
 

  

 

 

 

 

 

 

 

SIMULATION OF WAVEGUIDE CROSSINGS AND CORNERS WITH 

COMPLEX MODE MATCHING METHOD 

 

 

 

 

 

 

 

 

 

 

 

 



 

  ii 

 

SIMULATION OF WAVEGUIDE CROSSINGS AND CORNERS WITH 

COMPLEX MODE MATCHING METHOD 

 

 

By 

Rui Wang, B.Sc., M.Sc. 

 

 

 

A Thesis 

Submitted to the School of Graduate Studies 

In Partial Fulfilment of the Requirements 

For the Degree 

Master of Applied Science 

 

 

 

 

 

McMaster University 

© Copyright by Rui Wang, August 2011 

 



 

  iii 

 

MASTER OF APPLIED SCIENCE (2011) McMaster University 

(Electrical and Computer Engineering) Hamilton, Ontario 

      

                                                                    

                    

TITLE: Simulation of Waveguide Crossings and Corners with Complex Mode 

Matching Method 

 

 

AUTHOR: Rui Wang, B.Sc. (Peking University, China) 

 

SUPERVISOR: Dr. Wei-Ping Huang 

Professor, Department of Electrical and Computer Engineering 

 

NUMBER OF PAGES: xiv, 92 

 

 

 

 

 

 

 



 

  iv 

 

Abstract   

 

Optical waveguides are basic building blocks of high-density photonic integrated 

circuits and play crucial roles in optical access networks, biomedical system, sensors 

and so on. Various kinds of dielectric waveguides apply the total internal reflection 

condition to transmit optical field [9] and even more complicated structures based on 

waveguide interconnects, Bragg grating, photonic crystals are actively developed by 

corporations and academic institutes. Especially, the fast developing pace of 

Metal-Organic Chemical Vapor Deposition (MOCVD), Molecular Beam Epitaxy 

(MBE) and other fabrication techniques has predicted the increasing complication and 

thus more advanced function of modern optics integrated circuits. Under such 

circumstances, convenient and accurate modeling and simulation schemes are 

necessary for the exploration, designing and optimization of photonic devices, 

systems and networks before the time-consuming and expensive fabrication process. 

The thesis summarizes several frequency-domain modeling schemes for the 

calculation of mode profile or beam propagation in 2D dielectric waveguide. The 

thesis mainly covers conventional Smooth Transition Method (STM), High Order 

Finite Difference (HOFD) scheme, Complex STM, and Complex Mode Matching 

Method (CMMM) based on the 2D waveguide model terminated with Perfect 

Matching Layer (PML) and Perfect Reflection Boundary (PRB). The mode spectrums 

and modal patterns obtained from Complex STM are compared with those of HOFD, 
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and the simulation of waveguide crossings and corners with CMMM is validated with 

Finite-Difference-Time-Domain (FDTD) Method. 
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Chapter 1 

Introduction  

 

1.1 Background of Research 

 

Optical communication is a revolutionary and beneficial form of telecommunication 

using light as transmission medium and predicting high speed, broad bandwidth and 

good safety [1-2]. As a promising technology of the entire optical communication 

systems and networks, the concept of integrated photonics proposed in 1960s is 

supported by a variety of optical fibers and devices [3-4], among which waveguide 

crossings and corners are important components [5-8]. These structures are appealing 

due to their ability to control and direct the propagation of light in complex 

waveguide circuits. In a further way the scaling down of optical devices and circuits 

desires high-index-contrast waveguide structures because of the miniaturized 

waveguide core for optical confinement [9-10]. In this sense the designing and 

optimization of waveguide crossings and corners with high index-contrast have been 

widely studied experimentally and theoretically [11-17]. 

On the other hand, optical cavity attracted much attention owning to its 

capability of confining light through multiple internal reflections so as to produce 

standing waves for certain resonant frequencies. It has been reported that optical 

cavity can support longitudinal and transverse eigenmodes in the way of reproducing 

radiation patterns on every round-trip of the light through the resonator due to the 
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effect of interference for certain patterns and radiation frequencies [18]. Optical cavity 

is generally employed in lasers [19-21], interferometers [22-23], wavelength filters 

[24-25] and so on. Especially optical cavities with appropriate geometry are usually 

applied to waveguide crossings and corners in order to enhance or suppress the 

crosstalk [11-12][26]. 

 Computer-aided design (CAD) schemes suggested to simulate the wave 

propagation in waveguide structures ranges from semi-analytical methods, say 

Coupled Mode Theory (CMT) [27-30], and Mode Matching Method (MMM) [31-32], 

to numerical approaches like Beam Propagation Method (BPM) [33-34] and 

Finite-Difference Time-Domain (FDTD) Method [35-36]. However, in the past only 

computationally expensive time-domain schemes are universally employed for the 

modeling of waveguide crossings and corners [11], as the outgoing wave is actually 

radiating wave with reference to the launching direction so that the modeling of 

couplings among ports with different directions is challenging for frequency-domain 

method. 

1.2 Motivation 

 

Although the modeling of waveguide crossings and corners through FDTD is rigorous 

and accurate, it is extremely demanding of FDTD on computation time and memory 

[37]. Recent progress in the MMM utilizing the combination of PML and PRB have 

been proved to be effective and accurate through various examples such as waveguide 

facets, polarization rotators, and deep-etched gratings, etc. However All these 
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structures bear the similar characteristics, i.e., the main radiation field out of the input 

waveguides is dominant in the directions not too far off the waveguide axis. As such, 

the guided and the near-axis complex modes with relatively lower radiation loss play 

significant roles in the mode matching simulation. So far, few frequency domain 

methods can handle radiation far off-axis or perpendicular to the waveguide axis as 

this involves fast oscillating evanescent waves. Although Quadri-Directional 

Eigenmode Expansion Method (QDEEM) has been supposed to simulate waveguide 

intersections, the orthogonal condition of this method is not clear [38]. In this work, 

we demonstrated by way of simulation that the total powers along all directions are 

conserved within the framework of CMMM in order to validate the self-consistency 

of the method.  Further, we for the first time prove that CMMM is able to model the 

couplings of radiating wave perpendicular to the waveguide axis in the examples of 

waveguide crossings and corners. 

  High Order Finite Difference (HOFD) method has been a general numerical 

mode solver for 2-D straight waveguide terminated with PML and PRB. However, in 

HOFD the process of obtaining eigenvalues of the Hermitan Matrix in sophisticated 

waveguides requiring very small meshes costs time and memories a lot [39]. In this 

thesis the author develops the semi-analytical Complex Smooth Transition Method 

(CSMT) for the mode solver of multi-layer planar waveguide instead, and compares 

the obtained mode spectrums and modal patterns with those from HOFD scheme.  
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1.3 Thesis Organization 

 

The arrangement of this thesis is as follows: In Chapter 2, the modal governing 

equations and the solutions of both finite difference and conventional smooth 

transition are presented. Chapter 3 demonstrates the complex mode matching method. 

Chapter 4 describes the novel complex smooth transition method. The power 

conservation of complex mode matching method is proved in Chapter 5. Chapter 6 

introduces the simulation of waveguide crossings and corners with complex mode 

matching method. And the conclusion of this thesis is drawn on Chapter 7. 

     The main contributions of this thesis include two points: firstly, we originally 

establish Complex STM to semi-analytically calculate the mode profiles of 

multi-layer planar waveguide terminated with both PML and PRB ; secondly, 

although CMMM has been generally applied to the simulation of waveguide facets, 

Bragg gratings, etc[52-53], we for the first time demonstrate that CMMM can also be 

utilized for the modeling of couplings of radiation field outgoing perpendicularly to 

the waveguide axis with an incident wave launched in the examples of 

high-index-contrast waveguide crossings and corners. CMMM is proved to be able to 

estimate the field profiles and power flows accurately through the validation with 

FDTD. 
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Chapter 2  

Finite-Difference (FD) and Smooth Transition 

Method (STM) Solutions 

 

2.1 Mode Equation for 2D Straight Waveguide 

 

In a source-free and homogeneous media, the Maxwell’s equation can be written as 

[28]  

0
E j H  

 (2.1) 

0 rH j E    (2.2) 

 0 0rE    (2.3) 

 0
0H 

 
(2.4) 

where  is the frequency of the light wave, 0 and 
0 are the permitivity and the 

permeability of the free space, respectively. The time harmonic factor j t
e

 has been 

suppressed in the time-harmonic Maxwell’s equations above. 

  Substituting (2.1) into (2.2), we can obtain the full vector wave equations 

with reference to electric field [28]: 

2 2
00

0E En        
(2.5) 

In the similar way, by taking (2.2) into (2.1), we get the full vector wave equation on 

magnetic field [28] 

2
002

1
0H H

n
 

 
    

   

(2.6) 

where n is the refractive index of the medium. 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  6 

 

 Figure 2.1 shows a 2-D slab waveguide. Ẑ  is the longitudinal direction, and 

X̂  is the transverse direction. The waveguide along Ŷ  is infinitely long, thus 

0
y





. Consequently (2.5) and (2.6) will fall into two separate transverse electric 

mode (TE) equations and transverse magnetic mode (TM) equations. 

 

Figure 2.1.  The schematic of an arbitrary 2-D slab waveguide 

 

       For TE polarization the wave vector only contains the components of yE , 

zH , and xH . And the governing equations for yE  can be simplified to be [27-28]: 

2
22 2

02
( ) 0

y

y

y

y

E
k n E

x

E
j E

z






   


 

 

 

 

(2.7) 

where 0k is the vacuum wave number  
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0

2
k






 
(2.8) 

 here is the longitudinal propagation constant. 

xH and zH are related to yE in (2.9) and (2.10) [27-28] 

0

x yH E



   

(2.9) 

0

y

z

j E
H

x





 

(2.10) 

For TM polarization, the vector wave only contains the components of yH , 

xE  and zE . The governing equation for yH is [27-28][30]: 

 22 2 2
02

1
0

y

y

y

y

H
n k n H

x xn

H
j H

z





     
     

    



 

 

 

 (2.11) 

xE  and zE can be expressed by yH in (2.12) and (2.13) 

0

x y

r

E H


 
  

(2.12) 

2
0

y

z

j H
E

xn 





 

(2.13) 

      When the waveguide is enclosed by perfect boundary conditions (PRB) which 

result in the radiation field totally reflected at the boundaries, the continuous radiation 

field will be discretized into box modes. For general media, two arbitrary modes of 

the same waveguide are always orthogonal in this way [30] : 

 * *
tm tntn tm zdxe eh h     

(2.14) 

where tme and tmh are the transverse electric and magnetic field of the m
th

 forward 

propagating mode. tne and tnh are defined in the same way ( m ≠ n ). The 

integration here is along the whole cross section. 
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We suppose 
m as the propagation constant of the m

th 
forward propagation 

mode. When the m
th

 mode propagates backward, its propagation constant will be 

m . Then its orthogonality with the n
th

 mode can be expressed as [30]: 

 * * ,tm tntn tm m n
zdxe eh h        

(2.15) 

In real waveguide structures, the transverse field pattern can be approximately 

expanded by the linear superposition of its eigenmodes, so-called mode expansion 

[29-30]. 

     
1

,
N

j z j zn n
n nt tn

n

x z xa e a e eE
   



   (2.16) 

     
1

,
N

j z j zn n
n nt tn

n

x z xa e a e hH
   



 
 

(2.17) 

where na
 and na

 are the amplitudes of the forward and backward propagating th
n  

mode of the local waveguide. 

In this mode expansion process, it is necessary to normalize the th
n mode field 

pattern [30]
 

    *1
Re 1

2
tn tnx x zdxe h  

 
(2.18) 

For lossless media, the modal field is real. So the orthogonality condition can be 

simplified to be [30] 

  0,tm tntn tm m n
zdxe eh h         

(2.19) 

And the mode normalization expression turns to be [30] 

   
1

1
2

tn tnx x zdxe h  
 

(2.20) 

For general media, the modal field pattern can be complex, accordingly in (2.21) nN  

can be even complex [30] 

    *1
Re

2
tn ntnx x zdxe Nh  

 
(2.21) 
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2.2 Conventional STM for 2-D Straight Waveguide 

 

2.21 Introduction 

The determination of both guided modes and leaky modes are essential for the 

simulation, analysis, design and optimization of the multilayer planar waveguide 

structure, as leaky modes are usually critical to assist the analysis of mode couplings. 

In conventional STM, the cascading of transfer matrices leads to the characteristics 

equation   0f   , whose roots can be obtained by Newton’s search in complex 

plane [40-41]. When the artificial boundary outside the multilayer stacks (Figure 2.2) 

makes the multilayer structure closed, we obtain the real and imaginary roots of 

  0f    that are corresponding to the guided and evanescent modes, and they serve 

as the initial guesses for the following root searching process. As the artificial 

boundary changes from close to open, the root locations move from real and 

imaginary axis to the complex plane. 

 

Figure 2.2. The schematic of a (m+2)-layer 2-D slab waveguide with artificial 

boundaries placed outside the multilayer stacks. 
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2.22 Formulas of Conventional STM 

The field expression in an arbitrary location in the 
th

j layer in the multilayer structure 

of Figure 2.2 can be expressed as [40-41]: 

     j j j jj x j xk x k x
j jj

x e eF B    
 

(2.22) 

We get the derivation of field pattern with reference to x 

     j j j j
j j x j xk x k x

j jj

x
jk e eF B

x


  


                                                                                                                                                                                                                                                                                                                                                                                 

 
(2.23) 

where jF and jB are the complex coefficient of forward and backward propagating 

waves at the left boundary of 
th

j layer. 
j notes yE for TE case and does yH for TM 

case. x is an arbitrary transverse position in the 
th

j  layer. jx is the left boundary of 

th
j layer. The transverse wave vector jk is defined as  

22 2
0j jk n k  

 
(2.24) 

According to the Maxwell’s equation in Chapter 2.1, in TE polarization,  j
x and 

 j
x

x




vary as tangential electric and magnetic field, respectively. In TM polarization, 

 j
x and 

 
2

1 j

j

x

xn




vary as tangential magnetic and electric field. 

We assume LF and LB are the complex coefficient of forward and backward 

propagating tangential electric (magnetic) field in TE (TM) polarization at the left 

artificial boundary; RF and RB are those at the right artificial boundary. Through the 

cascading of transfer matrix in each layer, we can get the equation (2.25) in TE 

polarization case [40-41]. 

   
11 12

21 22

L L R R

L L R Rc s

F B F BT T

k kF B F BT T

 


 
 

(2.25) 
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We further define a controlling parameter  [40-41] 

 L L L LF B F B   
 

(2.26) 

 R R R RF B F B  
 

(2.27) 

When 1  , 0LF  , 0LB  ; 0RF  , 0RB  , the artificial boundaries on both sides 

are open. As  gradually changes from 1 to 0, L LF B , R RF B , the artificial 

boundaries are closed. Substituting (2.26) and (2.27) into (2.25), we get [40-41] 

   
11 12

21 22

L L R R

L L R Rc s

F B F BT T

k kF B F BT T 

 


 
 

(2.28) 

From (2.28), we derive the governing equations for the determinations of propagation 

constants of guided and radiation modes for TE polarization [40-41]: 

    2

21 22 11 12 0s c c sf k k k kT T T T      
 

(2.29) 

 For TM polarization, we obtain [40-41] 

   
11 12

21 222 2

L L R R

L L R Rc s

c s

F B F B
T T

k kF B F B
T T

n n

 

 

 

(2.30) 

Instituting (2.26) and (2.27) into (2.30) [40-41] 

   
11 12

21 222 2

L L R R

L L R Rc s

c s

F B F B
T T

k kF B F B
T T

n n

 

 

 

 

(2.31) 

we further get the governing equation for TM polarization [40-41] 

    22 2 2 2
21 22 11 12 0c s c s s c c sf n n n k n k k kT T T T      

 
(2.32) 

Note that as  gradually increases from 0 to 1, the currently obtained effective index 

(
effN ) will work as the new initial guess for the next-step Newton iteration 

corresponding to new , just like Figure 2.3 shows.  
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In conventional STM the mode spectrum depends on the position of artificial 

boundary a lot. It is recently reported that the artificial boundaries should be exactly 

placed at the interfaces between the claddings and multi-layer stacks [40]. 

 

 

Figure 2.3. Methodology of Conventional STM 

 

2.3 Perfect Matching Layers as Numerical Boundary 

Condition 

 

2.31 Discretized Box Modes 

We consider the open waveguide in Figure 2.4(a) and close waveguide in Figure 

2.4(b). Through enclosing the open waveguide with Perfect Reflection Boundary 

(PRB), the continuous radiation waves will be discretized into box modes. If the 
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computation window is large enough, the electric field for TE guided wave or the 

magnetic field for TM guided wave can be regarded as decayed to zero at the 

boundaries. However the refection at the closed boundary for radiating wave will 

affect the simulation results. 

For the symmetric three-layer slab waveguide, its solutions of the governing 

equation (2.7) for yE in TE polarization case is (2.33) (for even modes) and (2.34) 

(for odd modes) [10]. 

 

 

 
 

 

 

,

,

,

,

,

,

sin

sin

cos

cos

sin

sin

x clad

x clad

x core

y

x core

x clad

x clad

x Lk
L x S

S Lk

xk
x SE

Sk

x Lk
S x L

S Lk

      
    




 



    
     

 

 

(2.33) 

 

 

 
 

 

 

,

,

,

,

,

,

sin

sin

cos

cos

sin

sin

x clad

x clad

x core

y

x core

x clad

x clad

x Lk
L x S

S Lk

xk
x SE

Sk

x Lk
S x L

S Lk

      
    




 



    
     

 

(2.34) 
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      (a)                                             (b) 

Figure 2.4. (a) 2-D open waveguide (b) 2-D close waveguide 

where  

2 2
, 0 2x clad eff

k k n N 
 

(2.35) 

2 2
, 0 1x core eff

k k n N 
 

(2.36) 

0

effN
k




 

(2.37) 

According to the continuity of xH at the two interfaces, we obtain the characteristic 

equation for even TE modes [10] 

   , , , ,tan cotx core x core x clad x cladS S Lk k k k      
(2.38) 

and that for odd TM modes [10] 

   , , , ,cot cotx core x core x clad x cladS S Lk k k k      
(2.39) 

The solutions for governing equation of yH in TM polarization case are (2.40) (for 

TM even modes) and (2.41) (for TM odd modes) [10]. 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  15 

 

 

 

 
 

 

 

,

,

,

,

,

,

sin

sin

cos

cos

sin

sin

x clad

x clad

x core

y

x core

x clad

x clad

x Lk
L x S

S Lk

xk
x SH

Sk

x Lk
S x L

S Lk

      
    




 



    
     

 

(2.40) 

 

 

 
 

 

 

,

,

,

,

,

,

sin

sin

cos

cos

sin

sin

x clad

x clad

x core

y

x core

x clad

x clad

x Lk
L x S

S Lk

xk
x SH

Sk

x Lk
S x L

S Lk

      
    




 



    
     

 

(2.41) 

According to the continuity of xE at the two interfaces, we obtain the 

characteristic equation for TM even mode [10] 

           

   , ,, ,

2 2
1 2

cottan x clad x cladx core x core S LS k kk k

n n

   

                (2.42)

 

and that for TM odd modes [10] 

   , ,, ,

2 2
1 2

cotcot x clad x cladx core x core S LS k kk k

n n

   

 

(2.43) 

The solutions of (2.38), (2.39), (2.42) and (2.43) can be real, imaginary or complex. 

Consequently the box modes contain the guided, evanescent and complex modes. 

Figure 2.5 shows the mode spectrum in TE and TM polarization cases of the slab 

waveguide like Figure 2.4(b). The wavelength is 1.55m. When the box size is large 

enough, the guided mode spectrum will be independent on the box size, while the 

radiation mode spacing will turn smaller. 
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(b) 

Figure 2.5. Mode spectrums of the closed symmetric slab waveguide in Figure 2.4(b) 

where n1=3.3, n2=3.17, 2S=0.2nm for (a)TE polarization  (b) TM polarizations 

 

2.32 Modified 2-D Waveguide Governing Equation 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  17 

 

In order to reduce the reflection of radiating wave from PRB, we can place the 

absorbing Perfect Matching Layer (PML) adjacent to PRB to suppress inherent 

reflection [42-43]. The stretching coordinates of PML layer are complex number with 

minus imaginary parts. Accordingly the transversely outgoing field in PML region 

will be effectively attenuated. As a result appropriate PML parameters will make the 

waveguide region work as if in open waveguide. And the whole mode spectrum will 

be discretized into orthogonal and normalizable guided and complex modes [44]. 

Figure 2.6 shows a slab waveguide terminated with both PML and PRB on each side. 

 

Figure 2.6. A 2-D slab waveguide enclosed with PML and PRB 

 

  As a non-physical fictitious medium applied to match the physical domain, 

the PML index is usually set to be equal with that of the adjacent cladding layer. 
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Assuming PML media is anisotropic, the Maxwell’s equation is modified to be 

[29-30]: 

0t

t

E j E j H

H j H j E

 

 

    


     

(2.44) 

where   is defined as [29-30] 

0 0

0 0

0 0

y

x

x

y

x y







 

 

 

(2.45) 

Here y , x and z are defined as the stretching factor along Ŷ , X̂ and Ẑ . The 

waveguide lengths along Ŷ and Ẑ are infinite, and therefore y and z should be 1. 

And x is defined as [29-30] 

2

0
0 2

0

x
xx

PML PML

j
n d


 



 
   

   

(2.46) 

where 0x is related to the evanescent modes, and 0x is the parameter for the 

attenuation of the travelling wave. PMLd is the thickness of PML layer, and PMLn is its 

index.  is the distance between the calculated position and the starting point of PML, 

as shown in Figure 2.7. With the index of PML complex, the coordinates in PML is 

therefore complex [29-30]. 

 
0

' '
x

xx dx x   (2.47) 

Consequently the stretching derivation in PML region is [29-30] 

1

x

d d

dx dx


 

(2.48) 

Sometimes we make 0x  with parabolic growth, in order to reduce dPML [29-30] 
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2

0 1x

PMLd




 
   

   

(2.49) 

 

Figure 2.7. Implement of PML 

With such coordinate stretching factors, the governing equation is modified for TE 

polarization [29-30] 

 
2

2 2
02

1 1
0

y y

y

x x

E E
n x k E

x x z 

   
   

     

(2.50) 

0

1 y

z

x

E
H

j x 


 


 

(2.51) 

0

1 y

x

E
H

j z


 


 

(2.52) 

with 
y

x y

E
j E

x



 


 , 

y

y

E
j E

z



 


. The dispersion relationship in TE 

polarization case is  

2

2 2 2
0

x

x

n k





 
  

 
 

(2.53) 

The modified governing equation in TM polarization case can be expressed as [29-30] 

2
02 2

1 1 1 1 1 1
0

y y

y

x x

H H
k H

x x z zn n 

    
    

       

(2.54) 

With
y

x y

H
j H

x



 


 , 

y

y

H
j H

z



 


, the dispersion relationship in polarization 

TM case is  

2

2 2 2
0

x

x

n k





 
  

 
 

(2.55) 
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  The implement of PML should guarantee that there are no inherent 

reflections at the interface of waveguide region and PML layer, and the interfaces of 

different PML layers (Figure 2.8). 

 

(a) 

 

(b) 

Figure 2.8. (a) The interface of waveguide region and PML (b) The interface of 

different PML layers. 

 

Assuming T and R are transmission and reflection at the two kinds of interfaces in 

Figure 2.8. The launched field  

   1 1 1exp expx xj x j Z j x j Z R      
 

(2.56) 

The transmitted field at the interfaces 

 2 2exp xj x j Z T  
 

(2.57) 

At the position of (x , z)=(0 , 0), according to the consistency of yE  ( yH ) in TE 

(TM) polarization case, we have  

1 R T   (2.58) 

At the interfaces of PML layers, 1 2x x  ; At the starting position of PML, 1x  . 

According to the continuity of xH  ( xE ) in TE (TM) polarization case in passive 

media, we have  

1 R T   (2.59) 
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Substituting (2.59) into (2.58), we have 0 , 1R T  . Consequently, regardless of 

the launching angle, polarizations and frequencies, there are no reflections at the 

interfaces of PML and waveguide region, and those of PML layers . 

  The reflection coefficient PMLR is a critical parameter determining the 

accuracy of PML-based waveguide model. In addition, PMLR is independent of 0x . 

From (2.60) and (2.61) [29-30] 

0exp( 2 )
PML

R j d 
 

(2.60) 

  0

2
0 0

' '
33

PMLd
PML x PML

PMLPML

PML

d dd jx x dd
n





   

 

(2.61) 

We get the expressions for reflection coefficient as  

 
2

0

00
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2
exp
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x
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n


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 
 

  
 
 
   

(2.62) 

Thus the stretching factor is [29-30] 

   
2 2

3 1
1

4
x

PMLPML PMLPML PML

j In
n dd dR

 




 
    

   

(2.63) 
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Figure 2.9. The evolution of 0x with PMLR when n2=3.17. dPML=5m. λ=1.55m 

in Figure 2.6(b) 

 

2.33 Hollow Waveguide  

Figure 2.10 shows a hollow waveguide enclosed with PML and PRB. 
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Figure 2.10. The schematic of a 2-D hollow waveguide enclosed with PML and PRB 

on each side 

 

According to the governing equation of yE  ( yH ) in TE (TM) polarization, and the 

boundary condition in hollow waveguide for TE polarization 

 

 

0

0

y air PML

y air PML

d dE

d dE

 
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(2.64) 

And the boundary condition for TM polarization 

 

 

0

0

y air PML

y air PML

d dH

d dH

 

   

(2.65) 

We get the analytical solutions of field pattern in TE case [52] 
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(2.66(a)) 
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The analytical solutions for modal field pattern for TM polarization is [52] 
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(2.66(b)) 

where n=0,1,2,„„, ,x n is the transverse wave vector for the th
n mode 

For the even modes [52] 

 ,x n air PML
nd d   

 
(2.67) 

For the odd modes [52]   

 , ( 0.5)x n air PML
nd d    

 
(2.68) 

The propagation constant for the n
th

 mode 

2 2
,0 x nn k  

 
(2.69) 

The stretching coordinate x is defined as  

 
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(2.70) 

We can see that computation window size, dPML and 0

0

x


will obviously affect 

the mode spectrum and the modal field patterns. Besides small enough PMLR , a large 

enough computation window is necessary for the combination of complex modes to 

represent the continuous radiation wave well. With dPML=2m, Figure 2.11 compares 

the mode spectrums of hollow waveguides with the computation windows of 14 m 
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(4.2m) in case 1 (case 2). It is shown that larger computation window promises 

smaller mode spacing for PML-implemented waveguide. 
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Figure 2.11. The mode spectrums of hollow waveguides with different computation 

windows. PMLR =1e-2.  λ=1.55m. 

 

From (2.62) and (2.67)-(2.69), PMLR has critical influence on the mode 

spectrum. Figure 2.12 shows the evolution of effective index ( effN ) of the 10
th

 odd 

and even modes for the hollow waveguide with PMLR . dair=5m, dPML=2m, λ

=1.55m. Considering the extreme case that,  

0PMLR   (2.71) 

for an arbitrary mode of the hollow waveguide, 0k  , which indicates that the 

modal field pattern behaves like plane wave in free space. 
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Figure 2.12. The evolutions of effN of (a) the 10
th
 even mode and (b) the 10

th
 odd 

mode with PMLR  
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  With 0x as 1, we study the influence of PMLR  on mode spectrum in hollow 

waveguide with dair=5m, dPML=2m andλ=1.55m (Figure 2.13). 
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Figure 2.13. The impact of PMLR  on mode spectrums in hollow waveguide 

 

Figure 2.14 and Figure 2.15 describe the influence of PMLR  on modal field patterns 

in TE and TM polarization cases, respectively, for the hollow waveguide structure 

mentioned above. 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  28 

 

-8 -6 -4 -2 0 2 4 6 8

0

2000

4000

6000

8000

10000

12000

 RPML=0.9

 RPML=10
-3

 RPML=10
-6

R
e
 (

E
y
)

x (m)

1
st
 even mode

 

(a) 

-8 -6 -4 -2 0 2 4 6 8

-10000

-5000

0

5000

10000

 RPML=0.9

 RPML=10
-3

 RPML=10
-6

R
e
 (

E
y
)

x (m)

1
st
 odd mode

 

(b) 

Figure 2.14. The influence of PMLR  on modal electric field patterns of (a)1
st
 even 

mode,  and (b)1
st
 odd mode in hollow waveguide for TE polarization. 
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(b) 

Figure 2.15. The influence of PMLR  on modal magnetic field patterns of (a)1
st
 even 

mode and (b)1
st
 odd mode in hollow waveguide for TM polarization. 

 

  In order to study the orthogonality of analytical modal patterns in hollow 

waveguide, we consider the m
th

 and n
th

 TE modes of the free-space waveguide. 
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   , , , ,sin sin
air PML air PML

y m y n

air PML air PML

d d d d

x m x n

d d d d

dx x x x x dxE E  
 

   

         
 

(2.72) 

with xdx dx , we further simplify (2.72) to be  

   , , , ,sin sin
airair PML PML

y m y n

air PML air PML

dd d d

x m x nx

d d d d

dx x x x x dxE E   
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   

         
 

(2.73) 

When m≠n, we have 

 

, , 0
air PML

y m y n

air PML

d d

d d

dxE E


 
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(2.74) 

In TM polarization case, 

   , , , ,cos cos
airair PML PML

y m y n
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dd d d
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d d d d

dx x x x x dxH H   


   

         
 

(2.75) 

In the same way, if m n , we have  

, , 0
air PML

y m y n

air PML

d d

d d

dxH H


 


 

(2.76) 

Consequently the orthogonality of modal field patterns in hollow waveguide in both 

TE and TM polarization cases has been proved.  

 

2.4 High Order Finite Difference (HOFD) Scheme 

 

The mode calculation is the prerequisite for the modeling of wave propagation in 

photonics circuits in frequency-domain way. In the past, several numerical methods 

have been suggested to realize the mode solver, say the finite-element method [46], 

the method of lines [47-48] and the finite difference method [39]. Among them finite 

difference scheme is the most widely accepted due to its convenience and simplicity. 
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2.41 Formulations of HOFD Scheme 

The conception of graded index approximation is firstly suggested in the sense that 

the discontinuity of the dielectric medium will be matched through averaging the 

permitivity over meshes [49]. Recently Chiou develop the FD scheme by further 

applying the Douglas Scheme further and achieve the fourth order truncation error 

[39]. 

 

Figure 2.16. Three 1-D adjacent sampled points for HOFD 

 

We consider the electric field (magnetic field) 
i at an arbitrary sampled point 

in TE (TM) polarization case, and its two nearby fields are denoted as 
1i 
and 

1i 
(Figure 2.16). 

i represents yE for TE case and does yH for TM case. Two 

arbitrary sampled points can be related by Taylor series and the continuity of yE  

( yH ) at the boundary of two adjacent meshes. Thus 
1i 
and 

1i 
can be expressed 

about 
i  in the format of infinite series as [39] 

       (1) 2 3 4 5
0 1 2 3 41i i i i i i

Oe e e e e h     
     

 
(2.77) 

       (1) 2 3 4 5

1 0 1 2 3 4i i i i i i
Of f f f f h     

     
 

(2.78) 

By omitting the high order terms in the infinite series above, and combining (2.77) 

and (2.78), we get the first and second order derivations of i [39] 

   2 0 21 1 12 0 2

1 22 1

i i i

i

f f fe e e

f fe e

  


 
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


 

(2.79) 
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(2.80) 

We define the operators xD and 2
xD  as 

 1
x i iD   and 

 22
x i iD    

By omitting the high order terms and combining (2.30) and (2.31) [39] 
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(2.81) 

By substituting (2.80), 
   3 2

xi iD  and 
   4 22

xi iD  into (2.81), we get [39] 
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where 
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(2.83) 
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f fe e


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
 

(2.84) 

Further we put (2.82) into the 2-D straight waveguide governing equation, we get [39] 

   2 22 2 22
01 2 1 2

1 1x x x x xi i ig g g gkD D D D Dn        
 

(2.85) 

For an arbitrary sampled point, the left and right side of the equation is linear 

superposition of 
i , 

1i 
and 

1i 
. By combining each line corresponding to each 

sampled point into a square matrix, (2.86) can be denoted as  

2
A C    

(2.86) 

 1 2

'
, ,......, ,......

i N    
 

(2.87) 

N is the number of sampled points. The eigenvalue equation (2.86) can be solved by 

Arnoldi iteration method[50]. 

Note that [39] 
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(2.91) 

2.42 Validation of HOFD Scheme in Slab Waveguide 

In order to validate HOFD scheme for 2-D slab waveguide, we consider a symmetric 

slab waveguide in Figure 2.4(b), with n1=3.3, n2=3.17, 2S=2m, and λ=1.55m. We 

calculate the guided modes of this structure, and validate the results with those from 

conventional STM. Table 2.1 and 2.2 show the validations of guided mode 
effN in TE 

and TM polarizations, respectively. And Figure 2.16 and Figure 2.17 show the 

normalized guided mode patterns for TE and TM polarizations, respectively. 

 

Table 1 The comparisons of guided mode effN calculated from conventional STM 

and HOFD in slab waveguide (Figure 2.4(b)) with n1=3.3, n2=3.17, 2S=2m, and λ

=1.55m for TE polarization 

Mode 

Number 

TE0 TE1 TE2 

FD 3.2860 3.2451 3.1856 

STM 3.2860 3.2451 3.1856 
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Figure 2.17. yE  patterns of (a) TE0, (b)TE1 and (c)TE2 in slab waveguide 2 

 

Table 2 The comparisons of guided mode effN calculated from conventional STM 

and HOFD in slab waveguide (Figure 2.4(b)) with n1=3.3, n2=3.17, 2S=2m, and λ

=1.55m for TM polarization 

Mode 

Number 

TM0 TM1 TM2 

FD 3.2855 3.2438 3.1846 

STM 3.2855 3.2439 3.1846 
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Figure 2.18. yH  patterns of (a) TM0, (b)TM1 and (c)TM2 in slab waveguide 2 

 

2.43 Validation of HOFD Scheme in Hollow Waveguide 

In order to further validate HOFD scheme, we consider the hallow waveguide in 

Figure 2.10, with dair=5m, dPML=2m,λ=1.55m, PMLR =1e-3. 
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Figure 2.19. Mode spectrums of in (a)TE and (b)TM cases in hollow waveguide 

 

  Figure 2.20 and Figure 2.21 show the mode profiles of the hollow waveguide 

mentioned above in TE and TM polarization cases, respectively. And we compare the 
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results from HOFD scheme with those obtained by the analytical solutions studied in 

Section 2.33. 
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Figure 2.20. yE patterns of (a) the 2
nd

 even mode ,(b) the 3
rd

 even mode ,(c) the 2
nd

 

odd mode and (d) the 3
rd

 odd mode  in hollow waveguide for TE polarization. 
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Figure 2.21. yH patterns of (a) the 2
nd

 even mode ,(b) the 3
rd

 even mode ,(c) the 2
nd

 

odd mode and (d) the 3
rd

 odd mode in hollow waveguide for TM polarization. 
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Chapter 3  

Complex Mode Matching Method (CMMM) 

 

3.1 Introduction 

 

Among the extensive methods of theoretical modeling and analysis of optical 

waveguide, Coupled Mode Theory (CMT)/Coupled-wave approach (CWA) are 

physically intuitive and mathematically convenient. However the accuracy of 

CMT/CWA can only be maintained in waveguide structures with small enough 

perturbation. Instead MMM is generally considered efficient and accurate method 

based on the tangential field continuity and the mode orthogonality conditions. The 

power flow and field pattern are obtained through the linking of different sections of 

uniform regions by the cascading of transfer matrices or scattering matrices. 

 

3.2 Transfer Matrix Formulation 

 

Figure 3.1 shows a single waveguide discontinuity between 2-D waveguide A and B 

which are terminated with PML and PRB on each side. X̂ is the transverse direction, 

and Ẑ is the longitudinal direction 
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Figure 3.1 The schematic of a waveguide discontinuity between 2-D waveguides 

 

We utilize HOFD scheme combined with complex coordinate stretching 

formulations of PML to get the mode spectrums. We assume N modes in waveguide A 

and M modes in waveguide B are used in the mode expansion. The transverse fields 

on both sides of the waveguide junction can be expressed approximately in term of 

eigenmodes in waveguide A and B [29-32] 

     
1

,
A

n n

N AA j Z j Z A
n n tnt

n

x z xa e a e eE
   



 
 

(3.1) 

     
1

,
A

n n

N A AA j Z j Z
n nt tn

n

x z xa e a eH h
   



 
 

(3.2) 

     
1

,
B

n n

N BB j Z j Z B
n n tnt

n

x z xb e b e eE
   



 
 

(3.3) 

     
1

,
B

n n

N B BB j Z j Z
n nt tn

n

x z xb e b eH h
   



 
 

(3.4) 

where t represents transverse components,  ,A

t x zE  
(  ,B

t x zE ) and  ,A

t x zH  

(  ,B

t x zH ) are the transverse electric and magnetic field of waveguide A (B), 

respectively.  
 A B

n m  is the propagation constant of the n
th

 (m
th

) mode in waveguide A 

(B).  
 A B

tn me and  
 A B

tn mh denote transverse modal electric and magnetic field vectors of 
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waveguide A (B), respectively. na
 ( mb

 ) and na
 ( mb

 ) are longitudinally forward and 

backward propagating wave amplitudes of n
th

 (m
th
) mode of waveguide A (B), 

respectively.  

  According to the continuity of tangential components of electric and 

magnetic field at the interface of two adjacent passive waveguides, we obtain [31-32] 

       
1 1

N M
A B

n n tn m m tm
n m

x xa a e b b e
   

 

   
 

(3.5) 

       
1 1

N M
A B

n n m mtn tm
n m

x xa a b bh h
   

 

   
 

(3.6) 

We define the cross product of field vectors E  and H  as [31-32] 

1,
2

E H E H zdx  
 

(3.7) 

The integration is over the waveguide cross-section. We cross product both sides of 

(3.5) with
B

tgh , and cross product both sides of (3.6) with B
tge [31-32] 

   
1 1

, ,
N M

B BA B
n n tn m m tmtg tg

n m
a a e b b eh h
   

 

   
 

(3.8) 

   
1 1

, ,
N M

A BB B
n n tg m m tgtn tm

n m
a a e b b eh h
   

 

   
 

(3.9) 

According to the modal orthogonality for waveguides terminated with PML and PRB 

   , 0,
A B A B
tn tm m ne h  

 
(3.10) 

   ,
A B A B
tn ntne Nh 

 
(3.11) 

nN is 1 for guided modes and a complex value for complex modes. Substituting 

(3.10), (3.11) into (3.8), (3.9), we get [31-32] 

1 1

, , , ,

2 , 2 ,

B A B AA B A B
N Ntn tg tn tgtg tn tg tn

tg n nB BB B
n n

tg tgtg tg

e e e eh h h h
b a a

e eh h

  

 

    
     
        

(3.12) 

1 1

, , , ,

2 , 2 ,

B A B AA B A B
N Ntn tg tn tgtg tn tg tn

tg n nB BB B
n n

tg tgtg tg

e e e eh h h h
b a a

e eh h

  

 

    
     
        

(3.13) 

Consequently we can further write them in more compact form 
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11 12

21 22

BA

T TB A A
T

T TB A A

  

  
 

 

(3.14) 

where 1 2, ,......,
T

Nb b bB
    , 1 2, ,......,

T

Nb b bB
   

. 
Note that '

AB BAT T  

In order to numerically validate the transfer matrix, we consider a 2-D slab 

waveguide junction in Figure 3.2. The fundamental mode is launched from the left 

port, and we validate the consistency of tangential components of electric (magnetic) 

field at the waveguide junction in TE (TM) polarization case in Figure 3.3 (Figure 

3.4). The wavelength is 1.55m, the mesh size is 20nm, and PMLR  is 1e-3. 60 modes 

are considered. 

 

Figure 3.2. The schematic of two adjacent 2-D slab waveguide terminated with PML 

and PRB. n1=3.3, n2=3.17, n3=3.4, n4=3.2, d1=0.5m, d2=2m, dPML=5m. 
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Figure 3.3. The continuity test of yE patterns at the waveguide junction (Figure 3.2) 

for TE polarization 
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Figure 3.4. The continuity test of yH patterns at the waveguide junction (Figure 3.2) 

for TM polarization 

 

3.3 Scattering Matrix Formulation 

 

Considering the waveguide junction in Figure 3.1 
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11 12B T A T A
     (3.15) 

21 22B T A T A
     (3.16) 

We multiply 12
'T on the two sides of (3.15) 

12 12 11
' 'T B A T T A

     (3.17) 

Then we multiply 22
'T  on both sides of (3.16) 

11 11 12
' 'A T B T T A

     
(3.18) 

By combining (3.17) and (3.18), we have  

 11 12 22 21 12 22
' 'B T T T T A T T B

    
 

(3.19) 

22 21 22
' 'A T T A T B

      
(3.20) 

We further write it into matrix form 

11 12

21 22

AB

S SB A A
S

S SA B B

  

  
 

 

(3.21) 

which is the well-known scattering matrix. In a homogeneous region called C (Figure 

3.5) 

0

0

p

c

p

SB A A
S

SA B B

  

  
 

 

(3.22) 

where  1 2, ,......, Nj L j L j L
p diagS e e e

     ,  L is the longitudinal length of C  

 

Figure 3.5. The schematic of a homogeneous 2-D region C 
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3.4 Periodic Doubling Scheme 

 

The Bragg grating has wide applications in chip-fiber coupling, reflector, and so on 

[51] . As the Bragg grating structure contains a large number of symmetric cells, the 

scattering matrix holds more stability than the transfer matrix.  

   The cascading of scattering matrix can be denoted by the operator

‘’.Assuming there are three sequent discontinuities noted as n, m and k, we have  

nm mnm n n

nm

nm mnn m m

T RA A A
S

R TA A A

  

  
 

 

(3.23) 

mk kmk m m

mk

mk kmm k k

T RA A A
S

R TA A A

  

  
 

 

(3.24) 

We derive (3.23) to be  

 ' '
m mn mn n nm mn mn nm nA R T A T R T R A
    

 
(3.25) 

' '
m mn n mn nm nA T A T R A
     

(3.26) 

Substituting (3.25) and (3.26) into (3.24), we get the cascaded scattering matrix 

[31-32] 

nk knk n n

nk

nk knn k k

T RA A A
S

R TA A A

  

  
 

 

(3.27) 

 'nk mk mn mk nmIT T R R T 
 

(3.38) 

 'kn mk mn mk mn km kmIR T R R R T R  
 

(3.39) 

 'nk mn mk mn mk nm nmIR T R R R T R  
 

(3.40) 

 'kn mn mk mn kmIT T R R T 
 

(3.41) 

For the 2-D Bragg grating shown in Figure 3.6, the scattering matrix for the a unit cell 

is  
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Figure 3.6. The schematic of a 2-D Bragg grating 

 

cell A AB B BAS S S S S     (3.42) 

If the Bragg grating contains N periods, the scattering for the whole periodic structure 

is [31-32] 

......total cell cell cell

N

S S S S   

 
(3.43) 

Utilizing the periodic doubling algorithm, the number of scattering matrix cascading 

operations is  34
N N  less than that from layer-by-layer cascading. 
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Chapter 4  

Complex Smooth Transition Method (STM) 

 

4.1 Introduction 

 

Multi-layer planar waveguide plays a crucial rule in photonic devices and integrated 

circuits. Determination and optimization of guided and radiation modes in multi-layer 

planar waveguide are necessary, because both guided and radiation modes both are 

essential for expanding arbitrary field of open waveguide in many cases. In STM, the 

implicit characteristic function  2
0f    is obtained from cascading of transfer 

matrices. The solving of this transcendental equation is usually through the Newton’s 

root searching in complex plane. 

  The conventional smooth transition method is to assume artificial boundaries 

outside the 2-D multi-layer stacks. When the artificial boundaries are closed, the 

obtained box modes (guided or evanescent) serve as the initial guess of the following 

Newton’s search which will be ended when the boundaries are open. However, the 

leaky modes in open waveguide represents are unbounded by nature and hence lack 

the usual characteristics of normal guided modes in terms of orthogonality and 

normalization [40]. 

  On the contrast, complex STM utilizes the multi-layer waveguide structures 

always enclosed by PML and PRB. The transfer matrix establishing the governing 

equation is modified in the sense that effective thickness of PML is complex. The box 
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modes when there is no absorption in PML medium are the initial guesses for 

Newton’s searching. As PMLR  gradually turns to be small enough, the complex and 

guided modes are finally defined.  

   In this chapter for the first time the semi-analytical solutions of complex 

mode spectrums and modal patterns are derived and compared with those from HOFD 

scheme. 

 

4.2 Formulas of Complex STM 

 

We consider a 2-D multi-layer planar waveguide terminated with PML and PRB on 

both sides (Figure 4.1). The number of layers is N, X̂ and Ẑ are the transverse and 

longitudinal directions, respectively. ,PML Ln is the index of the PML on the left side, 

and ,PML Rn is that on the right side. LA
 and LA

 are the amplitudes of forward and 

backward propagating waves at the PRB on the left side, respectively. RA
 and RA

 are 

those on the right side. For an arbitrary m
th

 layer, md and mn are the thickness and 

index of this layer, respectively. mA
 and mA

 represent the amplitudes of forward and 

backward propagating waves at the left boundary of the m
th

 layer, respectively. 

1mA

 and 1mA


 are those at the right boundary of the m

th
 layer. The X axis’s coordinate 

at the left boundary of the m
th

 layer is mx , and 1mx  is that of the right boundary of the 

m
th

 layer. 
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Figure 4.1. The schematic of a multi-layer planar waveguide terminated with PML 

and PRB on both sides 

 

In the m
th

 layer 

,
1

x m mj d
m meA A  
   (4.1) 

,
1

x m mj d
m m eA A  

  (4.2) 

22 2
, 0x m mn k   

 
(4.3) 

For TE polarization, we define two variables U A A
   ,  xV A A

    

In the m
th

 layer, we assume 

11 121 1

21 221 1

m m m

m

m m m

U U UT T
T

V V VT T

 

 

 

 

(4.4) 

We derive (4.4) to be  

   , , , ,
11 12 ,

x m x m x m x mm m m mj j j jd d d d
m m m m x m m me e e eA A T A A T A A   

          
 

(4.5) 

   , , , ,21
22

,

x m x m x m x mm m m mj j j jd d d d
m m m m m m

x m

T
e e e eA A A A T A A   



          

 

(4.6) 

From (4.5), we obtain 

, ,
11 12 ,1 x m x mm mj jd d

x me eT T 
  

 
(4.7) 
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, ,
11 12 ,1 x m x mm mj jd d

x me eT T  
 

(4.8) 

By substituting (4.7) into (4.8), we get  

 11 ,cos x m mdT 
 

(4.9) 

 ,

12

,

sin x m m

x m

j d
T






 

(4.10) 

From (4.6), we obtain 

, ,21
22

,

1 x m x mm mj jd d

x m

T
e eT 



  

 

(4.11) 

, ,21
22

,

1 x m x mm mj jd d

x m

T
e eT 


  

 

(4.12) 

Through substituting (4.11) into (4.12), we get 

 22 ,cos x m mdT 
 

(4.13) 

 21 , ,sinx m x m mj dT  
 

(4.14) 

Finally, we summarize (4.4) to be  

 
 

   

,

,

,

, , ,

sin
cos

sin cos

x m m

x m m

x mm

x m x m x mm m

j d
d

T

j d d






  



 

(4.15) 

In PML region 

 
 

   

,

,1 1

,

1 1

, , ,

sin
cos

sin cos

LL
x PML PMLLL

x PML PMLL LL
x PMLPML

L
L LL L L

x PML x PML x PMLPML PML

j d
dU U U

T
V V V

j d d






  

 

 

(4.16) 

 
 

   

,

,1

,

1

, , ,

sin
cos

sin cos

RR
x PML PMLRR

x PML PMLN R RRR
x PMLPML

N R R
R RR R R

x PML x PML x PMLPML PML

j d
dU U U

T
V V V

j d d






  





 

 

(4.17) 

According to the governing equation of 2-D waveguide for TE polarization, U and V 

are proportional to yE and zH , respectively. So U and V are continuous at the 
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junctions. Therefore the transfer matrix for the whole cross-section can be written 

through the layer-by-layer multiplication of transfer matrix for each layer. 

11 12

21 22

total total
L R R

total total total
L R R

U U UT T
T

V V VT T
 

 

(4.18) 

1 2...... ......L R
total PML m N PMLT T T T T T T  (4.19) 

In TM polarization case, we define two variables, U A A
   , 

 
2

xV A A
n

    , n  is the local index. U and V are proportional to yH and zE  

which are continuous at the junctions. In the similar way for TM polarization  

 
 

 
 

2
,

,

,

, ,

,2

sin
cos

sin
cos

x mm m

x m m

x m

m

x m x m m

x m m

m

jn d
d

T
j d

d
n






 




 

(4.20) 

 
 

 
 

2
,,

,

,1 1

1 1, ,

,2
,

sin
cos

sin
cos

LL
x PMLPML L PMLLL

x PML PML L
x PMLL L

PML
LL L

L x PML x PML PML LL
x PML PML

PML L

jn d
d

U U U
T

V V Vj d
d

n






 


 

 

(4.21) 

 
 

 
 

2
,,

,

,1

1 , ,

,2
,

sin
cos

sin
cos

RR
x PMLPML R PMLRR

x PML PML R
x PMLN R RR

PML
RR R

N R Rx PML x PML PML RR
x PML PML

PML R

jn d
d

U U U
T

V V Vj d
d

n






 






 

 

(4.22) 

11 12

1 2

21 22

...... ......
total total

L R
total PML m N PML total total

T T
T T T T T T T

T T
 

 

(4.23) 

At PRB, 0 , 0L RU U  , therefore we get the implicit characteristics 

equation for both TE and TM polarization cases 

 2

21, 0total
PMLf R T    (4.24) 
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When PMLR is 1, the roots of (4.24) fall into two parts: the real ones and imaginary 

ones, which are corresponding to the guided and evanescent modes. As mentioned 

above, the mode spacing of box modes strongly depend on the computation window 

size. The root locus moves from real and imaginary axis to complex plane, as 

PMLR changes from 1 to a small enough value. Figure 4.2 shows the root searching 

process of complex STM, in which q is an arbitrary small number, ‘ k ’denotes the 

th
k step of iteration. 

 

Figure 4.2. Methodology of Complex STM 

 

4.3 Validation of Complex STM 

 

4.31 Slab Waveguide 

We consider a symmetric slab waveguide (we call it slab waveguide 1) in Figure 

2.4(b), with n1=3.3, n2=3.17, 2S=0.2m, dPML=1m, 2L=4.2m, the wavelength is 

1.55m.The mesh size for FD mode solver is 5nm. Figure 4.3 compares the mode 
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spectrums at 1 2PML eR    obtained from complex STM and HOFD scheme, 

respectively. We can see the coincidence is good. Figure 4.3 also shows the initial box 

modes at 1PMLR  . 
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Figure 4.3. Mode spectrums of (a) TE and (b) TM cases in slab waveguide 1  
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       In order to further validate complex STM in slab waveguide, Figure 4.4 

compares the modal field patterns with those of HOFD scheme for TE and TM 

polarizations. We further validate the complex mode orthogonality obtained from 

complex STM by plotting the modal field overlaps in Figure 4.5. We observe that the 

overlap integrals between different eigenmodes are zero so that the eigenmodes are 

orthogonal. Also, the self-overlaps for high-order complex modes are also close to be 

zero. 
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Figure 4.4. Modal field patterns in slab waveguide 1 (a) TE case. 
effN for STM is 

1.1412-12.4123i, 
effN for FD is 1.1346-12.4096i (b) TM case. 

effN for STM is 

1.1468-12.4173i, 
effN for FD is 1.1378-12.4149i 
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(b) 

Figure 4.5. Mode orthogonality for complex STM in slab waveguide 1. (a) TE case (b) 

TM case 

 

 We further consider another slab waveguide (we call it slab waveguide 2) in 

Figure 2.4(b) with n1=3.3, n2=3.17, 2S=0.3m, dPML=1m, 2L=8.3m, the 

wavelength is 1.55m. The mesh size for FD mode solver is 5nm. Figure 4.6 

compares the mode spectrums at 1 3PML eR   obtained from complex STM and 

HOFD scheme, respectively. We can see the coincidence is good.  
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(b) 

Figure 4.6. Mode spectrums of (a) TE and (b) TM case in slab waveguide 2 

 

Figure 4.7 describes the comparisons of modal patterns from complex STM and 

HOFD in both TE and TM cases. 
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(b) 

Figure 4.7. Modal field patterns of slab waveguide 2 (a) TE. 
effN for complex STM is 

0.4099-3.2799i, 
effN for FD is 0.4135-3.4035i (b) TM. 

effN for complex STM is 

0.4775-5.5776i,  
effN for FD is 0.4854-5.6794i. 
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Figure 4.8 validates the mode orthogonality of Complex STM for the slab waveguide 

2.  
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(b) 

Figure 4.8. Mode orthogonality of complex STM in slab waveguide 2 (a) TE case (b) 

TM case 

 

4.32 Hollow Waveguide 
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We consider the hollow waveguide in Figure 2.10, with dair=1.5m, dPML=5m. 

Figure 4.9 validates the mode spectrums from complex STM with those of FD in 

hollow waveguide in both TE and TM cases. The mesh size for FD solver is 20nm. 
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Figure 4.9. Mode spectrums of hollow waveguide (a) TE case (b) TM case 
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Figure 4.10. Modal field patterns of hollow waveguide (a) TE. 
effN for complex STM 

is 0.4099- 3.2797i, 
effN for FD is 0.4135 - 3.4035i (b) TM. 

effN for complex STM is 

0.4440- 3.0675i, 
effN for FD is 0.4526 - 3.1232i 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  66 

 

 

Figure 4.10 compares the modal patterns from complex STM with those from FD in 

TE and TM cases. Figure 4.11 validates the mode orthogonality of complex STM in 

hollow waveguide in TE and TM cases 
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(b) 

Figure 4.11. Mode orthogonality of complex STM in hollow waveguide (a) TE case 

(b) TM case 
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4.33 Leaky Waveguide 

We study a 2-D leaky waveguide shown in Figure 4.12. The wavelength is 1.55m, 

and the mesh size for FD solver is 5nm. Figure 4.13 compares the mode spectrums 

from complex STM and FD for the leaky waveguide in TE and TM cases. 

 

Figure 4.12. The schematic of a 2-D leaky waveguide. n1=3.17, n2=3.3, d1=2m, 

d2=2m, dPML=1m. 
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(b) 

Figure 4.13. Mode spectrums of (a) TE and (b) TM cases in leaky waveguide  

 

Figure 4.14 compares the modal field patterns from complex STM and HOFD in 

leaky waveguide in TE and TM cases. 
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Figure 4.14. Modal field patterns of leaky waveguide (a) TE. 
effN for STM is 0.6867 

- 6.1270i, 
effN for FD is 0.6907 - 6.1201i. (b) TM. 

effN for STM is 0.6956 - 6.2705i, 

effN for FD is 0.7092 - 6.4068i 
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Figure 4.15 validates the mode orthogonality of complex STM in leaky waveguide in 

TE and TM cases. 
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Figure 4.15. Mode orthogonality of complex STM in leaky waveguide (a) TE case (b) 

TM case 
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Chapter 5 

Power conservation of Complex Mode Matching 

Method (CMMM) 

 

5.1 Introduction 

 

Once the waveguide is enclosed with PRB and PML, the mode spectrum is composed 

of guided modes and complex modes. The power flow of guided modes is along 

longitudinal direction, while for complex modes power flows not only longitudinally 

but also transversely. For an arbitrary enclosed space in waveguide region without any 

material absorption, the power flowing into and that out of such a space should be 

balanced. However, until now this conception of power conservation for complex 

mode matching method has not been clearly proved.  

  In this chapter, we analytically prove the power conservation in the 

framework of complex mode matching method in hollow waveguide, and numerically 

validate it in leaky waveguide and waveguide discontinuity. 

 

5.2 Analytical Validation in Hollow Waveguide 

 

Figure 5.1 describes a hollow waveguide terminated with PML and PRB. A 

rectangular box is located in its waveguide region. The sides above and below of such 

a rectangular box is just at the starting position of PML above and below. X̂ and 
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Z are the transverse and longitudinal directions, respectively. The coordinates of the 

four vertexes of this rectangular box in the X-Z plane are 

 1,aird Z ,  2,aird Z ,  1,aird Z and  2,aird Z ,respectively. The 

power flowing into the box from the left side is noted as ,z inP . ,z outP , ,x upP and 

,x downP represent the power flow through the right side, the side above and that below, 

respectively. 

 

Figure 5.1. The schematic of a 2-D hollow waveguide with a rectangular passive box 

in waveguide region 

 

  The propagation constant and transverse wave vector are complex, so we 

write the expressions as  

n nR nI
j   

 (5.1) 

, , ,x n xR n xI nj   
 (5.2) 

Accordingly the analytical modal field pattern in polarization 
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(5.4) 

Following the dispersion relationship
2 22

, 0x nn k   , we obtain  

, ,xR n xI n nR nI    
 (5.5) 

Since  

 2 12
, ,

nI Z Z
z out z ineP P

 
 

(5.6) 

, ,x down x upP P 
 (5.7) 

We obtain 

, , , ,z in z out x down x upP P P P  
 (5.8) 

Now the power conservation of CMMM in hollow waveguide has been proved, 

similarly we prove the relation is held in TM case 

, , , ,z in z out x down x upP P P P  
 (5.9) 

 

5.3 Numerical Validation 

 

5.31 Leaky Waveguide 

For leaky waveguide, we didn’t provide the analytical proof as the integral along 

longitudinal direction is much more complicated. Instead, we calculated the power 

flow in each direction numerically. Figure 5.2 shows a 2-D step-index leaky 
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waveguide, with a rectangular box placed just in its waveguide region. The 

wavelength is 1.5m. We assume that a complex mode is launched along the 

longitudinal direction.  

 

Figure 5.2. The schematic of a 2-D step-index leaky waveguide.d1=4m, d2=2m, 

d3=3m, n1=2.2, n2=2, n3=1,dPML=3m 

 

Figure 5.3(a) and Figure 5.4(a) show the modal field amplitude patterns of the 

launched mode obtained from HOFD scheme in TE and TM polarizations, 

respectively. The mesh size is 20nm. If PMLR is smaller, the waveguide region 

confinement factor is decreased, and the field oscillation in PML region is also 

suppressed. Figure 5.3(b) and Figure5.4(b) describe the convergence of 
effN with 

reference to PMLR . 
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(b) 

Figure 5.3. (a) Modal field amplitude patterns for TE polarization (b) Convergence of 

effN with PMLR  
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(b) 

Figure 5.4. (a) Modal field amplitude patterns in TM polarization (b) Convergence of 

effN with PMLR  

 

We normalize ,z inP to be 1, and set the longitudinal length of the rectangular 

box as 50m. From Figure 5.5, we can see that the powers flowing into and that out 
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of the box are always balanced. With the decreasing of PMLR , zP decaying rate will 

increase due to the stronger absorption of PML, but eventually converges. 

0 2 4 6 8 10 12

0.0

0.4

0.8

 

-log
RPML

10

 Pz,out

 -Px,up

 Px,down

 Pz,out-Px,up+Px,down

TE

 

(a) 

0 4 8 12

0.0

0.4

0.8  Pz,out

 -Px,up

 Px,down

 Pz,out-Px,up+Px,down

-log
RPML

10

TM

 

(b) 

Figure 5.5. Power conservation of CMMM in leaky waveguide (a) TE (b) TM 
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5.32 Waveguide Discontinuity 

Figure 5.6 shows a waveguide junction between a 2-D slab waveguide and leaky 

waveguide. A rectangular box is placed in the waveguide region. The fundamental 

mode is launched at the left side of the box. The longitudinal length of this box is 

L1+L2. 40 modes are considered. The wavelength is 1.5 m. 

 

Figure 5.6. The schematic of a junction of 2-D waveguides. dPML=3m, n1=3.4, 

n3=3.3, n2=1, n4=3.5, d1=1m, d2=2m, d3,4=2m. L1=2m, L2=50m 

 

  After normalizing ,z inP to be 1, Figure 5.7 and 5.8 show the convergence of 

,z outP  with the number of modes applied and the computation window for TE and 

TM polarizations, respectively. Figure 5.9 shows the power conservation of the 

passive box which is independent of PMLR . However, smaller PMLR  will make 

zP decay faster, and the convergence happens when PMLR  decreases to 1e-3. 
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(b) 

Figure 5.7. The convergence test of ,z outP (a) about the computation window and (b) 

the number of modes applied for TE polarization in the waveguide junction (Figure 

5.6)  
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Figure 5.8. The convergence test of ,z outP (a) about the computation window and (b) 

the number of modes applied for TM polarization in the waveguide junction (Figure 

5.6)  
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(b) 

Figure 5.9. Power conservation of CMMM in the waveguide junction (Figure 5.6) (a) 

TE (b) TM 

 

       Figure 5.10 describes the transversely outgoing electric (magnetic) field 

amplitude patterns at the right side of the rectangular box in TE (TM) case, 
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respectively. We can see that decreased PMLR  will promise larger field confinement 

in PML region, and smaller transverse field amplitude at the right side. 
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(b) 

Figure 5.10. Transversely outgoing field amplitude patterns in the waveguide junction 

(Figure 5.6) (a) TE (b) TM 
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Figure 5.11 shows the vertically outgoing electric (magnetic) field amplitude 

pattern for TE (TM) polarization which holds larger oscillation for large PMLR due to 

the interferences of reflected wave from PML. 
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Figure 5.11. Vertically outgoing field amplitude pattern in the waveguide junction 

(Figure 5.6) (a) TE (b) TM 
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Chapter 6  

Simulation of Waveguide Crossings and Corners 

 

6.1 Introduction 

 

High-index-contrast waveguide crossings and corners are highly desired in the 

industrial applications because of their strong ability of controlling of light wave 

propagation with the dimensions of optical devices scaled down from those of 

low-index-contrast devices, now that the light confinement based on total internal 

reflection strongly depends on the index contrast between waveguide cores and 

claddings [9-10]. With the knowledge of the power conservation of CMMM, the 

vertical power flow is easily acquired. In this chapter we for the first time simulate 

high-index-contrast waveguide crossings and corners and calculate the radiation 

power perpendicular to the waveguide axis with CMMM and validate the results with 

FDTD. Figure 6.1 shows the schematic of 2-D waveguide crossings, T-junction and 

corners. And the transmission, reflection and crosstalk are defined in [11]. 
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        (a)                       (b)                     (c) 

Figure 6.1. The schematics of 2-D (a)waveguide crossing (b)waveguide T-junction 

(c)waveguide corner terminated with PML and PRB.  

 

6.2 Simulation of High-Index-Contrast Waveguide Crossings 

and Corners 

 

6.21 Waveguide Crossing 

We follow the case of waveguide crossing in [11], and in Figure 6.1 we have 

D1=D2=0.2m, dPML=5m, the fiber and background indices are 3.2 and 1, 

respectively. At the wavelength of 1.48m, we do the convergence test for this high 

index-contrast waveguide crossing in Figure 6.2. 
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Figure 6.2. Convergence test of guided crosstalk about (a) PMLR  (b) the number of 

modes applied, and (c) the computation window in the high-index-contrast waveguide 

crossing  

 

With large enough computation window and adequate complex modes applied, 

the combination of complex modes will represent the continuous radiation field well 

enough, thus the guided crosstalk converges. The smaller PMLR makes the absorption 

of vertically radiating power in PML stronger, thus the guided crosstalk will increase 

and eventually converges. 

With the computation window as 14.2m, 120 modes considered and PMLR as 

1e-3, we investigate guided transmission and crosstalk spectra in Figure 6.3 and 

validate it with that of FDTD in [11]. 
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Figure 6.3. Guided transmission and crosstalk spectra in the high-index-contrast 

waveguide crossing 

 

  Figure 6.4 and 6.5 study the effect of the variation of the background index 

(D2=0.2m) and D2 (the background index is 1) in high-index-contrast waveguide 

crossing. 
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Figure 6.4. The evolutions of guided transmission and crosstalk with the variation of 

background index in high-index-contrast waveguide crossing  
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Figure 6.5. The evolutions of guided transmission and crosstalk with D2 in high- 

index-contrast waveguide crossing. 

 

  At the wavelength of 1.55m, D2 of 0.2m, and the background index of 1, 

Figure 6.6 demonstrates the electric field amplitude pattern in this high index-contrast 

waveguide crossing, which coincide well with that of [11]. 

 

Figure 6.6. Electric field amplitude pattern in the high-index-contrast waveguide 

crossing 
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6.22 Waveguide T-junction 

Following the examples of [11], in Figure 6.1 we have D1=D2=0.2m, dPML=5m. 

At the fiber and background indices of 3.2 and 1, respectively, and the wavelength of 

1.48m, Figure 6.7 shows the convergence test about this T-junction. Further Figure 

6.8 demonstrates the guided transmission and reflection spectra. 
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Figure 6.7. Convergence test of guided transmission about (a) PMLR  (b) the number 

of modes applied and (c) computation window in high-index-contrast waveguide 

T-junction. 
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Figure 6.8. Guided transmission and reflection spectra in the high-index-contrast 

T-junction 

 

   Figure 6.9 and 6.10 show the impact of the variation of the background 

index (D2=0.2m) and D2 (the background index is 1), respectively. 
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Figure 6.9. The evolution of guided transmission and reflection with the variation of 

background index in the high-index-contrast waveguide T-junction 
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Figure 6.10. The evolution of guided transmission and reflection with the variation of 

D2 in the high-index-contrast waveguide T-junction 

 

     Figure 6.11 shows the electric field amplitude pattern at the wavelength 

of 1.55m, D2 of 0.2m and the background index of 1. 

 

Figure 6.11. Electric field amplitude pattern in the high-index-contrast T-junction 

6. 23 Waveguide Corner   

Again we follow the example of [11], and set D2=D1=0.2m, and dPML=5m in 

Figure 6.1. The fundamental mode is launched from the left horizontal port, with 
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electric field polarization perpendicular to the plane. Figure 6.12 shows the 

convergence test at the wavelength of 1.48m. And Figure 6.13 demonstrates the 

guided transmission and reflection spectra. 
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(c) 

Figure 6.12. Convergence of guided transmission about (a) PMLR  (b) the number of 

modes applied and (c) the computation window in the high-index-contrast waveguide 

corner  
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Figure 6.13. Guided transmission and reflection spectra in the high-index-contrast 

waveguide corner 

 

  Figure 6.14 and 6.15 study the influence of the variation of background index 

(D2=0.2m) and D2 (the background index is 1), respectively.  
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Figure 6.14. The evolutions of guided transmission and reflection with the 

variation of background index in high-index-contrast waveguide corner 
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Figure 6.15. The evolutions of guided transmission and reflection with the variation of 

D2 in high index-contrast waveguide corner 

 

 Figure 6.16 shows the electric field amplitude pattern at the wavelength of 

1.55m, with D2 as 0.2m and the background index as 1. 
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Figure 6.16. Electric field amplitude pattern in high-index-contrast waveguide corner 

 

      In summary, the very small relative deviations between sampled spectrums 

from CMMM and FDTD in high-index-contrast waveguide intersections shown in 

Table 3 further illustrate the accuracy of CMMM. Additionally Table 4 and Table 5 

demonstrate the small relative deviations of sampled transmission, crosstalk or 

reflection from CMMM and FDTD mentioned above in the high-index-contrast 

waveguide intersections when the background index and D2 vary, respectively.  

 

Table 3. Relative deviations between the sampled spectrums of CMMM and FDTD in 

high-index-contrast waveguide intersections 

 transmission reflection crosstalk 

waveguide crossing 0.000  0.000 

waveguide T-junction 0.001 0.000  

waveguide corner 0.003 0.000  

 

Table 4. Relative deviations of sampled transmission, crosstalk or reflection of 

CMMM and FDTD in high-index-contrast waveguide intersections with the 

background index varying (D2 is 0.2m) 

 transmission reflection crosstalk 

waveguide crossing 0.000  0.000 

waveguide T-junction 0.000 0.000  

waveguide corner 0.000 0.000  
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Table 5. Relative deviations of sampled transmission, crosstalk or reflection of 

CMMM and FDTD in high-index-contrast waveguide intersections with D2 varying 

(the background index is 1) 

 transmission reflection crosstalk 

waveguide crossing 0.001  0.000 

waveguide -junction 0.000 0.000  

waveguide corner 0.001 0.000  

 

6.24 T-junction with Cavity 

We consider a T-junction and another one assisted with a square cavity in Figure 6.17. 

The fiber index is 3.2 and the background index is 1. The fundamental mode is 

launched from the left horizontal port, with electric field perpendicular to the plane. 

The definitions of the power flow of transmission (PT), crosstalk (PC) and reflection 

(PR) are shown in Figure 6.17. The mesh size is 20nm. At the wavelength of 1.55m, 

Figure 6.18 and 6.19 show the convergence tests of the T-junction and the 

cavity-assisted one. With PMLR =1e-3, 110 (100) modes considered and computation 

window as 16.82m (16.22m) for the cavity-assisted T-junction (T-junction), we 

studied the guided transmission, crosstalk and reflection spectra in Figure 6.20. We 

can see that the resonant cavity increases the crosstalk. Figure 6.21 describes the 

electric field amplitude patterns in cavity-assisted T-junction obtained from CMMM 

and FDTD, respectively. The coincidences between CMMM and FDTD are good. 
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(a) 

 

(b) 

Figure 6.17. (a)The schematic of a 2-D waveguide T-junction (b) The schematic of a 

cavity-assisted waveguide T-junction. dPML=5m, S1=0.6m, S2=0.6m, S3=20nm, 

S4=0.2m, S5=20nm, S6=0.2m. 
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Figure 6.18. Convergence test of guided crosstalk about (a) the number of modes 

applied (b) PMLR  and (c) the computation window in waveguide T-junction (Figure 

6.28(a))   
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Figure 6.19. Convergence test of guided crosstalk about (a) PMLR  (b) the number of 

modes applied, and (c) the computation window in cavity-assisted waveguide 

T-junction (Figure 6.17(b))  
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Figure 6.20. Guided transmission, reflection and crosstalk spectra of the 

cavity-assisted T-junction (Figure 6.17(b)), and guided crosstalk spectra of the 

T-junction (Figure 6.17(a)) 
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(a) 

 
(b) 

Figure 6.21. Electric field amplitude pattern in cavity-assisted T-junction (Figure 

6.17(b)) (a) CMMM (b) FDTD 

 

 

6.4 The Validation of CMMM with QDEEM in Cross Waveguide 

 

QDEEM is another frequency-domain scheme for the simulation of waveguide 

interconnects. The 2-D waveguide is terminated with PML and PRB not only 

vertically but also horizontally in the framework of QDEEM. We follow the case of 

waveguide crossing in [38] and prove that the modeling based on CMMM creates the 

coinciding results with those from QDEEM. PD (PU), PR and PT are defined in [38] as 

the guided scattering, transmitted and reflected power in the waveguide crossing, 
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respectively. With dPML on each side as 5m and the mesh size as 20nm, Figure 6.22 

and 6.23 show the convergence tests in TE and TM, respectively, when  is 0.2m 

and the wavelength is 1.55m. 
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(c) 

Figure 6.22.Convergence test of PD about (a) PMLR  (b) the number of modes applied , 

and (c) the computation window for the waveguide crossing ([38]) in TE polarization. 
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Figure 6.23. Convergence test of PD about (a) PMLR  (b) the number modes of applied, 

and (c) the computation window for the waveguide crossing ([38]) in TM polarization 

case.  

 

  After the convergence tests, with PMLR as 1e-3, 120 modes considered and 

the computation window as 14.2m, we study the evolution of PD,PT,PR and PU with 
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the variation of  in both TE and TM polarization cases in Figure 6.24. Our results 

coincide well with those obtained from EEM in [38]. 
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(b) 

Figure 6.24. The evolutions of guided PT,PR,PU and PD with the variation of  .(a) TE 

(b) TM 
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Chapter 7 

Conclusions 

 

The thesis introduces several simulation schemes for the calculation of mode profiles 

and wave propagation in multi-layer planar waveguide. The mode spectrums and 

modal patterns of slab waveguide, hollow waveguide and leaky waveguide are 

obtained with semi-analytical Complex STM facilitated by PML and PRB, and they 

coincide with those from HOFD scheme. Without the troublesome procedures of 

getting eigenvectors of the Hermitan matrices in HOFD, Complex STM performs 

more efficiently than HOFD, especially in the case of sophisticated waveguide 

structures in which very small mesh is necessary for HOFD. 

   Power conservation in the framework of CMMM is proved analytically in 

hollow waveguide and numerically in leaky waveguide and around waveguide 

junction. Waveguide crossings and corners with high-index-contrast are simulated 

with CMMM and further validated by FDTD. With the background index varying and 

the waveguide core’s dimension extending, the accuracy of CMMM is still held. 

Additionally, the high-index-contrast T-junction incorporating a high-index resonant 

cavity shows the enhancement of crosstalk in a broad range of wavelength by CMMM. 

Again the spectra calculated through CMMM coincide with those of FDTD. At last, 
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CMMM is proved to produce nearly the same results with QDEEM in the examples of 

high-index-contrast waveguide crossing. All these evidences support the conclusion 

that CMMM is capable of modeling the couplings of radiating wave perpendicular to 

the waveguide axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  110 

 

 

 

Bibliography 

 
[1]Vivek Alwayn, “Optical network design and implement,” Indianapolis, Cisco Press, 

2004. 

[2] L.G. Kazovsky, W.T. Shaw, D. Gutierrez, and S.W. Wong, "Next-generation 

broadband optical access networks," IEEE/OSA Journal of Lightwave 

Technology, vol.25, pp.3428-3442, 2007. 

[3] S.E.Miller, “Integrated optics: an introduction,” Bell Sys. Tech. Journal, vol.48, 

pp.2059-2069, 1969. 

[4] S.-H. Yen, S.-W. Wong, S. Das, Ning Cheng, Jinwoo Cho, S. Yamashita, O. 

Solgaard, and L.G. Kazovsky, "Photonic components for future fiber access 

networks," IEEE Journal on Selected Areas in Communications, vol.28, 

pp.928-935, 2010. 

[5] Fang Xu, and Andrew W. Poon, “Silicon cross-connect filters using microring 

resonator coupled multimode-interference-based waveguide crossings,” Optics 

Express, vol.16, pp.8649-8657, 2008. 

[6] Universität Dortmund, and Lehrstuhl für Hochfrequenztechnik, “Low-crosstalk 

passive polarization splitters using Ti:LiNbO3 waveguide crossings,” Applied 

Physics Letter, vol.55, pp.927-929, 1989. 

[7] Hui Chen and Adrew W. Poon, “Low-loss multimode-interference-based crossings 

for silicon wire waveguides,” Photonics Technology Letter, vol.18, 

pp.2260-2262, 2006. 

[8] Sanchis P., Galan J.V., Griol A., Marti J., Piqueras M.A., and Perdigues J.M., 

“Low-crosstalk in silicon–on-insulator waveguide crossings with 

optimized-angle,”  Photonic Technology Letter, vol.19, pp.1583-1585, 2007. 

[9] D.Marcuse, “Theory of dielectric optical waveguides,” New York, Academic Press, 

Inc., 1974 267 p., 1974. 

[10] Shun Lien Chuang, “Physics of photonics devices,” Wiley, 2nd edition, 2009. 

[11] C. Manolatou, Steven G. Johnson, Shanhui Fan, Pierre R. Villenjeuve, H. A. Haus, 

and J.D. Joannopoulos, “High-density integrated optics,” Journal of Lightwave 

Technology, vol.17, pp.1682-1692, 1999. 

[12] Steven G. Johnson, Christina Manolatou, Shanhui Fan, Pierre R. Villeneuve, J.D. 

Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide 

intersections, ” Optics Letters, vol. 23, pp.1855-1857, 1998. 

[13] Wim Bogaerts, Pieter Dumon, Dries Van Thourhout, and Roel Baets, “Low-loss, 

low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” 

Optics Letters, vol.32, pp.2801-2803, 2007. 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  111 

 

[14] Neyer A., Mevenkamp W., Thylen L., and Lagerstrom B., “A beam propagation 

method analysis of active and passive waveguide crossings,” Journal of 

Lightwave Technology, vol.3, pp. 635-642, 1985. 

[15] Roberts D. A., Rahm M., Pendry J. B., and Smith D. R., “Transformation-optical 

design of sharp waveguide bends and corners,” Applied Physics Letters, vol. 93, 

pp.251111-251111-3, 2009. 

[16] R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, “A study 

of high-index-contrast of 90 degree waveguide bend structures,” Optics Express, 

vol.8, pp. 517-528, 2001. 

[17] G. Ronald Hadley, “High-accuracy finite-difference equations for dielectric 

waveguide analysis II: dielectric corners, ” Journal of Lightwave Technology, vol. 

20, pp.1219-1231, 2002. 

[18] G. P. Karman, “Laser optics: fractal modes in unstable resonators,” Nature, 

vol.402, pp.138, 1999. 

[19] Justin C. Johnson, Haoquan Yan, Peidong Yang, and Richard J. Saykally, 

“Optical cavity effect in ZnO nanowire lasers and waveguides,” Journal of 

Physical Chemistry B, vol.107, pp.8816-8828, 2003. 

[20] Schubert E. F., Wang Y. H., Cho A. Y., Tu Y. W., and Zydzik G. J., “Resonant 

cavity light-emitting diodes,” Applied Physics Letters, vol.60, pp.921-923, 1992. 

[21] Lang R. and Kobayashi K., “External optical feedback effects on semiconductor 

injection lasers properties,” Journal of Quantum Electronics, vol.16, pp.347-355, 

1980. 

[22] Simon Grolacher, Klemens Hammerer, Michael R. Vanner, and Markus 

Aspelmeyer, “Observation of strong coupling between micromechanical 

resonator and an optical cavity field,” Nature, vol. 460, pp.724-727, 2009. 

[23] P. Grangier, E. Slusher, B. Yurke, and A. LaPorta, “Squeezed-light-enhanced 

polarization interferometer,” Physics Review Letter, vol.59, pp.2153-2156, 1987. 

[24] Tayebati P., Wang P., Azimi M., Maflah L., and Vakhshoori D., 

“Microelectromechanical tunable filter with stable half symmetric cavity,” 

Electronic Letters, vol.34, pp.1967-1968, 1998. 

[25] William Gunning, “Double-cavity electrooptic Fabry-Perot tunable filter,” 

Applied Optics, vol.21, pp.3129-3131, 1982. 

[26] Chung Yan Fong and Andrew W. Poon, “Planar corner-cut square microcavities: 

ray optics and FDTD analysis,” Optics Express, vol.12, pp.4864-4874, 2004. 

[27] H. A. Haus, W.P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode 

theory of optical waveguides,” Journal of Lightwave Technology, vol.LT-5, 

pp.16-23, 1987. 

[28] Weiping Huang, “Coupled-mode theory for optical waveguides: an overview,” 

Journal of Optical Society of America A, vol. 11, pp. 963–983, 1994. 

[29] Y. C. Lu, W. -P. Huang, and S. S. Jian, "Full vector complex coupled mode theory 

for tilted fiber gratings,” Optics Express, vol. 18, pp. 713-U366, 2010. 

[30] W. -P. Huang and J. Mu, "Complex coupled-mode theory for optical 

waveguides," Optics Express, vol. 17, pp.19134-19152, 2009. 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  112 

 

[31] Y. C. Lu, L. Yang, and W. -P. Huang, "Improved finite difference full vector 

domplex mode solver for optical waveguides of circular symmetry," IEEE/OSA 

Journal of Lightwave Technology, vol. 26, pp.1868-1876, 2008. 

[32] J. Mu and W. Huang, "Simulation of three-dimensional waveguide 

discontinuities by a full-vector mode-matching method based on finite-difference 

schemes,” Optics Express, vol.16, pp.18152-18163, 2008 

[33] M. D. Feit and J. A. Fleck, “Light propagation in graded-index optical fibers,” 

Applied Optics, vol.17, pp.3990-3998, 1978. 

[34] W.P. Huang, C. L. Xu, S. T. Cu, and S. K. Chaudhuri, “A finite difference vector 

beam propagation method: analysis and assessment,” IEEE Journal of Lightwave 

Technology, vol.10, pp.295-305, 1992. 

[35] S.T. Chu and S. K. Chaudhuri, “A finite-difference time-domain method for the 

design and analysis of guided-wave optical structures,” IEEE Journal of 

Lightwave Technology, vol.7, pp.2033-2038, 1989. 

[36] W.P. Huang, S. T. Chu, A. Goss, and. S. K. Chaudhuri, “A scalar finite-difference 

time-domain approach to guided wave optics,” IEEE Photonics Technology 

Letter, vol.3, pp.524-526, 1991. 

[37] A. Taflove and S. C. Hagness, “Computational electrodynamics: the 

finite-difference time-domain method,” 3rd ed. Boston: Artech House, 2005. 

[38] Manfred Hammer,“Quadridirectional eigenmode expansion scheme for 2-D 

modeling of wave propagation in integrated optics,” Optics Communications, 

vol.235, pp.285-303, 2004. 

[39] Yih-Peng Chiou, Yen-Chung Chiang, and Hung-Chun Chang,“ Improved 

three-point formulas considering the interface conditions in the finite-difference 

analysis of step-index optical devices,”Journal of Lightwave Technology, vol.18, 

pp.243-251, 2000. 

[40] Ali Khalatpour, Jianwei Mu, Kaveh Moussakhani, and Weiping Huang,

“Modified smooth transition method for determination of complex modes in 

multilayer waveguide structures,” Journal of Lightwave Technology, vol.28, 

pp.2851-2855, 2010. 

[41] J. Chillwell and I. Hodgkinson,“Thin-films field-transfer matrix theory of planar 

multi-layer waveguides and reflection from prism-loaded waveguide,”Journal of 

Optical Society of America A, vol.1, pp.742-753, 1984. 

[42] J. P. Berenger, "A perfectly matched layer for the absorption of 

electromagnetic-waves,” Journal of Computational Physics, vol.114, pp.185-200, 

1994. 

[43] W.P. Huang, C.L. Xu, W. Lui, and K. Yokoyama,“The perfectly matched layer 

(PML) bounary condition for the beam propagation method, ” Photonics 

Technology Lettes, vol.8, pp.649-651, 1996. 

[44] H.Rogier and D. De Zutter,“Berenger and leaky modes in microstrip substrates 

terminated by a perfectly matched layer,”IEEE Transactions on Microwave 

Theory and Techniques, vol.49, pp.712-715, 2001. 

[45] S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. EI-Mikati,“Full 

vectorial finite-element-based imaginary distance beam propagation solution of 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  113 

 

complex modes in optical waveguides,” Journal of Lightwave Technology, 

vol.20, pp.1054-1060, 2002. 

[46] B. Rahman and J. Davies,“Finite-element solution of integrated optical 

waveguides,”Journal of Lightwave Technolog, vol.2, pp.682-688, 1984. 

[47] U. Rogge and R. Pregla,“Method of lines for the analysis of integrated optical 

wavegudies,” Journal of Lightwave Technology, vol.11, pp.2015-2020, 1993. 

[48] U. Rogge and R.Pregla,“Method of lines for the analysis of strip-loaded optical 

waveguides,” Journal of Optical Society of America B, vol.8, pp.459-463, 1991. 

[49] M. S. Stern, “ Semivectorial Polarized H Field Solutions for Dielectric 

Waveguides with Arbitrary Index Profiles, ” IEE Proceedings-Journal of  

Optoelectronics, vol.135, pp.333-338, 1988. 

[50] W. E. Arnoldi,“The principle of minimized iterations in the solution of the matrix 

eigenvalue problem,”Journal of Applied Math, vol.9, pp.17-19, 1951. 

[51] Hill K. O. and Meltz G.,“Fiber Bragg grating technology fundamentals and 

overviews,”Journal of Lightwave Technology, vol.15, pp.1263-1276, 1997. 

[52] Henk Derudder, Frank Olyslager, Daniel De Zutter and Steve Van den Berghe, 

“Efficient mode-matching analysis of discontinuities in finite  planar substrate 

using perfectly  matched layers,” IEEE Transaction on Antennas and 

Propagation,vol.49, pp.185-195, 2001. 

[53] Jianwei Mu and Weiping Huang, “Simulation of three-dimensional waveguide 

discontinuities by a full-vector mode-matching method based on 

finite-difference schemes,” Optics Express, vol.16, pp.18152-18163, 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



M.A.Sc: Rui Wang McMaster – Electrical and Computer Engineering 
 

  114 

 

 

 

Appendix A 

List of Publications 

 

[1]Rui Wang, Lin Han, Jianwei Mu, and Weiping Huang, “Simulation of waveguide 

corner and cross with Complex Mode Matching Method,” Integrated Photonics 

Research, Silicon and Nanophotonics, paper IMC 6, Toronto, Canada, 2011. 

 

 

 

 

   

 

 


