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Abstract

In this thesis, we consider a coherent MIMO system, emphasizing on the simplicity

of implementation at both the code generator and the receiver. Specifically, we con-

sider the transmission of a space-time block code (STBC) that is a linear combination

of coding matrices weighted by the information symbols through a receiver-correlated

flat-fading channel and received by a linear ZF detector. Our target is the design of a

code which, while maintaining full data-transmission rate, minimizes the asymptotic

average (over all the random channel coefficients) bit error probability of an ZF de-

tector. To this end, we first ensure that the full data rate of symbols is maintained,

and then, based on the BER for 4-QAM signals, we derive the conditions for optimal

codes and establish a code structure that minimizes the asymptotic average bit error

probability. We also prove that the diversity gain of our M × N MIMO system is

N − M + 1. The resulting optimum code structure requires the individual coding

matrices to be mutually orthogonal when vectorized and is related to covariance ma-

trix of correlated channel. The first optimum structural characteristics of the coding

matrices is described as trace-orthogonal. A new approach to express expected value

of random correlated channel has been proposed as well. Our optimum code structure

under statistically known CSI has the similar structure under fully known CSI [1].

From simulation results we can see that advantage of optimum code over uncoded
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system is more apparent as channel correlation is higher.
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Acronyms

BER Bit Error Rate

DFT Discrete Fourier Transform

MIMO Multi-Input Multi-Output

QAM Quadrature Amplitude Modulation

SNR Signal-to-Noise Ratio
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Glossary of Symbols

a Column vector a

A Matrix A

(·)T The transpose of a vector or matrix

(·)∗ The complex conjugate of a vector or matrix

(·)H The Hermitian of a vector or matrix

ln Natural logarithm

E[·] The expectation operator

Re(·) Real part of the variable in the bracket

Im(·) Imaginary part of the variable in the bracket

Tr(·) The trace operator

⊗ Kronecker product

j
√
−1
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Chapter 1

Introduction

1.1 Background

1.1.1 MIMO Communication Systems

MIMO is an acronym that stands for Multiple Input Multiple Output. It is an

antenna technology that is used both in the transmitter and the receiver for wireless

radio communication. MIMO technology has attracted attention in wireless com-

munications because it offers significant increases in data throughput and link range

without additional bandwidth or transmission power. It achieves this by higher spec-

tral efficiency (more bits per second per hertz of bandwidth) and link reliability or

diversity (reduced the effect of fading). Because of these properties, MIMO is an

important part of modern wireless communication standards such as IEEE 802.11n

(Wifi), 4G, 3GPP Long Term Evolution, WiMAX and HSPA+.

The basic principle of MIMO is to take advantage of multi-path. MIMO uses

multiple antennas to send multiple parallel signals (from transmitter). In an urban

1
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environment, these signals will bounce off trees, buildings, etc. and continue on their

way to their destination (the receiver) but in different directions and at different

arrival time. Multi-path occurs when the different signals arrive at the receiver at

various times. With MIMO, the receiving end uses an algorithm or special signal

processing to sort out the multiple signals to produce one signal that has the originally

transmitted data. By transmitting multiple data streams in different channels at the

same time and collecting multipath signals with multiple sensors, MIMO delivers

simultaneous speed, coverage, and reliability improvements.

Spatial Multiplexing

Spatial multiplexing (SM) is a transmission technique in MIMO wireless com-

munication to transmit independent and separately encoded data signals, so-called

streams, from each of the multiple transmitter antennas. Arogyaswami Paulraj and

Thomas Kailath proposed the concept of spatial multiplexing (SM) using MIMO in

1993. Their US Patent No. 5,345,599 on Spatial Multiplexing issued 1994 [2] em-

phasized applications to wireless broadcast. In 1996, Greg Raleigh and Gerard J.

Foschini refined new approaches to MIMO technology, considering a configuration

where multiple transmitter antennas are co-located at one transmitter to improve the

link throughput effectively [3]. Bell Labs was the first to demonstrate a laboratory

prototype of spatial multiplexing in 1998, where spatial multiplexing is a principal

technology to improve the performance of MIMO communication systems [4].

In spatial multiplexing, a high rate signal is split into multiple lower rate streams

and each stream is transmitted from a different transmitter antenna in the same

frequency channel. If these signals arrive at the receiver antenna array with sufficiently

2
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Transmitter ReceiverChannel

Figure 1.1: MIMO communication systems

different spatial signatures, the receiver can separate these streams into (almost)

parallel channels. Spatial multiplexing is a very powerful technique for increasing

channel capacity at higher signal-to-noise ratios (SNR).

A basic MIMO communication system is made up of transmitter, channel and

receiver (Fig 1.1).

1.1.2 Transmitter: Space-Time Block Codes

At the transmitter, multiple data streams are emitted from the transmitter an-

tennas with independent and appropriate weightings, which is called precoding, such

that the link throughput is maximized at the receiver. Space-time block coding is

one of the precoding techniques to transmit multiple copies of a data stream across a

number of antennas and to exploit the various received versions of the data to improve

the reliability of data transfer. The fact that the transmitted signal often traverses a

potentially difficult environment with scattering, reflection, refraction and so on and

may then be further corrupted by thermal noise in the receiver means that some of

the received copies of the data will be ‘better’ than others. This redundancy results

in a higher chance of being able to use one or more of the received copies to correctly

decode the received signal. In fact, spacetime coding combines all the copies of the

received signal in an optimal way to extract as much information from each of them

3
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as possible.

Proposed by Vahid Tarokh, Nambi Seshadri and Robert Calderbank, spacetime

codes [5] (STCs) achieve significant error rate improvements over single-antenna sys-

tems. Their original scheme was based on trellis codes but the simpler block codes

were utilized by Siavash Alamouti [6], and later Vahid Tarokh, Hamid Jafarkhani and

Robert Calderbank [7] to develop spacetime block-codes (STBCs). STC involves the

transmission of multiple redundant copies of data to compensate for fading and ther-

mal noise in the hope that some of them may arrive at the receiver in a better state

than others. In the case of STBC in particular, the data stream to be transmitted is

encoded in blocks, which are distributed among spaced antennas and across time.

1.1.3 Channel: Channel State Information

In wireless communications, channel state information (CSI) refers to known chan-

nel properties of a communication link. This information describes how a signal

propagates from the transmitter to the receiver and represents the combined effect

of, for example, scattering, fading, and power decay with distance. The CSI makes

it possible to adapt transmissions to current channel conditions, which is crucial for

achieving reliable communication with high data rates in multiantenna systems.

CSI needs to be estimated at the receiver and usually quantized and fed back to

the transmitter through a separate channel. Therefore, extra bandwidth is needed

for the sharing of CSI between the receiver and transmitter.

There are basically two levels of CSI, namely instantaneous CSI and statistical

CSI.

4
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i Instantaneous CSI (or short-term CSI) means that the current channel con-

ditions are known, which can be viewed as knowing the impulse response of a

channel. This gives an opportunity to adapt the transmitted signal to the im-

pulse response and thereby optimize the received signal for spatial multiplexing

or to achieve low bit error rates.

ii Statistical CSI (or long-term CSI) means that a statistical characterization of

the channel is known. This description may include, for example, the type of

fading distribution, the average channel gain, the line-of-sight component, and

statistics of the spatial correlation. As with instantaneous CSI, this information

can be used for partial transmission optimization.

CSI acquisition is practically limited by how fast the channel conditions are chang-

ing. In fast fading systems where channel conditions vary rapidly under the transmis-

sion of a single information symbol, only statistical CSI is reasonable. On the other

hand, in slow fading systems instantaneous CSI can be estimated with reasonable

accuracy and used for transmission adaptation for some time before being outdated.

1.1.4 Receiver: Detection/Decoding

At the receiver, received signals will be recovered and detected using decod-

ing/detection methods.

Maximum Likelihood (ML) Decoding

ML is the decoding, which compares the distance between received symbols to all

the possible combination sequence. The one with the shortest distance will be selected

as decoded symbols. This method is often computational prohibitive in practice.

5
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Equalizer

The equalizer is a device that attempts to reverse the distortion suffered by a signal

transmitted through a channel. Its purpose is to reduce intersymbol interference to

allow the recovery of the transmitted symbols. It may be a simple linear filter or a

complex algorithm. Linear Equalizer processes the incoming signal with a linear filter.

Compared to ML decoding, the following two linear equalizers are much simpler for

implementation:

i Minimum Mean-Square Error(MMSE) Equalizer: designs the filter to min-

imize E[|e|2], where e is the error signal, which is the filter output minus the

transmitted signal.

ii Zero Forcing Equalizer: approximates the inverse of the channel with a linear

filter. The name Zero Forcing corresponds to bringing down the intersymbol

interference (ISI) to zero if there is no noise.

When the channel is noisy, ZF receiver will amplify the noise greatly at frequencies

where the channel response has a small magnitude in the attempt to invert the channel

completely, in which case MMSE is more balanced, which does not usually eliminate

ISI completely but instead minimizes the total power of the noise and ISI components

in the output. In high Signal-Noise ratio case, MMSE’s performance is close to ZF.

1.1.5 Bit Error Rate

After detection, symbol error can be calculated with difference between received

symbols and original symbols. Further more, bit error can also be calculated. The bit

6
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error rate(BER) is the number of bit errors divided by the total number of transmitted

bits during an observed time interval.

The bit error probability Pe is the expected value of the BER. The BER can be

considered as an approximate estimate of the bit error probability. This estimate

is more accurate for a longer time interval and a larger numbers of experiments.

In a communication system, BER may be affected by transmission channel noise,

interference, distortion, bit synchronization problems, attenuation, wireless multipath

fading, etc.

The BER may be improved by increasing the signal strength, or by applying

precoding schemes such as space-time block coding.

1.2 Contribution from Previous Research

Among all the performance measurements of communication systems, the fol-

lowing two are commonly used: capacity and reliability. These two factors govern

the increase of data rate and the decrease of probability of error respectively. More

specifically, full symbol rate is achieved when one symbol is transmitted by each of

the multiple transmitter antennas per time slot (often called per channel use). Papers

by Gerard J. Foschini and Michael J. Gans [8], Foschini [3] and Emre Telatar [9] have

shown that the channel capacity (a theoretical upper bound on system throughput)

for a MIMO system is increased as the number of antennas is increased, proportional

to the minimum number of transmitter and receiver antennas. Full diversity [10] is

achieved when the total degree of freedom (number of transmitter antennas × number

of receiver antennas) offered in the multiantenna system is utilized. This will ensure a

7
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good performance in terms of probability of error for detecting the transmitted sym-

bols at high signal-to-noise ratio (SNR) when a maximum-likelihood (ML) detector

is employed [5].

Space-time codes have been developed that simultaneously provide both full di-

versity and full rate [11], [12] and therefore have fully exploited the advantages of

MIMO systems. The good error performance achieved in these designs, however,

depends on the ML detector. Transmitters designed to minimize the mean square

error of the equalized symbols for both zero-forcing and minimum mean square error

(MMSE) equalization were derived in [13]. Design of minimum BER linear precoders

for systems with zero-forcing equalization and threshold detection has been studied

in [1]. [14] devises a minimum bit error rate (BER) block-based precoder used in

block transmission systems with the proposed cascaded zero-forcing (ZF) equalizer.

However, they all assumed CSI is fully known by both transmitters and receivers.

In [15], when CSI is only known by receiver and totally unknown in transmitter, opti-

mum STBC which not only minimizes BER but also achieves full data rate has been

designed using MMSE receivers. However, the channel is supposed to be independent

and identically distributed .

1.3 Motivation and Contribution of Thesis

In this thesis, we consider a coherent MIMO system, emphasizing on the simplicity

of implementation at both the code generator and the receiver. Specifically, we con-

sider the transmission of a space-time block code (STBC) that is a linear combination

of coding matrices weighted by the information symbols through a receiver-correlated

flat-fading channel and received by a linear ZF detector. Our target is the design of

8
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a code which, while maintaining full data-transmission rate, minimizes the asymp-

totic average (over all the random channel coefficients) bit error probability of an

ZF detector. To this end, we first ensure that the full data rate of symbols is main-

tained, and then, based on the BER for 4-QAM signals, we derive the conditions for

optimal codes and establish a code structure that minimizes the asymptotic average

bit error probability. The resulting optimum code structure requires the individual

coding matrices to be mutually orthogonal when vectorized and is related to covari-

ance matrix of correlated channel. The first optimum structural characteristics of the

coding matrices is described as trace-orthogonal. We have proposed a new approach

to express expected value of random correlated channel. We found that our optimum

code structure under statistically known CSI has the similar structure under fully

known CSI [1].

1.4 Organization of Thesis

In Chapter 1, some background knowledge is introduced. System model of our

MIMO communication system is clearly shown in Chapter 2. The original optimiza-

tion problem of minimizing BER by choosing coding matrix is stated in Chapter 3.

Chapter 4 reveals the whole problem reformulation and theoretical analysis. Chap-

ter 5 takes another approach to find the optimum code structure through diversity

analysis and asymptotic formula derivation. Combining the conclusion from Chapter

3 and 4, solution to the optimization problem is elaborated in Chapter 6. Last but

not the least, simulation results and conclusion have been shown in Chapters 7 and

8. To facilitate continuity in reading, some complicated derivations have been put

into appendix.

9



Chapter 2

System Model

2.1 Precoding

To ease off the complexity demanded at the receiver, proper design of the precoder

at the transmitter has received intensive attention in current digital communications

due to its ability to improve the system performance. An important aspect in the

design of the precoder for prescribed receivers is the availability of channel state infor-

mation (CSI) at the transmission and reception ends. When perfect CSI is available

at the transmitter, there exist solutions to various precoder design problems [16],

including maximization of information rate [17], maximization of SNR [13], mini-

mization of the mean squared error [13] and minimization of the bit error probability

for Zero-Forcing [16] [1] and MMSE equalization [18].

It is reasonable to assume that CSI is available at the receiver via training. While

having CSI at the transmitter allows for better performance, this may not be possible

in practice. Throughout this paper, we will assume that perfect CSI is available at

the receiver, and only the first- and second-order statistics of the channel is known

10
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at the transmitter.

2.2 Spatial Correlation of Channel

Theoretically, the performance of wireless communication systems can be im-

proved by having multiple antennas at the transmitter and the receiver. The idea

is that if the propagation channels h between each pair of transmitter and receiver

antennas are statistically independent and identically distributed, then multiple in-

dependent channels H with identical characteristics can be created by precoding and

be used for either transmitting multiple data streams or increasing the reliability (in

terms of bit error rate). In practice, the channels between different antennas are

often correlated and therefore the potential multi-antenna gains may not always be

obtainable. This is called spatial correlation.

The existence of spatial correlation has been experimentally validated [19] [20].

Spatial correlation is often said to degrade the performance of multi-antenna systems

and put a limit on the number of antennas that can be effectively squeezed into a

small device (as a mobile phone).

In a narrowband flat-fading channel with M transmitter antennas and N receiver

antennas (MIMO), the propagation channel is modeled as [21]

y = Hx+ n (2.1)

where y and x are the N × 1 receive and M × 1 transmit vectors, respectively. The

N×1 noise vector is denoted by n. The ijth element of the N×M channel matrix H

describes the channel from the jth transmitter antenna to the ith receiver antenna.

11
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When modeling spatial correlation it is useful to employ the Kronecker model,

which means that when the correlation between transmitter antennas and receiver

antennas are assumed independent and separable, the channel matrix can be ex-

pressed as [20]

H ∼ CN (0,ΣT ⊗ΣR) (2.2)

where ⊗ denotes the Kronecker product (See A.1) and CN (·) stands for circular

symmetric complex normal distribution (See A.2). ΣR and ΣT are the receiver-side

spatial correlation matrix and transmitter-side spatial correlation matrix respectively.

This model is reasonable when the main scattering appears close to the antenna arrays

and has been validated by both outdoor and indoor measurements [19] [20].

2.3 System Model of the Thesis

Consider a MIMO communication system (Fig 2.1) having M transmitter anten-

nas and N receiver antennas (N ≥ M). The symbol stream to be transmitted in

T time slots is given by {sl}, l = 1, . . . , L, and is divided into M substreams each

having T symbols. Thus, we have L = MT symbols to be transmitted. These sym-

bols are selected from a given constellation with zero mean and unity covariance and

complex (i.e., E[ssH ] = I). Each symbol is processed by an M ×T coding matrix C l,

l = 1, . . . , L. The M × T linear STBC matrix is given by

X = ΣL
l=1slCl (2.3)

The total power assigned to all the coding matrices is constrained to a constant

12
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Figure 2.1: MIMO communication system model

L, i.e.,
L∑
l=1

tr(CH
l Cl) = L (2.4)

The random transmission coefficients hnm are zero-mean, circularly-symmetric

complex Gaussian distributed random variable with unit variance. We assume that

full knowledge of CSI is available at the receiver. At the transmitter, however, only

the first- and second-order statistics of the channels are available. Let the nth row of

H be hT
n = [h1

n · · ·hM
n ]. We assume that [22]

E[hlh
H
n ] =

 Σ l = n,

0 l ̸= n.
(2.5)

which means channels reaching the same receiver antenna are correlated and chan-

nels reaching different receiver antenna are uncorrelated. HHH is of Wishart dis-

tribution [23], of N degrees of freedom and with covariance matrix Σ, denoted by

WM(N,Σ) (See A.3).

At the receiver, N × T additive space-time noise matrix W is of CN (0, I) with

covariance matrix Rww = I.

13
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The N × T received signal Y is

Y =

√
ρ

M
HX+W (2.6)

It can be vectorized to:

y = vec(Y)

=

√
ρ

M
(IT ⊗H)Fs+w

=

√
ρ

M
Hs+w

where F = [vec(C1) · · · vec(CL)] : MT ×MT ,

H = (IT ⊗H)F : NT ×MT

Now we have vector-form signal at the input of receiver end. In next chapter,

zero-forcing equalizers will be used to acquire detected symbols. Asymptotic average

bit error rate will be expressed so that our problem can be stated.

14



Chapter 3

Problem Establishment

3.1 Zero-Forcing Equalization

The Zero-Forcing Equalizer applies the inverse of the channel to the received signal

to restore the signal before the channel so that [13]

√
ρ

M
GH = I (3.1)

Since we have N ≥ M , H (NT ×MT ) is a tall matrix, for ZF equalizer G

G =

√
M

ρ
H†

=

√
M

ρ

(
HHH

)−1 HH

where (·)H stands for hermitian (conjugate and transfer) and (·)† stands for pseudo-

inverse (See A.4).

By facilitating the linear equalizer G, the L× 1 equalized signal ŝ can be written

15
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as

ŝ = Gy

=

√
ρ

M
GHs+Gw

= s+Gw

The error vector e , (s− ŝ) is given by

e = Gw (3.2)

where w is assumed white so that Rww = I.

So that the covariance matrix, Vse, of the error vector is given by

Vse = E[eeH ]

= GRwwG
H

=
M

ρ

(
HHH

)−1
(3.3)

where (·)se stands for symbol error, and the bit error rate will be expressed in the

following section.

3.2 Asymptotic Average Bit Error Rate

For 4-QAM signals, each transmitted symbol consists of one bit in each of its

real and imaginary parts. To evaluate bit error rate, we must then separate the

transmitted and the detected 4-QAM symbols into their respective real and imaginary

16
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parts and examine the error in both parts.

Writing σ = [sRe sIm]
T and σ̂ = [̂sRe ŝIm]

T which are 2L × 1 vectors with (·)Re

and (·)Im denoting respectively the real and imaginary parts of a complex quantity,

the covariance matrix of bit error Vbe is determined by

Vbe = E[(σ − σ̂)(σ − σ̂)H ]

=
M

ρ
[THF̂HĤHĤF̂T]−1 (3.4)

where 2L× 2L matrices Ĥ, F̂,T are defined as

Ĥ =

 IT ⊗H 0

0 IT ⊗H∗


F̂ =

 F 0

0 F∗


T =

1√
2

 IL jIL

IL −jIL


where (·)∗ stands for conjugate.

The lth element of Vbe, denoted by [Vbe]ll, l = 1, . . ., 2L, is the mean square

error(MSE) of the lth bit of σ.

According to [24], the bit error rate (BER) in the detection of l th symbol of s is

given by

Pel = EH {Q (
√
γl)} (3.5)

where γl is the signal to interference plus noise ratio (SINR) associated with lth bit of

17
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the equalized signal vector σ̂ and EH(·) is the expectation taken over all the random

channel matrices H, and Q(·) stands for Q-function (See A.5).

For our system in which a ZF equalizer is employed, because there is no inter-

symbol interference, the SINR in the lth bit, which equals to signal to noise ra-

tio(SNR), can be expressed in terms of MSE [13] such that

γl =
1

[Vbe]ll
(3.6)

Substituting Eq. (3.6) into Eq. (F.76), the average probability of error for lth bit

can be written as

Pel = EH

{
Q

(√
[Vbe]

−1
ll

)}
(3.7)

The averaged bit error probability over all the 2L bits is:

Pe(F) =
1

2L

2L∑
l=1

EH

{
Q

(√
[Vbe]

−1
ll

)}
(3.8)

Eq. (3.8) yields an expression for the asymptotic average bit error probability of the

MIMO system that transmits a 4-QAM signal and is equipped with a ZF receiver. It

is a function of [Vbe]ll which, in turn, is a function of F.
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3.3 Problem Statement

Since our goal is to design coding matrix F to minimize the average asymptotic

BER given by Eq. (4.1), the optimization problem can be stated as

min
F

Pe(F)

s.t. tr(FHF) = L (3.9)

This problem is solved in following two stages:

i Minimize the lower bound of BER

ii Find the optimum code structure to achieve this lower bound

In the next chapter, we will show how to find the optimum solution following our

methodology.
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Chapter 4

Problem Reformulation

4.1 Convex Optimization Problems

4.1.1 Convex Sets

Line segment is defined as all points x between x1 and x2 such as

x = θx1 + (1− θ)x2

with 0 ≤ θ ≤ 1.

A convex set is a set C which contains line segment between any two points

in the set such as

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

Based on the definition of convex set the concepts of affine functions and convex

functions are introduced.
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4.1.2 Affine Functions

A function f : Rn → Rm is affine if it is a sum of a linear function and a constant,

i.e., if it has the form f(x) = Ax + b, where A ∈ Rm×n and b ∈ Rm. Rn stands

for n-dimension real number set. Rm×n stands for m× n-dimension real number set.

dom f represents the domain of a function, which is the set of ‘input” or argument

values for which the function is defined. Here, dom f is the set Rn.

4.1.3 Convex Functions

f : Rn → R is strictly convex if dom f is a convex set and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 < θ < 1.

After showing affine functions and convex functions, convex optimization problems

can be defined as follows.

4.1.4 Convex Optimization Problems

A convex optimization problem is one of the form [25]

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b, A ∈ Rm×n, b ∈ Rm

where f0, . . ., fm are convex functions.

The convex problem has three additional requirements:
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• the objective function f0(x) must be convex,

• the inequality constraint functions fi(x) must be convex, and

• the equality constraint functions Ax = b must be affine.

If the objective is strictly convex, then the optimal set contains at most one point.

For convex problem the local optimal set is also the global optimal set, which can

help us reduce the range of variables and the complexity. In our thesis, we will first

convert our non-convex problem to a convex problem by relaxation and then solve

the reformulated problem in following sections.

4.2 Minimize Lower Bound

From Chapter 3, we derive the averaged bit error probability

Pe(F) =
1

2L

2L∑
l=1

EH

{
Q

(√
[Vbe]

−1
ll

)}
(4.1)

This is the objective of our problem, and first we find the range of variable in which

our objective is a convex function.

The function f(x) = Q(
√
x−1) is convex in the interval 0 < x ≤ 1

3
(See B.1.3).

Therefore, the function inside the braces in Eq. (4.1) is convex when 0 < [Vbe]ll ≤
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1
3
, l = 1, . . ., 2L, applying Jensen’s inequality on our convex function, we obtain

Pe(F) ≥ EH

{
Q

(√
1

1
2L

∑2L
l=1[Vbe]ll

)}

= EH

{
Q

(√
2L

tr(Vbe)

)}

= EH

{
Q

(√
L

tr(Vse)

)}
(4.2)

which represents a lower bound for the average asymptotic BER.

Equality holds if and only if the following condition is satisfied

[Vbe]ii = [Vbe]jj, ∀i, j = 1, . . . , 2L. (4.3)

which is the first condition to minimize the lower bound.

Now our job is to minimize the lower bound in Eq. (4.2). Since function f(x) =

Q(
√
x−1) is monotonically increasing with x, to minimize Pe(F) is the same as to

minimize tr(Vse) in Eq. (4.2).

First we try to express tr(Vse) by substituting H = (IT ⊗ H)F into Eq. (3.3)

and then apply the two properties of matrix computation tr(XY) = tr(XY) and
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(Z⊗X) · (Z⊗Y) = Z⊗XY:

tr(Vse) =tr

(
M

ρ
(HHH)−1

)
= tr

(
M

ρ
(HHH)−1

)
= tr

(
M

ρ

(
(IT ⊗H)FFH(IT ⊗HH)

)−1
)

= tr

(
M

ρ

(
(IT ⊗HHH)FFH

)−1
)

= tr

(
M

ρ

(
(IT ⊗ (HHH)

1
2 )FFH(IT ⊗ (HHH)

1
2 )
)−1
)

= tr

(
M

ρ
((IT ⊗Φ)A (IT ⊗Φ))−1

)
(4.4)

where Φ = (HHH)
1
2 : M ×M and A = FFH : MT ×MT .

To facilitate the development of the proof, we first introduce the following lemma

on the trace of a matrix [26].

Lemma: For any nonsingular Hermitian symmetric positive semidefinite matrix

Z =

 Z11 Z12

Z21 Z22

 we have

tr(Z−1) ≥ tr(Z−1
11 ) + tr(Z−1

22 ) (4.5)

where equality holds if and only if Z12 = 0, i.e., if and only if Z is block diagonal.

Applying the lemma to Eq. (4.4), we have

tr(Vse) ≥
T∑
t=1

tr

(
M

ρ
(ΦAttΦ

H)−1

)
(4.6)

where Att, t = 1, . . ., T , are M ×M matrices on the diagonal of A. Now we can see
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that the matrices have been simplified.

Equality holds if and only if A is block diagonal, i.e.,

Aij = 0 for i, j = 1, . . . , T, i ̸= j. (4.7)

Also, since tr(Z−1) is convex with positive semidefinite matrix Z [25], applying

Jensen’s inequality (See B.2), we have

tr(Vse) = T · 1
T

T∑
t=1

tr

(
M

ρ
(ΦAttΦ

H)−1

)

≥ T · tr

(
M

ρ
(Φ

1

T

T∑
t=1

AttΦ
H)−1

)

= T · tr
(
M

ρ
(ΦĀΦH)−1

)

where Ā = 1
T

∑T
t=1 Att.

Equality holds if and only if all Att are equal, i.e.,

Att = Ā for t = 1, . . . , T. (4.8)

Above all, FFH = A is block diagonal and with each matrix on the diagonal is Ā,

which is the second condition to minimize the lower bound. If we define Ā = F̄F̄H ,
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the optimum code we design has the structure (See C.8)

F =



F̄ 0 · · · 0

0 F̄
...

...
. . . 0

0 · · · 0 F̄


VH

F (4.9)

where VH
F is a unitary matrix which can be generated later.

Now the problem to find the optimum F is simplified to find the optimum F̄ and

VH
F .

Therefore, substituting the lower bound of tr(Vse) into Eq. (4.2), we have

Pe(F) ≥ EH

Q

√√√√ MT

T tr
(

M
ρ
(ΦĀΦH)−1

)

 (4.10)

= EH

{
Q

(√
ρ

tr
(
(ΦĀΦH)−1

))} (4.11)

Equality in (4.10) holds when Eqs. (4.3), (4.7) and (4.8) are met simultaneously.

Next, we will simplify the matrix again to change the original matrix variable into

a single variable.

In Eq. (4.11), if we define the trace in the denominator as x, substitute Ā = F̄F̄H
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and Φ = (HHH)
1
2 into x, we obtain

x = tr
((

ΦĀΦH
)−1
)

(4.12)

= tr
((

HHHF̄F̄H
)−1
)

= tr

(((
HF̄

)H (
HF̄

))−1
)

(4.13)

In our assumption, H is a correlated channel, to simplify the problem, we will

convert this correlated channel to an i.i.d (independent and identically distributed)

channel H̃ = HΣ−1
2 (See A.3.3).

Besides, we define

F̃ = Σ
1
2 F̄ (4.14)

so that

H̃F̃ = HΣ−1
2Σ

1
2 F̄

= HF̄ (4.15)
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Substituting Eq. (4.15) into Eq. (4.12), we have

x = tr

(((
HF̄

)H (
HF̄

))−1
)

= tr

(((
H̃F̃

)H (
H̃F̃

))−1
)

= tr

((
F̃HH̃HH̃F̃

)−1
)

= tr

((
(H̃HH̃)(F̃F̃H)

)−1
)

(4.16)

So until now, the problem to find the optimum F̄ becomes to find the optimum

F̃.

We try to simplify the matrix to single variable which can make the optimization

problem easier, so that we use eigendecomposition on symmetric matrix F̃F̃
H

here:

F̃F̃
H
= VF̃DF̃V

H
F̃

(4.17)

where DF̃ is diagonal matrix with each element on the diagonal di ≥ 0, i = 1, . . .,

M , which is also one of the eigenvalues of F̃F̃
H
.
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Substitute the eigendecomposition of F̃F̃
H

into x in Eq. (4.16), we have

x = tr

((
(H̃HH̃)(F̃F̃H)

)−1
)

= tr

((
(H̃HH̃)(VF̃DF̃V

H
F̃
)
)−1
)

= tr

((
VH

F̃
H̃HH̃VF̃DF̃

)−1
)

= tr

((
(H̃VF̃ )

H(H̃VF̃ )DF̃

)−1
)

= tr

((
ĤHĤDF̃

)−1
)

=
M∑
i=1

[(ĤHĤ)−1]iid
−1
i (4.18)

where Ĥ = H̃VF̃ , and VF̃ is a M × M unitary matrix. Applying the property of

Wishart distribution again, we have ĤHĤ ∼ W(N, IM) (See A.3.3), so that Ĥ is also

an i.i.d channel now.

Substituting x into Eq. (4.11), and also applying the definition of expectation, we

have

Pe(F) ≥ EH

{
Q

(√
ρ

tr
(
(ΦĀΦH)−1

))}

= EH

{
Q

(√
ρ

x

)}
=

∫
H

p(H)Q

(√
ρ

x

)
dH

=

∫
x

p(x)Q

(√
ρ

x

)
dx

= Ex

{
Q

(√
ρ

x

)}
(4.19)
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In Section 3.2, we already know that function f(x) = Q(
√
x−1) is convex in the

interval 0 < x ≤ 1
3
, so that Q(

√
ρx−1) is convex in the interval 0 < x ≤ ρ

3
. Now the

range of x is known, in the next section, we will develop a new method to express

probability density function of x: p(x).

4.3 Probability Distribution of Variable x

To simplify the problem to calculate probability density function of x, we assume

the number of transmitter antennas M = 2 and the number of receiver antennas

N = 2, which means Ĥ is a 2× 2 matrix. Applying the QR decomposition (See C.1)

on Ĥ, we have

Ĥ = QĤRĤ

= QĤ

 r11 r12

0 r22


where QĤ is a unitary matrix meaning QH

Ĥ
QĤ = I2 and RĤ is an upper triangular

matrix with elements r11, r12, r22.
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Therefore,

ĤHĤ = RH
Ĥ
QH

Ĥ
QĤRĤ

= RH
Ĥ
RĤ

=

 r∗11 0

r∗12 r∗22


 r11 r12

0 r22


=

 |r11|2 r∗11r12

r11r
∗
12 |r12|2 + |r22|2

 (4.20)

If we define x1 = |r11|2 ≥ 0, x2 = |r22|2 ≥ 0 and x3 = |r12|2 ≥ 0, applying the

Bartlett decomposition [27], we have (See C.3),

x1 = |r11|2 ∼ χ2
4

x2 = |r22|2 ∼ χ2
2

x3 = |r12|2 ∼ χ2
2

where χ2
4 and χ2

2 are chi-square distributions (See C.2), applying the definition of

chi-square distribution, we can obtain the probability density function of x1, x2 and

x3 respectively:

p(x1) = x1e
−x1

p(x2) = e−x2

p(x3) = e−x3
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From Eq. (4.20), the determinant of matrix ĤHĤ is

det(ĤHĤ) = |r11|2(|r12|2 + |r22|2)− r∗11r12r11r
∗
12

= |r11|2|r12|2 + |r11|2|r22|2 − |r11|2|r12|2

= |r11|2|r22|2

So that the inverse of matrix ĤHĤ is

(
ĤHĤ

)−1

=
1

det(ĤHĤ)

 |r12|2 + |r22|2 −r∗11r12

−r11r
∗
12 |r11|2


=

1

|r11|2|r22|2

 |r12|2 + |r22|2 −r∗11r12

−r11r
∗
12 |r11|2


=

 |r12|2+|r22|2
|r11|2|r22|2

−r∗11r12
|r11|2|r22|2

−r11r∗12
|r11|2|r22|2

|r11|2
|r11|2|r22|2


=

 |r12|2+|r22|2
|r11|2|r22|2

−1
r11r∗12

−1
r∗11r12

1
|r22|2


Therefore, substitute this into x in Eq. (4.18), we obtain

x =
M∑
i=1

[(ĤHĤ)−1]iid
−1
i

=

(
|r22|2 + |r12|2

|r11|2|r22|2

)
d−1
1 +

1

|r22|2
d−1
2

=

(
x2 + x3

x1x2

)
d−1
1 +

1

x2

d−1
2

Because r11, r12 and r22 are independent of each other, x1, x2 and x3 are also
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independent of each other. So that we can write the probability distribution function

of x as

Fx(t) = P{x ≤ t}

= P

((
x2 + x3

x1x2

)
d−1
1 +

d−1
2

x2

≤ t

)
= P

(
x3 ≤

x1x2t− x2d
−1
1 − x1d

−1
2

d−1
1

)
=

∫
x1

∫
x2

∫
x3

p(x1)p(x2)p(x3)dx3dx2dx1 (4.21)

After calculation of the integrals (See Appendix D), we can express the distribution

function Fx(t) as

Fx(t) =

∫ ∞

0

u

t2
e−

(u+d−1
1 )(u+d−1

2 )

tu du (4.22)

where u = x1t− d−1
1

We can see that the distribution function changes according to different values of

d1 and d2, Figure 4.1 shows the distribution function Fx(t) in the case d1 = 1 and

d2 = 0.6, 0.8, 1 and 1.2.

F ′
x(t), w.r.t the first-order derivative of Fx(t), is the probability density function

of x,

p(x) = F ′
x(t)

=

∫ ∞

0

[
−2u

t3
e−

(u+d−1
1 )(u+d−1

2 )

tu +
u

t2
(u+ d−1

1 )(u+ d−1
2 )

t2u
e−

(u+d−1
1 )(u+d−1

2 )

tu

]
du (4.23)

=

∫ ∞

0

e−
(u+d−1

1 )(u+d−1
2 )

tu

(
−2u

t3
+

(u+ d−1
1 )(u+ d−1

2 )

t4

)
du (4.24)
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Figure 4.1: Distribution function of x when d1 = 1 and d2 = 0.6, 0.8, 1 and 1.2
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Figure 4.2: Probability density function of x when d1 = 1 and d2 = 0.6, 0.8, 1 and
1.2

Although the formula of p(x) looks complicated, we have checked that the integral

of p(x) approximates to one, which means the result is reasonable.

Figure 4.2 shows the probability density function p(x) in the case d1 = 1 and

d2 = 0.6, 0.8, 1 and 1.2.

For now we have solved the problem of random correlated channel. In the next

section, we will express the formula of lower bound of asymptotic average bit error

rate Pe(F).
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4.4 Reformulated Optimization Problem

As described before, to meet the requirement of convex function, we have 0 <

x ≤ ρ
3
. Substituting probability density function p(x) and trigonometric form of

Q-function (See A.5) into Eq. (4.19), we have

Pe(F) ≥ Ex

{
Q

(√
ρ

x

)}
=

∫ ρ
3

0

p(x)Q

(√
ρ

x

)
dx

=

∫ ρ
3

0

p(x)

[
1

π

∫ π
2

0

e(−
ρ

2xsin2θ
)dθ

]
dx (4.25)

We can see that there is another integral within p(x), so after complicated calcu-

lation of integrals, eventually we have following form of Pe(F) (See Appendix E):

Pe(F) ≥
∫ ∞

0

u

ρ2

[
9

2
e−

3
2
(a−1)erfc(

√
6

2
)−

√
27

2π
(a−2 + a−1)e−

3
2
a − 3

2
a−

5
2 erfc(

√
6a

2
)

]
du

(4.26)

where a =
2(u+d−1

1 )(u+d−1
2 )

ρu
+ 1 and error function erfc(x) = 2√

π

∫∞
x

e−t2dt. From eigen-

decomposition of F̃F̃
H

in Eq. (4.16), d1 and d2 are two eigenvalues of F̃F̃
H
.

Therefore, the original optimization problem in Eq. (3.9) is reformulated as

min
d1,d2

Pe(F)

s.t. tr(FHF) = L (4.27)
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In Chapter 5, we will solve this reformulated problem by minimizing the asymp-

totic formula of averaged bit error rate in Eq. (4.26).

37



Chapter 5

Diversity Analysis and Asymptotic

Formula

5.1 Diversity

In telecommunications, a diversity scheme refers to a method for improving the

reliability of a message signal by using two or more communication channels with

different characteristics. Diversity plays an important role in combatting fading and

co-channel interference. It is based on the fact that individual channels experience

different levels of fading and interference. Multiple versions of the same signal may

be transmitted and/or received and combined in the receiver.

Space diversity is one kind of diversity. The signal is transmitted over several

different propagation paths which can be achieved by antenna diversity using multiple

transmitter antennas and/or multiple receiving antennas. Diversity techniques may

exploit the multipath propagation, resulting in a diversity gain.
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5.1.1 Diversity Gain

Diversity gain, d, is defined as [28]

d = − lim
ρ→∞

logPe/logρ (5.1)

where Pe is the detection error probability and ρ is the signal to noise ratio (SNR).

Diversity gain is a concept central to code designs since it is an indication of the rate

of decay of the error probability with SNR when the SNR is high. Thus, a system

that fully utilizes the diversity advantage of MIMO channels is superior in error rate

performance at high SNR to those which do not have full diversity.

The minimum BER at high SNR can be written in asymptotic formula form in

terms of diversity gain d defined in Eq. (5.1). We concentrate on the dominant term

(the term containing the lowest order of ρ−1) in the asymptotic performance at high

SNR, i.e.,

Pe = K−1ρ−d + (terms involving higher order of ρ−1) (5.2)

where K is the coefficient often referred to as the coding gain [5]. In the next section,

we will express the asymptotic formula of bit error rate in our system, and analyze

the performance according to the formula.
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5.2 Asymptotic Formula Analysis

From Eq. (4.26), the asymptotic averaged bit error rate Pe(F) can be simplified

to an asymptotic formula which can reveal both diversity gain and coding gain as

Pe(F) = CodingGain · ρ−DiversityGain

where F is the optimum STBC to be designed and ρ is the SNR.

After complicated calculation (See Appendix F) we derive the asymptotic formula

of Eq. (4.26) which has the following form

Pe(F) = C−1(d
−1
1 + d−1

2 )ρ−1 +O(ρ−2) (5.3)

where C−1 =
3
4

√
3
2π
e−

3
2 + 43

8

√
3
2π
E1

(
3
2

)
which is positive, i.e. C−1 > 0.

From the asymptotic formula in Eq. (F.89) we can see that the diversity gain of

our 2× 2 MIMO system using zero-forcing equalizer is 1. It has been shown [29] that

the diversity gain of a MIMO system equipped with zero-forcing (ZF) receivers and

transmitting uncoded symbols is (N − M + 1). Here with our optimum code, the

diversity gain is also N −M + 1 when M = N = 2.

C−1(d
−1
1 + d−1

2 ) is the coding gain. As C−1 > 0, to minimize asymptotic error

probability Pe(F) is equivalent to minimize (d−1
1 + d−1

2 ). From Eq. (F.29), we have

d−1
1 + d−1

2 = tr

((
F̃F̃H

)−1
)
, where d1, d2 are the eigenvalues of F̃F̃H . From Eq.

(4.14), we have

F̃ = Σ
1
2 F̄ (5.4)
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Therefore, d−1
1 + d−1

2 becomes

d−1
1 + d−1

2 = tr

((
F̃F̃H

)−1
)

= tr

((
Σ

1
2 F̄F̄

H
Σ

1
2
H
)−1
)

(5.5)

= tr
((

F̄−1Σ−1F̄−H
)−1
)

(5.6)

To minimize d−1
1 + d−1

2 is equivalent to minimize tr
((

F̄−1Σ−1F̄−H
)−1
)
. As for

the power constraint,

tr(FFH) = L = 2T

⇒tr(F̄F̄H) = M = 2

So combined with Eq. (4.27), the optimization problem becomes

min
F̄

tr
((

F̄−1Σ−1F̄−H
)−1
)

s.t. tr(F̄HF̄) = 2 (5.7)

The optimization problem is exactly the same problem with [1]. This problem has

been solved in [1]

F̄opt = VΣ

√√√√ 2

tr
(
D

1
2

Σ−1

)D 1
4

Σ−1UF̄ (5.8)

where Σ−1 = VΣDΣ−1VH
Σ is an eigendecomposition of Σ−1, which is the inverse of

channel covariance matrix Σ and UF̄ is an arbitrary unitary matrix which will be
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designed in Chapter 6.

From Eq. (5.4),

F̃F̃
H
= Σ

1
2 F̄F̄

H
Σ

1
2
H

Applying eigendecomposition to F̃F̃
H
, F̄F̄

H
and covariance matrix of channels Σ,

we have

F̃F̃
H
= VF̃DF̃V

H
F̃

(5.9)

F̄F̄
H
= VF̄DF̄V

H
F̄ (5.10)

Σ = VΣDΣV
H
Σ (5.11)

where

i DF̃ is a diagonal matrix with two eigenvalues d1, d2;

ii DF̄ is a diagonal matrix with two eigenvalues p1, p2;

iii DΣ is a diagonal matrix with two eigenvalues λ1, λ2 which are known because Σ

is known.

From Eq. (5.8), eigenvectors of F̄F̄
H

should be equal to eigenvectors of Σ in Eq.

(5.9), i.e.

VF̄ = VΣ (5.12)
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Substituting Eq. (5.12) into Eq. (5.9), we obtain

F̃F̃
H
= Σ

1
2 F̄F̄

H
Σ

1
2

=VΣD
1
2
ΣV

H
ΣVF̄DF̄V

H
F̄ VΣD

1
2
ΣV

H
Σ

=VΣD
1
2
ΣDF̄D

1
2
ΣV

H
Σ (5.13)

Comparing Eq. (5.13) with Eq. (5.9), we obtain

DF̃ = DF̄DΣ (5.14)

Eigenvalues of Σ are λ1, λ2, and eigenvalues of F̄F̄
H

are p1, p2, so we have

 d1 = λ1p1

d2 = λ2p2

(5.15)

which is an important condition which will be used in Chapter 6.

From Eq. (5.8), we also get the diagonal eigenvalue matrix of F̄ is

 √
p1opt 0

0
√
p2opt

 =

√√√√ 2

tr
(
D

1
2

Σ−1

)D 1
4

Σ−1 (5.16)

where DΣ−1 is the eigenvalue matrix of Σ.

In Chapter 6, we will verify that p1opt and p2opt in Eq. (5.16) is optimum to

minimize BER.
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Chapter 6

Evaluation of Pe

6.1 Solution of Optimization Problem

From Eq. (5.16), p1opt and p2opt, the two eigenvalues of optimum F̄F̄H , satisfy

 √
p1opt 0

0
√
p2opt

 =

√√√√ 2

tr
(
D

1
2

Σ−1

)D 1
4

Σ−1 (6.1)

where DΣ−1 is the eigenvalue matrix of Σ.

In this chapter, we will verify that p1opt and p2opt are correct by evaluating averaged

bit error rate Pe in MATLAB.

In Eq. (5.7), there is a connection between eigenvalues of F̄F̄H , p1 and p2 that

p1 + p2 = 2, so we replace the variables with p by defining that

p1 = p

p2 = 2− p (6.2)
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where 0 ≤ p ≤ 2.

As for Σ, which is the covariance matrix of HHH, we adopt following exponential

correlation model [30] such that the mnth element of Σ is given by:

σmn =

 σn−m, m ≤ n

σ∗
mn, m > n

(6.3)

where σ is the correlation coefficient between any two neighboring antennas and

0 ≤ σ ≤ 1. (·)∗ denotes complex conjugate.

Therefore, in our assumption, when number of transmitter antennas M = 2, Σ is

a 2× 2 matrix which has the form of

Σ =

 1 σ

σ∗ 1

 (6.4)

when σ = 0, H is an uncorrelated channel.

The corresponding eigenvalues of Σ can be calculated (See C.7), so we have

 λ1 = 1 + |σ|

λ2 = 1− |σ|
(6.5)

If we do the eigendecomposition to the inverse of Σ, we obtain

Σ−1 = VΣ−1DΣ−1VH
Σ−1
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So that we have the eigenvalue matrix

DΣ−1 =

 1
1+|σ| 0

0 1
1−|σ|

 (6.6)

Therefore, substituting Eqs. (6.2) and (6.6) into Eq. (6.1), our optimum popt

satisfies that

 √
p 0

0
√
2− p

 =

√√√√ M

tr
(
D

1
2

Σ−1

)D 1
4

Σ−1 (6.7)

which means 
p = 2√

1
1+|σ|+

√
1

1−|σ|
×
√

1
1+|σ|

2− p = 2√
1

1+|σ|+
√

1
1−|σ|

×
√

1
1−|σ|

(6.8)

where tr
(
D

1
2

Σ−1

)
=
√

1
1+|σ| +

√
1

1−|σ| .

Next, our aim is to verify the optimum p by evaluating Pe in MATLAB satisfy

Eq. (6.8).

Substituting Eqs. (6.2) and (6.5) into Eq. (5.15), the two eigenvalues of F̃F̃
H
can

be expressed as  d1 = λ1p = (1 + |σ|)p

d2 = λ2(2− p) = (1− |σ|)(2− p)
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Referring to Eq. (4.25), the objective Pe(p) can be rewritten as

Pe(p) = Pe(p1, p2)

=

∫ ∞

0

u

ρ2

[
9

2
e−

3
2
(a−1)erfc(

√
6

2
)−

√
27

2π
(a−2 + a−1)e−

3
2
a − 3

2
a−

5
2 erfc(

√
6a

2
)

]
du

(6.9)

where

a =
2(u+ d−1

1 )(u+ d−1
2 )

ρu
+ 1

=
2(u+ ((1 + |σ|)p)−1)(u+ ((1− |σ|)(2− p))−1)

ρu
+ 1

and error function erfc(x) = 2√
π

∫∞
x

e−t2dt.

In the following, with assistance of numerical simulations in MATLAB, we set the

values of signal-to-noise ratio ρ and correlation coefficient σ to find p that minimizes

the objective function Pe(p) in each case.

6.1.1 Uncorrelated Channels

We first search for optimum p under different SNRs in uncorrelated channel, i.e.,

σ = 0. Under this condition, we sample p within the range from 0 and 2, and then for

each SNR from 1dB to 45dB, we calculate values of Pe(p) with different values of p

using MATLAB functions such as error function, integration function etc. Therefore,

for each SNR, we can find the corresponding p which renders Pe(p) smallest.

In Figure 6.1, the values of Pe(p) (BER) are shown as p changes, when SNRs are

set to different values.
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Figure 6.1: BER-p plot in uncorrelated channels case (σ = 0)
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From Figure 6.1, we can see that BER is symmetric with the symmetric axis p = 1.

And when SNR ρ < 16dB, popt = 0 or popt = 2, Pe(p) (BER) has the smallest value;

on the other hand, when SNR ρ ≥ 16dB, popt = 1, Pe(p) (BER) has the smallest

value where popt means the optimum p.

So in the uncorrelated channel case, we can draw a plot of popt to SNR as Figure 6.2
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Figure 6.2: popt-SNR plot in uncorrelated channels case (σ = 0)

If we draw a plot to see the relationship between SNR and BER when ρ ≥ 16dB

and popt = 1, we can see that as SNR goes up, BER decreases accordingly (Figure 6.3).

Therefore, in the case of uncorrelated channels, the solution is popt = 1 with

condition ρ ≥ 16dB to satisfy the conditions of convex functions as follows:
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Figure 6.3: BER-SNR plot in uncorrelated channels case (σ = 0)
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0 < [Vbe]ii = [Vbe]jj ≤
1

3
∀i, j = 1, . . . , 2L. (6.10)

6.1.2 Moderate Channel Correlation

Secondly, we search for optimum p under different SNRs in moderately correlated

channel, e.g., |σ| = 0.2 and |σ| = 0.5. Similarly, we sample p within the range from

0 and 2, and then for each SNR from 1dB to 45dB, we calculate values of Pe(p) with

different values of p using MATLAB functions such as error function, integration

function etc. Therefore, for each SNR, we can find the corresponding p which renders

Pe(p) smallest.

a) Case |σ| = 0.2:

In Figure 6.4, the values of Pe(p) (BER) are shown as p changes, when SNRs are

set to different values.

From Figure 6.4, we can see that when SNR ρ < 17dB, popt = 2, Pe(p) (BER)

has the smallest value; on the other hand, when SNR ρ ≥ 17dB, popt = 0.9, Pe(p)

(BER) has the smallest value where popt means the optimum p.

So in the moderately correlated channel |σ| = 0.2 case, we can draw a plot of popt

to SNR as Figure 6.5.

If we draw a plot to see the relationship between SNR and BER when ρ ≥ 17dB

and popt = 0.9, we can see that as SNR goes up, BER decreases accordingly

(Figure 6.6).

Therefore, in the case of moderately correlated channel where |σ| = 0.2, the so-

lution is popt = 0.9 with condition ρ ≥ 17dB to satisfy the conditions of convex
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Figure 6.4: BER-p plot in moderately correlated channels case (|σ| = 0.2)
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Figure 6.5: popt-SNR plot in moderately correlated channels case (|σ| = 0.2)

55



M.A.Sc. Thesis - Lisha Wang McMaster - Electrical Engineering

18 20 22 24 26 28 30 32 34 36 38 40
10

−5

10
−4

10
−3

10
−2

SNR(db)

B
E

R

Figure 6.6: BER-SNR plot in moderately correlated channels case (|σ| = 0.2)
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functions.

b) Case |σ| = 0.5:

In Figure 6.7, the values of Pe(p) (BER) are shown as p changes, when SNRs are

set to different values.

From Figure 6.7, we can see that when SNR ρ < 18dB, popt = 2, Pe(p) (BER) has

the smallest value; on the other hand, when SNR ρ ≥ 18dB, popt = 0.75, Pe(p)

(BER) has the smallest value where popt means the optimum p.

So in the moderately correlated channel |σ| = 0.5 case, we can draw a plot of popt

to SNR as Figure 6.8

If we draw a plot to see the relationship between SNR and BER when ρ ≥ 18dB

and popt = 0.75, we can see that as SNR goes up, BER decreases accordingly

(Figure 6.9).

Therefore, in the case of moderately correlated channel where |σ| = 0.5, the so-

lution is popt = 0.75 with condition ρ ≥ 18dB to satisfy the conditions of convex

functions

6.1.3 Higher Channel Correlation

Lastly, we search for optimum p under different SNRs in highly correlated channel,

e.g., |σ| = 0.8. Similarly, we sample p within the range from 0 and 2, and then for each

SNR from 1dB to 45dB, we calculate values of Pe(p) with different ps using MATLAB

functions such as error function, integration function etc. Therefore, for each SNR,

we can find the corresponding p which renders Pe(p) smallest. In Figure 6.10, the
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Figure 6.7: BER-p plot in moderately correlated channels case (|σ| = 0.5)
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Figure 6.8: popt-SNR plot in moderately correlated channels case (|σ| = 0.5)
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Figure 6.9: BER-SNR plot in moderately correlated channels case (|σ| = 0.5)
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values of Pe(p) (BER) are shown as p changes, when SNRs are set to different values.

From Figure 6.10, we can see that when SNR ρ < 22dB, popt = 2, Pe(p) (BER)

has the smallest value; on the other hand, when SNR ρ ≥ 22dB, popt = 0.5, Pe(p)

(BER) has the smallest value where popt means the optimum p.

So in the highly correlated channel |σ| = 0.8 case, we can draw a plot of popt to

SNR as Figure 6.11

If we draw a plot to see the relationship between SNR and BER when ρ ≥ 22dB

and popt = 0.5, we can see that as SNR goes up, BER decreases accordingly (Fig-

ure 6.12).

Therefore, in the case of highly correlated channel where |σ| = 0.8, the solution is

popt = 0.5 with condition ρ ≥ 22dB to satisfy the conditions of convex functions.

When we select the optimum popts for the four channel cases, relationship between

SNR and BER can be shown together in Figure 6.13. It is shown that the channel is

more correlated, BER is higher.

Above all, from the four cases, we can get the pair of absolute value of channel

correlation coefficient |σ| and optimum popt as follows:

|σ| popt

0 1

0.2 0.9

0.5 0.75

0.8 0.5

Substituting these values of popt and |σ| into Eq. (6.8), we find that equation is
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Figure 6.10: BER-p plot in moderately correlated channels case (|σ| = 0.8)
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Figure 6.11: popt-SNR plot in highly correlated channels case (|σ| = 0.8)
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Figure 6.12: BER-SNR plot in highly correlated channels case (|σ| = 0.8)
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Figure 6.13: BER-SNR plot in different channel cases
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exactly satisfied, which verifies the correctness of choosing popt.

Now we have solved the simplified optimization problem to choose F̄ as in Eq.

(5.7), in next section we will combine all the conditions to achieve the minimum value

of asymptotic bit error rate to find the solution of original problem in Eq. (3.9), i.e.

to find F.

6.2 Structure of Optimum Code

The structure of optimum code F should satisfy:

1. From Eq. (4.3) and condition of convex function, we have

0 < [Vbe]ii = [Vbe]jj ≤
1

3
, ∀ i, j = 1, . . . , 2L (6.11)

Vbe = E[(σ − σ̂)(σ − σ̂)H ]

=
M

ρ
[THF̂HĤHĤF̂T]−1

where 2L× 2L matrices Ĥ, F̂, T are defined as

Ĥ ,

 IT ⊗H 0

0 IT ⊗H∗

 (6.12)

F̂ ,

 F 0

0 F∗

 (6.13)
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T , 1√
2

 IL jIL

IL −jIL

 (6.14)

[Vbe]ll, l = 1, . . ., 2L, is the MSE of the lth bit of σ, which means the equalized

MSEs for each symbol must be all equal.

2. From Eq. (4.9), the optimum code we design has the structure

F =



F̄ 0 · · · 0

0 F̄
...

...
. . . 0

0 · · · 0 F̄


VH

F (6.15)

where VH
F is an arbitrary unitary matrix.

In the following conditions, we will decide F̄ and VH
F respectively.

3. As for F̄, in Eq. (5.8), we have

F̄opt = VΣ

√√√√ 2

tr
(
D

1
2

Σ−1

)D 1
4

Σ−1UF̄ (6.16)

where Σ−1 = VΣDΣ−1VH
Σ is an eigendecomposition of Σ−1, which is the inverse

of channel covariance matrix Σ and UF̄ is an arbitrary unitary matrix.

From Eq. (8.1), we can see there is still a VH
F behind block diagonal matrix, so
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we can define UF̄ as an identity matrix. Therefore,

F̄ = VΣ

√√√√ 2

tr
(
D

1
2

Σ−1

)D 1
4

Σ−1I (6.17)

4. Now we will find VH
F in Eq. (8.1).

tr(FHF) = tr


VF



F̄ 0 · · · 0

0 F̄
...

...
. . . 0

0 · · · 0 F̄



H

F̄ 0 · · · 0

0 F̄
...

...
. . . 0

0 · · · 0 F̄


VH

F



= tr





F̄HF̄ 0 · · · 0

0 F̄HF̄
...

...
. . . 0

0 · · · 0 F̄HF̄




(6.18)

From Eq. (6.17) we can derive that

F̄HF̄ =

√√√√ 2

tr
(
D

1
2

Σ−1

)D 1
4
H

Σ−1V
H
ΣVΣ

√√√√ 2

tr
(
D

1
2

Σ−1

)D 1
4

Σ−1

=
2

tr
(
D

1
2

Σ−1

)D 1
2

Σ−1 (6.19)

which is a diagonal matrix. Therefore, in Eq. (6.18), the matrix inside trace is

also diagonal.

From Chapter 2, F = [vec(C1) · · · vec(CL)] : MT ×MT , where C1, . . ., CL are
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M × T coding matrices, so we have

tr(FHF) = tr


vec(C1)

H

...

vec(CL)
H


(

vec(C1) · · · vec(CL)

)

= tr



|vec(C1)|2 0 · · · 0

0 |vec(C2)|2
...

...
. . . 0

0 · · · 0 |vec(CL)|2


where tr[CH

i Cl] = tr[vec(Ci)
Hvec(C)l] = 0 when i ̸= l. Cl is defined as trace-

orthogonal to each other.

Therefore, VH
F is a unitary matrix which can make Cl trace-orthogonal. [15]

presents an algorithm for the generation of codes possesing the trace-orthogonal

properties, which will be shown in Chapter 7.

Above all, we have got the optimum code F. In Chapter 7, we will build a

MIMO system model and generate the optimum STBC to perform some simulations

in MATLAB.
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Chapter 7

Simulation Results

7.1 Simulation Model

In the following examples, simulations were carried out for a MIMO system with

2 transmitter antennas and 2 receiver antennas transmitting symbols from a 4-QAM

constellation. For each randomly generated channel matrix H, the experiment was

carried out for different SNR, and for each SNR, was repeated 108 times with different

noise realizations. The average bit error rate (BER) was then computed for the various

values of SNR. To study the effect of antenna correlations, random realizations of

correlated channels were generated with various values of correlation coefficient σ

such that σ = 0, 0.2e0.5j, 0.5e0.5j, 0.8e0.5j, 0.999e0.5j where σ is complex.
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7.2 Optimum Code Generation

From Eq. (5.10), our optimum code has following structure:

F =



F̄ 0 · · · 0

0 F̄
...

...
. . . 0

0 · · · 0 F̄


VH

F (7.1)

where F̄ = VΣ

√
2

tr

(
D

1
2
Σ−1

)D 1
4

Σ−1I and VH
F = [vec(U1)vec(U2) · · · vec(UL)] is a unitary

matrix using following steps.

• First realign Ul, l = 1, ..., L to Umt, m = 1, ...,M and t = 1, ..., T .

• Form a T × T row permutation matrix such that

P =

 0 1

IT−1 0

 (7.2)

• Form a M ×M DFT matrix D = [d1d2 · · ·dM ] with dm being mth column.

• Final coding matrices

Umt = [diag(dm)|0]Pt−1 m = 1, ...,M ; t = 1, ..., T (7.3)
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7.3 Simulation Results

Applying the generated optimum codes on our MIMO system model, the bit error

rate corresponding to signal-to-noise ratio in different channel scenarios has been

shown in Figure 7.1. We can see that BER decreases as SNR is increasing. When

channel is more correlated, BER is higher with the same SNR. The simulation result

is the same with our numerical evaluations in Figure 6.13.
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Figure 7.1: SNR-BER when σ = 0, 0.2e0.5j, 0.5e0.5j, 0.8e0.5j
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7.4 Comparison of Optimum Code and Uncoded

System

If we put the optimum code F into identity matrix, compare the BER of un-

coded system with our optimum code system in uncorrelated channel, moderately

correlated channel and highly correlated channels. Figure 7.2 and Figure 7.3 show

the uncorrelated channel scenario and moderately correlated channel scenario respec-

tively. Figures 7.4, 7.5 and 7.6 shows that in higher correlated channels, system with

optimum code has better performance than uncoded system. We can also see that as

channel is more correlated, the advantage of our optimum code is more apparent.
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Figure 7.2: Comparison of SNR-BER when σ = 0
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Figure 7.3: Comparison of SNR-BER when σ = 0.2e0.5j
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Figure 7.4: Comparison of SNR-BER when σ = 0.5e0.5j
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Figure 7.5: Comparison of SNR-BER when σ = 0.8e0.5j
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Figure 7.6: Comparison of SNR-BER when σ = 0.999e0.5j
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In this chapter we have applied our designed optimum code to simulations, in the

last chapter we will emphasize the structure of optimum code and state the future

potential work.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis we have designed optimum Linear Space Time Block Code that

minimizes BER (4-QAM) when using Zero-Forcing receiver in both uncorrelated and

correlated MIMO channel. The original problem is restricted to a convex optimization

problem by applying the conditions of convex functions. However, the convex opti-

mization problem which needs to find the optimum matrix contains complex structure

such as Kronecker product. So we simplify it into vector form and eventually refor-

mulate it into single variable which is much simpler than the original problem. The

methodology is firstly minimize the lower bound of the objective–bit error rate and

secondly achieve the minimized lower bound by satisfying all the conditions.

For a 2 × 2 MIMO system, by deriving the asymptotic formula of bit error rate,

we find that the diversity gain is one. By theoretical analysis, numerical evaluation

and simulation results, we find the optimum STBC structure Eq. (4.9) is following :
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F =



F̄ 0 · · · 0

0 F̄
...

...
. . . 0

0 · · · 0 F̄


VH

F (8.1)

where VH
F is a DFT matrix generated according to the procedures in Chapter 6.

Besides,

F̄ = VΣ

 √
popt 0

0
√

2− popt

 (8.2)

whereVΣ is the unitary matrix from eigendecomposition of channel covariance matrix

Σ.

As for popt, we have

 √
popt 0

0
√
2− popt

 =

√√√√ M

tr
(
D

1
2

Σ−1

)D 1
4

Σ−1 (8.3)

By minimizing the asymptotic formula in Chapter 5, we have found that problem

of choosing popt is the same with optimum precoder design in known channels [1]. We

also verify that when using the popt in Eq. (8.3), bit error rate is minimized.

Therefore, the optimum space-time block code for each symbol is trace-orthogonal

to each other and power is distributed according to the The performance of optimum

code is much better than the uncoded system and as channel is more correlated, the

advantage is more apparent.

While our derivation has been performed by considering the 4-QAM modulation,
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the same technique can be extended to show that this optimum code structure is

also optimum in minimizing the average asymptotic BER for a general square QAM

signaling with 2bl bits per symbol. Here, the BER P̃e(F) for the ZF detector is closely

approximated by [31]

P̃e(F) ≈
1

2MT

2MT∑
l=1

EH

{
αlQ

(√
δl([Vbe]

−1
ll )

)
+ βlQ

(
3
√
δl([Vbe]

−1
ll )

)}
(8.4)

where αl = (2bl −1)/bl2
bl−1, βl = (2bl −2)/bl2

bl−1 and δl = (3 ·2bl)/(4bl −1). Following

a route similar to that of the optimum code of 4-QAM, we can see that the optimum

code also works for square QAM.

8.2 Future Work

As for the complexity of integrals, we only solve the problem of 2×2 MIMO system.

Expansion to general caseM×N system can be considered in the future. Futhermore,

the constellation from 4-QAM to other constellations can also be researched on, such

as M-QAM.
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Appendix A

Mathematical Knowledge

A.1 Kronecker Product

If A is an m × n matrix and B is a p × q matrix, then the Kronecker product

A⊗B is the mp× nq block matrix:

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 (A.1)
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A.2 Circular Symmetric Complex Normal Distri-

bution

If Z = X+ iY is circular complex normal, then the vector vec[XY] is multivariate

normal with covariance structureX

Y

 ∼ N
(Re µ

Im µ

 , 1
2

Re Γ − Im Γ

Im Γ Re Γ

)

where µ = E[Z] and Γ = E[ZZH ]. This is usually denoted Z ∼ CN (µ, Γ).

A.3 Wishart Distribution

A.3.1 Definition

For complex matrix H, where HN×M is CN (0, IN ⊗Σ), then HHH is said to have

the Wishart distribution with N degree of freedom and covariance matrix Σ, which

is denoted by WM(N,Σ), (N ≥ M).

The number of degrees of freedom is the number of values in the final calculation

of a statistic that are free to vary, and here degree of freedom is N .

A.3.2 Proof of HHH ∼ WM(N,Σ)

From Eq. (2.3), when H is correlated in receiver end, we have H ∼ CN (0, IN ⊗

RR), where RR = Σ. And applying the definition of wishart distribution, HHH ∼

WM(N,Σ) with degree of freedom N and covariance matrix Σ.
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A.3.3 Property

Here is a property of Wishart Distribution [23]:

For real matrix, if X ∼ W(n,Y), ZXZT ∼ W(n,ZYZT ). It can also be general-

ized to complex matrix.

In our system model, we already know that HHH ∼ W(N,Σ), if we define H̃ =

HΣ−1
2 , applying this property, we have

H̃HH̃ = Σ−1
2
H
HHHΣ−1

2

∼ W(N,Σ−1
2
H
ΣΣ−1

2 )

∼ W(N, IM)

which means H̃ is an i.i.d channel.

Besides, since Ĥ = H̃VF̃ , where VF̃ is a M ×M unitary matrix. Applying the

property of Wishart distribution again, we have

ĤHĤ = VH
F̃
H̃HH̃VF̃

∼ W(N,VH
F̃
IMVF̃ )

∼ W(N, IM)

Therefore, Ĥ is also an i.i.d channel now.

A.4 Pseudo-inverse

In mathematics, a pseudo-inverse of a matrix A is a matrix that has some prop-

erties of the inverse matrix of A but not necessarily all of them. The term ”the
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pseudo-inverse” commonly means the MoorePenrose pseudo-inverse.

The purpose of constructing a pseudo-inverse is to obtain a matrix that can serve

as the inverse in some sense for a wider class of matrices than invertible ones. Typ-

ically, the pseudo-inverse exists for an arbitrary matrix, and when a matrix has an

inverse, then its inverse and the pseudo-inverse are the same.

Assume that A has full rank, then

A N ×N Square rank(A) = N ⇒ A† = A−1

A N ×M Broad rank(A) = N ⇒ A† = AH
(
AAH

)−1

A N ×M Tall rank(A) = M ⇒ A† =
(
AHA

)−1
AH

Therefore, when H (NT ×MT ) is a tall matrix, we have

H† =
(
HHH

)−1HH

A.5 Q-Function

In statistics, the Q-function, denoted by Q(x), is the probability that a standard

normal random variable will obtain a value larger than x.

Formally, the Q-function is defined as

Q(x) =
1√
2π

∫ ∞

x

exp
(
−u2

2

)
du. (A.2)

Another form of Q-function expressed by trigonometric function is

Q(x) =
1

π

∫ π
2

0

e−
x2

2 sin2 θ dθ (A.3)
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Appendix B

Convex Optimization

B.1 First- and Second Order Conditions of Convex

Functions

B.1.1 First Order Conditions

Suppose f is differentiable (i.e., its gradient ∇f exists at each point in dom f).

Then f is convex if and only if dom f is convex and

f(y) ≥ f(x) +∇f(x)T (y − x)

holds for all x, y ∈ dom f .

Consider the case f : R → R: we show that a differentiable function f is convex

if and only if

f(y) ≥ f(x) + f ′(x)(y − x) (B.4)
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for all x and y in dom f .

B.1.2 Second Order Conditions

We now assume that f is twice differentiable, that is, its Hessian or second deriva-

tive ∇2f exists at each point in dom f . Then f is convex if and only if dom f is

convex and its Hessian is positive semidefinite: for all x ∈ dom f :

∇2f(x) ≥ 0 (B.5)

For a function f : R → R, this reduces to the simple condition f ′′(x) ≥ 0 (and

dom f convex), which means that the derivative is nondecreasing.

B.1.3 Conditions for Convex Function f(x) = Q(
√
x−1)

According to the definition of Q-function in Eq. (A.2),

f(x) = Q(
√
x−1)

=
1√
2π

∫ ∞

x− 1
2

exp

(
−t2

2

)
dt

therefore, the first-order and second-order derivatives are respectively

f ′(x) =
1

2
√
2π

exp

(
−1

2
x−1

)
x− 3

2

f ′′(x) =
1

2
√
2π

exp

(
−1

2
x−1

)
x− 5

2

(
1

2
x−1 − 3

2

)

Here it is easy to find that f ′(x) > 0 all the time, so that f(x) is monotonically
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increasing with x.

If we want f(x) to be a convex function, apply the second condition in Eq. (B.5):

• dom f is set R+, which means positive real number set and is a convex set.

• Hessian of f is positive semidefinite:

f ′′(x) ≥ 0 =⇒ 1

2
x−1 − 3

2

=⇒ 0 < x ≤ 1

3

Therefore, when 0 < x ≤ 1
3
, f(x) = Q(

√
x−1) is convex.

B.2 Jensen’s Inequality

Jensen’s inequality [25] is expressed as

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

It is easily extended to convex combinations of more than two points: If f is

convex, x1, · · · , xk ∈ dom f , and θ1, · · · , θk ≥ 0 with θ1 + · · ·+ θk = 1, then

f(θ1x1 + · · ·+ θkxk) ≤ θ1f(x1) + · · ·+ θkf(xk)

In the most general case we can take any probability measure with support in

dom f . If x is a random variable such that x ∈ domf with probability one, and f

is convex, then we have

f(Ex) ≤ Ef(x)
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provided the expectations exist. Equality holds if and only if all x selected from x

are equal.
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Appendix C

Matrix Computations

C.1 QR Decomposition

Any real square matrix X may be decomposed as

X = QXRX ,

where QX is an orthogonal matrix (its columns are orthogonal unit vectors meaning

QT
XQX = I) and RX is an upper triangular matrix (also called right triangular

matrix). If X is nonsingular, then the factorization is unique if we require that the

diagonal elements of QX are positive. This generalizes to a complex square matrix

X and a unitary matrix QX .
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C.2 Chi-Square Distribution

If Z1, ..., Zk are independent, standard normal random variables, then the sum

of their squares Q =
∑k

i=1 Z
2
i is distributed according to the chi-square distribution

with k degrees of freedom. This is usually denoted as Q ∼ χ2
k.

The chi-square distribution has one parameter k: a positive integer that specifies

the number of degrees of freedom (i.e. the number of Zis).

The probability density function (pdf) of the chi-square distribution is

f(x; k) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

where Γ(k/2) denotes the Gamma function. If n is a positive integer, we have

Γ(n) = (n− 1)!

Γ

(
1

2
+ n

)
=

(2n)!

4nn!

√
π

Γ

(
1

2
− n

)
=

(−4)nn!

(2n)!

√
π

C.3 Bartlett Decomposition

For real matrix, let X be W(n, Im), where n ≥ m, and put X = RTR, where

R is an upper triangular m × m matrix with positive diagonal elements, then the

elements rij(1 ≤ i ≤ j ≤ m) of R are all independent, r2ii is X 2
n−i+1 and rij is N (0, 1)

(1 ≤ i < j ≤ m). It can also be generalized to complex matrix.
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C.4 Probability Density Function of x1, x2, x3

Because we have ĤHĤ = RH
Ĥ
RĤ , where RH

Ĥ
is an upper triangular 2× 2 matrix

with positive diagonal elements, which satisfy the conditions of Bartlett decomposi-

tion. Therefore, we have following conclusion:

a) the elements rij(1 ≤ i ≤ j ≤ 2) of RĤ are all independent and complex numbers.

b) [Re(r11)]
2 and [Im(r11)]

2 are both X 2
2−1+1 = X 2

2 , so that applying definition of

chi-square distribution,

x1 = |r11|2 = [Re(r11)]
2 + [Im(r11)]

2 ∼ χ2
4

The probability density function of x1 is

p(x1) ∼ χ2
4

= c1x
4/2−1
1 e−x1

= c1x1e
−x1
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where c1 is a constant, to calculate c1, we use integral that

∫ ∞

0

p(x1)dx1 = 1

⇒
∫ ∞

0

c1x1e
−x1dx1 = 1

⇒c1

∫ ∞

0

−x1de
−x1 = 1

⇒− c1[x1e
−x1 |∞0 −

∫ ∞

0

e−x1dx1] = 1

⇒− c1[0 + e−x1 |∞0 ] = 1

⇒c1 = 1

Therefore, the probability density function of x1 is

p(x1) = x1e
−x1

c) [Re(r22)]
2 and Im(r22)

2 are both X 2
2−2+1 = X 1

2 , so that applying definition of chi-

square distribution,

x2 = |r22|2 = [Re(r22)]
2 + [Im(r22)]

2 ∼ χ2
2

The probability density function of x2 is

p(x2) ∼ χ2
2

= c2x
2/2−1
2 e−x2

= c2e
−x2
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where c1 is a constant, to calculate c2, we use integral that

∫ ∞

0

p(x2)dx2 = 1

⇒
∫ ∞

0

c2e
−x2dx2 = 1

⇒− c2[e
−x2 |∞0 ] = 1

⇒c2 = 1

Therefore, the probability density function of x2 is

p(x2) = e−x2

d) Re(r12) and Im(r12) are both N (0, 1) (1 ≤ i < j ≤ m), so that applying definition

of chi-square distribution,

x3 = |r12|2 = Re(r12)
2 + Im(r12)

2 ∼ χ2
2

Similar to x2, the probability density function of x3 is

p(x3) = e−x3

C.5 Eigenvalues and Eigenvectors

The eigenvectors v and eigenvalues λ are the ones satisfying

AvAi = λAivAi
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AVA = VADA

where (D)Aij = δijλAi and the columns of VA are the vectors vAi.

Assume A is symmetric, then

VAV
T
A = I

i.e. VA is orthogonal and λAi ∈ R, i.e. λAi is real.

C.6 Singular Value Decomposition

Any n×m matrix A can be written as

A = UADAV
T
A

where

UA = eigenvectors of AAT n× n

DA =
√

(diag(eig(AAT ))) n×m

VA = eigenvectors of ATA m×m

Assume A to be n× n and symmetric, then

A = VADAV
T
A

where DA is diagonal with the eigenvalues of A, and VA is orthogonal and the

eigenvectors of A. This is also called eigendecomposition.
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C.7 Eigenvalues of Σ

Σ is a 2× 2 matrix:

Σ =

 1 σ

σ∗ 1

 (C.6)

The eigenvectors vi and eigenvalues λi of Σ are the ones satisfying

Σvi = λivi

where i = 1, 2 in such case.

Therefore,

(Σ− λiI)vi = 0

⇒Σ− λiI = 0

⇒

 1− λi σ

σ∗ 1− λi

 = 0

⇒det

 1− λi σ

σ∗ 1− λi

 = 0

⇒(1− λi)(1− λi)− σσ∗ = 0

⇒(1− λi)
2 − |σ|2 = 0

⇒1− λi = ±|σ|

⇒λi = 1± |σ|
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So the two eigenvalues of Σ are

 λ1 = 1 + |σ|

λ2 = 1− |σ|

C.8 Structure of Optimum Code F

We already know that A = FFH is block diagonal and with each matrix on the

diagonal is F̄F̄
H
.

Because FFH is symmetric, applying eigendecomposition, we define

FFH = VADAV
H
A (C.7)

where VA = I and DA is block diagonal and with each matrix on the diagonal is

F̄F̄
H
.

Applying singular value decomposition on F, we define

F = UFDFV
H
F

Therefore,

FFH = UFDFV
H
F VFD

H
F U

H
F

= UFDFD
H
F U

H
F

Compared with Eq. (C.7), UF = I and DFD
H
F = DA. Therefore, DF is block

diagonal with each matrix on the diagonal is F̄.
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Above all,

F = DFV
H
F

Expressing the equation more vividly, we have

F =



F̄ 0 · · · 0

0 F̄
...

...
. . . 0

0 · · · 0 F̄


VH

F (C.8)

where VH
F is a unitary matrix which can be generated later.
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Appendix D

Calculation of Distribution

Function Fx(t)

Fx(t) = P{x ≤ t}

= P

((
x2 + x3

x1x2

)
d−1
1 +

d−1
2

x2

≤ t

)
= P

(
x3 ≤

x1x2t− x2d
−1
1 − x1d

−1
2

d−1
1

)
=

∫
x1

∫
x2

∫
x3

p(x1)p(x2)p(x3)dx3dx2dx1 (D.9)

First we find out the boundaries of variables x1, x2 and x3 respectively.
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Because we know that

x1 ≥ 0

x2 ≥ 0

0 ≤ x3 ≤
x1x2t− x2d

−1
1 − x1d

−1
2

d−1
1

t > 0

We also know that eigenvalues of F̃ F̃H have the range that

d1 ≥ 0

d2 ≥ 0

Therefore,

x1x2t− x2d
−1
1 − x1d

−1
2

d−1
1

≥ 0

⇒x1x2t− x2d
−1
1 − x1d

−1
2 ≥ 0

⇒(x1t− d−1
1 )x2 ≥ x1d

−1
2

⇒x1 ≥
d−1
1

t

x2 ≥
x1d

−1
2

x1t− d−1
1

(D.10)

(D.11)
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Substituting the boundaries of x1, x2 and x3 into Eq. (D.9), we have

Fx(t) =

∫ ∞

d−1
1
t

∫ ∞

x1d
−1
2

x1t−d−1
1

∫ x1x2t−x2d
−1
1 −x1d

−1
2

d−1
1

0

p(x1)p(x2)p(x3)dx3dx2dx1

(D.12)

We already expressed the probability density functions of x1, x2 and x3 as follows:

p(x1) = x1e
−x1

p(x2) = e−x2

p(x3) = e−x3
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Therefore,

Fx(t) =

∫ ∞

d−1
1
t

∫ ∞

x1d
−1
2

x1t−d−1
1

∫ x1x2t−x2d
−1
1 −x1d

−1
2

d−1
1

0

e−x3dx3

 e−x2dx2

(
x1e

−x1
)
dx1

=

∫ ∞

d−1
1
t

∫ ∞

x1d
−1
2

x1t−d−1
1

−e−x3

∣∣∣∣∣∣
x1x2t−x2d

−1
1 −x1d

−1
2

d−1
1

0

 e−x2dx2

(
x1e

−x1
)
dx1

=

∫ ∞

d−1
1
t

∫ ∞

x1d
−1
2

x1t−d−1
1

(
1− e

−
x1x2t−x2d

−1
1 −x1d

−1
2

d−1
1

)
e−x2dx2

(
x1e

−x1
)
dx1

=

∫ ∞

d−1
1
t

∫ ∞

x1d
−1
2

x1t−d−1
1

e−x2dx2

(
x1e

−x1
)
dx1

+

∫ ∞

d−1
1
t

∫ ∞

x1d
−1
2

x1t−d−1
1

(
−e

−
x1x2t−x1d

−1
2

d−1
1

)
dx2

(
x1e

−x1
)
dx1

=

∫ ∞

d−1
1
t

−e−x2

∣∣∣∣∣∣∞x1d
−1
2

x1t−d−1
1

(x1e
−x1
)
dx1

+

∫ ∞

d−1
1
t

d−1
1

x1t

e−x1x2t

d−1
1

∣∣∣∣∣∣∞x1d
−1
2

x1t−d−1
1

 e

x1d
−1
2

d−1
1

(
x1e

−x1
)
dx1

=

∫ ∞

d−1
1
t

e
−

x1d
−1
2

x1t−d−1
1 x1e

−x1dx1

− d−1
1

t

∫ ∞

d−1
1
t

e
−x1

(
−

d−1
2

d−1
1

+1+
tx1d

−1
2

d−1
1 (x1t−d−1

1 )

)
dx1 (D.13)

Because this integral is hard to solve, we will keep this form and simplify it by
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defining u = x1t− d−1
1 , and then we have

u = x1t− d−1
1

≥ d−1
1

t
t− d−1

1

≥ 0

We also have

x1 =
u+ d−1

1

t

dx1 =
1

t
du

Therefore, the distribution function Fx(t) becomes

Fx(t) =

∫ ∞

0

u+ d−1
1

t2
e−

(u+d−1
1 )(u+d−1

2 )

tu du−
∫ ∞

0

d−1
1

t2
e−

(u+d−1
1 )(u+d−1

2 )

tu du

=

∫ ∞

0

u

t2
e−

(u+d−1
1 )(u+d−1

2 )

tu du (D.14)
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Appendix E

Integral Calculation of Pe(F)

From Eq. (4.24), the averaged bit error rate is expressed as

Pe(F) ≥ Ex

{
Q

(√
ρ

x

)}
=

∫ ρ
3

0

p(x)Q

(√
ρ

x

)
dx (E.15)

If we let w = 1
x
, the boundary of w will be w ≥ 3

ρ
and

dx =
−1

w2
dw

We know that there is an integral of u inside p(x), therefore, after replacing the
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x with w and substituting trigonometric form of Q-function, we have

Pe(F) ≥
∫ 3

ρ

∞
p(

1

w
)Q (

√
ρw)

(
− 1

w2

)
dw (E.16)

=

∫ ∞

3
ρ

1

π

∫ π
2

0

e(−
ρw

2sin2θ
)p(

1

w
)

(
1

w2

)
dθdw

=
1

π

∫ π
2

0

∫ ∞

3
ρ

∫ ∞

0

f(u,w, θ)dudwdθ (E.17)

Now we can see in this formula there are three layers of integral altogether, so

first we must consider the order of integration.

According to Fubini’s theorem, if we have

∫ b

a

∫ d

c

|f(x, y)|dydx < ∞

Then the two integrals have same finite values, i.e.

∫ b

a

∫ d

c

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dydx

As a consequence it allows the order of integration to be changed.

To prove that we have finite integral, we have to use the upper bound of Q-

function:

Q(x) ≤ 1

2
e−

x2

2
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From Eq. (E.16), we have

Pe(F) =

∫ ∞

3
ρ

p(
1

w
)Q (

√
ρw)

(
1

w2

)
dw

≤
∫ ∞

3
ρ

p(
1

w
)
1

2
e−

ρw
2

(
1

w2

)
dw

Because p( 1
w
) is probability density function with value between 0 and 1. And e−x

also has values between 0 and 1 when x > 0. Therefore,

Pe(F) ≤
∫ ∞

3
ρ

1

2

(
1

w2

)
dw (E.18)

= − 1

2w
|∞3
ρ
=

ρ

6
< ∞ (E.19)

which means Fubini’s theorem has been satisfied, and the order of integration can be

changed freely.

So (4.25) can be written as

Pe(F) =

∫ π
2

0

∫ ∞

0

∫ ∞

3
ρ

f(u,w, θ)dwdudθ

=
1

π

∫ π
2

0

∫ ∞

0

∫ ∞

3
ρ

e
−
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]
w [

−2wu+ (u+ d−1
1 )(u+ d−1

2 )w2
]
dwdudθ

=
1

π

∫ π
2

0

∫ ∞

0

{∫ ∞

3
ρ

−2uwe
−
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]
w
dw

+

∫ ∞

3
ρ

(u+ d−1
1 )(u+ d−1

2 )w2e
−
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]
w
dw

}
dudθ (E.20)

Because we have ∫ ∞

3
ρ

bwe−awdw = e−
3a
ρ

[
3b

ρa
+

b

a2

]
(E.21)
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and ∫ ∞

3
ρ

bw2e−awdw = e−
3a
ρ

[
9b

ρ2a
+

6b

ρa2
+

2b

a3

]
(E.22)

So (E.20) becomes

Pe(F) =
1

π

∫ π
2

0

∫ ∞

0

e
− 3

ρ

[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

] −6u

ρ
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]
+

−2u[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]2 +
9(u+ d−1

1 )(u+ d−1
2 )

ρ2
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]
+

6(u+ d−1
1 )(u+ d−1

2 )

ρ
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]2 +
2(u+ d−1

1 )(u+ d−1
2 )[

(u+d−1
1 )(u+d−1

2 )

u
+ ρ

2 sin2 θ

]3
 dudθ

=
1

π

∫ π
2

0

∫ ∞

0

e
− 3

ρ

[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

] 9(u+ d−1
1 )(u+ d−1

2 )

ρ2
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]
+

 −6u

ρ
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

] + 6(u+ d−1
1 )(u+ d−1

2 )

ρ
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]2


+

 −2u[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]2 +
2(u+ d−1

1 )(u+ d−1
2 )[

(u+d−1
1 )(u+d−1

2 )

u
+ ρ

2 sin2 θ

]3

 dudθ

=
1

π

∫ π
2

0

∫ ∞

0

e
− 3

ρ

[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

] 9(u+ d−1
1 )(u+ d−1

2 )

ρ2
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2 sin2 θ

]
+

−3u
sin2 θ[

(u+d−1
1 )(u+d−1

2 )

u
+ ρ

2 sin2 θ

]2 +
−ρu
sin2 θ[

(u+d−1
1 )(u+d−1

2 )

u
+ ρ

2 sin2 θ

]3
 dudθ (E.23)

Now integration with variable w has been finished, and nextly we will integrate θ.
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If we define 1
sin2 θ

= 1 + cot2 θ, Eq. (E.23) becomes

Pe(F) =
1

π

∫ π
2

0

∫ ∞

0

e
− 3

ρ

[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2
(1+cot2 θ)

] 9(u+ d−1
1 )(u+ d−1

2 )

ρ2
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2
(1 + cot2 θ)

]
+

−3u(1 + cot2 θ)[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2
(1 + cot2 θ)

]2 +
−ρu(1 + cot2 θ)[

(u+d−1
1 )(u+d−1

2 )

u
+ ρ

2
(1 + cot2 θ)

]3
 dudθ

(E.24)

Let cot θ = t, now t is from ∞ to 0 when θ is from 0 to π
2
and we also have

dt = d cot θ

= d
cos θ

sin θ

=
− sin θ sin θ − cos θ cos θ

sin θ2
dθ

= − 1

sin θ2
dθ

= −(1 + cot2 θ)dθ

= −(1 + t2)dθ

⇒dθ = − 1

1 + t2
dt
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Therefore, substitute this into Eq. (E.24), we have

Pe(F) =
1

π

∫ ∞

0

∫ ∞

0

e
− 3

ρ

[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2
(1+t2)

] 9(u+ d−1
1 )(u+ d−1

2 )

(1 + t2)ρ2
[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2
(1 + t2)

]
+

−3u[
(u+d−1

1 )(u+d−1
2 )

u
+ ρ

2
(1 + t2)

]2 +
−ρu[

(u+d−1
1 )(u+d−1

2 )

u
+ ρ

2
(1 + t2)

]3
 dtdu

=
1

π

∫ ∞

0

e−
3
2
a

∫ ∞

0

e−
3
2
t2
[
18(u+ d−1

1 )(u+ d−1
2 )

ρ3
1

(1 + t2)(a+ t2)

− 12u

ρ2
1

(a+ t2)2
− 8u

ρ2
1

(a+ t2)3

]
dtdu

=
1

π

∫ ∞

0

e−
3
2
a


18(u+ d−1

1 )(u+ d−1
2 )

(a− 1)ρ3


∫ ∞

0

e−
3
2
t2

1 + t2
dt︸ ︷︷ ︸

A



−

∫ ∞

0

e−
3
2
t2

a+ t2
dt︸ ︷︷ ︸

B


− 12u

ρ2

∫ ∞

0

e−
3
2
t2

(a+ t2)2
dt︸ ︷︷ ︸

C

− 8u

ρ2

∫ ∞

0

e−
3
2
t2

(a+ t2)3
dt︸ ︷︷ ︸

D


 du

(E.25)

where a =
2(u+d−1

1 )(u+d−1
2 )

ρu
+ 1.

We have

A =

∫ ∞

0

e−
3
2
t2

a+ t2
dt

=
π

2
erfc(

√
6

2
)e

3
2
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B =

∫ ∞

0

e−
3
2
t2

a+ t2
dt

=
π

2
√
a
erfc(

√
6a

2
)e

3a
2

C =

∫ ∞

0

e−
3
2
t2

(a+ t2)2
dt

=
1

2a
3
2

[
1

2
π(1− 3a)e

3a
2 erfc(

1

2

√
6a) +

1

2

√
6aπ

]

D =

∫ ∞

0

e−
3
2
t2

(a+ t2)3
dt

=

√
6

12a3

[
−1

4

√
πa(−9 + 9a) +

3

8

√
6aπ(−2a+ 1 + 3a2)e

3a
2 erfc(

√
6a

2
)

]

After four separate integration and simplification, the complicated integral be-

comes:

Pe(F) =

∫ ∞

0

u

ρ2

[
9

2
e−

3
2
(a−1)erfc(

√
6

2
)−

√
27

2π
(a−2 + a−1)e−

3
2
a − 3

2
a−

5
2 erfc(

√
6a

2
)

]
du

(E.26)

where a =
2(u+d−1

1 )(u+d−1
2 )

ρu
+ 1 and error function erfc(x) = 2√

π

∫∞
x

e−m2
dm.
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Appendix F

Asymptotic Formula

From Eq. (4.25), the averaged bit error rate is expressed as

Pe(F) =

∫ ∞

0

u

ρ2

[
9

2
e−

3
2
(a−1)erfc(

√
6

2
)−

√
27

2π
(a−2 + a−1)e−

3
2
a − 3

2
a−

5
2 erfc(

√
6a

2
)

]
du

=

∫ ∞

0

u

ρ2
9

2
e−

3
2
(a−1)erfc(

√
6

2
)du︸ ︷︷ ︸

A

−
∫ ∞

0

u

ρ2

√
27

2π
a−2e−

3
2
adu︸ ︷︷ ︸

B

−
∫ ∞

0

u

ρ2

√
27

2π
a−1e−

3
2
adu︸ ︷︷ ︸

C

−
∫ ∞

0

u

ρ2
3

2
a−

5
2 erfc(

√
6a

2
)du︸ ︷︷ ︸

D

= A−B − C −D (F.27)
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where A, B, C and D are four separate integrals which will be calculated later on.

a =
2(u+ d−1

1 )(u+ d−1
2 )

ρu
+ 1

=
2u2 + (2d−1

1 + 2d−1
2 + ρ)u+ 2d−1

1 d−1
2

ρu
(F.28)

For simplification, we define

 M = d−1
1 + d−1

2

N = d−1
1 d−1

2

(F.29)

Therefore, Eq. (F.28) becomes

a =
2u2 + (2M + ρ)u+ 2N

ρu
(F.30)

and

a− 1 =
2u2 + 2Mu+ 2N

ρu
(F.31)

Now we try to calculate the four integrals A, B, C and D in Eq. (F.27) to find

the coding gain and diversity gain respectively.

a) Integral A:
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A =

∫ ∞

0

u

ρ2
9

2
e−

3
2
(a−1)erfc(

√
6

2
)du

=

∫ ∞

0

u

ρ2
9

2
e−

3
2
( 2u

2+2Mu+2N
ρu

)erfc(

√
6

2
)du

=
9

2
erfc(

√
6

2
)

∫ ∞

0

u

ρ2
e−

3u
ρ e−

3N
ρu e−

3M
ρ du

Lemma 1: Exponential Series

ex =
∞∑
n=0

xn

n!

therefore 

e−
3M
ρ = 1− 3M

ρ
+O(ρ−2)

e−
3u
ρ = 1− 3u

ρ
+O(ρ−2) 0 < u < δ

e−
3N
ρu = 1− 3N

ρu
+O(ρ−2) u > δ

when ρ → ∞.

Applying Lemma 1 on A, we have

A = [1− 3M

ρ
+O(ρ−2)]

9

2
erfc(

√
6

2
)︸ ︷︷ ︸

CONST

∫ ∞

0

u

ρ2
e−

3u
ρ e−

3N
ρu du
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Furthermore the integral part is divided into two parts A1 and A2:

∫ ∞

0

u

ρ2
e−

3u
ρ e−

3N
ρu du =

∫ δ

0

u

ρ2
e−

3u
ρ e−

3N
ρu du︸ ︷︷ ︸

A1

+

∫ ∞

δ

u

ρ2
e−

3u
ρ e−

3N
ρu du︸ ︷︷ ︸

A2

(F.32)

where δ is a trivial number 0 < δ ≤ 1.

Applying Lemma 1 on A1, we obtain

A1 =

∫ δ

0

(
1− 3u

ρ
+O(ρ−2)

)
u

ρ2
e−

3N
ρu du

=

∫ δ

0

(
1− 3u

ρ

)
u

ρ2
e−

3N
ρu du+O(ρ−2)

Replace u with t = 3N
ρu
, so that u = 3N

ρt
and du = 3N

ρ
(−1/t2)dt, A1 changes into

A1 =

∫ δ

0

(
1− 3u

ρ

)
u

ρ2
e−

3N
ρu du+O(ρ−2)

=

∫ ∞

3N
ρδ

(
1− 9N

ρ2t

)
3N

ρ3t

3N

ρt2
e−tdt+O(ρ−2)

=

∫ ∞

3N
ρδ

9N2

ρ4t3
e−tdt︸ ︷︷ ︸

A11

−
∫ ∞

3N
ρδ

81N3

ρ6t4
e−tdt︸ ︷︷ ︸

A12

+O(ρ−2) (F.33)

Lemma 2: Integration by Parts

∫
u dv = uv −

∫
v du
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Especially,

∫
e−t

tn
dt =

∫
e−tdt−(n−1)

= − 1

n− 1

(
e−t

tn−1
−
∫

t−(n−1)de−t

)
= − 1

n− 1

(
e−t

tn−1
+

∫
t−(n−1)e−td

)
= O

((
t−1
)n−1

)
(F.34)

Applying Lemma 2 on A11 where n = 3 in Eq. (F.34), we obtain

A11 =
9N2

ρ4

∫ ∞

3N
ρδ

t−3e−tdt

=
9N2

ρ4
O

((
3N

ρδ

−1)2
)

= O(ρ−2)

Similarly, applying Lemma 2 on A12 where n = 4

A12 =

∫ ∞

3N
ρδ

81N3

ρ6t4
e−tdt

=
81N3

ρ6
O

((
3N

ρδ

−1)3
)

= O(ρ−3)
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Above all, substitute A11 and A12 back to A1 in Eq.

A1 = O(ρ−2) (F.35)

Applying Lemma 1 on A2, we have

A2 =

∫ ∞

δ

(
1− 3N

ρu
+O(ρ−2)

)
u

ρ2
e−

3u
ρ du

=

∫ ∞

δ

(
1− 3N

ρu

)
u

ρ2
e−

3u
ρ du+O(ρ−2)

Replace u with t = 3u
ρ
, so that u = ρt

3
and du = ρ

3
dt, A2 changes into

A2 =

∫ ∞

δ

(
1− 3N

ρu

)
u

ρ2
e−

3u
ρ du+O(ρ−2)

=

∫ ∞

3δ
ρ

t

9
e−tdt︸ ︷︷ ︸

A21

−
∫ ∞

3δ
ρ

9N

ρ2t

t

9
e−tdt︸ ︷︷ ︸

A22

+O(ρ−2) (F.36)

Lemma 3 Applying integration by parts,

∫
tne−tdt = −

∫
tnde−t

= −
(
tne−t −

∫
e−tdtn

)
= −

(
tne−t −

∫
ntn−1e−td

)
= O (tn) (F.37)
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Applying Lemma 3 on A21 where n = 1 in Eq. (F.37),

A21 =

∫ ∞

3δ
ρ

t

9
e−tdt

= −1

9

[
te−t

∣∣∣∞3δ
ρ

−
∫ ∞

3δ
ρ

e−tdt

]

= −1

9

[
0− 3δ

ρ
e−

3δ
ρ + e−t

∣∣∣∞3δ
ρ

]
= −1

9

[
−3δ

ρ
e−

3δ
ρ − e−

3δ
ρ

]
=

[
δ

3ρ
+

1

9

]
e−

3δ
ρ

Applying Lemma 1,

A21 =

[
δ

3ρ
+

1

9

] [
1− 3δ

ρ
+O(ρ−2)

]
=

[
δ

3ρ
+

1

9

] [
1− 3δ

ρ

]
+O(ρ−2)

=
δ

3ρ
+

1

9
− 1

9

3δ

ρ
+O(ρ−2)

=
1

9
+O(ρ−2)

Similarly,

A22 =

∫ ∞

3δ
ρ

N

ρ2
e−tdt

= −N

ρ2
e−t
∣∣∣∞3δ

ρ

=
N

ρ2
e−

3δ
ρ
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Using Lemma 1, A22 becomes

A22 =
N

ρ2

[
1− 3δ

ρ
+O(ρ−2)

]
= O(ρ−2)

Substituting A21 and A22 back into A2 in Eq. (F.36), we have

A2 =
1

9
+O(ρ−2) (F.38)

Above all, substituting Eqs. (F.35) and (F.38) into Eq. (F.32),

A =

(
1− 3M

ρ

)
9

2
erfc(

√
6

2
)

[
1

9
+O(ρ−2)

]
+O(ρ−2)

=
9

2
erfc(

√
6

2
)

[
1

9
− M

3ρ
+O(ρ−2)

]
+O(ρ−2)

=
1

2
erfc(

√
6

2
)− 3M

2
erfc(

√
6

2
)ρ−1 +O(ρ−2) (F.39)

b) Integral B:

B =

∫ ∞

0

u

ρ2

√
27

2π
a−2e−

3
2
adu

=

√
27

2π
e−

3
2︸ ︷︷ ︸

CONST

∫ ∞

0

u

ρ2
a−2e−

3
2
(a−1)du

=

√
27

2π
e−

3
2︸ ︷︷ ︸

CONST

∫ ∞

0

u

ρ2
ρ2u2

(2u2 + (2M + ρ)u+ 2N)2
e−

3u
ρ e−

3N
ρu e−

3M
ρ du
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where a = 2u2+(2M+ρ)u+2N
ρu

.

Applying Lemma 1 on B and divide B into two parts B1 and B2, it becomes

B =

√
27

2π
e−

3
2

[
1− 3M

ρ

]
︸ ︷︷ ︸

CONST



∫ δ

0

[
1− 3u

ρ

]
u

ρ2
ρ2u2

(2u2 + (2M + ρ)u+ 2N)2
e−

3N
ρu du︸ ︷︷ ︸

B1



+


∫ ∞

δ

[
1− 3N

ρu

]
u

ρ2
ρ2u2

(2u2 + (2M + ρ)u+ 2N)2
e−

3u
ρ du︸ ︷︷ ︸

B2


+O(ρ−2) (F.40)

Divide B1 into two parts B11 and B12,

B1 =

∫ δ

0

(
1− 3u

ρ

)
u

ρ2
ρ2u2

(2u2 + (2M + ρ)u+ 2N)2
e−

3N
ρu du (F.41)

=

∫ δ

0

u3

(2u2 + (2M + ρ)u+ 2N)2
e−

3N
ρu du︸ ︷︷ ︸

B11

−
∫ δ

0

3u4

ρ(2u2 + (2M + ρ)u+ 2N)2
e−

3N
ρu du︸ ︷︷ ︸

B12

(F.42)

Replace u with t = 3N
ρu

in B11 and B12, so that u = 3N
ρt

and du = 3N
ρ
(−1/t2)dt. So
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B11 changes into

B11 =

∫ ∞

3N
ρδ

27N3

ρ3t3

(18N
2

ρ2t2
+ (2M + ρ)3N

ρt
+ 2N)2

e−t3N

ρ
(1/t2)dt

= 81N2

∫ ∞

3N
ρδ

1
ρ4t5

(18N
ρ2t2

+ 6M
ρt

+ 3
t
+ 2)2

e−tdt

= 81N2

∫ ∞

3N
ρδ

1
t

(18N + 6Mρt+ 3ρ2t+ 2ρ2t2)2
e−tdt

= 81N2

∫ ∞

3N
ρδ

O(ρ−4)t−1e−tdt

= O(ρ−4)

Similarly,

B12 =

∫ ∞

3N
ρδ

381N4

ρ4t4

ρ(18N
2

ρ2t2
+ (2M + ρ)3N

ρt
+ 2N)2

e−t3N

ρ
(1/t2)dt

= 9× 81N3

∫ ∞

3N
ρδ

1
ρ5t6

(18N
ρ2t2

+ 6M
ρt

+ 3
t
+ 2)2

e−tdt

= 9× 81N3

∫ ∞

3N
ρδ

1
ρt2

(18N + 6Mρt+ 3ρ2t+ 2ρ2t2)2
e−tdt

= 9× 81N3

∫ ∞

3N
ρδ

O(ρ−2)t−2e−tdt

= O(ρ−2)

Substituting B11 and B12 back into B1 in Eq. (F.41), we obtain

B1 = O(ρ−2) (F.43)
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We also divide B2 into two parts,

B2 =

∫ ∞

δ

(
1− 3N

ρu

)
u

ρ2
ρ2u2

(2u2 + (2M + ρ)u+ 2N)2
e−

3u
ρ du

=

∫ ∞

δ

u3

(2u2 + (2M + ρ)u+ 2N)2
e−

3u
ρ du︸ ︷︷ ︸

B21

−
∫ ∞

δ

3Nu2

ρ(2u2 + (2M + ρ)u+ 2N)2
e−

3u
ρ du︸ ︷︷ ︸

B22

(F.44)

Replace u with t = 3u
ρ

in B21 and B22, so that u = ρt
3
and du = ρ

3
dt, B21 changes

into

B21 =

∫ ∞

3δ
ρ

(
ρt
3

)3
(2
(
ρt
3

)2
+ (2M + ρ)

(
ρt
3

)
+ 2N)2

ρ

3
e−tdt

=

∫ ∞

3δ
ρ

(
ρ4t3

81

)
(2ρ

2t2

9
+ ρ2t

3
+ 2Mtρ

3
+ 2N)2

e−tdt

=

∫ ∞

3δ
ρ

ρ4t3

(2ρ2t2 + 3ρ2t+ 6Mtρ+ 18N)2
e−tdt (F.45)

Lemma 4

ρm

anρn + an−1ρn−1 + · · ·+ a0ρ0

=
ρm

anρn + an−1ρn−1 + · · ·+ a0ρ0
− ρm

anρn + an−1ρn−1 + · · ·+ aqρq

+
ρm

anρn + an−1ρn−1 + · · ·+ aqρq

=
ρm(aq−1ρ

q−1 + · · ·+ a0ρ
0)

O(ρ2n)
+

ρm

anρn + an−1ρn−1 + · · ·+ aqρq

=O
(
ρm+q−1−2n

)
+

ρm

anρn + an−1ρn−1 + · · ·+ aqρq
(F.46)
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Applying Lemma 4 on the long polynomial within the integral in Eq. (F.45).

According to Eq. (F.46), we have m = n = 4, and we are intended to have O(ρ−2)

term, which means m+ q − 1− 2n = −2, therefore, q = 3.

ρ4t3

(2ρ2t2 + 3ρ2t+ 6Mtρ+ 18N)2

=
ρ4t3

4ρ4t4 + 4ρ2(3ρ2 + 6Mρ)t3 + [(3ρ2 + 6Mρ)2 + 72Nρ2]t2 + 36(3ρ2 + 6Mρ)t+ 182N2

=
ρ4t3

4ρ4t4 + 4ρ2(3ρ2 + 6Mρ)t3 + 9ρ4t2 + 36Mρ3t2
+

ρ4O(ρ2)

O(ρ8)

=
ρt

4ρt2 + 4(3ρ+ 6M)t+ 9ρ+ 36M
+O(ρ−2) (F.47)

Simplify Eq. (F.47) with partial fraction, it becomes

t

4
(
t2 + (3ρ+6M)t

ρ
+ 9ρ+36M

4ρ

) +O(ρ−2)

=
t

4

[(
t+ (3ρ+6M)

2ρ

)2
−
(

3M
ρ

)2] +O(ρ−2)

=
t

4
(
t+ (3ρ+12M)

2ρ

) (
t+ 3

2

) +O(ρ−2)

=
ρ

24M

[
t

t+ 3
2

− t

t+ (3ρ+12M)
2ρ

]
+O(ρ−2)

=
ρ

24M

[
−

3
2

t+ 3
2

+

(3ρ+12M)
2ρ

t+ (3ρ+12M)
2ρ

]
+O(ρ−2) (F.48)

Lemma 5: Binomial Series

In mathematics, the binomial series is the Taylor series at x = 0 of the function f
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given by f(x) = (1+x)α, where α ∈ C is an arbitrary complex number. Explicitly,

(1 + x)α =
∞∑
k=0

(
α

k

)
xk

= 1 + αx+
α(α− 1)

2!
x2 + · · · , (F.49)

Therefore,

1

a0 +
a1
ρ

=
1

a0(1 +
a1
a0ρ

)

=
1

a0

(
1− a1

a0ρ
+O(ρ−2)

)
(F.50)

Lemma 6: Taylor Series of Natural Logarithm

ln(1 + x) =
∞∑
n=1

(−1)n+1

n
xn = x− x2

2
+

x3

3
− · · · for |x| ≤ 1 (F.51)

Lemma 7

∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt

=

∫ ∞

0

1

t+ 3/2
e−tdt−

∫ 3δ
ρ

0

1

t+ 3/2
e−tdt

=

∫ ∞

0

1

t+ 3/2
e−tdt−

(
−3δ

ρ
+

5

2
ln(t+

3

2
)

∣∣∣∣ 3δρ0 )
=

∫ ∞

0

1

t+ 3/2
e−tdt−

(
−3δ

ρ
+

5

2
ln(1 +

2δ

ρ
)

)
(F.52)
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Applying Lemma 6 on natural logarithm, we obtain

ln(1 +
2δ

ρ
) = 1 +

2δ

ρ
+O(ρ−2)

when ρ → ∞.

Therefore, Eq. (F.52) becomes

∫ ∞

0

1

t+ 3/2
e−tdt−

(
−3δ

ρ
+

5δ

ρ

)
=

∫ ∞

0

1

t+ 3/2
e−tdt− 2δ

ρ

Substituting Eq. (F.48) into Eq. (F.45), and applying Eq. (F.50) in Lemma 5,

we obtain

B21 =
ρ

24M

{∫ ∞

3δ
ρ

−3
2

t+ 3/2
e−tdt+

∫ ∞

3δ
ρ

(3ρ+ 12M)

2ρ

[
−6M/ρ

(t+ 3/2)2
+

1

t+ 3/2

]
e−tdt

}

=
ρ

24M

{∫ ∞

3δ
ρ

6M
ρ

t+ 3/2
e−tdt+

∫ ∞

3δ
ρ

(3ρ+ 12M)

2ρ

−6M/ρ

(t+ 3/2)2
e−tdt

}

=
1

4

{∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt−

∫ ∞

3δ
ρ

(3ρ+ 12M)

2ρ

1

(t+ 3/2)2
e−tdt

}

Applying Lemma 2, in Eq. (F.34), n = 2, therefore, B21 becomes

B21 =
1

4

{∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt+

(3ρ+ 12M)

2ρ

[
− e−

3δ
ρ

3δ
ρ
+ 3

2

+

∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt

]}
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Applying Lemma 1,

e−
3δ
ρ = 1− 3δ

ρ
+O(ρ−2) (F.53)

Applying Eq. (F.50) in Lemma 5,

1
3δ
ρ
+ 3

2

=
2

3

(
1− 3δ

ρ
/
3

2
+O(ρ−2)

)
(F.54)

=
2

3

(
1− 2δ

ρ

)
+O(ρ−2) (F.55)

Substituting Eqs. (F.53) and (F.62) into B21, it becomes

B21 =
1

4

{∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt+

(3ρ+ 12M)

2ρ

[
−2

3

(
1− 2δ

ρ

)(
1− 3δ

ρ

)
+

∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt

]}

= −1

4
+

5δ

4ρ
− M

ρ
+

(
5

8
+

3M

2ρ

)∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt

Substituting Lemma 7 into B21, we have

B21 = −1

4
+

5δ

4ρ
− M

ρ
+

(
5

8
+

3M

2ρ

)(∫ ∞

0

1

t+ 3/2
e−tdt− 2

ρ

)
= −1

4
− M

ρ
+

(
5

8
+

3M

2ρ

)∫ ∞

0

1

t+ 3/2
e−tdt (F.56)
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B22 =

∫ ∞

3δ
ρ

3N
(
ρt
3

)2
ρ(2
(
ρt
3

)2
+ (2M + ρ)

(
ρt
3

)
+ 2N)2

ρ

3
e−tdt

=

∫ ∞

3δ
ρ

N
(

ρ2t2

9

)
(2ρ

2t2

9
+ ρ2t

3
+ 2Mtρ

3
+ 2N)2

e−tdt

=

∫ ∞

3δ
ρ

9Nρ2t2

(2ρ2t2 + 3ρ2t+ 6Mtρ+ 18N)2
e−tdt

=

∫ ∞

3δ
ρ

O(ρ−2)e−tdt

= O(ρ−2) (F.57)

Substituting Eqs. (F.56) and (F.57) back into B2 in Eq. (F.44), we obtain

B2 = −1

4
− M

ρ
+

(
5

8
+

3M

2ρ

)∫ ∞

0

1

t+ 3/2
e−tdt+O(ρ−2) (F.58)

Above all, Eqs. (F.43) and (F.58) back into B in Eq. (F.40), we obtain

B =

√
27

2π
e−

3
2

[
1− 3M

ρ

]{
−1

4
− M

ρ
+

(
5

8
+

3M

2ρ

)∫ ∞

0

1

t+ 3/2
e−tdt+O(ρ−2)

}
+O(ρ−2)

=

√
27

2π
e−

3
2

[
−1

4
+

5

8

∫ ∞

0

1

t+ 3/2
e−tdt+

(
−M

4
− 3M

8

∫ ∞

0

1

t+ 3/2
t−2e−tdt

)
ρ−1

]
+O(ρ−2) (F.59)

c) Integral C:
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Similarly with B,

C =

∫ ∞

0

u

ρ2

√
27

2π
a−1e−

3
2
adu

=

√
27

2π
e−

3
2︸ ︷︷ ︸

CONST

∫ ∞

0

u

ρ2
a−1e−

3
2
(a−1)du

=

√
27

2π
e−

3
2︸ ︷︷ ︸

CONST

∫ ∞

0

u

ρ2
a−1e−

3
2
(a−1)du

=

√
27

2π
e−

3
2︸ ︷︷ ︸

CONST

∫ ∞

0

u

ρ2
ρu

(2u2 + (2M + ρ)u+ 2N)
e−

3u
ρ e−

3N
ρu e−

3M
ρ du

Applying Lemma 1 on C, it becomes

√
27

2π
e−

3
2

[
1− 3M

ρ

]
︸ ︷︷ ︸

CONST



∫ δ

0

(
1− 3u

ρ

)
u

ρ2
ρu

(2u2 + (2M + ρ)u+ 2N)
e−

3N
ρu du︸ ︷︷ ︸

C1



+


∫ ∞

δ

(
1− 3N

ρu

)
u

ρ2
ρu

(2u2 + (2M + ρ)u+ 2N)
e−

3u
ρ du︸ ︷︷ ︸

C2


 (F.60)

Divide C1 into two parts,

C1 =

∫ δ

0

(
1− 3u

ρ

)
u

ρ2
ρu

(2u2 + (2M + ρ)u+ 2N)
e−

3N
ρu du

=

∫ δ

0

u2

ρ(2u2 + (2M + ρ)u+ 2N)
e−

3N
ρu du︸ ︷︷ ︸

C11

−
∫ δ

0

3u3

ρ2(2u2 + (2M + ρ)u+ 2N)
e−

3N
ρu du︸ ︷︷ ︸

C12

Replace u with t = 3N
ρu

in C11 and C12, so that u = 3N
ρt

and du = 3N
ρ
(−1/t2)dt. So
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C11 changes into

C11 =

∫ ∞

3N
ρδ

9N2

ρ3t2

(18N
2

ρ2t2
+ (2M + ρ)3N

ρt
+ 2N)

e−t3N

ρ
(1/t2)dt

= 27N2

∫ ∞

3N
ρδ

1
ρ4t4

(18N
ρ2t2

+ 6M
ρt

+ 3
t
+ 2)

e−tdt

= 27N2

∫ ∞

3N
ρδ

1

18Nρ2t2 + 6Mρ3t3 + 3ρ4t3 + 2ρ4t4
e−tdt

= 27N2

∫ ∞

3N
ρδ

t−2O(ρ−2)e−tdt

= O(ρ−2)

In the same way,

C12 =

∫ ∞

3N
ρδ

81N3

ρ5t3

(18N
2

ρ2t2
+ (2M + ρ)3N

ρt
+ 2N)

e−t3N

ρ
(1/t2)dt

= 81N3

∫ ∞

3N
ρδ

1
ρ6t5

(18N
ρ2t2

+ 6M
ρt

+ 3
t
+ 2)

e−tdt

= 81N3

∫ ∞

3N
ρδ

1

18Nρ4t3 + 6Mρ5t4 + 3ρ6t4 + 2ρ6t5
e−tdt

= 81N2

∫ ∞

3N
ρδ

O(ρ−4)t−3e−tdt

= O(ρ−4)

Therefore, we can acquire that

C1 = O(ρ−2) (F.61)
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Divide C2 into two parts,

C2 =

∫ ∞

δ

(
1− 3N

ρu

)
u

ρ2
ρu

(2u2 + (2M + ρ)u+ 2N)
e−

3u
ρ du

=

∫ ∞

δ

u2

ρ(2u2 + (2M + ρ)u+ 2N)
e−

3u
ρ du︸ ︷︷ ︸

C21

−
∫ ∞

δ

3Nu

ρ2(2u2 + (2M + ρ)u+ 2N)
e−

3u
ρ du︸ ︷︷ ︸

C21

(F.62)

Replace u with t = 3u
ρ

in C21 and C22, so that u = ρt
3
and du = ρ

3
dt, C21 changes

into

C21 =

∫ ∞

3δ
ρ

(
ρt
3

)2
ρ(2
(
ρt
3

)2
+ (2M + ρ)

(
ρt
3

)
+ 2N)

ρ

3
e−tdt

=

∫ ∞

3δ
ρ

ρ2t2

27
2ρ2t2

9
+ ρ2t

3
+ 2Mtρ

3
+ 2N

e−tdt

=

∫ ∞

3δ
ρ

ρ2t2

(6t2 + 9t)ρ2 + 18Mtρ+ 54N
e−tdt

Applying Lemma 4 on the long polynomial within the integral in Eq. (F.45).

According to Eq. (F.46), we have m = n = 2, and we are intended to have O(ρ−2)
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term, which means m+ q − 1− 2n = −2, therefore, q = 1.

C21 =

∫ ∞

3δ
ρ

[
ρ2t2

6ρ2t2 + 9ρ2t+ 18Mtρ
+O(ρ−2)

]
e−tdt

=

∫ ∞

3δ
ρ

ρt

6ρt+ 9ρ+ 18M
e−tdt+O(ρ−2)

=
1

6

∫ ∞

3δ
ρ

t

t+ 3ρ+6M
2ρ

e−tdt+O(ρ−2)

=
1

6

∫ ∞

3δ
ρ

[
1−

3ρ+6M
2ρ

t+ 3ρ+6M
2ρ

]
e−tdt+O(ρ−2)

Applying Lemma 5 on C21,

C21 =
1

6

[
e−( 3δ

ρ
) − 3ρ+ 6M

2ρ

∫ ∞

3δ
ρ

(
−3M

ρ
(t+ 3/2)−2 +

1

t+ 3/2

)
e−tdt

]
+O(ρ−2)

=
1

6

[
1− 3δ

ρ
−
(
3

2
+

3M

ρ

)[
−3M

ρ

e−
3δ
ρ

3δ
2
+ 3

ρ

+

(
3M

ρ
+ 1

)∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt

]]
+O(ρ−2)

Substituting Eqs. (F.53) and (F.62) into C21, it becomes

C21 =
1

6

[
1− 3δ

ρ
−
(
3

2
+

3M

ρ

)[
−3M

ρ

(
−2

3

)(
1− 2δ

ρ

)(
1− 3δ

ρ

)
+

(
3M

ρ
+ 1

)∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt

]]

=
1

6

[
1− 3δ

ρ
+

3M

ρ
−
(
3

2
+

15M

2ρ

)(∫ ∞

3δ
ρ

1

t+ 3/2
e−tdt

)]
+O(ρ−2)
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Substituting Lemma 7 into C21,

C21 =
1

6

[
1− 3δ

ρ
+

3M

ρ
−
(
3

2
+

15M

2ρ

)(∫ ∞

0

1

t+ 3/2
e−tdt− 2δ

ρ

)]
+O(ρ−2)

=
1

6
− 1

4

∫ ∞

0

1

t+ 3/2
e−tdt+

M

2ρ
− 5M

4ρ

∫ ∞

0

1

t+ 3/2
e−tdt+O(ρ−2)

C22 =

∫ ∞

3δ
ρ

3N
(
ρt
3

)
ρ2(2

(
ρt
3

)2
+ (2M + ρ)

(
ρt
3

)
+ 2N)

ρ

3
e−tdt

=

∫ ∞

3δ
ρ

Nt
3

2ρ2t2

9
+ ρ2t

3
+ 2Mtρ

3
+ 2N

e−tdt

=

∫ ∞

3δ
ρ

3Nt

(2t2 + 3t)ρ2 + 6Mtρ+ 18N
e−tdt

=

∫ ∞

3δ
ρ

O(ρ−2)t−1e−tdt

= O(ρ−2)

Therefore, substituting C21 and C22 back into C2 in Eq. (F.62), we obtain

C2 =
1

6
− 1

4

∫ ∞

0

1

t+ 3/2
e−tdt+

M

2ρ
− 5M

4ρ

∫ ∞

0

1

t+ 3/2
e−tdt+O(ρ−2) (F.63)

Above all, substituting Eqs. (F.61) and (F.63) back into C2 in Eq. (F.60), we
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obtain

C =

√
27

2π
e−

3
2

(
1− 3M

ρ

)[
1

6
− 1

4

∫ ∞

0

1

t+ 3/2
e−tdt+

M

2ρ
− 5M

4ρ

∫ ∞

0

1

t+ 3/2
e−tdt+O(ρ−2)

]
=

√
27

2π
e−

3
2

[
1

6
− 1

4

∫ ∞

0

1

t+ 3/2
e−tdt− 5M

4

∫ ∞

0

1

t+ 3/2
e−tdtρ−1 +O(ρ−2)

]
(F.64)

d) Integral D:

D =

∫ ∞

0

u

ρ2
3

2
a−

5
2 erfc(

√
6a

2
)du (F.65)

First we convert error function into Q function,

Q(x) =
1

2
erfc

(
x√
2

)
=

1

π

∫ π
2

0

e−
x2

2 sin2 θ dθ

Nextly we express Q function in trigonometric form,

erfc(

√
6a

2
) = 2Q(

√
3a)

=
2

π

∫ π
2

0

e−
3a

2 sin2 θ dθ

=
2

π

∫ π
2

0

e−
3a(1+cot2 θ)

2 dθ (F.66)
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If we replace cot θ with b, we have db = −(1 + cot2 θ)dθ, Eq. (F.66) becomes

erfc(

√
6a

2
) =

2

π

∫ ∞

0

e−
3a(1+b2)

2

1 + b2
db (F.67)

Therefore, substituting Eq. (F.67) into Eq. (F.68),

D =

∫ ∞

0

u

ρ2
3

2
a−

5
2
2

π

∫ ∞

0

e−
3a(1+b2)

2

1 + b2
dbdu

=
3

π

∫ ∞

0

1

1 + b2

[∫ ∞

0

u

ρ2
a−

5
2 e−

3a(1+b2)
2 du

]
db

=
3

π

∫ ∞

0

1

1 + b2
e−

3(1+b2)
2

∫ ∞

0

u

ρ2
a−

5
2 e−

3(a−1)(1+b2)
2 du︸ ︷︷ ︸

D0

 db (F.68)

Applying Lemma 1 on D0 and defining c = 3(1 + b2), we obtain

D0 =

∫ ∞

0

u

ρ2
a−

5
2 e−

c(a−1)
2 du

=

∫ ∞

0

(
1− cM

ρ

)√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cu
ρ e−

cN
ρu du

=

(
1− cM

ρ

)∫ δ

0

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cu
ρ e−

cN
ρu du︸ ︷︷ ︸

D1

+

(
1− cM

ρ

)∫ ∞

δ

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cu
ρ e−

cN
ρu du︸ ︷︷ ︸

D2

(F.69)
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Applying Lemma 1 on D1,

D1 =

∫ δ

0

(
1− cu

ρ

)√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cN
ρu du

=

∫ δ

0

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cN
ρu du︸ ︷︷ ︸

D11

−
∫ δ

0

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
cu

ρ
e−

cN
ρu du︸ ︷︷ ︸

D12

Replace u with t = cN
ρu

in D11 and D12, so that u = cN
ρt

and du = cN
ρ
(−1/t2)dt. So

D11 changes into

D11 =

∫ δ

0

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cN
ρu du

=

∫ ∞

cN
ρδ

√√√√ ( cN
ρt
)7ρ

(2( cN
ρt
)2 + (2M + ρ)( cN

ρt
) + 2N)5

e−t cN

ρ
(1/t2)dt

=

∫ ∞

cN
ρδ

√
(cN)9ρ2

t(2(cN)2 + (2M + ρ)cNρt+ 2Nρ2t2)5
e−tdt

=

∫ ∞

cN
ρδ

O(ρ−4)e−tdt

= O(ρ−4)
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With the same replacement, D12 becomes

D12 =

∫ δ

0

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cN
ρu
cu

ρ
du

=

∫ ∞

cN
ρδ

√√√√ ( cN
ρt
)7ρ

(2( cN
ρt
)2 + (2M + ρ)( cN

ρt
) + 2N)5

e−t c
2N

ρ2t

cN

ρ
(1/t2)dt

=

∫ ∞

cN
ρδ

√
c2

c(cN)10

ρ2t2t(2(cN)2 + (2M + ρ)cNρt+ 2Nρ2t2)5
e−tdt

=

∫ ∞

cN
ρδ

O(ρ−6)e−tdt

= O(ρ−6)

Therefore,

D1 = O(ρ−4) (F.70)

Also applying lemma 1 to D2,

D2 =

∫ ∞

δ

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cu
ρ e−

cN
ρu du

=

∫ ∞

δ

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cu
ρ (1− cN

ρu
)du

=

∫ ∞

δ

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

c
ρdu︸ ︷︷ ︸

D21

−
∫ ∞

δ

cN

ρu

√
u7ρ

(2u2 + (2M + ρ)u+ 2N)5
e−

cu
ρ du︸ ︷︷ ︸

D22

(F.71)
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Replace u with t = cu
ρ
in D21 and D22, so that u = ρt

c
and du = ρ

c
dt, D21 changes

into

D21 =

∫ ∞

cδ
ρ

√
(ρt
c
)7ρ

(2(ρt
c
)2 + (2M + ρ)(ρt

c
) + 2N)5

e−tρ

c
dt

=

∫ ∞

cδ
ρ

√
(ρ

10t7

c9
)

(2(ρt
c
)2 + (2M + ρ)(ρt

c
) + 2N)5

e−tdt

=

∫ ∞

cδ
ρ

√
(cρ10t7)

(2(ρt)2 + (2M + ρ)(cρt) + 2c2N)5
e−tdt

=

∫ ∞

c
ρ

√
ct7

(2t2 + ct+ 2Mct/ρ+ 2c2N/ρ2)5
e−tdt

Lemma 8

1√
f(t) +O(ρ−2)

=
1√
f(t)

−

(
1√
f(t)

− 1√
f(t) +O(ρ−2)

)

=
1√
f(t)

−
√
f(t) +O(ρ−2)−

√
f(t)√

f(t)
√
f(t) +O(ρ−2)

=
1√
f(t)

− O(ρ−2)√
f(t)

√
f(t) +O(ρ−2)(

√
f(t) +O(ρ−2) +

√
f(t))

=
1√
f(t)

+O(ρ−2)

Applying Eq. (F.50) in Lemma 5 and Lemma 8 on D21, it becomes

D21 =

∫ ∞

c
ρ

√
ct2

(2t+ c+ 2Mc/ρ)5
e−tdt+O(

1

ρ2
)

=

∫ ∞

c
ρ

√
ct(

1√
2t+ c+ 2Mc/ρ

)5e−tdt+O(
1

ρ2
)
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Applying Eq. (F.50) in Lemma 5 again and binomial series,

D21 =

∫ ∞

c
ρ

√
ct(

1
√
2t+ c

√
1 + 2Mc

ρ(2t+c)

)5e−tdt+O(
1

ρ2
)

=

∫ ∞

c
ρ

√
c

(2t+ c)5
t(1− 5

2

2Mc

ρ(2t+ c)
)e−tdt+O(

1

ρ2
)

=

∫ ∞

c
ρ

√
c

(2t+ c)5
t(1− 5Mc

ρ(2t+ c)
)e−tdt+O(

1

ρ2
)

=

∫ ∞

c
ρ

√
c

(2t+ c)5
te−tdt︸ ︷︷ ︸

D3

−
∫ ∞

c
ρ

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt︸ ︷︷ ︸
D4

+O(
1

ρ2
)

D3 =

∫ ∞

c
ρ

√
c

(2t+ c)5
te−tdt

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt−

∫ c
ρ

0

√
c

(2t+ c)5
te−tdt

Applying Lemma 5 on D3,

D3 =

∫ ∞

0

√
c

(2t+ c)5
te−tdt−

∫ c
ρ

0

1

c2
(1 +

2t

c
)−

5
2 te−tdt

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt−

∫ c
ρ

0

1

c2
(1− 5t

c
)−

5
2 te−tdt

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt−

[
1

c2

∫ c
ρ

0

te−tdt− 5

c3

∫ c
ρ

0

t2e−tdt

]
+O(

1

ρ2
)
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Applying Lemma 3 on D3,

D3 =

∫ ∞

0

√
c

(2t+ c)5
te−tdt−

[
1

c2

∫ c
ρ

0

te−tdt− 5

c3

(∫ c
ρ

0

2te−tdt

)]
+O(

1

ρ2
)

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt− c− 10

c3

[∫ c
ρ

0

te−tdt

]
+O(

1

ρ2
)

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt+

c− 10

c3

[
te−t

∣∣∣ cρ0 −
∫ c

ρ

0

e−tdt

]
+O(

1

ρ2
)

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt+

c− 10

c3

[
c

ρ
e−

c
ρ + e−t

∣∣∣ cρ0 ]+O(
1

ρ2
)

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt+

c− 10

c3

[
c

ρ
e−

c
ρ + e−

c
ρ − 1

]
+O(

1

ρ2
)

Applying Lemma 1 on D3,

D3 =

∫ ∞

0

√
c

(2t+ c)5
te−tdt+

c− 10

c3

[
c

ρ
(1− c

ρ
) + (1− c

ρ
)− 1

]
+O(

1

ρ2
)

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt+O(

1

ρ2
)

Similarly,

D4 =

∫ ∞

c
ρ

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt

=

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt−
∫ c

ρ

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt

=

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt− 5Mc
3
2

ρ

∫ c
ρ

0

t
1

(2t+ c)
7
2

e−tdt
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Applying Lemma 5 binomial series on D4,

D4 =

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt− 5Mc
3
2

ρ

∫ c
ρ

0

t

c
7
2

(
1− 7

2

2t

c

)
e−tdt

=

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt− 5Mc
3
2

ρ

∫ c
ρ

0

t

c
7
2

(
1− 7t

c

)
e−tdt

Applying Lemma 3 on D4,

D4 =

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt− 5Mc
3
2

ρ
O(

1

ρ
)

=

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt+O(
1

ρ2
)

Therefore,

D21 =

∫ ∞

0

√
c

(2t+ c)5
te−tdt+O(

1

ρ2
)−

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt+O(
1

ρ2
) (F.72)

In Eq. (F.71), applying replacement on D22, we have

D22 =

∫ ∞

cδ
ρ

c2N

ρ2t

√
(ρt
c
)7ρ

(2(ρt
c
)2 + (2M + ρ)(ρt

c
) + 2N)5

e−tρ

c
dt

=

∫ ∞

cδ
ρ

O(ρ−2)e−tdt

= O(ρ−2) (F.73)

Substituting Eqs. (F.72) and (F.73) into Eq. (F.71), we obtain

D2 =

∫ ∞

0

√
c

(2t+ c)5
te−tdt−

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt+O(
1

ρ2
) (F.74)
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Substituting Eqs. (F.70) and (F.74) into Eq. (F.69), we obtain

D0 =

(
1− cM

ρ

)[∫ ∞

0

√
c

(2t+ c)5
te−tdt−

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt+O(
1

ρ2
)

]

=

∫ ∞

0

√
c

(2t+ c)5
te−tdt−

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt− cM

ρ

∫ ∞

0

√
c

(2t+ c)5
te−tdt

Substituting D0 into Eq. (F.68), we obtain

D =
9

π

∫ ∞

0

1

c
e−

c
2

[∫ ∞

0

√
c

(2t+ c)5
te−tdt−

∫ ∞

0

t
5Mc

3
2

ρ(2t+ c)
7
2

e−tdt

−cM

ρ

∫ ∞

0

√
c

(2t+ c)5
te−tdt

]
db

where c = 3(1 + b2).

Let t = c
2
u, so dt = c

2
du, D becomes

D =
9

π

∫ ∞

0

1

c
e−

c
2

[∫ ∞

0

√
c

(2 c
2
u+ c)5

c

2
ue−

c
2
u c

2
du−

∫ ∞

0

c

2
u

5Mc
3
2

ρ(2 c
2
u+ c)

7
2

e−
c
2
u c

2
du

−cM

ρ

∫ ∞

0

√
c

(2 c
2
u+ c)5

c

2
ue−

c
2
u c

2
du

]
db

=
9

π

∫ ∞

0

1

c
e−

c
2

[∫ ∞

0

1

c2
(1 + u)−

5
2
c

2
ue−

c
2
u c

2
du−

∫ ∞

0

c

2
u
5M

ρ

1

c2
(1 + u)−

7
2 e−

c
2
u c

2
du

−cM

ρ

∫ ∞

0

1

c2
(1 + u)−

5
2
c

2
ue−

c
2
u c

2
du

]
db

=
9

π

∫ ∞

0

1

c
e−

c
2

[∫ ∞

0

(1 + u)−
5
2
1

4
ue−

c
2
udu−

∫ ∞

0

1

4
u
5M

ρ
(1 + u)−

7
2 e−

c
2
udu

−cM

ρ

∫ ∞

0

1

4
(1 + u)−

5
2ue−

c
2
udu

]
db
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Replace c with c = 3(1 + b2),

D =
3

4π


∫ ∞

0

u

(1 + u)
5
2

∫ ∞

0

e−
3
2
(1+b2)(1+u)

1 + b2
dbdu︸ ︷︷ ︸

E1

−
∫ ∞

0

5M

ρ

u

(1 + u)
7
2

∫ ∞

0

e−
3
2
(1+b2)(1+u)

1 + b2
dbdu︸ ︷︷ ︸

E2

− 3M

ρ

∫ ∞

0

u

(1 + u)
5
2

∫ ∞

0

e−
3
2
(1+b2)(1+u)dbdu︸ ︷︷ ︸

E3

 (F.75)

E1 =

∫ ∞

0

u

(1 + u)
5
2

∫ ∞

0

e−
3
2
(1+b2)(1+u)dbdu

Let b = cot θ, so db = (−1− cot2 θ)dθ,

E1 =

∫ ∞

0

u

(1 + u)
5
2

[∫ π
2

0

e−
3
2

1
sin2 θ

(1+u)

1 + cot2 θ
(1 + cot2 θ)dθ

]
du

= π

∫ ∞

0

u

(1 + u)
5
2

Q(
√

3(1 + u))du

= π/2

∫ ∞

0

u

(1 + u)
5
2

erfc(
√
3(1 + u)/2)du

Applying integration by parts, E1 becomes

E1 = π/2(−2/3)

∫ ∞

0

uerfc(
√
3(1 + u)/2)d(1 + u)−

3
2

= −π/3

[
uerfc(

√
3(1 + u)/2)(1 + u)−

3
2 |∞0 −

∫ ∞

0

(1 + u)−
3
2d[uerfc(

√
3(1 + u)/2)]

]
(F.76)
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Lemma 9: Leibniz integral rule

Leibniz integral rule is about derivative of integral, when the limits of integration

a and b and the integrand (x, α) all are functions of the parameter α, the formula

is:

d

dα

∫ b(α)

a(α)

f(x, α) dx =
db(α)

dα
f(b(α), α)− da(α)

dα
f(a(α), α) +

∫ b(α)

a(α)

∂

∂α
f(x, α) dx

(F.77)

Applying Leibniz integral rule,

d(erfc(
√
3(1 + u)/2)

du

=
d( 2√

π

∫∞√
3(1+u)

2

e−t2dt)

du

=− 2√
π
e−

3(1+u)
2

d(
√

3(1+u)
2

)

du

=− 2√
π
e−

3(1+u)
2

1

2

(
3(1 + u)

2

)− 1
2 3

2

=−
√

3

2π
e−

3(1+u)
2 (1 + u)−

1
2 (F.78)

Therefore, from Eq. (F.78),

d[uerfc(
√
3(1 + u)/2)]

du
= erfc(

√
3(1 + u)/2) + u

d(erfc(
√
3(1 + u)/2)

du

= erfc(
√

3(1 + u)/2)−
√

3

2π
e−

3(1+u)
2 u(1 + u)−

1
2 (F.79)
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Substituting Eq. (3.6) into Eq. (F.76), it becomes

E1 = π/3

∫ ∞

0

(1 + u)−
3
2

[
erfc(

√
3(1 + u)/2)−

√
3

2π
e−

3(1+u)
2 u(1 + u)−

1
2

]
du

= π/3

[
−2

∫ ∞

0

erfc(
√

3(1 + u)/2)d(1 + u)−
1
2

]
− π/2

[√
2

3π

∫ ∞

0

u

(1 + u)2
e−

3(1+u)
2 du

]

Applying integration by parts, E1 becomes

E1 = π/3

[
−2

(
erfc(

√
3(1 + u)/2)(1 + u)−

1
2 |∞0 −

∫ ∞

0

(1 + u)−
1
2derfc(

√
3(1 + u)/2)

)]
− π/2

[√
2

3π

∫ ∞

0

(
1

(1 + u)
− 1

(1 + u)2

)
e−

3(1+u)
2 du

]

= π/2

[
4

3
erfc(

√
3/2) +

√
2

3π
e−

3
2 −

(
3

√
3

2π

)∫ ∞

0

e−
3(1+u)

2

1 + u
du

]
(F.80)

If define t = 3
2
u, we have dt = 3

2
du,

∫ ∞

0

e−
3(1+u)

2

1 + u
du = e−

3
2

∫ ∞

0

e−t

t+ 3
2

dt (F.81)

Substituting Eq. (F.81) into Eq. (F.80), we have

E1 = π/2

[
4

3
erfc(

√
3/2) +

√
2

3π
e−

3
2 −

√
27

2π

∫ ∞

0

e−
3
2

∫ ∞

0

e−t

t+ 3
2

dt

]
(F.82)
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Similarly,

E2 =
5M

ρ

π

2

(
−2

5

)∫ ∞

0

uerfc(
√

3(1 + u)/2)d(1 + u)−
5
2

=
Mπ

ρ

[
−2

3

∫ ∞

0

erfc(
√

3(1 + u)/2)d(1 + u)−
3
2

]
− Mπ

ρ

√
3

2π

∫ ∞

0

u

(1 + u)3
e−

3(1+u)
2 du

(F.83)

In E3, let t =
3
2
(1 + u)b2,

E3 =
3M

ρ

√
2

3

∫ ∞

0

u

(1 + u)3
e−

3(1+u)
2

[∫ ∞

0

e−t2dt

]
du

=
Mπ

ρ

√
3

2π

∫ ∞

0

u

(1 + u)3
e−

3(1+u)
2 du (F.84)

Therefore,

E2 + E3 =
Mπ

ρ

[
−2

3

∫ ∞

0

erfc(
√

3(1 + u)/2)d(1 + u)−
3
2

]
=

Mπ

ρ

[
2erfc(

√
3

2
) +

√
2

3π
e−

3
2

∫ ∞

0

e−t

t+ 3
2

dt

]
(F.85)

146



M.A.Sc. Thesis - Lisha Wang McMaster - Electrical Engineering

Substituting Eqs. (F.82) and (F.85) back into Eq. (F.75), we have

D =
3

8

[
4

3
erfc(

√
3/2) +

√
2

3π
e−

3
2 −

√
27

2π

∫ ∞

0

e−
3
2

∫ ∞

0

e−t

t+ 3
2

dt

]

− 3

4π

Mπ

ρ

[
2erfc(

√
3

2
) +

√
2

3π
e−

3
2

∫ ∞
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(F.86)

Above all, substituting Eqs. (F.39), (F.59), (F.64) and (F.86) into Eq. (F.27),

Pe(F) = A−B − C −D (F.87)

=
1

2
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√
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2
)− 3M

2
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√
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Therefore in Eq. (F.87), the constant part is

Const =
1

2
erfc(

√
6

2
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√
27

2π
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3
2
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8
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2
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= 0

In Eq. (F.87), the O(ρ−1) term,
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where m = t+ 3
2
and C−1 =

3
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3
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3
2 + 43

8

√
3
2π
E1

(
3
2

)
which is positive, i.e. C−1 > 0.

Therefore, the asymptotic formula has the following form

Pe(F) = C−1Mρ−1 +O(ρ−2) (F.89)
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where M = d−1
1 + d−1

2 .
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