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ABSTRACT

?

In this thésis, we undertake the study of
some classical set-based algebraic concepts in a N
topos-theoretic setting. Actua]]y, fhe topoi we are
particularly interested in are the Grothendieck topoi.
The main topics from Universa]ahlgebra
considered here ére injectivit;, equational combactness

and tensor products. i

After proving some general results about the
above nbtipns, we show that, for any set of quasi-
equations and an arbitrary Grothehdieck topos
E, Mod("Ef ,E) fras enough dinjectives iff Mod ¢ has.
Also that, for a 6oetherian locale ;f, pure homomofphisms,
equational compactnesg\apd the egistence of equationally
compact huTJé are characterized here the same way as in
Ens. Finai1y, we consider tHe'notion of bimorphisms
for algebras in a topo’ and prove, among otherithings,
the éounterpart of a result for algebras in Ens that
tensor products and‘Universq]‘bimorphishs are equivalent

14

for suitable categories of algebras.
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INTRODUCTION

~ This thesis is a study of certain aspects:

of Universal Algebra modelled fn a topos rather

than in the category Ens of sets. It is 1ntendqp;to

provide 4 deeper understanding of the real features of
the algebraic notions ;onsidered here and to show that
much of classical set-based Universal Algebra can be, as
we believe it should be, studied in a topos-theoretic
setting. - - N

The notions, from classical Universal Algebra,
which have been chosen for_study‘in this thesis are:
injectivity, residual smalliness, essential boundedness,

purity, equational compactnes§;‘bimorphisms and tensor
products; the reason for this choice being that‘thése
have been exteﬁsive]y investigated during the last
decade for the case of algebras in Ens (e.g., [21, [71,
(81, [91, [21]).

Some of these concepts, in particular injectivity,
have previously been considered by Howlett [14] for
algebras in topoi other than Ens, but there the study
was restricted to very special Grothendieck topoi, namely,

those with enough points. Here, in Chapter (1), we

- deal with an arbitrary Grothendieck topos E and substan-

tially improve on some of the work in [14] by proving,

1
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among othér things, that injectivity is .properly
behaved in u(od(;§5,E) iff it is in ~0dZ/ , for any
set¥ of gquasi- equat1ons Note that [14] only cons1ders
sets of equations in th1s context(,%part from the !
already mentioned restriction to Grothgnd1eck ;opo1 with »
enough points.

Chapter (2) deals with the notion of purity’
and equ&%%nﬁﬁ compactness in MHod(H shL ), proving

.a number of results correspondind to those for algebras

in Ens.‘ In particular, we shéw, for a noetherian locale,
that pure homomorphisms} equationaﬁ compactness, and the
existenqe of equationally compact hulls are chéracterized
here in the same way as in Ens. As a consequence, we
have that equationally compact = pure injectivity in
any o od( 5?’,Sh§5 ), providing a partial solution to
an open problem of Howlett [page 154,141, What is
interesting about this is tﬁat it is not the Axio@ of
Choice in Sh2f which matters in this context (és‘specui_
lated in [14]) but the properties o% direct limits in
shy . F

Finally, in Chapter (3), we consider the notlon
of b1morph1sms for a]gebras in a topos in analogy _
with the recent work by B. Banaschewski and E. Nelson [9].

for algebras in Ens. Among other things, we prove the

counterpart of the results for algebras in Ens reggrding



the equivalence of tensor products and Universal bimor-
phisms for suitable categories ¢t algebras which have
afunctfonal‘interna1 hom-functor. We also show that the
existence of Universal bimorphisms gne funcfional {nternal.
hom- functors survives.the passage from 5u1tan:5 categories
of algebras in Ens to the corresponding categories of
algebras in a Grothendieck topos.

Also, in this chapter, we consider an internal
noé%on of tensor products ana'Universa1<E;;orph15ms, and
 show that these come outg%o be same as the usual ones,
in fhe case of ShY

! Chapters (1-3) are independent of each other,
and. ihus can be read in ‘any order. Chapter (Of, of
counse, contains a summary of the backg}ound material
needed here, especially from Sheaf Theory and Universal
Algebra.

« Throughout the thesis, a singiefnumbering is used
for definitions, lemmas, proposit{ons, theorems, remarks,

etc.; the number n.s.t denotes the t-th numbered /f-\\‘
‘reference in the s-th sectien of Chapter n. However,

if a result consists of df??erent parts, then n.s.t (ii)
. means ji-nd part of the numbered resuif n.s.t:
All the:references to the bib]ioéraphy are

enclosed in square brackets,
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CHAPTER 0

PRELIMINARIES

A4

In this chapter we intend to give some of the
. )
concepts and results of Sheaf Theory and Universal
Algebra, which sha]] be used ¥n th1s work, and to set

out some standard, as we11 as some new, notat1ons

“Regarding generaifacts in Category Theory, Universal

Algebra and Sheaf Theory, the reader is referred to

"one of the standard texts on these subjects, for 1nstance

[17] and [19] iﬁ category theory, [1], [13] and [10] in
Universal Algebtra and [12] and [20] in Sheaf Theory;

also [15] for Topos Theory.

In Section (1), we briefly discuss the theory
of set-valued.presheaves and‘sheaves on a‘small'category
L and, in particular, the case of € =Z a locale.

In Septio; (2), we deal with the notion of
algebras in a finitely complete Eategory f and deffne
quasi-equations and qu%si-equationa] classes. In
particular, we coneider the case of a Grothendieck
topos 'E, and shew that the two points of view, algebras
in E on the one hand and algebra-valued sheaves on the
other, giyeﬁrise fo the same category.

Finally, in Section (3), we define the E-valued

hom-functor:

B
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,1: (Hg(x) B xAg(x)E » E, ~

'\ . - * -
and prove, in Proposition (0.3.5), that

E(1,0A,81) = JHg(7)E (AB),

-

for A and B inb#]g(T)E} and hence conclude that, in
the case of E = ShZ , this gives the usual
ShZ . -valtued hom-functor.

0.1. SHEAF THEORY

In this section, we intend to give a brief
review of the theory of sheaves: for more details the
reader is referred to the standard texts introduced

/

‘earlier.

R W

0.1.1 If.C is a small category, that is a category

whose morphisms form a set, a presheaf on'( is defined to be
a contravariant functor from.L to Ens, the category of

sets andifunctions. Thus‘a presheaf P of sets on €
is ééét}fiEd by two piecesiof infofmétions:
‘(i) a set PU, for each U ¢ €, and

(ii) a "restriction ‘map" Pt : PU - PV,

for each morphism t : V » U in L,subject to the usual

compatibility conditions.

. ~



6- .
A morphism of presheaves is just a natural
transformation of functors. The functor category

*

¢ . -
Ens (t* the opposite of the category ) of all

presheaves (of sets) on € and natural transformations

A

is usually denoted by € :

~
~

0.1.2 In this thesis, a Zocalez is @’ complete
lattice satisfying the distribution Taw

U A\/Ui =\/UAU1.

for bin%ry meet "A" and arbitrary join " ". For
" examplte, for a topological space X, the lattice O X -
of-qpen subsets .o'f X, with A and\/ as intersection and
union, rgspect‘ivély,is a locale.\ Further, any complete
Béo]ean algebra is a locale.

\

07.1.3. Special Types of locales. The following two

special types of locales will, in particular, be taken
P \
up in Chapter (2). Recall that an element U < is

said to be compact iff, for any cover U s \/U1 of U
fel

in¥ , there exis't? a finite subset J ¢ I with

U. < VyUs: In particular, & locale & is called

compactly generated Or algebraic when every element of

Y is a join of compact elements of & . The most



obvious examples of algebraic Tocales are the ideal
lattices of distributive lattices (with zero and unit),
and these turn out to be the same as the lattices of
open sets of the spectra of commutative rings with
unit. We further define a locale Z to be noetherian
when every element of Z is compact. The reason for
calling them noetherian is that the stated condition is
equivalent to the “Ascending Chain Condition" (ACC) for
Z . For; if all the U ¢ fNa,fe ﬁcon;yﬁa,i:t_ and Uy < U, s

- T
¥

is an ascending chain in 35 , then, by the compactiness

of U \/U ; = for some k, which says that the

above sequence terminates after a finite number of steps

Conversely, let (ACC) hold in % and U \V/U be any
iel

cover of an arbitrary element U in & . Consider the

ideal OU of gf generated by all Ui; then v must’

be principal for otherwise we can pick a strictly
increasing infinite sequence in O , and hence

U s Ui v...vUi where the latter is the generating
1 . n o

element of OU . This shows that U is compact. Note

that fhe noetherian locales are special "coherent locales"
which  are defined to be algebraic locales such that any
finite meet of compact elements is again compact, and
which_are exactly the ideal lattices of distributive

lattices (with zero and unit): on the other hand, the



the lattice of open sets of the spectrum of a commutative

noetherian ring with unit is always a noetherian locale.
0.1.4 Since a locale is a partially ordered set, it

can be regarded as a small category in the usual way,

and thus one has the notion of a presheaf on jf (or on

X if &= X, for a topological space X). Here, for

P e PreShZ -, a presheaf (of sets) onZ , and each

pair V < U in ﬁf , there is only one restriction map

U

oV o PU > Py \and we write oY
v

¢S = slv, fors ¢ PU.

0.1.5 Sheaves onsl . Of particular interest are

those presheaves P on & which satisfy one or both

of the following "exactness conditions".

(S) Separation Axiom: For any cover U =‘\V/Ui
1el

]

in ;f and any two elements s and t of PU, if S’Ui

4

t|U.,
7

for all © ¢ I, then s = t.

(P) Patching Axiom: If U = \V/Ui 18 a cover
¢ "iel

znjf and (si)ieI is a family such that §; ¢ PU, for all

2 e I and s, |U. AU, = e.lU, AU, for all 1, j ¢ I,
T J J 1 J

—then there exists an element s ¢ PU with slUi = s, for

all 1 ¢ I.



A presheaf on Z which satisfies (S) or both,
- (S) and (P), is called separated or a sheaf, respectivel&.
" Note that.a presheaf P on¢, is a sheaf iff, -
for any cover U = \//Ui ing , the following is an

iel
equalizer diagram:
g f
h —— .
PUY— PU1 - Pﬂji A Uj)
ier 9 r1,3)erx1
v

where the maps are determined by the restriction maps
~in the obvious way.
The full subcategory of PreShjﬁ whose objects
, are the sheaves on¥ is denoted by ShY , and by
Shx if Z = X for a topological space X. &
For.any U e :g , the representab]g presheaf
hy = (-,U), defined by

1 = {0}, ifVsuU
hUV =
¢ , 1f otherwise

with the obvious restriction maps is a sheaf. Thesé

sheéveé\are in fact all the subsheaves of h]1 = 1, the-

terminal object of Sh% ; moreover, they form a

generating set for the category Sh:f

0.1.6 . The Sheaf Reflection. The inclusion

functor 1 : Shd » Pre Sh has a left adjoint
R : Pre Sh » Sh& , which is left exact, that is

preserves finite 1imi£s, called thehréflection funetor
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or the assoctated sheaf functor. R is constructed as

follows: For U e 7 let 3?U be the collection of
all covers U = \/ Ui in;j , directed by refinement.
Then, for any P ¢ PreSh¥Y and any C = {Ui} in ?QU’

let PC be the following equalizer:
P»——-»_H.PU-——L» PU. A U.)
C i i J
g :

where f and g arq’determined by the restriction maps in

the obvious Way. The reflection P = RP of P is now given

by
5 im
PY —— p
Ce ,R'U C
for each U e . The effect s f=Rfonmaps f : P> Q...

+

is obvious. Since {U} ¢ ﬁiu , the reflection map

P-LsP is also clear. That P is a sheaf and R is a left
ex'act left adjoint to the inclusion functér then fngws £
from the proberties of limits and direct limits in Ens.
For a topo]ogiqa] space X, the associated sheaf
functor may also be construcfed by using the "stalksf
which we do no£ intend to give it in this work. However,
for a presheaf P on X and x ¢ X, the stalk of P at =z ii

defined to be the direct ldmit

_ fim .
x T o P
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and if s ¢ PU for some U > X, we write Sy for the image

f in .
of s i PX

0.1.6 For any two 1oca1e§;;€and M. a homomorohism

is amap ¢ : > 7L which preserves finite meets>and

arbitrary joins. Any such ¢ determines a pair of functors

" ~
A ShY —— Sh7Z -
) ) <

*

MY

such that o is Teft adjoint to o, and is also left
exact, where ($ S) U = So(U) (U ¢ Z ),and’ ¢S is the
. |

sheaf reflection of the presheaf Um~ %%55* SV, (U'eMm ).

In particular, if ¢ =1 : +im & , for UeZ

and +U = {V ejﬁ Vo< U}, is the inc]usidn map, then

Sh(+U) will simply be denoted by ShU and ¢ = -|U : S»m— S|U
*

will be called thé restriction functor; moreover, by the

construction of P, for P ¢ PreShY , the following

diagram commutes:

presh L LUy presnu

~l -1u ~l

Shyf, —— Shu

~

That is, PIU = P|U.



P

then—the restriction functors
\

12

0.1.7 Lemma. IfI = \/Ui is a cover inZ
el

¥

—
C—
\\

T——

e, T
shf——>shu, T

are jointly faithful.

Proof. Let F—'. G be two morphisms in Sh such that
g ~

f]Ui = gIUi for all i ¢ I. We have to show that f = g.

Let-U ¢/ be any element of Z and a ¢ FU, we have that

U=UA1=UA\/U1- =\/UAU1-,
v jel

jel

the latter because Y/ is.a locale, is a cover of U in

:ﬁ . Now,

?

fU(a)lU A Ui = fUAUi(aIU A Ui) =(fIU1)U A Ui(a’U A Ui)

= (9'U1)UAUT(3‘U A Ui) =‘9UAUi(a!U A Ui) = gU(a)!U AU

for all 1 ¢ Iy since G is a sheaf and a ¢ FU is arbitrary,

we get f,, = for all U.e ;f , and hence f = g.///

v -y
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0.1.8 Corollary. 4 diagram in Sh ‘Z i

commutative iff there is a cover I = \/U. ing
NG 1

M *

such thgt the diagram is commutative at each Ui'///

0.1.9 A category‘E is called a Grothendieck
topos ifg\X% is equivalent to a fef]ectjvg subcategory
T -of-some € such that the reflection functor is left

T _

exact. In part{éhiﬁFj‘then, the category Sh ;f for any

locale 77 is a Grothendieck topos.

‘

0.1.10 Finally, the exponentiation FG, for F

-

and G in Sh :ﬁ , is a sheaf and is defined by

Fu = shu(elu, Flu),

and for morphisms G'—f—> 6 and F—3 F', the

gE : ShU(G|U,F|U)— ShU(G'|U,F'|U) given by a~w g|Ucacf|U,

f . p6_, .6

for all U e :f , are the components of g' : F=—F'



14

0.2  ALGEBRAS IN A CATEGORY

—_—

As in the previous secfion,‘we wish to give
a'ﬁrigj discuss{on of the notion of an algebra in a.
~finitely complete category; for more detail, the reader
is referred to one of the texts introduced in the

beginning of this chapter or any other standard texts.

0.2.1 Definition. Let E be a finitely

complete category (in particular, it has a terminal object 1).

Given a family T ='(n>‘))\€Q of‘finite ecardinal numbers

s indexed by a set §i,” an algebra in E is an entity

- <
A= (E"fk)leﬂ)’ where E is an object of E and, for each

N

>

n
e Q, e, ¢ E M B 4s a Worphism in E.

g

For such an A, E is‘ca11ed the underlying object

of A, ¢ = (s}\)kEQ the a]gekra structure of A and e,

£
- the A-th operation of A. we\ghall also write |A] for the

underlying object and XA for the A-th operation, of

an aldebra A. The faﬁi]y 1= (nx)k

cq 1S called the type .,

of A and ny the arity of AA . ,
. é

R
¥

In the following, all algebras will be of a

given fixed, but otherwise arbifrary type T = (nA)AeQ

with all "A finite.
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N
0.2.2 Definition. A homomorphism from

an algebra A to an algebra B is a morphism h : |A| + |B]|

such that the diagram

N ™ " "\
X h ‘
Al & —— {B]
}‘Al 1*3
A~ 8]
o
commutes, that ig, A, °"h = h o Ay, for each X ¢ Q .

B

- The set of all homomorphisms from A to B is
Aormally denoted by (A,B).
For an algebra A, the identity morphism of |A]
in E is clearly a homomorbhism lA:A -~ A, and for composable

n

g f, :
maps [A] > [B| ~ |C| in E we have (fg)" = f" o g" for any

finite cardinal number n, thus if f and g are underlying

maps of homomorphisms, then so is foq.

As a result, one has the category of all algebras
of the type t in E * and all homomorphisms between them.
This category will be denoted byJ#]g(r) E. We also héve
a faithful functor |-| :()419(1-)IE +~[E given by |A} to be
the underlying object of A and for a homomorphism h : A -+ B,

thl : [Al = [B| the underlying map of h.

LY
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If E = Ens, the category of sets and fupctions

between them, thenoﬂhg(r)h' will simply be déno{»ed by

Hg(r). )

0.2.3 Let F be the a\bsolutely free algebra

of the type t on a set X = {21,...zn} of n elements. For

any algebra A 1n.£{-19(1:)£ , E(lAln ,|A|) can easily be

made into an algebra of the type t in Ens. ‘Indeed, the

operations are defined by J;L(cp‘,...,cpn ) = )‘A 0 (¢1ﬂ rwn )
: . . A A

for ¢; |A|n -»/IAI (i 311""’")\)’ that s,

=

A

-

¢.
j=1 !

n
- } n Ao
A (¢],...,¢nk)-.lAl Al —=[Al -

3

Extend.the map‘X +E(|A|n,|A|), given by z;~~ p,
: i

(pr the i-th projections), freely to ¢ : F +E(|A|",|A|) and
i »
denote ¢(p) by Py for any p ¢ F. In fact, each p ¢ F

defines a natural transformation p : |-|"-—-+ -] with

components pA, A e#1g{r)£. '

7,
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Q.2.4 Definition. A Zaun{id?ntity or equation)

over § in the set X of variables 18 any pair (p,q) ¢ F x F

or gsometimes the equation p = q formed from this pair.

0.2.5 Definition. 4 quasi-identity (or quasi-

equation) ig any formula of the form

o (p,=q) A (p, = q,) Aoooh(py =7q) * (p = 4),

e say that o holds in an algebra A ¢ Alg(t)E or
that A satisfies o, written as . Al o , iff the pullback

>

of the equalizers

. © o PiA
Eq(Pyprdy = 1AI" —=—=IA|

%4

(for 1 = 1,...k), factors through the equalizer



P .
n Pa o
_Eq(pA,qA)r—» A "—=2=1Al. In particular, A k= (p = qpfi

18

’

9

iff py = q,. | \\

AN

Let;§7 be a set’of quasi-equations, then we say
that A satisfiesjé” , written as A= , iff*
A-l= o for all o eF/. The class of all algebras in E
satisfying’  will be denoted by ~#od(# ,E) and is

~called a quasi-variety or a quasi-equational class. If}%’

is a set of equations, then v(od(jév,E) is called an

equational class or’hgvariety. From now onJ?v'a]ways

denote a set of quasi-equations, unless otherwise stated.

s t
ta

L)

0.2.6  Llet k : E ~F be functor, preserving

finite 1imits, then k induces another functor

K A1g(t)E »ef1g(7) F defined by KA = (k([A‘I),(kX;)AGQ),

»

and on homomorphisms f :.A + B, kf| = k|f|. Since k

preserves f1n1te limits, 1t then preserves "pull-backs

and equalizer diagrams; and hence if 0 is a quasi-equation
and A %= g, for A eu#ﬂg(r)f, then K Ak 0. The converse
is true if in addition k is faithful. In particular, if

o is an identity p = q, then A h:(p =q) implies that

pA Gp> and hence kpA kqA wp1ch 1mplies that

=q. 3 and thus K A
B _ u ‘l:(p ;
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N\

By the above discussion, we gét'a functor

\ Ei.ﬂod(ﬂ,r)*{)@d(# E) ». Mod(H F)

)

for, any set % of quasi-equations.
, .

.0.2.7° lLemma. Let E have a set ?oﬁ generators.

' Then, for any A ¢ &ig(1)E and any seta of quasi-

equations, A ¢ Hod( 7} E) iff Fiyh e ModZ =

Mod( JP ,Ens) for each G €@, where hy = E(G,-).

Proof: | That A « V‘_‘fod_("ﬂ E) implies B A ¢ Aodj?

is clear, by what has been discussed in (0.2.6).

k
Conversely, let o : A -(p\i’qi) +> (p,q) be any quasi-
i=] ,

equation and A ¢ #lg(r)E such that FGA ko for all

6 «%. Consider the diagram.

p E
]r
o n P
£ »  |A] | A|
. . qA
Pia %8
IA]

AV

A
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id
with P the guliback of the equalizers of .the pairs
(piA’in) and £ the equah‘zgrj of the pair (pA,qA).

By the hypothesis on A, hg (py o 3)= hg .'(qA ° J):

-

for all G e 9, which this then implies tkat Py ° j= qA' o J, -

the~latter because ‘thé set fgaof generators is collectively

faithful, and hence j factors through i, by definition

"of equalizers; thus A t:o./// ) T

0.2.8 (a) The discussion in (0.2.6), if

A

particulér, shows that the category ﬁlg(r\)'c is
isomorphic to the category of all J.L]g(%:)-'v.al‘ued presheaves
t

on €; and for a Grothendieck topos E < {,since the *®

A

" veflection functor R % = E preserves finite limits,

it can .be lifted to:

R :#19(1) t 7«419(1)5

. (denoted by the same letter R). In particular, the

categcry#-lg(r)Sh f is isomorphic to the category of
a11~4‘|g(r)-va1_ued sheaves onj ;' moreover, since L
has a set of generators, Lemma (0.2.7) implies that, for

a set 77 of quasi-equations, A ¢ “Hod(F &) iff

AU e Hod B for all U e L./
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(b} For any two 1oca1es;f and 72 and a

homomorphism ¢ :77Z , the functors ¢* and ¢, given in

" (0.1.6)

can be lifted to

Aod(H sht ) =to Aod(H ,sh M )
.

(denoted by the same letters) such that ¢* is a left

exact left adjoint to ¢, .

0.2.9 Here, we give the free functor Z on

Aod( 7 E), E a Grothendieck topos. The free functor

is given by P~~~ P

Mod ¥

$ 00—  Aod(F 1)

# such that PTU = F(PU) is the

-free algebra on PU, and the effect on maps is

provided by the definition of the free functor F : Ens »+%0d% .
The free functor‘;f : E +»  Alod(A E) is now given

to be the composite:

where i

E—L it (7 8 R Hod(7 )

is the inclusion functor and R is the lifting

4

of the reflection functor; that is, for any S ¢ E,

Fs = R(F - 5),

Since‘}f is left adjoint to the underlying
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functor |-| : 'dfod(;i?,E) + E, it transfers the set

&= (f; : Ue L} of generators of E to a set

{Sru =j7'(ﬁu) : U e €} of generators of <od(Z/ ,E).

0.2.710 We now turn to a discussion of the
exponentiation functor.

Let E be a topos. For G ¢« E the exponentiation
functor ( )G from E into E is a right adjoint aéd so
preserves limits and in particular it preserves finite
products, pullbacks and equalizers. Hence if A, an
object of E, satisfies a quasi-equation ¢ then so d;es

' \
A%, Indeed, if H is a set of quasi-equations and.

A= (A1, () gle Aod(#Z E)then A% = (1a15,05), )

€ /Yod(;?',f). Also, the exponential adjointness

isomorphism:
E(T,{A1%) = E(T x 6,[A]) =

is an isomorphism of set-valued algebras.
Moreover, for a morphism f: F = G in E, the
induced morphism |A|f : |A|G > |A|F is the underlying

map of a homomorphism Af from the algebra AG to the

algebra AF. To check this is to show that for any T in

E, the induced morphism
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£(T, (A% & (1,18 F)

(composition by jAlf) is in fact a homomorphism of

set-valued algebras. But, comsider the diagram

E(T « 6, [A]) = E(T,141%)

a B
~ F

E(T x F,[A]) —— E(T,|A]")
where o is induced by the morphism 1T x f : TxF+>Tx@G
and is then a homomorphism of set-valueﬁ algebras, the
two horizontal morphisms are the exponential adjointness
isomorphisms and then are isomorphisms of set-valued

algebras. The diagram commutes, by adjointness, and

hence B is a homomorphism of algebras./

0.3 E-VALUED HOM-FUNCTOR (E a topos)

0.3.1 Construction. Let A and B be any two

algebras in #lg(t)E. We define (A,B1 to be the Targest

i | \
subobject cA,812Bwig 1Al of 18 1Al such that, for

each A ¢ Q, the diagram;
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A
IB]  xI|A]

| n.oi.x] Al ev:
[A,BIx1A] H>—2B g

181
T, )

[Al n " n
(181 xial) * —L g

is an equalizer diagram, where "ev" is the evaluation map,

i.e., the counit of the exponential adjunction; that is

A 1Al

TR ST

s AL A 2y

Let f : C> Aand g : B> D be any two homomorphisms
in L1g(t)E. We shall define a morphism rf,q] : (A,B] » (C,D]

which makes

,] :(v‘#g(r)E)*xﬁﬁg(r) E ~E

into a functor (NhGPEG#Hg(T)ED* is the dual of the
categoryu&ﬁg(r)!). To do so, consider the following

diagram for each X ¢ Q.



&

1pg*1

n
[A,BIx|A| H—D5 18]

~

n
x| f]

n

[A.BIxjc| » 'ag™! 8|

Ix|f|

W ><1

[A,B]xA] &---+:B!

LA

1A

25 &
M
Al n, T['(lxpr) 1A n, )nx n
<|Al ———-—————+(IBI x[A}) - -—*————-—4|BI
/1
) o |
11 Kkl
n
" o
I fl " ‘\nx " /
(ev) °_FT(IXD )
AD
gl
n {C] n
< IC] *.Ul__;ihtan <|c|
1x2C 1x)C /
101 XICI
by 1 fl o \
1x]|f]| / :
Al gl o
1Bl x|C|
llxlfl (1)
v i)
I n. .1lx [A|
XAl By 1Bl x]A ev 5 1B
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We shall show that the two inner most routes joining

: n :
(A,B] x |C]| Ao |D| are equal. Alsd, by the fact

that epi-mono factorization is available in E, we

get the following factorizat1on

N, 1pgx] [A] A gix1 |c| PN
CA,B]ix|C BB B xacr DI x |C]

N

and, then by the definition of [C,D] we get a unique map

from f into [C,D], and hence a unique morphism.
(f,gl : [A,B1— [C,D]

which makes the diagram

{f.,q]

{A,B1 — [C,D]
Tag Tep
r f

s 1A _Latt T pe

commutative; then one easily checks the functor{ality

of §,] which is what we wished to show. We now show
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the commutativity of the main diagram in the following

steps:

(1) we first show that the following diagram
is commutative

[ f1

1 e
18] Aoy -8 » 1Bl x IC|
1 X If’ | (1) ey
\\
~k !
81 A A ev i8]

To prove this, apply the exponentiation functor ( )IC!

to the diagram (1) , then we get the following diagram:

| f]
IA] Icl
18] 8 Ty
Ic
n (et}//y
Ifl o 1c)
I IC|
B X
(i ien'® e
It IC| 1
lBlIfl (1xI 1) (ev)
LYY IC| c
(18] xAl) (ev) gy
ay!C .
v J
IC| '
B 1 IC|

- |B|



28
where all the squares, except possibly the middle one,

are commutative either by adjointness or for obvious

reasons. Thus the two inner routes joining |B|IAI to

IBIICI are equal which then adjointness implies the

commutativity of the diagram (1).

(ii) Now, by applying the functor (=) x |C]

to the following commutative diggramf

f
(11

IBI'A' {B

1oy !¢

we obtain the following commutative diagram:

<
£ 8

|8

1

-

M (2)

i

v

IR ev Y

A ¢ LBl e Clgey L9 X g 10 ¢y

ev

‘lf

Lt
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(iii) By combining the above diagrams (1) and
(2) , we obtain the subdiagram (I) in the ‘main diagram,

L]

and hence it is commutative.

(iv) By a similar argument as above one can
show the commutativity of the subdiagram (II) in the
main diagram. Now, observe that all the other subdjagrams
in the main diagram are commutative for obvious reasons.
Thus, the two inner most routes connecting [A,B] x IClnx

to D] are equal as it was claimed, and hence we are done.j

0.3.2 Definition. The functor

1 Aiginie) x diguE + B

18 called the E-valued hom-functor forcdlg(TlE.

/

0.3.3 Remark. The evaluation map
ev )
81 !A « A —28 |81, for A and B ind1g(1)E induces

a morphism [A,B] x |A] » |B| which will be denoted by

the same letters ev,p Or simply by ev.

-

0.3.4 Lemma. 4 morphism f ! |Al > |B|, for 4

and B ind4lg(TlE, 18 the underlying map of a homomorphism

from A into B iff the expomential adjunction f,
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7 x 4l = a5 15
1 L. }Bl'AI

R factors through

:
(4,81 42, 5 141

3

Proof. To prove this we consider the following diagram,

for each X\ ¢ Q:

[A]

The subdiagrams (1) , (2) and (3) are commutative

for obvious reasons. Thus the two routes connecting

1 x IAInA to |B| are equal iff the outermost square

commutes, which by the definition of [A,B] and the

3\\
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definition of a homomorphism proves the assertion.y/

This proves the following proposition:

<)

0.3.5 Proposition. For 4 and B indig(1E, the

map E(1, [A,B]) +-QQg(TlE(A,B) defined by f'VV+f# 18 an

B

igsomorphism, where f# 18 given by:
ot B 1A
I——[A,B]>—= |B]|

?’

I x |A]——— |B|

# . f

f7 Al ~1 x |Al—— |B] :

0.3.6 Here, we give the exact description of
the sheaf-valued hom-functor, that is the E-valued
hom-functor for the case E = Sh;ﬁ . Since the

restriction functors : Sh&—— ShU,(U ¢ Z ) , preserve

products and equalizers, [A,BJJU = [A|U, BlUI, by

definition of [A,B]. Thus, for any A and B in
AMod( 7 ,ShL ), the sheaf [A,B] is exactly defined by

‘LA,BIU = (CA,BIIU)U = [AIU,BjUIU

= A1g(z)ShU(AIU, BIU);

the last step is by an application of Proposition (0.3.5)
to Shu.
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CHAPTER 1

RESTDUAL SMALLNESS AND INJECTIVITY IN Yod( F.E)

This chapter gives a study of injectivity
and residual smallness in a quasi-equational class
“Yod(§§”,f) of algebras in an arbitrary Grothendieck ¢

1

topos E.

The main results of this chapte} are Propositions
(1.2.10) and (1.3.4), describing the ré]ationship
between ¢?od ZZ and “4od( ZZ ,E) regarding residuat
smallness and existence of enough 1njectives{ we show
‘that these notions hold in a%'odj;” iff they hold in
AMod( Z E). These results substantially improve

the weaker résults by Howlett [14]. -

WE also prove the coynterparts of some results \\
for equational classes of a]ggbras in Ens, in the . (f
case of a quasi-equational class =4 od( ;é”,f); for
instance, Proposition (1.4.6) which cqrrésponds to
Proposition (5) in [2]: | '

/

Finally, we add acouple of remarks regarding

characterizations of injectivity in Xod( & E),

32
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which suggest problems for further study.

Regarding the gengral nbtiqns of injectivity
and res%ddaf smallness for alggbras in Ens, the
reader 1§‘ré¥erred to [2], [3], [41, fil], [14],

[16] and [21]. |

1.7. The Adjointness of @. Here, we construct

a pair of adjoint functors:

G L€

t — Ens

H

Wwith G a Teft adjoint of H, where [C]| denotes the

discrete category whose set of bbjects is that of . -

, A 1.
1.1.1 " . Define- G : €— Ens by

GP = (PU%,EC, for P ¢.{, ana for any map f : P + Q in
E, Gf = (ﬂJhJeC' That G is actually a functot is

ea§%§y checked.




el .
1,1.2 fefine H : Ens ~— § in the

following steps: - \\

|C] \
in Ens °

‘(I) For any B = (BvNeCA \

define a contravariant functor B « E by : \

=, _ —o LO,U)
BU = TT8,

Vel

, for eachl ¢ €, and to define

.ES : BW— BY , for each s :U— W, notice that s induces

a morphism s* : hU = hw with components s; given by
*
§V t-= sot, for each V and t : V—U, in C; then,

s* induces a morphism

CV,W) - o)
:By — B'V

«= I

given by sB

A . ,
YECE: LAV for each V ¢ € and o : C(V ,W)~+ BV i

Hence’, define Bs = -rTgs. This B is actually p'fhnctor.
Vel .

For, clearly §1U = 1y, for eachy < €, and for any

t

. ‘ Lo,
compgsition of morphisms Y — wfi» Wy, in T,(st) = st

which this implies that

(sthye = ae(st)y= ac(s\ty ) =

* * * 3
(aosv )otv = th (aosv ) = te (S\BI o)
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for any « : L(V,W) = B, and hence

v
B(st) ='/‘W(st)'5 . W{tB‘ os8)

Vel Vel

n

e o

-

[}
N
m

w

(o o)

(]
s )]
ot

[o]
oo}
w

“(I1) Let f = (fV N L

- - . C]
B = (BV)VEC to,C = (CV).Vec in Ens'™'.

andJ in €, define

U . ,CtW.,J) o:('v,U)
fv : FV —_— CV

by f‘ja=foa, for a.: C(V,)) » B

v Let ¥ : B »

v o
U

be any morphism from

For any pair V

T

be given by T, = ]*Tf , for each U ¢ €. To check that
U v .

Vel
f is actually a naturé] transformation 'is enough to

show that the'diagram:

T(V,4) f‘(j TV, W)
» _ _—
B C
v l v l v
S R TR0
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is commutative, for all V and any s : U~ W in €

which can easily be checked./

(111) We now define H by HB = B and Hf= ¥,
for B = (BV)VeC’ C = (CVN <L and any f : B + C, in
(€]
Ens . Clearly HlB = lHB’ and for any composite

B —i+ ¢ L Cin Enslcl, we have

3

12

U
(gf)v“ = (gf)v °q = (gv°fv)°‘1

for any pairV andJ in €.and o« : C(V Y )— % , and hence,

for any U ¢ €, we have

(Hfg), = (3F)y = Tﬂgf)V (gyfy )
Vel . Ve¢

"

[Tgv, TTe

= 0.F = 0
Vet Ve € - ud U KJ

L 4 ~

which shows that H is indeed:a functor.///.
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1.1.3 Here, we define two natural trans-
formations
J

n : 1= HG and ¢ : GH— 1

which shall serve as front and back adjunctions.

To define n , let P ¢ € and t :V—{U be

any map in €. The map Pt : PU » PV 1dinduces a map

c(v,u)

PU — PV » by a ~m— SV with a, s = (Ps)a for

s :V =+ y. o Then, we get a map

by a--+(av )

e lefine a natural transformation

D = npy- To check that "y is

natural is to show th&t the diagram

n. : P—=HGP by (np)U

n c{V,¥)
P W TTey
Vel

Ps ‘ Ps

PU nP}J — []pv
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commutes, for. 'each s :J -+ W in m.{ Let a ¢ PW, on

the one hand,‘

Psnpy a) = Ps(ay)y ¢

.

*

- -P"' = 3 o
= Gyl g s Eyesy)y o

and on the other,

nRU(Ps)a = ({Psa)v)vem ; but,.

for any t .V -+ U,
(avos:)t = 3 (st) = P(st)a = (PtoPs) a

= Pt(Psa) = (Psajvf,

~

which shows that Evos; = (Psa)v, for allV ¢ € and

hence the last diagram commutes.

Now, let n = ,(n P)Peé . We still have to

show that n is natural. For any f : P = Q in E, it is

enough to-establish commutativity of the diagram:

1




T g(V,U)
n

Py -—-—P-”__.;TPV

) Vel
fy i
¢
M "Qu ¢(Vv,u) @

W — Qv

' Vel

Since f is natural, fvoPt = Qtof,, for any t :V -U,

and hence, by this and the definition of the given maps,
one can then easily check the commutativity of the

above diagram./

Define € : GH + 1 such that, for each

B = (B has the composites

v et * S8

¢(V,U) pr, fuUl)
.TT%V '—_-_*BU - Bu
Vel -

as its U-th component, forUef, where Py is the

¢(u,u)

U-th projection and e(e) = al, for a e By, To"

U
show the naturality of €, we have to establish. the

commytativity of the diagram:
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GHf f

—C(V,U) |
(ﬂcv ) . > ¢

Vel Uel
’ ' (€]
for each C = (CVN € and f : B » C in Ens . To da
so, let o = ((aVU)VeC)UeC with Gy c(v,u) - B ,

for any V andY in €,

eelCffla = ecllfyooyy ly g = ((yoayy 1)y

= (f(aL'UIU))UeC = (feB)a. *Thus ¢ is also natural./

y 1.1.4 Proposition. G is a left adjoint

to B, with n and ¢ as front and back adjunctions.

L L T
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Proof. It only remains to show that

. 6-—2*0_gua-t*8 g

[y
"

H*g

and 1, = g pep

H

- That is to show, for any A ¢ € and B = (BV)VeQ

in Enéltl,

egp°bny = lgp and Hegonpa =1y,

to do so, let U ¢ € and a ¢ AU, we have
(GA)U = (GHGA)U = (GA)U

given by a (SV)VGCM** e(SU).

Now, e(aU) = EUIU = (AlU)a= a, and hence eGAcenA = IGA
Similarly, one can show Heg o T =r1HB'///
1.1.5 Lgmma. The fromt adjunetion n is a

monomorphism.

Proof. It is enough to show that
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. t(v,v)

n ¢ AU =+ | JAY
AU_‘ Vel

is a monomorphism, forAany(Aef and each UeC.

Let a and b'be any two elements of AU with nayd = ﬁAUb’

this implies that &, = b,, for all VeC." Then, for

any t : V + U, we have (At)a = ;Vt bvt = (At)b;

,

taking t = lU’ this implies that a b.///

1.1.6 Remark.  The functor G and H can

be Tifted to

. ¢
v“od(}{’,m——e——*v‘!odwl |
, H

with 6 a left adjoint of H; the l1ifted functors have
also been denoted by G and H. This is because both G and
its right adjoint H preservé all inverse fimits, hence

carry algebras to algebras (and then remain adjoint.)

1.2 RESIDUAL SMALLNESS

1.2.1 Definition. A homomorphism

B : A+ B in a category K is called essential iff,
for any homomorphiem g : B + C in K, whenever geh is

a monomorphism, then so is g (K a category of algebras).
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¥

o :
Let E be a Grothendieck topos and JZ7 a set

of quasi-equations.

1.2.2. Lemma. In vﬁbd(;ﬂ?,E),

(i) Any composite of essential monomorphisms
is an essential monomorphism, and
(i7) any direct limit of essential monomorphism=

is an essential monomorphism.
L}

’

. . . s e 2im
Proof. (i) is trivial. To prove (ii), let f:A » —ZT»B
be a direct limit, in aqod(;47,fj, of essential
monomorphisms fa A Ba, with colimit maps
. 2im : .
ga : Bd—* T Ba and diagram ﬁaps 90‘8 : Ba+ 883 for

&

B, 2 a. Since each fa is an essential monomorphism

and ga8°fa = f8 is a monomorphism, all gaB are monomorphisms,

iy :
and hence f is a monomorphis. The latter holds because

it is true in Ens and hence in €, and a colimit in E is

formed by first forming it in € and then reflecting .it
to E; since the refléction functor R : € » E is left
exact, and thus preserves monohorphisms, we are done.

Tg show that f is essential, let A— f l‘? B&/h >D be a



- monomorphism, with D ¢ Mod(H E). Tﬁaq\essentialness

R g .
of fd implies that all the Ba sc]” Be — D

are monomorphisms, and hence h is a monomorphism, the
latter again because of the way direct limits are

formed in o4od(/ E). Thus f : A + gim Ba
ael

is an essential manomorphism.///

1.2.3 Lemma. In HMod(H .E), for any

monomorphism h : A + B there exists a homomorphism
g : B+ C with goh an essential monomorphism.
' -
Proof. Take all the vqbd(}é’,i)-congruences 6 on B
wikh A JL»B JL+B/B a ﬁonomorphism, where v is the
\
quotient map. Then, by the exactness discussed in the
prodf of the. last lemma, any join of a chain of such
congruences is again such a congruence, and hence
\
there exists a maximal such congruence 8. Maximality

of 6 then implies that A - B/8 is essential.///

1.2.4 Corollary. . In Mod(F ,E), an

PO
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algebra A i8 an absolute retract iff it has no proper

esgential extension,

Proof. (#) If f : A» B is an essential monomorphism
and h : B~ A is a retraction, for A and B in «%od(# .E), .
then by essentialness of f, h is a monomorphism, and

hence A ~ B.

(¢ ) Given any monomorphism f : A » B in

Mod(Z E), continue it to an essential monomorphism

A-i»B-ﬂ*C, by the last lemma. By hypothesis on A, gf

is an isomorphism and then (gf)'log : B+ A is the

desired retraction.///

»

1.2.5 Definition. 4 category X is called

regidually small, iff, it has a set of cogenerators.

1.2.6 Definition. 4 category K is called

esgentially bounded iff, each 4 ¢ K, has

up to isomorphism, only a set of essential extensions

in K.
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1.2.7 Lemma. For any well powered

category with products and a set G of generators,

restdual smallness implies essential boundedness.

Proof. Let h : A~ B be an essential monomorphism
in K, and embed B >5—TT] Ca’ for suitable cogenerators
oel

Ca. Then, for any generator G and a pair of distinct

maps G =2, A, we have echos # eohot, and hence there
T *

exists some o eI With p ceches # paoeohot, with -

pa : T*rCa -+ Ca the a-th projection. Pick Uoy as -ones.
ael .

such , then A —E+ B — ]—TCB jé a monomorphism, where
Bed

J = {a :s#t : G- A} and card J < card \y) K(G,A)Z.
Geg

st

<

Essentialness of h implies that B~ | !CB is a mono-
Bed
~morphism, and since there exists only a set of products

W—TEB , we are done.///.
Red

1.2.8 Lemma. For %od(S¥ ,E), essential

boundedness implies residual smallness.

Proof. for-any A e u%od(;?’,f), take_gll Ba < A,
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. the suba]gebra -of A generated by some a: U_LLp > ]Al,

for U e t, and then continue them to essential extensions

T i .
Bar——2r A —iﬁe Ca, by Lemma (1.2.3). The hémomorphism

-

[ fa x‘A*-TTbu is a monomorphism, for; if not, there

exists some a with Bd~*-A-+ TTba not a monomorphism,

-~

which contradicts the fact that all Ba > Ca are

monomorphisms. Since there exists, up to isomorphism,

only a set of 8 ¢ »Zod{¥ .E) generated by some

L 4

U 1l-U~ |B], and only a set of essentia} extensions of

these B, by hypothesis, we are ‘done.///

1.2.9 Corollary. For «%od(3f ,E), essential

boundedness is equivalent to residual smallness.

' Proof “+ One way this 1s true by the last 1emma, and
since dfod(}éy E) ‘has a set of generators, namely
the uqod(.v?,i) -free algebras on the reflection of

QFhé representable presheaves hu,wfor Uel, Lemma (1.2.7)

implies the-conver§e.///

“1.2,10  Proposition. %d(Z.E) is
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D
<«
Y

restdually \ﬁm\ll iff o%od R is ;'e,siciuglly‘ small.

Proof. (®) Consider the‘fdilbﬁ%ngrpair of adjoint

" functors:

‘Mod(F E)—L—r AodZ
‘ — .

(1,-) and A left exact, left adjoint to.r ;

u

" where T

in fact A is the composite

A
v‘fodﬂ———-+ v‘todﬂ?A —-—-» V‘fed(:’?’ G —-—-* -"(od(f/ ,E)

-

where 4, takes v‘(qdﬁ to the constant families
.indexed eby [¢]. One can then ea'sﬂy'chég:k that the
. functor T transfers the set-of cogenerators of
V‘fod(;? ,E) to a set of cogenerators. (<) 1 ?‘(qd,‘”{
is residually small, then so is any (#od2Z )} =

Aod (22 ,En_sI). Now, consider the pair of adjoint

functors:

Co Ty
Hod( ,C) -—-—~>,G Aod( 2/ ,Ens )
g . H )

.constructed earlier. The set Pf cogenerators of

‘«‘Zed(:? Ensl“)get transfér‘red to a set .of cogenerators
in ood(F ,C), and hence v‘{od(ﬁ-’/ ) is essentially

bounded, by @.emma (1.2.7). Smce monomorphisms in
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a‘(od(ﬁ ,E) are also mggombrphi;mé in d‘(od(?{‘;ﬁ). and
the reflection functor \i.'s left -exact, essential monomo-rp'.his\ms
‘ in «‘Zod(ﬂ‘,E) are also essential ir; v‘(od(‘j’,&), and
hence o#od(Z¥ ,E) is also éssentiaﬂy bounded. Thus
AHod(Z/ E) is residually small, by Lemma (1.2.8).///

1.3 INJECTIVE ALGEBRAS IN «od(Z .E)

1.3.1 Definition. In Hod(ZY/ E),

pushouts transfer monomorphisms iff for any pushout

diagram

T

\B'
u J(v
. D

whenever f 4s a monomorphism, then g 18 also-a

" monomorphism.

4

1.3.2 " Proposition. Pushouts transfer

monomorphismsin~¥od (/ ) iff they do in HodZ .
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Proof. () Let the diagram
A B
o D

be a pushout diagram with f a monomorphism, in AodF .

f

B E—

-
————
g
M

Using the pair of adjoint functors A -— p given
in the proof of Proposition (1.2.10), we get that

the diagram

AA 6 A

Au ' Av

AC 89 +AD

is a pushout in e#od(ZZ .E) with af a monomorphism, and
then, by hypothesis on «fod(;#/ ,;E), Ag is a monomorphism.

Since a is faithful, g is a monomorphism.

(¢=) If the diagram



51

A —— g
’ C ——:—‘g———"D

A

is a pushout in #od(Z ,E) with f a monomorphism,
then, by the construction of pushouts in &4 od(F E),
D is the reflection of some P ¢ v%od(;év,&) with

.F

b
r

>
o
Q|
f

. v

a pushout in vﬁbd(;47,¢), Rg = g, and f is a monomorphism.

Now, for each U e C,

AU — b . BU

v

U — » PU

W]
=
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is a pushout in *%0d& , and then, by the hypothesis

on HodZ , Eﬁ is a monomorphism, for each U ¢ €,
and hence g is also a monomorphism. Now Rg = g, and

since R is left exact, g is a monomorphism.///

1.3.3 Lemma. The category vbd(FH ,E)

has enough injectives i1ff 1t is residually small and

pushouts transfer monomorphisms.

Proof. () To show that pushouts transfer
monomorphisms, let
b
A f — B
u \ J v
o g + D

be a pushout in i«fod(ﬁf’,f) with f a monomorphism.
Now, 16t h : C— E be a monomorphism to an injective
algebra E « uiod(Sé?,E)r Then, because f is a
monﬁmorphism, there exists a homomorphism k : 8~ E
with kef = hol, and hence‘there exists a homomo}phism
£ :D—E with 209 = h, the Tatter because the above

diagram is a pushout. #How, since h is a monomorphism

P Voo
PRI oy




-—

and %9 = k, g isa monomorphism, thug pushouts
transfer monomorphisms, 'To show that Aod(Z E)

is residually small is to show it is esséntia11y
bounded, by’Coro11ary (1:2.9).' Now, let h : A + B be'
an éssentia] monomorphism. Embedding A into any
injective ‘£, one readj1y sees that B can be embedded in
E, and herice, up to isomorphism, there is only a set

of such.B. This shows that «4od(# ,E) is essentially

-

bounded. ,
\s”/\\\\\:
(<€) For' A VZO_d('}’?’ ,E), take a maximal
essential extension f : A= E of A in «fod(Z ,E),

~

which exists by Lemma-1.2:2(ii). We claim fhat E is
an injective. To prove this, let 'g : A~ B be any

monomorphism and then form the following pushout

-

diagram in <od(# ,E): S
: .
Ay & —u B -
Y
\L .- v
E ¢

B} hypothesis, h is.a monomorphism, and ‘hence retractable,
by Colollary (1.2.4). Thus, E is.injective, and this
shows that afod(ﬁé?,f) has enough injectives.///

\
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b 1.3.4 Proposition. The category

~

o'?od(ﬂ?,ﬂ’) has enough indectives i'ff’-v‘fod;# has
enough injectives.

Proof.  This follows from Propositions (1.2.10) and
(1.3.2) and Lemma (1.3.3).///

. This result substantially improves a similar
result by Howlett [14]. Here, we deal with quasi- |
equati&na] classes of algebras rather than equational
classes as [14] does, but more impofténtly; our proof
ades Fot use the points of the topos whereas [14] only
proves this result for a Grothendieck topos with enough
points.
| Moreover, Proposition (1.2.10 provides a
positive answer to Howlett's question [141 page 108
whether essential boundedness of odZZ directly
implies that of »%0d(ZZ E).//) '

1.4 BEHAVIOR OF INJECTIVITY IN Hod(ZE)

~

1.4.1 B. Banaschewski in- [2] calls the

notion of injectivity in a‘categdry K properly behaved

if the following.three propositions hold which describe




-

the relationship be&ween essential boundedness,
residual Ema]]ness and the existence of injective
hulls in K. Actually [2] deals with inject{vity
| with regpect to a more general type of*morphism;,
but of course, here we-only consider injectivity

with respect to monomorphi;ms.

‘

1.4.2 (I) For any 4 e K, the following

conditions are equivalent:

(I1) A is injective.
(I2) A is an absolute retract .

T (I3) 4 has no pro?er essential extension.

1%4.3 (E) Every 4 ¢ K has an injective hull,

unique up to.isomorphism.

o

'1.4.4 (H) For any monomorphism f : A»—=3B,

- the following conditions are equivalent:

(R1) f : 4 + B is an injeetive hull of 4.
- ' \ : (B2) f : A + B is a maxzimal essential monomorphism.

(83) f : A > B.is a minimal injective extension.

-
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1.4,5 . Also [2] ‘gives sufficient conditions

for the proper behavior of injectivity in X as follows:

(E3) For any monomorphism f : 4 + B there

exists a4 homomorphism g : B + C with gof an essential

monomorphism.

(E4) ‘Any diagram A —-f——*B with f a

s |

c

monomorphism can be completed to a commutative diagram

v

[Zm]
o =
O ¢

f

———-—.—v—}

——
u

such that u is a monomorphism.

" (E5) Any;direct limit of monmomorphisms i
a monomorphtism.

-

. (E6) The cétegory.ﬂ is essentially bounded.

L4

For K = ?4od(§?¢,£) we now have the following

counterpax‘i of Proposition (5) in {2] for equational

"




classes of algebras in Ens:

e

1.4.6 Proposition. For Hod(F ,E), the

following are equivalent:

(i) Injectivity is properly behaved.
(i)  Hod(H E) has enough injectives.
(ii3)  Hod(F [E) is residuaily small and
pushouts transfer monomorphisms.
(Zv) (E4) and (E6) are satisfied.’
Proof. .(i) 2 (ii): By (E) in the definition of
proper behavior of injectivity. L

(i1) ® (iii): By Lemma (1.3.3).

(iii) ® (iv): (E4) is trivial, by completing

any diagram A — B, in Hod(ZZ [E)’

;|
C
to a pushout. (E6) holds. by Corollary (1.2.9).

(iv) & (i): It remains to show that /fod(i?”lm)
satisfies (E3} and (E5). But Lemma (1.2.3) proves (E3),
and (E5) is discussed in the proof of Lemma 1.2.2(ii).///

%

R

2
S



S e

\

\Gn particular, one has, by Proposition (1.3.4):
Injectivity is properly behaved in /Yod(j?y,m) iff it is
properly behaved in AodZZ .///

We conclude this section with a couple of comments

on injectivity in Hod(FH E).

Since the functor od(F ,E) {,=), vfod§4y ¢
has a left adjoint which preserves monomorphisms and it is
well known that such a functor preserves injectives, if / '
A e y‘t‘od(,?? ‘,IE) is injective, then so is AU, - for each
UelC. However, the converse of this is not true; for
counter examples, in the case‘of abelian-groups, the

reader is referred to B. Banaschewski [33./

For certainz? , one has characferizations of
the injective A ¢ AdZ by properties of A in terms '
of its elements and subsets, for example divisibility
for abelian groups, completeness for Boolean algebras,
and completeness and Booleaness for distributive
lattices. An'obvious question to ask is to what
extent,'that is for what [E, such characterizations
remain valid in #od(Z ,E). The only case where
anything is known abqut this is that of abelian groups:
divisibility = injectjvity for abelian groups in Sh¥
iff the locale ¥ is Boolean (8. Banaschewski [41).7//




" CHAPTER 2
PURITY AND EQUATIONAL COMPACTHESS IN oHod(H sh )

show, in Proposition (2%3.2), that these algebras are

In this chapter, we study the notions of
purity and equational compactness in a quasi-equational
class Mod( ¥ ,Sh" ) of sheaves of algebras on a Tocale
< , and prove the counte?parts of some of the results

for equational classes of algebras in Ens.

In section (1), we define a notion of
finiteness of sheaves and then prove, in~Proposition (2.1.7),
that for a g'oetherian locale £ , Sh¥ s a1gebra1‘c.“
This is used later to prove some of the results in

section (2) and (3}.

In section (2), we study pure homomorphisms

in w‘qu( Z ,shd ), giving, among other results,

the. counterparts of a charécterization of pure homo-

morphisms; and the Pure Representation Theorem.

Finally, section (3) give§ a study of
equationally compact algebras in «”od( QZ,ShZ ). We

characterized here in the same way as in Ens, and in

"Proposition (2.3.8), we prove that the same conditions

59 .
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L

\as in Ens are equiva1ent to the ex1stence‘of equationally
compact hulls in Aod( H.Sh¥ ).

.Regarding the general definitions and results
for algebra§min Ens, the reéder is referred to [5), [6],

€71, £81,L151 , [181, [22], [231.

2.1 Finite Sﬁeaves
E T - - - - -

2.1.1 Definitién. Por any collection F \

of sheaves on a loecale & , a éiteaf F.e Sh¥ is said

to be '?-fihite tff, there exists an epim%rphism
n

AL P, »F (n finite) with F, ¢ F(i=12,...,n).

i=1 : ) '

‘The collection of all F-finite sheaves in

Sh¥ will be denoted by
: -

. ‘ @

2.1.2 Proposition * (¢) Z 4s closed under
7

finite coppoduct:é and epimorphic images. »

(i1) If % i8 closed under finite non-empty -
pradua‘ts, then so iaﬁ' s, and hence if 1. ¢ & , then
F i8 elosed under all fimite products. l

-~

‘ o .
(1i1) If & is closed unde» sub-objects,




.
L U
o

A

Proof. (i) is trivial,

61
80 is‘sf.

: R 4
{ii) follows from the facts that, in any topos
finite limits commute with colimits and the products of
epimorphisms are epimo?phisms,fas follows: Suppose

that éach Fi,.i = 1,2,...,m, is 57 -finite and let

n

j "
{91 St Fj represents F,, for each j = 1,2,...,m.
5 : . m nj : m
We then ‘obtain an epimorphism 11 1l S..——?.U] F. -
: j=1 i=1 W IF

Since finite products commute with coproducts, -we have

. ; , ..EL.
1 S =1l

S. ;, where the coproduct runs
~— iJ R i.J .
j=1 =1 =1 |

AN

1

m L
T Fi e 5{
=1

over aji-seqpences‘(ii,...,im) in n x...th. By the
hypothesis [ [si i e & , and hence
. j .

-‘ To prove (iii), suppose that F « j? and the
‘ 0 . - ,
epimorphism f : || F.» F represents it. Let g : G F
. i?l R '

il
l“

be any monomorphism. B} pulffng back é along f

Lo




we obtain:

But, from the properties of topoi; the top arrow is

an epimorphism and pu11ing back preserves colimits, that
. n . ‘n' ’ _
is (H F X6 = {1;& (F.Xg6), and each F.XG is a

subsheaf of Fi’ and hence is in\jf , for i< 1,...,n.

Thus G ¢ 7 ./

'2.1.3  Definition. 4 sheaf F e ShZ
" {8 satid to be finite iff every map f:EF~ Lim Ga,
from it to a dipeet limit of sheaves, factors through

some compongnt Ga .

That {s, there exists a morphism F : F > G;' .

“for some o such that the following diagram commutes:
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where 9, isalimit map.’

The collection of all finite sheaves will

be denoted by FSh%

2.1.4 Lemma. If U-'is any compact element

of ‘Z , then (%im Fd)U = {im FaU’ for any direct
limit in Sh Y . .
N
P?oof. It is enough to show that everyISe(zim Fa)U
is qfready in the imége of some EaU under the colimit
mic‘gau. Let‘sf‘(ztm Fa)p ?e'arb1trary; since U is

compact -and by the construction of direct limits in

i
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n
Sh% , there exists a finite cover U =\\V/ U of

i=1

U in jf such that slUi e Lim Faui, for i = 1,...n, and

»
hence slUi ¢ image Fa Uiv for some o Now, since
i
the. colimit is direct, we can find some o 2 % for all

i=1,...n, such that sU; ¢ image F U, for all i,

and Fa being ‘a sheaf then implies that s ¢ image FaU.///

2.1.5 Lemma. For any U ey , the

sheaf hU = (-,U) is finite 1ff U is compact.

Proof. (=) Let U = \/Ui be any cover of U ingZ .
I .

We write U = \\/» \/ y. » and hence
all finite J2I jeJ 9 q
=. Lim - . . . )
hy Finite JS.rh\/ 0. is a direct limit. Since by,
L Jjed i PR
" is finite, we get. by sh o for -some finite J ¢ I.

54 S :
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Now, 1= hylch \mep11es that h u=1,

Vil j\e/JUj

which then mpnes that U < \/ U; 5 this shows: that'U

ied
is a compact element. The converse is clear by the
last lemma.
2.1.6 Lemma. For an algebraic locale 7 ,

U
= get of all compact subsheaves of I, the terminal

every finite sheaf is I -finite, for 3 = {h, : U compact}

object of Sh % ; and the converse is true if < is

noetherian.

Proof. Let X be algebraic and F be any finite sheaf
on ¢ . Consider all the subsheaves T of F which are
= -finite Then, for a compact element V ¢ & ,

g
FY = U TV by (2.1.4); and for a non-compact e1ement

all 7 .
Ue ¢ ,letU=\/U1. (i ¢ 1) be a cover of U in¥

by compact elements (which exist because . is algebra\ic)..

Now, for any's e FU, slUi € FUi = U TU,-; for all
I all 7

1 ¢ I, the latter equality becuas-e'Ui are compact for

all 1 ¢ I. This implies that se(2im T)U, and hence
' - all T *
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_ 2imT o ' LN,
U = (';TTT) U, for any U e Z , and thus F = all’T .

. (direct). Since F is finite, it follows that,F < T,

for some [~ ~finite subsheaf T of F, and hence F = T,

" This shows that F is JT -finite. j
‘ b
Comversely, let now % be n9/ether1'an'and Fa
gj -finite (which is now same as L inni.te) sheaf on <
T n

Let F be represented by f: _LL ‘hU » F and o : F+21’mGa

i=1. 1 -
be any map from F to a direct limit, in Shof.f'ﬁince 2dch” U, is

~compact, each hU is finite, by (2.1.5), for i =Ai,...,n
1‘

and so is their copfr‘odug:t,'the Tatter is easily checked.

This provides us with the following factorization:

. - [ .
P 10,

n
through some colimit map g, - Now, let Ks(_u_ hy, )2' be
' S i=1 ]

%

e et et
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. *

. . E ' Ja
" the kernel of f, and then by the properties of topoi . L

n . .
. . 2'
wehaveK=Kn(l|h)*H'Kn(h.xh.)illh '

for some Vij < U1‘A Uf (i,j = 1,...,n). But, z being

%

noetherian, all Vi are also compact, and hence finite,

J
which implies that K is finite. Next, we have that

the kernel of g is the union of the Kerg . for all g 2 a

B

because every U ¢ 38 is compact and hence (2im Gu)U =

Lin G ¥ for alluesf, by (2.1.4). Since K is finite and

is mapped to \_J Ker 948 by f x f, we.get a factorization
gza .

<2
of f°|K through some Ker 948" Hence, gaeo? composes

equally with the two morphisms of the kermel pair of
f, and since f is the coéqualizer of its kernel pair,

gaeo? factors through f. Thus, we.get fhe'following'

diagram:
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With o of = gaéof. Then, we have geoEof.i geogasf?

=]
o

-
"

gof, and since f is an epimorphism a]so,ge?g = 0,

which is the required factorization of o through some

coTimit map gg» showing that F is finite.///

“

2.1.7 ‘Proposition. For a noetherian
locale jf., sht s algebraie; that is each F ¢ Sh

v

is the join of its finite subsheaves.

S

Proof. By the first paét of the proof of the last

' leﬁma, we have F =-\/ T over allZ ~finite subsheaves
T of F which are finite by the second part ofaihaf
lemma./// - , . :

2.2 . PURE HOMOMORPHISMS

2.2.1 * For an-algebra A & Hod( Z,ShZ ) i
and a sheaf S on % , we have the algebra ALS] of
polynomials with variables in S'andAwith coefficients

in 4, defined to-be the coproduct ALS1= A | | Fs
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in  Aod( F ,ShZ ), where ¥ is the free functor.

A sheaf of equations E in variables S with coefficients

in 4 is a subsheaf of IA[SJIZ. If Cis any exten§ion

of Aand h : A~ 8 is any homomorphism, in A od(H,5hZ ),
then a homomorphism f : C - B whose restriction f|A to A
is h will be called over k. Here, if A is a subalgebra

of B and h is the inclusion map, then f is said to be

over A. A'Isor, if furthermore B8 = A, then f is called

a retraction of .C to A, and A is called a retract of C

iff such a retraction exists. .

ﬁ,
2.2.2 Remark’.  To obtain the desired

resulqts‘concerning pure homomorphisms, we shall need
that'the conclusion of Lemma (2.1.4) be-true for all
UeZ a~ndia]so that the conc1'us1'on of Porposition (2.1.7)
holds. Thus, for the remainder of this chapter, we

let Z be a noetherian 1oce'11e.' Some intermediate

results do not requiré this condition, and we shall

point these out at the end of the chapter.

2.2.3 Definition. = A homomorphism h : A + B
in HAod( P ,5hL ) is said to be pure iff, for. every .
finite subsheaf F of the kernel of dny homomorphism \

Ff: ALS] + B over h, there also exists a retraction
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g : ALS] » A whose kermel contains F.

\

-

2.2.4. Remark. Note that every pure

homoﬁorphism is indeed a monomorphism. For; let
h:A-R be a pure homomorphism, then any finite
subsheaf F of the kernel of h is contained fn the
kernel of any homomorphism f : A[S] » B over h. By
purity of h,F is contained in the kernel of some
retraction g : A[S] - A, and so F < 4 s A x A which

then implies that \/ F < A. By Proposition (2.1.7)
allfF. >

Ker h = F, and hence Ker h < A. This 'shows
all F
that h is a monomorphism.

2.2.5 . Lemma (<) Any composite of pure

homomorphisms 1s pure.
(ii) If feg is pure, so is g.

(i21).- Any direct limit of pure homomorphisms

18 pure.

Proof. (i) is trivial.

Lid
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(i1) Let g.: A + B and Fo B -+ ¢ be any

two homomorphisms with feog pure, Consider the
“diagram
AlS]
h
v
f N
B “C

with i the natural mpnomofphism and'h any homomorphism
over g. Cét f be any finite subsheaf 3*?;pe kernel of
h., Then, F g Kef fon and hence, since fog is pure,
‘there exists a retraction o« : A%S] + A whose kernel

contains F. This shows that g is a pure homomorphism.

(ii{) This is a crucial reuslt to the rest of
this chapter, and here is where the condition ofjf
being noetherian -is needed most. To prove this, let

,ha A Bu(“ ¢ 1) be a direct family of pure homomorpisms

and h-: A -~ B be its colimit with the colimit maps

‘ga: Ba-——é B (i,e, ha = gaah for all a ¢ I). To show

that h is pure, let f : A[S] > B be any homomorphism
over h. Thenf by (2.1.7), § = \/ Sa with Sa < S finite,




and since we only deal with finite subsheaves of A[S],
S can be taken to be finite without ?bss of generaiity.
Now, let F be any finite subsheaf of the kernel of f.

By finiteness of S, we get a factorization:

A[S]

through some g - Thus ?Z(F) < Kerg = \)

Ker’g ’
85 “af

the latter is a ponsequence.of Lemma (2.1.4), and so

‘we have a morphism from F to the dirfech union.

. g . ) ™~
\vjmirgae » where G“fiﬂLGB for 8 2 a, and hence, by
f2a . -

finiteness of F, this factors through some Kerg (82a),

aB

a8°ha = hB 2,

~

and then F = Ker(gaBoT).' Now gaBo?;A =‘{g

g’ Since hB A - BB

showing that gasb? is over h
is a pure homomorphism, we get that F s Kerg for some
retraction g : A[S] + A. This shows that h is a pure '

homomorphism.///

-
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2.2.6 Proposition. The pure homomorphisms in

a quasi-equational class A od¢ H,snd ) are‘ezactly

the direct limits of retractable ones.

Proof. By“(ifi) of the last lemma and the fact
that ?etractab1e homomorphisms are pure, the proposition
is true in one direction.

Conversely, iet f:A->B bea pure homomcrphism
and h : A[S] ~» B any homomorphism over- f 1nduc1ng an

isomorphism A[S]/Ker hw= B. For any finite subsheaf F

of the kernel of h, there exists a retraction 9 - ALS] » Aﬁ
. whose kernel contains F (this is because f is pure).

Let 6 be the -/(od(#,ShZ)-congruenc;e generated by F.
Sipce 8 = Ker v (where v t 'ALST » ALS1/8; s the
quotient;map) is contained in the:kerne] of g and the
quot%ent maps are epimcrphisms, we have a homomorphism

te A[S]76F-> A with tpev = g, by the homomorphism

decomposition theorem. Hence, all the homomoerphisms.

A - ACS1/8g are retractable. Now, by (2.1.7),

Ker h = 8., and the fact that B ~ A[S]/ V’e =
all' F l S - F

:;;‘m ] ALS]/éF in “od(Z,5hZ ) impli¢s the assertion.///
all F | ) '
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2.2.7 Corollary. Any left adjoint functor
between quasi-equational classes of sheaves of adebra87

on noetherian locales preserves pure homomorphisms.

A

Proof. This follows from the fact that a left adjoint
functor preserves any kind of colimits, and that it

preserves retractable homomorphisms is easily checked.///

2.2.8 Corollary. In any quasi-equational

class “Hod( H.svZ ), if

f

h k

O >
o & P

——ey
—3
is a pushéut diagram with f a pure homomorphism, then
g 18 also pure.
. a

Prodf. This follows from a well known categorical

fact that h produces a pair of adjoint functors:

fm——

(A + Aod(H,5hE ) L (C v Hod( H,5hZ )

where F is defined by pushing out a]ené h and is Teft
adjoint to G which is "preceeding by h". Hence, F




.
o on ot e e

u
h b

8
-8
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- Y

, .* preserves colimits of any kind, and that it preserves

retractable homomo'rghi'sms is easy to check. 'Thus'F

preseryes pure homomorphisms.///.

2.2.9 Corollary. If f: A+ B isa
pure hqmomoszhism, then 8o are all fU : }w -+ BU,

tfoz" Uetﬂ‘.

Proof. This follows from »Lgmma'(2.1.4) and the

fact that, for any g : C+D in v‘(od(.?-,ShZ ) which

\ & . . -
is retractable, al‘l'gu : CU » DU are retractable, for

ey Lift

-l

2

2 2,10 " Coreﬂ%rx If f : A» B i8 a pure

: homomorphzsm in “!od( ? ShX), for a noethertazz .

topologieal space X, them so are all the stalk pzape\:e

f, A, > B, zelX

e

E 4

M- -.'Lhis foHows from Comﬂ;{y (2.2.7) and the
fact. tha\t the stalk functors d’od(W th) + «#fod ,'2?
_are left ad,joint ‘Fhe fatter is.a consequence of -
0.2 8(b), taking 55‘ G X, A O Y for 2 singleton .

- set«‘{ and for each x € X, I’ “f is given by,




[

.

¢XU*=~}*i£mx\ngmgpd empty otherwise:

In fact, one can prove this proposition

‘directly as follows: We know by Proposxtlon (2.2.6),

- oin : ~
that f = im f, (d1rgct) for retractable.E\memerpﬁTEﬁE"“““‘-——»

fa : A= Ba’ gnd fX = %1m fax (direct), and that all

<%

the components foy dre retractable is-easily checked.

Since, in,doda‘f/, pure homomorphisms are exactly the

direct limits of retractable ones ;5], we are done.///

&

. 2.2.11 . Example. "The converse of the above

corollaryis not true. Here is a counterexample:

‘Let’ o#od % = Ab, the category 9% abelian

groupé, an@ let X = {0, 1;2}, with- open sets T ;E

O = {y, {0}, {0,1}, {0,2}, X} be a topological space.
Notice that, any .presheaf F ¢ o4bPreShX is a sheaf

“iff the following diagram is.a pullback diagram:

S l'/'s-'x , ’ ,
e Fo, 0¥ - >F{0,2'} L

e F{0}

L
1" -
[



- i .

where the maps are the restrictions. The stalks are

easily checked to be Fo = F{0}, Fl = F{0,1} and F2 = £{0,2}.

We now defind two sheayes A and B in o#bShX as follows:

Let A be represented by the pullback

where 1 is the natural inclusion and o is multiplication
by 2 the other maps are trivial. Let B be given by -
. the pullback

,24

~ with the natural homoméfphiéﬁsi Let f :uﬂ}a-ﬁ bé the

&,

My T byt

VO B - : L

v P 1 4 |
E Th FerL e s

' W h “
P I X
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.of purity in ~4b} that all'a : Ax-+-Bx are pure
hdmomorphisms, for x ¢ X; but fy @ AK+BX f.e
Z2 fi+ 24, ts not pure, because Z4 does not have any

°

non-trivial direct summand, in particular Z2 is not a

summand of Z4. By Corollary (2.2.9), f : A - B is not pure.///

2.2.12 Definition. 4 pure homomoréhiam

h : 4 + B is gatd to be pure-essential iff, for any

homomorphism g : B + C, if goh is pure, then g is a

monomorphism.

2.2.13 Remark. Note that, this means

that. if A-Q—»B—JL’B/G, with v the quotient map, 'is a pure

~

homomqrphism for any congruence 8 onm B, then 6 must be .

)

trivial. For,-if h :'A + B is pure-essential and veh
is‘pure; thenﬁgy essentialness, v is an embedding, and . .
this shows that 6 = o . Conversely, jet

A g Lag pe 2’ pure homomorphism and consider the

" factorization ' : e
% .

ES
. .
- ) P 1)

£

. el .
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- ", B/Ker g

Since hovef .is pure, vof is also pure, by Lemma 2.2.5(i1)
and then by hypothesis Ker g is trivial, that is, g

is a monomorphism. .Hence f is essential.///

~

2.2.14 Lemma. In Hod( H,5h¥ ), for any
pure homomopph%sm h : A+ B, there exists a homomorphism

f : B »°C such that foh is pure-essential.

Proof. Consider the set of all «od( Z/,Sh% )-congruences
8 on B with wveh : A~ 529 a pure homomorphism.  This

family is nét empty, A is such.a.cdngruence, and union

-of a chian of such congruences has the same.prOperty;. - j.
the latter is by Lemma 2.?.5(%?1). Hence, there exists ' if\ﬁ

a maximal such congruence 8 5 which A - B/6 is indeed y

'pqre-essentiaT, the latter by maximality of 6,.///

2.2.156 Corollary. If {Bu}aei i an

.
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updirected family of subalgebras B of B in
HMod( & ,5hZ ) with B =\U)Ba and each B, is a

pure-egssential extension of the‘subalgebra 4 of B,

then Bis also a pure-essential extension-of A.

Proof. Since B is a direct limit of pure homomorphisms,
it is pure. It remains to show that it is essential.

Let A —f—+B 2 ¢ be a.pure homomorphism, tﬁen
; 1
A —2 Ba.f*g*B ¢ is pure for each a ¢ I, and since the
ja are pure, this implies that the goia are puré which

then implies that g is a monomorphism. Thus f is

essential.///

2.2.16.- Definition. 4n algebra 4 in

Hod( H,shd ) is said to be pure-irreducible iff,

for any pura homomorphism 4 FL»'-]TBO‘ in Hod( ZY,shy ),
T , ael ~ '

there exists some o ¢ I such that péof is a ﬁonomérphism,

‘where p_ ¢ 1_{3 ~ B is the a-th projeetion.
¢ - ger ® * :

. f .
R TURIE T U
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18 pure-irreducible iff there exists a finite sheaf

F s"lA[S]]g guch that F is not in the kernel of any
retraction ALS] + A but for any non-trivial #od #,S}zf )-
eongruence 0 on A, there exists a homomorphism

- he : A[S] + 48 over veiA > 4/8 whose kernel contains F.

This means that F is not solvable in A but

‘it is solvable in any proper quotient of A,

Proof. Let F be any finite subsheaf of [A[S]|
satisfyin§ the stated condition and f: A 1—fBa -a

ael
'pure ﬁomomorphism. Suppose that,ea = Ker pdof F A

or all « ¢ I. Then, by hypothesfs,‘one has a

Ahomomorph1sm hea * ALS1 ~ A/, over Vea A A/S {

for.each o ¢ I. But Ker he

" with F < Ker h
N a

e’
o
Ker(A[S] —2— Arg, > Ba)’ and ‘hence; F < Ker h for

some homomorphism h : A[S] + _rTba over'f. Purity of
ael 7 ) '

ﬁ-imﬁ]ies'fpéf“thére'éxiSts a retraction g : A[S]-+A -
whose kernel contains F, which is 1ﬁ::;iia iction.
Hence, at least one 6d is trivial w shows that

A is puré-irreducible.
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‘Conversely, let A be pure-irreducible, and

suppose there does not exist any finite subsheaf F of

lAI’.S]}2 satisfying the stated condition. This implies

_that, for any finite subsheaf F of IA[S]I2 not contained

in the kernel of any retraction g : ALS] - A, there
also exists a non-trivial HMod( Z?,Shﬁf )-congruence

F such that F is not contained in the kernel of any
homomorphism A(S] - A/eF over A. - Now, consider the

homomorphism-h : A - W_FA/S
all F

F determined by all

ve 1 A > A/8c . We claim that h is a pure homomorphism.

To prove this claim, 1ét G be any finite subsheaf of

lA[S]I2 which is contained Hﬁ fhe kernel of some

homomorphism g : A[S1 » W—TA/GF over h. Then
all F o

G fs contained in the kernel of Ppeds Pg is the

projection, for all such F as above.  Hence, G is

not one of theée F, .and thus thgre existss a ‘retraction

T : ALS] » A whose kernel contains G. This implies that

bt is pure as was claimed.” Since A is pure-irreducible,

at least one of these'congruénces must be trivial

. "which then-1s"a contradiction.///

LY
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2.2.18 Theorém; (Pure Representation Theorem).

Every algebra 4 ¢ Modl # ,s0L ) has a

pure embedding into a product of pure-irreducible algebras.

.Proof. If A is pure-irreducible there is nothing to

prove; if not, let F be a finite subsheaf of IA[S]{2
whicﬁ is not contained in the kernel of;gny retraction_
A[Sll+ A. Then, for any “Hod( 27 ,sh<% )-:c;n;;rﬁéh‘ce

g on A, F is ﬁlso not contained in the kernelﬁof any
homomorphism A[S] N A/6 over A. Union of‘aﬁy chain of

such congruenceé has the same property. 'Thus, theré

~exists a maximal such congruence, say eF. Then, clearly

A =+ 1-[A/6F is purg-subdirect representation of A,

via pureé-irreducible algebras./// - _ .

2.3 EQUATIONAL COMPACTNESS

2.3.1 Definition. .In Hod(Z ,5hZ ),

an algebra 4 is said to-be equationally cémpact iff,

for any subsheéf T of lAES]!a, T is in the kernel

of some retraction A[S] + 4 ohenever this holds for

-

«

all finite subsheaves of T.



84

-
2.3.2‘ Progosi‘tion. In Wod(#,Sh% ),

4 . . <, . .
for an algebra A, the following are equivalent,
(i) 4 is equationally compact -

(it) Every pure homomorphism A + B 18 retractable.
(i11) A is pure-injective.

(tv) A has no proper pure-essential extension.

gzggﬁ.’ (i) ® (ii) Let h : A +-B be a pure homomorphism
and f : A[LS] » B any epimorphism over h. Note that,

for any finite subsheaf F of the kernel'of f, there
exists a retraction A[S] + A whose.kernel contains F,
this is beﬁéuge h is pure. Since A is equationally
compact’, this .implies that Ker f is contained in the
kernel of some retraction g : ACS] = A. Thi’s, by the
homomorphisﬁ decamposition theorem, pro&ides us with

a factorization.

A[S |

. \ . ) . ’ PR ‘
that 1s, kof = g. .Now, keh = keof|A = g|A = lA,

showing that h is retractable.
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(11). 9 (111) s clear. (3i1) > (iv)s Let
h:A~+B bea pure-essentia] homomorphism. Then
by (iii}, there exists some retraction f : B + A
which then, by essentié1ngsa of h, is a monomefphism.

-

Hence, B :-A.

(iv) ? (i) Given T 3 IA[S]|2 with a retraction
h% : ACS] » A whose kernel contains F, for each finite

subsheaf F of T. Then, the Hod( ﬂ,sr{% )-congruences

'eF on A[S] ‘generated by these F form an upjiﬁggjééq§et, and

= \/6 s.'a Mod( Z,5hY )-congruence
all F P

containing T. Then, all A > A[S1/0. are retractable

- and A—ELA—+A[S}/9 tin — (A A[S]/e‘) Hence v|A

all F

is a pure homomorphism, by Propositiod (2.2. 6)

Continue vIA to.a pure~ essent1a1 _homomorphism
p A Sarsi/e 2o, Then by (iv), govlA is

én isomorphism, and then (99blA)']ogov is a retraction
whose kerhe]-contéins T. Thds shows that A is

-

equationally compactl///

2.3.3 Corollary. 4bsolute retracts . in
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M od( 2] ,ShY ) are equationally compact.llf

©

2.3.4 Corollary. Products and retracts
of equationally compact algebras in od( H ,Sh¥ )

are agatin equationally compact.///

2.3.5 Corollary. In v%d(F,sh< ),

maximal pure-esséential extensions are equationally
compact.
Y

Proof. Let 1 : A>>» B be a maximal pure eséent{q]

extension and f : B» C be any pure homomorphism.

' Continue fei to a pure-essential homomorphism gofei:A-D.

Then, max1ma11ty of B implies that gof is an “isomorphism,
whmch .then- 1mp11es that f is retractab1e This shows

that B 1is equat1ona11y compact.///

2.3.6 . Coro]Tarz. Any right adjoint -
funetor between quasz equational classes of sheaves of
algebras on noetherian locales preserves equatzonal
compactness.. .

5

VProoﬁ. %his is because equationally compact ilgebras

A\
\

.

vf;‘
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L]

are pure injectives, by Prqpositiop'2.3.2 (1i1),
and that, any,left_adjoint functor preserves pure
homomorphisms. Then by the‘properties of adjointness,

the assertion easily follows.///

.

2:3.7 Definition. 4n equationally
compact, pure-essenttal extemsion of an algebra 4, in

Aod( 5?{Shjf) 8. calledcm;equational compact hull of 4.

R
f

A ‘ : \ . .
' l . R 3
2.3.8  Pproposition. In sd(S,shZ ),

for any aigebra 4, the followtng are equivalent.

(1) -4 has an equationally compact hull. .

(i) A hgs d pure embedding into an equationally

compaet ;debra._
(it1) é‘hag, up to%iébmérphismg anly a set of
‘ pur;-essential extensions. .
) [
Proof. - (i) = (i) is trivﬁal. ’ ?‘
‘ ' (i) 2 (fii)~ Sin¢e ah quationa11y compact
xéfgeb;a is‘bureeinjective; tﬁeﬁ, by essentialness,
;'eye}y pu?ewesggntig{iéx;ensiop.of A.is embedded in axy '
' equax{onalfy compact bdréie§£ehs%on 6f A, Thus,[there”-

is only a set of Pure-essential extensions of AJ .

- . - - -
“ [Tt ¥ «
P T e e T weLo,



(i1} = (i): Since the union of any chain
of pure-essential extensions of A is again a pure-
essential extension of A,(ii1) impiies that there is
a maximal such in e/fod(;é?,Shﬁﬁ }, which f?en, by
Corollary (2.3.5), is an equationa]}y compact-hu11

of A in Hod(F,ShZ ).///

2.3.9 Corollary. Equationally compact
hulls in *%od( 3?,5)1% ), as far as they exist, are

egsentially unique.///

2.3.10 Remark. As we have promised earlier

in this chapter, we now list those results which have
been proved without using the assumption of -4 being a
noetherian locale. For all the other results we do need
jfto be noetherian or,‘as one can see, at least the
following consequences of ¥ being noetherian: on the
one hand, Proposition (2.1.7) and on the other that, for

a direct Timit A = Mg 10 Aod(F,snZ ), with

.the Timit maps 9, A + A and diagram maps 9og Aa - AB
( for 8 > a), AU =(’“‘“ AU = A0 28,4 U, for al1 U ez

. and especially the consequence of this that .



PRSI A

g ’ P
[N
.

Ker g = é“) Ker g q» for all a ¢ 1.
- Zu K . , 4

‘Here 1s the 1i{st of resu]ts we could do

).without 35 being noetherian

(1) RemarE (22.4); which actually could be
avoided .-by. 1ett1ng h be a monomorphlsm in the very

def1n1twon of a pure hOmomorphlsm

oo . -J.
S \;(Z)i Lemma (2.2.5); in which the assertions Mf
(i) and (ii) are alWays true,‘but,fﬁs 6ng can see,.tb ‘ .
proye (ii1) we do need :f‘to bg/ﬁEEtherian. |
‘ i3)b Remark (2.2.13), Lemma (2.2.17) and a]sg
in Propoéifion (2.3.2), the implications ‘ -T\
(1) =(1) (iii) & (iv) are always true, but to pro?g
(iv) "2 (i) one dogs need & to be noetherian. )

! .
(4) Finé]ly,'in the proposition (2.3.8), the

implication (i) ﬁé(fiﬁ iS'c1earjy a]Way$ true.///

a
v -
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CHAPTER 3

BIMORPHISMS AND TENSOR PRODUCTS

.y
.

For a topos E, let K be a full subcategory

“of. 0419 JE which is hereditary and closed under

exponentlatloﬂs

IS *
¢

The aim ©of this chapter is to consider the °

notion of bimorphisms for algebras in'a topos and,
in particular, to_study the relationship between

tensor products, Universal bimorphismé and functional

Hnterna] hom functor, leading to Propos1t1on (3.3.2),

which 1s the counterpart of a s1m11ar result for

.~

categories of a]gebras in Ens.

In\sectioﬁ (4), we introduce an interna]

not1on of tensor products and Un1versa1 b1morph1sms,

"and prove a similar result, Propos1t1on (3.4. 5), to

Proposition (3.3.2). aiggr, in Sect1on~(5), we show

for E = Shf that thesé internal hotions are same as

]
the usual ones.
| Also, in Section (5), we deal‘wfth,the-

existence of Untversal bimorphisms, and prove,

- ’ g9 A

e W el .
L 2, R4 -
oty e s BT A g ¥
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in Proposition (3. 5 3), that for a Grothend‘leck topos
E, if d# d-lg( ) has a Universal bimorphism

' functor, then so does any reflective subcategory of

A,

 Finally, in Section (6), we show that 1fc/4-
‘has a functional hom-functor, then so does ﬂShI

Regardingr thé notion of bimorphisms and

- tensor products for the case of algebras 1n Ens, the

Areader ‘is referred to EQJ

4

3.1 BIMORPHISMS

pe——"
N

03.1.1 Def‘imtwn 4 morphism f : | lal x IB&lCI

(for a, B and C in K) is caZZed a zmorghzsm 1ff for

,‘Sa;

each X\ ¢ Q , the duzgram

\/\ . n -
. SN n n,oo. 'n A n, .
arers) X g A agier) P = (of A
kg, BT . - Ag
1A1xIBf e f : y |CI

e S



SRR L TSR AR

o
. S
.
.

! ’
- S e
(RO, SRR S

92

18 commutative, &nd, analogously, for A and B reversed.

3.1. 2 ' Proposition For a morph'zls'm'

f:olal x [B] =+ ]cl, the foZZowzng are equzvalent

(2) ¥ is a bimorphism.

hﬁﬁh;\fii) " The ewponential adjunction f of f, that is

.

\"5) mxm—f—»lcl

- \

o |Ai ___L____* lCIlBI

>

SR L:1 B
factors through i, : PB,¢] »~ el inE

.and, analogously, for A and B reversed.

t . . v [ 4
(1ii) - The expomential adjunections

~ A . 1

. oy
[Al'—-f—-+lc|IB| and IBI—-‘”—"—"»-I(/“II'(I-I

L3

. of f and fo respectzvely, for

: |8l xa] ~ |a]. x IB] the natural

1som0rphzsm'%;£e underlyzng maps of

hOmomQrRhtsms.

tv~¢:~ ~~lBl | S
(ivl  f-: {Al -+ IC[ is the underlying map

égTOf a homomorphzsm and factors through

£ »
FRERERLE Y Ve W‘mn%'/ﬁ -
/

. \
2 ek D i " SR S A SN,

,,
, .. L e x Pt it , T . B , .
" TV e e e »M,&;.q&w,%qmmm S DAL e . ot e i -
”"

PERLE AN

b Tl 4L

LA S
W e ae kSt L

4

O ks
b S

-

Bos il 1 v . st 4w M
R LR LA A L O " , R
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. . Lol
TR '\ . . 'LBC v [B:C] » IC'
(v} Réversing A and B in (iv).

~ .
a

~

Proof. .(i) & \(ii) Consider the diagram:

. . o
in which, the subdiagram (1) commutes, because: if "
‘ \ e a‘f"* L=

oM oM
el «s) —Le T

.::;;

e ute e ap ok ?.cw‘.-qu‘ oo wabetonretn 5

sar A%, 4 PP S ® Y
s R v w an R e lrewiien qg?

Sn

g BEreate

ek e
[SINE:

e J
et
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-
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e et g
AR N

<

w e
W
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' comﬁosing it with the projections \%%

18 oy opry 8
e e lalyd —sfel < Bl (1 = 1,...0m)

~§' \\\§ " produces equal maps. The other sub-diagrams, except
possiblynthe inner most square, commute for obvious

reasons. Thus the two innermost routes connecting

n ' ‘ .
[Al x |8] X to |C| are equal.iff the<§wo outer routes
joining them are equal. By reversing A and B, we get
ality of the

the same result as above. Further th“\v
two 'inner routes means, by the deffnition of [8,C] and

the fo1low1ng epi-mono factorizat1on,

¥
A hr4 ' Bl n
n fx 1 ,
é |ALx (B[ 51C1 xI8]
f ’ .
'%
. ﬁ Xx Bl © -
,‘: 2
% .
. | | RN
the factorization, of X | C]| through
4 &

“
.
" o
o

L]

P PN
PR AN

o 1 O
.Jéﬁl"‘ LN g

R TR

.

TG p L * e ey T
hmm&dauwym&ﬁ Ry AL L R S A ST T
mﬁwww.ww_mr.m:&. <
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(i} &. (ii).

8] L
: [BC] » _|C| , and thus the factorization of F

Y
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A}

L - .
. through ip.. Thus, we have  proved the assertion -

(i) & (iii) To pnove'this.claim, we

consider the following diagram, for each x ¢ Q:

nk 1xa .
IAl "x|B| ——————

n

lAl

':;4

MBI

1Al *x18)

n

-

n
n

B

71&1

(tAIx1B} 2

.

.n Bl
- (11 %)

A x1

Fx1

LY
Ae

1.

x1

Sl
by (W
%]

S;Yﬂ‘igi

., ICl

x|B| ="

18| -

%
»
N T
——
o
oo
N -
] )

*

‘ £ Y y B It Bl oA ¢ 4 SRR A gl st

)
D Lt e w e

B
AN

. PR T a e ¥, -
g g N e S L VYL it .
nﬁw\’ ORXCSWPEY S DRSS A2 P

bt da o b B8 AT (o
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O
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By a simiTar argument as above, we'can show .that all
the subdiaframs in the above diagram are commutétive,
except possibly the middle one. Thus, we conclude that

n

the two inner routes joining 1A >‘><|B} to ICJ'are eqdal iff

"thé t@q‘outer routes conﬁecting,them are equal.

' Observe that the outer square is the gne given in the
v definifion of a bimorphism, and, by exponentialiﬁdjointnegs;‘
the equality of the two inner routes means the commutativ}ty

. of the ?ollowing diagram (which ig the diagram required -

to prove T is a homomorphism):

e -

¢ . n = X [Bi
' e :
. . .
A A '
. . Y \ - A
('
- ' \/" Y
! v - B| ,
O F I
184 - [c] :

Also, the sameiresult .follows by reversing A and B;
" This proves ‘the equivalence of (1) and (iii).

A

7

.,
oy

it mmbinatOie s s 5
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(1) = (iv): Let f be a bimorphism, by
~ e L1
(i) <=> (iii), we get that f : |[A] - |C|] , the

exponential adjunction to f, is thé'wnder]ying map
oﬁ a homomorphism,'and by (i) <=> (i1), we get the

fe]]ow1ng required factor1zation

E-3

/ .
- F Y
Al —— |C]|
\
1 \ ")
y \ # / p
\f BC
. N ]
, v [B,e]
A Y

N— {iv) => (i): By the fact that T is the under-
lying map of & homgmorph1sm, and arguing tRe same

in the proof of (i) <= (111), we get one of

wa
¥ as( !

. the two commutative dgagrams ¥n the def1n1t1on of

a b1morphism «Ihe factorization of ¥ through igc and

“usihg the diag}am g%ven in the definition.of [B,C]

provides us with the o%her‘required commutative

~diagram, showing f is a bimorphism.

L4

(1P ¢ (v) This follows from (i) <2 (iv)

-~ .

by reversing A and B in the proof of (i) ¢ (iv).///

=

{

4
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‘morphisms A'~E»A, Bl-lw B and C ~#+ c', Tet

e a —-————— -
a

38

3,1.3 The notidn of bimorphism gives rise
to the following two functors, one Ens-valued and thg/

-

f
other E-valued: . ‘ ‘ ' o/
/
. /
. * * /
+ (1) BIM : K xK x K + Ens - /
(II) ' r[-',-,-] : l(* x]K* x K » F /
~ :
be defined as follows: . 5 o

.
, -
. . ,
E)

For A, B and C in K, let BIM(A,B,C) be the set
of all bimorphisms. £ : |A| x 8] »+C|, and for |

fomr (Wl f(Ju] < |v]) be - | -~ -
. ,’//’
BIM(u,v,w) : BIN(A,B,C) » BIM(A',B',C")

To see that BIM.is actually a functor,we first show

that, for a bimorphism .f : {A] x [B| + |C], the morphism .

lwifClul < |vi) = JA"] x[B"| » |C]

is a bimorphism. Yo do so, consider the follawing

P T AN

diagram, for-each % ¢ Q: &
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' n, " n
A IxB' | P A B1h 2 (g P —F (""‘“‘) or A l e
n \ n n n,
fulxivi lul Axqvp X (lutxivy) X 1 1
1
’ v n, v
)\ n A n
1Al lsx_i_‘if_l; TR (IAlxIBI)‘_f___;. ior Al ey
1x)
“Ixa
| - ”.40
! Jp
X A Acs
’ A| M . v .-f W lwl v
' , ‘ £ .
o c
N ‘ ~ Again, al} the subdiagrams in fﬁé?éﬁove diagram are
commutative for abvious reasons andyby the fact that
// f is a bimorphism and u,v and w are homomorphisms of
/ ' N
/ : algebras. Thus, the outer diagram, which is one of

the two diagrams needed in proving that the mofphism
lwlf‘(lu]“x [v]) is a bimorphism, commutes. By
reversing A and B we get the ofher diagram, and

hence comclude that [w|f(|u| x }v|) is a bimorphism.

The funcioria1ity of BIM can easily be checked.’

e, B

iy,

i
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Next, we define [-,-,-] as follows:
/

“Let A,B and C be in K. We define [A,B,C]
to be the largest subobject of ICHMXIBi such that,
for each A q, the following ﬁiagram is an equalizer
diagram: o

fAlx|BY

\ N (o x[AIx1BI
1xd, x1
A v
ny ixlxl JAlx|B] L
. [A,B,CIxIAl "xiB| = |C| x[Al *xIBT . ICI
TTklxpr.xl) :
1 n .
4 |Alx|B| 0 (&v) * /n,
(ict |Alx{B| ——— |C|

and,analogously, for A and B reversed. The effect on

méps_A'-—E—*A, B'—Y—8 and C—4 ¢! s proyided by the

]

commutativity of the following diagram:

.
e e Dot e G v P I N Foin .
G0N e imtte ) B il o e o S o et F 0 B a7

e 5
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o~
g%&’ [ '
' 101
t\.
"
n T aiEe n
X : .
[A.8,Ix1A1 gl X iy <1A} *xB| v
2 Y ~
& n
Wl
-
Ixfulxlv| Ix]ulx|v] ol
lulx|v] ¢!
- T i AIBL n. JwixIxl [A{x|B| n,
‘[A,g.CJXIA‘inxxIB'lil—x—l-—l;ICl IR B ——sICl <IAT 18] icl
1xax1\, Con Ny
P u . )
S TR R YN
Nxturxivi et <t M e S a s
xfulx vl -
\
A 4 . o -
. n. ixixl  JA[x[B] 'n |A}x[BI
[ABCIxIAPXBI—1C . xial*xi8) 222 ¢y <IA[x 1B 12V
E

>

oYt

PR
e T
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“K; [A,8;C] is isomorphic to the-fo'llowing,p_ul'lba-ck: )

'proot.» He shatl fifst fina twbtmorphiSms'

to replace P by [A B N 1n the abOVe diagramq \Tb

The commutativity of the above diagram is shown by
the same argument used to show: the commutativity of

a simi]ar diagram in (0.3.1) used to define

, [f,g] [A;8]1 > [C,D] and then, by the definition of

{A',B C‘}i‘e at a unique morphfsm

© Lujv,w] ¢ [AB,CT » fAr;8',C']- - |

R
‘It s ﬁot hard to check that I-;-,-J is in fact é*functar.[//
AT S : ST S .

3.1.4 - Proposition. . For 4,B an¥ ¢ in

, . \
. | R R L:1 P
A P — S > [A,C ']
e | )
t 1~ i :
. S ARLI '
8,0, - ———gr—> (¢ ) ”
- ‘ (1BC) T \ V R
L4 . v . *’ﬁ N - -

.
NS

'.

IB! !Al
: A, s c1 * [A ¢ ] and o [A B c] - [B C]

.
. °. _: - . . S N
4 "

o

A

-~
N
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.
2t v p it o
.
. '

- Y
[P TR U ST SV,
- .

_define s, consider the following diagram: .

- i nk
. IAaB&C]XlAl <|B|

¢

Al
<Al

n. .
18]

Tapcxixy’ . 1Bl
yABCxLxL) )

gL
B
(Icl

|

3 . 1€

1 l_xpri-) x1

Bl

. xfAIx(B] -

- n
\’/ ’}\C}‘xl A

L]

LY

ev,

"
e

s |B]

IR A ANT.IIRN

"F, Y .

181 ‘

N

1xp

. AR ‘“ S, .
LB asen™ " (ed).? el s
(et xIAI%BI) AL s (I1cl =B}
| 3 . ' .
.“ - ‘\ - ’- ‘
Again, arguing the same way as we have been doihg and
using the definition of‘[A,B,C@T we get that the two
.; ‘\f:’f':\x:: '_’ , . .h. .4'“ " . o ) . nA _
ggfinnér\rcdtes_Jbining*[A,B;CJ x A x |Bl to {C| are
c o L * . - 1Bl
‘equai. Hence, as before, the definition.of [A,C 1.7~

~—

n n \ n,
x| A1) Ax1B1 22k o) A B —Byycp A

iR,

e -y

ke

o i

o erdE x T

TS ok s o B

- :;:*fi(;;;_"b{‘b_uwm e
.

.,
TG erd

y -
i

RiAd
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&

and the existence of epi-mon6 factorization in E
provides us with.a map ',

18]
] [A)Bac] -+ [A,C ].

: A
To define the map t, we notice that [B8,C]

RREY
is the larges& subobject of (|C| ) making the

following diagram an equalizer diagram, for each X e o:

‘ IB]
- ) [C| x|B|
. - 1x), . e
) } |X/ \V
C . Con, i X [B n:
1 LT IPIE TRLLEN - TR SN T T cl
. - \\\\g\y ////{;
. ’ . . . " n
o S
Now, consider the following .diagram IA]
IB|
g [Cl x|A|x]B|

S Bl ', N
[A,B,q]xlAlxlsl ————3_[C| XIBI SN

: ' ICl

n
((ICI}I) x| Al x ra:)‘ ———~9(lcl XiBl) A i

(the maps .are c}ear from thg prev1ous diagram. )

-

S S A
R A R o AT

TS

YR
PRECERGW4 o

R
ortt T

LT

,
bl
Claded THu e

s
Pt

b uh
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f@

‘we are provided with a map t : [A,B,C] ~ [B,C]

w05 |

| The subdiagrams (1) and (2) are commutative for obvious

reasons,and also by the definition of [A,B,C], we

get that the two outer routes cbnnec?ing [A;B,Q]x’AlxlélnA
to ICI are equal. Hence, thé two inner routes joining them
are also equé]ﬂ Thus, byiythe definition of an equalizer,

'A'. Now, by

- how s and’t were defined we can easily see that the

fo]ﬁowiﬁg diagram is commutative:

. 8]
N,B,C] —"""h_:_"") [A,C &]

’ - : © 1A}
VoA Bl

C[B,0) s (ICI )
. - 1

- N

To:show that the above diagram is a pullback, let

there be‘an‘object T ¢ E and maps « and 8 making the

following diééigm commutative:

i ‘\/
“ . , .//—-\
-

. §
R O T Lot
T A

,
LW

o

Ced g s

s o
R A R
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-

b =

L N » ’ lAl
both factors through [A,WCI'BI ,which is

106
, -
‘ . 18]
T »{A,C ]
8 »
| Al
MR Bl -
(B, —— (iCI- ) .
~ ‘ ”
.

One' can argue the same way, as before and shOW‘thét

. o |8] . |A]
the two maps §<:;f’[A,€ 1— |C|lBI and

Y

|A[ |B!|A'

T —JL»LB,C] —|C| satisfy the two conditions

“required in the defiﬁitigg of [A,B,C] and hence they

(-

Y

required in the definition of a pulltfBck diagram.

Thus the proposition is proved.///

Next, we show how the .above two functors

‘,BIM‘énd‘{-,f;-].are related to each other, which

}ie]ds a simitar result to the case of [,].

0 3.1.5 Lemmd.iu A morphism |A| x lBl—f*]Cl

S
Wl

N L Y
s
:5&
¥ 1
3
S
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. (for A,B and C in K) ts a bimorphism iff the exponential

adjunction f, given -by

2 % |4] x 8] ~ |4] x [8]—L=|c|

“age -,

factors through [4,B,C] JABC | o141 % 18]

£

Proof. The proof js similar to the proof of
Lemma (0.3.4). -Let A ¢ © be\arBitrary. Consider the

following diagram®
‘9

n n n
LT T T

(3)
{Afx|B{ n ' n : ‘
(1cy x|Alx|B1) A — (Y} A —
o, T T 1A% (8] 'nk
© 1A} v"lBl 22 ¥x|A| “x|B| =——— |C] x|A] “x|B| Ic| .
[AIx1B1” '
1CI . 'xlAlxlBl
‘ IAlxiB]

#

- . (the maps are clear from the previous diagrams.)

"o

F it mdiod b S A B i AT oA il
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Again as before, one can easily show that
the subdiagrams (1), (2) and (3) are commutative,

and thus the two inner routes connécting.

n :
|A] * % |B| to |C| are equal, which is one of the

sdiagrams required to define [A,B,C}:ﬁiff the two

outer routes are equal, which is one of thHe two
diagrams required to define a bimorphism. By reversing
A apnd B we g%} the other two corresponding diagrgms,
which proves the lemma./// ;

This Temha proves the following proposition:-

3.1.6 Proposition. For A,B and C in K, the

map K(2,{A,B,C])— BIM(A,B,C) given by g~ g# 18 an

tgomorphism, Qhere'g# 18 géven by the following:

S Al x |B

L x |A] x |8] -T |c|

|A] x |B]—1 x |A] x [B|Z= |C| <

‘ a

3.1.7 Definition. 4 bzmorphzsm £1i 1l < |B] + {c|

(for A,B and C tn K) is called untﬁersal Lﬁf any other |

bzmorphzsm g : |4l x |B] = [pl(D e.K) factors through

A el MG e o

P

e Tl b
EN T JATLC AR

Wil L et
g R s L

e



4 -

. / ¢
109

AN
a unique |#] : |¢| + {D|, for R : ¢ » D in K

(.., g = |&|f).

Notice that the notion of a universal
bimorphism depends on the category K.

If the universal bimorphisms exist for all

ﬁairs of objects of K, they determine a functor,
M:KxK~+K

called the funetor of universal bimorphism, defined by
8

taking |M(A,b)|’to be the codomain of the universal

bimorphism Bag

[A]l x |B| - |M(A,B}|, for each patr
A and B in X, and the effect on maps f : A » A',and

g : B~ B' is denoted by M(u,v) : M(A,B) - M(A',B")
and is_defined to be thevunique map obtained by the
following factorization, provided by 5%? definition of

a universal bimorphism:

, . |
|Alx|B] —PB — 1(a,B)]
|

IFixigh . ﬁt LICFN
8 '

‘ B ’ L CL
A" |=1B"| ———AEE—»lM(A‘,B‘)I : .
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.

A R g -

’
.the correspondence g8 % |-| x [-] + |M(-,-)]| with

110

BN s

Using the definition of a universal bimorphism, it
is eas{ly checked that M is in fact a functor.

Moreover, by the commutativity of tpé‘above diagram,
com.ponents‘aAB (for A and B in K) is indeed a natural

transfoﬁMat1on between the two fu;;;gﬁs. Also, fhe:l\

is "a natura] equivalence K( M(A B),C) ;223;59 M(A,B,C)

given by haws lhIBAB, which says thatf the functor

~

BIM(A,B,-) is representable: The universal bimorphisms
are entirely determined by the above natural transfor-

mation; Bag being the map corresponding to the identity

-~ . L4
.

morphism of C = M(A,B)./ : . - ..

kS

3.2  FUNCTIONAL INTERNAL HOM-FUNCTOR

. * ’
3.2.1 Definition. A funector # : X x K +X

will be called an internal hom-functor iff, |H(4,B)|=[4,B]

for all’A.and B in K; that is to say the following

diagram i8 commutative: = | .
N ' )
*
f’f// K* <K
\ hal ¢ -
AN - A ¢

‘$

A N

- “ et PPN
. . TR
P A A URE R LA O P

AT

BN

el
ol

ihjia;k‘k .
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3.2,2 Definition. 4n internal ﬁom—functor
B of XK is called functtonal <iff H(A,B). 18 a subalgebra

- \ lal , )
of the algebra B, that is, the inclusion morphism

i

4] -
18 ° (4,81 » |B| . is the underlying map of a

homomorphism

|A] )

i : H(A,B) » B

AB
(denoted by the same letters). ¢

" This not1on is ana1ogous to that in [9].

v

v

3.2.3 Proposition. For an infernal -

" hom-functor H : K ‘-X.K + X, the following are equzv&lant

.-

(1) & is functional.

(it) For any A,B and C in K, there is a

natural isomorphism:

K(A,H(B,C)) s BIN(A,B,C)

given by f‘;“+?; where f is defined, by

exponential adjointness as follows.:

B
Al £ g,c7 B ¢, qep'®
S L] T

-
r
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(i1t) “For any A and B in K, there extists

e . .
a homomorphism 4 ——ﬁg—*H(H(A,B),B} such

that the exponential adjunetion €, g2
given by

g [A,8]

|A] [H(A,B),8]~ [B|

—

|A] " x [A,B]—EA§—+|B|

18 the evaluattion map.

(iv) ,~The“evaluation map ev : [4,B] x |4] + |B]

i8¢ a bimorphism.

Proof. (i)&(ii) Let H be a functional internal

hom-functor énd A,B and C belong to K. Since ig. is the

underlying map of a homomorphism, for any homomorphism

f : A > H(B,C), ‘the composite iBCoIfl is the underlying

, ' . 8]
map of a homomorphism from A to C , and it obviously

factors through ij.. Thus; by Proposition 3,1.2(iv), -
Ff : {A]l x |B| + |C}sdefined in (ii), is a bimorpéism.
Now, ¢ is clearly a monomorphism, because if f =.§,
for f,g :*IA[ + [B,C], then, by the adjointness

f is a

1§omorph1sm, 1BC°'f|,= 1Bcolg|, and since 1BC

-monomorphism, [f| = |g|. To show that & is onto, let
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f : |A] x [B| + |C]be any bimorphism. Then, by the
Proposition 3,1.2(iv), the exponential adjunction

F of f,

Al x 8] 5 ¢y

b
|A] f. {CIIBI

is the underlying map of a homomorphism and has the
following factorization:

e 8]

Al ———— €]

4

where f# ts clearly the underlying map of a homomorphism,

because both ige and f are underlying mabs of h&homorphisms,

and also ¢ (f#) = f. This shows that ¢ is an isomorphism.

w

Conversely, let ¢ : f~~ T be a natural

A
given by, . ’ , ' R

isomorphism. Take A = H(B,C), then ¢ (lA) =T

. 1. T
[8,c] —A[8,¢] .- e}

D

(Bl

\ T
[3.42 « I8 —& el



114

is a bimorphism, by 3.1.2(ii). Thus, by 3.1.2(iii),

the exponential adjunction ige Of TA is the underlying

map of a homomorphism; that is H is functional.

(i) ¢=> (iv) Let H be functional and A

and B be any two algebras in K. Then,

'AB

: H(A,Q) + B
[A]

is a homomorphism with the underlying map’iAB:[A,B]»|B]

which c1eér1y has a factorization through itself. “fhus,

by the Proposition 3.1.2(iv), the evaluation map

ev @ [A,B] x |A] - |B] is a b}morphism.
o

Conversely, if ev : [A,B] x |A| »~ |B] is a bi-

morphism,‘then the corresgpnding adjunction map
, . 4 .
3 ) IA'A- - ¢ o
“1AB : [A,B] |B] to ev is the underlying map of a

homomorphism, by 3.1.2(iii). This shows that H(A,B)

1A .
is a subalgebra of B- "> for any A,and B in K.

f (iv) > (iii) Let ev : [A,B] x |A| - |B]

"be a bimorphism. Then, the corresponding adjunktion

* [A,8] ’

ev : |A] + |B] is the underlyingmap of a homo-

. i, [AB]
morphism and factors through [H(A,B),8] »—|B| ’

by the Proposition 3.1.2(iv). This shows that there

-

P

N}

|A]

M
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exists a map s Al ~ [H(A,B),B] such that the

following diagrma is commutative:

\
w N\ T |
\
.8 \
3 B(A,B)B
L \\ ( 6)“
4 N
[H(A,B),B]

But, the functionlaity of H implies that~‘H(A,B)B

.» is the underlying map o% a homomorphism, and, as

ﬁ}ovéd above, @v is the underlying map of a homo-
. . , W oI :

morphism, too. Hence, s is the;under1yi&g map of a

homomorphism epq : A +~ H(H(A,B),B).

->

C(i1) ' (iv) This is clear, by 3.1.2(ii).///

4

o

. 3
- £

3.2.4 . Remark. Observe that, for a

functional internal h9m~functor H, the object [A,B,Cj

being a pullback of two subalgebras, by Proposition‘

~ (1¢€]

. —"

(3.1.4), is itself a subalgebra of |C|

which will be denoted by B(A,B,C), for A;B and C in K./

Vet ¥ - e et < N -
g TR TR | S L) "*‘“‘/'w“-" ’- o .
.

wa T

TYMT TR T LY
y

P

Iyt

t.

E

£ o MG AT

R SIS SR BN (W) 0L N RLIRTL ot i

PRI AA
W A

3y
P

e R
Harber

]

sy
o

x

s
RAIIO:¢
AR e P, Bl

Tl e,
s B,

bt
Yoot e o e A

-
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3.2,5

o ‘
: /Frf‘ a funetional
. 1 ey i
Internal hom-funetor Hj: K* x XK 4K , ve. have .

P

'\ Conversely, an internal hom-functor H is

functional if

- 116

Proposition.

£,

S

b

H(ATH(B,E)) = B(A,B,C)

- for any A,B and € in K. .

+

[A.H(B,C)] ~ [A,B,C]

f‘orany 4,B and‘:C in"fJ:K'_. ‘

Proof. (=) By the last remark and the Proposition
(3:134), it is enough to éhow that, for any A,B and

C in X, the fallo

»

A

-

wing diagram is a pullback:

> e AN r Py .z
i Ll 2 1 ] o iBI
AMGB,C)] —RBC L fac ]
: Y4 ‘ . . ® v
I S
1Al cdpa’ BT
(.61 B -5 (et )
k-' B '
' ﬂ"’;:.’;:“‘:"’lrv '
. ,%:’»- “-‘/.‘
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To show the:commitatiyity of the above diagram,
apply the functor () x [A] to the diagram and then
- form the following diagram: '
: ige & 1B
1
' ' 13 :
[AH(B,C)IxIA _’ y [A,C IxIA] -
E '.j ‘ \L
1 o : I
L . 1B ,
([8,c1. x|Al) —— (1Ic1 ) x|A| s
ev
v
¥ R i 18|
(8,6] -t » BG, TS

1

All the subd1agrams commute except poss1b1y the m1dd1e¥

‘square Thus, thg.two inner routes connectlng [A,H(B,G)]xlﬁl

¥ : .
R:5 ' '

_l~to lC]‘ ‘are equa1, and hemce, by the exponentlal
: saadaointness lsomqrph1sm, we~get that the diagram (1)

. s commutat1ve ~Now, let the object T ¢ E together

-
=

LA

v S

© R g e oot It ok 2

..5\,; e

(2

i s %
Ao \
.
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-QATO prove this, we know that by~£hé.def1nition of

118
.
with two ﬁorphisms «.and g make the fol1qw§ng‘

diagram commutative:

-|B
T z > [A,C] 13

I

|A] ' 8]

1Al

[8,c] ~ (|c] )

y

We. now claim that, for each x ¢ a , the following

-diagram commutes: w
AL
[8,C] x|A}
ev
n, Al n
YR (- R
(1xP )
'
’.7.?

, iAl) n.l\ n

o L . ( )l ‘ n)\- i
© (18,03 xIAl) s [0 B

, 4
1 ’ ’ / .
' .

-

-~ f
S
.
. -
.

.
* b o d
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[A,ClBIJ the following diagfam is commutative:

3 g 1Al
. { - (ict ) xIAl
1xx
ev
: - 1A ‘ .
n, axl B I8 s 1B
iAo (AL TeIAl tict ) A ici

gv°1—r(1xpr.) A
i ,

“ / a. :
_nxlB'
(1cr 7)
This, together with the commutativity of the diagram (fI)_
implies that the following diagram commutes: ( , 4
Al |
IBI .

xIAI ' v

]

A BXl IA] n, i xl
TxiAl * -——->[B c],,xml — 1CI - x|A] A

*

. e,
e 0T

“a'!:’-"w‘. 0 o o
Fi e L0 o



120 A\ ;o

. Now, we consider the following diagram:

n
Tx{A] A

- 1Al
£ 15,0

><.;-A|L-a(101

([8,C]

((rcy

MU
x171 ——(8,C]

IA]

1Al
[8,C]  xIAl

{Al
B
(IC] x|{A|

/ \

[A|
[B] ny n, lB'l
) xlap * o er A

o

n

A 5 8,017

TR I PN
FEIRPCE 3 /)

-
[TEM

oy o]

4



" (the maps are clear from the previous diagram§) in
which -the square (5) commutes, because H is funcfiona]}

that s ige is a homomorphism, and all the other

subd1agrams (1), (2), (3) and (4) are again commutative
for obvxous reasons. Thus, the two outer roug\z joining
- r1A , )
T x lAl “to [B,C] are equal wﬁfch is what claimed to be.
= L [A]
Using the above, by the definition of (8,C] , we

get the following unique factorization:

[A]

T g . [8,C]

[A,H(B,C)]

The morphism s# makes the following diagram commutative,
téo: ) 1
. - ‘vﬂ I B l
T —  [A,C ]
* ) ) 'b
) )
A
“fAH(B,C)]

T R L AP PRIV NPT S
R LV I Ll B TV S B B L

T ot
‘%M,,,Mwnﬁinutﬂ%w I

e

el

G X
et B Gl

et
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This is because,

g 18] gy Al
T T B laH(B O ALC I(iC] )

¥ Al R
= T—=—— [A,H(B,C)I»[B,C]—(]C] )

|A]

= ‘T————»[B,C] — (|C] °)

' |A]
LY H
- T—S (A, I— (lc| )

. T IB| |A] ‘
and since [A,C ]~ (|C} ) is a monomorphism,

we get that

of L i8]
T—E [AH(B,C}]— [A,C ] = T-3[A,Cc 7.

Thus, the diagram (I) isﬂa pullback, and hence the

" conclusion.

f

Conberefly, by applying the functor K(1,-)
.to diagram (I).and to the similar pui]back-diagram:fon_

[A,B,C], we get the following pullback diagram:

NS S TR W X RS oy

2

RN e T ] .
LA e SN
IR

M
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i-1 ;

4

: —oiBC . B}
- E.(IAI’[B,QJ) >— - E(IAl,ICH )

wigh ¢ : BIM(A,B,C) ~ K(A,H(B,C)) an isomorphism.

It remains to show that the isomorphism ¢ ig the same
as that in the Proposition 3.2.3(41). That is to
show that, for a bimorphism f : |A] x |B| » |c!,

¢f is given by the following factorization:

Al x 8] =T— e |
7 8] ' 2T

S R s L :
P A ) ' Lv~
. \ i
\ . . . Y
et - o ﬂ
s ’ .y * " . ? &
- :1H(B,C) <
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But, this is readily checked, by the definition of s

in tffe dbove commutative diagram.///

MWe clearly have that [A,8,C]~ [B,A,C], and,
for a functional ‘internal hom-functor, B(A,B,C)~B(B,A,C).

This proves the following corgllary:

A

3.2.6 Corollary. For A,B and ¢ in K and

H a functional internal hom-functor,we have

H(A,B(B,C)) ~ H(B,H(A,G)).///

3.3  TENSOR PRODUCTS

3.3.1 Definition. ‘A tensor muliiplieation

*

for 'a functor H : K° x K +K-is-a functor T : K x K~+X

esgentially unique if it exists, such that there is a

natural equivalence - p i%
K(T(A,B),C)—— K(A,H(B,C)) i

/ ' ' . g

for 4,B and ¢ in K. C ) ‘n X ' ' %%

* wisw
t e .
At B e



’
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“

This notipn is similar to that in [9].

3.3.2 Proposition. For a functional

internal hom-functor H : K'x K ->1K,oa funetor

'S : K xK + K is a tensor multiplication for H iff

S is a functor-~of untversal bimorphisms.

Proof. This is an immediate consequence of what have’
been shown before about these conditions in terms of

natural isomorphisms, namely, for A,B and C in K,

(T) Séis a tensor multiplication for H iff
CK(S(A,B),C) ~ K(A,H(B,C))

(F) H is functional internal hom-functor iff

A ¢
(U)* S is a universal bimorphism functor iff

BIM(A,B,C) ~ X(S(A,8),C)./// *

"

3.4 INTERNAL TENSOR PRODUCTS

3.4.1 Definition. An internal tensor

*xK K is a

multiplication for a functor G : K



[X PO S
.
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funetor "IT : K x K ~ K, essentially unique if 1t
exists, such that there is a natural equivaience:

[T(A,8),0] — [A,6(8,0)].

3.4.2 Remark. If IT 1is an internal tepsor

product of G; then

»

E(2,[IT(A,8).C]) ~ E(1,[A,6{B,C)]

and hence, by the Proposition (0.3.5), we have
Q -

This shows that IT is also a tensor product of G.///

‘ ’//////~’

3.4.3 Definition. An internal universal

bimorphism is a functor IM : K x K + K, such that

there 18 a natural equivalence

[IM(A,B),C]— [A,B,C]

for A4,B and C in XK. - .

T

f
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3.4.4 Remark. If IM is’ an internal

universal bimorphism functor, then one has

E(n:[IM(AsB))C]) - E(I)[A’B?C])D

\

and hence, by Propositions (0.3.5) and (3.1.6), we Q?ve
K(IM(A,B },C) ~ BIM(A,B,C).

This shows that IM is also the functor of universal

bimorphisms.///

We do not know whether the converse of thase
two remarks is . true in general, but we do know that
they are true in the special case of E = ShJﬁ" which

will be discussed 1ater1

’

rd

3.4.5 Proposition. For a functional i%al

hom-functor B : K* x X + XK, a funetor § : X x X - K

18 an internal tengor multiplication for H iff S is

nd

an internal universal bimovphiem . functor,

o -

Proof. This follows f}om Proposition (3.2.5):}%#=;QH
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- 3.5 EXISTENCE OF UNIVERSAL BIMORPHISMS

\\,//"\\ Recall that, any hereditary, productive
subcategory ulg_,~4lg(r) has a universal bimorphism ‘
functor. In the following, «£ will always be such a

k? subcategory of oAig(r).

\ . 3.5.1 Lemma. If Rk c #lg(tJE has a functor

R . , .
_of universal bzmorihzsms, then so does any reflective

subcategory I < K +

Proof. Let M.be thi functor of universal bimorphisms
on X and R : K ~ L.be the reflection functor, then fdr
A and B in L, (A,B)m~ RoM(A,B) defines the functor of

Universal bimorphisms on L.///

4

=2

3.5.2 Lemma. If M is the funetor of

universal bimorphisms of A ¢ Alg(t), then oL
has q functor of ukiversal'bimorphisms given by

M(A,B)U = M(AU,BU]. oy

Proof. Since bimorphisms are 'defined by commutative

* ( . N ! . ’ ' ¥
diagrams, any limit preserving functor preserves them;
* * \ o i

Sy 2t

.

Liegte , e,
athwher g Wiy L L
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* and hence a morphfsmdf : |Al = [B] ~ |C| is a bimorphism

TFF £y ¢ [AU] x [BU] ~ [CU is a bimorphism for all

Ue £ . Using this;.the assertion is then easily
checked.///

3.5.3 Proposition. Por any Grotheﬁdieck

topos E, if 94-5_:_ JZg(t) has a universal bimorphisms

functor, then go does any reflective subcategory

K of JE..
Proof. Since E is a Grothendieck cétegory,‘K”1§ then

a reflective subcategory of At and hence Lemma (3.5.1)

and Lemma (3.5.2) proves the conc1usion./]) ‘ =

Case E = ShZ >

,3.5.4 Definition. 4 morphism f latxiBl+lc),
for A,B and C in J-Zg(rishﬁ , i8 3a1,d to be a Zocal

bimorphism iff there exists a cover 1 = \/U oflz in Jf
, . o el

- ,M
. &

such that o .

BT TR TR



o e

; Ce 3.5.5°  Remark. In-  Alg(<)ShL , for '
! , -, v « :
any f : [A] = [B] + |[C], the following are equivalent:”~
‘ . (1) f is a bimorphism.
o - (ii) ~The maps.\_ fy f‘IAUT'x [BU] > |yl K
. 9 . . . s .
~ ) . o T , 4
N g are ‘bimorphisms, for U g;ﬁ
% . N ! (1ii$ fis a Tocal bi orphism. . _ o S
" T L o \\ R ’ .
s - Here, (1) & ~01) folloys From the fact that - :
. 11mit preserv1ng fpnctors preserv bwmorphtsms, and ;

(1) > (iii} by Coro]lary {o0. 1. 8) \\\ L o . A

U 3 5 6 ‘Lemma.» For any A B cm& in R =

’
K
. ‘s »
B T et e o T, <L

; . . ‘\ . . VN Y e T Bl
ézg(r)s&';.‘i and any U ei Y ‘ . o e
4 y e . x L }

i') . Lo .“ <.. ) . . . . ," . "E‘ L ) i . . R

: Ca ! 4 .

T .

B U S O 1‘§A,a,cjp = BIM(AJU,B|U,C[U).

oo e Prv f. '%Since the restriction funetov presérves ; ,~'a‘g,s‘

e P :§{’3- . - > - .
o Ca products and equalizers, &, B,CJ}U = [A[U 31u C(UJ, :
% g by def1ni;jon of [A B CJ, and thus ;f;x.;“ ‘i,L‘.“*§
N N » : ] r.i T {‘
e R i
R ST AARER -~
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-»4 [A,8,CJU = ([A,B,C1[U)U = [A|U,B]U,ClUTY
A o '

= BIM(A|U,B|U,C|U),

the Tast step by aap}ying\%he Proposition (3.1.6) in

Shu./// :
b ' : \ " L
- 3.5.7 'Lemma If ﬂ‘Sth and d*ShUL \
- : v
for Ue j have j'unctors of urnversal b'bmoz’phzsms, }

M and M respe‘ctwe-ly,‘ then, for*/ql ‘and B in v'/'Sh‘;ﬁ s

1

MCALBIIU = M (AJULBIU).,

Proof‘ Thws fo]]ows by'the remark in (0 1.6) that

RTU PIU fop P. e d‘PreSh;ﬁ.,; and’ the construction»

jimorphismsl in- 'A'Shﬁ > impﬁci\ in

of universal

the. proof of. the Propos1t1on (3. 5 3), as the sheaf

i
. ~ref1ect1on of the presheaf U~w+ M(AU BU),. M the functor
S "of universal bimorphlsms JrLJ¢A A ‘
- ) . . L - 'h~. - e .
. ¢
‘o "“3;5;8' ~"?prdsition.~ For aﬂy»qategory
\} R :is . o .
e d‘Shj = M zs t};e funator of unwgrsal bzmoz'ph'bsme 1ff
ol T o
. i N ‘\" y “
. ‘ 4

£
N

5
T TR R L e

[ S
NSRS Ll e
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[M(A,B),c] ~ [A,B,Cl.

Proof. One way is true, by Remark (3.4.4).
T ' i
Conversely, let M be thé functor of Universal

bimorphisms, if Ue and Ml and M2 are as in the

preceding lemma, then

. 9
[M(A,B),CIu .= (M,(A,B)[U,.ClU)
» _ ’ o
= (My(A]U, BlU), C|U) = BIM(A|U, BJU, C|U)
= LA;B:C]U-/// . i
éi__.=6= We conclude this chapter with a -
discussion of the internal hom-functor. .
‘3.6,1 Proposition. If *d‘ has a fuﬁc$ional
ipternal hom-functor, then so does v‘#Shj .
Proof. Let H be the functional internal hom-functor
of A . For Aand 8 in 4shd  and egch U e A

the A-th opération, for any Aen of the aléebra.

“r : P

5
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. | ' “ VN
'lH(AV BV) is- given by )
TV ’ ' ////

A((hlv)vsu""’(hnAV)Vsu)a(kH(AV,BV)(§1V""’hnAV”VsU

for any homomorphisms hiV : AV - BV, 1 =1,...yn

1 x -
and al1 V < U. The set [A,BJU = AShU(A|U,B[U) is
a-subset of the underlying set of the algebra

-rTA(AV;BV), consi§ting of all the sequences
VU ‘ . ’

h = (h;)V§ﬁ’ h, © AV > BV, such th?F the diagram,

. e
" % h
. 'y ‘
= Av —>BV o
. ) Y '§
' N
(1)

AW W B

Eommutes, for each pair ¥ s’V‘in +U; where the vertical

arrows are-the restr1ct1on maps. Now, if hl""»h A'”& 5
e A <
be]ong to [A BlU, then, for any pair W s V in.4U and ‘ ﬁ
a f AV. we h‘ave, . 7 } t
X( l\:---)h‘nk)v(a)lw = AH(AV’BV)(hlV,/.’..,hn)\v,)(a)l‘w ] .:%Q

)
~ A
- 4 K

-

Eal et
R,

‘ -

e beoaUSe H is funct1onal and Ay (h 3,000 50 a)|W
(thus the operat1ons are pointw1se) BY ~1V “AV "

.
. a R f
. .
s - »
: ‘o

S IR C R I

* [N
saritaer wadet 7
e e it TR
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because restrﬁctio§:ﬁ§%é7 - : u
- ABw(hlv(a)ld:° . "»hnxv(a)“’l)

are homomorphisms. )

/
becaugse all hie[A,B]U and = ABw(hlw(a}N),,.,,hnkw(alw))

thus satikfy diagram (1).

because the operations = 2 (h ..k ) (a|W)
are pointwise. ) H(AW,BW) 1N’ n,H

= a(hy,eesh ), (afu).

A H

Thus, A(h1

,...,hn{)\eat1sf1es the diagram (}), and

‘hencé belongs to [A,B]JU ; this implies that [A,B]U

is closed under the algebra operations of

TT%(AV,BV), and hence [A,B]U together with the
VsU » :

. operations A[A B]U =2A|[A,B]U, for all X ¢ @, is a /

subalgébra of l IH(AV,BV), and hence belongs to d¢ ,
: VsU ; :

by the hypothesis qnndf . Now, for each » ¢ @, def%he

an nkéary operation AfA,Bj on [A,B] wtth components

A[A,B]U , for each U e:£ . To check‘that A[A,B] 1s

actually a-natural transformation, let V < U and

hl,l,.,hn belong to [A,BJU, then we have,

A
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N

/)\[A,B]U(hl"'. ?hn )iV

A

A, Bu) (MRl

PR

AH(AN,EN)(hIW""“hnxw)wsv

)

AH(AN.BN)(.(hllV)W"“’(hnxlv)w) WV

A[A,B]V(hllv,...,hni[V).

| e

This proves the naturality of X[A,B]' Thus, for any
A apd B in J4Sh:§ , the sheaf [A,B] together with
these A-th operations, x ¢ @ , is an a]geﬁrg and
belongs to «#ShZ . We now define an internal

hom-functor
*

6 : Ash x AshZ - Ashz

by G(A,B) = ([A’B]"A[A,B])’ and for' homomorphisms
». N T /

Al %i*A and 8 ~Ls81, [a(f,9)| = [f{;]. To cherk that,

G(f,q) is actuqlﬁy'gﬂhqmomorphism, let U,e;ﬂ and,

e Q, hl,;..,hn be arbitrary elements of [A,B]U,. we

LA

¥

Capfg § 0
N

oo
. ar, Mt 4 L e
Whegn et sl b

et

LEN VIR
CR

1t i 8 2oy
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I

have gvoA(hlv,.;.,hn V)ofv(a') = gvox(hlv,...,hnkv)(fva')

A
(because operations = gy Alh, f,a',.o.,h . f a')
are pointwise) v UL A nvv
(b?CﬁUSE gv 15( a = )\(gv°h1v°fva a-"sgv°hn}‘vf’fva ) 4

homomorphism)

f

(pointwise operations)= A(gvohlvo

V,...,gvohnlvofv)a s

for any V < U and a' « A'V, and then'wé get

[f,g]UA(hl,...,hn)‘),

§ (9v°“§“1v";§X;nxv)°fv)Vsu
' /

,'/ .
g'Uﬁthl,...,h yof|U
: o "

i

A(gvdhlv°fV;@J"gV°hnAV°fV)VsU

=A(glUehyof|U,...,g[Ush_ of|U)
. n A

= ALFgly(hya b )
» A e

ﬁ}ﬁus/ﬁ/is an-internal hom-functor of ASHZL. . Finally,

it-?emains to show that G.-is fupctional. By the
5 B . . H . " !
Proposition'3"2.3(iv), it is enough to show that, for

%

’} .
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