DISTRIBUTIVE LATTICES IN A LOCALIC TOPOS

DISTRIBUTIVE LATTICES IN A LOCALIC TOPOS

BY
SUSAN F. MILNER, B.A., B.Sc.

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science

```
MASTER OF SCIENCE (1986)
(Mathematics)
                                    McMaster University
                                    Hamilton, Ontario
TITLE: Distributive Lattices in a Localic Topos
AUTHOR: Susan F. Milner, B.A. (Bishop's University, Quebec)
                                B.Sc.(Bishop's University, Quebec)
SUPERVISOR: Professor Bernhard Banaschewski
NUMBER OF PAGES: v, 43
```


ABSTRACT

In this thesis we examine various properties of bounded distributive lattices in the topos of sheaves on a locale. We prove that BooSh\&, the category of Boolean algebras in Sh\&્, is a reflective subcategory of סSh\&્, the category of bounded distributive lattices in Sh\&. Injective distributive lattices in Sh\& are discussed, and two methods of constructing the injective hull of any lattice in סSh\& are described. We characterize indecomposable injectives in סSh\& and show that they are exactly the prime bounded distributive lattices. Simple lattices in Sh\& are described and characterized in terms of the points of \mathcal{L}. We examine cogenerating sets in \varnothing Sh $\mathscr{\mathscr { L }}$ and the relationships among simple, prime and cogenerating objects in the category.
 is complete and when a cogenerator; we then prove that any locale is isomorphic to the locale of congruences of $\mathcal{Z}_{\mathscr{L}}$.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to
Professor B. Banaschewski for his encouragement, great patience, careful reading of the manuscript, and helpful suggestions during the course of this thesis.

I am grateful to McMaster University and to the National Science and Engineering Research Council of Canada for their generous financial support.

Further thanks go to Gordon Sinnamon, not only for the use of his computer as word-processor, but for accelerating the development of his program for creating and printing special symbols.

Finally, I am deeply indebted to my parents for the years of support and encouragement they have given me

TABLE OF CONTENTS

Page
PRELIMINARIES 1
CHAPTER 1 BOOSH\& IS A REFLECTIVE SUBCATEGORY OF ळSH\& 6
CHAPTER 2 INJECTIVES AND INJECTIVE HULLS IN ळSH\& 25
CHAPTER 3 OTHER PROPERTIES OF DISTRIBUTIVE LATTICES IN SH\& 36
BIBLIOGRAPHY 43

CHAPTER 1: BOOSH\& IS A REFLECTIVE SUBCATEGORY OF よSH\&.

In this chapter we will define the internal
congruence lattice $\mathcal{L A}$, for each $A \in \lesssim S h \mathcal{L}$, in terms of the external lattice ConA of all congruences on A and show that ConA is a locale and δA is a bounded distributive lattice in Sh\&. We then define a map $\nabla: A \rightarrow \Sigma A$ which we use to prove that BooSh\& is a reflective subcategory of ฌSh£.

It is useful first to recall from universal algebra the definition of a congruence Θ on an algebra A as an equivalence relation which is also a subalgebra of $A \times A$. Then a congruence θ on an algebra $A \in \operatorname{Sh\mathscr {L}}$ is a subsheaf $\Theta \subseteq A \times A$ such that, for each place $U \in \mathcal{L}, \Theta U$ is a congruence on the algebra AU.

We describe ConA, for any algebra $A \in S h \notin$ and hence for bounded distributive lattices, as follows: for $\theta_{i} \in \operatorname{Con} A$, meet is given by intersection, with $\left(\Lambda_{i} \theta_{i}\right) U=$ $\cap_{i}{ }_{i} U$. Join is given by $\left(V_{i}\right) U \doteq V_{i} \Theta_{i} U$, that is, the sheaf reflection of the presheaf $V_{i} U$, where the latter join is in the congruence lattice of AU.
1.1 Proposition: For A any algebra in Sh\&, conA is a complete meet-continuous lattice. We check that join and meet as given produce subsheaves and congruences on $A U$. For $U \leadsto n_{i} U$, note that the intersection of subsheaves $\Theta_{i} \subseteq A \times A$ is itself a subsheaf of $A \times A$, while the intersection of congruences is a congruence, so $\bigcap_{i} \Theta_{i} U$ is à subsheaf of $A U \times A U$ anda a congruence on $A U$ for each $U \in \mathcal{L}$. For $U \leadsto V_{i} U$, we need only that $V \Theta_{i} U$ is a subpresheaf of $A \times A, i . e$. a contravariant functor from \mathcal{L} into the category of algebras, with an appropriate restriction map.

Let $V e_{i} V$ be the congruence on $A V$ generated by the up-directed union of the congruences $\Theta_{i} V$ on $A V$. Then a homomorphism $r: A U \rightarrow A V$ induces a map \bar{r} from the congruence lattice of $A U$ to that of $A V$. Since taking inverse images under \bar{r} preserves meets, \bar{r} itself preserves joins and takes $V_{i}{ }_{i} U$ to $V \theta_{i} V$. Then, because each component of the subpresheaf belongs to the congruence lattice on $A U$, the subsheaf generated by the subpresheaf is a congruence on $A U$.

Now, meet is given by intersection, so ConA is complete in the usual lattice-theoretic sense.

ConA is also meet-continuous,i.e. for $\Phi, \Theta_{i} \in \operatorname{con} A$, $\Phi \wedge V_{i}=V_{i} \Phi \wedge \Theta_{i}$, as follows: at $U \in \mathcal{L},\left(\Phi \wedge V_{i}\right) U=\Phi U \cap$ $\left(V_{i} \Theta_{i}\right) U \doteq \Phi U \cap \underset{i}{V}\left(\Theta_{i} U\right) . \quad$ Since $\underset{i}{V_{i}}\left(\Theta_{i} U\right)$ is a presheaf and ΦU is
perforce a presheaf，we require the sheaf reflection of their intersection．Then we have $\Phi U \cap \bigvee_{i}\left(\Theta_{i} U\right)={\underset{I}{V}}\left(\Phi U \cap \Theta_{i} U\right)$ ， because ΦU and $\Theta_{i} U$ ，for each $i, b e l o n g$ to the congruence lattice of $A U$ for each $U \in \mathcal{L}$ ．This congruence lattice is algebraic and therefore meet－continuous．We see that we now have the presheaf which generates the sheaf $\left(\Psi_{\Phi} \wedge \Theta_{i}\right) U$ ，from the definition of join in ConA．Hence ConA is complete and meet－continuous for any algebra $A \in$ Sh\＆．

Corollary：For A \in よShe，ConA is a locale．
The congruence lattice of $A U$ for each $U \in \mathcal{L}$ is complete for A a distributive lattice in Sh\＆，therefore we have that $U \leadsto V_{i} U$ is a subpresheaf．Then for $\Phi, \Theta_{i} \in \operatorname{Con} A$ ， $\left(\Phi \wedge V_{i}\right) U \doteq Y_{i}\left(\Phi U \cap \Theta_{i} U\right)$ ，which generates the sheaf $\left(\underset{i}{ }\left(\underset{A}{ } \wedge \theta_{i}\right) U\right.$ ．So ConA is distributive over arbitrary joins and hence is a locale．

We now define（よA）U $=\operatorname{Con}(A \mid U)$ for each $U \in \mathcal{Z}$ ，and proceed to show that this is a sheaf with values in \varnothing ．Note that，then，if we view $\left(\Omega^{A \times A}\right) U$ as the set of all subsheaves of $(A \times A) \mid U, L A \subseteq \Omega^{A \times A}$ ，since $\theta \in(L A) U=\operatorname{Con}(A \mid U)$ is a subsheaf of $A|U \times A| U=(A \times A) \mid U$ ．

1． 2 Proposition：よA \in bSh尺．
We show first that \check{A} defines a sheaf，
then that it indeed belongs to סSh\＆．

For $V \leq U \in \mathcal{L}$, we have the restriction map

$$
\operatorname{Con}(A \mid U) \rightarrow \operatorname{Con}(A \mid V)
$$

$$
\theta \quad \leadsto \quad \theta \mid V
$$

where $(\theta \mid V) W=\theta W$ for $W \leq V$. This is clearly a subpresheaf of $\Omega^{A X A}$, and hence automatically is separating. To show that $よ A$ is patching, take $U=V_{i \in I_{i}} U_{i}$ and $\Theta_{i} \in(よ A) U_{i}=$ $\operatorname{Con}\left(A \mid U_{i}\right)$ with $\Theta_{i}\left|U_{i} \wedge U_{k}=\Theta_{k}\right| U_{i} \wedge U_{k}$. . Since $\operatorname{Con}\left(A \mid U_{i}\right) \subseteq\left(\Omega^{A X A}\right) U_{i}$, there exists a unique $\Theta \in\left(\Omega^{A \times A}\right) U$ with $\theta \mid U_{i}=\Theta_{i}$, because $\Omega^{A X A}$ is a sheaf. This "patched together" Θ is the subsheaf of $A|U \times A| U$ such that, for any $a, b \in A V$ and $V \leq U,(a, b) \in \Theta V$ iff $\left(a\left|V \wedge U_{i}, b\right| V \wedge U_{i}\right) \in \Theta_{i}\left(V \wedge U_{i}\right)$ for all $i \in I$.

To see that Θ is the patching element required to make $\mathcal{L A}$ into a subsheaf of $\Omega^{A X A}$, we need to check that each ΘV for $V \leq U$ is a congruence on $A V$. Clearly, $\left(a\left|V \wedge U_{i}, a\right| V \wedge U_{i}\right) \in \Theta_{i}\left(V \wedge U_{i}\right)$ for each $i \in I$, since each Θ_{i} is reflexive, and so ΘV is reflexive for all $V \leq U$.

Similarly, since each Θ_{i} is symmetric, if $(a, b) \in \Theta V$ then $\left(a\left|V \wedge U_{i}, b\right| V \wedge U_{i}\right) \in \Theta_{i}\left(V \wedge U_{i}\right)$, for each $i \in I$. Then $\left(b\left|V \wedge U_{i}, a\right| V \wedge U_{i}\right) \in \Theta_{i}\left(V \wedge U_{i}\right)$ and therefore $(b, a) \in \Theta V$, so ΘV is symmetric. And ΘV is transitive since $(a, b) \in \Theta V$, $(b, c) \in \Theta V$ means that $\left(a\left|V \wedge U_{i}, b\right| V \wedge U_{i}\right) \in \Theta_{i}\left(V \wedge U_{i}\right)$ and
$\left(b\left|V \wedge U_{i}, c\right| V \wedge U_{i}\right) \in \Theta_{i}\left(V \wedge U_{i}\right)$ for each $i \in I$ and $V \leq U$. But $\Theta_{i}\left(V \wedge U_{i}\right)$ is transitive, and so (a|V^U $\left.i_{i}, c \mid V \wedge U_{i}\right)$ $\epsilon \Theta_{i}\left(V \wedge U_{i}\right)$ and $(a, c) \in \Theta V$. Finally, $\Theta_{i} U_{i}$ is a sublattice of $A U_{i} \times A U_{i}$ for all $i \in I$, which implies that ΘV is a sublattice of $A V \times A V$ and hence a congruence on $A V$. Thus Θ is indeed the patching element required to make $L A$ a subsheaf of $\Omega^{A \times A}$. Now we need only show that the restriction maps $\operatorname{Con}(A \mid U) \rightarrow C o n(A \mid V)$ for $V \leq U$ are bounded lattice homomorphisms. Let $\alpha: \operatorname{Con}(A \mid U) \rightarrow C o n(A \mid V)$ be a restriction map taking Θ w $\theta \mid V$, where $(\Theta \mid V) W=\theta W$ for $W \leq V \leq U$, and let $\theta, \Phi \in \operatorname{Con}(A \mid U)$. Taking the component at W, we have that α preserves meets: $\quad(\alpha(\theta \wedge \Phi)) W=((\theta \wedge \Phi) \mid V) W=(\Theta \wedge \Phi) W$ $=\Theta W \cap \Phi W=(\Theta \mid V) W \cap(\Phi \mid V) W=(\alpha(\Theta) \wedge \alpha(\Phi)) W$. Joins are preserved in an analoguous fashion. Further, $(\alpha(T)) W=$ $(T \mid V) W=T W$ where T is the top of $C o n(A \mid U)$, and $(\alpha(\perp)) W=$ $(\perp \mid V) W=\perp W$ where \perp is the bottom of $C o n(A \mid U)$. So we have that $(\Sigma A) U=C o n(A \mid U)$ defines a sheaf with values in D, or, equivalently, a bounded distributive lattice in Sh\&.

We next define a map $\nabla: A \rightarrow \mathcal{A} \rightarrow$ as having components $A U \rightarrow(よ A) U=C o n(A \mid U)$ for each $U \in \mathcal{L}$, given for $a \in A U$ and $V \leq U$ by $a \leadsto \nabla_{a} V=\{(x, y) \mid x \vee(a \mid V)=Y \vee(a \mid V)\} \subseteq A V \times A V$. 1.3 Proposition: $\nabla: A \rightarrow \Sigma A$ is an embedding in Φ Sh.

We require, for $V \leq U \in \mathcal{L}$, that the following square commute:

that is, $\nabla_{U}(a) \mid V=\nabla_{V}(a \mid V)$ for $a \in A U$. Now $\nabla_{V}(a \mid V) W=\nabla_{a \mid V} W^{W}$ $=\{(x, y)|x \vee(a \mid V)| W=y \vee(a \mid V) \mid W\}$, for $W \leq V$. But $(a \mid V) \mid W$ $=a \mid W$, so $\nabla_{V}(a \mid V) W=\{(x, y) \mid x \vee(a \mid W)=y \vee(a \mid W)\}$. On the other hand, $\left(\nabla_{U}(a) \mid V\right) W=\nabla_{a} W=\{(x, Y)|x \vee a| W=Y \vee a \mid W\}$ for $W \leq V$. Hence the two are equal, and ∇ is a natural transformation between the presheaves and thus a sheaf map. To show that the mapping $\nabla: A \rightarrow \mathcal{L} \rightarrow$ is a lattice embedding, we first show that it is a lattice homomorphism. Meets are preserved, for if $(x, y) \in \nabla_{a} V \cap \nabla_{b} V$, then $x v a \mid v$ $=y \vee a \mid v$ and $x \vee b|v=y \vee b| V$. Then $(x \vee a \mid V) \wedge(x \vee b \mid V)$ $=(y \vee a \mid V) \wedge(y \vee b \mid V)$, that is, $x \vee(a|V \wedge b| V)$ $=y \vee(a|V \wedge b| V)$, so $x \vee((a \wedge b) \mid V)=y \vee((a \wedge b) \mid V)$. Hence (x, y) also belongs to $\nabla_{a \wedge b} V$. For the reverse inclusion, take $(x, y) \in \nabla_{a \wedge b} V$, so $x \vee((a \wedge b) \mid V)=$ $\mathrm{Y} \vee((\mathrm{a} \wedge \mathrm{b}) \mid \mathrm{V})$. Taking the join with $\mathrm{a} \mid \mathrm{V}$ on both sides of this equality, we have that $x \vee(((a \wedge b) \vee a) \mid v)=$ $Y \vee(((a \wedge b) \vee a) \mid V)$, then by absorption $x \vee a \mid v=$ $y \vee a \mid v$. Taking the join with $b \mid V$ rather than $a \mid v$ yields $(x, y) \in \nabla_{b} V$ instead of $(x, y) \in \nabla_{a} V$. So $(x, y) \in \nabla_{a} V \cap \nabla_{b} V$. To show that ∇ preserves joins, we first use the
preceeding result to see that, for $a \leq b, \nabla_{a V} \cap \nabla_{b} V=$ $\nabla_{a \wedge b} V=\nabla_{a} V . \quad$ It is clear then that $\nabla_{a} V \subseteq \nabla_{a v b} V$ and $\nabla_{b} V \subseteq \nabla_{a v b} V . \quad$ Conversely, let $(x, y) \in \nabla_{a v b} V . \quad$ Now, $(x, x \vee a \mid V) \in \nabla_{a} V$ for all $x \in A V$. By hypothesis, $(x \vee a|V, y \vee a| V) \in \nabla_{b} V$. Composing, we have that $(x, y) \in$ $\nabla_{a} V \circ \nabla_{b} V \circ \nabla_{a} V \subseteq \nabla_{a} V \vee \nabla_{b} V \doteq\left(\nabla_{a} v \nabla_{b}\right) V$.

By definition, $\nabla_{0} V=\{(x, y)|x \vee 0| V=Y \vee O \mid V\}=$ $\{(x, y) \mid x=y\}$, which is the bottom \perp_{V} of the congruence lattice (よA)V. Similarly, $\nabla_{e} V=\{(x, y)|x \vee e| V=Y \vee e \mid V\}=$ $\{(x, y)|e| V=e \mid V\}$, which is the top T_{V} of (よA)V. Hence the morphism $\nabla: A \rightarrow \mathcal{L} \rightarrow$ is a lattice homomorphism.

To see that ∇ is a monomorphism, we show that, for all $V \leq U$ in \mathcal{L} and $a, b \in A U, \quad \nabla_{a}=\nabla_{b} V$ iff $a=b$. Taking $\nabla_{a} V=\nabla_{b} V$, we note that since $0 \vee a|V=a| v \vee a \mid v$, $(0, a) \in \nabla_{a} V$. Then by hypothesis, $0 \vee b|V=a| V \vee b \mid V$, which implies that $\mathrm{a} \leq \mathrm{b}$. Similarly, $\mathrm{b} \leq \mathrm{a}$, hence we have equality. The reverse implication is trivial, and so ∇ is a monomorphism.

We now define $\Delta: A \rightarrow$ LA componentwise, for $V \leq U \in \mathscr{L}$ and $a \in A U$, as $A U \rightarrow C o n(A \mid U)$, given by a $\leadsto \Delta_{a} V=$ $\{(x, y)|x \wedge a| V=Y \wedge a \mid V\} \subseteq A V \times A V$.
1.4 Proposition: $\triangle: A \rightarrow \delta A$ is a dual lattice embeding.

Begin by forming the dual A^{*} of bounded distributive lattice A by interchanging meets and joins as well as top and bottom elements．Clearly，A＊is again a bounded distributive lattice，and $\left(A^{*}\right) U=(A U)^{*}$ ．A subsheaf of $|A| \times|A|$ is a subalgebra of $A \times A$ iff it is a subalgebra of $(A \times A)^{*}=A^{*} \times A^{*}$, so $\mathcal{L}\left(A^{*}\right)=よ A \in$ DShむ．Then $\Delta: A \rightarrow よ A$ is equivalent to $\nabla^{*}: A^{*} \rightarrow よ\left(A^{*}\right)$ ，where v^{*} is in the dual lattice $A *: \quad a \leadsto \nabla * V=\left\{(X, Y)\left|x v^{*} a\right| V=y v^{*} a \mid V\right\}=$ $\{(x, y)|x \wedge a| V=y \wedge a \mid V\}=\Delta_{a} V$ ．This gives $\Delta_{a} \cap \Delta_{b}=\nabla_{a}^{*} \cap$ $\nabla_{b}^{*}=\nabla_{a \wedge * b}^{*}=\Delta_{a v b}$ and $\Delta_{a} v \Delta_{b}=\nabla_{a}^{*} v \nabla_{b}^{*}=\nabla_{a v * b}^{*}=\Delta_{a \wedge b}$. Clearly，$\Delta_{0} V$ is the top of the congruence lattice（よA＊）V， while $\Delta_{e} V$ is the bottom，so $\Delta: A \rightarrow \Sigma A$ is a dual lattice homomorphism．It is a monomorphism by the same argument that ∇ is，hence we have a dual lattice embedding．

Remark：Let $\theta_{a b}$ be the smallest congruence on $A \mid U$ containing (a, b) for $a, b \in A U$ ．Then $\nabla_{a}=\Theta_{0 a}$ as follows：$\quad(0, a) \in \nabla_{a} V$ since $0 \vee a|v=a| v=a|v \vee a| v$ ．For the reverse inclusion，if $(0, a) \in \Theta$ for any congruence Θ ， then $(x, x \vee a \mid V) \in \Theta V$ for any $x \in A V$, also $(y, y v a \mid V) \in \Theta V$. Let $(x, y) \in \nabla_{a} V$ ，that is，$x \vee a|V=y \vee a| V$ ，then by transitivity，$(x, y) \in \Theta V$ ，and in particular，$(x, y) \in \Theta_{0 a} V$ ． Using dual arguments，we also have $\Delta_{a}=\theta_{a e}$ ．

In the category Ens it is true that every bounded distributive lattice A is contained in a Boolean algebra $B A$ ， called its Boolean envelope，such that A generates $B A$ as a Boolean algebra．Further，the embedding of A into $B A$ is essential in \varnothing, is an epimorphism in \mathscr{D} ，and is the reflection map from \ltimes to Boo．We show here that the same holds true for DSh\＆and Booshz．

In order to prove that Boolean envelopes exist in历Sh\＆，we shall use the embedding $\nabla: A \rightarrow \mathcal{A} \rightarrow$ ．In fact，the desired Boolean envelope of A will be given by the Boolean part $\& A$ of $\mathcal{L A}$ ，that is，the sublattice of $\mathcal{L A}$ consisting，for each $U \in \mathcal{L}$ ，of the complemented elements of（よA）U．We want to show first that $\& A$ is generated by all ∇_{a}, Δ_{a} where $a \in A U$ and $U \in \mathcal{L}$.

1．5 Lemma：For $a \in A U$ and $U \in \mathcal{L}, \nabla_{a} \cap \Delta \Delta_{a}=\perp$ and

$$
\begin{aligned}
& \nabla_{a} v \Delta_{a}=I . \\
& \text { Take }(x, y) \in \nabla_{a} V \cap \Delta_{a} V \text { for } V \leq U \in \mathcal{L}, \quad a \in A U .
\end{aligned}
$$

Then perform the following calculation：

$$
\begin{aligned}
x & =x \wedge(x \vee a \mid V)=x \wedge(y \vee a \mid V)=(x \wedge y) \vee(x \wedge a \mid V) \\
& =(x \wedge y) \vee(y \wedge a \mid V)=y \wedge((x \wedge y) \vee a \mid V) \\
& =y \wedge((x \vee a \mid V) \wedge(y \vee a \mid V))=y \wedge(y \vee a \mid V)=y
\end{aligned}
$$

So $(x, Y) \in \perp_{V}$ ，where \perp_{V} is the bottom of $(よ A) V=\operatorname{Con}(A \mid V)$ ．
The reverse inclusion is trivial，so $\nabla_{a} \cap \Delta_{a}=1$ ．
Now consider $\nabla_{a} V \vee \Delta_{a} V$ ．Since $(O|V, a| V) \in \nabla_{a} V$ and
$(a|V, e| V) \in \Delta_{a} V$, we have that $(O|V, a| V),(a|V, e| V) \in \nabla_{a} V$ $\Delta_{a} V . \quad$ This implies that $(x, x \vee a \mid V),(x \vee a|V, e| V) \in \nabla_{a} V$ $\Delta_{a} V$, and hence $(x, e \mid V) \in \nabla_{a} V \vee \Delta_{a} V$ for all $x \in A \mid V$. The same is then true for $Y \in A \mid V$. Therefore, composing, $(x, y) \in \nabla_{a} V \vee \Delta_{a} V$ for all x and y in $A \mid V$, that is, $T \subseteq \nabla_{a} \vee \Delta_{a}$. As the opposite inclusion is trivial, we have the required result. Hence $\nabla_{a} V$ and $\Delta_{a} V$ are complements in (よA) U for all $V \leq U \in \mathcal{L}$.
1.6 Lemma: $\quad \Theta_{a b}=\Delta_{a} n \nabla_{b}$ for $a \leq b$.

For $a, b \in A U$ as given, we have the pair of equations $a \vee b=b=b \vee b$ and $a \wedge a=a=a \wedge b$, which imply respectively that $(a, b) \in \nabla_{b} U$ and $(a, b) \in \Delta_{a} U$. Hence $(a, b) \in\left(\Delta_{a} \cap \nabla_{b}\right) U$, and therefore $\Theta_{a b} \subseteq \Delta_{a} \cap \nabla_{b}$. Conversely, given a congruence Θ with $(a, b) \in \Theta U$, we have that $(Y \vee a|V, Y \vee b| V) \in \theta V$ for $V \leq U$ and $Y \in A V$. Taking $(x, y) \in \Delta{ }_{a} V \cap \nabla_{b} V$ for any $V \leq U$, we have that $x \wedge a \mid V=$ $Y \wedge a \mid V$ and $x \vee b|V=Y \vee b| V$. Performing the following calculation shows that $(x, y) \in \Theta V$:

$$
\begin{aligned}
x & =x \wedge(x \vee b \mid V)=x \wedge(y \vee b \mid V) \equiv B \cap(y \vee a \mid V) \\
& =(x \wedge y) \vee(x \wedge a \mid V)=(x \wedge y) \vee(y \wedge a \mid V) \\
& =Y \wedge(x \vee a \mid V) \equiv \bar{\equiv} B \vee(x \vee b \mid V)=y \wedge(y \vee b \mid V)=y
\end{aligned}
$$

So we have $\Delta_{a} \cap \nabla_{b} \subseteq \Theta$, and in particular, $\Delta_{a} \cap \nabla_{b} \subseteq \Theta_{a b}$.
1.7 Lemma: For $\Theta \in(\Sigma A) U, U \in \mathcal{L}, ~ \Theta U=V \Theta$ U U, where

Let $\Theta \in(よ A) U$ and $(a, b) \in \Theta U$ with $a \leq b$. Then
$\Theta_{a b} \subseteq \Theta$, implying $\Theta_{a b} U \subseteq \Theta U$, which in turn implies
$V\left(\Theta_{a b} U\right) \subseteq \theta U$, where the join is taken over all pairs
$(a, b) \in \Theta U$ with $a \leq b$. For the reverse inclusion, take
$(c, d) \in \Theta U . \quad T h e n(c, d) \in \Theta \in U$, which implies that $(c \wedge d, d)$ and $(c, c \wedge d) \in V\left(\Theta_{a b} U\right)$ over $(a, b) \in \Theta U$ with $a \leq b$, and thus ($c, d)$ is an element of the join.
1.8 Proposition: $\Theta \in(\& A) U$ implies that for some $U=V_{i}{ }_{i}$, $\underline{\theta l U}_{i}$ is, for each $i \in I$, a finite join of congruences $\Delta_{a} \cap \nabla_{b}$ on $A \mid U_{i}$, with $a \leq b$ $\underline{i n ~} A U_{i}$.

It is enough to prove this for $U=E$, the top of \mathcal{L}, since applying it to $\downarrow U$ produces the general result. Let $\Theta \in(\mathscr{H}) E \subseteq(よ A) E=\operatorname{Con}(A \mid E)=\operatorname{Con} A$. Then Θ is a congruence on A, and, since it belongs to $\mathcal{L A}, \Theta$ has a complement Φ such that $\Theta \wedge \Phi=1$ and $\Theta \vee \Phi=\top$. Now $E=V_{U}$ for all $U_{i} \in \mathcal{L}$, and since at any $U,(\Theta \vee \Phi) U \doteq \Theta U \vee \Phi U$, we have $\left(\Theta U_{i}\right) v\left(\Phi U_{i}\right)=T U_{i}$, the top of the congruence lattice of $A U_{i}$ for each i, where the join is in the congruence lattice of $A U_{i}$. Again we may take the case $U_{i}=E$; the result can be applied to $\downarrow U_{i}$. Thus we have Θ and Φ as congruences on A with $\Theta \wedge \Phi=1$ and $\Theta \vee \Phi=T$ in the congruence lattice of $A E$.

From the lemma we know that $\Theta E=V\left(\Delta_{a} E \cap \nabla_{b} E\right)$, for $(a, b) \in \Theta E$ and $a \leq b$. Then the fact that $\Theta E \vee \Phi E=T$, combined with the compactness of T in the congruence lattice of $A E$, shows that $V\left(\Delta_{a_{k}} E \cap \nabla_{b_{k}} E\right) \vee \Phi E=T$ for finitely many $\left(a_{k}, b_{k}\right) \in \Theta E, a_{k} \leq b_{k}$. Intersecting with ΘE, we get $(\Theta E \cap \Phi E) \vee\left(\Theta E \cap{\underset{k}{ }=1}_{\eta}^{V}\left(\Delta_{a_{k}} E \cap \nabla_{b_{k}} E\right)\right)=\Theta E$, and hence $\Theta E=$ $V_{k=1}^{n}\left(\Delta_{a_{k}} E \cap \nabla_{b_{k}} E\right)$ in the congruence lattice of $A E$.

We now want to show that $\Theta \|_{i}$ is equal to a finite join of congruences on $A \mid U_{i}$, that is $\theta \mid U={ }_{k=1}^{n}\left(\Delta_{a_{k}} U \cap \nabla_{b_{k}} U\right)$ in $\operatorname{con}(A \mid U)$, for all $U \in \mathcal{L}$. We have that $\Theta E \cap \Phi E=1$, hence $\Theta|U \cap \Phi| U=1$ on $A \mid U ;$ also, $\Theta E \vee \Phi E={\underset{k}{n}}_{\eta}^{\eta}\left(\Delta_{a_{k}} E \cap \nabla_{b_{k}} E\right) \vee \Phi E$ $=T$, and hence $\Theta U \vee \Phi U=V_{k=1}^{n}\left(\Delta_{a_{k}} U \cap \nabla_{b_{k}} U\right) \vee \Phi U=T$ on $A \mid U$, where $V\left(\Delta_{a_{k}} U \cap \nabla_{b_{k}} U\right) \subseteq \Theta \mid U$. Intersecting the equality with $\theta \mid U$ gives $\theta \mid U=V_{k=1}^{n}\left(\Delta_{a_{k}} U \cap \nabla_{b_{k}} U\right)$, as required.

Having already proved that $\Delta_{a}=\left(\nabla_{a}\right)^{\prime}$, we may now write $\theta \mid U_{i}=V_{k=1}^{n}\left(\left(\nabla_{a_{k}}\right)^{\prime} n \nabla_{b_{k}}\right)$ for each $\theta \in(\& A) U$ and $i \in I$. Hence the image of A under ∇ generates $\mathcal{A} A$ as a Boolean algebra, and \&A is indeed the Boolean envelope of A.
1.9 Proposition: $\nabla: A \rightarrow \mathcal{A} \rightarrow$ is an epimorphism in \wp Sh \mathcal{L}.

$$
\text { Let } A, B \in \oiint \text { Sh\& and } f, g: \mathscr{A} A \rightarrow B \text { be }
$$

homomorphisms in \wp Sh\& so that the following square commutes:

$$
\text { i.e., f } \nabla=G \nabla
$$

We want to show $f=g$, that is, for $\Theta \in(\mathscr{H} A) U$ and $U \in \mathcal{L}$, $f_{U}(\theta)=g_{U}(\Theta)$. Let $U=V_{i}$ where $\theta \mid U_{i}=V_{k=1}^{n}\left(\Delta_{a_{k}} \cap \nabla_{b_{k}}\right)$ for suitable $a_{k} \leq b_{k}$ in $A U_{i}$. Since f_{U} is a homomorphism, $f_{U}(\theta) \mid U_{i}=f_{U}\left(\theta \mid U_{i}\right)=f_{U_{i}}\left({\underset{k}{ }=1}_{\eta}^{V}\left(\Delta_{a_{k}} n \nabla_{b_{k}}\right)\right)={\underset{k}{V}=1}_{n}\left(f_{U_{i}}\left(\Delta_{a_{k}}\right) n\right.$ $\left.{ }^{f_{U_{i}}}\left(\nabla_{b_{k}}\right)\right)$. By hypothesis, $f_{U_{i}}\left(\nabla_{b_{k}}\right)=g_{U_{i}}\left(\nabla_{b_{k}}\right)$, and, taking the complement of $f_{U_{i}}\left(\nabla_{a_{k}}\right)=g_{U_{i}}\left(\nabla_{a_{k}}\right)$, we also have $f_{U_{i}}\left(\Delta_{a_{k}}\right)$ $=g_{U_{i}}\left(\Delta_{a_{k}}\right)$. Hence $V_{k=i}^{n}\left(f_{U_{i}}\left(\Delta_{a_{k}}\right) \cap f_{U_{i}}\left(\nabla_{b_{k}}\right)\right)$ $={ }_{k=1}^{\mathrm{V}}\left(g_{U_{i}}\left(\Delta_{a_{k}}\right) \cap g_{U_{i}}\left(\nabla_{b_{k}}\right)=g_{U_{i}}\left(\Theta \mid U_{i}\right)\right.$, which is equal to $g_{U}(\Theta) \mid U_{i}$ since g is also a homomorphism. So $f_{U}(\theta) \mid U_{i}=$ $g_{U}(\Theta) \mid U_{i}$ for all $i \in I$, hence $f_{U}(\Theta)=g_{U}(\Theta)$ for each $U \in \mathcal{L}$, and finally, $f=g$ as required.

Recall that a monomorphism $h: A \rightarrow B$ is called essential if, for any map $g: C \rightarrow A$, the composition hg is monic implies that g itself is a monomorphism.
1.10 Proposition: $\quad \nabla: A \rightarrow \mathcal{A} \rightarrow$ is an essential embedding.

Let $h: \mathscr{L} A \rightarrow C$ be a homomorphism in \rightarrow Sh\&, for $C \in \varnothing$ She, such that $h \nabla$ is monic. We want to show that h
itself is monic. Since $\notin A$ is Boolean and h is a homomorphism in ळShみ્, the image of $\notin A$ under h is Boolean. We may therefore assume that C is Boolean and h is a Boolean homomorphism, with components $h_{U}(\perp)=\perp_{U}$ and $h_{U}(T)=T_{U}$ for each $U \in \mathcal{L}$. Also for θ in $(\mathscr{H} A) U, h_{U}(\theta)^{\prime}=h_{U}\left(\theta^{\prime}\right)$, where Θ^{\prime} denotes the complement of θ. We show, for each $\Theta \in(\mathscr{A} A) U$, that $h_{U}(\Theta)=1_{U}$ implies that $\Theta=1$, for all $U \in \mathscr{L}$. Let $U=V_{U_{i}}$ so that $\theta \mid U_{i}=\underset{k=1}{\mathfrak{V}}\left(\Delta_{a_{k}} \cap \nabla_{b_{k}}\right)$ with
$a_{k} \leq b_{k}$ in $A U_{i}$. Then for each $U_{i}, h_{U}(\Theta) \mid U_{i}=h_{U_{i}}\left(\Theta \mid U_{i}\right)=$ $h_{U_{i}}\left(\underset{k=1}{V_{i}}\left(\Delta_{a_{k}} \cap \nabla_{b_{k}}\right)\right)={\underset{k}{V}=1}_{V_{1}}\left(h_{U_{i}}\left(\Delta_{a_{k}}\right) \cap h_{U_{i}}\left(\nabla_{b_{k}}\right)\right)=V_{k=1}^{V} \perp_{U_{i}}=$ ${ }^{1_{U}}{ }_{i}$. Since h is a homomorphism and $\Delta_{a_{k}}=\left(\nabla_{a_{k}}\right)^{\prime}$, we use a well-known property of Boolean algebras to get $h_{U_{i}}\left(\nabla_{\mathrm{b}_{\mathrm{k}}}\right) \leq$ $h_{U_{i}}\left(\nabla_{a_{k}}\right)$ for each $i \in I$, so $h_{U_{i}}\left(\nabla_{b_{k}}\right)=h_{U_{i}}\left(\nabla_{b_{k}} \cap \nabla_{a_{k}}\right)$. Again, each $h_{U_{i}}$ is a homomorphism, so $\nabla_{b_{k}}=\nabla_{a_{k}} \cap \nabla_{b_{k}}$, which implies that $\nabla_{\mathrm{b}_{\mathrm{k}}} \subseteq \nabla_{\mathrm{a}_{\mathrm{k}}}$. Finally, since ∇ is also a monomorphism, $b_{k} \leq a_{k}$. But by hypothesis, $a_{k} \leq b_{k}$, so we have equality, and $\Theta=\perp$ for each $U \in \mathcal{L}$, and h is therefore monic.

Let B be a subcategory of A. Then B is a reflective subcategory of A if there exists a functor $F: A \rightarrow B$ such that, for all objects $A \in A$, there exists a map $\Phi_{F}(A): A \rightarrow F(A)$ which satisfies two conditions --
（1）for each $f: A \rightarrow A^{\prime}$ the following square commutes：

$$
\left.\left.\Phi_{F}(A)\right|_{F(A)} ^{A} \xrightarrow[F(f)]{A_{F}} \|_{F^{\prime}}^{A^{\prime}} A^{\prime}\right)
$$

and（2）for each object $B \in B$ and map $f: A \rightarrow B$ in A ，there exists a map $f^{\prime}: F(A) \rightarrow B$, so that the following triangle commutes：

To establish that BooShz is a reflective subcategory of 历Sh\＆્ ，we first require：

1． 11 Lemma：For $h: A \rightarrow B$ a homomorphism in dSh\＆，A and B
in סShみ，there exists a Boolean
homomorphism $\tilde{K}: \mathscr{L} A \rightarrow \mathcal{E B}$.
Let $\Phi \in(よ A) U=\operatorname{Con}(A \mid U)$ and $\Theta \in(よ B) U=$
Con $(B \mid U)$ for each $U \in \mathcal{L}$ ．Then there exists a map $\tilde{n}: よ A \rightarrow よ B$ so that $\tilde{h}_{U}(\Phi) \subseteq \Theta$ iff $\Phi \subseteq(h|U \times h| U)^{-1}(\theta)$ ，which is in turn true iff $h_{U}^{2}(\Phi) \subseteq \theta$ ．Hence $\tilde{h}_{U}(\Phi)$ is the congruence on $B \mid U$ generated by all $\left(h_{V}(a), h_{V}(c)\right)$ for $(a, c) \in \Phi V$ and $V \leq U$ ． We note that，as a left adjoint to a meet－preserving map，\tilde{n}_{U} preserves arbitrary joins．Also，$\tilde{h}_{U}(\perp)$ is the congruence on
$B \mid U$ generated by $\left(h_{V}(a), h_{V}(a)\right)$ for $a \in A V$, all $V \leq U$, so \tilde{h}_{U} preserves the bottom of (よA)U. Since $\overparen{K}_{U}(T)$ is the congruence on $B \mid U$ which contains $\left(h_{V}(0), h_{V}(e)\right)=(0, e)$, we have that $K_{U}(T)$ preserves the top of (よA)U. By an earlier remark, $\tilde{h}_{U}\left(\nabla_{a}\right)=\tilde{h}_{U}\left(\Theta_{0 a}\right)=\Theta_{h_{U}(0) h_{U}(a)}=\theta_{O h_{U}(a)}=\nabla_{h_{U}(a)}$ for all a $\in A U$, and dually $\tilde{h}_{U}\left(\Delta_{a}\right)=\Delta_{h_{U}(a)}$. We see that K_{U} preserves meets as follows: $\tilde{h}_{U}\left(\nabla_{a}\right) \wedge \tilde{h}_{U}\left(\nabla_{b}\right)=$ $\nabla_{h_{U}(a)} \cap \nabla_{h_{U}(b)}=\nabla_{h_{U}(a) \cap h_{U}(b)}=\tilde{h}_{U}\left(\nabla_{a} \cap \nabla_{b}\right)$. So \tilde{h} is a lattice homomorphism.

To prove that \tilde{h}_{U} is a homomorphism from (\&A)U to $(\mathscr{A}) \mathrm{U}$, we need to show that $\tilde{h}_{U}\left(\Delta_{a} \cap \nabla_{b}\right)=\Delta_{h_{U}}(a) \cap \nabla_{h_{U}}(b)$ for $\mathrm{a} \leq \mathrm{b}$. Since $\tilde{\mathrm{h}}$ preserves meets, $\tilde{\mathrm{h}}_{\mathrm{U}}\left(\nabla_{a}^{\prime}\right) \cap \tilde{\mathrm{h}}_{\mathrm{U}}\left(\nabla_{\mathrm{b}}\right)=$ $\nabla_{h_{U}(a)}^{\prime} \cap \nabla_{h_{U}(b)}=\Delta_{h_{U}(a)} \cap \nabla_{h_{U}(b)}$. Thus if $\Phi \in(\mathbb{L} A) U$ then $\tilde{K}_{U}(\Phi) \in(\notin B) U$.

To see that \tilde{h} is a Boolean homomorphism, it remains only to show that it preserves complements. Take $\Phi, \Theta \in(\notin A) U$ such that $\Phi \cap \Theta=\perp$ and $\Phi \vee \Theta=T$. Then $\tilde{K}_{U}(\Phi) \vee \tilde{h}_{U}(\theta)=$ $\tilde{h}_{U}(\Phi \vee \Theta)=\tilde{h}_{U}(T)=T$. To show that $\tilde{h}_{U}(\Phi) \wedge \tilde{h}_{U}(\Theta)=1$, it is enough to assume $\Phi=V\left(\Delta_{a_{k}} \cap \nabla_{\mathrm{b}_{\mathrm{k}}}\right), \Theta=V\left(\Delta_{\mathrm{c}_{j}} \cap \nabla_{\mathrm{d}_{\mathrm{j}}}\right)$. Since $\Phi \cap \theta=\mathcal{L}$, we have that $\Delta_{\mathrm{a}_{\mathrm{k}}} \cap \nabla_{\mathrm{b}_{\mathrm{k}}} \cap \Delta_{\mathrm{C}_{j}} \cap \nabla_{\mathrm{d}_{\mathrm{j}}}=0$. Then $\tilde{K}_{U}(\Phi) \wedge \tilde{K}_{U}(\theta)=\tilde{K}_{U}\left({ }_{k}, V_{j} 0\right)=\perp$.

1. 12 Lemma: If $A \in$ BooSh \mathcal{L}, then $\nabla: A ~ \Rightarrow \mathscr{L} A$ is an
isomorphism.

For any $a \in A U, \nabla: A U \rightarrow(よ A) U=C o n(A \mid U)$ is a
homomorphism in $\varnothing, ~ h e n c e ~ i t ~ p r e s e r v e s ~ c o m p l e m e n t s ~ i f ~ t h e y ~$
exist. Here $A U$ is Boolean, so $\nabla_{a^{\prime}}=\left(\nabla_{a}\right)^{\prime}=\Delta_{a}$ for all
a. $\in A U$. Hence each \triangle a has a preimage under ∇, and thus ∇ is onto. Because ∇ is already a monomorphism, this means that A is isomorphic to $\& A$.
1.13 Proposition: $\nabla: A \rightarrow$ AA is the reflection map which
makes Booshz a reflective subcategory
of 历Sh\&.

Consider $A \in \mathscr{D} h \mathscr{\mathscr { L }}, B \in$ BooSh\& , and
$h: A \rightarrow B . \quad$ Take ∇ as before and $\tilde{\mathrm{h}}: \mathcal{H} A \rightarrow \& B$. Let us define a $\operatorname{map} f: \not \& A \rightarrow B$ as the composite of $\tilde{h}: \mathscr{A} A \rightarrow \mathcal{A} B$ and $j: \notin B \rightarrow B$, where j is the inverse of $b \leadsto \nabla_{b}$, which we know exists due to Lemma 1.12. We now have the following diagram:

For $a \in A U, f_{U}\left(\nabla_{a}\right)=j_{U} \tilde{h}_{U}\left(\nabla_{a}\right)=j_{U}\left(\nabla_{h_{U}(a)}\right)=h_{U}(a)$. since \tilde{h} and j are Boolean homomorphisms, so is f. That f is unique is easily seen. Suppose there exists a Boolean homomorphism $g: \mathcal{L} A \rightarrow B$ so that $g \nabla=h$. Then, for $u \in \mathcal{L}, g_{u}\left(\nabla_{a}\right)=h(a)=$ $f_{U}\left(\nabla_{a}\right)$. Also, since g and f are Boolean, $g_{U}\left(\Delta_{a}\right)=f_{U}\left(\Delta_{a}\right)$. The g_{U} and f_{U} coincide on all $V\left(\Delta_{a_{k}} \cap \nabla_{b_{k}}\right)$ for $a_{k}, b_{k} \in A U$ and by Proposition 1.8 are thus equal.

This Boolean homomorphism $\tilde{\mathrm{h}}: \mathscr{\& A} \rightarrow \mathrm{B}$ makes Boosh\& a reflective subcategory of \quad Sh \mathcal{L}, with reflection map ∇.

CHAPTER 2: INJECTIVES AND INJECTIVE HULIS IN ØSH\&.

We will now consider injectives in ळSh\& , describe the injective hull of any object in the category, and then characterize the indecomposable injectives.

Recall from general category theory the characterisation of injectivity: an object A is injective in a specified category iff, for objects B and C in the category, for any morphism $h: B \rightarrow A$ and any monomorphism $g: B>C$, there exists a morphism $f: C \rightarrow A$ such that fg $=h$. An injective hull of an object A is an essential injective extension of A.
2.1 Lemma: A \in BooSh\& is injective in BooSh\& iff it is injective in \$iShə丷.

Let $A \in B o o S h \nsim \mathscr{b e}$ injective in \varnothing Sh\&, $h: B \rightarrow A$ be a Boolean homomorphism, and $g: B \longrightarrow C$ be a monomorphism in BooShz. Since Boolean homomorphisms are lattice homomorphisms and any monomorphism in Booshz is monic in
 BooShz being a full subcategory of DSh\&, by Proposition 1.13, this gives the required mapping in BooSh\&, making A injective in BooSh\&.

For the converse, let $A \in B o o s h \mathcal{L}$ be injective in BooSh\&્, with $h: B \rightarrow A$ a homomorphism in øSh\& and $g: B \longrightarrow C$ a monomorphism in 历Sh\&. Then we have the following diagram, where $\mathcal{A} B$ and $\mathcal{H C}$ are the Boolean envelopes of B and C respectively:

Since $\nabla_{B}: B \rightarrow \mathcal{A} B$ is the Boolean reflection map of B (Prop. 1.13), there exists a map $f: \mathscr{H} B \rightarrow A$ such that $f \nabla_{B}=h$. Now, $\tilde{g} \nabla_{B}=\nabla_{C} g$, which is monic, and, since ∇_{B} is essential, \tilde{g} is itself a monomorphism. A is injective in BooSh\&, so there exists a map $k: \mathscr{E} C \rightarrow A$, which composes with $\nabla_{C}: C \rightarrow \mathscr{C}$ to make A injective in ळSh\&.

Remark: Applying this lemma to $\mathscr{L}_{\mathcal{L}}$ one obtains that $\mathscr{L}_{\mathscr{L}}$ is an injective Boolean algebra iff it is an injective bounded distributive lattice in Sh\&. Now, these assertions may be regarded as the Boolean Ultrafilter Theorem (BUT) and as the Prime Ideal Theorem (PIT) for distributive lattices, respectively, and hence we have - as in $Z F$ set Theory - that BUT holds iff PIT does, in any sh\&.

2． 2 Proposition：A ϵ DSh\＆is injective in סSh \mathcal{L} iff A is complete Boolean．

Let A be a complete Boolean algebra in
Shみ્ ．From BALT 1．9，we know that a Boolean algebra in Shユ્ is complete iff it is injective as a Boolean algebra．Then by the above lemma，A is also injective in ळSh\＆．

Conversely，let A be injective in Dhh 2 ．This
produces the following diagram：

Then，since the essential monomorphism $\nabla: A \rightarrow \mathcal{A} \rightarrow$ has a left inverse，it is an isomorphism，and hence A is isomorphic to its Boolean envelope．By the lemma，A is injective in BooSh $\mathscr{\mathscr { R }}$ ，and then by the result quoted above，it is complete．

The next lemma uses the result from BALT （Proposition 1.10 ）that $B \in$ BooSh\＆has as its injective hull []$: B \rightarrow$ nB．

2．3 Lemma：$A \rightarrow \& A \rightarrow n(\& A)$ is an essential monomorphism in よShむ．

From Proposition 1.10 we know that $\nabla: A \rightarrow \& A$ is an essential monomorphism in ळSh $^{\mathscr{L}}$ ，and from BALT 1．8， ［］：$B \rightarrow n B$ is an essential monomorphism in BooSh\＆．We show that essential monomorphisms in BooSh\＆are essential in \mathfrak{D} Sh\＆ as well．

Let $B, C \in$ BooSh\&્, $D \in \mathscr{L} h \mathscr{L}, h: B \longrightarrow C$ be essential monic in BooShf, and $g: C \rightarrow D$ be a lattice homomorphism in Shf. Now, g has an epi-mono factorization, with $g=j k$, giving the following diagram:

Let $g h$ be monic - then $k h$ is, for if khm $=k h n$, then $j k h m=$ jkhn, i.e. ghm $=$ ghn. Since gh is monic, $m=n$. But since k is an onto map from a Boolean algebra, it is a Boolean homomorphism, and since h is essential in BooSh\&, k is also a monomorphism. Now, j is monic, hence $g=j k i s$, thus proving that $h: B \rightarrow C$ is an essential monomorphism in \wp. $h \mathcal{L}$ as well as in BooShz.

Hence $B \rightarrow$ MB, for Boolean B, is essential in ฌSh\&, and $A \rightarrow \& A \rightarrow \eta(\& A)$ is an essential monomorphism.
2.4 Proposition: ळSh\& has injective hulls.

From BALT 1.10 we know that []:B \rightarrow 但 is
the injective hull of any $B \in B o o S h \mathcal{L}$. Then for $A \in \nsubseteq S h \mathcal{L}$, $\mathscr{L} A \in B o o S h \mathcal{L}$, and []$: \mathscr{L} A \rightarrow \chi(\mathscr{L} A)$ is the injective hull of $\mathscr{A} A$. By the lemma, $A \rightarrow \eta(\mathscr{A})$ is essential; combined with Lemma 2.1 this shows that $\not(\mathscr{H} A)$ is an essential injective extension of A, that is, an injective hull of A.

This describes the injective hull of $A \in \nsubseteq S h \mathcal{L}$ as a

Boolean algebra of certain ideals of congruences on A. Alternatively, we may use the following lemmata to produce the injective hull of A by a construct of a simpler type.

2.5 Lemma: $\exists B \cong よ B$ for $B \in B o o S h \mathscr{L}$.

Let $B \in B o o S h \mathcal{L}$ and, for $U \in \mathcal{L}, ~ \Theta \in(\Sigma B) U=$
$\operatorname{Con}(B \mid U)$. Define $f_{U}:(\Sigma B) U \rightarrow(\delta B) U$, that is $f_{U}: \operatorname{Con}(B \mid U) \rightarrow I d(B \mid U)$, by $\Theta \leadsto J$, where J is given at $W \leq U$ as $J W=\{x \in \operatorname{BW} \mid(x, 0) \in \ominus W\}$. We first prove that this defines a sheaf map, then that it is one-one, onto, and order-preserving.

To show that f is a sheaf map, we require that the following diagram commute, for all $\mathrm{V} \leq \mathrm{U} \in \mathcal{L}$:

Now, $\left(f_{U}(\Theta) \mid V\right) W=\{x \in B W \mid(x, 0) \in \Theta W, W \leq U\} \mid V$, which equals $\{x \in B W \mid(x, 0) \in \Theta W\}$ for $W \leq V$; on the other hand, $\left(f_{V}(\Theta \mid V)\right\} \mid W=\{x \in B W \mid(x, 0) \in(\Theta \mid V) W\}=\{x \in B W \mid(x, 0) \in \Theta W\}$, for $W \leq V$. Thus $f_{U}(\Theta) \mid V=f_{V}(\Theta \mid V)$ for all $V \leq U$, and f is a sheaf map.

To see that f is one-one, note that $(a, b) \in \Theta U$ iff
$(a \wedge b, a \vee b) \in \Theta U$ iff $\left(a^{\prime} \wedge b, 0\right) \in \Theta U . \operatorname{So}(a, b) \in \Theta U$ iff $a^{\prime} \wedge b \in J W$ for $a l l W \leq U$ in \mathcal{L}, and thus J is completely determined by Θ.

Let I be an ideal of $\mathrm{B} \mid \mathrm{U}$ and define Θ on $\mathrm{B} \mid \mathrm{U}$ by $\Theta \mathrm{W}=$ $\{(a, b) \mid a+b \in I W\}$, for $W \leq U \in \mathcal{L}$, where $a+b$ is the usual symmetric difference $\left(a^{\prime} \wedge b\right) \vee\left(a \wedge b^{\prime}\right)$. It is a standard computation in Boolean algebra that ΘW is a congruence on $B W$; we must show that $W \leadsto$ QW is a subsheaf of $B|U \times B| U$. $W \leadsto \theta W$ is a subpresheaf of $B|U \times B| U$ because the restriction homomorphism preserves symmetric difference, and hence it is separating. To show that it is patching, let $U=V_{i}$ and $\left(a_{i}, b_{i}\right) \in \Theta U_{i} \subseteq B U_{i} \times B U_{i}$, with $\left(a_{i}, b_{i}\right) \| U_{i} \wedge U_{k}=$ $\left(a_{k}, b_{k}\right) \mid U_{i} \wedge U_{k}$. This means that $a_{i}\left|U_{i} \wedge U_{k}=a_{k}\right| U_{i} \wedge U_{k}$ and $b_{i}\left|U_{i} \wedge U_{k}=b_{k}\right| U_{i} \wedge U_{k}$. But $a_{i}, b_{i} \in B U_{i}$, which is a sheaf, hence there exists $a \in B U$ with $a \mid U_{i}=a_{i}$ and $b \in B U$ with $b \mid U_{i}=b_{i}$. We claim that $(a, b) \in \Theta U$, that is, $a+b \in I U$. Now, $a_{i}+b_{i} \in I U_{i}$ by definition, so $(a+b) \|_{i} \in I U_{i} ; ~ i s$ itself a sheaf, so indeed $a+b \in I U$, and $(a, b) \in \Theta U$.

$$
\operatorname{Finally},\{a \mid(a, 0) \in \Theta W\}=\{a \mid a+0 \in I W\}=
$$

$\left\{a \mid\left(a^{\prime} \wedge 0\right) \vee(a \wedge 1) \in I W\right\}=I W$, and so $I=f_{U}(\theta)$ and f is onto as well as one-one.

It remains only to show that f is an order-
preserving map; then it is an isomorphism. Let $\Theta_{1} \subseteq \theta_{2}$ be
congruences on $B \mid U$ and $x \in J_{1} W$ for $W \leq U$, i.e. $(x, 0) \in \Theta_{1} W$. But since $\Theta_{1} W \subseteq \Theta_{2} W$ for all $W \leq U \in \mathcal{L}$, clearly $(x, 0) \in \Theta_{2} W$ and $x \in J_{2} W$. On the other hand, let $I_{1} \subseteq I_{2}$ be ideals of B|U. Then take $(a, b) \in \Theta_{1} W$, that is, $a+b \in I_{1} W$. But then $a+b \in I_{2} W$, so $\Theta_{1} W \subseteq \Theta_{2} W$. Hence f preserves order, and $\exists B \cong \Sigma B$.

Remark: A stronger version of this result, for $\mathbb{E} n s$, was published in 1952 by J. Hashimoto[10]. He proved that $I d B \cong C o n B$ where B is a generalised Boolean lattice, that is, a relatively complemented lattice with a zero. We, however, do not require the stronger result.

2.6 Lemma: For $A \in$ DSh $\mathcal{L}, ~ \Sigma(\mathscr{L} A) \cong £ A$.

Let $A \in \mathscr{D} h \mathscr{\mathscr { L }}$ and $\mathscr{L A}$ be its Boolean envelope.
Let Θ and Φ be congruences on $\mathcal{Z} A$, then for $\Theta|A=\Phi| A$, we claim that $\Theta=\Phi$. Without loss of generality, we may take $\Phi \subseteq \Theta$. We have the following diagram:

Since $\Theta|A=\Phi| A, A / \Theta|A \cong A / \Phi| A$. The maps μ, v, p, σ are the appropriate canonical homomorphisms, and ∇ is the essential
embedding of A into \&A. The maps r and s are induced homomorphisms.

In order to show that $\Theta=\Phi$, we require that $\mathcal{L} A / \Theta \cong \mathcal{L} A / \Phi$, i.e., that φ is an isomorphism. First we show that $r: A / \Phi \mid A \rightarrow \& A / \Phi$ is the Boolean envelope of $A / \Phi \mid A$. Consider the following diagram:

Now, r is a homomorphism with Boolean image, and ∇^{\prime} is the reflection map from øSh\& to BooSh\&્ , so there exists a map $r^{\prime}: \mathscr{L}(A / \Phi \mid A) \rightarrow \mathcal{E A / \Phi}$ such that $\nabla^{\prime} r^{\prime}=r$. Since $\operatorname{Ker}(\mu \nabla)=\Phi \mid A$ and $\mu \nabla=r \rho$, we have that $\operatorname{Ker}(r p)=\Phi \mid A$. But p being the quotient homomorphism, $\Phi \mid A=\operatorname{Ker}(\rho)$, and so r is a monomorphism; since ∇^{\prime} is essential, this makes r^{\prime} monic as well.

> It remains to show that $\operatorname{Im}\left(r^{\prime}\right)=\& A / \Phi$. Now, $\nabla^{-1} \mu^{-1}\left(\operatorname{Im}\left(r^{\prime}\right)\right)=\rho^{-1} r^{-1}\left(\operatorname{Im}\left(r^{\prime}\right)\right) ;$ since $\operatorname{Im}(r) \subseteq \operatorname{Im}\left(r^{\prime}\right)$, $\rho^{-1} r^{-1}\left(\operatorname{Im}\left(r^{\prime}\right)\right)=\rho^{-1}(A / \Phi \mid A)=A$, which implies that $\operatorname{Im}(\nabla) \subseteq \mu^{-1}\left(\operatorname{Im}\left(r^{\prime}\right)\right)$. Then, since $\mu^{-1}\left(\operatorname{Im}\left(r^{\prime}\right)\right)$ is a Boolean subalgebra of $\& A$, and $\& A$ is generated by A, it is clear that
$\mu^{-1}\left(\operatorname{Im}\left(r^{\prime}\right)\right)=\& A$. Finally，since μ is onto，we have $\operatorname{Im}\left(r^{\prime}\right)$ $=\mu(\mathscr{H} A)=\mathscr{L} A / \Phi$. So r^{\prime} is an isomorphism from $\mathscr{H}(A / \Phi \mid A)$ to $\mathscr{L} A / \Phi$ ，and $r: A / \Phi \mid A \rightarrow \mathscr{A} / \Phi$ is the Boolean envelope of $A / \Phi \mid A$ ．

Returning to the first diagram，we have that
$s: A / \theta \mid A \rightarrow \mathcal{A} A / \theta$ is also a Boolean envelope．Hence $s=\varphi r$ is monic，which implies，since r is essential，that φ is a monomorphism．Similarly，we can construct a monomorphism $\alpha: \mathscr{H} A / \Theta \rightarrow \mathcal{L A} / \Phi$ ，hence φ is left invertible．Since r and s are essential，so is φ ；therefore，φ is an isomorphism and $\mathcal{\not} A / \Phi \cong \nsubseteq A / \Theta$ ．Since $\Phi \subseteq \theta$ ，this gives $\Theta \subseteq \Phi$ and hence equality．Thus we have a one－one map from Con（\＆A）to ConA， given by restriction．Applying this to $\downarrow U$ for each $U \in \mathcal{L}$ and using the fact that $(\mathscr{L} A) \mid U=\mathscr{U}(A \mid U)$ ，we obtain a monomorphism from よ（むA）to よA．

Now we let $\Theta \in$ ConA and show that there exists a congruence Φ on $\mathcal{L} A$ such that $\Phi \mid A=\Theta$ ．Let i and j be the essential embeddings of A into $\mathscr{L} A$ and A / Θ into $\mathscr{L}(A / \Theta)$ respectively．Then the canonical homomorphism $v: A \rightarrow A / \Theta$ induces a homomorphism $f: \& A \rightarrow \nsubseteq(A / \Theta)$ ，giving this diagram：

Let $\Phi=\operatorname{Ker}(f)$ and let $b, c \in A V$ for $V \in \mathcal{L}$ ．Then
$\Phi \mid A=\theta$ ，since $(b, c) \in \Theta V$ iff $\left(i_{V}(b), i_{V}(c)\right) \in \Theta V$ ，as
follows：$\left(i_{V}(b), i_{V}(c)\right) \in \Phi V$ iff $f_{V}{ }^{i} V^{(b)}=f_{V}{ }^{i} V^{(c)}$ ，which is true iff $j_{V^{v}} V^{(b)}=j_{V} V^{v}(c)$ ，which，since j is a monomorphism，is true iff $v_{V}(b)=v_{V}(c)$ ，in turn true iff $(b, c) \in \Theta V$ ．

Finally，it is easily seen that we have an order isomorphism：$\Theta|A \subseteq \Phi| A$ iff $\theta|A=\Theta| A \cap \Phi|A=(\Theta \cap \Phi)| A$ ， which is true iff $\theta=\theta \cap \Phi$ ，that is，$\Theta \subseteq \Phi$ ．
 the above to $\downarrow \mathrm{U}$ for each $\mathrm{U} \in \mathcal{L}$ ．

We are now ready to describe an alternative construction of the injective hull for $A \in \nsubseteq S h \not \mathscr{L}^{\text {．For }}$ any locale M in Sh\＆，we know that the equalizer of $i d_{M}: M \rightarrow M$ and（）＊＊：M $\rightarrow M$ is the Boolean algebra M^{*} of normal elements of M ．For $\mathrm{A} \in$ इSh\＆， LA is a locale，by the corollary to Proposition 1．1．From the above lemmata，we have $\check{L A} \cong よ(f, f)$ $\cong \mathcal{F}(\mathscr{L} A)$ ，hence the equalizer（よA）＊of $i d_{A}: よ A \rightarrow$ LA and （）＊＊：よA \rightarrow よA is isomorphic to the sheaf $n(\& A)$ of normal ideals of $\mathfrak{L A}$ ：

Then，as in BALT（p．14，preprint），the map $\nabla: A \rightarrow$ LA factors through（よA）＊，and we may write $\nabla: A \rightarrow(よ A) *$ as the injective hull of A ．

A bounded distributive lattice A in $\operatorname{Sh} \mathcal{L}$ is called indecomposable if it is non-trivial, and any isomorphism $A \cong B \times C$ in ळSh\& implies that either B or C is trivial. 2.7 Proposition: The indecomposable injectives in ゆSh are exactly the $\sigma_{*}(2)$ for the points $\sigma: \mathscr{L} \rightarrow 2$ of the locale \mathcal{L}.

In BooShi the indecomposable injectives are exactly these σ_{*} (2) (BALT 2.1); from Lemma 2.1, the injectives in \mathscr{D} Sh \mathcal{L} are those in BooSh\&. Hence the $\sigma_{*}(2)$ are certainly injective in $\mathscr{L S h}$ \& and are, indeed, the only candidates for the indecomposable injectives. It remains to show that the $\sigma_{*}(2)$ are in fact indecomposable in 历Sh\&.

Let A be a bounded distributive lattice in She of the type $\sigma_{*}(2)$ and suppose $A \cong B \times C$ for $B, C \in \nsubseteq S h \mathscr{L}$. Then, since A must be Boolean, B and C belong to Boosh\&, and $A \cong$ $B \times C$ as Boolean algebras. By the result quoted above, then either B or C must be trivial, and hence A is indecomposable.

CHAPTER 3: OTHER PROPERTIES OF DISTRIBUTIVE LATTICES IN SHL.

Having established some basic facts about injectives in DSh\&, we turn now to a consideration of other properties of distributive lattices in Sh\& and the relationships among them. We are interested, specifically, in prime and simple distributive lattices in Sh\& , in cogenerators of \mathscr{L} Sh\& , and in the initial object $\mathbb{L}_{\mathcal{L}}$ of DSh\&.

A bounded distributrive lattice $A \in \infty$ Sh\& is called prime if, for any $\Theta, \Phi \neq \perp$ in $\operatorname{Con} A, \Theta \cap \Phi \neq \perp$. Note that this means that the bottom element of the lattice ConA is prime in the usual set-theoretic sense.
3.1 Proposition: The prime $A \in$ סSh\& are exactly the indecomposable injectives.

Let $A \in \nsubseteq S h \mathscr{L}$ be prime. Then \&A is indecomposable as follows: suppose that it is decomposable, say $\mathcal{L} A \cong C \times D$ for nontrivial $C, D \in B o o S h \mathcal{L}$. Then the projections $C \times D \rightarrow C$ and $C \times D \rightarrow D$ determine nontrivial congruences on $C \times D$ with trivial meet. Then $(\Theta \mid A) \cap(\Phi \mid A)$ $=1$, hence $\Theta \mid A=1$ or $\Phi \mid A=1 ;$ then $\Theta=1$ or $\Phi=1$, since B is an essential extension of A. But A is prime, giving a
contradiction, which shows that \&A is indecomposable. It then follows that the injective hull of $\& A$ is also indecomposable, hence $\not \mathfrak{(Z A)} \cong \sigma_{*}(\mathbb{Z})$ for some $\sigma: \mathcal{L} \longrightarrow \mathbb{L}$. However, $\sigma_{*}(2)$ has no proper sublattice, so $A \cong \sigma_{*}(2)$.

For the converse, let $A=\sigma_{*}(2), ~ \odot \in \operatorname{Con} A$, and $\gamma \subseteq \mathcal{L}$ be the completely prime filter $\sigma^{-1}\{1\}$ associated with the point $\sigma: \mathscr{L} \rightarrow 2$. Then for $U \in \gamma, A U=\left(\sigma_{*} \mathbb{I}\right) U=\mathbb{L}$, and either θU is the identity on 2 or $(0,1) \in \Theta U$. If $\theta \neq 1_{2}$, then there exists $U \in \delta$ with $(0,1) \in \Theta U$. Hence if Φ is any other nontrivial congruence on A and $(0,1) \in \Phi W$ for $W \in \gamma$, we have $(0,1) \in \Theta(U \wedge W) \cap \Phi(U \wedge W)=(\Theta \cap \Phi)(U \wedge W) . \quad$ But $U \wedge W$ $\epsilon \diamond$, and hence $\Theta \cap \Phi \neq 1$.

Recall from general category theory that an object C in A is a cogenerator iff, for $f, g: A \rightarrow B$ distinct morphisms in A, there exists a morphism $h: B \rightarrow C$ in A such that hf $\neq \mathrm{hg}$.
3.2 Lemma: A set in BooSh\& cogenerates BooSh\& iff it cogenerates סSh\&.

Let $X \in$ BooSh\& be a cogenerating subset of よSh\&, and let $A, B \in B o o S h \mathscr{L}$ with distinct Boolean homomorphisms $f, g: A \rightarrow B$. But a priori, A and B are bounded distributive lattices in Sh\&્, and f and g are distinct lattice homomorphisms. Hence there exists $Q \in X$ and a map $h: B \rightarrow Q$ with hf \neq hg. Thus X is a cogenerating set in BooSh\&.

Conversely, let $\chi \in$ BooSh\& be a cogenerating subset of BooSh\& , and let $A, B \in \mathscr{L} h \mathscr{L}$ with distinct lattice homomorphisms $f, g: A \rightarrow B$. Applying the map ∇ to A and B produces the commuting square in the following diagram, where \mathcal{I} and \mathscr{G} are the homomorphisms induced by f and g respectively. Q belongs to χ.

We see that $\not \approx$ and $\widetilde{\mathscr{F}}$ are distinct as follows: suppose $\nsubseteq=\widetilde{g}$. Then $\tilde{\mathcal{F}} \nabla_{A}=\tilde{G} \nabla_{A}$, that is, $\nabla_{B} f=\nabla_{B} g$. But ∇_{B} is monic, so $f=g$, which contradicts the original choice of f and g. Now x is a cogenerating set in BooSh\&, so there exists $Q \in X$ and a map $h: \& B \rightarrow Q$, with $h \neq \neq h$ g. We then compose h with ∇_{B} to get the map $k: B \rightarrow Q$. Since $h \widetilde{f} \neq h \widetilde{g}$, $h \not{\nmid \nabla_{A}} \neq h \tilde{g} \nabla_{A} . \quad$ Then $h \nabla_{B} f \neq h \nabla_{B} g$, and, finally, kf $\neq k g$ for k $=h \nabla_{B}$. So χ is a cogenerating set in סSh\&્.
3.3 Proposition: The indecomposable injectives in øSh\& cogenerate DSh\& iff \mathscr{L} is spatial. Since the indecomposable injectives of

DShe are exactly those of BooSh\& , we use the lemma and the result from BALT (2.3) which states that the indecomposable injective Boolean algebras in Sh\& cogenerate BooSh \mathcal{L} iff \mathcal{L} is
spatial.

A bounded distributive lattice A in Sh\& is called
simple if A is nontrivial and, for any homomorphism $h: A \rightarrow B$ in ळSh\&, either h is a monomorphism or B is trivial.

Clearly, this is equivalent to saying that for any $\theta \in C$ Con A $=$ (よA)E, either $\Theta=\perp$ or $\Theta=T$. Hence, trivially, for Θ, $\Phi \in よ A$, if $\Theta \cap \Phi=\perp$ then either $\Theta=\perp$ or $\Phi=\perp$, so simple distributive lattices are prime. Note that this is also equivalent to saying that $A \in \mathscr{L} h \mathcal{A}$ is simple iff ConA is a 2-chain.

A point $\sigma: \mathscr{L} \rightarrow 2$ is called closed iff the associated $S=V_{U}$, over the U with $\sigma(U)=0$, is maximal, which is true if and only if $\sigma=\sigma^{-1}\{1\}$ is a minimal completely prime filter.
3.4 Lemma: $A \in$ ळSh\& is simple iff A is a simple Boolean algebra in She.

If A is a simple Boolean algebra in Sh\&્, then it is trivially true that it is a simple distributive lattice, since, for Boolean $A, \operatorname{ConA} \cong$ IdA.

Conversely, if A is a simple distributive lattice in Sh\&, it is prime and hence, by Proposition 2.8, an indecomposable injective, which makes it Boolean. Again, for Boolean $A, C o n A \cong I d A$, and A is thus simple as a Boolean algebra.

Corollary: $A \in$ DSh\& is simple iff $A \cong$. (2) where $\sigma: \mathscr{L} \rightarrow 2$ is a closed point.

This is a direct result of the lemma and
Proposition 3.5 of BALT (preprint), which states that the simple Boolean algebras in Sh\& are exactly the $\sigma_{*}(\mathbb{L})$ for closed points σ of \mathcal{L}.
3.5 Proposition: The simple A \in DSh \mathcal{L} cogenerate \not Sh \mathcal{L} iff \mathcal{L} is isomorphic to the topology of a T_{1}-space.

This is a direct result of our Lemmata 3.2, 3.4, and Proposition 3.6 of BALT (preprint), which states that the simple Boolean algebras in Sh\& cogenerate BooShe iff \mathcal{L} is isomorphic to the topology of $\mathrm{a}_{1} \mathrm{~T}_{1}$-space.

Consider now the initial distributive lattice $\mathbb{Z}_{\mathcal{L}}$ of Sh\& .

The preprint of BALT contains the proposition (4.1) that the initial Boolean algebra $\mathbb{Z}_{\mathcal{L}}$ in Sh\& is complete iff \mathcal{L} is a Stone algebra, that is, $U^{*} V^{* * *}=\mathrm{E}$ for all
 in BooSh\&, we form, effortlessly,
3.6 Proposition: The initial bounded distributive lattice
$\underline{2}_{\mathscr{L}}$ is complete iff \mathcal{L} is a stone algebra.

Applying yet another result from BALT (3.3), that $\mathbb{2}_{\mathcal{L}}$ cogenerates BooSh \mathcal{L} iff $\mathcal{L} \cong 2$, we get
3.7 Proposition: $\underline{E}_{\mathcal{L}}$ cogenerates ळSh \mathcal{L} iff $\mathcal{L} \cong$ ㄹ.

From Lemma 3.2, ${\underset{\mathcal{L}}{ }}$ cogenerates \varnothing Sh\& iff it cogenerates BooSh\&̌.
3.8 Lemma: $\quad \Sigma_{\mathcal{L}} \cong \Omega$.

We have, for $U \in \mathcal{L},\left(\mathcal{F}_{\mathcal{L}}\right) U=\operatorname{Id}\left(\mathcal{L}_{\mathcal{L}} \mid U\right)=\operatorname{Id}\left(\mathbb{2}_{\downarrow U}\right)$.
Now, from BALT (preprint, 4.4) the map $S \rightarrow\left(\mathcal{L}_{\mathcal{L}} \mid S\right)^{\#}, S \in \mathcal{L}$, is an order isomorphism $i: \mathscr{L} \rightarrow \operatorname{Id}\left(\mathcal{L}_{\mathscr{L}}\right)$, where $\left(\mathcal{L}_{\mathscr{L}} \mid S\right)^{\#}$ is the ideal of $2_{\mathcal{L}}$ given at $W \in \mathcal{L}$ as

$$
\left(2_{\mathcal{L}} \mid S\right)^{\#} W= \begin{cases}\left(2_{\mathcal{L}} \mid S\right) W, & \text { for } W \leq S \\ 0, & \text { for } W \neq S\end{cases}
$$

We require $\left({ }_{S}{\underset{\mathcal{L}}{2}}\right) U \xrightarrow{\sim} \Omega U=\downarrow U$. Applying the order isomorphism to $\downarrow U$ in $\mathcal{L}, \downarrow U \rightarrow I \mathbb{(I _ { \downarrow U })}$, but $I \tilde{\alpha}\left(\mathbb{Z}_{\downarrow U}\right)=$ $\left(z\left(\mathcal{Z}_{\downarrow U}\right)\right) U=\left(\xi\left(\mathcal{Z}_{\mathcal{L}} \mid U\right)\right) U=\left(\mathcal{Z}_{\mathcal{L}}\right) U$. So it is necessary only to show that this defines a sheaf map, i.e. that the following square commutes:

$$
(\mathrm{V} \leq \mathrm{U})
$$

Since restriction in $\downarrow U$ is given, for $V \leq U$, by $S \leadsto S \wedge V$, this amounts to proving that $i_{V}(S \wedge V)=i_{U}(S) \mid V$, for $S \in \downarrow U$
and $\mathrm{V} \leq \mathrm{U}$ in $\mathscr{\mathscr { L }}$. For $\mathrm{S} \leq \mathrm{U}$ and $\mathrm{W} \leq \mathrm{V}$ we have

$$
{ }_{V}(S \wedge V) W \doteq\left\{\begin{array}{cl}
\mathbb{2}_{\mathcal{L}} W, & W \leq S \wedge V \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
i_{U}(S) W \doteq\left\{\begin{array}{cl}
\mathscr{L}_{\mathscr{L}} W, & W \leq S \\
0, & \text { otherwise }
\end{array}\right.
$$

which are the same since $W \leq S$ iff $W \leq S \wedge V$. Thus $i_{V}(S \mid V)$
 $\operatorname{F2}_{\mathcal{L}} \cong \Omega$.
3.9 Proposition: Any locale \mathcal{L} is isomorphic to the locale of congruences of the initial object of 历She. This is a direct result of the lemma and

Lemma 2.5. which states that for Boolean $A \in \operatorname{Sh\mathcal {L},\mathcal {F}A\cong よA.~}$ Thus we get $\operatorname{con}\left(\mathcal{L}_{\mathcal{L}}\right)=\left(\mathcal{L}_{\mathcal{L}}\right) \mathrm{E} \cong\left(\mathcal{I}_{\mathcal{L}}\right) \mathrm{E} \cong \Omega \mathrm{E}=\mathcal{L}$.
 Note that this observation can also be made as a consequence of a theorem of Borceux and van den Bossche[7] (p.120).

As noted in the preprint of BALT (p. 34), any
equivalence between categories preserves initial objects, their quotients, and the associated congruences. The corollary then follows immediately.
[1] R. Balbes and P. Dwinger, Distributive lattices. University of Missouri Press, 1975.
[2] B. Banaschewski, The BUT revisited, notes for talks at UNISA, Pretoria, July 1985 (unpublished).
[3] An introduction to universal algebra, notes for talks at I.I.T. Kanpur, summer 1972 (unpublished).
[4] B. Banaschewski and K. Bhutani, Boolean algebras in a localic topos, preprint.
[5], Math. Proc. Cambridge Phil. Soc. (to appear).
[6] B. Banaschewski and G. Bruns, Injective hulls in the category of distributive lattices. J. Reine Angew. Math. 232 (1968): 102-109.
[7] F. Borceux and G. van den Bossche, Algebra in a localic topos with applications to ring theory. LNM 1038, Springer Verlag, Berlin Heidelberg New York Tokyo, 1983.
[8] G. Grätzer, Lattice theory: First concepts and distributive lattices. W.H. Freeman and Company, San Francisco, 1971.
[9] H. Herrlich and G. Strecker, Category theory. Heldermann Verlag, Berlin, 1979.
[10] J. Hashimoto, Ideal theory for lattices. Math. Japon. 2(1952): 149-186.
[11] P.T. Johnstone, Topos theory. Academic Press, London, 1977.

