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ABSTRACT

In this thesis we examine various properties of bounded

distributive lattices in the topos of sheaves on a locale.

We prove that BooS~, the category of Boolean algebras in

S~, is a reflective subcategory of ~S~, the category of

bounded distributive lattices in S~_ Injective

distributive lattices in S~ are discussed, and two methods

of constructing the injective hull of any lattice in nSh~

are described. We characterize indecomposable injectives in

ns~ and show that they are exactly the prime bounded

distributive lattices. Simple lattices in S~ are described

and characterized in terms of the points of~. We examine

cogenerating sets in ~S~ and the relationships among

simple, prime and cogenerating objects in the category_

Finally, we consider the initial object 2~ of ~Sh~, when it

is complete and when a cogenerator; we then prove that any

locale is isomorphic to the locale of congruences of 2~_
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CHAPTER 1: BOOSH£ IS A REFLECTIVE SUBCATEGORY OF ~SH~.

In this chapter we will define the internal

congruence lattice LA, for each A E: ~S~, in terms of the

external lattice ConA of all congruences on A and show that

ConA is a locale and LA is a bounded distributive lattice in

S~. We then define a map ~:A -7 LA which we use to prove

that BooS~ is a reflective subcategory of ~Sh~.

It is useful first to recall from universal algebra

the definition of a congruence e on an algebra A as an

equivalence relation which is also a subalgebra of AX A.

Then a congruence e on an algebra A E: S~ is a subsheaf

e s A X A such that, for each place U E: ~, eu is a

congruence on the algebra AU.

We describe ConA, for any algebra A E: S~ and hence

for bounded distributive lattices, as follows: for

8. EConA, meet is given by intersection, with (Ae.)u
l . l l

0e.u.
l l

Join is given by (Ve.)U = Ve.u, that is, the sheaf
l l l l

reflection of the presheaf Ve.u, where the latter join is in
l l

the congruence lattice of AU.

7



1.1 Proposition: For A any algebra in S~( ConA is a

complete meet-continuous lattice.

8

We check that join and meet as given produce

subsheaves and congruences on AU. For U ~ Ge.u, note that
1 1

the intersection of subsheaves e s; A X A is itself a
i

subsheaf of AX A, while the intersection of congruences is

a congruence, so (]e U is a subsheaf of AU X AU and a
i i

congruence on AU for each U E~ . For U ~ '1e.u, we need only
1 1

that '1e. U is a subpresheaf of AX A, i. e. a contravariant
1 1

functor from ~ into the category of algebras, with an

appropriate restriction map.

Let Ve.v be the congruence on AV generated by the
1 1

up-directed union of the congruences e.v on AV.
1

Then a

homomorphism r:AU ~ AV induces a map r from the congruence

lattice of AU to that of AV. Since taking inverse images

under r preserves meets, r itself preserves joins and takes

Ve.u to '1e.v.
1 1 1 1

Then, because each component of the

subpresheaf belongs to the congruence lattice on AU, the

subsheaf generated by the subpresheaf is a congruence on AU.

Now, meet is given by intersection, so ConA is

complete in the usual lattice-theoretic sense.

ConA is also meet-continuous, i.e. for ¢,e. EConA,
1

<PI\Ve. = '1¢l\e., as follows:
ill 1

at UE~, (<p 1\ '1e . ) U = ¢U n
1 1

('1e. ) U - <pU n V(e. U) .
1 1 1 1

Since '1(e.U} is a presheaf and <pU is
1 1
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perforce a presheaf, we require the sheaf reflection of

their intersection. Then we have <pU"V(e.U) = V(<pu"e.U),
l l 1 1

because <pU and e.u, for each i,belong to the congruence
1

lattice of AU for each U E;f. This congruence lattice is

algebraic and therefore meet-continuous. We see that we now

have the presheaf which generates the sheaf (V¢ A 8.)U, from
l 1

the definition of join in ConA. Hence ConA is complete and

meet-continuous for any algebra A E Sht.

Corollary: For A E ~Sh;f, ConA is a locale.

The congruence lattice of AU for each U E;f is

complete for A a distributive lattice in Sht, therefore we

have that U ~ Ve.u is a subpresheaf.
1 1

Then for ¢, e. E ConA,
1

(¢AVe.)U - V(¢U"8.U), which generates the sheaf
1 1 1 1

(V¢ A 8. ) U. So ConA is distributive over arbi trary joins
1 1

and hence is a locale.

We now define (J::A)U = Con(A\U) for each U E;f, and

proceed to show that this is a sheaf with values in ~. Note

that, then, if we view (nAXA)u as the set of all subsheaves

AXA
of (A XA) IU, J::Asn since e E (J::A)U = Con(AIU) is a

subsheaf of AIU XAIU = (AXA) IU.

1.2 Proposition: J::A E ~Sht.

We show first that J::A defines a sheaf,

then that it indeed belongs to ~Sht.
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For V SUE;t:.., we have the restriction map

Con(AIU) -7 Con(AIV)

8

where (81 V) W = 8W for W s V. This is clearly a subpresheaf

AXA
of 0 , and hence automatically is separating. To show

that ~A is patching, take U = v U
iEI i

and 8. E (~A) U .
l l

SinceCon(AIU.) with 8.IU. 1\ Uk = 8 IU,I\Uk ·l l l k l r

AXA) , AXA)U 'thCon(AIU,) s (0 U., there exists a unique 8 E (0 Wl •
l l

AXA
81 U , = 8., because 0 is a sheaf,

l l
This "patched together"

8 is the subsheaf of AIU X AIU such that, for any a,bEAV

and V s U, (a,b) E8V iff (a!VI\U.,bl,VI\U,) E 8,(VI\U.)
. l l l l

for all iEI.

To see that 8 is the patching element required to

k · b' f fAX A d h k h t 'rna e ~A lnto a su snea 0 0 , we nee to c ec t a each

8V for V S U is a congruence on AV. Clearly,

(a IV 1\ U . , a I V 1\ U .) E 8 , (V 1\ U .) for each i EI, since each 8,
l l l l l

is reflexive, and so 8V is reflexive for all V S U.

Similarly, since each 8. is symmetric, if (a,b) E8V then
l

(aIVI\U.,bIVI\U.) E8,(VI\U.}, for each icI. Then
l l l l

(b IV 1\ U, , a IV 1\ U,) E 8. (V 1\ U .) and therefore (b, a) E 8V,
l l l l

so 8V is symmetric. And 8V is transitive since (a,b) E8V,

(b, c) E 8V means that (a IV 1\ U. , b IV 1\ U, ) E 8. (V 1\ U.) and
l l l l
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(b Iv /\ Ui ' c Iv /\ U .) E e . (V /\ U.) for each i EI and V $ U.
l l l

But 8. (V /\ U.) is transitive, and so (aiV /\ U. ,clV /\ U.)
l l l l

E e . (V /\ U.) and (a, c) E ev .
l l

Finally, e. U. is a sublattice of AU. X AU. for all
l l l l

iEI, which implies that ev is a sublattice of AV x AV and

hence a congruence on AV. Thus 8 is indeed the patching

AXA
element required to make LA a subsheaf of 0 .

Now we need only show that the restriction maps

Con(AIU) -7 Con(AIV) for V $ U are bounded lattice

homomorphisms. Let ~:Con(AIU) -7 Con(AIV) be a restriction

map taking e -"1 81V, where (8IV)W = ew for W::sV::sU, and let

8, <pECon(AIU). Taking the component at W, we have that ~

preserves meets: (~(e /\<pl)W = ((8 /\<P) IV)W = (8/\<P)W

= ew n <pW = (e IV) W n ( <p IV l W = (~ (8) /\ ~ ( <p) )W. Joins are

preserved in an analoguous fashion. Further, (~(T))W =

(TIV)W TW where T is the top of Con(AIU), and (~(~))W

(J.IV)W ~W where J. is the bottom of Con(AIU). So we have

that (LA)U = Con(A\U) defines a sheaf with values in~, or,

equivalently, a bounded distributive lattice in S~.

We next define a map ~:A -7 LA as having components

AU -7 (LA)U = Con(AIU) for each U E:t:.., given for a EAU and

V ::s U by a -"1 ~ V = {( x, y) Ix v (a IV) = Y v (a IV) } <;: AV X AV.
a

1.3 Proposition: ~:A -7 LA is an embedding in ~S~.
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We require, for V ~ U E;f.., that the following

square commute:

AU V' U ) ( J::A ) U

1 1
AV ) (J::A) V

V'v

that is, V' (a) IV :::: V' (aIV) for a E AU. Now V' (aIV)W :::: V' IVW
o V V a

{(x,y)\xv (a!V)IW:::: yv (aIV)IW), for WS.V. But (aIV)!W

a I w, so V'v (a IV) W :::: {( x, y) I x v (a IW) :::: y V (a IW) }. On the

other hand, (V' (a) IV)W :::: V' v~ :::: {(x,y) Ix v alW :::: y valW} for
U a

W S. V. Hence the two are equal, and V' is a natural

transformation between the presheaves and thus a sheaf map.

To show that the mapping V':A -7 J::A is a lattice

embedding, we first show that it is a lattice homomorphism.

Meets are preserved, for if (x, y) E V' V n V' V, then x val V
a b

:::: y val V and x v b IV :::: y V b IV. Then (x val V) /\ (x v b I V)

:::: (y val V) /\ (y v b i V), thatis, x v (a IV /\ b I V)

:::: y V (a I V /\ b I V), so x v ( (a /\ b) I V) :::: y V ( (a /\ b) I V) .

Hence (x,y) also belongs to V' V. For the reverse
a/\b

inclusion, take (x,y) EV' bV' so xv ((a/\b) IV) ::::
a/\

y v ((a /\ b) IV). Taking the join with alV on both sides of

this equality, we have that x v (( (a /\ b) va) IV) ::::

y v (( (a /\ b) va) IV), then by absorption x v a IV

y val V. Taking the join wi th b IV rather than a IV yields

To show that V' preserves joins, we first use the
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preceeding resul t to see that, for a:5 b, \1 V ("'\ \1 V =
a b

\1 V = \1 V.
al\b a

It is clear then that \1 V <;; \1 bV and
a av

\1 V <;;\1 V. Conversely, let (x,y) €\1 V. Now,
b avb avb

(x,xvaIV) €\1 V for all x E AV. By hypothesis,
a

(xvaIV,yvaIV) C'VbV. Composing, we have that (x,y) €

By definition, \l V = {(x,y)lxvOIV = yvOIV} =

°
{(x,y) Ix =y}, which is the bottom ~ of the congruence

v

lattice (J::A)V. Similarly, 'V V = {(x,y) \xvelV = yvelV}
e

{(x,y) lelV = eIV}, which is the top T of (J::A)V.
v

morphism \l:A -7 J::A is a lattice homomorphism.

Hence the

To see that \1 is a monomorphism, we show that, for

all V:5U in ;t: and a,b € AU, 'VaV = \1bV iff a = b.

\l V = \1. V, we note that since 0 valV = alV v alV,
a I)

Taking

(O,a) E'V V. Then by hypothesis, OvblV = alVvblV, which
a

implies that a:5b. Similarly, b:$ a, hence we have

equality. The reverse implication is trivial, and so \l is a

monomorphism.

We now def ine 6: A --7 J::A componentwise, for V:$ U E ;t:

and a €AU, as AU --7 Con(AIU), given by a ~ 6 V =
a

{(x,y)!xl\aIV = Yl\alV} <;;AVXAV.

1.4 Proposition: 6:A --7 J::A is a dual lattice embedding.
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Begin by forming the dual A* of bounded

distributive lattice A by interchanging meets and joins as

well as top and bottom elements. Clearly, A* is again a

bounded distributive lattice, and (A*)U = (AU)*. A subsheaf

of IAI X IAI is a subalgebra of AX A iff it is a subalgebra

of (A X A)* = A* X A*, so L(A*) = LA E!lSh;t. Then t::,.:A ---7 LA

is equivalent to ~*:A* ---7 L(A*), where v* is in the dual

lattice A*: a ~ ~*V = {(x,y) Ix v* a!V
a y v* ajV}

{(x,y)lxl\aIV = Yl\alV} = t::,. V.
a

This gives t::,. n t::,. = ~* n
a b a

~* = ~* = t::,. and t::,. v t::,. =~* v ~*
b al\*b avb a b a b

~* = f:;.
av*b al\b'

Clearly, t::,. V is the top of the congruence lattice (LA*)V,o
while t::,. V is the bottom, so f:;.:A ---7 LA is a dual lattice

e

homomorphism. It is a monomorphism by the same argument

that ~ is, hence we have a dual lattice embedding.

Remark: Let 8 be the smallest congruence on AIU
ab

containing (a, b) for a, bEAU. Then ~ = 8 as
a Oa

follows: (O,a) E~ V since OvalV = alV = alVvalV.
a

For

the reverse inclusion, if (O,a) E8 for any congruence 8,

then (x,xvaIV) E 8V for any x EAV, also (y,yva\V) E8V,

Let (x,y) C'V V, that is, xvalV = yvalV, then by
a

transitivity, (x,y) E8V, and in particular, (x,y) E8 V.
Oa

Using dual arguments, we also have f:;. = 8
a ae
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In the category ~ns it is true that every bounded

distributive lattice A is contained in a Boolean algebra BA,

called its Boolean envelope, such that A generates BA as a

Boolean algebra. Further, the embedding of A into BA is

essential in ~, is an epimorphism in ~, and is the

reflection map from ~ to Boo. We show here that the same

holds true for ~Sh~ and BooS~.

In order to prove that Boolean envelopes exist in

~Sh~, we shall use the embedding ~:A -7 ~A. In fact, the

desired Boolean envelope of A will be given by the Boolean

part ~A of ~A, that is, the sublattice of ~A consisting, for

each U E£., of the complemented elements of (~A) U. We want

to show first that ~A is generated by all ~ ~ where
a' a

a E AU and U E ~ .

1.5 Lemma: For a E AU and U E £., ~ ~ ~ = ~ and-a---a

\l v ~ = T.-a---a---

Take (x,y) E~ V ~ ~ V for V$U E£., a EAU.
a a

Then perform the following calculation:

X Xl\ (xvaIV) = Xl\ (yvaIV) = (xI\Y) v (xl\aIV)

Yl\ ((xvaIV) 1\ (yvaIV)) = Yl\ (yvajV) = y.

So (x,y) E~ , where ~ is the bottom of (~A)V = Con(AIV).
V V

The reverse inclusion is trivial, so ~ ~ ~ =~.
a a

Now consider \l V v ~ V.
a a

Since (OIV,ajV) E\l V and
a



(aIV,eIV) €A V, we have that (OIV,aIV), (aIV,eIV) €~ V v
a a

16

A V.
a

This implies that (x,xvaIV), (xvaIV,eIV) €~ V v
a

A V, and hence (x, e I V) € ~ V v A V for all x € A IV . The
a a a

same is then true for y €AIV. Therefore, composing,

(x,y) €~ V v A V for all x and y in AIV, that is,
a a

T£:~ vA. As the opposite inclusion is trivial, we have
a a

the required result.

(J::A)U for all v:s U € 1:...

Hence ~ V and A V are complements in
a a

1.6 Lemma: 8 = A n ~b for a :s b.-ab--a---

For a, b € AU as given, ".e have the pair of

Hence

equations avb = b = bvb and al\a = a = al\b, which

imply respectively that (a,b) €~bU and (a,b) €AaU.

(a,b) € (A
a
n~b)U, and therefore 8

ab
£:A

a
n~b'

Conversely, given a congruence 8 with (a,b) €8U, we have

that (yvaIV,yvbIV) €8V for V:SU and y €AV. Taking

(x,y) €A V n ~ V for any V:sU, we have that xl\alV =
a b

Y 1\ a IV and x v b IV = y v b IV . Performing the following

calculation shows that (x,y) €8V:

x = X 1\ (x v b I V) = X 1\ (y v b I V) 8V x 1\ (y val V)

(xl\Y) v (xl\ajV) = (xI\Y) v (Yl\aIV)

= Y 1\ (x val V) 8=V Y 1\ (x v b IV) = Y 1\ (y v b IV) = y.

So we have A
a

n ~b £: 8, and in particular, A
a

n ~b £: 8 ab ·

1.7 Lemma: For 8 € (J::A)U, U € 1:.., =8~U__V8 ,U, where
ao
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(a,b) E 8U and a ~ b.

G c 8ab - ,

Let 8 E (J:A)U and (a,b) EGU with a~b.

impl ying GabU S 8U, which in turn impl ies

Then

V(8 U) s8U, where the join is taken over all pairs
ab

(a,b) EGU with a~b. For the reverse inclusion, take

(c,d) EGU. Then (c,d) E8 ,U, which implies that (c/\d,d)
cn

and (c,c Ad) EV(G . U) over (a,b) E8U with a~b, and thus
ab

(c,d) is an element of the join.

1.8 Proposition: 8 E (~A)U implies that for some U = VU.,
l

GiU. is, for each iEI, a finite join of
l

congruences ~~~b on AIU
i

, with a ~ b

in AU ..
l

It is enough to prove this for U = E, the

top of ~, since applying it to ~U produces the general

result. Let G E (~A)E S (J:A)E = Con(AIE) = ConA. Then 8 is

a congruence on A, and, since it belongs to ~A, 8 has a

complement <P such that G /\ <P = .l. and G v <P = T. Now E = Vu
i

for all U.E~, and since at any U, (Gv<P)U == 8Uv<pU, we
l

have (8U.) v (<pU.) = TU
l
.' the top of the congruence lattice

l l

of AU. for each i, where the join is in the congruence
l

lattice of AU ..
l

Again we may take the case U = E' the
i '

result can be applied to ~U. Thus we have G and <P as
i

congruences on A wi th G /\ <P .J.. and G v <P = T in the

congruence lattice of AE.
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From the lemma we know that GE = V(~aE n ~bE), for

(a,b)E 8E and a~b. Then the fact that GEv<I>E = T,

combined with the compactness of T in the congruence lattice

of AE, shows that V(~akE n ~bkE) v ¢E = T for finitely many

Intersecting with GE, we get

(GEn¢E)
n

v (GE n V (~akE n ~b' E))k=l K
= GE, and hence GE

We now want to show that GIU. is equal to a finite
l

n
join of congruences on AIU., that is GIU = V (~akU n ~b~U)

l k=l ~

in Con(AIU), for all U E;f., We have that GE n <I>E = J., hence

n
GIU n <I>iU =.!. on AIU; also, GEv<I>E = k~l(~akE n ~bkE) v ¢E

n
= T, and hence GU v ¢U = V (~akU n ~bkU) v 4>U = T on A IU,

k=l

where V(~a U n ~bi?U) S:8I U.k ~
Intersecting the equality with

n
GIU gives 0IU = V (~akU n ~bkU), as required.

k=l

write

Having already proved that ~a = (~a) I, we may now
n

8 Iu. = V ((~ak)' n ~bk) for each G E (~A)U and iEI.
l k=l

Hence the image of A under ~ generates ~A as a Boolean

algebra, and ~A is indeed the Boolean envelope of A.

1.9 Proposition: ~:A -7 ~A is an epimorphism in ~Sh;f..

Let A, B E ~Sh;f. and f, g: ~A -7 B be

homomorphisms in ~Sh;f. so that the following square commutes:



19

A "il ) '£sA

91 19

'£sA
f

) B

i . e., f"il = g"il.

We want to show f = g, that is, for 8 E ('£sA)U and U E~,

n
f u (8) = gU(8). Let U = VU i where 81 Ui = k'i. 1 (~ak rt"ilbk) for

sui table a
k
~ b

k
in AU i . Since f U is a homomorphism,

n n
f
u

(8) lUi = f u (8I Ui
) = f Ui (k'i. 1 (~ak rt"ilbk)) = k'i. 1 (fUi (~ak) rt

the complement of fUi("ilak ) = gUi("ilak ), we also have f Ui (6ak )

n
= gTv1l'(~ak)' Hence V (fU'(~ak) rt fU·("ilbk))k=l l l

9U(8) lUi since 9 is also a homomorphism. So f U(8) lUi =

9U(8) lUi for all iEI, hence f U (8) = gU(8) for each U E~,

and finally, f = 9 as required.

Recall that a monomorphism h:A -7 B is called

essential if, for any map g:C -7 A, the composition hg is

monic implies that 9 itself is a monomorphism.

1.10 Proposition: ~~-7 '£sA is an essential embedding.

Let h:'£sA -7 C be a homomorphism in ~S~,

for C E~S~, such that h"il is monic. We want to show that h



itself is monic. Since ~A is Boolean and h is a
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each U E;f..

homomorphism in nSh£, the image of ~A under h is Boolean.

We may therefore assume that C is Boolean and h is a Boolean

homomorphism, with components hu(~) = ~U and hut!) = T U for

Also for 8 in (~A)U, h (8) I = h (8'), where 8'
U U

denotes the complement of 8. We show, for each 8 E (~A) U,

that h
u

(8) = .h
U

implies that 8 = J" for all U E;f..

n
Let U = VU

i
so that 81 Ui

= k~l(t:.akf'l\7bk) with

a
1

:s ok in AU ..
.tZ l

.LU· .
l

Since h is a homomorphism and t:.ak = (\7ak) I, we use a

well-known property of Boolean algebras to get h Ui (\7bk):S

each h Ui is a homomorphism, so \7bk = \7ak f'I \7bk' which

implies that V'bk SV'ak' Finally, since V' is also a

monomorphism, bk:s a
k

. But by hypothesis, ak:S bk , so we

have equali ty I and 8 = .J.. for each U E;f., and h is therefore

monic.

Let B be a subcategory of A. Then B is a reflective

subcategory of A if there exists a functor F:A -7 B such

that, for all objects A E A, there exists a map

<P,.,(A):A -7 F(A) which satisfies tvw conditions
1C
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(1) for each f:A -7 A' the following square commutes:

A f)

¢ (A) 1F

F(A) F(ff

and (2) for each object B EB and map f:A -7 B in A, there

exists a map f' :F(A) -7 B, so that the following triangle

commutes:
J:::

A __1._-7 B

¢F1All~
F(A)

To establish that BooS~ is a reflective subcategory

of ~S~, we first require:

1.11 Lemma: For h:A -7 B a homomorphism in ~S~, A and B

in ~S~, there exists a Boolean

homomorphism n:£A -7 £B.

Let ¢ E (J::A)U = Con(AjU) and 8 E (J::B)U =

Con(BIU) for each U E£.. Then there exists a map n:J::A -7 J::B

so that n (¢) ~8 iff 1> ~ (hiU X hlU) -1(8), which is in turn
U

true iff h~ (<p) ~ 8. Hence hU(1)) is the congruence on B IU

generated by all (hv(a), hv(C)) for (a, c) E 1>V and V ~ U.

We note that, as a left adjoint to a meet-preserving map, n
U

preserves arbitrary joins. Also, nu(~) is the congruence on
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BIU generated by (hv(a), hv(a)) for a E AV, all V $ U, so h
U

preserves the bottom of (LA)U. Since li (T) is the
U

congruence on BIU which contains (hv(O), hv(e)) = (O,e), we

have that h (T) preserves the top of (LA)U. By an earlier
U

remark, hu(~a) = hu (8 oa ) = 8hu(O)hu(a) = 8 0 hu(a) = ~hu(a)

for all a E AU, and dually h.u(L'::.a) = L'::.hu(a)· We see that J'lU

h (~ (l ~b)' So S. is a
U a

lattice homomorphism.

To prove that E
u

is a homomorphism from (~A)U to

To see that E is a Boolean homomorphism, it remains

only to show that it preserves complements. Take <p,8 E (~A)U

such that <p (l8 = J. and <P v 8 = !. Then h
U

(<p) v h
U

(8) =

is enough to assume <P = V(L'::.a (l~b ) ,8 = V(L'::.c' (l~d')'
k k J J

O.

Then fi (<p) /\ h (8) = E
U

( kV .0) J. .
U U , J



1.12 Lemma: If A E BooS~, then ~:A -7 ~A is an

isomorphism.

For any a E AU, ~:AU -7 (J::A)U = Con(AIU) is a
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homomorphism in ~, hence it preserves complements if they

exist. Here AU is Boolean, so ~
a l

(~ ) I

a
6. for all

a

a E AU.

onto.

Hence each 6. has a preimage under ~, and thus ~ is
a

Because ~ is already a monomorphism, this means that

A is isomorphic to ~A.

1.13 Proposition: ~:A -7 ~A is the reflection map which

makes BooS~ a reflective subcategory

of ~S~.

Consider A E !JSh;t, B E BooSM, and

h:A -7 B. Take ~ as before and n:~A -7 ~B. Let us define a

map f:~A -7 B as the composite of n:~A -7 ~B and j:~B -7 B,

where j is the inverse of b ~ ~b' which we know exists due

to Lemma 1.12. We now have the following diagram:
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Since h

and j are Boolean homomorphisms, so is f. That f is unique

is easily seen. Suppose there exists a Boolean homomorphism

g:~A -7 B so that gV = h. Then, for U E;f, g (\7 ) == h(a) =
u a

f (\7 ).
U a

Also, since g and f are Boolean, g (~ ) == f (~ ).
U a U a

and by Proposition 1.8 are thus equal.

This Boolean homomorphism n:~A -7 B makes BooS~ a

reflective subcategory of ~S~, with reflection map \7.



2.1 Lemma:

CHAPTER 2: INJECTIVES AND INJECTIVE HULLS IN ~SH~.

We will now consider injectives in ~S~, describe

the injective hull of any object in the category, and then

characterize the indecomposable injectives.

Recall from general category theory the

characterisation of injectivity: an object A is injective in

a specified category iff, for objects Band C in the

category, for any morphism h:B -7 A and any monomorphism

g:B ~ C, there exists a morphism f:C -7 A such that

fg = h. An injective hull of an object A is an essential

injective extension of A.

A E BooS~ is injective in BooS~ iff it is

injective in ~S~.

Let A E BooSM be injective in ~SM, h:B -7 A be

a Boolean homomorphism, and g:B >-7 C be a monomorphism in

BooS~. Since Boolean homomorphisms are lattice

homomorphisms and any monomorphism in BooSM is monic in

~Sh~, there exists in ~S~ a map f:C -7 A so that fg = h.

BooS~ being a full subcategory of ~SM, by Proposition

1.13, this gives the required mapping in BooS~, making A

injective in BooS~.

25
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For the converse, let A E BooShf. be injective in

BooShf., with h:B -7 A a homomorphism in ~Shf. and g:B ~ C a

monomorphism in ~Shf.. Then we have the following diagram,

where ~B and ~C are the Boolean envelopes of Band C

respectively:

h

Since ~ :B -7 ~B is the Boolean reflection map of B (Prop.
B

1.13), there exists a map f:~B -7 A such that f~B = h. Now,

~~ = ~ g, which is monic, and, since ~B is essential, g is
':::j B C

itself a monomorphism. A is injective in BooShf., so there

exists a map k:~C -7 A, which composes with ~ 'C -7 ~C toC·

make A injective in ~Shf..

Remark: Applying this lemma to 2~ one obtains that 2~ is

injective Boolean algebra iff it is an injective

an

bounded distributive lattice in Shf.. Now, these assertions

may be regarded as the Boolean Ultrafilter Theorem (BUT) and

as the Prime Ideal Theorem (PIT) for distributive lattices,

respectively, and hence we have - as in ZF Set Theory - that

BUT holds iff PIT does, in any Shf..



2.2 Proposition: A E ns~ is injective in ~s~ iff A is

complete Boolean.

Let A be a complete Boolean algebra in

27

s~. From BALT 1.9, we know that a Boolean algebra in Sh~

is complete iff it is injective as a Boolean algebra.

by the above lemma, A is also injective in ns~.

Then

Conversely, let A be injective in ~Sh~. This

produces the following diagram:

Then, since the essential monomorphism ~:A -7 ~A has a left

inverse, it is an isomorphism, and hence A is isomorphic to

its Boolean envelope. By the lemma, A is injective in

BooS~, and then by the result quoted above, it is complete.

The next lemma uses the result from BALT

(Proposition 1.10) that B EBooS~ has as its injective hull

[):B -7 rtB.

2.3 Lemma: A -7 ~A -7 rt(~A} is an essential monomorphism

in ~Sh~.

From Proposition 1.10 we know that ~:A -7 ~A is

an essential monomorphism in ~S~, and from BALT 1.8,

[):B -7 rtB is an essential monomorphism in BooS~. We show

that essential monomorphisms in BooS~ are essential in ~S~

as well.
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Let B,C EBooSht:., D EJJSht:., h:B >---7 C be essential

monic in BooSht:., and g:C -7 D be a lattice homomorphism in

Sht:.. Now, 9 has an epi-mono factorization, with 9 = jk,

giving the following diagram:

Let gh be monic - then kh is, for if khm = khn, then jkhm =

jkhn, i.e. ghm = ghn. Since gh is monic, m = n. But since

k is an onto map from a Boolean algebra, it is a Boolean

homomorphism, and since h is essential in BooSht:., k is also

a monomorphism. Now, j is monic, hence 9 = jk is, thus

proving that h:B -7 C is an essential monomorphism in JJSht:.

as well as in BooSht:..

Hence B -7 nB, for Boolean B, is essential in JJSht:.,

and A -7 ~A -7 n(~A) is an essential monomorphism.

2.4 Proposition: JJSht:. has injective hulls.

From BALT 1.10 we know that []:B -7 nB is

the injective hull of any B EBooSht:.. Then for A E JJSht:.,

~AEBooSht:., and []:~A -7 rt.(~A) is the injective hull of ~A.

By the lemma, A -7 n(~A) is essential; combined with Lemma

2.1 this shows that n(~A) is an essential injective

extension of A, that is, an injective hull of A.

This describes the injective hull of A E JJSht:. as a
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Boolean algebra of certain ideals of congruences on A.

Alternatively, we may use the following lemmata to produce

the injective hull of A by a construct of a simpler type.

2.5 Lemma: !B =LB for B E BooS~.

Let B EBooSW: and, for UE~, 8E (LB)U

Con(BjU). Define f
u

: (~B)U -7 (~B)U, that is

fu:Con(BIU) -7 Id(BIU), by 8 ~ J, ".here J is given at W::'::U

as JW = {x E BWI (x,O) E 8W}. We first prove that this

defines a sheaf map, then that it is one-one, onto, and

order-preserving.

To show that f is a sheaf map, we require that the

Id(BIV)fV
)

for all V::':: U E;i:

fU) Id(BIU)

1
Con(BIV)

following diagram commute,

Now, (f (8)IV)W = {xEBWI(x,O) E8W, W::'::U} IV, which equals
U

{xEBW\(x,O) E8W) for W::'::V; on the other hand,

(f (8 \ V) } IW = {x E BW I (x, 0) E (8 IV) W} = {x E BW I (x, 0) E 8W) ,
V

for W::.::V. Thus f (8) IV = f (8IV) for all V::.::U, and f is
U V

a sheaf map.

To see that f is one-one, note that (a,b) E8U iff

(a/\b,avb) E 8U iff (a'/\b,O) E8U. So (a,b) E8U iff

a' /\ b E JW for all W::':: U in ~, and thus J is completely

determined by 8.
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Let I be an ideal of BIU and define e on BIU by 8W =

{(a,b) la +b E IW}, for W~U EJ:, where a +b is the usual

symmetric difference (a ' /\ b) v (a /\ b ' ). It is a standard

computation in Boolean algebra that ew is a congruence on

BW; we must show that W ~ 8W is a subsheaf of BIU X BIU.

w ~ ew is a subpresheaf of B IU X B I U because the

restriction homomorphism preserves symmetric difference, and

hence it is separating. To show that it is patching, let

U = Vu and (a., b. ) E 8U . <:; BU. X BU., wi th (a., b. ) IU. /\ Uk
ill l l l l l l

(a , b
k

) I U. /\ Uk'k. l r

and b ! U. /\ U = b k IU l' /\ Uk'
i'l k -

But a.,b. EBU., which is a
l l l

sheaf, hence there exists a E BU wi th a: U. = a. and b E BU
l l

with biU. = b .. We claim that (a,b) E8U, that is,
l l

a + b E IU. Now, a.+b. E IU. by definition,
l l l

so

(a +b) IU. E IU.; I is itself a sheaf, so indeed a +b E IU,
l l

and (a,b) Eeu.

Finally, {a I (a, 0) E eW} = {a Ia + 0 E IW} =

{al (al/\O) v (a/\ 1) E IW} = IW, and so I = f (0) and f is
U

onto as well as one-one.

It remains only to show that f is an order-

preserving map; then it is an isomorphism. Let 8 <:; G be
1 2
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congruences on B I U and x E J 1W for W:5 U, i. e. (x, 0) EelW.

But since 8 WS8 W for all W:5UE;t, clearly (x,O) E8 W
1 2 2

and x E J W.
2

On the other hand, let I s I be ideals of
1 2

BIU. Then take (a, b) E 8
1

vJ, that is, a + bEllW. But then

a + bEl W, so 8 Ws 8 W.
2 1 2

g-B ~ J.::B.

Hence f preserves order, and

Remark: A stronger version of this result, for ~ns, was

published in 1952 by J. Hashimoto[10]. He proved

that IdB - ConB where B is a generalised Boolean lattice,

that is, a relatively complemented lattice with a zero. We,

however, do not require the stronger result.

2.6 Lemma: For A E ~Sh;t, J.::(~A) ~ J.::A.

Let A E J')Sh;t and ~A be its Boolean envelope.

Let 8 and ¢ be congruences on ~A, then for 81A = ¢IA, we

claim that 8 = ¢. Without loss of generality, we may take

¢ s 8. We have the following diagram:

r

Since 81A = ¢IA, AlBIA ~ A/¢!A. The maps ~, v, p, a are the

appropriate canonical homomorphisms, and ~ is the essential
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homomorphisms.

The maps rand s are induced
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In order to show that 8 = ¢, we require that

~A/8 ~ ~A/¢, i.e., that ~ is an isomorphism. First we show

that r:A/¢IA -7 ~A/¢ is the Boolean envelope of A/¢!A.

Consider the following diagram:

A P ) A/¢IA

'V 1 1r 'VI

~A
jJ.

) i'::A/¢
~

'-

Now, r is a homomorphism with Boolean image, and 'VI is the

reflection map from ~Sh~ to BooS~, so there exists a map

r l :i'::(A/¢IA) -7 ~A/¢ such that 'Vlr l = r. Since Ker(jJ.'V) = ¢IA

and jJ.'V = rp, we have that Ker(rp) = ¢jA. But p being the

quotient homomorphism, ¢!A = Ker(p), and so r is a

monomorphism; since 'VI is essential, this makes r l monic as

well.

It remains to show that Im(r ' ) = ~A/¢. Now,

-1 -1
'V jJ. (Im(r l »)

-1 -1P r (Im(r ' ); since Im(r)£Im(r l
),

-1 -1 -1
P r (Im(r')) = p (A/¢IA) = A, which implies that

-1
Im('V)£jJ. (Im(r ' ». Then, since

-1
jJ. (Im(r l

) is a Boolean

subalgebra of i'::A, and ~A is generated by A, it is clear that
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-1
M (Im(r')) = ~A. Finally, since M is onto, we have Im(r')

= M(~A) = ~A/~. So r' is an isomorphism from ~(A/~IA) to

~A/~, and r:A/~IA -7 ~A/~ is the Boolean envelope of A/~IA.

Returning to the first diagram, we have that

s:A/8IA -7 ~A/8 is also a Boolean envelope. Hence s = ~r is

monic, which implies, since r is essential, that ~ is a

monomorphism. Similarly, we can construct a monomorphism

~:~A/8 -7 ~A/~, hence ~ is left invertible. Since rand s

are essential, so is ~; therefore, ~ is an isomorphism and

~A/¢ ~ :f.A/8. Since ¢ <;; 8, this gives e <;; ~ and hence

equality. Thus we have a one-one map from Con(:f.A) to ConA,

given by res tr ict ion. Applying this to .J,U for each U E 'J:.

and using the fact that (~A) IU = ~(AIU), we obtain a

monomorphism from L(~A) to LA.

Now we let 8 E ConA and show that there exists a

congruence ~ on ~A such that ~IA = e. Let i and j be the

essential embeddings of A into ~A and A/e into ~(A/8)

respectively. Then the canonical homomorphism v:A -7 A/8

induces a homomorphism f:~A -7 ~(A/8), giving this diagram:

i
---7) ~A

1f

A/e~ ~(A/e)
J

Let ¢ = Ker (f) and let b, c E AV for V E i:-.

~IA 8, since (b,c) E8V iff (iv(b),iv(c)) E8V, as

Then
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is

monomorphism, is true iff vV(b)

(b,c) E:.8V.

vv(c), in turn true iff

Finally, it is easily seen that we have an order

isomorphism: 8IAS¢!A iff 81A = 8!A n <PIA = (8 n¢) lA,

which is true iff 8 = 8 n¢, that is, 8 s<P.

Hence L(~A) - LA, by restriction, again by applying

the above to -.1-U for each U E J:..

We are now ready to describe an alternative

construction of the injective hull for A EJ)Sh;f.. For any

locale M in S~, we know that the eaualizer of id :M -7 M- M

and ()**:M -7 M is the Boolean algebra M* of normal elements

of M. For A E !lSM, J:.A is a locale, by the corollary to

Proposition 1.1. From the above lemmata, we have LA - L(~A)

~ !(~A), hence the equalizer (LA)* of idA:LA -7 LA and

()**:J:.A -7 J:.A is isomorphic to the sheaf n(~A) of normal

ideals of ~A:

(J:.A) * s

~l
rl. (~A) s

id
J:.A ()-:1 LA

~l ~l
id

3-(~A)
( ) '" 3-

3- (~A)

Then, as in BALT(p.14, preprint}, the map ~:A -7 J:.A factors

through (J:.A)*, and we may write ~:A -7 (J:.A)* as the

injective hull of A.



2.7 Proposition:
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A bounded distributive lattice A in S~ is called

indecomposable if it is non-trivial, and any isomorphism

A== BXC inl1Sh;l implies that either B or C is trivial.

The indecomposable injectives in l1S~ are

exactly the °*12) for the points o:;l -7 2

of the locale ;l.

In BooSh;l the indecomposable injectives are

exactly these 0*(2) (BALT 2.1); from Lemma 2.1, the

injectives in nSh;l are those in BooSh;l. Hence the 0*(2) are

certainly injective in l1Sh;l and are, indeed, the only

candidates for the indecomposable injectives. It remains to

show that the 0*(2) are in fact indecomposable in l1Sh;l.

Let A be a bounded distributive lattice in Sh;l of

the type 0*(2) and suppose A ~ BXC for B,C El1Sh;l. Then,

since A must be Boolean, Band C belong to BooS~, and A ==

B X C as Boolean algebras. By the result quoted above, then

either B or C must be trivial, and hence A is

indecomposable.



CHAPTER 3: OTHER PROPERTIES OF DISTRIBUTIVE LATTICES IN S~.

Having established some basic facts about injectives

in ~Sh~, we turn now to a consideration of other properties

of distributive lattices in S~ and the relationships among

them. We are interested, specifically, in prime and simple

distributive lattices in S~, in cogenerators of ~Sh~, and

in the initial object 2~ of ~S~.

A bounded distributrive lattice A E~S~ is called

pr ime if, for any 8, <P t J. in ConA, 8 () <P t J.. Note that

this means that the bottom element of the lattice ConA is

prime in the usual set-theoretic sense.

3.1 Proposition: The prime A E ~S~ are exactly the

indecomposable injectives.

Let A E~S~ be prime. Then ;t;A is

indecomposable as follows: suppose that it is decomposable,

say;t;A == CXD for nontrivial C,DEBooSM. Then the

projections C X D ~ C and C X D ~ D determine nontrivial

congruences on C X D wi th tr i vial meet. Then (8 IA) () (<p IA)

= J., hence 81A = J. or <PIA = J.; then 8 = J. or <P = J., since B

is an essential extension of A. But A is prime, giving a

36
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contradiction, which shows that ~A is indecomposable. It

then follows that the injective hull of ~A is also

indecomposable, hence rt(J;A) =:; a, (2) for some a:;f. --7 2.
¥

However, a*(2) has no proper sublattice, so A ~ a*(2).

For the converse, let A = a * (2), 0 E ConA, and 0 S ;f

be the completely prime filter a-
1

{1} associated with the

point a:;f --7 2. Then for U ED, AU = (a,2)U 2, and either
>.<

au is the identity on 2 or (0,1) E 8U. If a =I J.
2

, then

there exists UEo v"i th (0,1) E eu. Hence if ¢ is any other

nontrivial congruence on A and (0,1) E¢W for W ED, we have

(0,1) E8(U",W) n¢(U",W) = (On¢)(U",W).

E 7S, and hence 8 n ¢ =I ..!..

But U '" W

Recall from general category theory that an object C

in A is a cogenerator iff, for f,g:A --7 B distinct morphisms

in A, there exists a morphism h:B -7 C in A such that

hf =I hg.

3.2 Lemma: A set in BooSh;f. cogenerates BooSh;f. iff it

cogenerates ~Sh;f..

Let X E BooSh;f. be a cogenerating subset of ~Sh;f.,

and let A,B EBooSh;f. with distinct Boolean homomorphisms

f,g:A --7 B. But ~ priori, A and B are bounded distributive

lattices in Sh;f, and f and g are distinct lattice

homomorphisms. Hence there exists Q EX and a map h:B --7 Q

with hf =I hg. Thus X is a cogenerating set in BooSh;f..
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Conversely, let X E: BooSh;f be a cogenerating subset

of BooSh;f, and let A, B E: J)Sh'i wi th distinct lattice

homomorphisms f,g:A ~ B. Applying the map ~ to A and B

produces the commuting square in the following diagram,

where T and 9 are the homomorphisms induced by f and 9

respectively. Q belongs to X.
f

A $ B

?Al
g F'" kf B "-

"1:,A ) 1:,B -~~Q
9

)

We see that rand 9 are distinct as follows: suppose '1 = g.

But ~B is monic, so

Since hI t- hg,

f = g, which contradicts the original choice of f and g.

Now X is a cogenerating set in BooSh'i, so there

exists Q E: X and a map h :1:,B ~ Q, "'-.Ii th hi t- hg. 'iJe then

compose h with ~ to get the map k:B ~ Q.
B

h'1~A t- hg~A' Then h~Bf t- h~Bg, and, finally, kf t- kg for k

= h~B' So X is a cogenerating set in J)Sh~.

3.3 Proposition: The indecomposable injectives in J)Sh'i

cogenerate !lSh'i iff ~ is spatial.

Since the indecomposable injectives of

!lSh'i are exactly those of BooSh'i, we use the lemma and the

result from BALT (2.3) which states that the indecomposable

injective Boolean algebras in Sh'i cogenerate BooSh'i iff ~ is
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spatial.

A bounded distributive lattice A in S~ is called

simple if A is nontrivial and, for any homomorphism h:A -7 B

in ~S~, either h is a monomorphism or B is trivial.

Clearly, this is equivalent to saying that for any e E ConA

(~A)E, either 8 = ~ or 8 = T. Hence, trivially, for 8,

<I> E~A, if 8 n<I> = .I. then either 8 = .L or <I> = .I., so simple

distributive lattices are prime. Note that this is also

3.4 Lemma:

equivalent to saying that A E !lS~ is simple iff ConA is a

2-chain.

A point rr:~ -7 2 is called closed iff the associated

S = VU, over the U with rr(U) = 0, is maximal, which is true

if and only if n rr-
1

{1}is a minimal completely prime

filter.

A E ~s~ is simple iff A is a simple Boolean

algebra in S~.

If A is a simple Boolean algebra in s~, then it

is trivially true that it is a simple distributive lattice,

since, for Boolean A, ConA ~ IdA.

Conversely, if A is a simple distributive lattice in

s~, it is prime and hence, by Proposition 2.8, an

indecomposable injective, which makes it Boolean. Again,

for Boolean A, ConA ~ IdA, and A is thus simple as a Boolean

algebra.



Corollary: A E J:lShf. is simple iff A ~ a~(2) where
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~~-7 2 is a closed point.

This is a direct result of the lemma and

Proposition 3.5 of BALT (preprint), which states that the

simple Boolean algebras in Shf. are exactly the a*(2) for

closed points a of ~.

3.5 Proposition: The simple A E J:lS~ cogenerate J:lSh~ iff

~ is isomorphic to the topology of a

T - space.
-1

This is a direct result of our Lemmata

3.2, 3.4, and Proposition 3.6 of BALT (preprint), which

states that the simple Boolean algebras in Shf. cogenerate

BooShf. iff ~ is isomorphic to the topology of a T
1
-space.

Consider now the initial distributive lattice 2~

of Shf..

The preprint of BALT contains the proposition

(4.1) that the initial Boolean algebra 2 in S~ is complete
~

iff ~ is a Stone algebra, that is, U* v U** = E for all

U E~. Since 2 has identical order structure in J:lS~ and
~

in BooShf., we form, effortlessly,

3.6 Proposition: The initial bounded distributive lattice

~~ is complete iff ~ is a Stone algebra.
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Applying yet another result from BALT (3.3), that

2~ cogenerates BooS~ iff ~ ~ 2, we get

3.7 Proposition: ~~ cogenerates ~Sh~ iff ~ ~ 2.

From Lemma 3.2, 2 cogenerates ~Sh~ iff it
t.

cogenerates BooSh~.

3.8 Lemma: ~2 ~ o.5J---t..--

We have, for U E~, (8-2t.)U = Id(2~IU) = Id(2-l-U)'

#
Now, from BALT (preprint, 4.4) the map S ~ (2~IS) , SEt.,

#
is an order isomorphism i:~ ~ Id(2~), where (2~IS) is the

ideal of 2t. given at W E~ as

_ {(2~IS)W' for W:SS

o , for W t S

We require (8-2t.)U ~ OU = -l-U. Applying the order

isomorphism to -l-U in t., ~U ~ Id(2-l-
U

)' but Id(2~u)

(8-(2~IU))U = (8-2~)U. So it is necessary only to

show that this defines a sheaf map, i.e. that the following

square commutes:

~U

1
~V

(V :5 U)

Since restriction in -l-U is given, for V:5 U, by S ~ S 1\ V,

this amounts to proving that i (S 1\ V) = i (S) IV, for S E-l-U
V U



and V $ U in ;t. For S $ U and W$ V we have
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which are the same since W$ S iff W$ S 1\ V.

c~w
W$SI\V

i V(SI\V)W -
otherwise

and

r~:
W$S

iu(S)W -

otherwise

Thus iv(SiV)

= iu(S) IV and we have a sheaf map ~U ~ Id(2~u)' making

'3-2 ~ n.
;t

3.9 Proposition: Any locale ;t is isomorphic to the locale of

congruences of the initial object of ~Sh;t.

This is a direct result of the lemma and

Lemma 2.5. which states that for Boolean A ESh;t, 3-A ~ J:.A.

Corollary: For any locales ;t and m, ~Sh;t~ ~Shm iff ;t ~ m.
Note that this observation can also be made as a

consequence of a theorem of Borceux and van den Bossche[7]

(p. 120) .

As noted in the preprint of BALT (p. 34), any

equivalence between categories preserves initial objects,

their quotients, and the associated congruences. The

corollary then follows immediately.
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