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Abstract

A computerized tomography scan enables the visualization of an object interior with-

out opening it up. This technique is used in many fields e.g. in medical imaging, ge-

ology, and industry. To obtain information about an object, exterior measurements

by means of X-rays are performed. Then, to reconstruct an image of the objects

interior, image-reconstructions methods are applied. The problem of reconstructing

images from measurements of X-ray radiation belongs to the class of inverse prob-

lems. A class of important methods for inverse problems is Algebraic Reconstruction

Techniques (ART). The performance of these methods depends on the choice of a

relaxation parameter.

In this thesis, we compare numerically various ART methods, namely Kaczmarz,

symmetric Kaczmarz, randomized Kaczmarz and simultaneous ART. We perform an

extensive numerical investigation of the behaviour of these methods, and in particular,

study how they perform with respect to this relaxation parameter. We propose a

simple heuristic for finding a good relaxation parameter for each of these methods.

Comparisons of the new proposed strategy with a previously proposed one shows

that our strategy has a slightly better performance in terms of relative error, relative

residual and image discrepancy of the reconstructed image. Both strategies showed
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relatively close numerical results, but interestingly enough, for different values of this

parameter.
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Chapter 1

Introduction

In the first section of this chapter, the problem of image reconstruction is introduced.

In the second section, the background of the introduced problem is discussed. Then,

the thesis results are summarized, and at the end, the outline of the thesis is provided.

1.1 The Image Reconstruction Problem

The requirement to see the interior of an object is a problem that arises in many ar-

eas. A brain surgeon needs to know where a tumor is exactly located without opening

the brain before operating, and also a geologist needs to finds out the possible loca-

tions for Earth resources without excavating the ground. To solve such problems, it

is possible to use tomography, which is a technique being used in a wide range of areas.

Computerized Axial Tomography (CAT or CT) scan enables the formation and

visualization of an image of the interior, by measuring data accessible from the exte-

rior. Standard tomography usually uses X-ray as the source for taking projections by
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1.2. BACKGROUND

letting X-rays pass through an object. The more amount of X-ray data is collected,

the better quality the reconstructed image normally has.

The reconstructed image gives information describing the matter that the rays

have passed through. The problem of reconstructing images from measurements of

the X-ray radiation around the object, which is being scanned, belongs to the class

of inverse problems. These are typically solved using Filtered Back-Projection (FBP)

[11], and Iterative Reconstruction Techniques such as Algebraic Reconstruction Tech-

niques (ART) [8].

For different applications on various environments, changing the emitting source

or modifying the reconstruction algorithms to achieve the results we want is feasi-

ble. On the other hand, tomography is an imaging tool having several mathematical

algorithms involved in it. For example, the central slice theorem [3] and algebraic

reconstruction algorithm are two of the most important methods for images recon-

struction. Hence, several techniques can be used to reconstruct an image from its

projections.

1.2 Background

The mathematical basis for tomography was first studied by Radon in 1917 [20],

but the first Computerized Tomography (CT) scanner was invented in 1972. To

reconstruct images from a series of angular projections, Algebraic Reconstruction

Techniques as the first methods were used in CTs’ machines while in numerical linear

algebra, the original method is known as Kaczmarz’s method [16].
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Kaczmarz’s method, based on the work of the Polish mathematician Stefan Kacz-

marz [16], has been found very useful in the area of image reconstruction from different

angular projections and has been demonstrated by Herman to be superior, in some

biomedical imaging applications, to other methods such as the filtered back projec-

tion method [14].

Various versions of the Kaczmarz’s method, such as symmetric Kaczmarz’s

method and randomized Kaczmarz’s method, have been already introduced in such a

way that each of them consists of an important parameter, which is called relaxation

parameter. It is already proved that a carefully adjusted relaxation parameter can

lead to a high quality reconstructed image [18].

Idealistically, there must exist an adaptive strategy to find a relaxation param-

eter for each iteration in any of the ART iterative methods, but it is not a straightfor-

ward task to find the best relaxation parameter, since there is no unique choice for it.

Hence, up to now, some strategies have been proposed for finding just an optimum

value of relaxation parameter (λ), since finding an adaptive strategy is not an easy

task to do, however none of them are unanimously accepted.

One of the proposed strategies, which is of high importance in this thesis, was

proposed by Maria Saxild-Hansen and her supervisor, Dr. Per Christian Hansen, in

her Master’s thesis at Technical University of Denmark [10]. This strategy proposes

a training method by which the optimal value of the relaxation parameter (λ) for
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two of the ART methods, Kaczmarz and Symmetric Kaczmarz, can be determined.

The optimal value of λ in [10] is defined as the value that gives rise to the fastest

convergence to the smallest relative error in the solution.

Now, in Chapter 4 of this thesis, a new training strategy for finding both adaptive

and fixed value of λ is proposed. We will compare this method with the previously

mentioned training strategy [10].

1.3 Summary of Thesis Results

In this thesis, we will try to give an overview and explanation of two image recon-

struction techniques: analytical techniques and algebraic techniques. The analytical

techniques, Filtered Back Projection algorithms, are based on a continuous descrip-

tion of the image and the data, and form a continuous solution.

The other image reconstruction techniques, which are mainly discussed in this

thesis, are ART algorithms starting from a discretized version of the image formed

by a limited set of components, such as pixels. We start with some of the common

concepts that are used in both of these algorithms.

In this thesis, a new training strategy for finding an adaptive or fixed relaxation pa-

rameter is proposed, which is comparable to the other previously proposed strategies,

and can be applied to various ART methods. The numerical results of this training

strategy indicate that the selected relaxation parameters for each of the ART itera-

tive methods is different from the other ART methods’, and no matter what the test
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phantom is, the selected relaxation parameters are close to each other.

Comparing the results obtained from the new proposed strategy with a previously

proposed strategy, for finding relaxation parameter, indicates that however our pro-

posed strategy, for finding a fixed relaxation parameter, in two of the ART methods

has a better performance in terms of relative error, relative residual and image dis-

crepancy, both strategies represent generally the same numerical results.

The experimental results also show that the ranges of the selected relaxation

parameters for various ART methods, depending on the method, can be reduced to

different smaller intervals instead of (0,2) which is the convergence interval for all the

ART methods.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, the foundations and

underlying concepts of two analytical and iterative reconstruction algorithms which

are respectively FBP and ART are explained. In Chapter 3, we overview related work

and image reconstruction methods. In Chapter 4, the performance of ART methods

is investigated. Chapter 5 investigates the performance of FBP. Finally, in Chapter

6, the results from the previous chapters are summarized, and directions for future

research are discussed.
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Chapter 2

Preliminaries

In this chapter, we firstly overview the main concepts corresponding to FBP, and

then we will have a general survey on the basic notions of ART theory.

2.1 Overview of FBP Theory

In this section, we briefly define the formulas and notions which are basically un-

derlying concepts of FBP.

2.1.1 Radon Transform

The Radon transform (<), introduced in 1917 and named after the Austrian math-

ematician Johann Radon [20], is the integral transform consisting of the integral of

a function over straight lines. For a function f which may be represented as an

attenuation-coefficient function, which is a quantity that characterizes how easily a

material or medium can be penetrated by a beam of light, sound, particles and the

domain of which is the coordinate plane, the Radon transform of f is a multi-step
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process that, for each pair of values of t and θ, integrates f along a different line `t,θ

[7]:

<f(t, θ) :=

∫
`t,θ

fds =

∫ ∞
s=−∞

f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))ds.

We have to note that f and <f are functions in Cartesian coordinates of x and

y and in polar coordinates of t and θ, respectively. The Radon transform is widely

applicable to tomography, the creation of an image from the scattering data (X-ray

data) associated to cross-sectional scans of an object.

If a function f represents an unknown density such as an attenuation-coefficient

function, then the Radon transform represents the scattering data obtained as the

output of a tomographic scan. Hence, by knowing the definition of the inverse of

the Radon transform, which is called here back projection, we can reconstruct the

original attenuation-coefficient function from the scattering data, and thus it forms

the mathematical structure for tomographic reconstruction which is also known as

image reconstruction. Meanwhile, the projection data collected, which are the Radon

transform of the unknown object, is called sinogram.

2.1.2 Fourier Transform

For a given function f , the Fourier transform (FT) of the object function f , for

each real number ω, can be defined as [21]
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Ff(ω) =

∫ ∞
−∞

f(x)e−iωxdx,

where for each value of ω, the value of the Fourier transform captures the component

of f with the periodicity 2π/ω. The inverse of the Fourier transform (IFT), for each

real number x, can also be defined by

f(x) = F−1(Ff(ω)) =
1

2π

∫ ∞
−∞
Ff(ω)eiωxdω.

2.1.3 Central Slice Theorem

This theory was first derived by Bracewell in 1956 [3] and involves the interaction

between the Radon transform and the Fourier transform, which is known as either

central projection or central slice theorem. Hence, for any suitable function f , say,

an X-ray attenuation coefficient function of two dimensional Cartesian coordinates,

the central slice theorem for all real numbers S and θ can be defined as

F2f(S cos(θ), S sin(θ)) = F(<f)(S, θ),

where the symbols F and F2 denote the one- and two-dimensional Fourier transforms,

respectively.

This theorem is used in the analysis of medical CT scans, where a projection

is an X-ray image of an internal organ. The Fourier transforms of these images are

seen to be slices through the Fourier transform of the density of the internal organ,

and these slices can be interpolated to build up a complete Fourier transform of that
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density. The inverse Fourier transform is then used to reconstruct the density of the

object.

2.1.4 Convolution

The concern, which is all along with the signals analysis, is the noise presence,

which is any effect corrupting a signal. To remove the noise effects and form a clearer

picture of a signal, filters are used. Hence, using the notion of filters, Convolution

[24] can be defined by a mathematical operation on two functions f and g producing

a third function that is viewed as a modified version of one of the original functions

which is indeed filtered as following.

(f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t)dt.

One of the main properties between the convolution and the Fourier transform that

plays a significant role in what is to come in this thesis is that, for suitable functions

f and g, the product of their Fourier transforms is equal to the Fourier transform of

their convolution as following,

(Fφ · Fg)(s, θ) = F(φ ∗ g)(s, θ).

2.1.5 Discrete Radon Transform

In discrete Radon transform, the X-ray machine does not assess the attenuation

along every line `t,θ. Instead, the Radon transform is sampled for a finite number of

angles θ between 0 and π, and at each of these angles, for some finite number of t’s.

Both the angles and the t values are typically evenly spaced. If the X-ray machine
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takes scan at N different angles, then ∆θ = π/N , and the specific values of θ that

occur are {kπ/N : 0 ≤ k ≤ N − 1}. The values of t are also {j · d : −M ≤ j ≤M} as

−M · d, (−M + 1) · d, ..., 0, ...,M · d

Hence, the discrete Radon transform <D values of f are given as input for

−M ≤ j ≤ M and 0 ≤ k ≤ (N − 1), where 2M + 1 is the number of beams at each

angle, N is the number of angles, and d is the sample spacing between beams. That

is,

<Dfj,k = <f(jd, kπ/N),

where a typical value of N is 180, and a typical value of M depends on the design

of the X-ray machine, and also on the size of the object that the X-ray machine is

designed to scan.

2.1.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT), denoted by FD, transforms an N -

periodic discrete function f into another N -periodic discrete function FDf as follows,

(FDf)j =
N−1∑
k=0

fke
−i2πkj/N for j = 0, 1, ..., (N − 1).

For two discrete functions f = {fk : 0 ≤ k ≤ N−1} and g = {gk : 0 ≤ k ≤ N−1}

with the same period, we have

FD(f ∗̄ g) = (FDf) · (FDg).

10
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In words, the discrete Fourier transform of a convolution is the product of the

discrete transforms, individually. Also for two discrete N -periodic function f and g,

we have

FD(f · g) =
1

N
(FDf) ∗̄ (FDg).

The Discrete Inverse Fourier transform (DIFT) of g, which is an N -periodic discrete

function, is the N -periodic function defined as following,

(F−1D g)m =
1

N

N−1∑
k=0

gk e
i2πkm/N .

for a given integer m with 0 ≤ m ≤ (N − 1).

2.1.7 Discrete Convolution

In analogy with the integral that defines continuous convolution, the discrete con-

volution of two discrete functions f and g, denoted by f ∗̄g, is defined by

(f ∗̄g)m =
∞∑

j=−∞

fj · g(m−j).

In practice, we typically know the values of a function f only at a finite set of

points, say {k · d : k = 0, 1, ..., (N − 1)}, in that f is periodic with period N and zero

outside. N is the total number of points at which f has been computed, and d is the

sample spacing.

For two N -periodic discrete functions f = {fk : 0 ≤ k ≤ N − 1} and g = {gk :

11
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0 ≤ k ≤ N − 1}, the discrete convolution, denoted as f ∗̄g, is defined by

(f ∗̄ g)m =
N−1∑
j=0

fj · g(m−j) for each integer m.

The following holds [7]. Let f and g be two-way infinite discrete functions, and

suppose there is some natural number K such that gk = 0 whenever k < 0 or k ≥ K.

Let M be an integer satisfying M ≥ K − 1, and let f̃ and g̃ be the (2M + 1)-periodic

discrete functions defined by f̃(m) = f(m) and g̃(m) = g(m) for −M ≤ m ≤ M .

Then for all m which satisfy 0 ≤ m ≤ K − 1, we have

(f ∗̄ g)m =
(
f̃ ∗̄ g̃

)
(m). (2.1)

By means of zero padding, we can take a finite set of values of a function like g

and, by padding the sequence of values with a lot of zeros, form a periodic discrete

function g̃ in such a way that the periodic discrete convolution gives the same value as

the true discrete convolution, at least at the points where the value has been sampled.

Now, we apply equation (2.1) to the discrete convolution of the sampled band-

limited function F−1A, where A is a low-pass filter, and the sampled Radon transform

<Df , where f is the attenuation function we wish to reconstruct. Since the scanned

object is finite in size, we can set <Df(j, θ) = 0 whenever j, the beam number, is

sufficiently large.

Thus, with enough zero padding, the discrete Radon transform can be extended

to be periodic in the radial variable (jd). For discrete functions defined using polar

12



2.1. OVERVIEW OF FBP THEORY

coordinates, the discrete convolution is carried out in the radial variable only. In

particular, for a given filter A, we compute the discrete convolution of the sampled

inverse Fourier transform of A with the discrete Radon transform of f as

(F−1D A ∗̄ <Df)m,θ =
N−1∑
j=0

F−1D Aj · <Dfm−j,θ.

2.1.8 Discrete Back Projection

In the continuous setting, the back projection is defined by

βH(x, y) =
1

π

∫ π

θ=0

H(x cos(θ) + y sin(θ), θ) dθ. (2.2)

In the discrete setting, the continuously variable angle θ is replaced by the discrete

set of angles {kπ/N : 0 ≤ k ≤ N − 1}. So the value of dθ becomes π/N and the

back-projection integral is replaced by the sum [7],

βDH(x, y) =
( 1

N

)N−1∑
k=0

H(x cos(kπ/N) + y sin(kπ/N), kπ/N).

This is applied to H = (F−1D A) ∗̄ (<Df). The obstacle here is that the reconstruc-

tion grid, within which the final image is to be presented, is a rectangular array of

pixels, located at points {(xm, yn)}, each of which is to be assigned a color or greyscale

value. Thus the discrete back projection (DBP) requires the values of (F−1D A) ∗̄ (<Df)

at the corresponding points {(xm cos(kπ/N) + yn sin(kπ/N), kπ/N)}. However, the

Radon transform samples and the values of (F−1D A) ∗̄ (<Df) are known only at the

points {(jd, kπ/N)}. To overcome this problem, observe that, for a given (x, y) and

a given k, the number (x cos(kπ/N) + y sin(kπ/N) will lie in between two multiples

13
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of d. That is, there is some value n such that [7]

nd ≤ (x cos(kπ/N) + y sin(kπ/N) < (n+ 1)d.

Hence, we wish to interpolate a value for (F−1D A) ∗̄ (<Df) at the point (x cos(kπ/N)+

y sin(kπ/N), kπ/N), using the known values at nearby points to create a continuous

or piecewise continuous function, which closely fits the known data points. The most

common interpolation schemas, which can be used, are Nearest neighbor, Linear,

Cubic spline and Lagrange interpolations.

2.1.9 Overall Method of Discrete Image Reconstruction

To reconstruct an image, attenuation coefficient function f(x, y), using Filtered

Back Projection when complete continuous X-ray data are available, we have [7]

f(x, y) =
1

2
β
[
F−1

[
|S|F (<f)(t, θ)

]]
(x, y).

Replacing |S| with a low-pass filter A, obtained by multiplying the absolute value by

a window function that vanishes outside some finite interval, in place of the above

formula, we use the approximation

f(x, y) ≈ 1

2
β(F−1A ∗ <f)(x, y).

The starting point in the implementation of the above approximation in the prac-

tical reconstruction of images from X-ray data is that only a finite number of values

of <f(t, θ) are given and available in a real study. More details, about image recon-

struction using FBP, are available in [7].
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2.2 Overview of ART Theory

The first CT scanners, designed in the late 1960s by Godfrey Hounsfield, used an

approach grounded in linear algebra and matrix theory to generate an image from

machine readings. Algorithms that adopt this point of view are known as Algebraic

Reconstruction Techniques (ART). In this section, we briefly define the notions re-

garding to algebraic reconstruction techniques.

2.2.1 Basis Functions

Suppose an image is to be constructed in a K-by-K grid of pixels, and the pixels are

numbered (row-wise) from 1 to K2. The pixel basis functions b1, ...., bK2 are defined

by

bk(x, y) =

{
1 if (x, y) lies inside pixel number k,

0 if (x, y) does not lie inside pixel number k

for k = 1, 2, ..., K2 and points (x, y) in the plane. By assigning a color value xk to

the kth pixel, the resulting image will be presented by the function

f̃(x, y) =
K2∑
k=1

xk bk(x, y)

Applying Radon (<) transform to both sides of this function and using the linearity

of <, we obtain that for each choice of t and θ,

<f̃(t, θ) =
K2∑
k=1

xk <bk(t, θ)

15
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In practice, an X-ray machine produces values of <f(t, θ) for some finite set of lines

`t,θ.

A system of equations for some positive integer J can be written as:

pj = <f̃(tj, θj) =
K2∑
k=1

xk <bk(tj, θj) for j = 1, ..., J.

The connection between f̃(x, y) and <f̃(tj, θj) is provided by Radon transform

(<) [20]. Since our ultimate objective is computing the function f̃(x, y) given values

of <f̃(tj, θj), we need to do the inversion of the Radon transform. Since the pixel

basis function bk has the value 1 on its pixel and 0 elsewhere, the value of the integral

<bk(tj, θj) is equal to the length of the intersection of the line `tj ,θj with pixel number

k, which is denoted by rjk. That is,

rjk = <bk(tj, θj), for j = 1, ..., J, k = 1, ..., K2,

which can also be stated as a system of J linear equations inK2 unknowns (x1, ..., xK2):

pj =
K2∑
k=1

xk rjk for j = 1, ..., J.

Now we can formally describe the input of the linear system Ax = p as a

vector of pj = <f̃(tj, θj) for a sinogram, which is the resulting image after apply-

ing Radon transform on it, and a projection matrix A ∈ Rm×n with components of

rjk = <bk(tj, θj). The output vector of xk contains the color value of each pixel of

the resulting image.
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It is good to know that the described physical model is not limited to a cer-

tain scanning geometry technique of the CT scanner. It can use different scanning

geometry techniques such as parallel beam, fan beam, spiral beam and cone beam

geometries. The last two geometries have been developed for use in later generation

scanning machines facilitating the collection of data for more than one slice at the

same time.

To compute the solution of the linear system Ax = p, we intend to use Kacz-

marz’s method which is an iterative algorithm or procedure for approximating a

solution to linear systems that we will specifically talk about it in Chapter 3. If we

denote by ri to ith row of the matrix A, and by pi to ith coordinate of the vector p,

then the system Ax = p is the same as having rix = pi for every value of i.

In fact, this method works by producing a sequence of vectors, each of which

satisfies one of the individual equations rix = pi. Now before looking at Kaczmarz’s

method, let’s make the following definition which is to be used in Kaczmarz’s method.

For a fixed n-dimensional vector r and a number p, the affine space ϕr,p is defined by:

ϕr,p = {x ∈ Rn : rTx = p }

Note that the affine space ϕr,p is a subspace of Rn if and only if p = 0, and each of

the lines `t,θ is an affine space.
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2.2. OVERVIEW OF ART THEORY

2.2.2 Affine Projection

Given a vector u and an affine space ϕr,p for some vector r and some number p,

the affine projection of u in ϕr,p is the vector u∗ in ϕr,p that is closest to u among all

vectors in ϕr,p. To move from u to the closest point in the affine space, it is evident

that we should move orthogonally to the affine space [7]. Thus, the vector u∗ that we

seek should have the following form for some number λ, u∗ = u − λr. Substituting

u∗ = u− λr into the equation rTu∗ = p and solving for λ we obtain,

λ =
rTu− p
rT r

Then, the affine projection u∗ of the vector u in the affine space ϕr,p is given by the

equation:

u∗ = u− rTu− p
rT r

r
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Chapter 3

Algorithmic Formulation of FBP

and ART

In the first section of this chapter, we will write both the continuous and discrete

filtered back projection in algorithmic ways, and subsequently, the number of op-

erations in discrete FBP will be counted. In the last section, we will discuss the

properties and complexities of different ART methods, and we will briefly review the

previously proposed strategies for finding relaxation parameters and stopping rules.

3.1 Filtered Back Projection

Using the notations defined in the previous chapter, we discuss each of the steps

of FBP in an algorithmic way. First, we overview the continuous FBP(3.1.1), then

we overview the continuous FBP using convolution(3.1.2), and then we discuss the

discrete FBP(3.1.3). Finally, we derive the discrete FBP complexity.
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3.1. FILTERED BACK PROJECTION

3.1.1 Continuous Filtered Back Projection

For a given function f , the FBP is derived as follows:

1. Assume we are given the Radon transform < of f for each (t, θ):

<f(t, θ) :=

∫
`t,θ

fds =

∫ ∞
s=−∞

f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))ds,

Then we obtain f(x, y) as follows,

2. Compute the Fourier transform F of g(t, θ) = <f(t, θ) by

F(g)(t, θ) :=

∫ ∞
−∞

g(t, θ)e−iωtdt,

3. Compute an absolute-value function,

|S|F(g)(t, θ),

4. Compute the inverse Fourier transform

F−1
[
|S|F(g)(t, θ)

]
,

5. Compute the back projection β as

f(x, y) =
1

2
β
(
F−1

[
|S|F(g)(t, θ)

])
(x, y)

=
1

2π

∫ π

0

F−1
[
|S|F(g)(t, θ)

](
x cos(θ) + y sin(θ), θ

)
dθ
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3.1. FILTERED BACK PROJECTION

3.1.2 Filtered Back Projection Using Convolution

Since the Radon transform < of f may have a component at a high frequency which

may be magnified by the factor |S| leading to noise exaggeration in the data, we do

not use the above scheme in which the factor |S| is used.

Indeed, we use a function that is close to the absolute-value function for |S| near

0, and vanishes when the value of |S| is large, which corrupts the reconstructed

image. This kind of function is called low-pass filter since it does not affect the lower

frequencies, while cuts off the higher frequencies including noise. Hence, for a given

function f , whose domain is the plane, instead of steps number 3 to 5 in the above

scheme we do:

3. Let φ(t) be a function for which Fφ(S) = |S|. Then

[
|S|F(g)

]
(s, θ) = [Fφ · Fg](s, θ) = F(φ ∗ g)(s, θ),

where ∗ denotes convolution.

4. Compute the IFT of the FT of convolution F(φ ∗ g)(s, θ):

F−1
[
F(φ ∗ g)(s, θ)

]
= (φ ∗ g)(t, θ),

5. The f is recovered by,

f(x, y) =
1

2
β(φ ∗ g)(x, y), (3.1)
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3.1. FILTERED BACK PROJECTION

where β is the back projection (2.2).

The fact is that such a φ(t) function does not exist that its FT is equal to the absolute-

value function |S|. Hence, in practice we replace |S| by something else which is a

low-pass filter (A) to approximate Fφ and f(x, y). Since Fφ ≈ A, so φ ≈ F−1A and

equation (3.1) can be rewritten as,

f(x, y) ≈ 1

2
β(F−1A ∗ g)(x, y),

An instant example for a discrete low-pass filter A is the Shepp–Logan filter as

following:

A(ω) = |ω| ·
(sin(πω/(2L))

πω/(2L)

)
· uL(ω)

=


2L
π
· | sin(πω/(2L))| if |ω| ≤ L,

0 if |ω| > L,

for some choices of L > 0, where uL(ω) is a simple square wave as below:

uL(ω) =

 1 if |ω| ≤ L,

0 if |ω| > L,

3.1.3 Discrete Filtered Back Projection

To reconstruct an unknown function f , whose domain is the plane, we have the

following algorithm in which the input and output are as:

• Inputs: Discrete Radon transform <D values of f
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3.1. FILTERED BACK PROJECTION

Low-pass filter

Interpolation method

• Output: Reconstructed unknown function f

1. The discrete Radon transform <D values of f are given as input for −M ≤ j ≤

M and 0 ≤ k ≤ (N − 1), where 2M + 1 is the number of beams at each angle,

N is the number of angles, and d is the sample spacing between beams.

<Dfj,k = <f(jd, kπ/N).

A typical value of N is 180, and a typical value of M depends on the design of

the X-ray machine, and also on the size of the object that the X-ray machine

is designed to scan.

2. The DFT of gj,k = <Dfj,k is,

(FDg)j,k =
M∑

l=−M

N−1∑
m=0

g(ld,mπ/N) · e−i2πmk/N · e−i2πlj/(2M+1)

=
M∑

l=−M

N−1∑
m=0

g(ld,mπ/N) · e−i2π(mk/N+lj/(2M+1))

for −M ≤ j ≤M and 0 ≤ k ≤ (N − 1).

3. As said earlier, since there is not such a function φ(t), whose Fourier transform

satisfies Fφ(S) = |S|, we replace |S| with a function of the form Fφ ≈ A, where
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3.1. FILTERED BACK PROJECTION

A is nonzero on some finite interval and zero outside that interval. Indeed, we

approximate |S| by a function A and try to find φ ≈ F−1A. So, we have:

|S| · FDg = FDφ · FDg ≈ A · FDg,

where A is a discrete low-pass filter.

4. Compute the DIFT of (A · FDg)l,m for −M ≤ l ≤M and 0 ≤ m ≤ (N − 1):

F−1D (A · FDg)l,m = (F−1D A ∗̄ F−1D FDg)l,m

= (F−1D A ∗̄ g)l,m

=
M∑

j=−M

N−1∑
k=0

(F−1D A)k · (g)l−j,m−k · (F−1D A)j

where ∗̄ denotes discrete convolution.

5. Interpolate the function (F−1D A ∗̄ g) by an interpolation method. For simplicity

of notation, we denote the interpolated function of (F−1D A ∗̄ g) by I. In fact,

the value of the interpolated function I(t, kπ/N) are computed according to the

previously computed values of (F−1D A ∗̄ g)(jd, kπ/N) and also the interpolation

method we are going to use which can be Nearest neighbor, Linear, Cubic spline

or Lagrange interpolation.

6. Compute the DBP(βD), where I is the interpolated function of (F−1D A ∗̄ g)

f(x, y) ≈ 1

2
βDI(x, y) =

1

2N

N−1∑
k=0

I
(
x cos(kπ/N) + y sin(kπ/N), kπ/N

)
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3.1. FILTERED BACK PROJECTION

3.1.4 MATLAB Description of Discrete FBP

Given RI the Radon transform values of an image I, A the Low-pass filter, and intpol

the interpolation method as inputs,

1. We take the Fast Fourier transform of RI

FFTRI = fft(RI)

2. We compute a filtered sinogram by applying a low-pass filter A to the Fast

Fourier transform of RI

FilteredFFTRI = FFTRI.* A

3. We compute the Inverse Fast Fourier transform of FilteredFFTRI

InvFilteredFFTRI = ifft(FilteredFFTRI)

4. Now we compute the back projection

BackProj = iradon(InvFilteredFFTRI, intpol)

3.1.5 Operations Count for Discrete FBP

To find out the complexity of discrete FBP algorithm, and also to be able to

compare the complexity of FBP with the complexities of ART methods, we count the

number of operations in each image reconstruction method. In discrete FBP, assume

I is an n×n image, N is the number of angles and there are 2M +1 beams per angle.
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3.1. FILTERED BACK PROJECTION

1. Taking the Fast Fourier transform of RI consists of: O(NM logM) operations

since in one angle the FFT complexity for 2M+1 beams is O((2M+1) log(2M+

1))), so for N angles the FFT complexity is

O(N(2M + 1) log(2M + 1))) ≈ O(NM logM)

2. Applying a low-pass filter (A) to the Fast Fourier transform of RI has

O(N(2M + 1)) ≈ O(NM) operations

3. Computing the Inverse Fast Fourier transform also includes of

O(N(2M + 1) log(2M + 1))) ≈ O(NM logM)

4. Finally, computing the back projection of interpolation function includes of

O(Nn2) operations since interpolation consists of n2 operations for each (x, y)

and we have N times interpolation. Hence, in this stage we have O(Nn2)

operations.

Summing up all the number of operations, we can claim that the discrete FBP has

the complexity of

O(NM logM +Nn2) = O(N(M logM + n2)).

26



3.2. ALGEBRAIC RECONSTRUCTION TECHNIQUES

3.2 Algebraic Reconstruction Techniques

CT has been extensively studied for years and widely used in modern society. Al-

though FBP algorithm is the method of choice by manufacturers nowadays, efforts

are being made to revisit iterative methods due to their unique advantages, such as

simplicity and superior performance with incomplete noisy data [15]. To this point,

we have summarized how transform-based methods are used in image reconstruction,

and how these approaches are used in the algorithms of today’s CT scan machines.

To reach our goal, which is reconstructing the attenuation function f̃(x, y), we

shall use ART to find an approximate solution to the system of linear equations. To

implement an ART algorithm, it is necessary to know the values of <f̃(t, θ) coming

from CT machine for a variety of choices of t for each of the selected angles θ.

To start with physical model, we have to know that ART treats the problem

of image reconstruction as a discrete problem from the beginning. Any image we

produce will be constructed inside a rectangular grid of picture elements, or pixels

such that a specific color value is assigned to each of them. The number of pixels in

an image may be large, but it is nonetheless finite.

3.2.1 Kaczmarz’s Method

Now we put our knowledge of affine spaces to define Kaczmarz’s method [16] which

is an iterative algorithm or procedure for finding an approximate solution to a linear

system Ax = p. Again, denote the ith row of the matrix A by ri and the ith coor-

dinate of the vector p by pi. Then each of the equations rix = pi describes an affine
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3.2. ALGEBRAIC RECONSTRUCTION TECHNIQUES

space.

Kaczmarz’s method proceeds by starting with an initial guess for x, a vector of

prospective color values, and then computes the affine projection of this initial guess

onto the first affine space in our list. This projection is then projected onto the next

affine space in the list, and so on until we have gone through the entire list of affine

spaces. Starting with initial guess x0,0, we have,

x0,1 = x0,0 − rT1 x
0,0 − p1
rT1 r1

r1 (3.2)

Where in x0,1, 1 and 0 are the projection and iteration numbers, respectively. If the

matrix A has J rows, then the vectors x0,1, x0,2, ..., x0,J will be computed, and once

x0,J has been computed, set x1,0 = x0,J and compute the vectors x1,1, x1,2, ..., x1,J in

a similar manner, and we stop the iterations when a stopping criterion is satisfied. If

the linear system Ax = p has at least one solution in the least squares sense,

min ‖Ax− p‖

then Kaczmarz’s method converges to a solution of this system [7]. Moreover, if x0,0

is in the range of AT , then Kaczmarz’s method converges to the solution of minimum

norm [7, p.110].

3.2.2 Kaczmarz’s Method with a Relaxation Parameter

The most commonly employed variation of Kaczmarz’s method [16] involves the

introduction of a relaxation parameter. For each row i and iteration k, let λik be
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3.2. ALGEBRAIC RECONSTRUCTION TECHNIQUES

a relaxation parameter, satisfying 0 < λik < 2. Instead of computing with formula

(3.2), we compute with,

xk,i = xk,i−1 − λik
rTi x

k,i−1 − pi
rTi ri

ri (3.3)

Where in xk,i, i and k are projection and iteration numbers, respectively. The

usual requirement is that the value of λik should be bounded as 0 ≤ λik ≤ 2. If λik = 1,

formula (3.3) is the pure Kaczmarz’s method without a relaxation parameter. When

0 < λik < 1, the vector xk,i−1 is projected only part of the way to the affine space

ϕri,pi . If 1 < λik < 2, the vector xk,i−1 is projected on the other side of the affine

space, and finally when λik = 2, the vector xk,i is just the reflection of xk,i−1 across

ϕri,pi [7].

3.2.3 Operations Count For Kaczmarz’s Method

Assume I is an n × n image, N is the number of angles and M is the number of

beams in each angle. Count of operations including addition, multiplication, division

and subtraction for Kaczmarz’s method is as following:

for k = 1 : K

for i = 1 : m

xk,i = xk,i−1 − λik(
rTi x

k,i−1 − pi
rTi ri

)ri

end

end

where n2, m and λ are the number of pixels, the number of angles times the number

of beams per angle and the relaxation parameter, respectively.
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3.2. ALGEBRAIC RECONSTRUCTION TECHNIQUES

1. rTi x
k,i−1 has: (n2)Mult + (n2 − 1)Add = (2n2 − 1)opt

2. rTi ri has: (n2)Mult + (n2 − 1)Add = (2n2 − 1)opt

3. rTi x
k,i−1 − pi has: 1opt

4.
rTi x

k,i−1 − pi
rTi ri

has: 1opt

5. λik
rTi x

k,i−1 − pi
rTi ri

has: 1opt

6. λik
rTi x

k,i−1 − pi
rTi ri

.ri has: (n2)opt

7. xk,i−1 − λik(
rTi x

k,i−1 − pi
rTi ri

)ri has: (n2)Sub

The sum of all the above steps number of operations is equal to 6n2 + 1 which

must be multiplied by K and m, which are respectively the number of iterations and

the number of angles times the number of beams in each angle as following:

K ×m× (6n2 + 1) = K ×M ×N × (6n2 + 1)

Hence, the complexity of Kaczmarz’s method is O(NMn2K).

3.2.4 Symmetric Kaczmarz’s Method

Another variant of Kaczmarz’s method is the symmetric Kaczmarz’s method [2]

in which the equations of the projection matrix are used in reverse order. On the

other hand, unlike Kaczmarz’s method in which there are m steps (m equations), in

symmetric Kaczmarz’s method, there are 2m − 2 number of steps, which are actu-

ally projections, in each iteration to approximate to a solution. The algorithm for

symmetric Kaczmarz’s method is as following:
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xk,i = xk,i−1 − λik
rTi x

k,i−1 − pi
rTi ri

ri

where i = 1, ...,m,m− 1, ..., 2.

3.2.5 Operations Count For Symmetric Kaczmarz’s Method

Assuming N is the number of angles and M is the number of beams in each angle,

operations count regarding to symmetric Kaczmarz’s method is as below:

1. rTi x
k,i−1 has: (n2)Mult + (n2 − 1)Add = (2n2 − 1)opt

2. rTi ri has: (n2)Mult + (n2 − 1)Add = (2n2 − 1)opt

3. rTi x
k,i−1 − pi has: 1opt

4.
rTi x

k,i−1 − pi
rTi ri

has: 1opt

5. λik
rTi x

k,i−1 − pi
rTi ri

has: 1opt

6. λik
rTi x

k,i−1 − pi
rTi ri

.ri has: (n2)opt

7. xk,i−1 − λik(
rTi x

k,i−1 − pi
rTi ri

)ri has: (n2)Sub

The sum of all the above steps number of operations is equal to 6n2 + 1 which

must be multiplied by K and (2m−2) which are respectively the number of iterations

and (2M ×N − 2) as following:

K × 2m− 2× (6n2 + 1) = K × (2M ×N − 2)× (6n2 + 1)

where n2, m and λ are the number of pixels, the number of angles times the number

of beams per angle and the relaxation parameter, respectively. Hence, the Big O

notation for symmetric Kaczmarz’s method is O(NMn2K).
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3.2.6 Randomized Kaczmarz’s Method

The next variant of Kaczmarz’s method is randomized Kaczmarz’s method [23]

and is proved to have exponential expected convergence rate in which the rate is

not dependent on the number of projections or equations in the system [23]. In this

method, the index i, indicating the projection number, is chosen randomly from the

equations set of { 1, ...,m }.

xk,i = xk,i−1 − λik
rTi x

k,i−1 − pi
rTi ri

ri

In randomized Kaczmarz’s method, the ith equation is selected with probability pro-

portional to ‖ri‖2. Since in randomized Kaczmarz all the rows are chosen, the op-

erations count for this method is the same as standard Kaczmarz’s method which is

O(NMn2K).

3.2.7 Simultaneous Algebraic Reconstruction Techniques

In 1984, Simultaneous Algebraic Reconstruction Techniques (SART) was developed

as a major refinement of the ART [1]. The idea behind this method is that SART con-

siders a subset of the ray sums in projection matrix which is related to a specific angle.

The implementation of this method generates a good reconstruction in only one

iteration, and have a computational advantage over the traditional implementation

of ART [1]. In fact, SART unlike Kaczmarz’s method that updates the solution x

in each projection, only updates the solution per iteration after computing all the

projections of the current solution. In this thesis, we will compare SART with the
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other proposed algorithms in terms of resulting image quality (image discrepancy),

accuracy and convergence speed in Chapter 4. Modeling the same linear system of

eqautions proposed in ART, for SART we also have,

A · x = p,

where matrix A ∈ RM×N , x ∈ RN and p ∈ RM represent the projection matrix,

solution and the collected data, respectively. The SART method can be written in

the following matrix form [1],

xkj = xk−1j − λ

A+,j

M∑
i=1

Ai,j
Ai,+

(Ai,: · xk−1 − pi),

where k and λ ∈ (0, 2) are the number of iterations and relaxation parameter,

respectively. Ai,j, Ai,+, and A+,j are,

A+,j =
M∑
i=1

Ai,j for j = 1, ..., N,

Ai,+ =
N∑
j=1

Ai,j for i = 1, ...,M,

where Ai,j, Ai,+, and A+,j denote the coefficients of the imaging system, the row sums,

and the column sums, respectively. Meanwhile, Ai,j must be non-negative, and both

Ai,+ and A+,j must be none zero for i = 1, ...,M and j = 1, ..., N .

3.2.8 Operations count for SART

Assume I as an n×n image, N the number of angles, and M the number of beams

in each angle, count of operations including addition, multiplication, division and
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subtraction for SART method is as following:

1. Ai,: · xk has: (n2)Mult + (n2 − 1)Add = (2n2 − 1)opt

2.
Ai,j
Ai,+

has: 1opt

3. Ai,: · xk − pi has: 1opt

4.
Ai,j
Ai,+

(Ai,: · xk − pi) has: 1opt

5.
m∑
i=1

Ai,j
Ai,+

(Ai,: · xk − pi) has: mopt × (2n2 + 2)

6.
λ

A+,j

M∑
i=1

Ai,j
Ai,+

(Ai,: · xk − pi) has: (2n2)opt

7. xk−1 − λ

A+,j

M∑
i=1

Ai,j
Ai,+

(Ai,: · xk − pi) has: (n2)Sub

where n2, m and λ are the number of pixels, the number of angles times the number of

beams per angle and the relaxation parameter, respectively. The sum of all the above

steps number of operations is equal to 2mn2 + 3n2 + 2m which must be multiplied by

K, which is the number of iterations as following:

K × (2mn2 + 3n2 + 2m) ≈ Kmn2 = KMNn2

Hence, the complexity of SART method is O(KMNn2), which is the same as the

other previously discussed ART methods’ complexities. Related operations count to

each of the discussed methods in this chapter is shown in table 3.1,
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Method Complexity

FBP O(N(M logM + n2))

Kaczmarz O(KMNn2)

Symmetric Kaczmarz O(KMNn2)

Randomized Kaczmarz O(KMNn2)

SART O(KMNn2)

Table 3.1: Methods complexities

3.2.9 Choice of Relaxation Parameter

As introduced in the variations of Kaczmarz’s method, we will need a relaxation

parameter λk for each iteration of an ART iterative method. It’s already claimed that

if ART’s relaxation parameter is carefully adjusted to the reconstruction procedure,

it can produce high-quality images in short computational time [18].

It is known that the choice of the relaxation parameter value is critical to the

quality and speed of image reconstruction using ART. However several approaches

have been already proposed for finding the optimal value of λ, no specific method is

generally accepted.

Nevertheless, some facts are unanimously accepted that the choice of λ depends

on the purpose of image reconstruction, and it may vary from one purpose to another.

It is good know that greater values of λ in the interval (0, 2) lead to fast convergence

in ART, but also to noisy reconstruction images.

On the other hand, low values of λ lead to smooth images but slow convergence

[12]. λ can have a constant value which can be also an optimal value over all the
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iterative method or it can depend on the iteration number in order to maximize im-

age quality using the least amount of time. This can be done in a way that its value

can be chosen by previous evaluation for a certain kind of examination or it can be

calculated as a function of some parameters measured from the image obtained in the

previous iteration [12, 13]. Hence, the value of λ is chosen to optimize the algorithm

convergence speed and also to maximize the image uniformity.

As said before, λ can also be a function of the kth iteration, so we can assume

that for every integer k there is a positive real number λk. However, it is not an

easy task finding the relaxation parameter that best fits the reconstruction process

and there is not a unique choice for the best relaxation parameter [12]. Generally

speaking, the choice of relaxation parameter depends on [13]:

• Medical purpose of reconstruction

• Method of X-ray data acquisition

• Existence of noise on the measurements

• Number of iterations that we intend to do

Until now, very few methods and strategies have been proposed to find a fixed

relaxation parameter for each of the ART methods, but roughly speaking, most of

them were not proposing an adaptive strategy, which is the ideal case, for finding the

suitable relaxation parameter in each iteration.
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3.2.10 Hansen’s Strategy For Finding Relaxation Parameters

The most significant strategy, which was extended for ART methods, was proposed

by Maria Saxild-Hansen and her supervisor, Dr. Per Christian Hansen in her Mas-

ter’s thesis at Department of Informatics and Mathematical Modeling at Technical

University of Denmark [10]. It proposes a training method by use of which the op-

timal value of the relaxation parameter (λ) for two of the ART methods, Kaczmarz

and Symmetric Kaczmarz, can be determined.

The optimal value of λ in Hansen’s strategy is defined as the value that gives rise

to the fastest convergence to the smallest relative error in the solution. In this thesis,

to compare the selected λ values from Hansen’s strategy with of ours, we have used

Hansen’s AIR MATLAB package [10].

Hansen’s strategy mainly includes of two parts. The first part is determining

the resolution limit and the second one is determining the optimal value of relaxation

parameter (λ) which reaches the resolution limit using fewest number of iterations.

Resolution limit is basically a bound for how accurate a solution can get and indeed

is the minimum relative error using the smallest number of iterations depending on

the given problem and the used iterative reconstruction method.

Therefore, in the first part of this strategy, the minimum relative error using a

safe choice of relaxation parameter to determine the resolution limit is found. After

finding the minimum relative error, the upper bound (ub) of the resolution limit is

defined to be the found relative error plus 1%.
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In the second part of this training strategy, a modified version of the golden section

search to find the value of λ reaching the resolution limit within fewest number of

iterations is used [17].

3.2.11 Stopping Rules

All regularization methods make use of a certain regularization parameter that

controls the amount of stabilization imposed on the solution. In iterative methods,

the number of iterations can be used as regularization parameter. When an iterative

method is used, the user can also study on-line adequate visualizations of the iterates

as soon as they are computed, and simply halt the iteration when the desired ap-

proximations are reached. This may actually be the most appropriate stopping rule

in many practical applications, but it requires a good intuitive imagination of what

to expect.

In other situations, the user may need computer’s help to determine the optimal

approximation. The stopping rule strategies are naturally divided into two categories:

rules which are based on knowledge of the norm of the errors, and rules which do not

require such information [5]. If the error norm is known within reasonable accuracy,

perhaps the most well known stopping rule is the Discrepancy Principle (DP) [19]

and the other related stopping rule is the Monotone Error (ME) rule [9].

These two stopping rule strategies are based on some kind of knowledge of the

noise level δ which is the norm of the errors and also a user-chosen parameter τ . Since
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studying these two stopping rules is out of the discussion of this thesis, we skip from

them. Through out this thesis, we have simply used a certain number of iterations

as our stopping rule.
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Chapter 4

Numerical Study of ART Methods

4.1 Introduction

In this chapter, we explain the test phantoms and error measuring being used

throughout this thesis. Then, we assess the behavior of different ART methods with

various test phantoms and relaxation parameters for different image sizes.

Then, a new adaptive strategy for finding the best relaxation parameter both in

each iteration and in all iterations is proposed. At the end, the experimental results

obtained using the new proposed strategy are compared to the numerical results ob-

tained using another previously proposed strategy for finding an optimal relaxation

parameter.
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4.2 Phantoms

The most desirable way to test and compare the accuracy of different image recon-

struction methods is to apply each method to data obtained from a human organ.

However, a disadvantage of this approach is that, in most of the situations, we do not

know precisely what we should expect to see in our reconstructed images. Hence, we

try to use exact data from an object, which is called phantom.

As a matter of fact, without knowing the exact data, it is difficult to determine

the accuracy of a reconstructed image. Hence, we apply different methods to data

obtained from a physical object for which the internal structure is known. This way,

we know exactly what our resulting images should look like, and we are able to

recognize errors or inaccuracies in a given method and compare various methods.

Figure 4.1: Shepp-Logan phantom
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4.2. PHANTOMS

In this thesis, to assess different ART techniques, three different phantoms are

used. The first phantom is the Shepp-Logan phantom, Figure 4.1, whose structure is

completely defined by mathematical formulas1 [22]. Thus, no errors occur in collect-

ing data for this image. The Shepp-Logan phantom is composed of eleven ellipses of

various sizes, eccentricities, and locations. Since we can compute exactly the Radon

transform of any ellipse, the Shepp-Logan phantom has proven to be a reliable model,

on which to test reconstruction algorithms.

The second phantom is the para-sagittal MRI scan of a head2, Figure 4.2, with

aliasing artifacts (nose and forehead appear at the back of the head). The third

phantom is the sagittal MRI scan image of a knee3, Figure 4.3.

Figure 4.2: Head phantom

1http://en.wikipedia.org/wiki/File:Shepplogan.png
2http://en.wikipedia.org/wiki/File:StructuralMRIanimation.ogv
3http://en.wikipedia.org/wiki/File:MRKnee.jpg
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Figure 4.3: Knee phantom

The last two phantoms, unlike Shepp-Logan phantom, are not defined by math-

ematical formulas and are much closer to real MRI scanned images. Roughly speak-

ing, in this thesis, we have tried to use both mathematically defined and real test

phantoms to evaluate different ART techniques.

4.3 Measuring Image Quality

In this thesis to measure the quality of the reconstructed images by means of each

of the methods, four kinds of measurements are used.

1. The relative error of the reconstructed image:

Relative Error =
‖Xk − T‖
‖T‖

, (4.4)

where Xk are the pixel values of the reconstructed image at iteration number k,
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4.3. MEASURING IMAGE QUALITY

and T are the pixel values of the original phantom. Both X and T are vectors

of size n × n, corresponding to an n × n image, where the value of the pixels

are stored row by row. Throughout this thesis, we use the 2-norm.

2. The relative residual of the reconstructed image:

Relative Residual =
‖b− AXk‖
‖b‖

,

where Xk are the pixel values of the reconstructed image at iteration number

k, A is the projection matrix, and b is the right hand side of AX = b.

3. The relative solution differences between iteration k and iteration k + 1:,

Relative Solution Differences =
‖Xk+1 −Xk‖
‖Xk‖

,

where Xk are the pixel values of the reconstructed image (solution) at iteration

number k, and Xk+1 are the pixel values of the reconstructed image (solution)

at iteration number k + 1.

4. The discrepancy between the exact image (phantom) and the reconstructed

image, which is of high importance in this thesis. It is also called Colsher’s

discrepancy metric [4].
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δ(k) =

√√√√√√√
∑
i

(
Xk
i − Ti

)2
∑
i

(
Ti − T

)2 , (4.5)

where Xk are the reconstructed pixel values at iteration number k, T are the

true pixel values of the original phantom, T is the mean value of the original

phantom pixel values, and finally i is the index of the image pixel number for

i = 1, ..., n2.

In fact, the denominator of Colsher’s discrepancy metric formula is the stan-

dard deviation of the true image and the numerator is the root mean square

error of the reconstructed image. The closer the value of this formula is to zero,

the less is the discrepancy between reconstructed image and original phantom

[4].

4.4 Numerical Experiments

As said before, to test the previously discussed methods, we use three different

phantoms: Shepp-Logan, MRI scan of a head, and MRI scan of a knee, where the

two later ones are more practical than the first one, since they are obtained from real

MRI scans.

In the linear equation system of Ax = b being used in iterative image recon-

struction methods, the projection matrix A is typically underdetermined, meaning the

number of unknowns (pixels) is greater than the number of equations (projections).
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Otherwise it is an overdetermined system since the number of equations (projections)

is more than the number of unknowns which is mostly not the case and as common

as underdetermined systems.

size no. of equations no. of pixels system

128× 128 18000 16384 overdetermined

256× 256 18000 65536 underdetermined

512× 512 18000 262144 underdetermined

Table 4.2: Number of equations (projections) and variables (pixels) in three projection
matrices for overdetermined and underdetermined systems using 180 angles, θ =
1, 2, ..., 179, and 100 projections per angle.

However to clearly understand the situations and to cover all possible cases in

this thesis, we have tested the used phantoms with three different image sizes such

as 128 × 128, 256 × 256 and 512 × 512, where the projection matrix in a 128 × 128

phantom results in an overdetermined system, and consecutively the projection ma-

trices in 256× 256 and 512× 512 phantoms result in underdetermined systems.

In our numerical results, we have assessed all the methods using simulated X-ray

data using 180 angles, θ = 1, 2, ..., 179, and 100 projections per angle4, Table 4.2.

Due to large number of plots and data for each test phantom, in this chapter, we just

have data for MRI Head test phantom, and the rest data and plots for Shepp-Logan

and MRI Knee test phantoms are in appendix A and B, respectively.

4http://www.medwow.com/med/ct-scanner/toshiba/aquilion-64/8953.model-spec
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4.4.1 Experimental Results on MRI Head Test Phantom

Experimental results, obtained by applying Kaczmarz’s, Symmetric Kaczmarz’s,

Randomized Kaczmarz’s and SART methods to an overdetermined system corre-

sponding to 128 × 128 image size and two underdetermined system corresponding

to 256 × 256 and 512 × 512 MRI Head phantom image sizes, are plotted in Figures

4.1–4.4, 4.5–4.8 and 4.9–4.12, respectively. The results in these Figures 4.1–4.12 are

computed for relaxation parameters, λ = 0.2, 0.4, .., 1, for 20 iterations.

Reconstructed images of 128× 128, 256× 256 and 512× 512 MRI Head phan-

toms using Kaczmarz, Symmetric Kaczmarz, Randomized Kaczmarz and SART for

relaxation parameter λ = 0.4 are given in Figures 4.13, 4.14 and 4.15, respectively

for three different iterations.

Consecutively, to compute numerical results for other relaxation parameters,

λ = 1, 1.2, .., 1.8, for 20 iterations, we have applied these methods to overdetermined

system corresponding to 128 × 128 image size and underdetermined systems corre-

sponding to 256× 256 and 512× 512 MRI Head phantom image sizes. The plots are

shown in Figures 4.16–4.19, 4.20–4.23 and 4.24–4.27, respectively. Related Recon-

structed images of 128 × 128, 256 × 256 and 512 × 512 MRI Head phantoms using

Kaczmarz, Symmetric Kaczmarz, Randomized Kaczmarz and SART for relaxation

parameter λ = 1.2 are shown in Figures 4.28, 4.29 and 4.30, respectively for three

different iterations.
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Head, Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.1: ART(Kaczmrarz’s method) applied to MRI Head Phantom for a 128 ×
128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Head, Symmetric Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.2: Symmetric Kaczmarz’s method applied to MRI Head Phantom for a 128
× 128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Head, Randomized Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.3: Randomized Kaczmarz’s method applied to MRI Head Phantom for a
128 × 128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 0.2 1
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Head, SART, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.4: SART method applied to MRI Head Phantom for a 128 × 128 image and
λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, Kaczmrarz, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.5: ART(Kaczmrarz’s method) applied to MRI Head Phantom for a 256 ×
256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Head, Symmetric Kaczmrarz, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.6: Symmetric Kaczmarz’s method applied to MRI Head Phantom for a 256
× 256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Head, Randomized Kaczmrarz, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.7: Randomized Kaczmarz’s method applied to MRI Head Phantom for a
256 × 256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, SART, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.8: SART method applied to MRI Head Phantom for a 256 × 256 image and
λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, Kaczmrarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.9: ART(Kaczmrarz’s method) applied to MRI Head Phantom for a 512 ×
512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Head, Symmetric Kaczmrarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.10: Symmetric Kaczmarz’s method applied to MRI Head Phantom for a 512
× 512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Head, Randomized Kaczmrarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.11: Randomized Kaczmarz’s method applied to MRI Head Phantom for a
512 × 512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, SART, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.12: SART method applied to MRI Head Phantom for a 512 × 512 image
and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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size method worst λ max discrepancy best λ min discrepancy time/iter(s)

128 Kacz. 1 0.3173 0.4 0.2854 6.46

Symm. 1 0.3524 0.2 0.2771 10.55

Rand. 0.2 0.2682 1 0.2351 9.22

SART 0.2 0.6594 1 0.4157 0.01

256 Kacz. 1 0.5231 0.2 0.4712 43.34

Symm. 1 0.5568 0.2 0.4791 102.43

Rand. 0.2 0.4638 1 0.4620 38.66

SART 0.2 0.6783 1 0.4845 0.05

512 Kacz. 1 0.6386 0.2 0.6074 171.72

Symm. 1 0.6669 0.2 0.6084 355.11

Rand. 0.2 0.6072 1 0.6067 213.81

SART 0.2 0.6951 1 0.5614 0.25

Table 4.1: Experimental results of applying different methods to MRI Head phantom
using relaxation parameters of λ = 0.2, 0.4, .., 1 for 20 number of iterations.

The experimental results shown in Table 4.1 are obtained from the Colsher’s

discrepancy measurement method [4] in such a way that, after applying different ART

methods to different phantom sizes, for λ = 0.2, 0.4, .., 1, the minimum and the maxi-

mum discrepancies, which indicate the best and the worst relaxation parameters, are

found in iteration number 20.

As it can be seen, the results for the overdetermined system corresponding to

128 × 128 Head phantom are different from the results achieved for two underde-

termined systems corresponding to 256 × 256 and 512 × 512 MRI Head phantom

image sizes. It is obvious that the results for both underdetermined systems follow

the same pattern for their best and worst relaxation parameters, for various image

reconstruction techniques.
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Head, Kaczmrarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.16: ART(Kaczmrarz’s method) applied to MRI Head Phantom for a 128 ×
128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1

.
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Head, Symmetric Kaczmrarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.17: Symmetric Kaczmarz’s method applied to MRI Head Phantom for a 128
× 128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, Randomized Kaczmrarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.18: Randomized Kaczmarz’s method applied to MRI Head Phantom for a
128 × 128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1.2
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Head, SART, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.19: SART method applied to MRI Head Phantom for a 128 × 128 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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Head, Kaczmrarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.20: ART(Kaczmrarz’s method) applied to MRI Head Phantom for a 256 ×
256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, Symmetric Kaczmrarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.21: Symmetric Kaczmarz’s method applied to MRI Head Phantom for a 256
× 256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, Randomized Kaczmrarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.22: Randomized Kaczmarz’s method applied to MRI Head Phantom for a
256 × 256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, SART, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.23: SART method applied to MRI Head Phantom for a 256 × 256 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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Head, Kaczmarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.24: ART(Kaczmrarz’s method) applied to MRI Head Phantom for a 512 ×
512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1

72



4.4. NUMERICAL EXPERIMENTS

Head, Symmetric Kaczmarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.25: Symmetric Kaczmarz’s method applied to MRI Head Phantom for a 512
× 512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, Randomized Kaczmarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.26: Randomized Kaczmarz’s method applied to MRI Head Phantom for a
512 × 512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Head, SART, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure 4.27: SART method applied to MRI Head Phantom for a 512 × 512 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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size method worst λ max discrepancy best λ min discrepancy time/iter(s)

128 Kacz. 1.8 0.5514 1 0.3173 6.45

Symm. 1.8 0.6649 1 0.3524 18.28

Rand. 1.8 0.2515 1.2 0.2334 15.26

SART 1 0.4157 1.8 0.3467 0.02

256 Kacz. 1.8 0.7240 1 0.5231 33.34

Symm. 1.8 0.7952 1 0.5568 91.54

Rand. 1.8 0.4691 1 0.4621 48.34

SART 1 0.4845 1.8 0.4473 0.06

512 Kacz. 1.8 0.8040 1 0.6386 194.63

Symm. 1.8 0.8602 1 0.6669 420.44

Rand. 1.8 0.6098 1 0.6067 205.14

SART 1 0.5614 1.8 0.5495 0.32

Table 4.2: Experimental results of applying different methods to MRI Head phantom
using relaxation parameters of λ = 1, 1.2, .., 1.8 for 20 number of iterations.

The experimental results shown in Table 4.2 are obtained from the Colsher’s

discrepancy measurement method [4] in such a way that, after applying different ART

methods to different phantom sizes, for λ = 1, 1.2, .., 1.8, the minimum and the maxi-

mum discrepancies, which indicate the best and the worst relaxation parameters, are

found in iteration number 20.

As you see, the results for the overdetermined system corresponding to 128× 128

MRI Head phantom, when Randomized Kaczmarz’s method is applied, are different

from the results achieved for two underdetermined systems corresponding to 256×256

and 512× 512 MRI Head phantom image sizes. It is obvious that the results for both

underdetermined systems follow the same pattern for their best and worst relaxation

parameters, for various image reconstruction techniques.
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4.5. CHOOSING GOOD RELAXATION PARAMETER

Based on the Tables A.1, A.2, 4.1, 4.2, B.3 and B.4 which are the experimen-

tal results of applying different ART methods to our three Shepp-Logan, MRI Head

and MRI Knee test phantoms, for the overdetermined systems which corresponds to

128 × 128 phantom, no matter what the test phantom is, Randomized Kaczmarz’s

method has the minimum Colsher’s discrepancy error in comparison with the other

used methods in 20 iterations.

On the other hand, for the underdetermined systems which correspond to 256×256

and 512× 512 image size phantoms, Randomized Kaczmarz/SART and SART meth-

ods have the least Colsher’s discrepancy error measurements in comparison with the

other image reconstruction techniques, respectively.

As it is clear in all the above mentioned tables, the execution time of SART method

is much less than the rest of the methods execution times though as it is claimed in

Chapter 3 , its time complexity is as like as the other methods. The reason of this

contradiction is simply that MATLAB deals with vector products in a much more

efficient and faster way. From the numerical results, it can also be concluded that the

smaller the size of the phantom is, the better the performance of ART methods is.

4.5 Choosing Good Relaxation Parameter

For each iteration of ART methods studied here, ideally a separate relaxation pa-

rameter λk is required, and it is already claimed that by carefully adjusting the ART

relaxation parameter, we can obtain high quality images [18]. However, up to now,

several methods have been proposed for finding an optimum and fixed relaxation
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4.5. CHOOSING GOOD RELAXATION PARAMETER

parameter λ for all iterations, no particular method is generally accepted. In [6]

two strategies are introduced to choose the relaxation parameter, which are basically

derived for SIRT methods and cannot be used for ART methods.

4.5.1 A New Strategy For finding Relaxation Parameters

In this thesis, we have proposed a new technique that for each iterative method,

Kaczmarz’s, Symmetric Kaczmarz’s, Randomized Kaczmarz’s and SART methods,

no matter what the test problem is, can find a good value of relaxation parameters

(λ) for all iterations, and also the best value of λ in each iteration. Since it is more

practical to deal with larger size images, we apply the proposed technique only to

256× 256 and 512× 512 image size phantoms.

This technique is done by running each iterative method for the first iteration for

r particular relaxation parameters, which must be all between 0 and 2. After apply-

ing the iterative method for one iteration and getting r separate error measurements

related to each of the used relaxation parameters, by means of interpolation, we can

determine a good relaxation parameter for the first iteration with respect to its mini-

mum error measurement. Using the best found relaxation parameter in iteration one

and getting the solution for this specific relaxation parameter, we can proceed to the

next iteration.

Again, we run the same iterative method for the second iteration for the same

r particular relaxation parameters. Using interpolation, we find the best λ according

to its minimum error measurement. After getting the solution for the best relaxation
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4.5. CHOOSING GOOD RELAXATION PARAMETER

parameter in iteration number two, we perform exactly the same steps for the next

iterations up to the desired number of iterations.

All the above steps for finding λ for all iterations and also λ in each iteration

have been implemented in MATLAB for previously discussed ART methods with

different resulting image quality measurements. These implementations are available

as a MATLAB package, through the author. In our proposed strategy, we have used

spline interpolation.

4.5.2 Numerical Results of Our Strategy

To assess our proposed technique for finding a good relaxation parameter for both

all iterations and each iteration, we have applied it to our three test phantoms. The

numerical results are shown in Tables 4.3-4.8 for different phantoms and two various

image sizes. According to the above mentioned tables, each test phantom has distinct

best chosen relaxation parameter in each iteration.

In Tables 4.3, 4.5 and 4.7, which belong to Shepp-Logan, MRI Head and MRI

Knee phantoms for 256× 256 image size, respectively, the chosen relaxation parame-

ters for Shepp-Logan phantom are a bit different from the results obtained for Head

and Knee real test phantoms. On the other hand, in Tables 4.4, 4.6 and 4.8 belonging

to Shepp-Logan, Head and Knee test phantoms, respectively for 512×512 image size,

the best relaxation parameters in each iteration for Shepp-Logan phantom are also

somewhat different from the chosen relaxation parameters for the other two real test

problems.
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4.5. CHOOSING GOOD RELAXATION PARAMETER

As a matter of fact, based on the numerical results, we can claim that the obtained

experimental results of MRI Head and Knee real test phantoms are much closer and

more similar to each other in their corresponding iteration and in spite of the fact

that the phantoms are totally different from each other, but they behave similarly to

each other.

iter. selected λ(Kacz.) selected λ(Symm.) selected λ(Rand.) selected λ(SART.)

1 0.3252 0.2981 0.5820 2.0000

2 0.6462 0.5587 0.8018 1.9950

3 0.3277 0.1936 1.2227 1.9745

4 0.5900 0.2437 1.1735 1.9627

5 0.3341 0.2110 1.0170 1.9563

6 0.3231 0.2082 0.9955 1.9515

7 0.2992 0.1984 1.0081 1.9485

8 0.2853 0.1925 1.1676 1.9458

9 0.2723 0.1864 0.9921 1.9443

10 0.2622 0.1811 0.8855 1.9426

11 0.2542 0.1762 1.1652 1.9418

12 0.2474 0.1716 1.2304 1.9406

13 0.2418 0.1673 1.1993 1.9403

14 0.2370 0.1633 1.1804 1.9395

15 0.2328 0.1595 1.1890 1.9394

16 0.2292 0.1560 1.1854 1.9388

17 0.2260 0.1526 1.1511 1.9390

18 0.2232 0.1494 1.4137 1.9385

19 0.2208 0.1465 1.1827 1.9389

20 0.2186 0.1437 0.9969 1.9385

Average 0.2998 0.2029 1.0870 1.9508

Table 4.3: Experimental results of choosing the best λ in each iteration by applying
different methods to Shepp-Logan phantom for a 256× 256 image.
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iter. selected λ(Kacz.) selected λ(Symm.) selected λ(Rand.) selected λ(SART.)

1 0.3433 0.3033 0.6451 2.0000

2 0.6959 0.3757 1.2019 1.9855

3 0.4412 0.2317 0.8077 1.9648

4 0.3426 0.2288 1.2270 1.9531

5 0.3050 0.2139 0.6141 1.9467

6 0.2845 0.2065 1.0642 1.9417

7 0.2676 0.2005 0.8096 1.9387

8 0.2557 0.1959 1.1239 1.9359

9 0.2467 0.1925 0.8907 1.9342

10 0.2399 0.1898 0.9939 1.9324

11 0.2349 0.1877 0.9044 1.9314

12 0.2314 0.1861 0.9708 1.9301

13 0.2292 0.1848 1.4175 1.9295

14 0.2281 0.1839 1.0231 1.9285

15 0.2281 0.1832 0.7463 1.9281

16 0.2291 0.1826 1.0124 1.9274

17 0.2310 0.1823 1.2334 1.9271

18 0.2337 0.1820 0.8431 1.9265

19 0.2373 0.1818 1.1931 1.9264

20 0.2415 0.1817 0.9890 1.9258

Average 0.2873 0.2087 0.9856 1.9407

Table 4.4: Experimental results of choosing the best λ in each iteration by applying
different methods to Shepp-Logan phantom for a 512× 512 image.
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iter. selected λ(Kacz.) selected λ(Symm.) selected λ(Rand.) selected λ(SART.)

1 0.2441 0.2369 0.2852 2.0000

2 0.5436 0.3086 1.0631 1.9394

3 0.2905 0.2117 0.8707 1.9327

4 0.3556 0.2129 0.8415 1.9300

5 0.3215 0.1937 1.0441 1.9285

6 0.3016 0.1877 1.0625 1.9274

7 0.2825 0.1792 1.2276 1.9268

8 0.2676 0.1734 0.9971 1.9262

9 0.2567 0.1676 0.9499 1.9259

10 0.2476 0.1628 0.7684 1.9256

11 0.2403 0.1582 1.2034 1.9255

12 0.2342 0.1541 1.1163 1.9252

13 0.2290 0.1503 1.2848 1.9252

14 0.2245 0.1468 1.1076 1.9251

15 0.2207 0.1436 1.0244 1.9252

16 0.2173 0.1407 1.1439 1.9251

17 0.2143 0.1379 1.1164 1.9252

18 0.2117 0.1355 1.5505 1.9252

19 0.2094 0.1332 1.3926 1.9254

20 0.2074 0.1311 0.9892 1.9254

Average 0.2660 0.1733 1.0520 1.9308

Table 4.5: Experimental results of choosing the best λ in each iteration by applying
different methods to MRI Head phantom for a 256× 256 image.
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iter. selected λ(Kacz.) selected λ(Symm.) selected λ(Rand.) selected λ(SART.)

1 0.2575 0.2527 0.5869 2.0000

2 0.6268 0.2866 1.0224 1.9367

3 0.3564 0.2178 0.8181 1.9300

4 0.3155 0.2115 0.8370 1.9272

5 0.2833 0.2021 1.2090 1.9256

6 0.2644 0.1969 1.2227 1.9244

7 0.2512 0.1929 1.0018 1.9237

8 0.2416 0.1900 0.9824 1.9230

9 0.2344 0.1878 0.6850 1.9226

10 0.2291 0.1861 0.9951 1.9222

11 0.2255 0.1848 0.9959 1.9219

12 0.2231 0.1838 1.0023 1.9216

13 0.2219 0.1830 1.2032 1.9214

14 0.2218 0.1825 0.9726 1.9212

15 0.2226 0.1821 0.7861 1.9211

16 0.2243 0.1818 0.8255 1.9209

17 0.2268 0.1815 1.2802 1.9208

18 0.2301 0.1814 0.9076 1.9207

19 0.2341 0.1813 0.5998 1.9207

20 0.2388 0.1812 1.2584 1.9205

Average 0.2664 0.1974 0.9596 1.9273

Table 4.6: Experimental results of choosing the best λ in each iteration by applying
different methods to MRI Head phantom for a 512× 512 image.
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iter. selected λ(Kacz.) selected λ(Symm.) selected λ(Rand.) selected λ(SART.)

1 0.2378 0.2282 0.5599 2.0000

2 0.5219 0.2885 0.9317 1.9368

3 0.3030 0.2088 1.1651 1.9300

4 0.3572 0.2088 1.2148 1.9274

5 0.3153 0.1927 1.2701 1.9260

6 0.3007 0.1867 0.7411 1.9251

7 0.2784 0.1791 0.9600 1.9245

8 0.2657 0.1736 0.8816 1.9241

9 0.2550 0.1682 1.0787 1.9238

10 0.2465 0.1635 0.9613 1.9235

11 0.2397 0.1592 1.3657 1.9234

12 0.2339 0.1552 1.0928 1.9233

13 0.2291 0.1516 1.2118 1.9233

14 0.2249 0.1483 1.2191 1.9232

15 0.2213 0.1452 0.8043 1.9232

16 0.2181 0.1424 1.2730 1.9232

17 0.2154 0.1398 1.3744 1.9233

18 0.2130 0.1375 1.2022 1.9233

19 0.2109 0.1354 1.4145 1.9235

20 0.2091 0.1335 0.7713 1.9235

Average 0.2648 0.1723 1.0747 1.9287

Table 4.7: Experimental results of choosing the best λ in each iteration by applying
different methods to MRI Knee phantom for a 256× 256 image.
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iter. selected λ(Kacz.) selected λ(Symm.) selected λ(Rand.) selected λ(SART.)

1 0.2509 0.2453 0.2822 2.0000

2 0.5864 0.2709 0.9342 1.9345

3 0.3703 0.2179 0.9882 1.9278

4 0.3203 0.2108 0.8236 1.9252

5 0.2849 0.2022 1.1202 1.9238

6 0.2660 0.1971 1.1104 1.9229

7 0.2525 0.1933 0.9986 1.9223

8 0.2428 0.1904 1.1392 1.9218

9 0.2357 0.1882 0.9900 1.9215

10 0.2305 0.1866 0.9694 1.9212

11 0.2270 0.1853 1.3319 1.9210

12 0.2248 0.1844 1.3657 1.9208

13 0.2237 0.1837 0.5921 1.9206

14 0.2238 0.1832 0.7315 1.9205

15 0.2249 0.1828 0.9359 1.9204

16 0.2269 0.1825 0.8247 1.9203

17 0.2297 0.1824 1.3283 1.9202

18 0.2334 0.1823 1.0090 1.9201

19 0.2378 0.1822 0.8195 1.9201

20 0.2430 0.1823 1.2591 1.9200

Average 0.2668 0.1967 0.9777 1.9263

Table 4.8: Experimental results of choosing the best λ in each iteration by applying
different methods to MRI Knee phantom for a 512× 512 image.

Tables 4.3, 4.4, 4.5, 4.6,4.7 and 4.8 represent the numerical results of applying

the new proposed technique for finding the optimal value of λ for all iterations and

also the best value of λ in each iteration for different ART methods. In each of the

above mentioned tables, the best relaxation parameter in each iteration is found by

means of interpolation for 20 number of iterations and finally in the last row of each

table for each particular image reconstruction method, the average amount of all the

88



4.5. CHOOSING GOOD RELAXATION PARAMETER

selected relaxation parameters for different iterations is given.

λ can be defined as a function of iteration number, that for each particular

iteration k there must be a real number λk between 0 and 2. To be able to define

such this function we have to find a unique choice for the best relaxation parameter

in each iteration which is not basically an easy task to do since there is not a unique

choice.

phantom size mean λ(Kacz.) mean λ(Symm.) mean λ(Rand.) mean λ(SART.)

Shepp 256 0.2998 0.2029 1.0870 1.9508

512 0.2873 0.2087 0.9856 1.9407

Head 256 0.2660 0.1733 1.0520 1.9308

512 0.2664 0.1974 0.9596 1.9273

Knee 256 0.2648 0.1723 1.0747 1.9287

512 0.2668 0.1967 0.9777 1.9263

Table 4.9: Average amount of the selected λ in 20 iterations for Kaczmarz, Symmetric
Kaczmarz, Randomized Kaczmarz and SART methods.

As it is clear from Table 4.9, the average amount of the selected relaxation pa-

rameters for different ART methods for Shepp-Logan phantom are a little different

from the other phantoms. Indeed, the two real test phantoms of MRI Head and MRI

knee have very similar chosen relaxation parameters. However, roughly speaking, the

numerical results of all the test phantoms are close to each other, the results for real

test phantoms are much closer to each other.

To compare the strategy proposed by Maria Saxild-Hansen in her Master’s thesis

[10], which is a training method for finding an optimal value for the relaxation param-

eter, with the method which is proposed in this thesis, using [10], and the associated
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phantom size λ(Kacz.) λ(Symm.) λ(Rand.) λ(SART.)

Shepp 256 0.1459 0.1033 0.1885 1.8115

512 0.1459 0.1459 0.1459 1.6312

Head 256 0.0770 0.0344 0.1033 1.6049

512 0.0770 0.1459 0.1459 1.5197

Knee 256 0.0770 0.0344 0.0770 1.5197

512 0.0770 0.1033 0.1459 1.4508

Table 4.10: Hansen’s selected λs in 20 iterations for Kaczmarz, Symmetric Kaczmarz,
Randomized Kaczmarz and SART methods.

software, we have tried to find and choose the optimal value of λ for each specific ART

methods. The numerical results of applying Hansen’s method to our three different

test phantoms for two various sizes are brought in Table 4.10.

Comparing Tables 4.9 and 4.10, it is clear that results are mostly different with

each other, and the selected relaxation parameters for each ART method in Table 4.9

for various phantoms and sizes are much closer to each other.

4.5.3 Performance Comparisons

To evaluate the selected relaxation parameters obtained from Hansen’s and our strate-

gies for finding a fixed and optimal relaxation parameter for each of ART methods, we

apply numerical results in Tables 4.9 and 4.10 to our three test phantoms to compare

the reconstructed images, for each ART method, in terms of relative error, relative

residual and image discrepancy for 512× 512 images.

The experimental results shown in Tables 4.11, 4.12, 4.13 and 4.14 correspond to

applying of Kaczmarz’s, Symmetric Kaczmarz’s, Randomized Kaczmarz’s and SART

90



4.5. CHOOSING GOOD RELAXATION PARAMETER

methods, respectively.

phantom method selected λ relative error relative residual discrepancy

Shepp Hansen’s 0.1459 0.5830 0.0062 0.6729

our 0.2873 0.5830 0.0065 0.6729

Head Hansen’s 0.0770 0.3867 0.0086 0.6091

our 0.2664 0.3858 0.0067 0.6077

Knee Hansen’s 0.0770 0.3354 0.0078 0.5702

our 0.2668 0.3345 0.0067 0.5687

Table 4.11: Comparison of Hansen’s and our proposed method in iteration 20 by
applying Kaczmarz’s method to a 512× 512 image.

Roughly speaking, in Tables 4.11 and 4.13, the results obtained from applying

Kaczmarz’s and Randomized Kaczmarz’s methods using our strategy, for the relative

error, relative residual and image discrepancy of the reconstructed images, are less

than the results achieved from Hansen’s strategy.

phantom method selected λ relative error relative residual discrepancy

Shepp Hansen’s 0.1459 0.5829 0.0051 0.6728

our 0.2087 0.5831 0.0096 0.6731

Head Hansen’s 0.1459 0.3855 0.0054 0.6073

our 0.1974 0.3862 0.0093 0.6083

Knee Hansen’s 0.1033 0.3339 0.0032 0.5677

our 0.1967 0.3350 0.0092 0.5695

Table 4.12: Comparison of Hansen’s and our proposed method in iteration 20 by
applying Symmetric Kaczmarz’s method to a 512× 512 image.

On the other hand, according to Tables 4.12 and 4.14, the numerical results,

obtained from applying Symmetric Kaczmarz and SART methods using Hansen’s
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strategy, are less than the numerical results which are obtained from our strategy.

phantom method selected λ relative error relative residual discrepancy

Shepp Hansen’s 0.1459 0.5835 0.0071 0.6736

our 0.9856 0.5828 0.0006 0.6727

Head Hansen’s 0.1459 0.3857 0.0035 0.6076

our 0.9596 0.3852 0.0004 0.6067

Knee Hansen’s 0.1459 0.3350 0.0034 0.5695

our 0.9777 0.3340 0.0008 0.5678

Table 4.13: Comparison of Hansen’s and our proposed method in iteration 20 by
applying Randomized Kaczmarz’s method to a 512× 512 image.

phantom method selected λ relative error relative residual discrepancy

Shepp Hansen’s 1.6312 0.5646 0.0242 0.6516

our 1.9407 0.5813 0.2530 0.6709

Head Hansen’s 1.5197 0.3500 0.0114 0.5513

our 1.9273 0.3876 0.2026 0.6105

Knee Hansen’s 1.4508 0.2897 0.0102 0.4925

our 1.9263 0.3362 0.1998 0.5715

Table 4.14: Comparison of Hansen’s and our proposed method in iteration 20 by
applying SART method to a 512× 512 image.

The experimental results of comparing Hansen’s and our proposed methods for

finding an optimal relaxation parameter for each ART method indicate that however

the obtained numerical results are generally close to each other, our proposed strat-

egy for finding a suitable fixed relaxation parameter in Kaczmarz’s and Randomized

Kaczmarz’s methods plays a better role in terms of relative error, relative residual

and image discrepancy of the reconstructed image.
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Chapter 5

Numerical Study of FBP

Algorithm

5.1 Test Phantoms

In this chapter, to assess FBP algorithm we have used our three previously discussed

phantoms which are Shepp-Logan phantom, Figure 4.1, whose structure is completely

defined by mathematical formulas, MRI Head phantom which is the para-sagittal MRI

scan of a head, Figure 4.2 and MRI Knee phantom which is the sagittal MRI scan

image of a knee, Figure 4.3.

5.2 Measuring Image Quality

To measure the quality of the reconstructed images obtained by means of FBP

algorithm for each of the test phantoms, two ways of error measuring, which are in

common with ART methods error measuring ways, are basically used in this chapter.
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The first one is the relative error of the reconstructed image, Equation 4.4, and the

second one is the discrepancy between the exact phantom and the reconstructed

image, Equation 4.5, which is also called Colsher’s discrepancy metric [4].

5.3 Experimental Results of Test Phantoms

Experimental results of applying filtered back projection algorithm to Shepp-Logan,

MRI Head and MRI Knee phantoms for three different image sizes are shown in Ta-

ble 5.1. In the above mentioned table, the relative error and Colsher’s discrepancy of

each of the reconstructed images are brought.

phantom size relative error discrepancy

Shepp 128 0.4746 0.6867

256 0.5104 0.6733

512 0.5005 0.6284

Head 128 0.1162 0.3772

256 0.0851 0.2707

512 0.0573 0.1794

Knee 128 0.0850 0.2719

256 0.0613 0.1817

512 0.0544 0.1370

Table 5.1: Numerical results of applying FBP to three test phantoms.

As it is clear from Table 5.1, the smaller the sizes of the phantoms are, the

greater the relative errors and Colsher’s discrepancies of the reconstructed images

become.
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(a) Exact Shepp-Logan phantom (b) Reconstructed Shepp-Logan phantom

(c) Exact MRI Head phantom (d) Reconstructed MRI Head phantom

(e) Exact MRI Knee phantom (f) Reconstructed MRI Knee phantom

Figure 5.1: Reconstructed images after applying FBP to our test phantoms for 512×
512 images.
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(a) Exact Shepp-Logan phantom (b) Reconstructed Shepp-Logan phantom

(c) Exact MRI Head phantom (d) Reconstructed MRI Head phantom

(e) Exact MRI Knee phantom (f) Reconstructed MRI Knee phantom

Figure 5.2: Reconstructed images after applying FBP to our test phantoms for 256×
256 images.
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5.3. EXPERIMENTAL RESULTS OF TEST PHANTOMS

(a) Exact Shepp-Logan phantom (b) Reconstructed Shepp-Logan phantom

(c) Exact MRI Head phantom (d) Reconstructed MRI Head phantom

(e) Exact MRI Knee phantom (f) Reconstructed MRI Knee phantom

Figure 5.3: Reconstructed images after applying FBP to our test phantoms for 128×
128 images.
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5.3. EXPERIMENTAL RESULTS OF TEST PHANTOMS

The reconstructed images of applying FBP to our three test phantoms for 512×

512, 256 × 256 and 128 × 128 image sizes are represented in Figures 5.1, 5.2 and

5.3, respectively. However, Table 5.1 indicates that the less the sizes of the images

become, the more the errors of the reconstructed images are, the resulting images in

the above figures are in contradiction with the numerical results achieved in Table

5.1. As a matter of fact, the smaller the size of the phantom is, the more visible and

smooth the reconstructed image becomes even though losing its sharpness.

phantom size Kacz. Symm. Rand. SART FBP

Shepp 256 0.5560 0.5567 0.5531 0.5603 0.6733

512 0.6730 0.6732 0.6727 0.6522 0.6284

Head 256 0.4742 0.4780 0.4619 0.4563 0.2707

512 0.6077 0.6087 0.6067 0.5572 0.1794

Knee 256 0.4245 0.4295 0.4070 0.3957 0.1817

512 0.5687 0.5700 0.5678 0.5011 0.1370

Table 5.2: Comparison of Colsher’s discrepancy between ART methods and FBP
algorithm for three test phantoms.

To assess the image quality of the reconstructed images obtained using FBP

algorithm and different ART methods which were previously discussed and inspected

in chapter 4, we have compared their corresponding Colsher’s discrepancies which is

the most significant error measuring strategy in our thesis.

According to Table 5.2, generally speaking, FBP has the least discrepancy error

in comparison with all the iterative methods, specially in MRI Head and Knee phan-

toms which are our two practical test phantoms.
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Chapter 6

Conclusion

6.1 ART versus FBP

As said earlier, the first CT scanners essentially used an ART approach for their im-

age reconstruction processes. However, today’s commercial scanners are programmed

to use transform based methods since Fourier transform methods are generally faster

to implement on computer.

On the other hand, Algebraic Reconstruction Technique (ART) methods simply

get applied to a smaller set of equations and unlike the transform based methods like

Filtered Back-Projection (FBP), based on a continuous model, does not necessarily

require complete X-ray data collection.

As a matter of fact, there are situations where it is not possible to measure a large

number of projections or the projections are not uniformly distributed over 180 or 360
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6.2. THESIS RESULTS

degrees and indeed the range of angles used in a CT scan is restricted. Hence, trans-

form based methods like FBP that rely on convolution cannot get applied without the

completion of data, so for problems of this type, it is more amenable to have solution

by ART such a concrete situation is earth resources imaging using cross bore-hole

measurements [7].

However, ART simply gets applied to a smaller set of equations in case of in-

complete X-ray data collection, it converges too slowly, and based on the numerical

results of this thesis in comparison with transform based methods like Filtered Back

Projection have more relative error and discrepancy error measurements. Roughly

speaking, ART methods lack the accuracy and speed of implementation, while the

Filtered Back Projection can be adapted fairly easily to any desired level of accuracy

and is faster than all ART methods, accroding to its complexity shown in Table 3.1.

6.2 Thesis Results

In the overdetermined systems corresponding to 128× 128 image size in our three

test phantoms, among Kaczmarz’s, Symmetric Kaczmarz’s, Randomized Kaczmarz

and SART methods, Randomized Kaczmarz’s methods shows the least Colsher’s dis-

crepancy and relative error.

On the other hand, in the underdetermined systems corresponding to 256×256

and 512 × 512 image sizes, Randomized Kaczmarz/SART and SART methods have

the least Colsher’s discrepancy error measurements in comparison with the other ART

methods.
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6.2. THESIS RESULTS

Experimental results of applying our proposed strategy for finding an adap-

tive and optimal relaxation parameter for each of ART methods showed that the

obtained numerical results of MRI Head and Knee real test phantoms are closer to

each other in their corresponding iteration and indeed follow the same pattern in

spite of the fact that the phantoms are totally different from each other. It can also

be concluded that the ranges of the selected relaxation parameters for Kaczmarz’s,

Symmetric Kaczmarz’s, Randomized Kaczmarz’s and SART methods can be reduced

to (0.2, 0.7), (0.1, 0.6), (0.5, 1.5) and (1.9, 2), respectively.

Relaxation parameter (λ) should idealistically be defined as a function of iter-

ation number, that for each particular iteration k there must be a real number λ(k)

between 0 and 2. But, since the result for each iteration can vary from a test phan-

tom to another one and essentially there is not a unique choice for the best relaxation

parameter, it is not an easy task to find a unique choice for the best relaxation pa-

rameter in each iteration.

Comparing numerical results obtained from our proposed strategy and the pre-

viously proposed strategy by Maria Saxild-Hansen, for finding a fixed relaxation pa-

rameter, showed that the selected relaxation parameters are different from each other.

Running all ART methods with their corresponding selected relaxation parameter

from each of the proposed strategies led to this fact that our proposed strategy, for

finding a fixed relaxation parameter, in Kaczmarz’s and Randomized Kaczmarz’s

methods has slightly a better performance in terms of relative error, relative residual
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6.3. SUGGESTIONS FOR FUTURE WORK

and image discrepancy of the reconstructed image. But generally speaking, differ-

ent λs obtained from Hansen’s and our strategies, for each phantom and image size,

produce nearly the same numerical results.

6.3 Suggestions for Future Work

There are some issues about ART methods that can be worked on in future works as

following:

• To have a better understanding whether selected relaxation parameters in each

ART method relatively follow the same pattern no matter what the image size

is, we can test the phantoms for a higher resolution of 1024× 1024.

• Try to find a function according to the selected relaxation parameters obtained

by applying our proposed strategy for finding the best relaxation parameter in

each iteration.

• Try to find an adaptive strategy for finding the relaxation parameters for similar

phantoms.

• To speed up the implementation time for ART methods, GPU programming for

iterative methods is also an interest.
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Appendix A

Experimental Results on

Shepp-Logan Test Phantom

Experimental results, obtained by applying Kaczmarz’s, Symmetric Kaczmarz’s,

Randomized Kaczmarz’s and SART methods to an overdetermined system corre-

sponding to 128× 128 image size and two underdetermined system corresponding to

256 × 256 and 512 × 512 Shepp-Logan phantom image sizes, are plotted in Figures

A.1—A.4, A.5–A.8 and A.9–A.12, respectively. The results in these Figures A.1–A.12

are computed for relaxation parameters, λ = 0.2, 0.4, .., 1, for 20 iterations.

Reconstructed images of 128×128, 256×256 and 512×512 Shepp-Logan phan-

toms using Kaczmarz, Symmetric Kaczmarz, Randomized Kaczmarz and SART for

relaxation parameter λ = 0.4 are given in Figures A.13, A.14 and A.15, respectively

for three different iterations.

Consecutively, to compute numerical results for other relaxation parameters,
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λ = 1, 1.2, .., 1.8, for 20 iterations, we have applied these methods to overdetermined

system corresponding to 128 × 128 image size and underdetermined systems corre-

sponding to 256 × 256 and 512 × 512 Shepp-Logan phantom image sizes. The plots

are shown in Figures A.16–A.19, A.20–A.23 and A.24–A.27, respectively. Related

Reconstructed images of 128× 128, 256× 256 and 512× 512 Shepp-Logan phantoms

using Kaczmarz, Symmetric Kaczmarz, Randomized Kaczmarz and SART for relax-

ation parameter λ = 1.2 are shown in Figures A.28, A.29 and A.30, respectively for

three different iterations.
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Shepp Logan, Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.1: ART(Kaczmarz’s method) applied to Shepp-Logan phantom for a 128 ×
128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 0.2 0.2 1
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Shepp Logan, Symmetric Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.2: Symmetric Kaczmarz’s method applied to Shepp-Logan phantom for a
128 × 128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.8 0.2 0.2 0.8
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Shepp Logan, Randomized Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.3: Randomized Kaczmarz’s method applied to Shepp-Logan phantom for a
128 × 128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 0.2 1
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Shepp Logan, SART, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.4: SART method applied to Shepp-Logan phantom for a 128 × 128 image
and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, Kaczmarz’s, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.5: ART(Kaczmarz’s method) applied to Shepp-Logan phantom for a 256 ×
256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Shepp Logan, Symmetric Kaczmarz, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.6: Symmetric Kaczmarz’s method applied to Shepp-Logan phantom for a
256 × 256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Shepp Logan, Randomized Kaczmarz, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.7: Randomized Kaczmarz’s method applied to Shepp-Logan phantom for a
256 × 256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, SART, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.8: SART method applied to Shepp-Logan phantom for a 256 × 256 image
and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, Kaczmarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.9: ART(Kaczmarz’s method) applied to Shepp-Logan phantom for a 512 ×
512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2

113



Shepp Logan, Symmetric Kaczmarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.10: Symmetric Kaczmarz’s method applied to Shepp-Logan phantom for a
512 × 512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Shepp Logan, Randomized Kaczmarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.11: Randomized Kaczmarz’s method applied to Shepp-Logan phantom for
a 512 × 512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, SART, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.12: SART method applied to Shepp-Logan phantom for a 512 × 512 image
and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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size method worst λ max discrepancy best λ min discrepancy time/iter(s)

128 Kacz. 0.2 0.3615 1 0.3209 9.6

Symm. 0.2 0.3422 0.8 0.3191 18.81

Rand. 0.2 0.3570 1 0.3112 18.517

SART 0.2 0.7822 1 0.5608 0.024

256 Kacz. 1 0.5666 0.2 0.5551 36.23

Symm. 1 0.5760 0.2 0.5564 65.49

Rand. 0.2 0.5546 1 0.5532 41.71

SART 0.2 0.7878 1 0.6036 0.067

512 Kacz. 1 0.6795 0.2 0.6728 151.95

Symm. 1 0.6862 0.2 0.6730 406.54

Rand. 0.2 0.6731 1 0.6727 189.84

SART 0.2 0.7964 1 0.6658 0.25

Table A.1: Experimental results of applying different methods to Shepp-Logan phan-
tom using relaxation parameters of λ = 0.2, 0.4, .., 1 for 20 number of iterations.

The experimental results shown in Table A.1 are obtained from the Colsher’s

discrepancy measurement method [4] in such a way that, after applying different ART

methods to different phantom sizes, for λ = 0.2, 0.4, .., 1, the minimum and the maxi-

mum discrepancies, which indicate the best and the worst relaxation parameters, are

found in iteration number 20.

As it can be seen, the results for the overdetermined system corresponding to

128×128 Shepp-Logan phantom are different from the results achieved for two under-

determined systems corresponding to 256×256 and 512×512 Shepp-Logan phantom

image sizes. It is obvious that the results for both underdetermined systems follow

the same pattern for their best and worst relaxation parameters, for various image

reconstruction techniques.
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Shepp Logan, Kaczmarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.16: ART(Kaczmarz’s method) applied to Shepp-Logan phantom for a 128
× 128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, Symmetric Kaczmarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.17: Symmetric Kaczmarz’s method applied to Shepp-Logan phantom for a
128 × 128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, Randomized Kaczmarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.18: Randomized Kaczmarz’s method applied to Shepp-Logan phantom for
a 128 × 128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1.6
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Shepp Logan, SART, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.19: SART method applied to Shepp-Logan phantom for a 128 × 128 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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Shepp Logan, Kaczmarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.20: ART(Kaczmarz’s method) applied to Shepp-Logan phantom for a 256
× 256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, Symmetric Kaczmarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.21: Symmetric Kaczmarz’s method applied to Shepp-Logan phantom for a
256 × 256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, Randomized Kaczmarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.22: Randomized Kaczmarz’s method applied to Shepp-Logan phantom for
a 256 × 256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, SART, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.23: SART method applied to Shepp-Logan phantom for a 256 × 256 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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Shepp Logan, Kaczmarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.24: ART(Kaczmarz’s method) applied to Shepp-Logan phantom for a 512
× 512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, Symmetric Kaczmarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.25: Symmetric Kaczmarz’s method applied to Shepp-Logan phantom for a
512 × 512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, Randomized Kaczmarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.26: Randomized Kaczmarz’s method applied to Shepp-Logan phantom for
a 512 × 512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Shepp Logan, SART, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure A.27: SART method applied to Shepp-Logan phantom for a 512 × 512 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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size method worst λ max discrepancy best λ min discrepancy time/iter(s)

128 Kacz. 1.8 0.4144 1 0.3209 9.14

Symm. 1.8 0.4893 1 0.3234 18.46

Rand. 1 0.3125 1.6 0.3041 13.56

SART 1 0.5608 1.8 0.4839 0.02

256 Kacz. 1.8 0.6249 1 0.5666 32.87

Symm. 1.8 0.6546 1 0.5760 62.71

Rand. 1.8 0.5559 1 0.5532 34.63

SART 1 0.6036 1.8 0.5595 0.05

512 Kacz. 1.8 0.7243 1 0.6795 205.38

Symm. 1.8 0.7449 1 0.6862 454.46

Rand. 1.8 0.6743 1 0.6727 212.17

SART 1 0.6658 1.8 0.6502 0.24

Table A.2: Experimental results of applying different methods to Shepp-Logan phan-
tom using relaxation parameters of λ = 1, 1.2, .., 1.8 for 20 number of iterations.

The experimental results shown in Table A.2 are obtained from the Colsher’s

discrepancy measurement method [4] in such a way that, after applying different ART

methods to different phantom sizes, for λ = 1, 1.2, .., 1.8, the minimum and the maxi-

mum discrepancies, which indicate the best and the worst relaxation parameters, are

found in iteration number 20.

As it can be seen, the results for the overdetermined system corresponding to

128× 128 Shepp-Logan phantom, when Randomized Kaczmarz’s method is applied,

are different from the results achieved for two underdetermined systems corresponding

to 256× 256 and 512× 512 Shepp-Logan phantom image sizes. It is obvious that the

results for both underdetermined systems follow the same pattern for their best and

worst relaxation parameters, for various image reconstruction techniques.
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Appendix B

Experimental Results on MRI

Knee Test Phantom

Experimental results, obtained by applying Kaczmarz’s, Symmetric Kaczmarz’s,

Randomized Kaczmarz’s and SART methods to an overdetermined system corre-

sponding to 128 × 128 image size and two underdetermined system corresponding

to 256 × 256 and 512 × 512 MRI Knee phantom image sizes, are plotted in Fig-

ures B.31–B.34, B.35–B.38 and B.39–B.42, respectively. The results in these Figures

B.31–B.42 are computed for relaxation parameters, λ = 0.2, 0.4, .., 1, for 20 iterations.

Reconstructed images of 128× 128, 256× 256 and 512× 512 MRI Knee phan-

toms using Kaczmarz, Symmetric Kaczmarz, Randomized Kaczmarz and SART for

relaxation parameter λ = 0.4 are given in Figures B.43, B.44 and B.45, respectively

for three different iterations.

Consecutively, to compute numerical results for other relaxation parameters,
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λ = 1, 1.2, .., 1.8, for 20 iterations, we have applied these methods to overdetermined

system corresponding to 128 × 128 image size and underdetermined systems corre-

sponding to 256× 256 and 512× 512 MRI Knee phantom image sizes. The plots are

shown in Figures B.46–B.49, B.50–B.53 and B.54–B.57, respectively. Related Recon-

structed images of 128 × 128, 256 × 256 and 512 × 512 MRI Knee phantoms using

Kaczmarz, Symmetric Kaczmarz, Randomized Kaczmarz and SART for relaxation

parameter λ = 1.2 are represented in Figures B.58, B.59 and B.60, respectively for

three different iterations.
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Knee, Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.31: ART(Kaczmrarz’s method) applied to MRI Knee Phantom for a 128 ×
128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Knee, Symmetric Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.32: Symmetric Kaczmarz’s method applied to MRI Knee Phantom for a
128 × 128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Knee, Randomized Kaczmarz, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.33: Randomized Kaczmarz’s method applied to MRI Knee Phantom for a
128 × 128 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 0.2 1
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Knee, SART, 128× 128 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.34: SART method applied to MRI Knee Phantom for a 128 × 128 image
and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, Kaczmrarz, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.35: ART(Kaczmrarz’s method) applied to MRI Knee Phantom for a 256 ×
256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Knee, Symmetric Kaczmrarz, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.36: Symmetric Kaczmarz’s method applied to MRI Knee Phantom for a
256 × 256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Knee, Randomized Kaczmrarz, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.37: Randomized Kaczmarz’s method applied to MRI Knee Phantom for a
256 × 256 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, SART, 256× 256 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.38: SART method applied to MRI Knee Phantom for a 256 × 256 image
and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1

146



Knee, Kaczmrarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.39: ART(Kaczmrarz’s method) applied to MRI Knee Phantom for a 512 ×
512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Knee, Symmetric Kaczmarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.40: Symmetric Kaczmarz’s method applied to MRI Knee Phantom for a
512 × 512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 0.2 0.2 0.2 0.2
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Knee, Randomized Kaczmarz, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.41: Randomized Kaczmarz’s method applied to MRI Knee Phantom for a
512 × 512 image and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, SART, 512× 512 image, λ = 0.2, 0.4, .., 1

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.42: SART method applied to MRI Knee Phantom for a 512 × 512 image
and λ = 0.2, 0.4, .., 1.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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size method worst λ max discrepancy best λ min discrepancy time/iter(s)

128 Kacz. 1 0.3009 0.2 0.2443 5.54

Symm. 1 0.3566 0.2 0.2398 16.36

Rand. 0.2 0.2145 1 0.1844 14.39

SART 0.2 0.6136 1 0.3549 0.02

256 Kacz. 1 0.4929 0.2 0.4204 38.68

Symm. 1 0.5401 0.2 0.4312 82.06

Rand. 0.2 0.4100 1 0.4073 46.37

SART 0.2 0.6286 1 0.4176 0.11

512 Kacz. 1 0.6107 0.2 0.5683 193.62

Symm. 1 0.6471 0.2 0.5696 348.84

Rand. 0.2 0.5688 1 0.5678 200.42

SART 0.2 0.6478 1 0.5012 0.24

Table B.3: Experimental results of applying different methods to MRI Knee phantom
using relaxation parameters of λ = 0.2, 0.4, .., 1 for 20 number of iterations.

The experimental results shown in Table B.3 are obtained from the Colsher’s

discrepancy measurement method [4] in such a way that, after applying different ART

methods to different phantom sizes, for λ = 0.2, 0.4, .., 1, the minimum and the maxi-

mum discrepancies, which indicate the best and the worst relaxation parameters, are

found in iteration number 20.

As it can be seen, the results for the overdetermined system corresponding to

128× 128 MRI Knee phantom are different from the results achieved for two under-

determined systems corresponding to 256 × 256 and 512 × 512 MRI Knee phantom

image sizes. It is obvious that the results for both underdetermined systems follow

the same pattern for their best and worst relaxation parameters, for various image

reconstruction techniques.

154



Knee, Kaczmrarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.46: ART(Kaczmrarz’s method) applied to MRI Knee Phantom for a 128 ×
128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, Symmetric Kaczmrarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.47: Symmetric Kaczmarz’s method applied to MRI Knee Phantom for a
128 × 128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, Randomized Kaczmrarz, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.48: Randomized Kaczmarz’s method applied to MRI Knee Phantom for a
128 × 128 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1.2
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Knee, SART, 128× 128 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.49: SART method applied to MRI Knee Phantom for a 128 × 128 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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Knee, Kaczmrarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.50: ART(Kaczmrarz’s method) applied to MRI Knee Phantom for a 256 ×
256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, Symmetric Kaczmarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.51: Symmetric Kaczmarz’s method applied to MRI Knee Phantom for a
256 × 256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, Randomized Kaczmarz, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.52: Randomized Kaczmarz’s method applied to MRI Knee Phantom for a
256 × 256 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, SART, 256× 256 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.53: SART method applied to MRI Knee Phantom for a 256 × 256 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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Knee, Kaczmrarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.54: ART(Kaczmrarz’s method) applied to MRI Knee Phantom for a 512 ×
512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, Symmetric Kaczmrarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.55: Symmetric Kaczmarz’s method applied to MRI Knee Phantom for a
512 × 512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, Randomized Kaczmrarz, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.56: Randomized Kaczmarz’s method applied to MRI Knee Phantom for a
512 × 512 image and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1 1 1 1
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Knee, SART, 512× 512 image, λ = 1, 1.2, .., 1.8

(a) Relative error vs. iteration no. (b) Relative residual vs. iteration no.

(c) Relative solution difference vs. iteration
no.

(d) Image discrepancy vs. iteration no.

Figure B.57: SART method applied to MRI Knee Phantom for a 512 × 512 image
and λ = 1, 1.2, .., 1.8.

In the last iteration,

min relative min relative min relative min
error residual solution difference discrepancy

λ 1.8 1.8 1.8 1.8
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size method worst λ max discrepancy best λ min discrepancy time/iter(s)

128 Kacz. 1.8 0.5319 1 0.3009 14.11

Symm. 1.8 0.6838 1 0.3566 15.30

Rand. 1.8 0.2110 1.2 0.1813 9.89

SART 1 0.3549 1.8 0.2884 0.02

256 Kacz. 1.8 0.7239 1 0.4929 31.65

Symm. 1.8 0.8264 1 0.5401 73.77

Rand. 1.8 0.4174 1 0.4073 68.33

SART 1 0.4176 1.8 0.3822 0.09

512 Kacz. 1.8 0.8111 1 0.6107 214.95

Symm. 1.8 0.8923 1 0.6471 388.61

Rand. 1.8 0.5726 1.2 0.5678 228.28

SART 1 0.5012 1.8 0.4902 0.32

Table B.4: Experimental results of applying different methods to MRI Knee phantom
using relaxation parameters of λ = 1, 1.2, .., 1.8 for 20 number of iterations.

The experimental results shown in Table B.4 are obtained from the Colsher’s

discrepancy measurement method [4] in such a way that, after applying different ART

methods to different phantom sizes, for λ = 1, 1.2, .., 1.8, the minimum and the maxi-

mum discrepancies, which indicate the best and the worst relaxation parameters, are

found in iteration number 20.

As it can be seen, the results for the overdetermined system corresponding to

128× 128 MRI Knee phantom are different from the results achieved for two under-

determined systems corresponding to 256× 256 and 512× 512 Knee phantom image

sizes. It is obvious that the results for both underdetermined systems follow the same

pattern for their best and worst relaxation parameters, for various image reconstruc-

tion techniques.
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