphabet X+
0 , satisfying the

following requirements

1) U0 is independent of X1;

2) X0 = π(X1, U0) for some function π : X+
1 ×X+

0 → X+
0 ;
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3) X − (X1, X0)− U0 forms a Markov chain.

Next we construct the variable U0 and the mapping π. Assume without restricting

the generality that X+
1 = {0, 1, · · · , τ − 1}. Consider the function σ : X+

1 × X → X ,

defined as follows

σ(x1, x) ,

 x⊕τ (τ − x1), if x ∈ X+
1

x, if x ∈ X \ X+
1

.

where ⊕τ denotes modulo-τ addition. Define

π(x1, x0) ,

 x0 ⊕τ x1, if x0 ∈ X+
1

x0, otherwise
.

Further define π1 : X+
1 ×X+

0 → X+
0 as the restriction of σ over the set X+

1 ×X+
0 . Let

U0 , π1(X1, X0). It can be easily verified that the all the aforementioned requirements

for U0 are satisfied. Further define ∆X = σ(X1, X). According to the argument in

Subsection 2.8, the encoder of the refinement layer can be converted into an encoder of

the variable ∆X, with input sequence ∆xn, where ∆x(l) = σ(x1,i(l), x(l)), 1 ≤ l ≤ n,

and i is the index selected by the encoder of the base layer. Encoder 2 needs to

randomly generate only one codebook C0 = {un0,j}
nR2
j=1 according to the distribution∏n

l=1 pU0(·). The equality dH(x, x0) = dH(σ(x1, x), σ(x1, x0)) can be easily derived.

Therefore, the optimization problem at encoder 2 can be equivalently formulated as

the minimization of d
(n)
H (∆xn, un0 ) over all un0 ∈ C0.
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Chapter 4

Practical LDGM-based Coding

Scheme For Quadratic Gaussian

L-Description Coding

In this chapter we propose a practical LDGM-based coding scheme for quadratic

Gaussian L-description coding, with individual and central distortion constraints.

In the first section, it is first pointed out that the coding problem for an arbitrary

point on the dominant face of an L-description El Gamal-Cover (EGC) region can be

converted to that for a vertex of a K-description EGC region for some K ≤ 2L− 1,

where the latter problem can be solved via successive coding. Then it is shown how,

for the quadratic Gaussian case, each step in the successive coding can be reduced to

a Gaussian quantization operation via Gram-Schmidt orthogonalization. The special

structure of the covariance matrix associated with the sum-rate optimal EGC region,

is exploited in order to simplify the calculation of the related coefficients and to derive

an efficient implementation of the Gram-Schmidt orthogonalization. Furthermore,
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a new interpretation of the quantization splitting method developed in [52, 53] is

given, by eliminating the use of conditional codebooks. In the second section the

practical coding scheme is introduced, which consists in implementing the Gaussian

quantization operation involved at each step using a multilevel LDGM code with the

message passing algorithm described in section 2.5.

4.1 Successive Coding Scheme

For any L auxiliary random variables U{1}, · · · , U{L} jointly distributed with the

generic source variableX, we defineR(pU{1},··· ,U{L}|X) as the set of rate tuples (R1, · · · , RL)

satisfying

∑
`∈A

R` ≥
∑
`∈A

H(U{`})−H(U{`}, ` ∈ A|X), ∅ ⊂ A ⊆ {1, · · · , L}.

Let P(d{1}, · · · , d{L}, d{1,··· ,L}) be the set of conditional distributions pU{1},··· ,U{L}|X

such that

E[d(X, g{`}(U{`}))] ≤ d{`}, ` = 1, · · · , L, (4.1)

E[d(X, g{1,··· ,L}(U{1}, · · · , U{L}))] ≤ d{1,··· ,L} (4.2)

for some functions g{`}, ` = 1, · · · , L, and g{1,··· ,L}. Then, for given distortion tuple

(d{1}, · · · , d{L}, d{1,··· ,L}), the set of rate tuples (R1, · · · , RL) such that

(R1, · · · , RL, d{1}, · · · , d{L}, d{1,··· ,L}) is in the EGC region defined in section 1.3.4,
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coincides with the convex closure of

⋃
pU{1},··· ,U{L}|X

∈P(d{1},··· ,d{L},d{1,··· ,L})

R(pU{1},··· ,U{L}|X).

It is known [45] that

REGC(d{1}, · · · , d{L}, d{1,··· ,L}) ⊆ R(d{1}, · · · , d{L}, d{1,··· ,L}),

where R(d{1}, · · · , d{L}, d{1,··· ,L}) denotes the set rate tuples (R1, · · · , RL) such that

(R1, · · · , RL, d{1}, · · · , d{L}, d{1,··· ,L}) is in the L-description region with individual and

central constraints, defined in section 1.3.2.

Roughly speaking, one may view U{1}, · · · , U{L} as L descriptions of source X;

moreover, g{1}(U{1}), · · · , g{L}(U{L}) can be interpreted as the reconstructions based

on individual descriptions while g{1,··· ,L}(U{1}, · · · , U{L}) can be interpreted as the

reconstruction based on the complete set of descriptions.

Therefore, we shall primarily focus on R(pU{1},··· ,U{L}|X) and simply refer to it as

the EGC region when no confusion can arise. As observed in [46,47], R(pU{1},··· ,U{L}|X)

is a contra-polymatroid and its vertices can be easily characterized. Specifically,

(R1(π), · · · , RL(π)) is a vertex ofR(pU{1},··· ,U{L}|X) for every permutation π on {1, · · · , L},

where

Rπ(1)(π) = I(X;U{π(1)}), (4.3)

Rπ(`)(π) = I(X,U{π(1)}, · · · , U{π(`−1)};U{π(`)}), ` = 2, · · · , L. (4.4)

The dominant face of R(pU{1},··· ,U{L}|X), denoted as D(pU{1},··· ,U{L}|X), is the set of rate

61



Ph.D. Thesis - Ying Zhang McMaster - Electrical Engineering

tuples satisfying

L∑
`=1

R` =
L∑
`=1

H(U{`})−H(U{1}, · · · , U{L}|X).

It can be readily verified by leveraging (4.3) and (4.4) that all the vertices are on the

dominant face.

The vertices ofR(pU{1},··· ,U{L}|X) are of particular importance since every rate tuple

in R(pU{1},··· ,U{L}|X) is dominated in a component-wise manner by some rate tuple in

D(pU{1},··· ,U{L}|X) and the latter can be expressed as a convex combination of no more

than L vertices. As pointed out in [52,53], the expression of the vertices (see (4.3) and

(4.4)) suggests a successive coding scheme which can be roughly described as follows1:

for vertex (R1(π), · · · , RL(π)), one first uses X to produce U{π(1)}, then successively

from ` = 2 to L, uses (X,U{π(1)}, · · · , U{π(`−1)}) to produce U{π(`)}. Furthermore,

every rate tuple in D(pU{1},··· ,U{L}|X) is achievable via suitable timesharing of such

successive coding schemes.

4.1.1 Efficient Version for Quadratic Gaussian Source

Now we proceed to propose an efficient implementation of the aforementioned suc-

cessive coding scheme in the quadratic Gaussian case, where pX is a Gaussian distri-

bution with mean zero and variance σ2
X , and d(·, ·) is the standard squared error dis-

tortion measure. In this setting it is known [47] that REGC(d{1}, · · · , d{L}, d{1,··· ,L}) =

R(d{1}, · · · , d{L}, d{1,··· ,L}); moreover, it suffices to assume that U{1}, · · · , U{L} are

zero-mean and jointly Gaussian with the generic source variable X. By exploiting

1For simplicity, here we describe the scheme in the form of single-letter operation. However, it
should be noted that to approach the information-theoretic limits, one has to implement such a
scheme over long blocks.

62



Ph.D. Thesis - Ying Zhang McMaster - Electrical Engineering

the properties of the Gaussian distribution, the following simplified version of the

successive coding scheme, referred to as the successive quantization scheme, was de-

veloped in [52,53]. Without loss of generality, we shall assume π(`) = `, ` = 1, · · · , L.

Using the Gram-Schmidt orthogonalization procedure, we can write

U{`} = Û{`} + ∆`, ` = 1, · · · , L,

where

Û{1} = E[U{1}|X],

Û{`} = E[U{`}|X,U{1}, · · · , U{`−1}], ` = 2, · · · , L,

and X,∆1, · · · ,∆L are jointly independent and Gaussian. Now (4.3) and (4.4) can

be rewritten as

R`(π) = I(Û{`};U{`}) = I(Û{`}; Û{`} + ∆`), ` = 1, · · · , L. (4.5)

As observed in [52, 53], one can readily obtain an L-step successive quantization

scheme by interpreting Û{`}, U{`}, and ∆` in (4.5) respectively as the quantization

input, the quantization output, and the quantization error at step `. Note that the

explicit expressions of Û{1}, · · · , Û{L} in terms of (X,U{1}, · · · , U{L}) depend on the

covariance matrix of (X,U{1}, · · · , U{L}), which in turn depends on distortion con-

straints d{1}, · · · , d{L}, and d{1,··· ,L}. A direct derivation of such expression, though

possible for the case L = 2 [52], appears to be cumbersome for general L. Fortu-

nately, it turns out that the special structure of the optimal covariance matrix of
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(X,U{1}, · · · , U{L}) allows for an efficient implementation of Gram-Schmidt orthogo-

nalization as well as a simple calculation of the relevant coefficients.

Without loss of generality, we shall assume 0 < d{`} ≤ σ2
X , ` = 1, · · · , L, and

0 < d{1,··· ,L} ≤ σ2
X . Define

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) = min
{ L∑

`=1

R` : (R1, · · · , RL) ∈ R(d{1}, · · · , d{L}, d{1,··· ,L})
}
.

It is known [46,47] that

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) = max
a∈[0,σ2

X ]

1

2
log

(
σ4L−2
X (σ2

Xd{1,··· ,L} − ad{1,··· ,L} + aσ2
X)

d{1,··· ,L}
∏L

`=1(σ2
Xd{`} − ad{`} + aσ2

X)

)
.

In particular,

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) =


1
2

L∑̀
=1

log(
σ2
X

d{`}
), d{1,··· ,L} ≥ d{1,··· ,L}

1
2

log(
σ2
X

d{1,··· ,L}
), d{1,··· ,L} ≤ d{1,··· ,L}

,

where

d{1,··· ,L} =
( L∑
`=1

1

d{`}
− L− 1

σ2
X

)−1

; d{1,··· ,L} =
L∑
`=1

d` − (L− 1)σ2
X .

Therefore, if d{1,··· ,L} ≥ d{1,··· ,L}, then one can decrease d{1,··· ,L} until d{1,··· ,L} =

d{1,··· ,L} without affecting RΣ(d{1}, · · · , d{L}, d{1,··· ,L}); similarly, if d{1,··· ,L} ≤ d{1,··· ,L},

then one can decrease one of d{`}, ` = 1, · · · , L, until d{1,··· ,L} = d{1,··· ,L} without

affecting RΣ(d{1}, · · · , d{L}, d{1,··· ,L}). As a consequence, there is no loss of generality
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in assuming d{1,··· ,L} ≤ d{1,··· ,L} ≤ d{1,··· ,L}. In this case we have

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) =
1

2
log
(σ4L−2

X (σ2
Xd{1,··· ,L} − âd{1,··· ,L} + âσ2

X)

d{1,··· ,L}
∏L

`=1(σ2
Xd{`} − âd{`} + âσ2

X)

)
,

where â ∈ [0, σ2
X ] is the solution to the following equation

( σ2
Xd{1,··· ,L}

σ2
X − d{1,··· ,L}

+ a
)−1

=
L∑
`=1

( σ2
Xd{`}

σ2
X − d{`}

+ a
)−1

.

In particular, when d{1} = · · · = d{L} = d, we have

â =
σ4
Xd− Lσ4

Xd{1,··· ,L} − σ2
Xdd{1,··· ,L} + Lσ2

Xdd{1,··· ,L}
(L− 1)(σ2

X − d)(σ2
X − d{1,··· ,L})

and

RΣ(d, · · · , d, d{1,··· ,L}) =
1

2
log
( (L− 1)L−1σ2

X(σ2
X − d{1,··· ,L})L

LLd{1,··· ,L}(σ2
X − d)(d− d{1,··· ,L})L−1

)
.

Note that in the current setting (4.1) and (4.2) can be rewritten as

E[(X − E[X|U{`}])2] ≤ d{`}, ` = 1, · · · , L, (4.6)

E[(X − E[X|U{1}, · · · , U{L}])2] ≤ d{1,··· ,L}. (4.7)

It is known [46,47] that if U{1}, · · · , U{L} are zero-mean and jointly Gaussian with X
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such that

E[XU{`}] = σ2
X , ` = 1, · · · , L, (4.8)

E[U{`}U{`′}] =

 σ2
X + σ2

{`}, ` = `′

σ2
X − â, ` 6= `′

, (4.9)

where σ2
{`} =

σ2
Xd{`}

σ2
X−d{`}

, ` = 1, · · · , L, then rate tuples in D(pU{1},··· ,U{L}|X) achieve the

minimum sum rate RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) and distortion constraints (4.6) and

(4.7) are satisfied; the corresponding R(pU{1},··· ,U{L}|X) will be referred to as the sum-

rate optimal Gaussian EGC region. Now we proceed to give an explicit construction

of such (U{1}, · · · , U{L}). Let

σ2
{1,··· ,`} =

(∑̀
i=1

(
σ2
{i} + â

)−1

)−1

− â, ` = 2, · · · , L.

Note that

â =
√

(σ2
{1,··· ,`−1} − σ2

{1,··· ,`})(σ
2
{`} − σ2

{1,··· ,`})− σ
2
{1,··· ,`}, ` = 2, · · · , L.

Let N{1,··· ,L} and N ′{1,··· ,`}, ` = 2, · · · , L, be L zero-mean Gaussian random variables,

where the variance of N{1,··· ,L} is σ2
{1,··· ,L} and the rest have unit variance. We assume

that X, N{1,··· ,L}, and N ′{1,··· ,`}, ` = 2, · · · , L, are jointly independent. One can

successively construct

N{1,··· ,`} = N{1,··· ,`+1} +
√
σ2
{1,··· ,`} − σ2

{1,··· ,`+1}N
′
{1,··· ,`+1}
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from ` = L− 1 to 1. Now let

U{1,··· ,`} = X +N{1,··· ,`}, ` = 1, · · · , L.

U{`} = U{1,··· ,`} −
√
σ2
{`} − σ2

{1,··· ,`}N
′
{1,··· ,`}, ` = 2, · · · , L.

It can be verified that the constructed (U{1}, · · · , U{L}) satisfies (4.8) and (4.9).

Note that (U1, · · · , U{`}) − U{1,··· ,`} − (X,U{`+1}, · · · , U{L}) form a Markov chain,

` = 2, · · · , L. Therefore, we have

Û{1} = X,

Û{`} = E[U{`}|X,U{1,··· ,`−1}] = γ`−1X + β`−1U{1,··· ,`−1}, ` = 2, · · · , L, (4.10)

where γ`−1 = 1 + â
σ2
{1,··· ,`−1}

and β`−1 = − â
σ2
{1,··· ,`−1}

. It is easy to see that

U{1,··· ,`} = η`−1U{1,··· ,`−1} + η̄`−1U{`}, ` = 2, · · · , L, (4.11)

where η`−1 = 1 − η̄`−1 =

√
σ2
{`}−σ

2
{1,··· ,`}√

σ2
{1,··· ,`−1}−σ

2
{1,··· ,`}+

√
σ2
{`}−σ

2
{1,··· ,`}

. This recurrence relation

leads to an efficient implementation of Gram-Schmidt orthogonalization (see Figure

4.1). It can also be verified that

E[X|U{`}] = α{`}U{`}, ` = 1, · · · , L, (4.12)

E[X|U{1}, · · · , U{`}] = E[X|U{1,··· ,`}] = α{1,··· ,`}U{1,··· ,`}, ` = 2, · · · , L, (4.13)

E[∆2
1] = σ2

{1},

E[∆2
` ] = σ2

{`} −
â2

σ2
{1,··· ,`−1}

, ` = 2, · · · , L.
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where α{`} =
σ2
X

σ2
X+σ2

{`}
and α{1,··· ,`} =

σ2
X

σ2
X+σ2

{1,··· ,`}
. In particular, when d{1} = · · · =

d{`} = d, we have

σ2
{1} = · · · = σ2

{L} =
σ2
Xd

σ2
X − d

, σ2,

σ2
{1,··· ,`} =

1

`
σ2 − `− 1

`
â =

σ2
Xd

`(σ2
X − d)

− `− 1

`
â, ` = 2, · · · , L,

U{1,··· ,`} =
`− 1

`
U{1,··· ,`−1} +

1

`
U{`} =

1

`

∑̀
i=1

U{i}, ` = 2, · · · , L,

E[∆2
1] = σ2,

E[∆2
` ] = σ2 − (`− 1)â2

σ2 − (`− 2)â
, ` = 2, · · · , L.

It should be pointed out that although we have mainly focused on the minimum

sum rate, one can obtain similar results in a more general setting. Indeed, it can be

shown by leveraging the construction in [47] that the Gram-Schmidt orthogonalization

procedure can be simplified in essentially the same manner for a vertex that achieves

a general minimum weighted sum rate.

4.1.2 Quantization Splitting

As mentioned earlier, every rate tuple on the dominant face of an EGC region is

achievable via timesharing of the successive coding schemes for vertices. Alternatively,

one can use the splitting method developed in [52,53].

Given (X,U{1}, · · · , U{L}), we say (U{1},1, · · · , U{L},1) is split from (U{1}, · · · , U{L})

if U{`},1 − U{`} − (X,U{`′},1, U{`′}, `
′ 6= `) form a Markov chain for all `. Let U =

{U{1},1, U{1}, · · · , U{L},1, U{L}}. We say µ is a well-ordered permutation on U if U{`},1
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Figure 4.1: Successive quantization scheme for a vertex of the sum-rate optimal Gaus-
sian EGC region.

is placed before U{`} for all `. For any U ∈ U , let {U}−µ denote the set of random

variables placed before U in µ.

It is known [52, 53] that for any (R1, · · · , RL) ∈ D(pU{1},··· ,U{L}|X), one can find

(U{1},1, · · · , U{L},1) split from (U{1}, · · · , U{L}) and a well-ordered permutation µ such

that

R` = R`,1 +R`,2, ` = 1, · · · , L,
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where

R`,1 = I(X, {U{`},1}−µ ;U{`},1),

R`,2 = I(X, {U{`}}−µ ;U{`}|U{`},1);

moreover, at least one U{`},1 can be set to zero2 and removed from µ.

Note that R`,2 is expressed as a conditional mutual information. This is why

in [52, 53] conditional codebooks are used in the random coding argument for the

splitting method. In fact, an inspection of the random coding argument in [52, 53]

reveals that the resulting scheme requires one to construct and store 2nR`,1 conditional

codebooks, each of size 2nR`,2 , for the `-th description. Here we shall give a new

interpretation of the splitting method by converting the expression of R`,2 from a

conditional form to an unconditional form and consequently eliminating the use of

conditional codebooks3. By applying Lemma 1 in [58] for every ` = 1, · · · , L, it

follows that there exist random variables U{1},2, · · · , U{L},2 jointly distributed with

(X,U{1},1, U{1}, · · · , U{L},1, U{L}) such that the following properties are satisfied for

all `:

P1) U{`},2 is independent of U{`},1;

P2) U{`} is a deterministic function of U{`},1 and U{`},2;

P3) U{`},2 − (U{`},1, U{`})− (X,U{`′},1, U{`′},2, U{`′}, `
′ 6= `) form a Markov chain.

Let U ′ = {U{1},1, U{1},2, · · · , U{L},1, U{L},2} and µ′ be a permutation on U ′ induced by

µ with U{`} replaced by U{`},2 at the corresponding positions. For any U ∈ U ′, let

2In this case we have R`,1 = 0 and R` = R`,2 = I(X, {U{`}}−µ ;U{`}).
3More precisely, the new interpretation allows one to replace those 2nR`,1 conditional codebooks

with a single codebook of size 2nR`,2 .
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{U}−µ′ denote the set of random variables placed before U in µ′. By P2) and P3), we

can rewrite R`,1 as

R`,1 = I(X, {U{`},1}−µ′ ;U{`},1).

Moreover, it follows by P1), P2), and P3) that

I(X, {U{`},2}−µ′ ;U{`},2) = I(X, {U{`},2}−µ′ ;U{`},2|U{`},1) + I(U{`},1;U{`},2)

= I(X, {U{`},2}−µ′ ;U{`},2|U{`},1) = I(X, {U{`}}−µ ;U{`}|U{`},1).

Therefore, we have

R`,2 = I(X, {U{`},2}−µ′ ;U{`},2).

Now by ordering R1,1, R1,2, · · · , RL,1, RL,2 according to µ′, one can readily see that

the coding problem for an arbitrary point on the dominant face of an L-description

EGC region can be converted to that for a vertex of a K-description EGC region

for some K ≤ 2L − 1 (due to the fact that at least one U{`},1 can be set to zero

and removed from µ and µ′), where the latter problem can be solved via successive

coding. Note that we essentially split each description into two coarse descriptions;

moreover, according to P2), the original description can be recovered from the two

coarse descriptions.

More concrete results can be obtained in the quadratic Gaussian case. In this

setting there is no loss of generality in assuming that U{1},1, U{1},2, · · · , U{L},1, U{L},2
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are zero-mean and jointly Gaussian with (X,U{1}, · · · , U{L}). Specifically, we can let

U{`},1 = U{`} + Z`, ` = 1, · · · , L,

U{`},2 = U{`} − b`Z`, ` = 1, · · · , L,

where Z` is a Gaussian random variable with mean zero and variance σ2
Z`

, and b` =

E[U2
{`}]

σ2
Z`

; moreover, Z1, · · · , ZL, and (X,U{1}, · · · , U{L}) are jointly independent. The

values of σ2
Z1
, · · · , σ2

ZL
are determined by (R1, · · · , RL). Note that in the extreme case

when σ2
Z`

= ∞, we let U{`},1 = 0 and U{`},2 = U{`}; similarly, when σ2
Z`

= 0, we let

U{`},1 = U{`} and U{`},2 = 0. It is easy to verify that P1), P2), and P3) are satisfied;

in particular, we have

U{`} = τ`U{`},1 + τ̄`U{`},2, ` = 1, · · · , L.

where τ` = 1− τ̄` = b`
b`+1

. To obtain a successive quantization scheme, one can apply

the Gram-Schmidt orthogonalization procedure to (U{1},1, U{1},2, · · · , U{L},1, U{L},2)

with the projection order specified by µ′.

Now we proceed to give a detailed treatment of the case L = 2. It is known

[39, 46, 47] that there is no loss of generality in assuming d{1,2} ≤ d{1,2} ≤ d{1,2};

moreover, in this setting

R(d{1}, d{2}, d{1,2}) = R(pU{1},U{2}|X),

where pU{1},U{2}|X is the conditional Gaussian distribution specified by (4.8) and (4.9)
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with

σ2
{`} =

σ2
Xd{`}

σ2
X − d{`}

, ` = 1, 2,

â =

√( σ2
Xd{1}

σ2
X − d{1}

−
σ2
Xd{1,2}

σ2
X − d{1,2}

)( σ2
Xd{2}

σ2
X − d{2}

−
σ2
Xd{1,2}

σ2
X − d{1,2}

)
−

σ2
Xd{1,2}

σ2
X − d{1,2}

.

Note that for any (R1, R2) ∈ D(pU{1},U{2}|X), we can set U{2},1 = 0, U{2},2 = U{2}, and

write

R1 = R1,1 +R1,2,

R2 = I(X,U{1},1;U{2}), (4.14)

where

R1,1 = I(X;U{1},1), (4.15)

R1,2 = I(X,U{1},1, U{2};U{1},2). (4.16)

The Gram-Schmidt orthogonalization procedure yields

U{1},1 = E[U{1},1|X] + ∆̃1,

U{2} = E[U{2}|X,U{1},1] + ∆̃2,

U{1},2 = E[U{1},2|X,U{1},1, U{2}] + ∆̃3,

where X, ∆̃1, ∆̃2, ∆̃3 are jointly independent. Therefore, we can rewrite R1,1, R2, and
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R1,2 as

R1,1 = I(E[U{1},1|X];U{1},1) = I(E[U{1},1|X];E[U{1},1|X] + ∆̃1),

R2 = I(E[U{2}|X,U{1},1];U{2}) = I(E[U{2}|X,U{1},1];E[U{2}|X,U{1},1] + ∆̃2),

R1,2 = I(E[U{1},2|X,U{1},1, U{2}];U{1},2) = I(E[U{1},2|X,U{1},1, U{2}];E[U{1},2|X,U{1},1, U{2}] + ∆̃3).

It can be verified that

E[U{1},1|X] = X,

E[U{2}|X,U{1},1] = X + E[U{2} −X|U{1},1 −X]

= X − â

σ2
{1} + σ2

Z1

(U{1},1 −X) = ν1X + ν2U{1},1, (4.17)

E[U{1},2|X,U{1},1, U{2}] = X + E[U{1},2 −X|U{1},1 −X,U{2} −X]

= X −
σ2
Xσ

2
{2} + â2

(σ2
{1} + σ2

Z1
)σ2
{2} − â2

(U{1},1 −X)−
σ2
X â+ (σ2

{1} + σ2
Z1

)â

(σ2
{1} + σ2

Z1
)σ2
{2} − â2

(U{2} −X)

= ν3X + ν4U{1},1 + ν5U{2}, (4.18)

and

E[∆̃2
1] = σ2

{1} + σ2
Z1
,

E[∆̃2
2] = σ2

{2} −
â2

σ2
{1} + σ2

Z1

,

E[∆̃2
3] = σ2

{1} +
(σ2

X + σ2
{1})

2

σ2
Z1

−
σ4
Xσ

2
{2} + 2σ2

X â
2 + (σ2

{1} + σ2
Z1

)â2

(σ2
{1} + σ2

Z1
)σ2
{2} − â2

,

where ν1 =
σ2
{1}+σ

2
Z1

+â

σ2
{1}+σ

2
Z1

, ν2 = − â
σ2
{1}+σ

2
Z1

, ν3 =
(σ2
X+σ2

{1}+σ
2
Z1

)(σ2
{2}+â)

(σ2
{1}+σ

2
Z1

)σ2
{2}−â2

, ν4 = −
σ2
Xσ

2
{2}+â

2

(σ2
{1}+σ

2
Z1

)σ2
{2}−â2

,
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and ν5 = −
σ2
X â+(σ2

{1}+σ
2
Z1

)â

(σ2
{1}+σ

2
Z1

)σ2
{2}−â2

. Note that

R2 = h(U{2})− h(∆̃2) =
1

2
log
( σ2

X + σ2
{2}

σ2
{2} −

â2

σ2
{1}+σ

2
Z1

)
,

which implies

σ2
Z1

=
â2

σ2
{2} − 2−2R2(σ2

X + σ2
{2})
− σ2

{1}.

In particular, when d{1} = d{2} = d and R1 = R2 = R, we have

R =
1

4
log
((σ2

X + σ2)2

σ4 − â2

)
,

and consequently,

σ2
Z1

=
â2

σ2 − 2−2R(σ2
X + σ2)

− σ2 =
√
σ4 − â2,

where σ2 =
σ2
Xd

σ2
X−d

and â =
σ2
Xd

σ2
X−d
− 2σ2

Xd{1,2}
σ2
X−d{1,2}

.

The quantization splitting system for the 2-description case is depicted in Figure

4.2.

4.2 Practical Scheme Based On LDGM Codes

As discussed previously, each stage ` in the successive quantization scheme reduces to

a Gaussian quantization operation interpreted as the forward channel U{`} = Û{`}+∆`,

which we implement based on LDGM codes. Therefore, let us first describe the
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Figure 4.2: Quantization splitting scheme for the Gaussian 2-description case.

proposed Gaussian quantization scheme in a general setting.

4.2.1 Gaussian Quantization with LDGM Codes

Consider an i.i.d. Gaussian source Û ∼ N (0, σ2
Û

) and an additive Gaussian noise

channel U = Û + ∆, where ∆ ∼ N (0, σ2) denotes the noise. Our goal is to construct

an n-block quantizer of rate R = I(Û ;U) + ε and codebook C = {uni : 1 ≤ i ≤ 2nR},

to approximate this Gaussian channel. To this end we need first to construct a finite

random variable Ũ over some finite alphabet Ũ , to approximate U . An additional

requirement on Ũ , is that a positive integer ω exists such that 2ωpŨ(ũ) is a positive

integer for every ũ ∈ Ũ . Next we apply a multilevel LDGM code described in Section
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2.2 to generate the codebook C ⊆ Ũn, such that the marginal distribution of the

codewords approximates pŨ , and thus approximates pU as well; finally, given an input

sequence ûn = û(1) · · · û(n), the quantizer output un = u(1) · · ·u(n) is selected from

C using the message passing algorithm described in Section 2.5.

Notice that the MMSE estimator of Û given the variable U is E[Û |U ] = αU , where

α =
σ2
Û

σ2
Û

+σ2 . Thus, if the quantizer output is un then the optimal source reconstruction

is αun. Therefore, given the quantizer input sequence ûn, we formulate the quantizer

encoder problem as the problem of selecting the output sequence un ∈ C such that

the mean squared error between ûn and αun to be minimized.

The performance of this scheme depends on how well the message passing algo-

rithm solves the encoder problem, but also on the choice of random variable Ũ . The

choice of Ũ is constrained by the requirement that a positive integer ω exists such

that 2ωpŨ(ũ) is a positive integer for every ũ ∈ Ũ . Notice that this condition also

constrains the size of the alphabet Ũ to be at most 2ω. Therefore it is interesting to

consider the problem of optimizing Ũ subject to fixed ω. In order to formulate this

problem we will disregard the dependence on the particular behavior of the message

passing algorithm. Moreover, we will assume that the LDGM encoder approximates

a theoretical random coding scheme4. Then the problem of optimizing Ũ is equiva-

lent to optimizing the alphabet Ũ and the conditional probability pŨ |Û , formulated

4Such an assumption is supported by the results of [32]. Although the argument in [32] is for
discrete-valued sources and bounded distortion measures, it can be extended to cover the quadratic
Gaussian case using standard techniques.
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as follows

min
Ũ ,pŨ|Û

E[(Û − αŨ)2] (4.19)

subject to I(Û ; Ũ) = I(Û ;U)

Ũ ⊆ R

2ωpŨ(ũ) ∈ N, ∀ũ ∈ Ũ

The above optimization problem has similar flavor to the problems considered in the

context of alphabet constrained rate-distortion theory for continuous-valued sources

in [59, 60], but appears to be more difficult due to the additional integer constraint.

On the other hand, as a practical solution to LDGM code design, one can modify the

requirements to fit the problems solved in [59, 60]. Specifically, one can replace first

Û by the output Ŭ of a fine scalar quantizer; then drop the last constraint in (4.19),

impose instead the condition that pŨ(ũ) are equal to some fixed values, and use the

algorithm of [60] to determine the optimal alphabet Ũ . Alternatively, upon replacing

Û by Ŭ , one can fix only the size of the alphabet Ũ and determine the probabilities

pŨ(ũ) via the algorithm of [59]; then choose an integer ω such that 2ωpŨ(ũ) are close

to some integer values.

We leave the quest for a solution algorithm to problem (4.19) and/or the inves-

tigation of the performance of the aforementioned strategies for future work. In our

experiments we confine ourselves to a simple heuristic for the selection of Ũ , inspired

by the central limit theorem and by the intuition that Ũ has to be a good approxima-

tion of variable U . Let W1, · · · ,Wω be ω independent random variables, uniformly

distributed over the alphabet {−1, 1}. Define W̄ω =
∑ω
j=1Wi

√
σ2
Û

+σ2

√
ω

. According to the
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central limit theorem, the sequence of random variables W̄ω converges toN (0, σ2
Û

+σ2)

as ω →∞. Therefore, we choose Ũ = W̄ω.

4.2.2 Successive Quantization with LDGM Code

As discussed in previous section, the successive quantization scheme for vertices of

the sum-rate optimal Gaussian EGC region follows the block diagram in Figure 4.1.

The operation U{`} = Û{`} + ∆`, at the `-th step, ` = 1, · · · , L, is implemented using

an n-block multilevel LDGM code as described in Section 2.2, for U = U{`}, Û = Û{`},

and ∆ = ∆`. The input sequence ûn{`} = û{`}(1), · · · , û{`}(n) coincides with the source

sequence xn = x(1) · · · x(n) for ` = 1, and for ` > 1, it is computed based on the

sequences un{κ} output at all previous stages 1 ≤ κ ≤ `− 1, according to the recursive

equations (4.10) and (4.11), applied symbol by symbol. The sequence un{`} output by

the quantizer at stage `, is found using the belief propagation algorithm described in

Subsection 2.5. The index i` formed out of the nR` information bits corresponding

to the selected output is transmitted as the `-th description.

The decoder corresponding to the `-th description receives index i` and constructs

the corresponding codeword un{`} using the factor graph for the `-th stage LDGM code.

The source reconstruction x̂n{`} is formed by x̂{`}(l) = α{`}u{`}(l), 1 ≤ l ≤ n, according

to (4.12).

Finally, the central decoder receives all indices i1, · · · , iL, recovers un{1}, · · · , un{L},

and based on them constructs the sequence un{1,··· ,L} using (4.11) recursively. Then

the source reconstruction is generated according to (4.13).

79



Ph.D. Thesis - Ying Zhang McMaster - Electrical Engineering

4.2.3 Quantization Splitting with LDGM Code

The procedure of quantization splitting for the 2-description case is illustrated in

the block diagram of Figure 4.2. It consists of three successive n-block quantiz-

ers implemented using multilevel LDGM codes, as described in previous subsection.

Specifically, the first quantizer models the forward channel U{1},1 = X + ∆̃1. Its

input is the source sequence xn and its output is denoted by un{1},1. The second quan-

tizer approximates the channel U{2} = Û{2} + ∆̃2. Its n-block input sequence ûn{2}

is constructed based on xn and un{1},1 according to (4.17) as shown in the block dia-

gram. Its output is denoted by un{2}. Finally, the third quantizer models the channel

U{1},2 = Û{1},2 +∆̃3, with input ûn{1},2 generated from xn, un{1},1, and un{2} using (4.18).

Its output is denoted by un{1},2.

Let i1, i2, i3 denote the information bit sequences corresponding to the outputs

of the three quantizers, respectively. Then indices i1 and i3 form the first descrip-

tion, while i2 constitutes the second description. The decoder of the first description

receives i1 and i3, recovers un{1},1 and un{1},2, based on which it generates un{1}, and fur-

ther x̂n{1} as the source reconstruction, using the operations described in Figure 4.2.

The decoder of the second description receives index i2, recovers un{2}, and generates

the source reconstruction x̂n{2} according to Figure 4.2. When both descriptions are

received at the decoder, the sequence un{1,2} is generated from un{1} and un{2}, which is

used to further generate the source reconstruction x̂n{1,2} as in Figure 4.2.
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Chapter 5

Experimental Results

In this chapter, we present test results using the coding schemes for the MD prob-

lem, proposed in the previous chapters. The degree distributions of the LDGM codes

are from the website (http://lthcwww.epfl.ch.research/ldpcopt) or obtained by im-

plementing the algorithm in [61]. We have used damping as in [32,37] in our message

passing algorithm, if the messages do not converge after 30 iterations.

5.1 Discrete Source with Hamming Distortion Mea-

sure

We have tested the proposed coding scheme in each of the three cases of the MD

problem for discrete source with Hamming distortion measure. The length n of the

input sequence is 10, 000. The value of the threshold η is 0.9. Next we present

the experimental results for each case. The values of the empirical distortions are

averaged over 100 runs.
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5.1.1 No Excess Sum-Rate Case for Binary Sources

We have applied the LDGM-based coding scheme to approach several points (d1, d2)

on the lower boundary of D(d0) for a uniform binary source and for a non-uniform

binary source with pX(0) = 1/4. In both cases we have considered d0 = 0 and

d0 = 0.013. In our tests the sum-rate R1 +R2 equals R(d0), in each case.

The values λ(a, b) used in our simulations are as follows:

• Uniform source, encoder 1: λ(0, 1) = 1.0, λ(1, 0) = 3.2− 3.6.

• Non-uniform source, encoder 1: λ(0, 1) = 1.0− 2.0, λ(1, 0) = 2.8.

• Uniform source, encoder 2: λ((0, 1), 1) = λ((1, 1), 0) = 3.2, λ((0, 0), 1) =

λ((1, 0), 0) = 0.0− 0.6,

• Non-uniform source, encoder 2: λ((0, 1), 1) = λ((1, 1), 0) = 3.2, λ((0, 0), 1) =

λ((1, 0), 0) = 0.0,

The value of the parameter δ used to set the messages passed by check nodes whose

all information variable nodes are fixed is 1.8 for the uniform source and 1.6 for the

non-uniform source.

Tables 5.1 and 5.2 present the results for the uniform source, respectively the

non-uniform source. In each table the first column contains the pair of rates (R1, R2)

used in the encoding scheme. The second column indicates whether the pair of rates

is an E1 corner point, E2 corner point, or a point obtained by timesharing the corner

points. We use the symbol T to indicate the latter situation. The third column

contains the target distortion triple (d1, d2, d0). The remaining three columns present

the empirical values of the three distortions, respectively, averaged over 100 runs.

82



Ph.D. Thesis - Ying Zhang McMaster - Electrical Engineering

(R1, R2) (d1, d2, d0) d̂1 d̂2 d̂0

(0.500, 0.500)E1 (0.147, 0.272, 0) 0.154 0.279 0.008

(0.500, 0.500)E1 (0.156, 0.266, 0) 0.156 0.269 0.008

(0.383, 0.617)E1 (0.207, 0.207, 0) 0.209 0.212 0.007

(0.617, 0.383)E2 (0.207, 0.207, 0) 0.212 0.209 0.007

(0.500, 0.500) T (0.207, 0.207, 0) 0.211 0.211 0.007

(0.445, 0.555)E1 (0.174, 0.242, 0) 0.176 0.247 0.009

(0.676, 0.324)E2 (0.174, 0.242, 0) 0.175 0.246 0.009

(0.500, 0.500) T (0.174, 0.242, 0) 0.176 0.247 0.009

(0.349, 0.551)E1 (0.215, 0.215, 0.013) 0.219 0.216 0.021

(0.551, 0.349)E2 (0.215, 0.215, 0.013) 0.216 0.219 0.021

(0.450, 0.450) T (0.215, 0.215, 0.013) 0.218 0.218 0.021

(0.422, 0.478)E1 (0.174, 0.258, 0.013) 0.181 0.258 0.022

(0.619, 0.281)E2 (0.174, 0.258, 0.013) 0.177 0.259 0.021

(0.450, 0.450) T (0.174, 0.258, 0.013) 0.180 0.258 0.022

Table 5.1: Test results in the no excess sum-rate case for the uniform binary source:
(d1, d2, d0) is a target distortion triple; (R1, R2) is the pair of rates used by the code;
d̂1, d̂2, d̂0 are the empirical distortions.

As observed from Tables 5.1 and 5.2, the distortions are very close to the theoret-

ical lower bounds.

5.1.2 No Excess Marginal Rate for Uniform Binary Source

We have used the proposed coding scheme to approach the upper bound UB(d1, d2)

of equation (3.6) for the central distortion, in the case of no excess marginal rate for

the uniform binary source. We have considered three target distortion pairs (d1, d2):

d1 = d2 = 0.1, 0.2, 0.3. In our experiments we have set λ(0, 1) = λ(1, 0) at each

encoder, and the value used for this parameter is 0.5 for encoder 0 and 1.2 for both

encoders 1 and 2. The value of δ is 0.5 at encoder 0 and 0.8 at encoders 1 and 2. In

all the cases R1 = R(d1) = R2 = R(d2). The experimental results are summarized in
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(R1, R2) (d1, d2, d0) d̂1 d̂2 d̂0

(0.492, 0.319)E1 (0.116, 0.116, 0) 0.120 0.120 0.014

(0.319, 0.492)E2 (0.116, 0.116, 0) 0.120 0.120 0.014

(0.424, 0.387) T (0.116, 0.116, 0) 0.120 0.120 0.014

(0.502, 0.309)E1 (0.060, 0.176, 0) 0.065 0.181 0.014

(0.162, 0.649)E2 (0.176, 0.060, 0) 0.184 0.065 0.016

(0.373, 0.439) T (0.104, 0.132, 0) 0.110 0.137 0.015

(0.291, 0.423)E1 (0.123, 0.123, 0.013) 0.130 0.128 0.025

(0.423, 0.291)E2 (0.123, 0.123, 0.013) 0.128 0.130 0.025

(0.369, 0.344) T (0.123, 0.123, 0.013) 0.129 0.129 0.025

(0.492, 0.222)E1 (0.060, 0.191, 0.013) 0.064 0.197 0.027

(0.122, 0.591)E2 (0.191, 0.060, 0.013) 0.198 0.066 0.027

(0.377, 0.337) T (0.101, 0.151, 0.013) 0.105 0.156 0.027

Table 5.2: Test results in the no excess sum-rate case for a binary source with pX(0) =
1/4: (d1, d2, d0) is a target distortion triple; (R1, R2) is the pair of rates used by the
code; d̂1, d̂2, d̂0 are the empirical distortions.

Table 5.3. The first column contains the common value of the target side distortions

d1 = d2. The second column contains the target value UB(d1, d2) for the central

distortion. The remaining three columns present the empirical distortions averaged

over 100 runs.

d1 = d2 UB(d1, d2) d̂1 d̂2 d̂0

0.1 0.0626 0.1159 0.1136 0.0783

0.2 0.1574 0.2161 0.2170 0.1720

0.3 0.2658 0.3173 0.3134 0.2823

Table 5.3: Test results in the no excess marginal rate for the uniform binary source:
d1 = d2 are target distortion values for the side descriptions; UB(d1, d2) is the target
value for the central distortion; d̂1, d̂2, d̂0 are the empirical distortions.
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5.1.3 Successive Refinement

We have tested the proposed SR coding scheme for two binary and one ternary sources.

The binary sources are 1) uniform binary source; 2) non-uniform binary source with

pX(0) = 0.25. In both cases we have used the following parameters: γ1 = γ2 = 2.8,

and δ = 1.6.

For the uniform ternary source the parameter values are: γ1 = γ2 = 1.91 − 2.31

and δ = 1.1. The results of our experiments are presented in Figures 5.1, 5.2 and 5.3.

The empirical distortions d̂1 and d̂0 correspond with R1 and R1 + R2 respectively.

In each figure the point (d̂1, R1) corresponds to the first stage coding results and the

points (d̂0, R1 + R2) correspond to the second stage coding results. As presented in

Figure 5.1, 5.2 and 5.3 the empirical distortions are very close to the theoretical lower

bounds.

5.2 Gaussian Source with Squared Error Distor-

tion

We have tested the proposed successive quantization and quantization splitting scheme

for an i.i.d. zero-mean unit-variance Gaussian source. We have considered input se-

quences of various lengths n = 100, 1000 and 10000. In all our tests we set η = 0.9,

and ω = 4.

Tables 5.4 and 5.5 present the simulation results of the LDGM-based successive

quantization scheme for a 2-description symmetric and asymmetric distortion tuples,

respectively. Tables 5.6 and 5.7 exhibit the results of the proposed scheme for an

L-description symmetric distortion tuple with L = 3 and L = 4, respectively. In each
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Figure 5.1: Simulation results for the uniform binary source at R1 = 0.2 and various
R2 values.

table (d{1}, · · · , d{L}, d{1,··· ,L}) denotes the target distortion tuple, while d̂{1}, · · · , d̂{L},

and d̂{1,··· ,L} denote the empirical distortions; (R1, · · · , RL) denotes the rate pair used

in the experiments, which corresponds to a vertex of the sum-rate optimal Gaussian

EGC region, defined by (4.5); λi and δi are for the parameters λ and δ, respectively,

used in the message passing algorithm at the encoding stage i, i = 1, · · · , L. Next

we list the values of the parameters for L = 4, which did not fit in Table 5.7. For

n = 10000, we have λ1 = · · · = λ4 = 1.7 and δ1 = · · · = δ4 = 1.9, while for n = 1000

and n = 100, we have λ1 = λ2 = 1.6, λ3 = λ4 = 1.7, δ1 = δ2 = 1.8 and δ3 = δ4 = 1.9.

Table 5.8 presents the result obtained using the proposed quantization splitting
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Figure 5.2: Simulation results for a non-uniform binary source with pX(0) = 0.25 at
R1 = 0.2 and various R2 values.

scheme for a 2-description problem with symmetric rates and symmetric distortions:

(d{1}, d{2}, d{1,2}) denotes the target distortion triple and d̂{1}, d̂{2}, d̂{1,2} are the

empirical distortions; R1,1, R1,2, R2 represent the rates defined in (4.15), (4.16), and

(4.14); λ1,1, δ1,1 and λ1,2, δ1,2 are the parameters of the LDGM codes used for the first

description, in other words for encoder of stage 1 and encoder of stage 3, respectively;

λ2 and δ2 are the parameters of the LDGM code used for the second description, i.e.,

for encoder of stage 2.

From the results showed in the tables, we can observe that the empirical distortions

are very close to the theoretical distortion bounds.
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n (R1, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1 λ2 δ1 δ2

10000 (1, 1.015) (0.25, 0.25, 0.125) 0.267 0.262 0.135 1.7 1.7 1.9 1.9

1000 (1, 1.015) (0.25, 0.25, 0.125) 0.267 0.264 0.136 1.6 1.6 1.8 1.8

100 (1, 1.015) (0.25, 0.25, 0.125) 0.270 0.272 0.148 1.6 1.6 1.8 1.8

Table 5.4: Parameters and results for a 2-description case with symmetric distortions.

n (R1, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1 λ2 δ1 δ2

10000 (1.161, 0.914) (0.2, 0.25, 0.1) 0.211 0.266 0.111 2.6 1.7 2.8 1.9

10000 (1, 1.075) (0.25, 0.2, 0.1) 0.262 0.219 0.111 1.7 2.5 1.9 2.7

1000 (1.161, 0.914) (0.2, 0.25, 0.1) 0.212 0.269 0.113 2.8 1.7 2.8 1.9

1000 (1, 1.075) (0.25, 0.2, 0.1) 0.265 0.220 0.114 1.8 2.6 1.9 2.8

100 (1.161, 0.914) (0.2, 0.25, 0.1) 0.219 0.277 0.121 2.8 1.7 2.8 1.8

100 (1, 1.075) (0.25, 0.2, 0.1) 0.271 0.225 0.122 1.8 2.6 1.9 2.8

Table 5.5: Parameters and results for a 2-description case with asymmetric distor-
tions.

n (R1, R2, R3) (d{1}, d{2}, d{3}, d{1,2,3}) d̂{1} d̂{2} d̂{3} d̂{1,2,3} λ1 λ2 λ3 δ1 δ2 δ3

10000 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.210 0.210 0.212 0.076 1.7 1.7 1.7 1.9 1.9 1.9

1000 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.212 0.214 0.217 0.079 1.6 1.6 1.7 1.8 1.9 1.9

100 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.219 0.222 0.226 0.088 1.6 1.6 1.7 1.8 1.9 1.9

Table 5.6: Parameters and results for a 3-description case with symmetric distortions.

n (R1, R2, R3) (d{1}, d{2}, d{3}, d{4}, d{1,2,3,4}) d̂{1} d̂{2} d̂{3} d̂{4} d̂{1,2,3,4}
10000 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.209 0.209 0.211 0.213 0.059

1000 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.210 0.211 0.213 0.214 0.061

100 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.218 0.219 0.222 0.227 0.075

Table 5.7: Results for a 4-description case with symmetric distortions.
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Figure 5.3: Simulation results for the uniform ternary source at R1 = 0.4 and various
R2 values.

n (R1,1, R1,2, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1,1 λ1,2 λ2 δ1,1 δ1,2 δ2

10000 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.268 0.269 0.138 1.0 0.3 1.5 1.2 0.6 1.7

1000 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.272 0.271 0.141 1.0 0.3 1.5 1.2 0.6 1.7

100 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.278 0.276 0.147 1.0 0.3 1.5 1.2 0.6 1.7

Table 5.8: Parameters and results for a 2-description case with symmetric rates and
symmetric distortions, using quantization splitting.
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Chapter 6

Conclusions

In this thesis, we present two practical coding schemes based on low density generator

matrix (LDGM) codes for two cases of the multiple description problem. The first one

is for the case of two descriptions, for finite-alphabet sources with Hamming distortion

measure. The scheme is devised for corner points of a rate region corresponding to

Zhang-Berger rate-distortion region, and is sequential in nature. The proposed prac-

tical code consists in replacing the random codebooks in the theoretical sequential

scheme by multilevel LDGM codebooks, in conjunction with a message passing algo-

rithm to perform the encoding at each stage. In order to derive the latter algorithm,

an unconstrained optimization problem formulation with undetermined coefficients,

is proposed instead of the strong typicality condition. Details of the implementation

of the scheme in several cases of the MD problem are discussed, specifically, the no

excess sum-rate case for binary sources, the case of successive refinement, and the no

excess marginal case for the uniform binary source. For all the aforementioned cases,

extensive tests were performed, which verify the effectiveness of the code. One of the

remaining open problems, which is currently under investigation, is to determine the
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coefficients involved in the encoder optimization problem, which is proposed as an

alternative formulation to the strong typicality encoding, and to establish the equiv-

alence between the two approaches. Moreover, for future work, it is of interest to

address the optimization of the involved LDGM codes using, for instance, techniques

similar to the density evolution developed for LDPC codes.

The second proposed scheme is for the quadratic Gaussian source, in the L-

description case with individual and central distortion constraints. It is shown first

that the coding problem for an arbitrary point on the dominant face of the El Gamal-

Cover (EGC) rate region, can be converted to that for a vertex of a K-description

EGC rate region for some K ≤ 2L − 1. The latter problem can be solved via suc-

cessive coding, and in the quadratic Gaussian case, each successive coding step can

be reduced to a Gaussian quantization operation via Gram-Schmidt orthogonaliza-

tion. Finally, each quantization step is implemented using a multilevel LDGM code

with a message passing algorithm. Our tests show very good performance of the

scheme in practice. The approach used in our experiments for selecting the finite

output alphabet needed in the multilevel LDGM code construction, is inspired from

the central limit theorem. An interesting problem which remains open is to design

the optimal output alphabet and the corresponding output distribution, given some

fixed parameter of the code which limits the message passing algorithm complexity.
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Appendix A

Proof of Proposition 3.1

In this appendix we present the proof of Proposition 1.

Proof of Proposition 1. Since D(d0) is symmetric, it suffices to solve (3.3) for α ≥ 1.

Note that

E[d(X,Xt)]

= E[d(X0 ⊕ Z,Xt)]

= E[E[d(X0 ⊕ Z,Xt)|Z]]

= (1− d0)E[d(X0, Xt)] + d0(1− E[d(X0, Xt)])

= (1− 2d0)E[d(X0, Xt)] + d0, t = 1, 2. (A.1)

By plugging (A.1) into (3.3), dividing the cost function by (1−2d0), which is positive

because d0 < 1/2, and eliminating the additive constant, (3.3) becomes equivalent to

min
pX1X2|X0

:I(X1;X2)=0
αE[d(X0, X1)] + E[d(X0, X2)]. (A.2)
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Note that the above optimization problem has a linear cost function, but the con-

straint I(X1;X2) = 0 is non-linear. On the other hand, if the marginal distribution

of X1 is fixed, the constraint I(X1;X2) = 0 becomes linear. Therefore, our approach

to solve the problem is to fix the marginal distribution of X1, in other words, let

pX1(0) = ε, for some ε, 0 < ε < 1, and solve the parameterized problem P (ε); then

optimize over all possible values of ε. In order to proceed let us adopt the following

notation

y1 = pX0X1X2(0, 1, 1), y2 = pX0X1X2(1, 0, 0), (A.3)

y3 = pX0X1X2(1, 1, 0), y4 = pX0X1X2(1, 0, 1),

y5 = pX0X1X2(0, 1, 0), y6 = pX0X1X2(0, 0, 1),

y7 = pX0X1X2(0, 0, 0), y8 = pX0X1X2(1, 1, 1).

Then

d∗1 , E[d(X0, X1)] = y1 + y2 + y4 + y5, (A.4)

d∗2 , E[d(X0, X2)] = y1 + y2 + y3 + y6.

Let y = (y1, · · · , y8). Note that

δ∗ , pX0(0) =
δ − d0

1− 2d0

.
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Clearly, we have δ∗ ≤ 1/2. Thus, problem (A.2) is equivalent to

min
0<ε<1

min
y
C(ε,y) = (α + 1)y1 + (α + 1)y2 +

+y3 + αy4 + αy5 + y6 (A.5)

subject to the following constraints

8∑
i=1

yi = 1, (A.6)

y1 + y5 + y6 + y7 = δ∗,

y2 + y4 + y6 + y7 = ε,

y2 + y7 =
ε

1− ε
(y3 + y5),

yi ≥ 0, 1 ≤ i ≤ 8.

The second constraint in (A.6) is due to the fact that pX0(0) = δ∗, while the third

follows from pX1(0) = ε. The fourth is implied by the independence of X1 and X2.

Precisely, it is derived from the relation pX1(0)pX2(0) = pX1X2(0, 0). It is easy to see

that the equalities in (A.6) are linearly independent equations. Let P (ε) denote the

linear optimization problem of minimizing C(ε,y) over all vector variables y satisfying

constraints (A.6).

First we solve problem P (ε) for the case when ε ≤ 1/2. In this case we eliminate
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the variables y5, y6, y7, y8 from the four equations in (A.6) and obtain

y5 = −y1 + y2 + y4 + δ∗ − ε, (A.7)

y6 =
ε

1− ε
y1 −

ε

1− ε
y2 −

ε

1− ε
y3 −

1

1− ε
y4 +

ε(1− δ∗)
1− ε

,

y7 = − ε

1− ε
y1 +

(
ε

1− ε
− 1

)
y2 +

ε

1− ε
y3 +

ε

1− ε
y4

+
ε(δ∗ − ε)

1− ε
,

y8 = −y2 − y3 − y4 + 1− δ∗.

Plugging into the cost function, we obtain

C(ε,y) = α(δ∗ − ε) +
ε(1− δ∗)

1− ε

+

(
1 +

ε

1− ε

)
y1 +

(
2α + 1− ε

1− ε

)
y2

+

(
1− ε

1− ε

)
y3 +

(
2α− 1

1− ε

)
y4. (A.8)

Denote g1(ε) = α(δ∗ − ε) + ε(1−δ∗)
1−ε . It can be easily verified that the coefficients of

all variables in (A.8) are non-negative when ε ≤ 1/2, and they are strictly positive

when ε < 1/2 (recall that α ≥ 1). Thus, by setting all variables y1, y2, y3, y4 to 0 we

obtain a lower bound on the cost function as C(ε,y) ≥ g1(ε). This lower bound can

be achieved by a feasible solution y if the values of y5, y6, y7, y8 obtained by replacing

y1, y2, y3, y4 by 0 in equalities (A.7) are non-negative. Obviously, the latter condition

holds when ε ≤ δ∗. Denote by C∗(ε) the value of the cost function of problem P (ε)

at optimality. We formulate the conclusion of the above discussion in the following

assertion.
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Assertion1. For α ≥ 1 and 0 < ε ≤ 1/2, we have

C∗(ε) ≥ g1(ε).

Moreover, when 0 < ε ≤ δ∗ the above relation holds with equality and a solution of

P (ε) is y(ε) defined by

y1(ε) = y2(ε) = y3(ε) = y4(ε) = 0,

y5(ε) = δ∗ − ε, y6(ε) =
ε(1− δ∗)

1− ε
,

y7(ε) =
ε(δ∗ − ε)

1− ε
, y8(ε) = 1− δ∗. (A.9)

Furthermore, when 0 < ε ≤ δ∗ and ε 6= 1/2, the above solution of P (ε) is unique.

We proceed by computing the minimum value of g1(ε). The derivative of g1(ε)

with respect to ε is g′1(ε) = −α + 1−δ∗
(1−ε)2 . Equation g′1(ε) = 0 has a unique solution in

the interval (0, 1), namely

ε1 = 1−
√

(1− δ∗)/α.

Clearly, when α ≤ 1/(1 − δ∗), we have ε1 ≤ δ∗. Moreover, the function g′1(·) has a

negative sign to the left of ε1, and a positive sign to the right of ε1. The aforementioned

discussion validates the following assertion.

Assertion 2. For 1 ≤ α ≤ 1/(1− δ∗),

min
0<ε≤1/2

g1(ε) = g1(ε1) = 2
√
α(1− δ∗)− (α + 1)(1− δ∗),

and ε1 is the unique point of minimum.
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Next we will analyze the case when ε > 1/2. By eliminating the variables

y3, y4, y7, y8 from the four equalities in (A.6), and replacing in the cost function,

we obtain

C(ε,y) = α(ε− δ∗) +
δ∗(1− ε)

ε

+

(
2α + 1− 1− ε

ε

)
y1 +

(
1 +

1− ε
ε

)
y2

+

(
2α− 1

ε

)
y5 +

(
1− 1− ε

ε

)
y6. (A.10)

Denote g2(ε) = α(ε − δ∗) + δ∗(1−ε)
ε

. Because 1/2 < ε < 1 and α ≥ 1, the coefficients

of variables in (A.10) are non-negative. Thus we obtain a lower bound on the cost

function by setting y1, y2, y5, y6 to 0. Precisely, the following holds

C∗(ε) ≥ g2(ε), 1/2 < ε < 1, α ≥ 1. (A.11)

The derivative of g2(ε) is g′2(ε) = α − δ∗

ε2
, and it has a unique zero point in the

interval (0, 1), namely ε2 =
√
δ∗/α. It can be easily verified that g′2(ε) is negative

to the left of ε2, and it is positive to the right of ε2. Consequently, ε2 is a point of

minimum for g2(ε) on the interval (0, 1). Thus, we conclude that

min
1/2<ε<1

g2(ε) ≥ g2(ε2) = 2
√
αδ∗ − (α + 1)δ∗. (A.12)

Finally, in order to reach the solution of problem (A.5), we need one more result,

which is stated next.
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Assertion 3. The following relation holds

g1(ε1) ≤ g2(ε2), (A.13)

with strict inequality when δ < 1/2, and with equality when δ = 1/2.

Proof of Assertion 3. Inequality (A.13) is equivalent to

2
√
α(1− δ∗)− (α + 1)(1− δ∗) ≤ 2

√
αδ∗ − (α + 1)δ∗,

which is further equivalent to

2
√
α(
√

1− δ∗ −
√
δ∗) ≤ (α + 1)((1− δ∗)− δ∗). (A.14)

When δ = 1/2, it follows that δ∗ = 1/2 and relation (A.14) holds with equality.

When δ∗ < 1/2, one has
√

1− δ∗ −
√
δ∗ > 0 and by multiplying both sides with

1/(
√

1− δ∗ −
√
δ∗), (A.14) reduces to

2
√
α ≤ (α + 1)(

√
1− δ∗ +

√
δ∗),

which holds with strict inequality due to 0 < 2
√
α ≤ α + 1 and 1 <

√
1− δ∗ +

√
δ∗.

�

Further, by combining Assertions 1, 2, 3, (A.11) and (A.12), we conclude that

when 1 ≤ α ≤ 1/(1− δ∗), a solution to problem (A.5) is (ε1,y(ε1)). Moreover, when

δ < 1/2 this solution is unique. This solution yields the following values for d1, d2
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(via (A.4) and (A.1))

d1 = d0 + (1− 2d0)(
√

1− δ∗(1/
√
α−
√

1− δ∗)), (A.15)

d2 = d0 + (1− 2d0)(
√

1− δ∗(
√
α−
√

1− δ∗)).

Eliminating α from the above relations we obtain

(d1 + 1− 2d0 − δ)(d2 + 1− 2d0 − δ) =

(1− d0 − δ)(1− 2d0). (A.16)

Furthermore, for any pair (d1, d2) with d0 ≤ d1 ≤ d2, satisfying (A.16), the value of

α satisfying equations (A.15) is

α =
(1− d0 − δ)(1− 2d0)

(d1 + 1− 2d0 − δ)2
, (A.17)

and clearly we have 1 ≤ α ≤ 1/(1 − δ∗). Thus we have shown that the set of

solutions to problem (3.1) for all 1 ≤ α ≤ 1/(1− δ∗), equals the portion of hyperbola

(A.16) corresponding to d0 ≤ d1 ≤ d2. The solution pair (d1, d2) corresponding to

α = 1/(1 − δ∗) is (d1, d2) = (d0, δ). Since the value of d1 in the solution to (3.1) is

non-increasing as α increases, but on the other hand, d1 cannot go below d0, it follows

that for any α > 1/(1− δ∗) the unique solution to problem (3.1) is (d1, d2) = (d0, δ).

Using further the fact that D(d0) is symmetric the first conclusion of the proposition

follows.

To complete the proof note that, for any pair (d1, d2), with d1 ≤ d2, which satisfies

equation (A.16), by using (A.17) and computing the solution vector y(ε1) via (A.9),
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we find the joint pdf pX0X1X2 specified by

pX0X1X2(0, 1, 1) = pX0X1X2(1, 0, 0) = 0,

pX0X1X2(1, 1, 0) = pX0X1X2(1, 0, 1) = 0,

pX0X1X2(0, 1, 0) =
d1 − d0

1− 2d0

,

pX0X1X2(0, 0, 1) =
d2 − d0

1− 2d0

,

pX0X1X2(0, 0, 0) =
δ + d0 − d1 − d2

1− 2d0

,

pX0X1X2(1, 1, 1) =
1− δ − d0

1− 2d0

.

Finally, by computing pXX1X2 according to

pXX1X2(x, x1, x2) =
∑
x0=0,1

pX0X1X2(x0, x1, x2)pX|X0(x|x0),

which holds because X−X0− (X1, X2) forms a Markov chain, equalities (3.4) follow.

Further, note that relations (3.4) are symmetric in (X1, d1) and (X2, d2). We conclude

that they also hold for d1 > d2.

We have already established the uniqueness of the conditional probability pX0X1X2|X

when δ < 1/2. Let us analyze now the case δ = 1/2. In this case one has δ∗ = 1/2

and 1 ≤ α ≤ 2. Then ε2 =
√

1
2α

= 1ε1 ≥ 1/2. By Assertion 3, the following equality

is valid

g2(ε2) = min
ε:0<ε<1

C∗(ε.)

Note that when ε = ε2 and α < 2 the coefficients of y1, y2, y5, y6 in (A.10) are positive

100



Ph.D. Thesis - Ying Zhang McMaster - Electrical Engineering

for ε = ε2. Therefore, in order to achieve the minimum value g2(ε2) in equation (A.10)

the variables y1, y2, y5, y6 must be set to 0. By substituting ε by ε2 and y1, y2, y5, y6

by 0 in (A.6), one obtains another solution to problem (A.5) as (ε2,y
′), where y′ =

(y′1, · · · , y′8) defined as

y′1 = y2(ε1), y′2 = y1(ε1), y′3 = y6(ε1), y′4 = y5(ε1),

y′5 = y4(ε1), y′6 = y3(ε1), y′7 = y8(ε1), y′8 = y7(ε1).

Moreover, we conclude that (ε1,y(ε1) and (ε2,y
′) are the only solutions to problem

(A.5). Further, in order to distinguish between the pairs of variables (X1, X2) cor-

responding to the two different solutions, let us denote by (X ′1, X
′
2) the pair derived

from (ε2,y
′). It can be verified that

pX0X′1X
′
2
(x0, x1, x2) = pX0X1X2(x0 ⊕ 1, x1 ⊕ 1, x2 ⊕ 1).

Using further the fact that X −X0 − (X1, X2) forms a Markov chain we obtain

pXX′1X′2(x0, x1, x2)

=
∑
x0=0,1

pX0X′1X
′
2
(x0, x1, x2)pX|X0(x|x0)

=
∑
x0=0,1

pX0X1X2(x0 ⊕ 1, x1 ⊕ 1, x2 ⊕ 1)pX|X0(x⊕ 1|x0 ⊕ 1)

= pXX1X2(x⊕ 1, x1 ⊕ 1, x2 ⊕ 1).

With this observation, the proof is complete. �
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Appendix B

Proof of Upper Bound Claims of

No Excess Marginal Rate Case

In this appendix we prove the claims formulated in Section 3.2.

Clearly, the mapping ψ0(·) which minimizes the central distortion must satisfy the

equality

ψ0(xc, x1, x2) = arg max
x=0,1

pXXcX1X2(x, xc, x1, x2). (B.18)

Using the fact that X −X1−Xc, X −X2−Xc, and X1− (X,Xc)−X2 form Markov

chains, we obtain

pXXcX1X2(x, xc, x1, x2) = pXXc(x, xc)pX1X2|XXc(x1, x2|x, xc)

= pXXc(x, xc)pX1|XXc(x1|x, xc)pX2|XXc(x2|x, xc)

=
pXXcX1(x, xc, x1)pXXcX2(x, xc, x2)

pXXc(x, xc)

=
pX1(x1)pX|X1(x|x1)pXc|X1(xc|x1)pX2(x2)pX|X2(x|x2)pXc|X2(xc|x2)

pXc(xc)pX|Xc(x|xc)
.
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Thus, relation (B.18) is equivalent to

ψ0(xc, x1, x2) = arg max
x=0,1

pX|X1(x|x1)pX|X2(x|x2)

pX|Xc(x|xc)
.

In order to solve this maximization we will consider different cases for (x1, x2, xc).

Let us first define

h(b) ,
pX|X1(b|x1)pX|X2(b|x2)

pX|Xc(b|xc)
.

Case 1. x1 = x2 = xc = b. Then the following relations hold

h(b)

h(1− b)
=

1− d1

d1

1− d2

d2

s

1− s
.

Because the function 1−x
x

is decreasing for x > 0, and d2 ≤ s, it follows that 1−d2
d2

s
1−s ≥

1. The fact that d1 ≤ 1/2 implies 1−d1
d1
≥ 1. Combining them we obtain h(b)

h(1−b) ≥ 1.

Case 2. x1 = x2 = b, xc = 1− b. Then we have

h(b)

h(1− b)
=

1− d1

d1

1− d2

d2

1− s
s
≥ 1,

due to 1−x
x
≥ 1 for 0 < x ≤ 1/2.

Case 3. x1 = b, x2 = xc = 1− b. In this case, the following is valid

h(b)

h(1− b)
=

1− d1

d1

d2

1− d2

1− s
s

.

Relation d1 ≤ d2 implies that 1−d1
d1

d2
1−d2 ≥ 1. Using further the inequality 1−s

s
≥ 1, we

obtain h(b)
h(1−b) ≥ 1.
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Case 4. x1 = xc = b, x2 = 1− b. Then

h(1− b)
h(b)

=
d1

1− d1

1− d2

d2

1− s
s

.

We have h(1−b)
h(b)

≥ 1 if and only if s ≤ α(d1, d2) , d1(1−d2)
d1(1−d2)+d2(1−d1)

. Note that

α(d1, d2) ≤ 1/2. Moreover, d2 ≤ α(d1, d2), is equivalent to 1−d1
d1
≤ (1−d2)2

d22
, which

is true. Consequently, the interval [d2, α(d1, d2)] is nonempty. Thus, the proof of

relation (3.7) is complete.

Now let us analyze the central distortion when s ≤ α(d1, d2). We have

P(X 6= ψ0(Xc, X1, X2)) = P(Xc = X)− P(X = Xc = X1 = X2) + P(X 6= Xc, Xc = X1 = X2)

= 1− s− (1− d1)(1− d2)(1− s− d1)(1− s− d2)

(1− s)(1− 2d1)(1− 2d2)
+
d1d2(1− s− d1)(1− s− d2)

s(1− 2d1)(1− 2d2)
.

Let f(s) denote the last expression. By computing the first and second order deriva-

tives with respect to s we obtain

f ′(s) =
1

(1− 2d1)(1− 2d2)
[d1 + d2 − 2d1d2 − d1d2(1− d1)(1− d2)

( 1

s2
+

1

(1− s)2

)
],

f”(s) =
2d1d2(1− d1)(1− d2)

(1− 2d1)(1− 2d2)

( 1

s3
− 1

(1− s)3

)
.

Since f”(s) ≥ 0 for 0 < s ≤ 1/2, it follows that f(s) is convex. It can be verified that

f(d2) = f(α(d1, d2)). Consequently, the function f(·) has a point of minimum inside

the interval [d2, α(d1, d2)]. Since f(·) is strictly convex over (d2, α(d1, d2)), it follows

that it has a unique point of minimum s0, which satisfies f ′(s0) = 0.
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Equation f ′(s) = 0 is equivalent to

β(d1, d2)s2(1− s)2 + 2s(1− s)− 1 = 0,

which can be easily solved since it is quadratic in s(1−s). This equation has only two

real solutions, of which only solution (3.9) is smaller than 1/2. With this observation,

the proof is complete.
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