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Abstract

Optical waveguides are basic building blocks of high-density photonic integrated
circuits and play crucial roles in optical access networks, biomedical system, sensors
and so on. Various kinds of dielectric waveguides apply the total internal reflection
condition to transmit optical field [9] and even more complicated structures based on
waveguide interconnects, Bragg grating, photonic crystals are actively developed by
corporations and academic institutes. Especially, the fast developing pace of
Metal-Organic Chemical Vapor Deposition (MOCVD), Molecular Beam Epitaxy
(MBE) and other fabrication techniques has predicted the increasing complication and
thus more advanced function of modern optics integrated circuits. Under such
circumstances, convenient and accurate modeling and simulation schemes are
necessary for the exploration, designing and optimization of photonic devices,
systems and networks before the time-consuming and expensive fabrication process.
The thesis summarizes several frequency-domain modeling schemes for the
calculation of mode profile or beam propagation in 2D dielectric waveguide. The
thesis mainly covers conventional Smooth Transition Method (STM), High Order
Finite Difference (HOFD) scheme, Complex STM, and Complex Mode Matching
Method (CMMM) based on the 2D waveguide model terminated with Perfect
Matching Layer (PML) and Perfect Reflection Boundary (PRB). The mode spectrums

and modal patterns obtained from Complex STM are compared with those of HOFD,



and the simulation of waveguide crossings and corners with CMMM is validated with

Finite-Difference-Time-Domain (FDTD) Method.
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Chapter 1
Introduction

1.1 Background of Research

Optical communication is a revolutionary and beneficial form of telecommunication
using light as transmission medium and predicting high speed, broad bandwidth and
good safety [1-2]. As a promising technology of the entire optical communication
systems and networks, the concept of integrated photonics proposed in 1960s is
supported by a variety of optical fibers and devices [3-4], among which waveguide
crossings and corners are important components [5-8]. These structures are appealing
due to their ability to control and direct the propagation of light in complex
waveguide circuits. In a further way the scaling down of optical devices and circuits
desires high-index-contrast waveguide structures because of the miniaturized
waveguide core for optical confinement [9-10]. In this sense the designing and
optimization of waveguide crossings and corners with high index-contrast have been
widely studied experimentally and theoretically [11-17].

On the other hand, optical cavity attracted much attention owning to its
capability of confining light through multiple internal reflections so as to produce
standing waves for certain resonant frequencies. It has been reported that optical
cavity can support longitudinal and transverse eigenmodes in the way of reproducing

radiation patterns on every round-trip of the light through the resonator due to the
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effect of interference for certain patterns and radiation frequencies [18]. Optical cavity
is generally employed in lasers [19-21], interferometers [22-23], wavelength filters
[24-25] and so on. Especially optical cavities with appropriate geometry are usually
applied to waveguide crossings and corners in order to enhance or suppress the
crosstalk [11-12][26].

Computer-aided design (CAD) schemes suggested to simulate the wave
propagation in waveguide structures ranges from semi-analytical methods, say
Coupled Mode Theory (CMT) [27-30], and Mode Matching Method (MMM) [31-32],
to numerical approaches like Beam Propagation Method (BPM) [33-34] and
Finite-Difference Time-Domain (FDTD) Method [35-36]. However, in the past only
computationally expensive time-domain schemes are universally employed for the
modeling of waveguide crossings and corners [11], as the outgoing wave is actually
radiating wave with reference to the launching direction so that the modeling of
couplings among ports with different directions is challenging for frequency-domain

method.

1.2 Motivation

Although the modeling of waveguide crossings and corners through FDTD is rigorous
and accurate, it is extremely demanding of FDTD on computation time and memory
[37]. Recent progress in the MMM utilizing the combination of PML and PRB have
been proved to be effective and accurate through various examples such as waveguide

facets, polarization rotators, and deep-etched gratings, etc. However All these
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structures bear the similar characteristics, i.e., the main radiation field out of the input
waveguides is dominant in the directions not too far off the waveguide axis. As such,
the guided and the near-axis complex modes with relatively lower radiation loss play
significant roles in the mode matching simulation. So far, few frequency domain
methods can handle radiation far off-axis or perpendicular to the waveguide axis as
this involves fast oscillating evanescent waves. Although Quadri-Directional
Eigenmode Expansion Method (QDEEM) has been supposed to simulate waveguide
intersections, the orthogonal condition of this method is not clear [38]. In this work,
we demonstrated by way of simulation that the total powers along all directions are
conserved within the framework of CMMM in order to validate the self-consistency
of the method. Further, we for the first time prove that CMMM is able to model the
couplings of radiating wave perpendicular to the waveguide axis in the examples of
waveguide crossings and corners.

High Order Finite Difference (HOFD) method has been a general numerical
mode solver for 2-D straight waveguide terminated with PML and PRB. However, in
HOFD the process of obtaining eigenvalues of the Hermitan Matrix in sophisticated
waveguides requiring very small meshes costs time and memories a lot [39]. In this
thesis the author develops the semi-analytical Complex Smooth Transition Method
(CSMT) for the mode solver of multi-layer planar waveguide instead, and compares

the obtained mode spectrums and modal patterns with those from HOFD scheme.
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1.3 Thesis Organization

The arrangement of this thesis is as follows: In Chapter 2, the modal governing
equations and the solutions of both finite difference and conventional smooth
transition are presented. Chapter 3 demonstrates the complex mode matching method.
Chapter 4 describes the novel complex smooth transition method. The power
conservation of complex mode matching method is proved in Chapter 5. Chapter 6
introduces the simulation of waveguide crossings and corners with complex mode
matching method. And the conclusion of this thesis is drawn on Chapter 7.

The main contributions of this thesis include two points: firstly, we originally
establish Complex STM to semi-analytically calculate the mode profiles of
multi-layer planar waveguide terminated with both PML and PRB ; secondly,
although CMMM has been generally applied to the simulation of waveguide facets,
Bragg gratings, etc[52-53], we for the first time demonstrate that CMMM can also be
utilized for the modeling of couplings of radiation field outgoing perpendicularly to
the waveguide axis with an incident wave launched in the examples of
high-index-contrast waveguide crossings and corners. CMMM s proved to be able to
estimate the field profiles and power flows accurately through the validation with

FDTD.
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Chapter 2
Finite-Difference (FD) and Smooth Transition
Method (STM) Solutions

2.1 Mode Equation for 2D Straight Waveguide

In a source-free and homogeneous media, the Maxwell’s equation can be written as

[28]
VxE=-jouH (2.1)
VxH = joge,E (2.2)
V-(£0:E)=0 (2.3)
V-(uH)=0 (2.4)

where wis the frequency of the light wave, g and g are the permitivity and the

permeability of the free space, respectively. The time harmonic factor e!** has been
suppressed in the time-harmonic Maxwell” s equations above.
Substituting (2.1) into (2.2), we can obtain the full vector wave equations
with reference to electric field [28]:
Vx| VXE |- 0 ttpeonE =0 (2.5)
In the similar way, by taking (2.2) into (2.1), we get the full vector wave equation on
magnetic field [28]

1 - - 2.6
Vx|:nZVXH}_a)2ﬂ080H :O ( )

where nis the refractive index of the medium.

5
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Figure 2.1 shows a 2-D slab waveguide. Z is the longitudinal direction, and

X is the transverse direction. The waveguide along Y is infinitely long, thus

Q:O. Consequently (2.5) and (2.6) will fall into two separate transverse electric

mode (TE) equations and transverse magnetic mode (TM) equations.

A

vd1 ni X

A O Y(TM)
dz2 n2

y ® Y (TE)
d3 n3

W Z

>

Idm Nm

Figure 2.1. The schematic of an arbitrary 2-D slab waveguide

For TE polarization the wave vector only contains the components of E,,

H,,and H,.And the governing equations for E, can be simplified to be [27-28]:

2
° E2y+(kc2)n2_ﬂ2)Ey:0
Ox
aEy_ - (2'7)
oz IPE,

where k,Is the vacuum wave number
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2r
Ko= 7 (28)
/3 here is the longitudinal propagation constant.
H,and H ,are related to E, in (2.9) and (2.10) [27-28]
H.o=— 7P E, (2.9)
WLy
_ ] OEy (2.10)
H z— - T
wu, OX

For TM polarization, the vector wave only contains the components of H,,
E, and E,.The governing equation for His [27-28][30]:
o( 10H 2
2 y 2.2 _
! [@((nz o j}(k‘m il

Po 1BH,

E, and E,canbe expressed by H,in (2.12) and (2.13)

Ex= P Hy (2.12)
(OF 4 Y44
_ i oH, (2.13)
E.:=———
N“go® OX

When the waveguide is enclosed by perfect boundary conditions (PRB) which
result in the radiation field totally reflected at the boundaries, the continuous radiation
field will be discretized into box modes. For general media, two arbitrary modes of
the same waveguide are always orthogonal in this way [30] :

J(Eur<hi+emxhien )- 20X (2.14)
where ggand p,,are the transverse electric and magnetic field of the m" forward
propagating mode. g, and h,, are defined in the same way (g, # 8,). The

integration here is along the whole cross section.

7
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We suppose S as the propagation constant of the m™ forward propagation
mode. When the m™ mode propagates backward, its propagation constant will be
-/, . Then its orthogonality with the n™ mode can be expressed as [30]:

J(6mxPn—€nxfim) 20X, B,#=pB, (2.15)
In real waveguide structures, the transverse field pattern can be approximately
expanded by the linear superposition of its eigenmodes, so-called mode expansion

[29-30].

Il
M=z

E(x2) =X (ase " +ane™)en(X) (2.16)

>
Il
[N

Il
Mz

H.(%2)=2 (are ’"—ane’”")n,(X) (2.17)

>
Il
N

where a;and g, are the amplitudes of the forward and backward propagating n™
mode of the local waveguide.
In this mode expansion process, it is necessary to normalize the n™ mode field
pattern [30]
1 B . -
EjRe(em(x)th(x))- zdx=1 (2.18)
For lossless media, the modal field is real. So the orthogonality condition can be
simplified to be [30]
[ (gtmxﬁmigmxﬁtm)-idx=o, B.#%f, (2.19)
And the mode normalization expression turns to be [30]
;jém(x)xﬁm(x)-zdx =1 (2.20)
For general media, the modal field pattern can be complex, accordingly in (2.21) N,

can be even complex [30]

;jRe(ém(x)xﬁfn(x))-de: N, (2.21)
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2.2 Conventional STM for 2-D Straight Waveguide

2.21 Introduction

The determination of both guided modes and leaky modes are essential for the
simulation, analysis, design and optimization of the multilayer planar waveguide
structure, as leaky modes are usually critical to assist the analysis of mode couplings.
In conventional STM, the cascading of transfer matrices leads to the characteristics
equation f (8)=0, whose roots can be obtained by Newton’s search in complex
plane [40-41]. When the artificial boundary outside the multilayer stacks (Figure 2.2)
makes the multilayer structure closed, we obtain the real and imaginary roots of
f(£)=0 that are corresponding to the guided and evanescent modes, and they serve
as the initial guesses for the following root searching process. As the artificial
boundary changes from close to open, the root locations move from real and

imaginary axis to the complex plane.

ncinc [n1 [n2 Nm [ns ins oY)
: : ® Y (TE)

v N

deidc|di |d2 | |dm|ds ds

Figure 2.2. The schematic of a (m+2)-layer 2-D slab waveguide with artificial
boundaries placed outside the multilayer stacks.
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2.22 Formulas of Conventional STM
The field expression in an arbitrary location in the j" layer in the multilayer structure
of Figure 2.2 can be expressed as [40-41]:

0;(X)=F g 00) 4 g el (2.22)
We get the derivation of field pattern with reference to x

8 () (2.23)

OX

= _jkj[F je_jkj(x_xj)_Bjejkj(x_xj):|
where F;and B;are the complex coefficient of forward and backward propagating
waves at the left boundary of j" layer. @;notes E, for TE case and does H ,for TM
case. Xis an arbitrary transverse position in the j" layer. x i Is the left boundary of
j" layer. The transverse wave vector k ; is defined as

kj=niks—B" (2.24)

According to the Maxwell’s equation in Chapter 2.1, in TE polarization, gpj(x)and

oo (X
goaj( )vary as tangential electric and magnetic field, respectively. In TM polarization,
X
oo .(X
gpj(x)and iz (0,( )vary as tangential magnetic and electric field.

nj ox

We assume F,_and B, are the complex coefficient of forward and backward
propagating tangential electric (magnetic) field in TE (TM) polarization at the left
artificial boundary; Frand Bgare those at the right artificial boundary. Through the
cascading of transfer matrix in each layer, we can get the equation (2.25) in TE

polarization case [40-41].

FL.+B.
ke(FL—BL)

Fr+Br
ks(Fr—Br)

T T
T T2

(2.25)

10
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We further define a controlling parameter y [40-41]
F.-BL.=—7(F.+B.) (2.26)
Fr—Br=7(Fr+Bg) (2.27)
When y=1, F.=0,B.#0;Fr#0,Br=0, the artificial boundaries on both sides
are open. As ygradually changes from 1 to 0, F.=B.,Fr=Br, the artificial

boundaries are closed. Substituting (2.26) and (2.27) into (2.25), we get [40-41]

FL+BL
—7kC(FL+BL)

Fr*+Br
7kS(FR+BR)

T T
T T2

(2.28)

From (2.28), we derive the governing equations for the determinations of propagation
constants of guided and radiation modes for TE polarization [40-41]:
f (,3)=T21"‘7(ksT22+ch11)+72kcksT12:0 (2.29)

For TM polarization, we obtain [40-41]

FLtBe Fr+Br (2.30)
1 T
k(FL-BL)|= ks(Fr—Bx)
— | |Ta Tzl
Nec Ns

Instituting (2.26) and (2.27) into (2.30) [40-41]

FLtBL Fr*+Br (2.31)
1n T
—7kc(FL+BL) = J/ks(FR‘i‘BR)
T 27 12 T

we further get the governing equation for TM polarization [40-41]

f (,3) =naniT u+ 7(n§T 22ks+n§Tllkc)+7Lrlecks =0 (2.32)
Note that as y gradually increases from 0 to 1, the currently obtained effective index

(N ) will work as the new initial guess for the next-step Newton iteration

corresponding to new y, just like Figure 2.3 shows.

11
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In conventional STM the mode spectrum depends on the position of artificial
boundary a lot. It is recently reported that the artificial boundaries should be exactly

placed at the interfaces between the claddings and multi-layer stacks [40].

=0
I Newton's Method :
Neris real or Z,.,= zu-%)— (zrepresents £)
imaginary [(z,) 0
‘ v i2at N & "'n_}
’ 1f(z, +Re"™) | - f(z,+Re )

————»  Increase r 1 (Zu)=L g G §Z =~

l me=] Re N

Complex Solutions | | |-V - point trapezoidal rule is used.

N R~ can be arbitrarily small

Yes

N

as initial guess

Figure 2.3. Methodology of Conventional STM

2.3 Perfect Matching Layers as Numerical Boundary

Condition

2.31 Discretized Box Modes
We consider the open waveguide in Figure 2.4(a) and close waveguide in Figure
2.4(b). Through enclosing the open waveguide with Perfect Reflection Boundary

(PRB), the continuous radiation waves will be discretized into box modes. If the

12
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computation window is large enough, the electric field for TE guided wave or the
magnetic field for TM guided wave can be regarded as decayed to zero at the
boundaries. However the refection at the closed boundary for radiating wave will
affect the simulation results.

For the symmetric three-layer slab waveguide, its solutions of the governing

equation (2.7) for E,in TE polarization case is (2.33) (for even modes) and (2.34)

(for odd modes) [10].

Sin[kx,clad(X+L)] —L<x<-S

Sinl:kx,clad(_s_l—l‘):l
e_) C8(KneorX) [x|<S
y COS( K coreS ) (233)

Sin[kx,clad(x_l‘):l S<x<L

Sin[kx,clad(s_l‘)]

Sin[kx,clad(X+L):| —L<x<-=S

Sin[kx,clad(_S+L):|

2.34

e_) C0S(KcoreX) Ix|<s o
y COS( k x,coreS )

Sin[ Ky s (X-L) ] S<x<L

Sin[kx,clad(S_L):I

13
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T
™ ovmm n2
Izs ® Y (TE) ni Izs
; ! n2
PRB
(a) (b)

Figure 2.4. (a) 2-D open waveguide (b) 2-D close waveguide

where

kx,clad:ko‘\’n%—Ngﬁ (235)
kx,core:km’nlz—Ngﬁ (236)

Nu =2 (237)
Ko

According to the continuity of H, at the two interfaces, we obtain the characteristic
equation for even TE modes [10]

~K x,core 8N (K x,coreS ) = K xctaa €Ot Kxciaa (S—L) | (2.38)
and that for odd TM modes [10]

~Kxcore CO (K coreS ) = K xctaa €Ot K ctaa(S—L) | (2.39)
The solutions for governing equation of H,in TM polarization case are (2.40) (for

TM even modes) and (2.41) (for TM odd modes) [10].

14
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Sin|:kx,clad(x+|‘):| —L<x<-S
Sin[kx,clad(_S+L):|
2.40)
) oo8(kenX) |
Hy= COS(Kx.coreS ) s
Sin[kx,clad(X_L)] S<x<L
Sinl:kx,clad(s_l‘):l
Sin[kx,clad(X+L):| —L<x<=§
Sin[kx,clad(_s+L):|
2.41)
| oos(kueX) |
Hy COS(K.coreS ) s
Sin| Ky oms(X-L) ] S<x<L
Sin[kx,clad(s_l‘):l

According to the continuity of E,at the two interfaces, we obtain the

characteristic equation for TM even mode [10]

_kx,core tan(kx,cores) . kx,clad COt[kX,Clad(S_L)]
- 2

ni n2 (2.42)

and that for TM odd modes [10]

_kx,core COt(kx,coreS) _ k><,c|ad COtl:kx,clad(S_L):I (243)

n? n3

The solutions of (2.38), (2.39), (2.42) and (2.43) can be real, imaginary or complex.
Consequently the box modes contain the guided, evanescent and complex modes.
Figure 2.5 shows the mode spectrum in TE and TM polarization cases of the slab
waveguide like Figure 2.4(b). The wavelength is 1.55 um. When the box size is large
enough, the guided mode spectrum will be independent on the box size, while the

radiation mode spacing will turn smaller.

15
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0 = 1
14
22 4 TE w  27-0.4um
Za
= 2L=1pm
< -4
2L=8.2um
5
05 0.0 05 1.0 1.5 2.0 2.5 3.0 35
Re (Vo)
(a)
O—. = 1
1 ™
ﬁ_ .
;s 2 = 27=0.4um
~— -3
S 2L=1pm
S 4l
. 21=8.2um
05 0.0 05 1.0 1.5 2.0 25 3.0 3.5
Re (Neﬁ)
(b)

Figure 2.5. Mode spectrums of the closed symmetric slab waveguide in Figure 2.4(b)
where n1=3.3, n2=3.17, 25=0.2nm for (a)TE polarization (b) TM polarizations

2.32 Modified 2-D Waveguide Governing Equation

16
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In order to reduce the reflection of radiating wave from PRB, we can place the
absorbing Perfect Matching Layer (PML) adjacent to PRB to suppress inherent
reflection [42-43]. The stretching coordinates of PML layer are complex number with
minus imaginary parts. Accordingly the transversely outgoing field in PML region
will be effectively attenuated. As a result appropriate PML parameters will make the
waveguide region work as if in open waveguide. And the whole mode spectrum will
be discretized into orthogonal and normalizable guided and complex modes [44].

Figure 2.6 shows a slab waveguide terminated with both PML and PRB on each side.

A
X PRB| ppmL |4
O Y(TM) PML

R Y(E) | no

A

> | N1 2S 2L

21 n2

PML | dpy,
PRB v

Figure 2.6. A 2-D slab waveguide enclosed with PML and PRB

As a non-physical fictitious medium applied to match the physical domain,

the PML index is usually set to be equal with that of the adjacent cladding layer.

17
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Assuming PML media is anisotropic, the Maxwell’s equation is modified to be
[29-30]:

VxE—jBE=—jou|AH (2.44)
VthI—jﬂH=jco€|A|E

where|A| is defined as [29-30]

0‘/ 0 0 (2.45)
A x

A|l=| 0 % 0
(227
0

0 axOy

Here ¢, , o and ¢, are defined as the stretching factor alongY , X andZ . The
waveguide lengths along Y and Z are infinite, and therefore ,and ¢, should be 1.

And ¢, is defined as [29-30]

ax=kKx—J

o0 [ p T (2.46)

2
@gonpme \ d pme

where 4, is related to the evanescent modes, and &,,is the parameter for the
attenuation of the travelling wave. (. is the thickness of PML layer, and npy IS its
index. p is the distance between the calculated position and the starting point of PML,
as shown in Figure 2.7. With the index of PML complex, the coordinates in PML is
therefore complex [29-30].

%= Ja(x Jox (2.47)

0

Consequently the stretching derivation in PML region is [29-30]

d_1d (2.48)

Sometimes we make ., with parabolic growth, in order to reduce dpmL [29-30]

18
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2
Kx0=1+( P j (2.49)
PML
P
WG PML
region

Figure 2.7. Implement of PML
With such coordinate stretching factors, the governing equation is modified for TE

polarization [29-30]

2
15[ 1 aa}a Ey 4 n(x)’kiE, =0 (2.50)
O x OX ax OX 0z
Lo 1 0k (2.51)
i ja),uoax OX
__ 1 Ok (2.52)
" jou, oz
with aaliy=—j;chy , (’;EZV=—J'/3Ey. The dispersion relationship in TE
polarization case is
2
o s
O x

The modified governing equation in TM polarization case can be expressed as [29-30]

ax OX\ axn® OX oz\n° oz
_ OH, . oH, . o ST .
With e =—JxxHy p =—]jpBH,, the dispersion relationship in polarization
TM case is
? (2.55)
(’“J + 4% =n’k} '
O x

19
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The implement of PML should guarantee that there are no inherent
reflections at the interface of waveguide region and PML layer, and the interfaces of

different PML layers (Figure 2.8).

N N

WG Region 7 PML 1 7

(@) (b)

Figure 2.8. (a) The interface of waveguide region and PML (b) The interface of
different PML layers.

Assuming T and R are transmission and reflection at the two kinds of interfaces in
Figure 2.8. The launched field
@1 =exXp(—jrX—BZ)+exp(jxux—jBZ)R (2.56)
The transmitted field at the interfaces
D2 =exp(—jxX—JBZ)T (2.57)
At the position of (x , z)=(0 , 0), according to the consistency of E, (H,) in TE
(TM) polarization case, we have
1+R=T (2.58)
At the interfaces of PML layers, o, =ay,; At the starting position of PML, ,=1.
According to the continuity of H, (E,) in TE (TM) polarization case in passive
media, we have

1-R=T (2.59)

20
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Substituting (2.59) into (2.58), we have R=0 , T=1. Consequently, regardless of

the launching angle, polarizations and frequencies, there are no reflections at the

interfaces of PML and waveguide region, and those of PML layers .

The reflection coefficient Rpy. IS @ critical parameter determining the

accuracy of PML-based waveguide model. In addition, Rpy. IS independent of 4, .

From (2.60) and (2.61) [29-30]

R= |exp(—2 jKOd PML)|

dpmL ' ' d
~ ML : Oxo d
dem = | a(X)dX =dpm t+ - = ;ML
0 3 WgoNpMmL

We get the expressions for reflection coefficient as

Reme =€XpP

2
dpmL
26x0 ,[ ( P )dp
nPML\/(c’% o \dewm
Ho
Thus the stretching factor is [29-30]

2 2
() T ()
deme Arnewmd pme Rem /\ deme

21
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0.000016 -

0.000012 -

0.000008

Ox0

0.000004

0.000000

100 -80 -60 -40 -20 O
Revr
l 10

Figure 2.9. The evolution of &, with Rpy When n2=3.17. dpm=5um. X =1.55um

in Figure 2.6(b)

2.33 Hollow Waveguide

Figure 2.10 shows a hollow waveguide enclosed with PML and PRB.

22
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PRB
AX PML
O v (T™M) dom

A
& Y (TE) d

air

air

Y

PML | dppy,

PRB

Figure 2.10. The schematic of a 2-D hollow waveguide enclosed with PML and PRB
on each side

According to the governing equation of E, (H,) in TE (TM) polarization, and the

boundary condition in hollow waveguide for TE polarization

Ey(dartdem)=0 (2.64)
Ey(—d air—a PML) =0

And the boundary condition for TM polarization

H y(d artd PML):O (2.65)
H y(—d air—a PML) =0

We get the analytical solutions of field pattern in TE case [52]

E ,=sin(xxX(X))
H Xz—oﬁ(ﬁ)lomsin(m,ni(X)) (2:66()
H.,=— j,;)(;o c0( xxn%(X))
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The analytical solutions for modal field pattern for TM polarization is [52]

H y=C0S( x,X(X))
al(X)p, - 2.
L) cos( e X(X)) (2.66(b))
(OF4)
Kx,n oz S
Ez:_.i‘SIn Kx,nX X
5 sin( i, ()
where n=0,1,2,--++-- . ixn 1S the transverse wave vector for the n" mode
For the even modes [52]
Kx,n(d air+d~PML): nz (267)
For the odd modes [52]
Kx,n(d air+dPML): (n+05)7l' (268)
The propagation constant for the n™ mode
B =Ko=Kk (2.69)
The stretching coordinate X is defined as
2
X— .
X_j T ( Cia”’) v X>dair
®go 3dpmL 270
)~(: X |X|<dair ( . )
2
X_J@(X—l—dzalr) ' X<_d i
®go 3dpmL
We can see that computation window size, dPML and -2*© will obviously affect
gy

the mode spectrum and the modal field patterns. Besides small enough Ry, , @ large

enough computation window is necessary for the combination of complex modes to

represent the continuous radiation wave well. With dPML=2um, Figure 2.11 compares

the mode spectrums of hollow waveguides with the computation windows of 14 um

24



M.A.Sc: Rui Wang

McMaster — Electrical and Computer Engineering

(4.2um) in case 1 (case 2). It is shown that larger computation window promises

smaller mode spacing for PML-implemented waveguide.

0- A A AAM
o A A v
14
S y
e
S A casel Vv,
-34 v
\ 4
v  case?2 Vv
—4 T T T T T T T T
02 04 06 08 10

Re(N eff)

Figure 2.11. The mode spectrums of hollow waveguides with different computation

windows. Rpw =1e-2. A=1.55um.

From (2.62) and (2.67)-(2.69), Rpew. has critical influence on the mode

spectrum. Figure 2.12 shows the evolution of effective index ( N ) of the 10™ odd

and even modes for the hollow waveguide with Rpy . dair=5 um, dPML=2 um, A

=1.55um. Considering the extreme case that,

Reme =0

(2.71)

for an arbitrary mode of the hollow waveguide, S — k,, which indicates that the

modal field pattern behaves like plane wave in free space.
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1.2_ T T T T T T T _OIO
1.0- 0.1
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Soc 10" even mode S
5 07 L.0.3 5
& O — O Re(Nyy) |04 E
0.2
. .05
0.0
0 50 100 150 200 250 300
l RprmL
-tog,,
(a)

1.2_ T T T T T T T _O.O
1.0- (.01
_.0.81 " 02 _
R 10" odd mode (03 &
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~04 0.4~
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Figure 2.12. The evolutions of N« of (a) the 10" even mode and (b) the 10" odd

mode with Rpw.
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With x,,as 1, we study the influence of Ry, 0n mode spectrum in hollow

waveguide with dair=5um, dPML=2um and A =1.55um (Figure 2.13).

0.0 A A A AAW:
v
-0.1 vv
v
~-0.21 A v
§ 0.3. v A Rrvi=0.9
- v 3
E 04{ 4 v v Revi=10"
-0.5 -
A v Rpeyvi=10 6
'06 T T T T T T T T T T T 1
00 02 04 06 08 10
Re(Nejf)

Figure 2.13. The impact of Rpy. 0n mode spectrums in hollow waveguide

Figure 2.14 and Figure 2.15 describe the influence of Ry 0on modal field patterns

in TE and TM polarization cases, respectively, for the hollow waveguide structure

mentioned above.
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10000 BB
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Figure 2.14. The influence of Rpy. 0On modal electric field patterns of (a)1* even

mode, and (b)1* odd mode in hollow waveguide for TE polarization.
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Figure 2.15. The influence of Rpy,. 0N modal magnetic field patterns of (a)1® even

mode and (b)1* odd mode in hollow waveguide for TM polarization.

In order to study the orthogonality of analytical modal patterns in hollow

waveguide, we consider the m™ and n™ TE modes of the free-space waveguide.
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dair+d pmL Ey’mEy,nd)’z — dair+deML Sinl:K'X'm)N((X)}SinI:K'x,n)’z(x)] d)z

—dair—dpmL —dair—dpmL
with dX = g, dx , we further simplify (2.72) to be

e Ey,mEy,ndi = dair+,'-&PML axSin[Kx,mX(X)]SinI:Kx’n)z(x):l ax

_dair_d PML _dair_&PML

When m=n, we have

dairtdpmL ~
E,~E,dX=0
_dalr_d PML
In TM polarization case,
dairtdpmL dair+d pmL

HyoH, 0% = | 0 C0S| iy nX(X) COS[ ey nR(X) ] dX

_dair_d PML _dair_aPML
In the same way, if m=n, we have

dairtdpmL -
H,nH,dX=0

—dair—dpmL

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

Consequently the orthogonality of modal field patterns in hollow waveguide in both

TE and TM polarization cases has been proved.

2.4 High Order Finite Difference (HOFD) Scheme

The mode calculation is the prerequisite for the modeling of wave propagation in

photonics circuits in frequency-domain way. In the past, several numerical methods

have been suggested to realize the mode solver, say the finite-element method [46],

the method of lines [47-48] and the finite difference method [39]. Among them finite

difference scheme is the most widely accepted due to its convenience and simplicity.
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2.41 Formulations of HOFD Scheme

The conception of graded index approximation is firstly suggested in the sense that
the discontinuity of the dielectric medium will be matched through averaging the
permitivity over meshes [49]. Recently Chiou develop the FD scheme by further
applying the Douglas Scheme further and achieve the fourth order truncation error

[39].

Pi_1 ?; Pii

i ni i1

Figure 2.16. Three 1-D adjacent sampled points for HOFD

We consider the electric field (magnetic field) ¢, at an arbitrary sampled point
in TE (TM) polarization case, and its two nearby fields are denoted as ¢, ,and
¢, (Figure 2.16). ¢, represents E,for TE case and does H,for TM case. Two
arbitrary sampled points can be related by Taylor series and the continuity of E,

(H,) at the boundary of two adjacent meshes. Thus ¢, ;and ¢,,, can be expressed

i+
about ¢, in the format of infinite series as [39]

ba=eopted ted +ed ) +edV+0(h%) (2.77)

Bio= T ot T80+ 1,60+ 90+ ,8+0(h°) (2.78)

By omitting the high order terms in the infinite series above, and combining (2.77)

and (2.78), we get the first and second order derivations of ¢, [39]

@ _ Fobit(foeoeot,)di—epis (2.79)
I elf 2 f 1€2

¢
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¢_(2) _ f 1¢i—1+( foeieof 1)¢i_el¢i+1 (2.80)
I e, f 1 f 2€1

We define the operators D,andD? as Dyg, = ¢’ and D2, = ¢

By omitting the high order terms and combining (2.30) and (2.31) [39]

¢i(2) _ f 1¢i—1+( foereof 1)¢i_el¢i+1 " eif,—esf, ¢i(3) 4 eif,—eqsf, P (2.81)
62f1_elf2 92f1_61f2 62f1_91f2

By substituting (2.80), ¢ =D,¢Pand ¢ = D2 into (2.81), we get [39]

JO-_ Db (2.82)
" 1+9,D.+9,D5
where
_ feermesf,y (2.83)

=
ezfl_f261

_ feredf, (2.84)
-
e f 1 f 2€1

Further we put (2.82) into the 2-D straight waveguide governing equation, we get [39]

Di¢ +(1+9,D,+9,D%) n%ko#; = (1+9,D,+9,D3) 574, (2.85)

For an arbitrary sampled point, the left and right side of the equation is linear

superposition of ¢,, ¢,,and ¢,,. By combining each line corresponding to each
sampled point into a square matrix, (2.86) can be denoted as

AD = fCD (2.86)

DO =[gpcecsPireepy ] (2.87)

N is the number of sampled points. The eigenvalue equation (2.86) can be solved by

Arnoldi iteration method[50].

Note that [39]
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_ ( f 0€27€0o f 2)¢1_32¢2

Dxp, =
9, erf—f e,
D2¢ _ ( foei—eof 1)¢1_el¢2
' €2 f 1 f 2€1
Dby = f 2¢N—1+( foea—eof 2)¢N
o elf 27 f 1€2
D2¢ _ f 1¢N—1+( foer—eof 1)¢N
o €2 f 1 f 2€1

2.42 Validation of HOFD Scheme in Slab Waveguide

(2.88)

(2.89)

(2.90)

(2.91)

In order to validate HOFD scheme for 2-D slab waveguide, we consider a symmetric

slab waveguide in Figure 2.4(b), with n;=3.3, n,=3.17, 25=2um, and A =1.55um. We

calculate the guided modes of this structure, and validate the results with those from

conventional STM. Table 2.1 and 2.2 show the validations of guided mode N, in TE

and TM polarizations, respectively. And Figure 2.16 and Figure 2.17 show the

normalized guided mode patterns for TE and TM polarizations, respectively.

Table 1 The comparisons of guided mode N.; calculated from conventional STM

and HOFD in slab waveguide (Figure 2.4(b)) with n;=3.3, n,=3.17, 2S=2um, and X

=1.55um for TE polarization

Mode TEO TE1 TE2
Number
FD 3.2860 | 3.2451 | 3.1856
STM 3.2860 | 3.2451 | 3.1856
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Figure 2.17. E, patterns of (a) TEo, (b)TE; and (c)TE2 in slab waveguide 2

N

Table 2 The comparisons of guided mode "¢ calculated from conventional STM

and HOFD in slab waveguide (Figure 2.4(b)) with n1=3.3, n2=3.17, 25=2um, and X
=1.55um for TM polarization

Mode TMo TM1 TM2
Number
FD 3.2855 3.2438 3.1846
STM 3.2855 3.2439 3.1846
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Figure 2.18. H, patterns of (a) TMo, (b)TM; and (c)TMz2 in slab waveguide 2

2.43 Validation of HOFD Scheme in Hollow Waveguide
In order to further validate HOFD scheme, we consider the hallow waveguide in

Figure 2.10, with dair=5 um, dPML=2 um, A =1.55 um, Rpy =1e-3.
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Figure 2.19. Mode spectrums of in (a) TE and (b)TM cases in hollow waveguide

Figure 2.20 and Figure 2.21 show the mode profiles of the hollow waveguide

mentioned above in TE and TM polarization cases, respectively. And we compare the
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results from HOFD scheme with those obtained by the analytical solutions studied in

Section 2.33.
d
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Figure 2.20. E, patterns of (a) the 2" even mode ,(b) the 3" even mode ,(c) the 2™

odd mode and (d) the 3" odd mode in hollow waveguide for TE polarization.
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(d)

patterns of (a) the 2" even mode ,(b) the 3" even mode ,(c) the 2™

odd mode and (d) the 3" odd mode in hollow waveguide for TM polarization.
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Chapter 3
Complex Mode Matching Method (CMMM)

3.1 Introduction

Among the extensive methods of theoretical modeling and analysis of optical
waveguide, Coupled Mode Theory (CMT)/Coupled-wave approach (CWA) are
physically intuitive and mathematically convenient. However the accuracy of
CMT/CWA can only be maintained in waveguide structures with small enough
perturbation. Instead MMM is generally considered efficient and accurate method
based on the tangential field continuity and the mode orthogonality conditions. The
power flow and field pattern are obtained through the linking of different sections of

uniform regions by the cascading of transfer matrices or scattering matrices.

3.2 Transfer Matrix Formulation

Figure 3.1 shows a single waveguide discontinuity between 2-D waveguide A and B

which are terminated with PML and PRB on each side. X is the transverse direction,

and Z is the longitudinal direction
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PML

x ©Y(M)

A B ® Y (TE)

z

>

PML

Figure 3.1 The schematic of a waveguide discontinuity between 2-D waveguides

We utilize HOFD scheme combined with complex coordinate stretching
formulations of PML to get the mode spectrums. We assume N modes in waveguide A
and M modes in waveguide B are used in the mode expansion. The transverse fields
on both sides of the waveguide junction can be expressed approximately in term of

eigenmodes in waveguide A and B [29-32]

EtA(X,Z)=%(a§e 12 +ane"ﬁ3\z)étﬁ(x) (3.1)
AO(x2) = X (are " rane )i (x) (3.2)
E?(x,2)=§=(b e 7 e ) a(x) (3.3)
He(x2)= %(b e 1/ 4y )h (%) (3.4)

where t represents transverse components, E{(x.z) (Ef(xz)) and H(x.z)
(H(x,2)) are the transverse electric and magnetic field of waveguide A (B),
respectively. ﬂ

n(m) is the propagation constant of the n™ (m™) mode in waveguide A

(B). QE?) and hmﬁf?) denote transverse modal electric and magnetic field vectors of
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waveguide A (B), respectively. a; (bs) and a, (b,) are longitudinally forward and
backward propagating wave amplitudes of n™ (m™) mode of waveguide A (B),
respectively.

According to the continuity of tangential components of electric and

magnetic field at the interface of two adjacent passive waveguides, we obtain [31-32]

n%(aﬁan)é{é( )= m%(brﬁb Jeon(X) (3.5)
> (ai-an)in(x) = X (bi-bin)af(x) (36)

We define the cross product of field vectors E and H as[31-32]
(EH)=5]ExH zdx (3.7)
The integration is over the waveguide cross-section. We cross product both sides of

(3.5) with ﬁth , and cross product both sides of (3.6) with &g, [31-32]

%1 (an+an)(emhg) =njﬂz=l(b:n+bm)<é5mﬁz> (3.8)
n%(a:—an)(etg,htﬁ) :Zzl(bm b )8Rt (3.9)

According to the modal orthogonality for waveguides terminated with PML and PRB
< AB), {:ﬂ(B)> 0, m=n (3.10)
(en®ha®) =N, (3.11)

N,is 1 for guided modes and a complex value for complex modes. Substituting

(3.10), (3.11) into (3.8), (3.9), we get [31-32]

Con o (ehng)Hetnn) | x| (ehng) (et nn) | (3.12)
btg—nglan_ 2<éth,ﬁth> _+n§lan_ Zé%,ﬁ@ |
n [ (ehne)(etnn) | n [ (ehns)(etnn | (3.13)
btg—nglan_ 2<etg,ﬁf;> _+n§1an_ 2<éth,ﬁth |

Consequently we can further write them in more compact form
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A+‘ (3.14)

+ + .t +T
where B* =|b1,b3.e...,bN

In order to numerically validate the transfer matrix, we consider a 2-D slab
waveguide junction in Figure 3.2. The fundamental mode is launched from the left
port, and we validate the consistency of tangential components of electric (magnetic)
field at the waveguide junction in TE (TM) polarization case in Figure 3.3 (Figure
3.4). The wavelength is 1.55um, the mesh size is 20nm, and Rpy,. IS 1e-3. 60 modes

are considered.

—
PML drmL GO Y(TM)
X
X ® Y (TE)
n2 na d2

n2 N4 d2

ni n3 f da 2
!
!

PML demL

Figure 3.2. The schematic of two adjacent 2-D slab waveguide terminated with PML
and PRB. n1=3.3, n2=3.17, n3=3.4, n4=3.2, d1=0.5um, d2=2um, dPML=5um.
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Figure 3.3. The continuity test of E, patterns at the waveguide junction (Figure 3.2)

for TE polarization
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Figure 3.4. The continuity test of H , patterns at the waveguide junction (Figure 3.2)

for TM polarization

3.3 Scattering Matrix Formulation

Considering the waveguide junction in Figure 3.1
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B =TuA +T A" (3.15)
B =TuA +TnA" (3.16)
We multiply T,,0n the two sides of (3.15)
TB — A =TuTuA’ (3.17)
Then we multiply T, on both sides of (3.16)
A =TuB ~TuTpA" (3.18)
By combining (3.17) and (3.18), we have
B =(Tu-TuTuTa) A +TuT 2B (3.19)
A =-TouTuA +T B (3:20)
We further write it into matrix form

A+
B,

A+
B,

B+
A,

Suu Sw
San S»

(3.21)

— 9AB

which is the well-known scattering matrix. In a homogeneous region called C (Figure

3.5)

S, O
0 s,

A+
B,

B+
A,

(3.22)

where g, =diag (‘e—m’e—m’ ______ o iAk

) , L is the longitudinal length of C

‘A B
H C H

L

Figure 3.5. The schematic of a homogeneous 2-D region C
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3.4 Periodic Doubling Scheme

The Bragg grating has wide applications in chip-fiber coupling, reflector, and so on
[51] . As the Bragg grating structure contains a large number of symmetric cells, the
scattering matrix holds more stability than the transfer matrix.

The cascading of scattering matrix can be denoted by the operator

‘®’ .Assuming there are three sequent discontinuities noted as n, m and k, we have

Ao AT R [AG (3.23)
Arl T™AS R Tonl|An
A; =S AE _ ka ka A% (324)
Arl ™Al Rme Ti|| AF

We derive (3.23) to be
A%: RmnT'mnAH"i'(T am—Rmn T :nanm)A:1r (325)
An=T mAs =T mRom Al (3.26)

Substituting (3.25) and (3.26) into (3.24), we get the cascaded scattering matrix

[31-32]
Al A [T Riol|A (3.27)
Al T Ad T R TallA
T =T me( | —Rmank)'T om (3.38)
Rkn=ka(l—Rmank)'RmnTkm+ka (3-39)
Rk =T mn( | —RmkRmn)'Rka am+ Ram (3.40)
T =T m( | —RmkRmn)'T - (3.41)

For the 2-D Bragg grating shown in Figure 3.6, the scattering matrix for the a unit cell
IS
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A B A B A B
[ I ) I S B

Figure 3.6. The schematic of a 2-D Bragg grating

Seel =SaA®S DS ®Sea (3.42)
If the Bragg grating contains N periods, the scattering for the whole periodic structure

is [31-32]
S total = Scell®s cell® ------ Ei_)Scell (343)

N

Utilizing the periodic doubling algorithm, the number of scattering matrix cascading

operations is (4N -N —3) less than that from layer-by-layer cascading.
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Chapter 4
Complex Smooth Transition Method (STM)

4.1 Introduction

Multi-layer planar waveguide plays a crucial rule in photonic devices and integrated
circuits. Determination and optimization of guided and radiation modes in multi-layer
planar waveguide are necessary, because both guided and radiation modes both are
essential for expanding arbitrary field of open waveguide in many cases. In STM, the
implicit characteristic function f(ﬁz)zo is obtained from cascading of transfer
matrices. The solving of this transcendental equation is usually through the Newton’ s
root searching in complex plane.

The conventional smooth transition method is to assume artificial boundaries
outside the 2-D multi-layer stacks. When the artificial boundaries are closed, the
obtained box modes (guided or evanescent) serve as the initial guess of the following
Newton’s search which will be ended when the boundaries are open. However, the
leaky modes in open waveguide represents are unbounded by nature and hence lack
the usual characteristics of normal guided modes in terms of orthogonality and
normalization [40].

On the contrast, complex STM utilizes the multi-layer waveguide structures
always enclosed by PML and PRB. The transfer matrix establishing the governing

equation is modified in the sense that effective thickness of PML is complex. The box
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modes when there is no absorption in PML medium are the initial guesses for
Newton’s searching. As Rpy. gradually turns to be small enough, the complex and
guided modes are finally defined.

In this chapter for the first time the semi-analytical solutions of complex
mode spectrums and modal patterns are derived and compared with those from HOFD

scheme.

4.2  Formulas of Complex STM

We consider a 2-D multi-layer planar waveguide terminated with PML and PRB on
both sides (Figure 4.1). The number of layers is N, X and Z are the transverse and
longitudinal directions, respectively. npy. . is the index of the PML on the left side,
and npw_r IS that on the right side. Al and A[ are the amplitudes of forward and
backward propagating waves at the PRB on the left side, respectively. Ajand Agare
those on the right side. For an arbitrary m™ layer, d,and n, are the thickness and
index of this layer, respectively. A} and A, represent the amplitudes of forward and
backward propagating waves at the left boundary of the m™ layer, respectively.
Anand A, ..are those at the right boundary of the m™" layer. The X axis’s coordinate
at the left boundary of the m™ layer is x,,, and ..., is that of the right boundary of the

m™ layer.
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Figure 4.1. The schematic of a multi-layer planar waveguide terminated with PML

and PRB on both sides

In the m™ layer
A= Apg I exndn

- A adxxmd
An = An.€ Jexmdm

21,2 2
Kx,m :\/nmko_ﬂ

(4.1)
(4.2)

(4.3)

For TE polarization, we define two variables U = A"+ A™, V =i, (A"—A")

In the m™ layer, we assume

Un
Vm

U m-+1]
V m+1

Tu T
Tau T2

U m-+1]
V m+1

m

We derive (4.4) to be
At A =Tu( Are 0%+ Are! i)+ T o ( Ane e — Al

- _T= ~ix - ik -
AE— Am = (A:]"]e ] x‘mdm_i_ AmeJKx,mdm)_i_Tzz(AEe J x,mdm_ Ame]Kx,mdn
Kx,m

From (4.5), we obtain

j— = xmdm -] xmdm
1—T11e Jrex +T okxme Jex,
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1:Tllejl<x,mdm_leKX'meij,mdm (48)

By substituting (4.7) into (4.8), we get

T11=C0S(kxmlm) (4.9)
_ sin(sxndn) (4.10)
. Kx,m

From (4.6), we obtain

1:ke’jl(x,mdm_i_'rzze*jl(x,mdm (411)
Kx,m
_1:heij,mdm_T22eij,mdm (412)
Kx,m
Through substituting (4.11) into (4.12), we get
T22=C0S(Kkxmdm) (4.13)
T = JrcxnSin (kxmdm) (4.14)
Finally, we summarize (4.4) to be
) SIN( 7y mO m
coS(cx,ndm ) Ain{xsndn) (4.15)
Twm= Kx,m
ij,mSin(K'x,md m) COS(K'x,md m)
In PML region
- jsin(xxeuds (4.16)
U. L Us COS(K!Z,PMLd IEML) ( L PML) 1
v :TPMLV = Kx,PML v
L 1 . . - o 1
JK')IZ,PMLSIn(K'!z,PMLd IF_’ML) COS(K';PMLd IF_’ML)
- jsin( af pved pu (4.17)
Una _r [Ur/_ COS(K'E,PMLd EML) ( R ) Ur
— | PML - K x,PML
VN+1 VR VR

Jxxpmsin (KE,PMLCTEML) COS(KE,PMLdEML)
According to the governing equation of 2-D waveguide for TE polarization, U and V

are proportional to E,and H,, respectively. So U and V are continuous at the
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junctions. Therefore the transfer matrix for the whole cross-section can be written

through the layer-by-layer multiplication of transfer matrix for each layer.

U Vi o VP (4.18)
V ) total V o T tzoltal T tzoztal V R
T total = T II5MLT lT Durens Meseses T NT EML (419)

In TM polarization case, we define two variables, U=A"+A" ,

\Y =£2X(A*—A*), n is the local index. U and V are proportional to H,and E,
n

which are continuous at the junctions. In the similar way for TM polarization

Lo
nmSIN d
008 (kundn) DT (rcxndm) (4.20)
Kx,m
T i (0
JroxmSIN( xx,
x,m . x,mUm COS([(X'mdm)
| n?
L o~L jn%ML,LSin(K;PMLd:;ML) (4.21)
COS(Kx,PMLd PML) L
UL L U K x,PML Us
=T pmL =l . ) —
Vi Vi JK‘x,PMLsm(K‘x,PMLdpML) — Vi
2 COS(KX,PMLdpML)
Neme,L
R ~R jI’IéML,RSin(KxR,PMLaEML) (4.22)
COS(K‘x,PMLd PML) =
Una| g [Ugl K x,PML Ur
=Tpm =1 ) ~
Vi R JK'E,PMLSIn(K's,PMLdEML) R ~R Ve
2 COS(Kx,PMLd PML)
NewmL,R

total total
T T

total total
2n T2

4.23
Trotat =T LT 1T 2eeve: e TNT Bl = ( )

At PRB, U_,=0 , Ux=0, therefore we get the implicit characteristics

equation for both TE and TM polarization cases

f (’82’ RPML) =75 =0 (4.24)
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process of complex STM, in which q is an arbitrary small number,

k" step of iteration.

Start

—_
Revg =1
el

Ngﬁ:NRg

Ne_gf:Nh/
e
Revr ¥

b .
——

RemL small enough?

No Neff as
——> | new guess

Yes . .
— Finish

When Rpw is 1, the roots of (4.24) fall into two parts: the real ones and imaginary
ones, which are corresponding to the guided and evanescent modes. As mentioned
above, the mode spacing of box modes strongly depend on the computation window
size. The root locus moves from real and imaginary axis to complex plane, as
Rew. Changes from 1 to a small enough value. Figure 4.2 shows the root searching

‘k ’ denotes the

N1 = N ek
B f(Nef,k:RPML]

S (Ne_ﬁ',ka R PMI.)

Fl(Neﬂ‘,k:R PML) =

“[ 1“(Neﬂ.k+q€j2m=R PML)

qejz.rr.r

dt

Figure 4.2. Methodology of Complex STM

4.3 Validation of Complex STM

4.31 Slab Waveguide

56

We consider a symmetric slab waveguide (we call it slab waveguide 1) in Figure
2.4(b), with n1=3.3, n2=3.17, 25=0.2um, dPML=1um, 2L=4.2um, the wavelength is

1.55um.The mesh size for FD mode solver is 5nm. Figure 4.3 compares the mode
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spectrums at Rpw =1e—2 obtained from complex STM and HOFD scheme,

respectively. We can see the coincidence is good. Figure 4.3 also shows the initial box

modes at Rpy. =1.
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Figure 4.3. Mode spectrums of (a) TE and (b) TM cases in slab waveguide 1

57



M.A.Sc: Rui Wang McMaster — Electrical and Computer Engineering

In order to further validate complex STM in slab waveguide, Figure 4.4
compares the modal field patterns with those of HOFD scheme for TE and TM
polarizations. We further validate the complex mode orthogonality obtained from
complex STM by plotting the modal field overlaps in Figure 4.5. We observe that the
overlap integrals between different eigenmodes are zero so that the eigenmodes are
orthogonal. Also, the self-overlaps for high-order complex modes are also close to be

Zero.
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Figure 4.4. Modal field patterns in slab waveguide 1 (a) TE case. N, for STM is

1.1412-12.4123i, N, for FD is 1.1346-12.4096i (b) TM case. N, for STM is

1.1468-12.4173i, N, for FD is 1.1378-12.4149i
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Figure 4.5. Mode orthogonality for complex STM in slab waveguide 1. (a) TE case (b)
TM case

We further consider another slab waveguide (we call it slab waveguide 2) in
Figure 2.4(b) with n1=3.3, n2=3.17, 2S=0.3um, dPML=1um, 2L=8.3um, the
wavelength is 1.55 um. The mesh size for FD mode solver is 5nm. Figure 4.6
compares the mode spectrums at Rpw =1e—3obtained from complex STM and

HOFD scheme, respectively. We can see the coincidence is good.
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Figure 4.6. Mode spectrums of (a) TE and (b) TM case in slab waveguide 2

Figure 4.7 describes the comparisons of modal patterns from complex STM and

HOFD in both TE and TM cases.
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Figure 4.7. Modal field patterns of slab waveguide 2 (a) TE. N, for complex STM is

0.4099-3.2799i, N, for FD is 0.4135-3.4035i (b) TM. N, for complex STM is

0.4775-5.5776i, N, for FD is 0.4854-5.6794i.
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Figure 4.8 validates the mode orthogonality of Complex STM for the slab waveguide

2.
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Figure 4.8. Mode orthogonality of complex STM in slab waveguide 2 (a) TE case (b)
TM case

4.32 Hollow Waveguide
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We consider the hollow waveguide in Figure 2.10, with dair=1.5um, dPML=5 pum.

Figure 4.9 validates the mode spectrums from complex STM with those of FD in

hollow waveguide in both TE and TM cases. The mesh size for FD solver is 20nm.
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Figure 4.9. Mode spectrums of hollow waveguide (a) TE case (b) TM case
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Figure 4.10. Modal field patterns of hollow waveguide (a) TE. N, for complex STM

is 0.4099- 3.2797i, N, for FD is 0.4135 - 3.4035i (b) TM. N, for complex STM is

0.4440- 3.0675i, N, for FD is 0.4526 - 3.1232i
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Figure 4.10 compares the modal patterns from complex STM with those from FD in
TE and TM cases. Figure 4.11 validates the mode orthogonality of complex STM in

hollow waveguide in TE and TM cases
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Figure 4.11. Mode orthogonality of complex STM in hollow waveguide (a) TE case
(b) TM case
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4.33 Leaky Waveguide
We study a 2-D leaky waveguide shown in Figure 4.12. The wavelength is 1.55 pum,
and the mesh size for FD solver is 5nm. Figure 4.13 compares the mode spectrums

from complex STM and FD for the leaky waveguide in TE and TM cases.

Tdew  pMrL  [¥OY™W

X ® Y (TE)

| d1 ni 0 z
d2 n2

dpmL PML

Figure 4.12. The schematic of a 2-D leaky waveguide. n1=3.17, n2=3.3, d1=2 um,
d2=2 um, dPML=1 um.

67



M.A.Sc: Rui Wang McMaster — Electrical and Computer Engineering

TE

0- A ANPANNAGAVAVAVAEASES S
] <<‘<:<<‘<<<““<"”
« <

A

CSTM ; Remi=1
< CSTM ; Rewi=10"
FD ; Rez=10"

Im (Nexy)
S b N
1 " 1 " 1 " 1 " 1
[eeeessssseert> >
AAAAAAAAAAAA‘“A“A“‘A‘AAAAAA““‘A‘AAAAA‘A

FD : Re=10"

00 07 14 21 28 35
Re (Neff)
(a)
1 ™
01 e te 2 AN
14 JAN Ry 'S Salalale
1- p
-2 P
g 3 ;:: A CSTM , Revi=1
9 -3 <
=% 03 )
=~ 3 < CSTM : Rem=10
B
-6
71 B :

08 16 24 32
Re (Negy)

o
o

(b)
Figure 4.13. Mode spectrums of (a) TE and (b) TM cases in leaky waveguide

Figure 4.14 compares the modal field patterns from complex STM and HOFD in

leaky waveguide in TE and TM cases.
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Figure 4.14. Modal field patterns of leaky waveguide (a) TE. N, for STM is 0.6867

- 6.1270i, N4 for FD is 0.6907 - 6.1201i. (b) TM. N, for STM is 0.6956 - 6.2705i,

N, for FD is 0.7092 - 6.4068i
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Figure 4.15 validates the mode orthogonality of complex STM in leaky waveguide in

TE and TM cases.
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Figure 4.15. Mode orthogonality of complex STM in leaky waveguide (a) TE case (b)
TM case
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Chapter 5
Power conservation of Complex Mode Matching
Method (CMMM)

5.1 Introduction

Once the waveguide is enclosed with PRB and PML, the mode spectrum is composed
of guided modes and complex modes. The power flow of guided modes is along
longitudinal direction, while for complex modes power flows not only longitudinally
but also transversely. For an arbitrary enclosed space in waveguide region without any
material absorption, the power flowing into and that out of such a space should be
balanced. However, until now this conception of power conservation for complex
mode matching method has not been clearly proved.

In this chapter, we analytically prove the power conservation in the
framework of complex mode matching method in hollow waveguide, and numerically

validate it in leaky waveguide and waveguide discontinuity.

5.2 Analytical Validation in Hollow Waveguide

Figure 5.1 describes a hollow waveguide terminated with PML and PRB. A

rectangular box is located in its waveguide region. The sides above and below of such

a rectangular box is just at the starting position of PML above and below. X and
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Z are the transverse and longitudinal directions, respectively. The coordinates of the
four  vertexes of this rectangular box in the X-Z plane are
(~dar + Z1), (~dar + Z2),(dar . Zi)and (dar . Z.) respectively. The
power flowing into the box from the left side is noted as P,i,. P,ouw, Pxuand

P,.qoun F€Present the power flow through the right side, the side above and that below,

respectively.

AX PRBI pmL [d,,

z

& Y (TE) d
l dair

21

PML  |dpp

PRB

Figure 5.1. The schematic of a 2-D hollow waveguide with a rectangular passive box
in waveguide region

The propagation constant and transverse wave vector are complex, so we

write the expressions as
Bo=Bw—1Bu (5.1)
Kxn=Kxjn— JKxn (5.2)

Accordingly the analytical modal field pattern in polarization
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1 dair .
Pz,inZERe( | EyH dej

—dair

— |:ﬂR n ( 2kx1 ,nd air _e—2xx| ,ndair) IBR n Sln(szR nd alr):| (53)

80)/10 Kxl,n KxR,n

2 * -1 KxRn /s 2 ) 2 )
Pxup = RG(J Ey x=dr*H Z,X=dairdzj = {_ (e wrtndar — g Kx'mda”)
i n 16w u,| B

(5.4)
— 250 6in(2 o d a,r)}[ “2Pulzz “)]
B
Following the dispersion relationship ,B +x2,=k3, we obtain
KxRnKxin = —BrBu (5.5)
Since
Poow =€ /2= 2)p, (5.6)
Pdown = —P.p (5.7)
We obtain
P2in— Paout = Pxdoun — Pxup (5.8)

Now the power conservation of CMMM in hollow waveguide has been proved,
similarly we prove the relation is held in TM case

Pz,in Pz out — Px down Px,up (59)

5.3 Numerical Validation

5.31 Leaky Waveguide
For leaky waveguide, we didn’t provide the analytical proof as the integral along
longitudinal direction is much more complicated. Instead, we calculated the power

flow in each direction numerically. Figure 5.2 shows a 2-D step-index leaky
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waveguide, with a rectangular box placed just in its waveguide region. The
wavelength is 1.5 um. We assume that a complex mode is launched along the

longitudinal direction.

o 2
dpML npmvL L_)
di n1 g:gz)
d2 N2
‘:da n3
"dPML nPmL

Figure 5.2. The schematic of a 2-D step-index leaky waveguide.d1=4 um, d2=2 um,
d3=3 um, n1=2.2, n2=2, n3=1,dPML=3 um

Figure 5.3(a) and Figure 5.4(a) show the modal field amplitude patterns of the
launched mode obtained from HOFD scheme in TE and TM polarizations,

respectively. The mesh size is 20nm. If Rpy iS smaller, the waveguide region

confinement factor is decreased, and the field oscillation in PML region is also

suppressed. Figure 5.3(b) and Figure5.4(b) describe the convergence of N, with

reference to Rpy. -
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Figure 5.3. (a) Modal field amplitude patterns for TE polarization (b) Convergence of
N With Rew
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Figure 5.4. (a) Modal field amplitude patterns in TM polarization (b) Convergence of
N With Rpw
We normalize P,;,to be 1, and set the longitudinal length of the rectangular

box as 50 um. From Figure 5.5, we can see that the powers flowing into and that out
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of the box are always balanced. With the decreasing of Rpw., P,decaying rate will

increase due to the stronger absorption of PML, but eventually converges.
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Figure 5.5. Power conservation of CMMM in leaky waveguide (a) TE (b) TM
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5.32 Waveguide Discontinuity

Figure 5.6 shows a waveguide junction between a 2-D slab waveguide and leaky
waveguide. A rectangular box is placed in the waveguide region. The fundamental
mode is launched at the left side of the box. The longitudinal length of this box is

L1+L2. 40 modes are considered. The wavelength is 1.5 um.

PML demL 0 Z
L1 L2
1€ > € > " X

Y (TE
ns n4I ds,a © Y(TE)
® Y(T™)

n1i I di1

n2 I d2

PML dpmL

Figure 5.6. The schematic of a junction of 2-D waveguides. dPML=3 um, n1=3.4,
n3=3.3, n2=1, n4=3.5, d1=1 um, d2=2 pum, d3,4=2 um. L1=2 um, L2=50 um

After normalizing P,;,to be 1, Figure 5.7 and 5.8 show the convergence of

P,ox With the number of modes applied and the computation window for TE and

TM polarizations, respectively. Figure 5.9 shows the power conservation of the
passive box which is independent of Rpy . However, smaller Rpy Will make

p, decay faster, and the convergence happens when R, decreases to le-3.
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Figure 5.7. The convergence test of P, (&) about the computation window and (b)

the number of modes applied for TE polarization in the waveguide junction (Figure
5.6)
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Figure 5.8. The convergence test of P, (&) about the computation window and (b)

the number of modes applied for TM polarization in the waveguide junction (Figure
5.6)
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Figure 5.9. Power conservation of CMMM in the waveguide junction (Figure 5.6) (a)

TE (b) TM

Figure 5.10 describes the transversely outgoing electric (magnetic) field

amplitude patterns at the right side of the rectangular box in TE (TM) case,
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respectively. We can see that decreased Rpy. Will promise larger field confinement

in PML region, and smaller transverse field amplitude at the right side.
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Figure 5.10. Transversely outgoing field amplitude patterns in the waveguide junction
(Figure 5.6) () TE (b) TM

82



M.A.Sc: Rui Wang McMaster — Electrical and Computer Engineering

Figure 5.11 shows the vertically outgoing electric (magnetic) field amplitude

pattern for TE (TM) polarization which holds larger oscillation for large Rp, due to

the interferences of reflected wave from PML.
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Figure 5.11. Vertically outgoing field amplitude pattern in the waveguide junction
(Figure 5.6) (a) TE (b) TM
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Chapter 6
Simulation of Waveguide Crossings and Corners

6.1 Introduction

High-index-contrast waveguide crossings and corners are highly desired in the
industrial applications because of their strong ability of controlling of light wave
propagation with the dimensions of optical devices scaled down from those of
low-index-contrast devices, now that the light confinement based on total internal
reflection strongly depends on the index contrast between waveguide cores and
claddings [9-10]. With the knowledge of the power conservation of CMMM, the
vertical power flow is easily acquired. In this chapter we for the first time simulate
high-index-contrast waveguide crossings and corners and calculate the radiation
power perpendicular to the waveguide axis with CMMM and validate the results with
FDTD. Figure 6.1 shows the schematic of 2-D waveguide crossings, T-junction and

corners. And the transmission, reflection and crosstalk are defined in [11].
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Figure 6.1. The schematics of 2-D (a)waveguide crossing (b)waveguide T-junction
(c)waveguide corner terminated with PML and PRB.

6.2 Simulation of High-Index-Contrast Waveguide Crossings

and Corners

6.21 Waveguide Crossing

We follow the case of waveguide crossing in [11], and in Figure 6.1 we have
D1=D2=0.2 um, dPML=5 um, the fiber and background indices are 3.2 and 1,
respectively. At the wavelength of 1.48 um, we do the convergence test for this high

index-contrast waveguide crossing in Figure 6.2.
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Figure 6.2. Convergence test of guided crosstalk about (a) Rpyw. (D) the number of

modes applied, and (c) the computation window in the high-index-contrast waveguide
crossing

With large enough computation window and adequate complex modes applied,
the combination of complex modes will represent the continuous radiation field well
enough, thus the guided crosstalk converges. The smaller Ry, makes the absorption
of vertically radiating power in PML stronger, thus the guided crosstalk will increase
and eventually converges.

With the computation window as 14.2 um, 120 modes considered and Rpyw. as
le-3, we investigate guided transmission and crosstalk spectra in Figure 6.3 and

validate it with that of FDTD in [11].
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Figure 6.3. Guided transmission and crosstalk spectra in the high-index-contrast

waveguide crossing

Figure 6.4 and 6.5 study the effect of the variation of the background index

(D2=0.2 um) and D2 (the background index is 1) in high-index-contrast waveguide

crossing.
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Figure 6.4. The evolutions of guided transmission and crosstalk with the variation of
background index in high-index-contrast waveguide crossing
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Figure 6.5. The evolutions of guided transmission and crosstalk with D2 in high-
index-contrast waveguide crossing.

At the wavelength of 1.55 um, D2 of 0.2 um, and the background index of 1,
Figure 6.6 demonstrates the electric field amplitude pattern in this high index-contrast

waveguide crossing, which coincide well with that of [11].

Figure 6.6. Electric field amplitude pattern in the high-index-contrast waveguide
crossing
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6.22 Waveguide T-junction

Following the examples of [11], in Figure 6.1 we have D1=D2=0.2 um, dPML=5 pm.
At the fiber and background indices of 3.2 and 1, respectively, and the wavelength of
1.48 um, Figure 6.7 shows the convergence test about this T-junction. Further Figure

6.8 demonstrates the guided transmission and reflection spectra.
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Figure 6.7. Convergence test of guided transmission about (a) Rew. (b) the number

of modes applied and (c) computation window in high-index-contrast waveguide
T-junction.
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Figure 6.8. Guided transmission and reflection spectra in the high-index-contrast
T-junction

Figure 6.9 and 6.10 show the impact of the variation of the background

index (D2=0.2 um) and D2 (the background index is 1), respectively.

1.2- waveguide T-junction
1.0- A transmission ; FDTD
0.8—. d reflection ; FDTD

1 VYV  transmission ; CMMM
0.6 _

_ > reflection ; CMMM
0.4 -
02 * % g
0.0- B s

08 12 16 20 24
background index

Figure 6.9. The evolution of guided transmission and reflection with the variation of
background index in the high-index-contrast waveguide T-junction
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Figure 6.10. The evolution of guided transmission and reflection with the variation of
D2 in the high-index-contrast waveguide T-junction

Figure 6.11 shows the electric field amplitude pattern at the wavelength

of 1.55 um, D2 of 0.2 um and the background index of 1.

i

Figure 6.11. Electric field amplitude pattern in the high-index-contrast T-junction
6. 23 Waveguide Corner
Again we follow the example of [11], and set D2=D1=0.2 um, and dPML=5 um in

Figure 6.1. The fundamental mode is launched from the left horizontal port, with
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electric field polarization perpendicular to the plane. Figure 6.12 shows the
convergence test at the wavelength of 1.48 um. And Figure 6.13 demonstrates the

guided transmission and reflection spectra.
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Figure 6.12. Convergence of guided transmission about (a) Rpy. (b) the number of

modes applied and (c) the computation window in the high-index-contrast waveguide
corner
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Figure 6.13. Guided transmission and reflection spectra in the high-index-contrast
waveguide corner

Figure 6.14 and 6.15 study the influence of the variation of background index

(D2=0.2 um) and D2 (the background index is 1), respectively.
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Figure 6.14. The evolutions of guided transmission and reflection with the
variation of background index in high-index-contrast waveguide corner
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Figure 6.15. The evolutions of guided transmission and reflection with the variation of
D2 in high index-contrast waveguide corner

Figure 6.16 shows the electric field amplitude pattern at the wavelength of

1.55 pum, with D2 as 0.2 um and the background index as 1.
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Figure 6.16. Electric field amplitude pattern in high-index-contrast waveguide corner

In summary, the very small relative deviations between sampled spectrums
from CMMM and FDTD in high-index-contrast waveguide intersections shown in
Table 3 further illustrate the accuracy of CMMM. Additionally Table 4 and Table 5
demonstrate the small relative deviations of sampled transmission, crosstalk or
reflection from CMMM and FDTD mentioned above in the high-index-contrast

waveguide intersections when the background index and D2 vary, respectively.

Table 3. Relative deviations between the sampled spectrums of CMMM and FDTD in
high-index-contrast waveguide intersections

transmission reflection crosstalk
waveguide crossing 0.000 0.000
waveguide T-junction 0.001 0.000
waveguide corner 0.003 0.000

Table 4. Relative deviations of sampled transmission, crosstalk or reflection of
CMMM and FDTD in high-index-contrast waveguide intersections with the
background index varying (D2 is 0.2um)

transmission reflection crosstalk
waveguide crossing 0.000 0.000
waveguide T-junction 0.000 0.000
waveguide corner 0.000 0.000
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Table 5. Relative deviations of sampled transmission, crosstalk or reflection of
CMMM and FDTD in high-index-contrast waveguide intersections with D2 varying
(the background index is 1)

transmission reflection crosstalk
waveguide crossing 0.001 0.000
waveguide -junction 0.000 0.000
waveguide corner 0.001 0.000

6.24 T-junction with Cavity

We consider a T-junction and another one assisted with a square cavity in Figure 6.17.
The fiber index is 3.2 and the background index is 1. The fundamental mode is
launched from the left horizontal port, with electric field perpendicular to the plane.
The definitions of the power flow of transmission (PT), crosstalk (Pc) and reflection
(PR) are shown in Figure 6.17. The mesh size is 20nm. At the wavelength of 1.55 um,
Figure 6.18 and 6.19 show the convergence tests of the T-junction and the
cavity-assisted one. With Rpy =1e-3, 110 (100) modes considered and computation
window as 16.82 um (16.22 um) for the cavity-assisted T-junction (T-junction), we
studied the guided transmission, crosstalk and reflection spectra in Figure 6.20. We
can see that the resonant cavity increases the crosstalk. Figure 6.21 describes the
electric field amplitude patterns in cavity-assisted T-junction obtained from CMMM

and FDTD, respectively. The coincidences between CMMM and FDTD are good.
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Figure 6.17. (a)The schematic of a 2-D waveguide T-junction (b) The schematic of a
cavity-assisted waveguide T-junction. dPML=5 um, S1=0.6 um, S2=0.6 um, S3=20nm,
S4=0.2 pm, S5=20nm, S6=0.2 um.
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Figure 6.18. Convergence test of guided crosstalk about (a) the number of modes
applied (b) Rpw. and (c) the computation window in waveguide T-junction (Figure

6.28(a))
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Figure 6.19. Convergence test of guided crosstalk about (a) Rpw. (D) the number of

modes applied, and (c) the computation window in cavity-assisted
T-junction (Figure 6.17(b))
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Figure 6.20. Guided transmission, reflection and crosstalk spectra of the
cavity-assisted T-junction (Figure 6.17(b)), and guided crosstalk spectra of the

T-junction (Figure 6.17(a))
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(b)
Figure 6.21. Electric field amplitude pattern in cavity-assisted T-junction (Figure
6.17(b)) () CMMM (b) FDTD

6.4 The Validation of CMMM with QDEEM in Cross Waveguide

QDEEM is another frequency-domain scheme for the simulation of waveguide
interconnects. The 2-D waveguide is terminated with PML and PRB not only
vertically but also horizontally in the framework of QDEEM. We follow the case of
waveguide crossing in [38] and prove that the modeling based on CMMM creates the
coinciding results with those from QDEEM. Pp (Pu), Pr and PT are defined in [38] as

the guided scattering, transmitted and reflected power in the waveguide crossing,
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respectively. With dPML on each side as 5 um and the mesh size as 20nm, Figure 6.22

and 6.23 show the convergence tests in TE and TM, respectively, when vis 0.2 um

and the wavelength is 1.55 pum.
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Figure 6.22.Convergence test of Pp about (a) Rpw.  (b) the number of modes applied ,

and (c) the computation window for the waveguide crossing ([38]) in TE polarization.
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Figure 6.23. Convergence test of Pp about (a) Ry (b) the number modes of applied,

and (c) the computation window for the waveguide crossing ([38]) in TM polarization
case.

After the convergence tests, with Rpy as 1le-3, 120 modes considered and

the computation window as 14.2 um, we study the evolution of Pp,P+,Pr and Py with
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the variation of oin both TE and TM polarization cases in Figure 6.24. Our results

coincide well with those obtained from EEM in [38].
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Chapter 7
Conclusions

The thesis introduces several simulation schemes for the calculation of mode profiles
and wave propagation in multi-layer planar waveguide. The mode spectrums and
modal patterns of slab waveguide, hollow waveguide and leaky waveguide are
obtained with semi-analytical Complex STM facilitated by PML and PRB, and they
coincide with those from HOFD scheme. Without the troublesome procedures of
getting eigenvectors of the Hermitan matrices in HOFD, Complex STM performs
more efficiently than HOFD, especially in the case of sophisticated waveguide
structures in which very small mesh is necessary for HOFD.

Power conservation in the framework of CMMM s proved analytically in
hollow waveguide and numerically in leaky waveguide and around waveguide
junction. Waveguide crossings and corners with high-index-contrast are simulated
with CMMM and further validated by FDTD. With the background index varying and
the waveguide core’s dimension extending, the accuracy of CMMM is still held.
Additionally, the high-index-contrast T-junction incorporating a high-index resonant
cavity shows the enhancement of crosstalk in a broad range of wavelength by CMMM.

Again the spectra calculated through CMMM coincide with those of FDTD. At last,
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CMMM is proved to produce nearly the same results with QDEEM in the examples of
high-index-contrast waveguide crossing. All these evidences support the conclusion
that CMMM is capable of modeling the couplings of radiating wave perpendicular to

the waveguide axis.
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