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Abstract

Vibrating screens are industrial machines used to sort aggregates through their
high rotational accelerations. Utilized in mining operations, they are able to screen
dozens of tonnes of material per hour. To enhance maintenance and troubleshoot-
ing, this thesis introduces a vibration based condition monitoring system capable of
observing machine operation. Using acceleration data collected from remote parts of
the machine, software continuously detects for abnormal operation triggered by fault
conditions. Users are to be notified in the event of a fault and be provided with
relevant information.

Acceleration data is acquired from a set of sensor devices that are mounted to
specified points on the vibrating screen. Data is then wirelessly transmitted to a
centralized unit for digital signal processing. Existing sensor devices developed for
a previous project have been upgraded and integrated into the monitoring system.
Alternative communication technologies and the utilized Wi-Fi network are examined
and discussed.

The condition monitoring system’s hardware and software was designed following
engineering principles. Development produced a functional prototype system, imple-
menting the monitoring process. The monitoring technique utilizes signal filtering and
processing to compute a set of variables that reveal the status of the machine. Decision
making strategies are then employed as to determine when a fault has occurred.

Testing performed on the developed monitoring system has also been documented.
The performance of the prototype system is examined as different fault scenarios
are induced and monitored. Results and descriptions of virtual simulations and live
industrial experiments are presented. The relationships between machine faults and
detected fault signatures are also discussed.
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1 Introduction

1.1 Thesis Motivation

Vibrating screens are industrial machines used to sort aggregates through their
high rotational accelerations. Utilized in mining operations, they are able to screen
dozens of tonnes of material per hour. McMaster University’s Department of Com-
puting and Software was approached by a manufacture of these machines to develop
their next generation of vibration analysis tool. The tool was designed to aid techni-
cians in both maintenance and fault detection of rotating machinery [21]. After four
years of development, the product was a system able to measure and analyze three
axes of vibration data from eight simultaneous sensors. Technicians are presented
with numerical and graphical data on the machine’s operation in real time. A post
processing software package was also constructed for further analysis.

With the initial project a success, the company wants to expand its vibration
analysis tool into a permanently installed condition monitoring system. The new
system is intended to monitor the operation of a vibrating screen and notify users when
abnormal operation or faults are detected. This would warn users of malfunctions and
impending failure events before machines becomes inoperable. Instead of relying on
reactionary troubleshooting for maintenance, the vibrating screens would be actively
monitored.

It is the intention of the thesis to take the acquired knowledge from the existing
vibration analysis tool and apply it to condition monitoring. Previously developed
electronics and software strategies are to be modified and integrated into the project.
Additional software is to be developmed to complete the remainder of the monitoring
system.

1.2 Thesis Objective

The goal of this thesis is to develop and construct an actual condition monitoring
system for use on vibrating screens. The system should be able to acquire acceleration
data from specified points on a vibrating screen and transmit it to a centralized
processing unit. Waveform data is to be filtered so that monitored variables can be
calculated, such as peak frequencies and average g-forces. The monitored variables
will then be compared against the baseline profile. The baseline is observed when the
vibrating screen is in good health, and its profile is to be comprised of the variables.

Monitored variables that deviate from the baseline profile would be indicators of
undesired operation or machine faults. Users will specify tolerance thresholds on the

1
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monitored variables and algorithms are used to determine when a fault has occurred.
When a machine fault is identified, users are to be notified. The system is also
to record vibration data in periodic intervals, as well as data that triggers a fault
condition.

In summary, the condition monitoring system should be capable of the following:

• acquire synchronized acceleration data from a set of measurement locations

• detect short time and sustained machine abnormalities by examining vibration
waveforms and corresponding frequency content

• notify users of abnormal operation and specify the triggered fault condition

• periodically record the monitored vibration data, and record data pertaining to
fault events

1.3 Contributions

Contributions provided this thesis support the completion of the thesis objective
in constructing a condition monitoring system for vibrating screens. The following
list separates the contributions into individual components:

• design and assemble the hardware for a permanently installed monitoring system

• design and implement software to execute continuous condition monitoring

• system assesment through virtual simulations and live industrial experiments

1.4 Assumptions

The thesis and corresponding condition monitoring system have the following as-
sumptions:

• frequencies of interest appear as resonance frequencies and peak-like in nature

• vibrating screens are subject to Gaussian noise, which is mainly due to material
flow

2
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1.5 Thesis Overview

The thesis is divided up into the following chapters:

• Chapter 2 provides a literature review on condition monitoring and fault diag-
nosis

• Chapter 3 illustrates some computational limitations of the fast Fourier trans-
form (FFT)

• Chapter 4 presents the system overview, a high level summary of the condition
monitoring system

• Chapter 5 introduces the existing sensor device used for data acquisition and
the modifications made to incorporate it into the current system

• Chapter 6 outlines the design of the condition monitoring software

• Chapter 7 describes the monitoring software implementation

• Chapter 8 covers the monitored variables used to determine the machine’s con-
dition in the monitoring process

• Chapter 9 details the condition monitoring technique used to track abnormal
operation and detect faults

• Chapter 10 contains various simulation experiments using the condition moni-
toring software

• Chapter 11 presents condition monitoring system testing on a vibrating screen

• Chapter 12 discusses project conclusions and suggestions for future work
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2 Literature Review

2.1 Condition Monitoring

Condition monitoring is a maintenance technique that monitors the condition or
health of machinery or structures and advises when upkeep is necessary. It consists
of collecting system data through sensor equipment and then processing it into mean-
ingful information. Decision making strategies are then employed to determine when
maintenance is required [12]. Fault diagnoses is at the core of condition monitor-
ing. Implemented techniques are utilized to detect fault conditions and even identify
specific machines faults.

Due to the wide variety of systems, the literature on condition monitoring is very
diverse. Condition monitoring is widespread in industry, with applications in automa-
tion, predictive maintenance and quality control [17]. Monitoring has been developed
for motors [13, 19], circuit breakers [10], cantilever structures [4], individual bearing
components [20,32] and various other machinery [15,25,28]. System information can
be extracted from various types of collected data: electrical, vibrational, thermal,
environmental, results from oil analysis, etc. [12]. However, as this project focuses
on monitoring rotational machinery, vibration data will prove the most valuable. As
stated by researchers from the Buckinghamshire Chilterns University College,

Vibration is probably the most important indicator of the mechanical in-
tegrity of rotating machinery. Like the heartbeat of humans, vibration
within rotating machinery tells a great deal about the health of that ma-
chinery. Machinery health monitoring, through condition monitoring, can
detect faults before they become serious, optimize maintenance activities
during planned shutdowns and unscheduled outages. [17]

With the recent advances in micro-machining, it is possible to purchase low cost
acceleration sensors as to construct remote vibration monitoring devices [34]. Multiple
sensors have proved to be much more useful, as a single sensor cannot provide enough
data when monitoring a complex system [12]. Understanding the relationships be-
tween multiple sets of signals reveals even more information for fault diagnostics [25].

Another consideration of condition monitoring is whether to monitor the target
system continuously or periodically. Currently, the most common practice is to mon-
itor in periodic intervals [35]. By choosing to use less data, it is possible to utilize
advanced filtering techniques combined with detailed analysis to ensure accurate di-
agnostics [12]. Models have even been developed to optimize the monitoring intervals
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through cost functions [9, 35]. Another technique determines the monitoring inter-
val given the system’s risk of failure [8]. Any periodic monitoring, however, has the
possibility to miss failure events which could provide insight on the corresponding
fault.

Accordingly, an obvious advantage of continuous monitoring is being able to ob-
serve all the failure events. In one particular project, the authors wanted to expand
the periodic monitoring of a circuit breaker with continuous vibration based monitor-
ing [10]. A clear expectation of the continuous monitoring system was that it must
have a false alarm rate much lower than the targeted system’s failure rate. Noise
proved to be the most challenging issue causing numerous spikes. A proposed method
of fast noise filtering was to ignore the vibrations where the existence of noise is pre-
defined. Additionally, a hardware solution suggested the use of differential amplifiers
to reduce system noise.

Continuous monitoring projects have been utilizing modern computing, and are
optimizing analysis with respect to resolution, frequency bands and computational
complexity. Some of these systems are able to monitor rotating machinery by looking
for specific indicators of faults [5, 36]. Another monitoring project implemented a
continuous wavelet transform, a detailed yet expensive analysis [17]. Development was
spent trading off accuracy and frequency ranges for reduce computational complexity.
To compensate for the accuracy loss, additional signal enhancing techniques were
introduced, primarily chosen for their high efficiency.

2.2 Fault Diagnoses

Fault diagnoses is used to detect and identify machine faults. The first step,
fault detection, is used to generate an alarm signal when a fault condition has been
breached. This is accompanied by fault isolation and identification; processes which
attempt to determine the source and severity of the fault [30].

Machines operating with faults can have reduced efficiency and even accelerated
deterioration leading to system failure. Faults can be classified as intermittent or
permanent. Intermittent faults persists for a bounded period of time, although can
alter system operation after their presence subsides. Once permanent faults manifest,
they continue to exist until maintenance is performed [30].

A review on fault diagnoses is presented, divided into four categories. Techniques
are classified into signal-based diagnoses, model-based diagnoses, neural network-
based diagnoses, and expert systems.
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2.2.1 Signal-Based Diagnoses

Signal-based fault diagnoses is the most traditional approach to fault detection.
It relies on signal processing of system measurements and its comparison against nor-
mal operational trends [30]. Especially in vibration based fault detection, waveform
analysis is the most common form of data interpretation. Standardized forms of equa-
tions and processing techniques can allow the calculation of recognized variables. The
three main categories of waveform analysis are time domain, frequency domain and
time-frequency analysis [12].

Different characteristics can describe a time domain waveform such as period,
peak, mean and standard deviation [13]. Higher order statistics such as root-mean-
square, skewness and kurtosis have been used as well [12]. All of these reveal different
aspects of the waveform, however are generally unable to extract all underlying signal
information.

Frequency domain analysis begins by converting a time domain waveform into its
frequency domain equivalent. The most common means of conversion is through the
fast Fourier transform (FFT), as it can perform the transform with ease [5]. Once
the frequency spectrum is available, it is then possible analyze to the entire signal
or specific frequency regions of interest. With the use of peak detection, dominant
frequencies can be identified and singled out for further analysis [5]. When the dom-
inant frequencies of a system have been established, special attention is given to any
other emerging frequency content, as it is likely to be the signature of fault. Envelope
analysis is the most utilized technique in cases where the fault frequencies are all
known or pre-estimated [20]. However, it is not suitable to monitor a wide frequency
spectrum or a vibration spectrum when the signal-to-noise ratio is low. Additional
characteristics observable in the frequency spectrum are the spacing of sidebands, and
the presence of harmonics.

Time-frequency analysis combines both the time domain waveform and the cor-
responding frequency spectrum. This enables the examination of transient features,
such as impacts and fault events, as well the ability to monitor frequency content
over time [12]. As a result, time-frequency analysis is the most popular method for
non-stationary signals [25]. The Short-time Fourier transform (STFT) is a common
technique, where the signal is divided up into short-time segments, and then a FFT
is applied to each window [12]. It is computationally efficient, however it provides
constant resolution for all frequencies in the window [17]. This makes it difficult
to examine both low and high frequency content with high resolution. The Wigner-
Ville distribution (WVD) overcomes this resolution limitation, however it suffers from
interference terms forced by the transform itself [12]. This can lead to difficult in-
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terpretation of the analysis. Improved transforms, such as Choi-Willams distribution
and cone-shaped distribution, have been developed to further advance time-frequency
analysis [25]. Taken together, while each transform is designed to excel in a specific
manner, the required trade-off to do so limits another merit.

The wavelet transform is another form of time-frequency analysis that has been
receiving much attention. Like the STFT, the wavelet transform is able to convert
time domain waveforms into frequency content over time by use of windowing. Con-
versely, the wavelet transform uses variably size windows, allowing for the acquisition
of better resolutions. [20]. Large time windows are used to obtain precise resolution
for low frequencies, while shorter windows give precise time information for high fre-
quencies. The wavelet transform has also received praise for its ability to reduce noise
in raw signals [12].

With modern instrumentation and control systems technology, vast amounts of
system data can be collected for analysis. While systems can be data rich, they
can also be information poor [18]. In these situations, feature extraction techniques
are used to deal with excessive amounts of redundant data. One of the most widely
used forms of feature extraction is Qualitative trend analysis (QTA). This data-driven
technique works by first extracting important features or trends from measurement
signals. It then provides the features to a trend interpretation algorithm, where con-
clusions can be made regarding the health of the system. The Hidden Markov Model
is a common algorithm used in conjunction with feature extraction techniques [33].

2.2.2 Model-Based Diagnoses

Model-based fault diagnoses relies on the construction of a mathematical model
of the target system. Residual generation techniques capture the differences between
the model of a normal system and its current operation. Various residual generation
methods can be used with the system models, such as observers, detection filters,
parameter identification and parity space [6]. The residuals are then used detect and
identify faults.

Different classifications of models can be used to identify a system, such as linear
or nonlinear, discrete or continuous, and deterministic or stochastic. Being able to
produce an accurate mathematical model is a necessity for this form of fault detection.
It can be very difficult or even impossible to build models for complex systems [12].

One paper investigated different modeling techniques for the fault diagnosis of
rolling element bearings in rotating machinery. It compared autoregressive model-
ing techniques, using the Box-Jenkins linear autoregressive model, backpropagation
neural networks, and radial basis functions. It was reported that while the back-
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propagation neural network proved to be superior in terms of accuracy, this was only
true when monitoring slower waveforms. As faster waveforms require higher sampling
rates to monitor, the increased number of data points greatly lengthens computational
time. One of the largest drawback to predictive modeling is the need for substantial
amounts of data to train and test the system model [1].

Another approach to model-based fault detection is in the field of discrete event
systems (DES). DES use methods like finite state machines or Petri nets as their
modeling formalism. Events change the system state, and track the system history
through its progression across the states. Faults are represented in their own states,
and are detected when the the system enters a particular fault state [26].

2.2.3 Neural Network-Based Diagnoses

Artificial neural networks (ANNs) are mathematical models inspired by the brain.
ANNs have been used in fault diagnoses for residual generation, pattern matching
and classification [24]. They are various types of neural-network models, each with
their own structure.

ANNs can model complex processes with multiple inputs and outputs. They
learn or train by observing the input and outputs, and adjusting internal weights.
Training can be achieved through supervised or un-supervised learning. Supervised
learning requires a priori knowledge about the system or its outputs. Data from
normal operation or faults would be input into the ANN, allowing it to then classify
subsequent inputs. In unsupervised learning an ANN would attempt to learn by itself
using new available information. ANNs would identify patterns that can be later used
for classification purposes [12].

ANNs have been successfully applied to fault diagnosis of rotating machinery. One
project relied on ANNs to learn from fault signals and categorize subsequent faults.
Typical physical modeling and the current knowledge base was not sufficient enough
for alternative methods [2]. Another paper continues to expand ANNs by integrating
them with the qualatative approach from fuzzy logic. Aside from fault diagnosis,
these hybrid systems have been implemented in the medical and chemical fields [15].

2.2.4 Expert Systems

Fault diagnosis systems that are provided with explicit fault information are con-
sidered expert systems. Information is provided in the mapping from the measure-
ment space to machine faults in the fault space. This knowledge base is traditionally
complied from field experts through observing and comparing graphical tools such
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as frequency spectrums [12]. It is possible to provide an existing knowledge base to
a fault detection system, allowing it to identify the given faults from a machine’s
operation.

The Vibration analysis Expert System (VES) relates physical faults to the fre-
quencies they would emit. The use of digital signal processing enables the system to
filter the vibration data and convert it to the frequency domain. Peak frequencies are
identified, and then mapped to a fault using confidence factors based on the exact
frequency and its corresponding amplitude. Gear faults, bent shafts and overloading
were successfully identified with the system [5].

Another expert system, VIBEX, was given vibrations symptoms and the corre-
sponding causes. After typical monitored variables are computed, a Bayesian algo-
rithm is used to obtain confidence factors which could then be used by decision trees
for fault diagnosis. Some of the faults included are machine unbalance, misalignment,
looseness and bearing damage [36].

Fuzzy logic has been used in expert systems to apply a human-like way of think.
It is a multivalued logic that can express system states in a more qualitative man-
ner. Instead of the conventional true (1) or false (0) approach to identifying faults,
it is able to provide a degree of defectiveness in a machine. When describing a sys-
tem, it replaces differential equations with expert knowledge [27]. This technique has
been used various systems such as gas turbine engines [14], motors [7] and industrial
robots [29].

2.3 Cross-Correlation as a Filter

Cross-correlation has been used in condition monitoring and fault diagnostics in
the form of a matched filter or optimal detector. As correlations show the similarity
between two signals, it can be an excellent detector of a specific signal when contained
within a noisy system [3]. One paper investigated this technique by performing corre-
lations on time domain vibration, current and voltage signals [13]. It was found that
the signals from a healthy machine would have strong correlations with other signals
from that healthy machine. When a faulty bearing was introduced into the machine,
its signals had weak correlations against the healthy machine. Although this would
be a useful tool in condition monitoring, it was then has shown that performing the
correlation in the frequency domain provides more information regarding the signals’
similarities [13]. Accordingly, it is possible to perform frequency domain analysis on
the correlated signal to determine the nature of the relationship.

Recent work in vibration fault diagnostics has presented the use of cross-correlation
in a novel way. The fault detection system is able to localize machine faults through
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the use of multiple sensor. The detection system cross-correlates eight sets of sensor
data with one another and converts the results into the frequency domain. Peak
frequencies are then detected, which reveal what frequencies are shared amongst the
sensors and at what strengths. Any identified peak frequencies not present in a healthy
machine are then further examined, as they are likely to be the source of a fault. By
observing where the strongest relationships are for a given frequency, it is possible to
localize the fault on the machine [21].

A beneficial characteristic of the discussed detection system is that it is computa-
tionally efficient. No additional filtering is required, as random noise will not correlate
amongst the data sets and be filtered out [21]. This quality has extra importance when
being used for continuous condition monitoring, as processing techniques need to be
optimized. The system currently exists as a post-processing tool apart of a larger
vibration analysis system. The corresponding paper promoted the expansion of the
detection system for continuous real time monitoring, as well providing it with the
fault knowledge of an expert system.
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3 FFT Amplitude Computation

3.1 Overview

The fast Fourier transform (FFT) is a technique used to convert time domain
waveform data into the corresponding frequency content. It is useful when examining
periodic signals, like the ones produced from the vibrating screens. However due to
the nature of the FFT computation, the result is a discrete set of frequencies and
amplitudes. Ultimately, contained frequency content is assigned to the closest FFT
frequency bin. While this reduces the accuracy of measurable frequencies, it also
creates error in the bin’s amplitude. The further away a frequency is to its respective
bin frequency, the less its contributed amplitude is represented. This form of error
is commonly referred to as FFT leakage, since portions of the lost contribution are
represented in the amplitudes of neighbouring bins. Since the FFT is to be utilized
in the condition monitoring system, this topic will be further examined.

3.2 Numerical Example

To demonstrate the effect of FFT leakage a numerical experiment was performed.
The amplitude of the frequency corresponding to the kth bin was observed for various
input sinusoidal waves. A wave with frequency of the k-1 bin was first created and
then passed into an FFT. As expected, the amplitude of the kth bin remained at zero,
since the frequency matches up with the k-1 bin frequency. The input sinusoidal’s
frequency was slightly incremented and the kth bin amplitude was examined. This
repeated until the amplitude of the kth bin returned to zero, as the sinusoidal’s
frequency matched up with the k+1 bin. Figure 3.1 plots the amplitude of the FFT’s
kth bin output for the range of input frequencies.

It can be seen that the maximum expressed amplitude occurs when the input
frequency is equivalent to the kth bin frequency. The further away the input frequency
is from this point, the less its amplitude is expressed in the FFT output.
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Figure 3.1: FFT kth bin amplitudes
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3.3 Theoretical Model

To understand the effect of the FFT leakage, the computation of the discrete
Fourier transform is reviewed. The kth bin will be examined, assuming the frequency
of the input sinusoidal is within that bin. The sinusoidal can be expressed as,

x(n) = cos(ωon)

=
1

2
(eiωon + e−iωon)

Computing the bin amplitude,

Xk =
N−1∑
n=0

x(n)e−inkωs

=
N−1∑
n=0

1

2
(eiωon + e−iωon)e−inkωs

=
1

2

N−1∑
n=0

(eiωone−inkωs + e−iωone−inkωs)

Ignoring the left hand plane due to symmetry, and simplifying,

Xk =
1

2

N−1∑
n=0

eiωone−inkωs

=
1

2

N−1∑
n=0

e−in(kωs−ωo)

=
1

2

N−1∑
n=0

(e−i(kωs−ωo))n

Using the following identity,

N∑
m=0

bm =
1− bN+1

1− b
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The summation can be expressed,

Xk =
1

2
(
1− aN

1− a
)

Where,

a = e−i(kωs−ωo)

The simplified Xk expression reveals the amplitude increases as a increases. This
is determined by the difference of kωs and ωo. The closer a frequency is to the center
of the bin, the more its amplitude will be properly expressed. When a frequency
perfectly aligns with its center bin frequency, a would have a value of 1 (e0). This
would set the denominator of the simplified Xk to zero, setting Xk to infinity or NaN
(not a number). This conflicts with the observed result in the previous numerical
experiment. A plot of the simplified Xk function for the entire range of the kth bin
is presented in Figure 3.2.

Figure 3.2: Computed kth bin amplitudes

When using the simplified Xk, it should be noted that if a equals 1, then the scaled
Xk should assigned a value of 1. Doing so would allow the simplified Xk function to
be used for all frequencies within its respective bin.
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4 System Overview

4.1 High Level Overview

This chapter presents a high level overview of the condition monitoring system.
Sections will discuss the individual components and their functional roles. Figure 4.1
presents physical components and their respective communication methods.

Figure 4.1: High Level System Communication
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4.2 Vibrating Screens

The vibrating screen is the monitored plant in the system. These machines screen
aggregates through their high rotational accelerations and are able to sort dozens of
tonnes of material per hour. Various kinds of vibrating screens exist, operating in
either circular, elliptical or linear motions nearing 1000 RPM.

The desired locations to take vibration measurements are depicted in Figures 4.2
and 4.3. Each location has a name associated with it. The first letter, ‘L’ or ‘R’,
simply represents the ‘left’ or ‘right’ side, where designation is given while standing
at the feed-end of the machine. The second letter, ‘D’ or ‘F’, signifies if the location
is at the ‘discharge’ or ‘feed’ end. The third letter, ‘B’ or ‘S’ indicates whether the
location is on the ‘body’ or ‘side-arm’ of the machine.

Figure 4.2: Measurement Locations on Two-Bearing Horizontal Screens

4.3 Sensor Devices

The sensor device is an electronic unit developed in-house at McMaster University.
It is capable of collecting acceleration data in three axes and transmitting it to a cen-
tralized processing unit through a Wi-Fi network (IEEE 802.11). The enclosures are
physically or magnetically mounted to the vibrating screen at the desired measure-
ment points. Devices are aligned with the screen to easily allow for a standardized
frame of reference.
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Figure 4.3: Measurement Locations on Four-Bearing Eccentric Screens

The system is able to use all eight measurement locations simultaneously. More
sensor devices could be added at the discretion of the wireless router’s network sta-
bility and the monitoring computer’s processing capability. Details of the device are
provided in Section 5.

4.4 Monitoring Computer

An industrial computer is used as the main processing unit for the condition
monitoring system. The software will continuously monitor the vibrating screen’s
acceleration data and notify users when abnormal operation is detected. The moni-
toring software design is presented in Chapter 6, while the implementation is discussed
Chapter 7. Ubuntu is chosen as the operating system, primarily for being Linux based
and having strong network support.

The monitoring computer is connected to a wireless router, allowing communica-
tion with the sensor devices. End users can configure the system remotely through
the network, or by a uploading a parameter file generated from the PDA software
package. Recorded acceleration data and logs file are saved internally, and can be
retrieved remotely or by downloading the files onto a USB stick.

If connected to the Internet, the monitoring software is able to send email noti-
fications to a specified user when machine faults occur. This would also include the
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log file of the trigger event. At the end of a monitoring session, the log file can also
be emailed so that all triggered fault conditions within the session are known.

4.5 Wireless Router

A standard wireless router is used to support the Wi-Fi network, connecting the
monitoring computer to the sensor devices and possibly other networks. Its network
capacity should exceed the requirements from the set of sensor devices and other
intended wireless access. Section 5.5.2 discusses transmission rates of the implemented
sensor devices.

4.6 PDA

Technicians installing and configuring the condition monitoring system have access
to a military grade personal digital assistant (PDA). This unit is a key component in a
related project, the Vibration Analysis Tool [21]. A software package was created for
the PDA so users can select the desired system parameters from a graphical interface
and download them on to a USB stick. Users can then upload the file to the monitoring
computer, where it is utilized by the monitoring software.

Due to the dust emitting from the vibrating screens, it is undesirable to use con-
ventional electronic devices in the environment. The PDA’s sealed touch screen and
external buttons allows users to interface with the monitoring system while in harsh
conditions.

4.7 USB Stick

As mentioned, it is possible to specify and download the system parameters onto
a USB stick using the PDA device, so that it can be uploaded into the monitoring
computer. It is also possible to insert the USB stick into the monitoring computer
to download the recorded acceleration data and log files produced by the monitoring
software.
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5 Sensor Devices

5.1 Overview

The sensor devices are the data acquisition units of the condition monitoring
system. Mounted at specified points on the vibrating screen, they are able to collect
acceleration data and transmit it to a centralized processing unit. The devices were
initially developed for a maintenance and troubleshooting tool for vibrating screens.
The original device will be briefly discussed, followed by the modifications made to
incorporate it into the current monitoring project.

5.2 Existing Devices

The sensor devices were originally used in the Vibration Analysis Tool as the data
acquisition units. The device’s software and hardware were developed at McMaster
University; developmental details are provided in its corresponding paper [21]. The
devices are equipped with an accelerometer, allowing them to measure accelerations
in three axes up to ±10 g, where 1 g is equivalent to 9.81 m/s2. A PIC microprocessor
samples the accelerometer at 500 Hz, converting the analog signal into its digital 12 bit
representation. The microprocessor then relays the data to the Bluetooth transceiver
using RS-232, a point-to-point protocol. Bluetooth wirelessly transmits the data to a
PDA, where centralized analysis takes place.

A requirement of the original sensor device was that it must transmit data wire-
lessly. Devices are magnetically mounted on to vibrating screens for temporary analy-
sis, and then removed when sufficient data was acquired. Wiring would only lengthen
the entire maintenance procedure. Also, with the PDA being held by technicians, it
is undesirable and against safety regulations to tether the unit to a vibrating screen.
As a result of being completely wireless, two AA batteries are used power the device.
Figure 5.1 presents the final manufactured prototype sensor device with its enclosure
opened.

While the original sensor device was successfully implemented and is still currently
in use, it has a few undesired characteristics. These issues arose from the choice of
Bluetooth as the wireless technology. A Bluetooth network (piconet) can only support
eight devices, including the master. Using the PDA with eight sensor devices would
require two Bluetooth networks to sustain the system. The PDA had an internal
Bluetooth transceiver, and was equipped with and an additional external one as well
to compensate.

The transmission rates of the Bluetooth system were not sufficient enough to
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Figure 5.1: Final Manufactured Prototype Sensor Device [21]

support eight sensors sampling acceleration data at 1000 Hz. Sampling was reduced
to 500 Hz to significantly reduce the amount of transfered data. The range between the
PDA and sensor devices were also of concern, as leaving the immediate area around
the machine would disconnect the sensors. It was seen that wireless transmission
through the vibrating screens degrades the signal, further reducing the area of the
network.

Another Bluetooth issue was the lack of a network broadcast, which would allow
the PDA to simultaneously send data acquisition start messages to all devices. It
is desirable to have the recorded data from different sensors synchronized so that
stronger analysis between sensor data can be achieved. Optimized techniques have
only produced a randomized start sequence, where devices have been seen to start
up to 3.3 milliseconds apart [21]. To overcome this, the lower level Bluetooth drivers
would need to be in accessed as to shorten or regulate the start sequence. Alterna-
tively, additional hardware and software would be required to implement timestamp-
ing techniques.

20



M.A.Sc. Thesis - D. Volante McMaster University - Software Engineering

5.3 Requirements

5.3.1 Technical Requirements

The existing sensor devices and devices used in the condition monitoring system
have the same technical requirements, as presented below:

• at least eight sensor devices are to be supported by the system

• g-force accelerations are to be monitored in three axes

• g-forces are to be monitored up to ±10 g, where 1 g is equivalent to 9.81 m/s2

• frequency spectrums from at least 0.5 Hz to 249.5 Hz are to be examined

5.3.2 Transmission Requirements

As a result of the technical requirements, a minimum transmission rate can be
determined. For analysis, eight sensors sampling at 500 Hz will produce the minimum
amount of required data. The microprocessor samples three axis of acceleration data,
using 12 bit analog to digital conversion. For one device, the transmission rate in bits
per second (bps) is:

Device Rate = 500 (samples/sec) ∗ 3 (axes/sample) ∗ 12 (bits/axis)

= 18, 000 bps

For eight sensors and with no communication overhead, the rate is:

System Rate = 18, 000 (bps/device) ∗ 8 (devices)

= 144, 000 bps

This produces a minimum transmission rate that must be exceeded to support the
sensor network. Networks that marginally exceed this rate are likely to be unstable,
as systems should allow ample capacity for communication overhead. This threshold
is to be used to dismiss communication technologies that are too slow to meet the
bare requirements.

Another requirement placed on the communication system is that it must allow the
broadcast of messages. These messages can be received by all devices simultaneously,
allowing synchronized device actions to be performed.
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5.4 Upgrade Alternatives

In order to satisfy network requirements and further improve transmission rates
and distance, new means of device communications were investigated. The new tech-
nology had to allow messages to be broadcast, and support a network for at least eight
devices and a centralized processing unit. Two main network types were examined:
wired and wireless.

5.4.1 Wired Communication

Unlike the original sensor devices, the condition monitoring system does not re-
quire the devices to be wireless. It is intended that the devices are permanently
installed on to a vibrating screen and so wires could be used for power or communi-
cation. While wired networks can be expensive to install on vibrating screens, they
allow messages to be broadcast. Since the existing microprocessors are communicat-
ing with Bluetooth using RS-232, a multi-point variant, RS-485, was first considered.
Modules can be purchased or built to convert the RS-232 to RS-485, and vise-versa.

RS-485, also known as EIA-485, is an electrical standard in defining a multi-point
communication network. A maximum of 32 devices can be connected to a single
network. RS-485 utilizes differential signaling over twisted pair to provide high noise
resistance. Texas Instruments reports that its networks are capable of sending signals
up to 2 Mbps when using 50 meter cabling [31].

Ultimately, RS-485 was not chosen because like Bluetooth, more than one network
is required to support the eight devices. The limiting factor was the transmission rate
of the PIC microprocessor. Testing confirmed that asynchronous rates over 115.2 kbps
would result in incorrect data communication [21]. In order to ensure network stabil-
ity, RS-485 speeds would need to remain under the designated rate. Accommodating
the slow speeds requires at least two networks to handle the eight devices. With two
networks, the difficulty in obtaining synchronized sensor data is greatly increased.
Alternative wired methods then were investigated.

I2C, Inter-Integrated Circuit, is a synchronous multi-point standard able to handle
128 nodes with standard 7 bit addressing. Developed by NXP, I2C networks with
buffers are reported to have data rates up to 400 kbps at 100 meters [11]. Two buffers
were obtained, a NXP I2C-bus extender and a Texas Instruments dual bidirectional
bus buffer. Both chips were tested with the sensor device to determine the I2C network
performance.

The NXP I2C-bus extender (P82B715) is a bidirectional buffer with unity voltage
gain that can improve the range of an I2C network by increasing cabling impedance.
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The chip can operate in networks up to 400 kbps and at 50 meters. A proven quick
design multi-point circuit is provided in its datasheet and is presented in Figure 5.2.
The design also provides specific information on pull-up resistors given the voltage
and number of nodes. The circuit was constructed using 14 meters between nodes
in two configurations: master (computer) between two slaves (devices), and master
followed by two slaves. Communication up to 400 kbps was achieved in both cases,
however the networks were not reliable. Transmission errors were prevalent even after
tuning pull-up resistances, transmission rates, packet sizes and delays. The errors
would eventually lockup the network, requiring the sensor device’s microprocessor to
be restarted.

Figure 5.2: Quick Design Multi-Point I2C Circuit

The Texas Instruments dual bidirectional bus buffer (P82B96) can also improve the
range of an I2C network, and is able to interface between different logic levels. Sensor
devices operating at 3.3 V can have their I2C signals translated up to 15 V, allowing
for higher noise resistance. The chip can also translate 15 V signals to the receiving
device’s logic levels. Like the previous test, the chip was integrated into an I2C
network. Communication was achieved, yet network stability was not realized. Even
with increased voltage levels, transmission errors led to network failure. Resolving
the lockup required the device’s microprocessor to be restarted.
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To compensate for the I2C network lockup, additional circuitry and software would
be required. The network would need to be continuously monitored to ensure that
nodes do not hold communication lines at logic low. Nodes doing so restrict any
other device from being able transmit data, rendering the network unusable. An
automated routine would be required to restart the devices’ microprocessors, and
notify the network master in such a failure event. However, any communication
interruption is undesirable as it is not be possible to perform condition monitoring
without sensor data. It was concluded that due to poor reliability and transmission
rate of the microprocessor, using a wired network would be unadvantageous.

5.4.2 Wireless Communication

When the existing sensor device was developed, the alternatives to Bluetooth were
ZigBee and Wi-Fi. ZigBee was ruled out for being a niche product, as components
were difficult to obtain. Wi-Fi was not originally chosen because of its power require-
ments. While it had high data rates and ranges, the power draw was too much for
a wireless device [21]. Technology has advanced over the last few years and new Wi-
Fi products are available. As these Wi-Fi transceivers now have comparable power
consumption to Bluetooth, they are reexamined as a wireless technology.

The Roving Networks WiFly GSX (RN-131G) is a complete wireless LAN module
for embedded systems. The module’s size is depicted in Figure 5.3. It is qualified for
802.11b/g networks and is able to achieve 54 Mbps transmission rates. Documentation
states that lowering the rate increases range, so tests were performed at 6 Mbps, which
is still well above the minimum requirements.

The Wi-Fi module was integrated in to the sensor device for testing. Like Blue-
tooth, the Wi-Fi module interfaced with the microcontroller using a simple RS-232
connection at 115.2 kbps. An additional button was added to the circuitry so remote
configuration could be utilized. When the button is held down on start up, the mod-
ule would create its own adhoc network. Connecting to this network from Telnet can
allow remote configuration of the transceiver.

A computer equipped with a wireless router was responsible for hosting the Wi-Fi
network. The sensor devices were able to join the network, and successfully commu-
nicate with the host using UDP (User Datagram Protocol). Transmission errors were
rare on early prototypes, but the devices could be easily resynchronized by remotely
restarting communications. Aside from exceeding the requirements, Wi-Fi was chosen
for its robustness and ease of integration.

24



M.A.Sc. Thesis - D. Volante McMaster University - Software Engineering

Figure 5.3: Roving Networks WiFly GSX [16]

5.5 Communication Upgrade

Wi-Fi was chosen as the new communication technology, and so the sensor devices
were fully integrated with the WiFly GSX modules. The internal functionality of the
device remains the same as the existing one, however the communication protocol has
been modified. As a result, the revised protocol will be discussed.

5.5.1 Control Protocol

The same control characters from the existing device are used, along with an
additional two. The host computer now initiates the wireless communication by
requesting an echoed test character. Acknowledgments are also now used after each
received packet, as to be aware of data delivery. While brief descriptions are provided
in Table 5.1 and in the following paragraph, full functional details are provided in
original paper [21].

The start command is simultaneously sent to all devices, commencing their data
acquisition. Packets of sampled acceleration data are sent to a centralized unit until
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ASCII Character Description Host Broadcast Device Reply

{ Start data acquisition yes none
} Stop data acquisition yes 0xFFFFFFFF
? Read calibration values no echo
# Write calibration values no echo
ˆ Initiate/test communication no echo
a Packet acknowledge no none

Table 5.1: Control Characters

the stop command has been issued. Devices will send their stop reply if they were
acquiring data, but would remain silent if idle.

Calibration values are unique to each device, as they are individually calculated
and then internally saved. The calibration procedure is a one time process that
produces a mapping from the binary representation of an acceleration sample to its
g-force value. Calibration values are read on system initialization and used for signal
processing within the monitoring software.

5.5.2 Data Transmission Procedure

Each acceleration datum originates from the accelerometer, is sampled by the mi-
croprocessor and is sent to the Wi-Fi module for wireless transmission to a centralized
unit. The wireless transmission rate is determined by the rate at which data is being
collected and how it is buffered in the device. The structure of transmitted data,
known as a data packet, will be also be presented.

The accelerometer is sampled every 500 Hz, producing 12 bit acceleration samples
for each of the three axes. Buffered data is stored in bytes (8 bits), and so one acceler-
ation sample is simply stored over two bytes. To reduce transmission overhead, data
is sent in sequences of 200 sample triplets. The structure of the packet is controlled
by the microcontroller, as presented in Figure 5.4.

The header bytes are used to uniquely identify the start of packets, as data samples
cannot exceed 12 bits (0x0FFF). The packet counter is the footer, and is repeated to
ensure identification. To detect dropped packets, packets from a device are sequen-
tially numbered and counted. The counter value has modulo of 0xFF, so it remains
a one byte value and does not appear as the start header.

The 1200 data sample packet size is chosen with consideration to the WiFly GSX
specifications. The chip has two buffers of 1460 bytes; one is for transmitting data,
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Figure 5.4: Packet Transmission Protocol; each box represents on byte

and the other is for buffering the next packet. Data is transmitted following UDP, a
simple transmission model. The Wi-Fi module is configured with UDP Retry, such
that it will continually repeat the transmission of a packet if no acknowledgment is
received within 250 ms of sending. However, it will begin to transmit the next packet
when it is completely buffered.

The time between packets is determined by the amount of data samples within a
packet, and the corresponding sampling rate. The amount of time required to collect
one packet of data is:

Packet Period = 200 sample triplets / 500 Hz

= 400 ms

This timing allows for at most one UDP Retry to be utilized. Since the full 1460
byte buffer would not allow more than one opportunity for this packet structure, no
additional attempts can be achieved by increasing the size. It should be noted that
in order to utilize UDP Retry at 1000 Hz sampling, sampled data would need to be
put into larger packets and compressed.

The time between subsequent packets is the duration that the packet is available
to be transmitted. If a module is unable to send a packet by the time the next
one is completely buffered, the initial packet will be lost. To ensure no data is lost,
network capacity should be allocated for each sensor device, the possibility of UDP
retry, overhead and additional network usage.

Device Rate = 2 ∗ 1204 (bytes/packet) ∗ 8 (bits/byte) / 400 (ms/packet)

= 48, 160 bps
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For eight sensors and with no communication overhead, the rate is:

System Rate = 48, 160 (bps/device) ∗ 8 (devices)

= 385, 280 bps

The implemented sensor devices operate at 6 Mbps, allowing for over 1500% of
communication overhead. With the excessive capacity, each device will have ample
network opportunity to transmit its packets.
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6 Monitoring Software Design

6.1 Design Model

The condition monitoring software design is influenced by Parnas’ functional doc-
umentation standards [23]. The principle concept is to create a software specification
with minimal technical details. Mathematical mappings are defined between different
classifications of variables. In our software design these variables are: measured, mon-
itored, internal and controlled. The variable-based model is presented in Figure 6.1.

Figure 6.1: Condition Monitoring Software Model

Measured variables are comprised of acquired acceleration data from the sensor
devices. Filtering and processing converts the measured data into monitored variables.
Collectively, monitored variables depict the profile of a vibrating screen. The condition
monitoring technique observes the monitored variables and compares them to a profile
obtained during normal operation, known as the baseline profile. The baseline profile
is an internal variable, along with the points awarded by the algorithm used to track
deviating operation and detect faults. Internal variables are then observed by the
condition handler, where controlled variables are set. The controlled variables are
connected to information modules so users can be notified at machine fault events.

6.2 Variables

This section lists and describes the variables in their respective classifications. To
quickly identify a variable’s group, prefixes are used on all names. Measured variables
are prefixed by a , monitored by m , internal by i , and controlled by c .

Variables have N unique instances, where N is the number of sensor devices used
in the system. Alternatively, variables reflecting cross-correlated data will have P
instances, as to reflect the number of cross-correlated device pairs. The relationship
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between N and P is as follows:

P = (N − 1) + (N − 2) + ...+ 1

6.2.1 Measured Variables

Measured variables are collected acceleration data from the sensor devices. There
are N streams of raw data entering the software system. The variable has an equiva-
lent definition for all three axes, as presented in Table 6.1.

Name Type Description

a accDk,k=x,y,z integer raw acceleration datum

Table 6.1: Measured Variables

The interval between subsequent data from the same sensor and axis is inversely
related to the sensor’s sampling rate. Acceleration data is to be sampled at 500 Hz,
so the interval between subsequent data is 2 milliseconds.

6.2.2 Monitored Variables

The machine’s condition is observed through the monitored variables. They are
the result of filtering and processing the measured variables. Their implemented defi-
nitions are presented Chapter 8. Each of the N sensor devices has a profile depicting
the machine’s operation. The device profile type is presented in Table 6.2.

Name Type Description

m mainGForce real main g-force
m averageGForcek,k=x,y,z real average g-force

m operatingFrequencyk,k=x,y real operating frequency in Hz

m peakListk,k=x,y,z peakList list of peak frequencies

Table 6.2: Monitored Variables in deviceProfile

Regarding cross-correlated data, only the peak frequencies are monitored. There
are P instances of a cross-correlated profile. Its type is presented in Table 6.3.

The definition of the peakList type is given below. It is followed by the elements
used in its construction, as presented in Table 6.4.

peakList = sequence of pairs: 〈m frequency, m amplitude〉
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Name Type Description

m peakListk,k=x,y,z peakList list of peak frequencies

Table 6.3: Monitored Variables in crosscorrelatedProfile

Name Type Description

m frequency real peak’s frequency in Hz
m amplitude real peak’s scaled relative amplitude

Table 6.4: Monitored Variables in peakList

A final type definition is given, encompassing all instances of the monitored vari-
ables. The m machineProfile variable is type machineProfile, and contains all
relevant machine information from the individual devices and cross-correlated pairs.
Its elements are presented in Table 6.5.

machineProfile = sequence of profiles,

(m deviceProfile1, ... , m deviceProfileN,

m crosscorrelatedProfile1, ... , m crosscorrelatedProfileP)

Name Type Description

m deviceProfilen,n=1...N deviceProfile device profile
m crosscorrelatedProfilen,n=1...P crosscorrelatedProfile paired profile

Table 6.5: Monitored Variables in machineProfile

Some of the monitored variables make use of a frequency spectrum, which requires
specific mathematical computations such as the FFT. An axial sequence of data is
required for the calculation, and a of length 2x terms optimizes its performance. A
sequence of 4096 samples will be used, where samples are acquired at 500 Hz. As a
result, monitored variables will be updated at the following rate:

Monitored Variable Update Rate = 4096 samples / 500 Hz

= 8.192 sec

6.2.3 Internal Variables

Internal variables are affected by the monitored variables through the condition
monitoring technique. One such internal variable, the baseline profile, has the ma-
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chineProfile type as defined in the previous section. This profile contains the normal
machine operational signatures used to designate healthy conditions. Figure 6.6 de-
fines the internal variables.

Name Type Description

i baseProfile machineProfile profile of baseline operation
i incidentPointm real numerical indicator of irregularity
i faultFlagm boolean flag indicating a fault condition

Table 6.6: Internal Variables

The i incidentPointm variable contain incident points, indicators of operational
irregularity for a specific monitored variable. The i faultFlagm flag has a Boolean
value indicating a breached fault condition for a specific monitored variable. Every
monitored variable with a real type has these two corresponding internal variables.
The individual sets of the two internal variables have a bijective relationship with the
set of all real monitored variables. All other monitored variables are populated by
these real values.

The i baseProfile is only instantiated once, and then updated at the discretion
of the user. Changing machine functionality would alter its baseline, and so a new
baseline profile would be needed. The other internal variables are to be updated at
the same rate of the monitored variables. No new decisions can be made without the
new information provided by an updated set of monitored variables.

6.2.4 Controlled Variables

The controlled variable in the condition monitoring software is used to indicate
a fault event, as presented in Figure 6.7. It is influenced by the internal variables
and modified by the condition handler. The controlled variable is to govern a display
module, as to communicate the presence of a machine fault to users.

Name Type Description

c faultDetect boolean flag indicating fault conditions

Table 6.7: Controlled Variables

The controlled variable will complete its update cycle at the rate the internal
variables are being updated. It can be modified at any time when the condition
handler detects a fault condition, or a return to normal operation.
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6.3 Functions

Functions in the model are given a set of variables, and produce the subsequent
set of variables. Functions and their requirements are discussed in this section.

6.3.1 Filtering and Processing

The purpose of filtering and processing is to produce the monitored variables from
measured variables. Triaxial acceleration data from a sensor device, a accDk,k=x,y,z,
are used in sequences to instantiate a deviceProfile type. Two synchronized se-
quences of data from different sensors are used for the crosscorrelatedProfile. Input
and output relationships are presented below.

A new type definition is given, as to reflect the sequences of triaxial acceleration
data. An accBuffer type is defined as:

accBuffer = three sequences: [〈a accDx〉 ,
〈
a accDy

〉
, 〈a accDz〉]

For each sensor device used, an accBuffer is instantiated. Each acquired data
sample will belong to one of the N accBuffer, in a surjective mapping. Every datum
has two samples corresponding to the same time and sensor location, but unique
regarding axis. When enough data has been acquired in an accBuffer, the contents
are filtered and processed, emptying the buffer for the next sequence of upcoming
data samples.

All monitored variables are contained in a machineProfile type, within the de-
viceProfile or crosscorrelatedProfile type. As a result, defining the relations to
these two types provides a mapping from the measured to monitored variables.

• The set of all instantiated deviceProfile types has a bijective relation to the
set of all instantiated accBuffer buffers

• The set of all instantiated crosscorrelatedProfile types has a bijective relation
to the set of all instantiated {i, j} accBuffer pairs, where i 6= j

6.3.2 Condition Monitoring Technique

The condition monitoring technique observes the monitored variables and updates
the internal variables to track the machine’s condition and faults. Monitored variables
are first compared to their baseline profile equivalent, and if the difference exceeds
their respective tolerance threshold, ε, an incident event occurs. The presence or
absence of an incident event pertaining to an a monitored variable is then passed
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along to the remainder of the monitoring process. The condition of a monitored
variable is tracked using the incidents, and is responsible for distinguishing between
machine faults and normal operation.

The existence of an incident will be expressed as a Boolean, in the incidentFlag

flag. Each of the monitored variables with a real type are used to check for corre-
sponding incidents, as defined below.

For a sensor n [1, N ],

∀m : (m, , , ) ∈ m machineProfile,

(∃mb : (mb, , , ) ∈ i baseProfile,

(|mb −m|/mb ≥ εm)⇔ incidentFlag)

For a sensor n [1, N ], and for an axis k {x, y, z},

∀g : ( , g, , ) ∈ m machineProfile,

(∀gb : ( , gb, , ) ∈ i baseProfile,

(|gb − g|/gb ≥ εg)⇔ incidentFlag)

For a sensor n [1, N ], and for an axis k {x, y},

∀p : ( , , p, ) ∈ m machineProfile,

(∃pb : ( , , pb, ) ∈ i baseProfile,

(|pb − p| ≥ εp)⇔ incidentFlag)

For a sensor n [1, N ] or cross-correlated pair p [1, P ], and for an axis k {x, y, z},

∀l : ( , , , l) ∈ m machineProfile, ∀ 〈f, a〉 ∈ l,
(¬∃lb : ( , , , lb) ∈ i baseProfile,∀ 〈fb, ab〉 ∈ lb,
((|fb − f | < εf ) ∧ (|ab − a|/ab < εa))⇔ incidentFlag)

After the incidentFlag is assigned a Boolean value, the respective modifica-
tions are made to the corresponding i incidentPointm or i faultFlagm internal
variables. While there are no specific requirements on this process, the set of all
i incidentPointm contains the indicators representing the incident events. The set
of all i faultFlagm flags identifies when the algorithm has identified a fault condition
on a specific monitored parameter.
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6.3.3 Condition Handler

The condition handler modifies the controlled variables in response to the internal
variables. The detection of any one fault, corresponding to a particular monitored
variable, will activate the machine fault flag. The Boolean value of this controlled
variable, c faultDetect, is simply defined as follows.

(∃u ∈ i faultFlagm, u)⇔ (c faultDetect)
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7 Monitoring Software Implementation

7.1 Overview

The condition monitoring software is a required subsystem apart of the monitoring
project. The software supports the completion of the thesis objectives, Section 1.2,
and follows the framework provided in its design model, Chapter 6. The software
is implemented in the C programming language and is executed by the system’s
monitoring computer.

The program has a command line interface that allows users to initiate the moni-
toring process and auxiliary modules. A PDA application has been developed to allow
users to generate a parameter file containing information and settings, which is then
uploaded via USB stick to the monitoring software.

Figure 7.1 presents the main modules that comprise the software, and the corre-
sponding data flow between them. Modules will be listed in a module guide, presented
with their software loops, and have individual details discussed in the following sec-
tions.

7.2 Module Guide

This section contains a Module Guide of the software system as defined by Par-
nas [22]. Its purpose is to ensure separation of concerns and assist in future mainte-
nance of the modules. Parnas wrote,

It defines the responsibilities of each of the modules by describing the
design decisions that will be hidden (encapsulated) by that module (its
secrets). [22]

The name, service and secret of each module are presented below. The Module
Guide spans across Tables 7.1, 7.2 and 7.3.
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Figure 7.1: Software Module Data Flow Diagram
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Name Parameter Interface
Service Acquire and distribute system parameters
Secret Parameter acquisition and distribution implementation

Name Data Reader
Service Receive transmitted sensor device data
Secret Techniques and protocols for handling device communication

Name Filtering and Processing
Service Filter and process raw sensor data into monitored variables
Secret Filtering, processing and calculation techniques

Name Calibration
Service Convert raw data into g-force values
Secret Mappings from raw data to g-forces

Name Orientation
Service Orient data to a standardized frame of reference
Secret Orientation implementation

Name DC Filter
Service Remove DC (constant) components from waveform data
Secret DC Filter coefficients

Name FFT
Service Calculate frequency spectrums
Secret Algorithm parameters and implementation

Table 7.1: Module Guide - part 1 of 3
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Name Butterworth Filter
Service Adaptive bandpass filter
Secret Filter coefficient and implementation

Name Cross-Correlation
Service Cross-correlate frequency spectrums
Secret Implemented cross-correlation algorithms

Name Monitored Variable Calculation
Service Calculate monitored variables
Secret Utilized equations and algorithms

Name Condition Monitoring Technique
Service Detect deviating monitored variables
Secret Monitoring technique

Name Baseline Profile
Service Calculates the baseline profile
Secret Baseline profile calculation technique

Name Monitoring Algorithm
Service Track and detect deviating monitored variables
Secret Implemented monitoring algorithm

Name Condition Handler
Service Detect and respond to machine faults
Secret Machine fault detection and response procedures

Table 7.2: Module Guide - part 2 of 3
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Name Condition Status
Service Detect machine faults from internal variables
Secret Fault detection algorithm

Name Fault Notification
Service Notify users of machine fault conditions
Secret Notification process

Name Recorder
Service Record data periodically and on fault events
Secret Implemented recording procedure

Name Logger
Service Log system events to file
Secret Implemented logging procedure

Name Storage Utilities
Service Save and retrieve data and files
Secret Implemented save and load procedures

Name Calibration Procedure
Service Calculate calibration values and save to device
Secret Implemented calibration technique

Table 7.3: Module Guide - part 3 of 3
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7.3 Software Loops

While the software was developed on a single-core processor, it utilizes multiple
loops to perform its repeated tasks. Each loop is executed as its own thread. The
loops and associated modules are presented in table 7.4.

Loop Name Module

1 Main Parameter Interface
2 Reader Data Reader

Logger
3(a) Process Filtering and Processing

Condition Monitoring Technique
Condition Handler
Recorder
Storage Utilities
Logger

3(b) Calibrate Calibration Procedure
Logger

Table 7.4: Software System Loops

The Main loop gathers and distributes system parameters, and is responsible for
handling the command line interface. Parameter updates, calibration procedures, and
monitoring are initiated in this loop. During monitoring, the loop runs to ensure users
may quit the application when desired.

The Reader loop is dedicated to the Data Reader module, as to ensure timely
reception of incoming acceleration data. The Logger module is accessed as the dis-
cretion of the Data Reader module when it requires messages to be logged. This loop
is constantly executed, as to be prepared for new incoming data. Through a circular
queue, collected data is forward to one of two next loops.

The Process loop is the main operational loop which contains filtering, processing,
and monitoring techniques. Auxiliary modules are also executed in this loop, such as
the recording and saving of data. This loop is only executed once it has buffered a
time window’s worth of data for a sensor device. The last device to provide its time
window’s worth of data initiates the cross-correlated calculations, which require data
sets from all the device pairs.

The Calibration loop is used in place of the Process loop when the system is
being used to calibrate new sensors. The Calibration Procedure module contains the
required methods to utilize sensor data for the calculation of calibration values.
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7.4 Filtering and Processing

Filtering and Processing contains the procedures to manipulate raw acceleration
data into meaning information. The result is a collection of monitored variables,
specific to individual devices and device pairs. Since the frequency spectrum of the
sensor devices’ axes are computed every time window, all monitored variables are
updated at the same rate. This simplifies the continuous monitoring process into the
monitoring of discrete time windows. As a result, every module will process data in
buffers corresponding to the amount of acceleration data pertaining to a single time
window.

Raw acceleration data is introduced into the software by the Data Reader module,
and then stored into circular queues specific to a device and axis (X, Y, Z). The
Filtering and Processing module buffers this data into sized sequences, and then
passes the data through the various filters and processing techniques.

7.4.1 Calibration

At system initialization, the Calibration module is provided with calibration values
unique to each sensor device and axis. Since each device stores these values internally,
they are acquired by the Data Reader module. Each sensor axis has two calibration
values associated with it, mk and bk. This provides a linear mapping from a raw
acceleration datum to a g-force value.

y(n) = mkx(n) + bk

The stored calibration values are calculated within the Calibration Procedure mod-
ule. Details of this calibration technique are outlined in Section 7.7.6.

7.4.2 Orientation

All sensor devices have the same three dimensional Cartesian coordinate system.
Devices are mounted with their X-axis parallel with the direction of material flow,
however mounting on different sides of the vibrating screen and at different device
orientations (side or top) creates different device frames of reference. The Orientation
module is responsible for transforming each device’s frame of reference to the stan-
dardized machine frame of reference. Figure 7.2 presents the vibrating screens frame
of reference. The utilized transformations are summarized in Table 7.5.

After acceleration data have been orientated, it is forward to the DC Filter module
for further processing. A copy of the data is provided to the Recorder module so that
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Figure 7.2: Vibrating Screen - Frame of Reference

Machine Side Device Orientation Transformation

right side or top negate X-axis
left side negate Z-axis

right top flip -Y and Z-axis
left top flip Y and Z-axis

Table 7.5: Sensor Device to Vibrating Screen Frame of Reference

the data can be saved to file when desired. It was decided to record acceleration data
after minimal processing, while not requiring additional information about the data
sequences such as calibration values and device orientations.

7.4.3 DC Filter

The DC Filter module removes constant components from the sensors acceleration
data. The X and Y-axis are subject to gravity, which does not reflect the machine
operation. In order to ignore these constant g-forces, each acceleration datum, with
the previous datums’s original and scaled value, are pass through the following filter.

y(n) = x(n)− x(n− 1) +Ry(n− 1)

43



M.A.Sc. Thesis - D. Volante McMaster University - Software Engineering

The value of R dictates the aggressiveness of the filter, and values between 0.9
to 1.0 are typically used. Smaller values accommodate drifting DC components, but
since gravity does not change, a higher value was chosen. The Vibration Analysis
Tool found that a relatively high value, R = 0.98, was able to completely remove
gravity from vibrating screen’s data after a few hundred samples [21]. This value of
R is also used in the current implementation.

The more the DC filter is iterated, the more it can better filter out constant
components. As a result, the first couple time windows of data are filtered, yet not
used in the monitoring process. This allows the construction of the baseline profile
and comparison techniques to commence after the filters has completely stabilized.

7.4.4 FFT

The FFT module converts time domain acceleration data into its frequency domain
equivalent. The result is a discrete list of frequencies, and corresponding amplitudes
depicting signal contribution or strength. The distance between discrete frequencies
is determined by the sensor sampling rate and size of the input data sequence. It is
commonly referred to as the bin size and in the current implementation it is:

bin size = f(n+ 1)− f(n) = (sampling rate) / (data length)

= 500.0 Hz / 4096

= 0.12207 Hz

The usable frequency content is limited to half the sampling rate, known as the
Nyquist frequency. Content at and above this limit are subject to aliasing, which
can introduce frequency based errors into the monitoring process. For the current
implementation, the Nyquist frequency is simply:

Nyquist frequency = (sampling rate) / 2.0

= 500.0 Hz / 2.0

= 250.0 Hz

At the core of this module is the fast Fourier transform (FFT), provided by an
open source library, Fastest Fourier Transform in the West (FFTW). Developed at
MIT, this transform is popularized by its speed, portability and usability. At system
initialization, the input data size is provided to the library where it then creates an
optimized routine for the given length. The FFTW provides complex results, but
since phase information is not required, the absolute magnitude of the complex values
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are taken.
The computed frequency spectrum is provided to the Cross-Correlation and Moni-

tored Variable Calculation modules for further processing. The frequency correspond-
ing to the largest amplitude, the operating frequency, is provided to the Butterworth
Filter module. The Butterworth filter filters around a specific frequency, and so an
argument of the maximum function (argmax ) within the FFT module provides it with
this value.

7.4.5 Butterworth Filter

The Butterworth Filter module contains the implemented band-pass filter used to
‘smooth’ time domain acceleration data. It is primarily used to remove high-frequency
content, so that subsequent processing can be carried out without the presence of
noise. The filter is centered around the operating frequency, provided by the FFT
module, and any frequency content outside of the bandwidth is attenuated.

The implemented Butterworth filter follows the design from the Vibration Anal-
ysis Tool, where noise was successfully removed from vibrating screens’ acceleration
data [21]. Characteristics of the filter are presented in Table 7.6.

Center Frequency dynamic
Center Frequency Tolerance ±2.0 Hz
Bandwidth ±5.0 Hz
Order 4th
Coefficients 9

Table 7.6: Butterworth Filter Characteristics

The Butterworth filter utilizes computed coefficients in the filtering process, where
coefficients are updated when the the center frequency changes. To regulate updates,
new coefficients are only calculated when the the center frequency exceeds its toler-
ance.

Butterworth filters also require a settling time in order to produce meaningful
results. Filter outputs start at zero and oscillate with increasing amplitudes until
after a few hundred data points when it stabilizes. To ensure the filter has settled
before monitoring calculations have begun, the first couple time windows of data are
completely filtered, and then discarded.
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7.4.6 Cross-Correlation

The Cross-Correlation module uses pairs of device frequency spectrums in a certain
axis, as to produce a frequency spectrum depicting common frequency components.
The result is a frequency spectrum like the FFT module, however information per-
tains to two sensor devices instead of just one. When performed for all device pairs,
frequency relationships can be easily observed. Also, as noise is random it is highly
unlikely to correlate between devices. This allows the produced spectrums to re-
veal frequency content experienced by multiple sensors, and ignore individual sensors’
noise.

Cross-correlations can be performed in the time domain, where the result can
then converted into the frequency domain for analysis. However, one paper had
shown that performing the cross-correlation in the frequency domain can significantly
reduce computational requirements. The proof and full explanation of the concept
were presented in [21].

Since the provided frequency spectrum amplitudes are positive and real, the two
sets of frequency content can be easily cross-correlated by multiplying correspond-
ing amplitudes. Given two frequency spectrums’ amplitudes, Xi and Xj, the cross-
correlated amplitude for each frequency is simply calculated by:

y(n) = xi(n)xj(n)

7.4.7 Monitored Variable Calculation

The Monitored Variable Calculation module requires various data sets in order
to compute the monitored variables. The required inputs are presented in Table 7.7.
One set of filtered time domain g-forces and frequency spectrum can produce the
monitored variables for an individual sensor device. One cross-correlated frequency
spectrum can allow the calculation of the monitored variables pertaining to a cross-
correlated device pair. The equations and algorithms used to compute the monitored
variables are provided in Chapter 8.

Input Data Providing Module

Filtered Time Domain G-Forces Butterworth Filter
Frequency Spectrums FFT
Cross-Correlated Frequency Spectrums Cross-Correlation

Table 7.7: Monitored Variable Calculation Inputs

46



M.A.Sc. Thesis - D. Volante McMaster University - Software Engineering

7.5 Condition Monitoring Technique

The Condition Monitoring Technique contains two modules: the Baseline Profile
and Monitoring Algorithm module. Monitored variables computed from the Filtering
and Processing module are used to populate the baseline profile, and then later used
to compare against this profile. The Monitoring Algorithm conducts the comparison,
and provides results to the Condition Handler module. Full details of the Condition
Monitoring Technique are presented in Chapter 9.

At the start of a new monitoring session, the previously used baseline profile can
be retrieved from the Storage Utilities module. Alternatively, a new baseline profile
can be constructed. Both new and old baseline profiles are summarized through the
Logger module. However, only new baseline profiles are saved in full detail using the
Storage Utilities module.

7.6 Condition Handler

The Condition Handler contains the procedures for responding to the Monitoring
Algorithm results. This is divided into two parts: identifying the machine status, and
notifying users accordingly.

7.6.1 Condition Status

The Condition Status module identifies the condition of the vibrating screen given
the operational status of each monitored variable. For these machines, there is cur-
rently no knowledge base matching specific operational signatures to particular ma-
chine faults. As a result, the machine is considered to have a fault if at least one of
its monitored variables has a breached fault condition. Alternatively, a machine has
healthy or normal operation only if all monitored variables have fault-free statuses.

The Condition Status module provides the machine status to the Recorder and
Fault Notification modules. The Recorder uses the machine status to trigger fault
recordings and determine the rate and duration of periodic recordings. As described
in the following section, the Fault Notification module requires the machine status to
trigger its user notification procedure.

7.6.2 Fault Notification

The Fault Notification module is responsible for contacting users in the event of
a machine fault. Currently, two types of user notifications exist. The first is an on
screen fault notification, with the corresponding triggered fault condition. Secondly,
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if the software is provided with an email address and the system with Internet access,
a fault message with attached log file is emailed to the specified user.

The automatically generated emails with attachment are sent using the Mutt, a
small but powerful text-based email client. As it requires an email server, an open
source option, Postfix, was chosen. It follows the Simple Mail Transfer Protocol
(SMTP) to traverse the message through the Internet to its end destination. With
the advent of mobile computing, namely smartphones, technicians and industrial per-
sonnel can access their emails remotely and immediately.

Currently, there exists future plans to interface the monitoring system with a pro-
grammable logic controller (PLC), and a remote file server with a database. The
intention is to create standardized external connections, as to interface fault notifica-
tions with other systems. It is the Fault Notification module that would need to be
expanded in order to implement both of these upgrades. The details of future work
are discussed in Section 12.2.

7.7 Functional Modules

Functional modules are not and do not contain submodules, but rather function
and interact with other modules independently. This section contains descriptions on
these types of modules.

7.7.1 Parameter Interface

The Parameter Interface module downloads parameter files from a USB stick,
and packages the parameters for module distribution. Users can create a parameter
file from a graphical user interface in the PDA software package. Transferring this
file to the system’s monitoring computer specifies certain information required by the
condition monitoring software. The parameter file can be updated as desired to better
reflect the machine’s details and system’s operation.

Information contained in the parameter file is categorized in Tables 7.8, 7.9, 7.10,
7.11, 7.12 and 7.13. Specific module parameter requirements are also identified.
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Parameter Type Required by Module

Customer Name string Fault Notification
Email Contact string Fault Notification
Machine Name string Fault Notification
Equipment Number string Fault Notification
Serial Number string Fault Notification
Machine Model string Fault Notification
Number of Bearings integer Fault Notification

Table 7.8: Parameters - Machine Information

Parameter Type Required by Module

Number of Devices integer Data Reader, Filtering and Processing,
Recorder, Condition Monitoring Technique

Device Names list of string Recorder
Device Orientations list of string Orientation
Device Numbers list of integer Data Reader
Network Address string Data Reader

Table 7.9: Parameters - Sensor Device Information

Parameter Type Required by Module

Recording Duration real Recorder
Recording Interval real Recorder
Fault Recording Duration real Recorder
Fault Recording Interval real Recorder

Table 7.10: Parameters - Recording Information

Parameter Type Required by Module

Peak Amplitude real Monitored Variable Calculation
CC Peak Amplitude real Monitored Variable Calculation

Table 7.11: Parameters - Minimum Peak Amplitudes
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Parameter Type Required by Module

Main G-Force real Monitoring Algorithm
Average G-Force X real Monitoring Algorithm
Average G-Force Y real Monitoring Algorithm
Average G-Force Z real Monitoring Algorithm
Operating Frequency X real Monitoring Algorithm
Operating Frequency Y real Monitoring Algorithm
Peak Frequency real Monitoring Algorithm
Peak Amplitude X real Monitoring Algorithm
Peak Amplitude Y real Monitoring Algorithm
Peak Amplitude Z real Monitoring Algorithm
CC Peak Amplitude X real Monitoring Algorithm
CC Peak Amplitude Y real Monitoring Algorithm
CC Peak Amplitude Z real Monitoring Algorithm

Table 7.12: Parameters - Tolerance Thresholds

Parameter Type Required by Module

Increment real Monitoring Algorithm
Start real Monitoring Algorithm
Normal real Monitoring Algorithm
Fault real Monitoring Algorithm
Maximum real Monitoring Algorithm

Table 7.13: Parameters - Algorithm Parameters
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7.7.2 Data Reader

The Data Reader module is responsible for handling all communications with the
sensor devices, as to receive the measured acceleration data. At startup, network
sockets are created so incoming data is directed to the monitoring software. Given
the parameter list of sensor devices and corresponding Internet Protocol addresses,
the module then tests device network connectivity. If all devices are on the network,
internally stored calibration values are individually requested, and then given to the
Filtering and Processing module for later use. When the rest of the monitoring
software is ready, devices are simultaneous sent an acquisition start message. This
begins one of the main loops in the condition monitoring software.

The reader loop is contained in its own thread, as to ensure timely reception of
the incoming data. When a device packet is received, an acknowledge message is
returned. This message is receipt for the sensor device, and without it the device
will resend the packet. The packet’s structure is then examined and if correct, data
is buffered to queues specific to a device and axis (X, Y, Z). These are the output
queues where the Filtering and Processing module obtains data to be processed.

Within the Data Reader loop, malformed or missing packets trigger a transmission
error routine. Durations between received packets are also monitored, as to handle
devices that have not transmitted a packet after 2 seconds. Device silence for this
duration is indicative of a dropped packet or network failure. All these events are
documented through the Logger module. To compensate for missing data and to keep
devices synchronized, the stop data acquisition is broadcast to all devices. Devices
are reconnected, and only those that are properly networked are eligible to receive
the data acquisition start broadcast. The Filtering and Processing module is notified
of this procedure, so it can reinitialize itself for the restarted data streams.

The Data Reader module also communicates with the Calibration Procedure mod-
ule by collecting data when requested, and sending calibration values to sensor devices.
The start, stop and reconnect routines are utilized on a specific device as supplied by
the Calibration Procedure module.

7.7.3 Recorder

The Recorder module governs the recording of calibrated and orientated accelera-
tion data. It is given four parameters, the duration and frequency of data recordings
for normal and faulty machine operation. Acceleration data is saved to file when due
for a periodic recording or when the Condition Status module has identified a ma-
chine fault. The Storage Utilities module contains the specific procedures for saving
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the data in its appropriate directory.
When a fault event has been identified, a recording is initiated capturing the

waveform data responsible for triggering fault conditions. The fault recordings’ length
is set by the fault duration parameter. Subsequent data recordings would then proceed
at the fault interval parameter. If normal machine operation is later identified, the
original recording parameters will take effect once again.

7.7.4 Logger

The Logger module controls access to the log files, where system events are docu-
mented. Every time the system is started, a new log file is created so that monitoring
details of each session can be examined. A semaphore is used to ensure messages are
written in their entirety before a subsequent message is logged. Software modules and
their logged messages are presented in Table 7.14.

Module Logged Messages

Data Reader active devices, device transmission errors
Recorder periodic and fault recording times
Baseline Profile baseline profile summary
Monitoring Algorithm monitored variables changing fault status
Condition Status return to normal machine operation
Calibration Procedure calibration procedure details

Table 7.14: Modules using Logger

7.7.5 Storage Utilities

The Storage Utilities module contains the routines pertaining to long term data
storage. This module interacts with the computer’s file system by saving and loading
data recordings, logs, baseline profiles and other required files. Directories categorize
the saved file types, while subdirectories are used to designate the date and time of
each new monitoring session, recording or calibration procedure.

Currently, system data can be exported in one of two ways: as an email attachment
via the Fault Notification module, and though an USB stick upload. The upload
procedure simply copies the saved directory structure onto an inserted USB stick. It
is also possible to clear all saved data at the discretion of the user.
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7.7.6 Calibration Procedure

The Calibration Procedure module controls the process of calculating and saving
calibration values to a sensor device. It directs users to manipulate a device so that
data readings can be taken at various orientations. The device’s enclosure allows
it to rest on a flat surface perpendicular to the ground, allowing each axis (±X,
±Y , ±Z) to be parallel with gravity. For the axes, data is collected and averaged
corresponding to -1 g, 0 g and +1 g resting accelerations. Linear least squares is
then performed, where linear mappings are found from raw acceleration data to g-
force values. The calibrations values, mk and bk, are saved for each axis, where the
mappings are expressed by the equation:

y = mkx+ bk

The linear mapping is possible because the accelerometer’s datasheet specified its
output is linear in a defined range. Exceeding the maximum range, ± 10 g, does not
guarantee output linearity.

Each sensor device requires at least one successful calibration procedure to be func-
tional in the system. The calibration values are crucial to processing the acceleration
data. It is possible to recalibrate a device if the accelerometer orientation has shifted
or other sensor characteristics have changed over time. A poorly performed calibration
procedure can result in reduced accuracy of the corresponding sensor device.
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8 Monitored Variables

8.1 Overview

This chapter discusses the monitored variables used in the condition monitoring
process. These variables are calculated from the filtered waveform signals, along with
the individual and cross-correlated frequency spectrums discussed in Section 7.4.

8.2 Average G-Force

The average g-force is a monitored variable that reveals the acceleration of a
machine. Its unit is in g-forces, where 1 g equals 9.81 m/s2. It is computed for every
sensor and for all three axes. Given a time window of filtered acceleration data (X,
Y or Z), it is calculated as follows:

m averageGForcex = (|max(X)|+ |min(X)|)/2

8.3 Main G-Force

Another form of average g-force is known as the main g-force. It uses filtered
acceleration data from the two main drive axes, X and Y , to determine the largest
g-force experienced in the corresponding plane. It is calculated as follows:

m mainGForce = max(
√
x2i + y2i ,∀x ∈ X, y ∈ Y )

8.4 Operating Frequency

The operating frequency describes the speed of a periodic system in cycles per
second, commonly known as Hertz (Hz). This variable is only calculated for the X
and Y axes, as they are the only axes being driven in the vibrating machines. Since the
FFT only returns a discrete set frequencies (F ) and their amplitudes (A), polynomial
interpolation is used to increase accuracy.

Given a FFT result of a time window, the operating frequency is calculated as
follows:

1. Find the largest bin amplitude (ai) and corresponding center frequency (fi)

2. Perform polynomial interpolation using the following points, (fi−1, ai−1),
(fi, ai), (fi+1, ai+1), to determine the frequency corresponding to the largest am-
plitude in the polynomial, which is m operatingFrequencyk
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While the interpolation technique is discussed in detail in [21], the implemented
calculation is expressed as follows:

α = fi+1ai−1 − fi−1ai+1 − fiai−1 + fiai+1 − fi+1ai + fi−1ai

β = f 2
i−1ai+1 − f 2

i−1ai − f 2
i ai+1 + f 2

i ai−1 − f 2
i+1ai−1 + f 2

i+1ai

m operatingFrequencyk = −β / 2α

Industrial end users tend to request the operating frequency in revolutions per
minute, known as RPM. Since Hertz is defined as revolutions per second, the conver-
sion is simply:

RPM (rev/min) = m operatingFrequencyk (rev/sec) ∗ 60 (sec/min)

8.5 Peak Frequencies

8.5.1 Peak Detection

Peak frequencies are frequencies with amplitudes that produce a local maxima in
the frequency spectrum. This process of selecting frequencies based on their ampli-
tude is known as peak detection. In the monitoring system, frequencies and their
amplitudes are selected from the discrete set of FFT results for a particular axis and
time window. The FFT output either reflects the frequency content of a particular
sensor’s acceleration waveform, or is the cross-correlation of two sensors’ FFTs.

The implemented detection algorithm requires a minimum peak amplitude, for
which all frequencies with amplitudes less than this value are deemed noise and thus
ignored. This threshold would need to be adjusted depending on the amount of noise
in the monitored system.

The algorithm runs over each frequency bin, and a peak is detected if it passes
both of the following criteria:

1. The amplitude is greater than the minimum peak amplitude

2. The amplitude is greater than the four neighbouring frequencies’ amplitudes,
two from each side (greater than or equal to the subsequent bin)

This simple algorithm has been successful in identifying peaks from frequency
spectrums. However, a side effect of the second criteria is that two peaks may not be
within three bin widths of one another. Figure 8.1 presents two successfully identified
peaks. This demonstrates an example of the closest two peaks can be to one another,
while both being uniquely identified.
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Figure 8.2 depicts a similar example with two local maxima. The peaks are within
three bin widths of one another, and as a result only the largest one will be identified.
It is undesirable to have all neighbouring peaks identified, as secondary peaks within
a few bins widths of the primary peak are attributed to FFT leakage or sidelobes from
the primary peak [21].

In the Vibration Analysis Tool developed at McMaster University, a slope based
peak detection was implemented, but the concept of ignoring peaks too close together
was utilized [21]. The corresponding paper empirically testing the tool, and deter-
mined a peak criteria stating that peaks would only be identified if they are larger
than the next four neighbouring amplitudes. The particular tool was used in noisy
systems, but tuning all the system parameters resulted in the elimination of false
positive peaks. The peak detection algorithm used in the monitoring system could
also be adjusted to accommodate noisier systems, by increasing the frequency band
between allowable peaks.

Figure 8.1: Detecting two peaks, at 14.0 Hz and 14.4 Hz

8.5.2 Peak Assignment

Once a peak had been identified, its frequency and amplitude are then computed.
Like the operating frequency computation in Section 8.4, polynomial interpolation is
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Figure 8.2: Detecting one peak, at 14.0 Hz

used to provide more accuracy on the frequency of interest contained in the respective
FFT bin. Interpolation is performed using the detected peak bin values, and the two
neighbouring points. The is resulting peak frequency is assigned to m frequency.

As discussed, a side effect of the FFT is that expressed amplitudes are reduced the
further away they are from their center bin frequency. An expression was derived in
Chapter 3 to determine the amount of amplitude reduction based on this frequency
distance. Having access to the peak and bin’s center frequency, their difference is
input into the inverse of the found expression. This function amplifies amplitudes
so that the effect of FFT leakage is negated. Figure 8.3 presents an example of the
scaling function for an entire bin width.

A peak’s amplitude, m amplitude, is the product of the its bin’s amplitude and the
appropriate scaling factor. Scaling allows peaks to be better represented, regardless
of their location with respect to their center frequency bins. This allows peaks with a
drifting frequency to have consistent amplitudes as they moves across the frequency
spectrum. Ultimately, it improves the monitorability of peaks by reducing deviations
caused by error.

57



M.A.Sc. Thesis - D. Volante McMaster University - Software Engineering

Figure 8.3: Peak Amplitude Scaling Function
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9 Condition Monitoring Technique

9.1 Overview

This chapter discusses the implemented condition monitoring process. The tech-
nique observes monitored variables calculated from waveform data, and compares
them to their baseline equivalent. Algorithm parameters are tuned to refine the mon-
itoring process. This chapter contains the procedure and decision making techniques
that attempt to determine the condition of the monitored variables.

9.2 Baseline Profile

Baselines are associated with normal or desired machine operation. In condition
monitoring, signals observed to deviated from the machine’s baseline typically suggest
abnormal functionality. If a baseline is acquired from a machine with an existing
fault, that fault would be assumed to be apart of the machine’s normal operation.
This would allow the fault to go undetected, until the fault’s signature differs from
how it was observed in the baseline. Consequently, it is assumed that baselines will
be taken from machines without faults, or at least with faults in early stages that are
too difficult to detect using the current available technology. Technicians have access
to the Vibration Analysis Tool [21], enabling them to analyze the current status of
the machine and ensure no detectable faults are present.

For the monitoring system, the baseline profile is comprised of the monitored
variables as discussed in Chapter 8. This allows for direct comparison between the
current variables of the machine and its baseline, one variable at a time. To ensure
the baseline profile properly represents the operation of the machine, the machine is
monitored for multiple time windows. This allows averaging techniques to be utilized,
ultimately increasing the accuracy and precision of the baseline profile.

The baseline profile for a sensor’s average g-forces, m averageGForcek and
m mainGForce, are determined by taking the mean of the respective monitored vari-
ables for each time window of the baseline. Since the g-forces variables already rep-
resent averages, noise does not have a large impact on their values. Averaging across
the time windows further reduces the effect of system noise in their profile.

The baseline operating frequency, m operatingFrequencyk, and peak frequencies,
m peakListk, are not averaged directly like the g-forces. Instead, the FFT results
from the individual sensors as well as the cross-correlated sensor pairs are averaged
across their respected time windows. Operating frequencies are then calculated from
the spectrums, using the documented methods. The frequency spectrums are then
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passed through the peak detection algorithm to identify peak frequencies. Since noise
is assumed to be Gaussian it affects each time window differently, so averaging the
FFTs from multiple windows attenuates this noise. This procedure provides a better
representation of not only the amplitudes dominated by noise, but also the amplitudes
of meaningful frequency content.

9.3 Monitoring Algorithm

The implemented condition monitoring algorithm is generic in nature, able to be
used in a variety of situations. It is a numeric point based system, where points are
awarded for incidents, and withdrawn when tolerances are not exceeded. An incident
event occurs when a monitored variable exceeds its assigned threshold tolerance in
a time window. The points were documented as i incidentPointm, and known as
incident points (IP). The monitoring algorithm can possibly incremented or decre-
mented the IPs every time window. Each monitored variable has its own IP variable
associated with it for every sensor device and axis.

The algorithm has parameters, which are tuned to achieve the desired monitoring
response. These parameters dictate the usage of the monitoring system. Other values
used in the algorithm are predefined constants, and are references when determining
the parameters. Table 9.1 presents the constants and their values, while Table 9.2
presents the parameters and their corresponding restrictions.

Name Symbol Value

Decrement Pdec -1
Minimum Pmin 0

Table 9.1: Algorithm Constants

Name Symbol Restriction

Increment Pinc Pinc > 0
Start Pstart Pmin < Pstart ≤ Pmax

Normal Pnorm Pmin ≤ Pnorm < Pfault

Fault Pfault Pnorm < Pfault ≤ Pmax

Maximum Pmax Pmax ≥ Pfault

Table 9.2: Algorithm Parameters
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The constants and parameters are reference points and triggers for the IP val-
ues corresponding to the monitored variables. Their application is depicted in the
algorithm’s framework, as presented in Figure 9.1. As previously mentioned, the
monitoring process begins after the baseline profile has been determined. Monitored
variables’ IP values are then initialized to Minimum, which is also the lower bound for
IP values. The fault flag, i faultFlagm, is also initialized to false, indicating that the
machine has healthy or normal operation. When a monitored variable is calculated
for a new time window, it is then compared to the baseline profile as outlined in
Section 9.4. The control flow then follows one of the two main branches, determined
by whether the tolerance threshold was exceeded or not.

If the tolerance was exceeded, and the corresponding IP value was at the Minimum

value, the IP would be assigned the Start value. Otherwise, the IP value would be
incremented by the Increment value. It is possible to assign the same value to both
the Start and Increment value, which would result in the equivalent IP value when
originating from the Minimum. However, if the user wants to take full advantage of
the continuous monitoring, the Start value would be given a value equal to or greater
than the Fault value. Doing so would allow a single deviation from the baseline to
immediately trigger a fault condition (IP ≥ Pfault), given that the corresponding fault
condition is not already in process. This results in the documentation of any abnormal
machine event.

Due to the presence of noise in a monitored system, it may not be desirable to
allow a single incident to activate a fault condition. In this situation, Start would be
assigned a value less than Fault. In order to trigger a fault, a monitored variables’s
tolerance would need to be breached over multiple time windows. The minimum
number of time windows required to indicate a fault (MTWmin-fault) can be calculated
as follows:

MTWmin-fault = d(Pfault − Pstart)/Pince+ 1

This number is designated as a minimum because it is not a requirement that the
tolerances be exceeded in consecutive time windows. It is possible that a monitored
variable causing incidents would not trigger its tolerance for a few time windows
within its progression to activating the fault condition. In such time windows, the
control flow would follow the second of the two main branches.

The second main branch in the monitoring algorithm manages the incident points
in time windows where a monitored variable does not deviate from the baseline. The
simplest case for the branch is when a monitored variable’s IP value is at the Minimum,
and no action needs to be taken until the next time window. Alternatively, an IP
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with a value greater than the Minimum will be altered by Decrement. Note that values
cannot be decremented below Minimum, as enforced by the algorithm.

Unlike the Increment value, the Decrement has a constant value of -1. The sig-
nificance of Decrement’s magnitude is equivalent to the duration of one time window.
For any given monitored variable, the summation of the acquired IP represents the
minimum number of time windows that variable must remain within its tolerance
in order to return to Minimum. This is also considered a minimum number because
consecutive equivalent actions are not required. More importantly, if a monitored
variable has an activate fault condition, the minimum number of non-deviating time
windows required to signify a return normal operation is simply:

MTWfault-norm = dPfault − Pnorme

This presents the purpose of the Normal value, a trigger threshold to set the fault
flag to false when the current IP is less than or equal to its value. Note that the
corresponding monitored variable must also have an active fault condition, indicated
by the fault flag being true.

It is possible that abnormal machine operation is temporary, and so the monitoring
algorithm will identify when fault symptoms are alleviated beyond detection. After a
fault is detected, the capacity to return to normal operation is expressed through the
difference between the current IP value and Normal, denoted by MTWIP-norm. The
upper bound to this minimum number of non-deviating time windows is restricted by
the Maximum value. A monitored variable whose IP value exceeds the fault trigger can
still be incremented up until Maximum if the fault continues to persist. As a result,
the upper bound to MTWIP-norm can be determined by:

max(MTWIP-norm) = dPmax − Pnorme

The collection of minimum time windows (MTWs) provides additional numerical
indicators on how the algorithm is being utilized. This can aid users and technicians
by emphasizing the relationships between the chosen parameters.
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Figure 9.1: Condition Monitoring Algorithm
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9.4 Tolerance Thresholds

Following the calculation of a baseline profile, the monitored variables of each
subsequent time window are compared to their respective baseline value. This step
simply determines if a variables’s current time window value is within an acceptable
deviation from the baseline profile. For g-forces and frequency amplitudes, a relative
difference is used, whereas for frequencies an absolute difference is utilized.

Users and technicians must select deviations for each type of monitored variable
and axis in m machineProfile. These deviation allowances are known as trigger or
threshold tolerances. When a monitored variable’s value exceeds its tolerance in a
time window, the event is referred to as an incident and does not necessarily imply
abnormal machine operation. Rather, this is determined by the implementation of
the monitoring algorithm, as outlined in the previous section.

It should be noted that the current implementation attempts to minimize the
number of parameters as to simplify usability for end users. The monitoring system’s
algorithm could be revamped so that frequency peaks with different amplitudes are
assigned different tolerance thresholds. Absolute tolerance thresholds could also be
adopted for peak amplitudes, but would also require additional tuning for the various
amplitudes.

9.5 Baseline Profile Stability

As mentioned, it may be desirable to select parameters such that a single viola-
tion of a tolerance threshold (an incident), would not trigger a fault condition. The
threshold would instead have to be exceeded for at least the minimum number of time
windows to indicate a fault, MTWmin-fault. The benefit of the described usage is in
the reduction of potential false positive faults caused by noise. As noise is random,
it is unlikely that it would cause persistent deviation of a specific monitored variable
from its baseline profile across multiple time windows.

In noisy environments it is expected that false positive incidents would occur when
the system is given a set of tolerance thresholds with a close bound to the baseline
profile. Desired system performance can be achieved provided noise based incidents
do not exceed the weighted ratio of the Decrement to Increment, as reflected by:

|Pdec| : Pinc

With a 1:1 ratio, time windows that do not deviate from the baseline would coun-
teract incidents, using an equivalent weighting. Despite an evenly distributed 50 % in-
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cident rate, a monitored variable’s incident point value would remain near the Minimum
value. For fault detection, consistance readings across time windows would be heavily
favoured.

Using a different ratio where Pinc is greater than |Pdec| would function like previ-
ously discussed yet allow for a larger impact from incidents. In situations where most
noise deviations are contained within the tolerance threshold, a large Increment value
would acknowledge the significance of a subsequent incident. Specifically, it would re-
quire Increment time windows of normal operation to completely counterbalance one
incident.

It should be mentioned that Start can be assigned a different value than
Increment so that the first of a potential train of incidents can have its own weighting.
It is up to technicians to decide if this weighting should smaller, larger, or simply
equivalent to any other incident.

In general, if noise is high enough to trigger a fault condition, the monitoring
system would require tuning for successful operation. End user action from at least
one of the following would need to be taken:

1. Increase the tolerance threshold of the corresponding monitored variable, as to
reduce the frequency of noise triggering the threshold

2. Decrease Start so that isolated incidents are not as heavily weighted

3. Decrease Increment so that more consistency is required for fault detection

4. Increase Fault to reduce the likeliness of the fault condition being breached
by clusters of incidents, by allowing more opportunity for non-deviating time
windows to counteract the noise-based incidents

5. Increase the minimum detectable peak amplitude so that the baseline profile
would disregard smaller peaks encompassed by noise
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10 Monitoring Simulation

10.1 Overview

This chapter presents a simulation of a vibrating machine that is monitored by
the condition monitoring system. A stable baseline profile will be first be determined.
Faults will then be introduced into the machine to determine the effectiveness of the
software system. The system will operate at 500 Hz sampling and use 4096 points in
the FFT calculations. Only the X-axis will be discussed, as analogous methodologies
are utilized for the Y and Z axes.

10.2 Simulated Signals

The simulated signals of a healthy vibrating machine are constructed using sinu-
soidal waves of various frequencies and amplitudes. Like the real vibrating machines,
a dominant frequency is present representing the operating frequency. Noise is also
included into the signals to reflect potential inaccuracies of the sensors as well the
material flow over the machine. Gaussian random noise with a mean of zero and
standard deviation of one, N (0, 1), was chosen for this role. The experiment is con-
ducted using four virtual sensors, where the amplitudes of the sinusoidals in each
signal are presented in Table 10.1.

Frequency / Amplitude
Sensor Location 14.0 Hz 23.0 Hz 35.0 Hz 42.0 Hz

RFB 3.00 1.00 0.50 0.25
RDB 3.20 0.80 0.56 0.23
LFB 2.80 1.10 0.53 0.24
LDB 2.90 0.70 0.54 0.20

Table 10.1: Simulated Healthy Machine Signals

A quarter time window of the generated waveform for the RFB sensor is illustrated
in Figure 10.1. The corresponding frequency spectrum of the time window up to
100 Hz follows in Figure 10.2.
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Figure 10.1: Simulated RFB Vibration Waveform

Figure 10.2: RFB Frequency Spectrum, from the simulated baseline
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10.3 Baseline Profile

The first assessment on the monitoring system was ensuring a successful construc-
tion of the baseline profile for the simulated machine. Half an hour of generated
waveform data (900,000 points) was passed into the monitoring system. The first
minute of data is used to establish the baseline profile, while the remaining data
would be monitored to confirm its stability. The minimum peak amplitudes, tol-
erance thresholds and algorithm parameters chosen to identify a stable profile are
presented in Table 10.2. Empirical testing was used to refine these values. The se-
lected parameters were not exhaustively optimized for the given monitored machine,
as to better reflect the practical use of the system by end users.

Minimum Peak Amplitudes
Individual Peaks 0.10

Cross-Correlated Peaks 0.006

Tolerance Thresholds
Average G-Force 5.0%

Operating Frequency 0.050 Hz
Peak Frequency 0.061 Hz
Peak Amplitude 10.0%

Cross-Correlated Peak Amplitude 30.0%

Algorithm Parameters
Increment 1

Start 1
Normal 0
Fault 8

Maximum 8

Table 10.2: Selected System Parameters

The numeric values of the parameters reveals the fairly conservative use of the
monitoring system as detailed in Section 9.3. A single violation of a tolerance thresh-
old in a time window, known as an incident, would not trigger the fault condition.
Rather, it would have to be exceeded for at least the minimum number of time win-
dows to indicate a fault, MTWmin-fault. For the simulation, this duration is eight time
windows, corresponding to approximately a minute. The implementation is targeted
towards the monitoring of sustained abnormalities and faults.
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The individual sensors’ baseline profiles of the simulated machine are presented
in Table 10.3. The frequencies of interest were all successfully identified, without
the inclusion of any extraneous frequency content. All sensors also independently
and correctly identified 14.03 Hz as the operating frequency of the machine. The
baseline profile is also comprised of peak frequencies detected from the cross-correlated
frequency spectrums, as provided in Table 10.4.

Peak Frequency / Amplitude
Sensor 14.03 Hz 22.97 Hz 35.03 Hz 41.99 Hz Average G-Force

RFB 2.58 0.81 0.46 0.26 3.61 g
RDB 2.74 0.64 0.50 0.23 3.76 g
LFB 2.42 0.88 0.49 0.25 3.42 g
LDB 2.50 0.55 0.49 0.21 3.46 g

Table 10.3: Simulated Machine’s Baseline Profile

Peak Frequency / Amplitude
Cross-Correlated Sensors 14.03 Hz 22.97 Hz 35.03 Hz 41.99 Hz

RFB - RDB 6.93 0.47 0.22 0.059
RFB - LFB 6.12 0.65 0.22 0.064
RFB - LDB 6.33 0.41 0.22 0.053
RDB - LDB 6.71 0.32 0.24 0.047
LFB - RDB 6.48 0.51 0.24 0.056
LFB - LDB 5.92 0.44 0.24 0.051

Table 10.4: Simulated Machine’s Baseline Profile - Cross-Correlated Peaks

After establishing the baseline profile, no faults conditions were triggered while
monitoring the remainder of the normal machine operation. However, it was seen
from the incident point values in the monitored variables that incidents did occur.
The most susceptible variables to noise based incidents were the peak frequencies
with low amplitudes, specifically the 42.0 Hz peaks. With a 10 % peak amplitude
tolerance threshold, small amplitudes are not given as much of an absolute deviation
from the baseline profile as compared to larger peak amplitudes. If this did cause
baseline profile instability, Section 9.5 presents different approaches to supressing the
system noise.
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10.4 Emerging Frequency Content

The first set of simulated faults introduce additional frequency content into the
machine’s normal operation. As discussed in Section 2.2, emerging peak frequencies
are evidence of various machine failures in gears, bearings, shafts, springs or other
components that contribute vibrations.

10.4.1 Visible Content

In this experiment a sinusoidal wave of 28.0 Hz is added to each sensor’s signal,
with the corresponding amplitudes shown in Table 10.5. The fault induced frequency
spectrum of the RFB signal is presented in Figure 10.3, where the new peak frequency
is visible.

Frequency / Amplitude
Sensor Location 27.97 Hz

RFB 0.60
RDB 0.80
LFB 1.00
LDB 0.40

Table 10.5: Simulated Fault - Additional Sinusoidal

In the machine’s signals, the fault persisted for 20 time windows. All four sen-
sors and six cross-correlations were able to identify an emerging peak frequency at
27.97 Hz. Table 10.6 contains the reported amplitudes, which indicate the fault had
the greatest effect near the LFB sensor location. If this was an unknown fault on a
real machine, it would be advised technicians investigate the LFB area of the machine
for a damaged component.

Frequency / Amplitude
Sensor Location 28.0 Hz

RFB 0.48
RDB 0.67
LFB 0.82
LDB 0.33

Table 10.6: Simulation Results - Additional 28.0 Hz Sinusoidal
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Figure 10.3: RFB Frequency Spectrum, containing simulated 28.0 Hz fault

After successful identification of the fault, its signature was removed from the
machine’s signal to reflect a temporary abnormality or machine maintenance. The
experiment was continued to ensure the monitoring system was able to detect the
absence of the fault. Shortly after eight time windows, as determined by Pfault-norm,
the monitoring system correctly identified that the simulated machine was running
under normal operation once again.

10.4.2 Buried Content

Similar to the previous experiment, frequency content was introduced into the
machine’s healthy signals. A 57.0 Hz sinusoidal wave was used, with amplitudes
presented in Table 10.7. The entire monitored frequency spectrum of the sensors
containing the largest fault amplitudes, RDB and LDB, are presented in Figures 10.4
and 10.5. In this situation, it is unlikely technicians would be aware of the emerging
peaks through visual inspection of the frequency spectrum. Each sensors’ amplitude
corresponding to 57.0 Hz are visually concealed by the noise of the system.

The 57.0 Hz sinusoidal fault signals were introduced for 50 time windows. No
individual sensor was able to detect the emerging frequency content for the dura-
tion of the experiment. However, peak detection from the cross-correlated frequency
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Frequency / Amplitude
Sensor Location 57.0 Hz

RFB 0.068
RDB 0.090
LFB 0.045
LDB 0.072

Table 10.7: Simulated Fault - Additional 57.0 Hz Sinusoidal

spectrums were able to identify the peak frequency of interest in two instances, as
presented below in Table 10.8. The common element between the two cross-correlated
frequency spectrums is the RDB sensor, indicating the fault likely originates in that
region of the machine. When the fault signature was removed from the machine’s
signal, the monitoring system successfully identified normal machine operation.

Frequency / Amplitude
Sensor Location 57.0 Hz

RFB - RDB 0.009
RDB - LDB 0.008

Table 10.8: Simulation Results - Additional 57.0 Hz Sinusoidal

Faults identified solely through these means do not appear critical, as their con-
tributed vibration amplitudes is minimal. However, they are indicators of future
machine health and an advisory requesting maintenance. Once fault signatures are
recognized, an expert system could give end users detailed recommendations regarding
the severity of the particular fault.
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Figure 10.4: RDB Frequency Spectrum, containing simulated 57.0 Hz fault

Figure 10.5: LDB Frequency Spectrum, with simulated 57.0 Hz fault
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10.5 Lost Frequency Content

The simulated fault in this experiment is the withdrawal of the 35.0 Hz peak
frequency from the RFB’s normal signal. This signifies the failure of an auxiliary
component, where the machine continues to operate with the loss of some function-
ality. Due to the rigid body of the vibrating machines, the 35.0 Hz peak was not
completely removed, but rather only 25 % of the assigned amplitude remained. The
residual vibration caused from similar functioning components on other parts of the
machine would induce some amplitude of this frequency content.

The abnormal frequency spectrum is presented in Figure 10.6. The peak frequency
was reduced for 10 time windows, and then reintroduced at its corresponding baseline
amplitude. The fault condition was triggered when the system identified a 76 %
amplitude reduction of the 35.0 Hz peak at the RFB location. Such a reduction
would be cause for a machine inspection at the indicated location. When the 35.0 Hz
peak returned to its proper amplitude, the system declared normal operation.

Figure 10.6: RFB Frequency Spectrum, with a reduced 35.0 Hz peak
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10.6 Changing G-Forces

This experiment simulates another form of undesired operation, machine unbal-
ance. When vibrating screens are properly weighted, acting g-forces are consistent
throughout the machine. This allows the entire surface of the screen to be equally
effective. If properly balancing is not achieved, different portions of the screen expe-
rience different g-forces. The result of the unexpected g-forces is irregular material
screening and potential damage to the machine.

To simulate this fault scenario, the RFB location has an increased operational
amplitude while LDB has a reduced amplitude. Table 10.9 presents the absolute and
relative amplitude changes from 14.0 Hz sinusoidals used in the production of the
baseline signals. Frequency spectrums from the fault induced sensors are given in
Figure 10.7 and 10.8.

Difference from Baseline Profile
Sensor Location Absolute (g) Relative (%)

RFB 0.25 8.33
LDB -0.25 -8.62
RDB 0 0
LFB 0 0

Table 10.9: Simulated Unbalance - Modified Operational Amplitude

The fault condition was triggered when monitoring the 20 time windows of ab-
normal operation. The average g-force tolerance threshold was exceeded by both the
RFB and LDB sensors. Table 10.10 presents the observed fault signature. No specific
frequency was identified, but it is known that large deviations amongst sensors’ g-
forces are associated with unbalance. Adding weight to specific parts of the machine
can allow for a more uniform operation.

Exceeded Average G-Forces
Sensor Location Amplitude (g) Relative Difference (%)

RFB 3.88 7.51
LDB 3.24 -6.22

Table 10.10: Simulation Results - an Unbalanced Machine
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Figure 10.7: RFB Frequency Spectrum, with increased 14.0 Hz amplitude

Figure 10.8: LDB Frequency Spectrum, with decreased 14.0 Hz amplitude
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It should be noted that the operating frequency’s peak amplitude did not trigger
a fault condition. The 14.0 Hz peak seen in Figure 10.7 is visibly larger than in the
baseline, as seen in Figure 10.2. However, the difference remained consistently less
than the selected 10 % tolerance threshold and so no corresponding fault condition was
triggered. If it was desired to have this variable trigger a fault at the given amplitude,
one would have to decrease the peak frequency amplitude tolerance threshold. This
would allow smaller deviations to be considered incidents for all the corresponding
axial peak amplitudes.

10.7 Drifting Operating Frequency

The simulated fault in this experiment is a drift in the operating frequency. A
0.095 Hz increase is induced into the vibrating machine for 25 time windows. This
abnormality is large enough to violate the selected tolerance threshold put on the
operating frequency.

When performing the experiment, fault conditions were successfully triggered
when the monitoring system identified a consistent change in the operating frequency
for all sensors. Table 10.11 presents the unanimous input and detected operating
frequency for the baseline profile and current experimental fault signal.

Operating Frequency (Hz)
Simulation Input Detected

Baseline Profile 14.0 14.03
Fault Experiment 14.095 14.08

Table 10.11: Simulation Results - Drifting Operating Frequency

The RFB frequency spectrum with drifted operating frequency is presented in
Figure 10.9. When visually compared to the baseline’s spectrum, Figure 10.2, a large
reduction in the operating frequency’s peak amplitude is seen. This is further evidence
of the FFT leakage discussed in Chapter 3, as the input amplitude was not reduced
but rather shifted in the frequency axis. If the system did not account for this as in
Section 8.5, then it would have also concluded there was a reduction in amplitude.

After the fault was detected, the operating frequency was returned to the observed
baseline profile. The system was able to identify the return to the original operating
frequency for all sensors, and then declared normal machine operation.
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Figure 10.9: RFB Frequency Spectrum, with drifted operating frequency

10.8 Noise-Based Faults

In this last experiment set, the fault signals remain the same as the simulated base-
line signals with the exception of increased noise. For a vibrating machine increased
levels of noise are expected signatures of screening larger aggregates, structural deteri-
oration from extensive operation, or active environmental conditions. To reflect such,
the initial Gaussian random noise, N (0, 1), was amplified as presented in Table 10.12.

Gaussian Random Noise
Simulation Notation Mean Standard Deviation

Baseline Signal N (0, 1) 0 g 1.0 g
Experiment 1 N (0, 2) 0 g 2.0 g
Experiment 2 N (0, 3) 0 g 3.0 g
Experiment 3 N (0, 5) 0 g 5.0 g

Table 10.12: Noise Experiments - Gaussian Random Noise
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10.8.1 Noise Experiment 1

For all three noise experiments, half an hour of simulated waveform data was mon-
itored. The first experiment uses signals with N (0, 2) noise, and the corresponding
frequency spectrum up to 100 Hz for a time window is presented in Figure 10.10.

Figure 10.10: RFB Frequency Spectrum, with N (0, 2) noise

The monitoring system detected increased average g-forces for all sensors, as pre-
sented in Table 10.13. For this monitored variable, all sensor locations experienced a
similar effect, ranging from a 13 to 16 % increase. Increasing the noise can increase
the energy of the system, allowing it to output more g-forces.

Exceeded Average G-Forces
Sensor Location Absolute (g) Relative Difference (%)

RFB 4.08 13.1
LDB 3.91 13.0
RDB 4.30 14.3
LFB 3.96 15.8

Table 10.13: Simulation Results, Average G-Forces - N (0, 2) Noise
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Another type of detected fault condition was the deviation of the smallest peak
amplitude from the baseline profile. Table 10.14 presents the corresponding 42.0 Hz
peak amplitudes. The RFB sensor location has multiple values recorded, as over the
course of the experiment it returned to acceptable levels, as denoted by ’a’. The
RFB 42.0 Hz peak amplitude triggered its fault condition three times throughout
the experiment. This repeated fault triggering, especially with the amplitude being
too large then too small, and accompanying increased g-forces are strong evidence of
noise.

Peak Amplitude Relative Difference (%)
Sensor Location 42.0 Hz

RFB {10, a, -14, a, -20}
LDB 11
RDB -21
LFB 13

Table 10.14: Simulation Results, 42.0 Hz Peak Amplitudes - N (0, 2) Noise

10.8.2 Noise Experiment 2

In this experiment, the same procedure will be carried out as in the previous
test. However, noise will be increased to N (0, 3). Figure 10.11 presents the frequency
spectrum up to 100 Hz for a time window of the signal.

As expected, all average g-forces exceeded the tolerance threshold. Table 10.15
presents the increased averages, ranged from 26 to 32 %, roughly doubling the relative
differences from the previous experiment.

Exceeded Average G-Forces
Sensor Location Absolute (g) Relative Difference (%)

RFB 4.56 26.2
LDB 4.37 26.4
RDB 4.85 28.9
LFB 4.49 31.5

Table 10.15: Simulation Results, Average G-Forces - N (0, 3) Noise

80



M.A.Sc. Thesis - D. Volante McMaster University - Software Engineering

Figure 10.11: RFB Frequency Spectrum, with N (0, 3) noise

Individual and cross-correlated peak amplitudes were also seen deviating from
their baseline profile. Table 10.16 presents the individual sensors’ breached fault
conditions. It was the three smallest peaks from the baseline profile that were most
affected by the noise. All deviated amplitudes for the 23 and 35 Hz peaks returned to
acceptable levels, where some went on to trigger a fault condition again. Alternately,
all the 42 Hz peaks were completely influenced by noise, continuously maintaining
their fault status.

Peak Amplitude Relative Difference (%)
Sensor Location 23.0 Hz 35.0 Hz 42.0 Hz

RFB - {16, a, 11} 21
LDB {26, a, 16} {15, a} -18
RDB {-12, a} {-11, a} 22
LFB - {15, a} 32

Table 10.16: Simulation Results, Peak Amplitudes - N (0, 3) Noise
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10.8.3 Noise Experiment 3

The final noise experiment further increases the used noise toN (0, 5). Figure 10.12
depicts the strength of the noise across the frequency spectrum of a time window.

Figure 10.12: RFB Frequency Spectrum, with N (0, 5) noise

When monitoring the noisy signal, average g-forces exceeded relative tolerances in
the range from 55 to 63 %. Table 10.17 presents these findings.

Exceeded Average G-Forces
Sensor Location Absolute (g) Relative Difference (%)

RFB 5.58 54.7
LDB 5.36 55.0
RDB 5.99 59.1
LFB 5.58 63.3

Table 10.17: Simulation Results, Average G-Forces - N (0, 5) Noise

Again, the three smallest individual and cross-correlated peak amplitudes were
seen deviating from the baseline profile. Some of the peaks were undetectable as a
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result of the noise. Table 10.18 presents the individual sensor results, denoting un-
detectable peaks with an ’L’, to indicate they are lost frequency content. Noise has
either diminished their amplitudes below the minimum peak amplitude, or neighbour-
ing noise-based peaks are dominating their presence.

Peak Amplitude Relative Difference (%)
Sensor Location 23.0 Hz 35.0 Hz 42.0 Hz

RFB {12, a, -11} 20 128
LDB L 66 L
RDB 14 14 67
LFB {16, a, -12} {11, a} L

Table 10.18: Simulation Results, Peak Amplitudes - N (0, 5) Noise

Some of the peak amplitudes were identified as too large, but would return to
acceptable operational amplitudes. This was followed by two other triggers, indicating
amplitudes were reduced beyond the tolerance.

Like the other noise-based experiments, similar fault signatures are seen. It was
also observed that increasing the levels of noise increases the effect of the correspond-
ing symptoms. In summary, signatures of increased levels of noise are:

• increased average g-forces

• repeated triggering of peak amplitudes

• peak amplitudes that are too large, becoming too small (and vise-versa)

• smaller baseline profile peaks being undetected
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11 System Testing

11.1 Overview

This chapter documents the system testing performed on an in-house vibrating
screen. After a stable baseline profile is constructed experiments are carried out, each
imitating a fault condition. The monitoring software in combination with the system
network and sensor devices will be examined in an industrial setting. The system will
operate at 500 Hz sampling and use 4096 points in the FFT calculations.

11.2 Test Machine

The machine monitored in the testing process is a linear vibrating screen. This
type of machine uses linear motion to quickly screen large amounts of material. Fig-
ure 11.1 presents a side view, while Figure 11.2 presents a discharge end view.

Figure 11.1: Linear Vibrating Screen - Side View

The vibrating screen is driven by two motors, as seen from the discharge end
view. The machine is also equipped with a variable-frequency drive (VFD). VFDs
control the frequency of electrical power supplied to a motor, which in turn affects the
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Figure 11.2: Linear Vibrating Screen - Discharge End View

rotational speed of the motor. This allows the operational frequency of the machine
to be tuned while running.

Also visible from the discharge end view is a slotted wooden box bolted to the
vibrating screen. During testing it housed rocks to imitate the material flow. The
box itself was seen vibrating, contributing additional noisy content.

Only two Wi-Fi prototype sensor devices were constructed, so the number of
sensors used in system testing was limited. The sensor devices were placed on both
sides of the discharge end body, denoted as RDB and LDB.

11.3 Baseline Profile

While constructing a stable baseline profile for the X and Y axes was relatively
simple, the Z-axis proved to be more challenging. The vibrating screen’s motors
rotates in the XY plane, governing motion in those axes. Figure 11.3 presents the
X-axis acceleration for a quarter time window. Figure 11.4 contains the corresponding
baseline frequency spectrum. Both sensors’ X and Y axes appear similar in nature; a
single operating frequency peak with little noise and no other spectrum content.
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Figure 11.3: Baseline LDB X-Axis Waveform

Figure 11.4: Baseline LDB X-Axis Frequency Spectrum
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Noise and other frequency content was observed in the Z-axis. The acceleration
waveform of the LDB Z-axis is presented in Figure 11.5. The sensor devices’ frequency
spectrums reveals the contained content, as seen in Figures 11.6 and 11.7. Many of the
visible Z-axis peaks were not consistently present, and would trigger a fault condition
when monitored. This required the minimum peak amplitude to be greater than the
inconsistent peaks.

Figure 11.5: Baseline LDB Z-Axis Waveform

The selected parameters used to construct the stable baseline profile are presented
below in Table 11.1. Empirical testing refined these values over a few attempts. The
resulting baseline profile is presented over Tables 11.2 and 11.3. All sensors devices
reported 14.94 Hz as the operating frequency of the vibrating screen.
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Figure 11.6: Baseline LDB Z-Axis Frequency Spectrum

Figure 11.7: Baseline RDB Z-Axis Frequency Spectrum
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Minimum Peak Amplitudes
Individual Peaks 0.60

Cross-Correlated Peaks 0.30

Tolerance Thresholds
Main G-Force 5.0%

Average G-Force (X, Y) 5.0%
Average G-Force (Z) 30.0%
Operating Frequency 0.050 Hz

Peak Frequency 0.122 Hz
Peak Amplitude 30.0%

Cross-Correlated Peak Amplitude 30.0%

Algorithm Parameters
Increment 1

Start 1
Normal 0
Fault 8

Maximum 8

Table 11.1: Selected System Parameters

Main Average G-Forces
Sensor G-Force X Y Z

RDB 5.34 3.91 3.68 0.114
LDB 5.50 4.01 3.82 0.301

Table 11.2: Baseline Profile, G-Forces

11.4 Loose Components

While the constructed baseline profile was deemed stable, the LDB Z-axis peak
at 157.98 Hz occasionally trigged its fault condition when the machine was restarted
between experiments. At times the particular baseline profile peak would disappear,
while a new peak would emerge nearby. Peaks up to 164.54 Hz were seen emerging
replacing the original peak. Figure 11.8 presents the altered LDB Z-axis spectrum.
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Peak Frequency / Amplitude
Sensor Axis 14.94 Hz 157.98 Hz

RDB X 3.51 -
Y 3.28 -
Z - -

LDB X 3.42 -
Y 3.35 -
Z - 0.77

Table 11.3: Baseline Profile, Peak Frequencies

Figure 11.8: LDB Z-Axis Frequency Spectrum, with loose component
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Such a shift in frequency indicates a loose component on the machine that is
susceptible to changing its rotational path. Since the test machine was in good health
aside from the induced faults, the unknown fault condition was attributed to the
mounted wooden box containing the aggregate. Unlike any other part of the machine,
the bolts mounting the box were loose and able to vibrate. Nonetheless, it provided
an experimental example of signatures pertaining to loose components.

11.5 Induced Impacts

In this experiment the vibrating screen was subject to impacts caused by a wooden
block placed in its path. The impacts occurred on the left discharge end body, near
the LDB sensor. Such impacts could be caused by loose or damaged components.
Alternately, when aggregate material builds up it can overflow and obstruct machine
movement.

The impacts were introduced until the fault signature was revealed. As a result of
the impacts, the LDB sensor experienced increased noise, as presented in Figure 11.9.
The triggered fault condition was due to increased average g-forces, as presented
Table 11.4.

Figure 11.9: LDB X-Axis Frequency Spectrum, with induced impacts
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Exceeded Average G-Forces
Sensor Axis Amplitude (g) Relative Difference (%)

LDB Main 5.97 8.54
X 4.64 15.71
Z 0.729 142.19

Table 11.4: Fault Conditions - Induced Impact

After the faults were detected, the wooden block was removed from the vibrating
screen’s path. The system was able to correctly identify that the vibrating screen was
back to normal operation.

11.6 Motor Failures

As mentioned, the linear vibrating screen is driven by two electric motors. If a
failure occurs on one of the two motors, the screening efficiency would be drastically
reduced. If both motors fail, the vibrating screen ceases to move. This experiment
set monitors single and double motor failures.

11.6.1 Single Motor Failure

The single motor failure was induced by simply removing power from the top
mounted motor. There were numerous triggered fault conditions; Table 11.5 presents
the g-force based faults conditions. The average g-forces in the Y-axis were diminished,
yet the X-axis g-forces were slightly increased. Ultimately, less vibrational g-forces
were being produced.

Exceeded Average G-Forces
Sensor Axis Amplitude (g) Relative Difference (%)

LDB X 4.27 6.48
Y 3.35 -12.30

RDB X 4.18 6.91
Y 3.21 -12.77

Table 11.5: Fault Conditions - Single Motor Failure

Another set of experienced fault conditions was the unanimous detection of a drift
in operating frequency by -0.05 Hz. It is intuitive that the loss of a motor would slow
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down the machine’s movement. After the faults were realized, power was restored
to the motor where the monitoring software quickly identified the return to normal
operation.

11.6.2 Double Motor Failure

In this experiment, power to both motors on the vibrating screen was removed.
In this state, the machine is inoperative. All baseline profile peaks were no longer
detectable, and experienced average g-forces all reported minimal values.

Interestingly, the LDB sensor reported an operating frequency of 60.04 Hz, while
the RDB reported 177.0 Hz. These values are either the product of noise in the sensor
circuitry or the industrial environment.

11.7 Machine Unbalance

A technique used to imitate a spring failure involves unbalancing the vibrating
screen. This was achieved by raising the base frame of the machine on three corners
and letting the fourth corner sag. For this experiment, the LDB corner remained on
the ground.

The only detected fault condition was the absence of the 156.98 Hz peak from the
LDB Z-axis. While it was mentioned that this peak was susceptible to movement
across the frequency spectrum, no other experiment had this content completely re-
moved. Figure 11.10 presents the modified Z-axis frequency spectrum of the LDB
sensor.

11.8 Drifting Operating Frequency

This experiment drifts the operating frequency of the vibrating screen while it is
active. An altered operating frequency could be attributed to changing dynamics of
the vibrating screen, and is also an indicator of reduced efficiency. Machine vibrations
are tuned for certain materials and screen sizes, and shifting away from the desired
characteristics only degrades performance.

To drift the operating frequency, the variable-frequency drive (VFD) was used to
increase the frequency of the power signal. The inputs and unanimously detected
operating frequencies are presented in Table 11.6.

The operating frequency was slowly decreased until the monitoring system iden-
tified a breached fault condition. The first operating frequency to trigger a fault,
15.0 Hz, exceeded the threshold tolerance placed on the baseline profile.
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Figure 11.10: LDB Z-Axis Frequency Spectrum, with machine unbalance

Frequency (Hz)
Test Electrical Power Machine’s Operation

Baseline Profile 50.0 14.94
Fault Experiment 40.0 15.00

Table 11.6: Results - Drifting Operating Frequency

After the fault notification, the original operating frequency was restored. The
monitoring system was able detect the operation had returned to the baseline profile.

11.9 Network Performance

Over the course of the fault experiments, the communication network between
the sensor devices and monitoring computer was observed. Only in two instances
throughout the testing day did a sensor send a malformed packet. The monitoring
system was able to automatically restart communications within seconds, quickly
resuming the monitoring process. The monitoring system’s network proved to be
reliable and robust.

It is expected that manufactured sensor devices with surface mount components
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will have increased performance compared to the current prototype. Electrical paths
can be optimized, and contacts between components will be enhanced. As suggested
by the WiFly datasheet, an improved layout would maximize distance between the
Wi-Fi module and any metallic mounting bracket.
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12 Conclusion

12.1 Discussion

This thesis presented the design, implementation and testing of a condition moni-
toring system for use on vibrating screens. The system was able to collect acceleration
data from remote sensor devices as to construct a baseline profile of a machine. Sub-
sequent data from operation was then compared to this profile for fault detection
purposes. Fault signatures were detected and recorded through various experiments.
A discussion will be carried out evaluating the performance of the hardware and
software system components.

The upgraded hardware utilized in the monitoring system proved to be success-
ful. The sensor devices equipped with Wi-Fi modules performed better than their
Bluetooth equivalents. The wireless network hosted by the router allowed for in-
creased transmission rates over larger distances, with an increased node capacity.
Transmissions errors were very rare, and the system was able to easily resynchronize
communications.

The monitoring computer was able to reliably communicate with the sensor devices
through the network, allowing acceleration data to be supplied to the monitoring
software. The computer was easily interfaced with other networks and computers,
and when given Internet access could autonomously send email fault notifications
providing users with a log file.

The monitoring software successfully constructed stable baselines profiles and de-
tecting various fault conditions. For both virtual and live industrial experiments,
minor tuning of the system parameters achieved the desired monitoring response.
System testing revealed the monitoring technique could be utilized in a practical
industrial setting.

Slight modifications to the monitoring software could allow for finer tolerance
thresholds to be put on the monitored variables. Due to the nature of the vibrating
screen, the X and Y axes accelerations are similar while the Z-axis is very different.
As such, the Z-axis should have more independent parameters such as minimum peak
amplitudes and the peak frequency range. Smaller deviation bounds could then be
placed on the X and Y axes, while Z-axis profiles can remain stable using its own
tolerances.

The completed condition monitoring system is a self-contained product. However,
additional monitoring and testing on more types of vibrating screens would provide
further insight on how to refine the system. The following section contains known
suggestions on how to advance the condition monitoring system.
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12.2 Future Work

This section provides a list of suggested future work to expand the scope of the
implemented condition monitoring system. The following items are recognized and
desired by the sponsoring company:

1. Introduce fault notification hardware by interfacing the monitoring computer
with a programmable logic controller (PLC). Industrial control rooms commonly
use PLCs to control and monitor machinery. Users would have much more
flexibility when interfacing with the system.

2. Expand the condition monitoring software by increasing the number of mon-
itored variables used in the machine profile. Ellipse fitting algorithms could
provide eccentricity and phase angles of the machine rotation. New monitored
variables would require their own tolerance thresholds.

3. Work has already begun creating a website and database so that data record-
ings and fault notifications could be automatically uploaded to a centralized
server over the Internet. This would accumulate data recordings, enabling the
opportunity for long term machine analysis. It would also be possible to select
system parameters through a web interface, and have the monitoring computer
retrieved the desired settings.

4. Once a sufficient knowledge base for fault signatures is compiled, the monitoring
system could be provided with a mapping from deviated monitored variables to
machine faults. Instead of notifying users of the breached monitored variables,
specific faults and their severity could be presented to the user. Such an upgrade
would classified the monitoring system as an expert system.
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