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Abstract

In this thesis we study the Birnbaum-Saunders autoregressive conditional du-

ration (BS-ACD) model. As opposed to the standard ACD model, formulated

in terms of the conditional mean duration, the BS-ACD model specifies the

time-varying model dynamics in terms of the conditional median duration. By

means of Monte Carlo simulations, we examine the asymptotic behaviour of

the maximum likelihood estimators. We then present a study of numerical ef-

ficacy of some optimization algorithms in relation to the BS-ACD model. On

a practical side, we fit the BS-ACD model to samples for six securities listed

on the New York Stock Exchange.
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Introduction

Since the seminal work of Engle and Russell [18], the modelling of financial

data at transaction level has become an ongoing topic in the area of financial

econometrics. The ultimate high-frequency data in finance are transaction-by-

transaction or trade-by-trade data in security markets, so-called “ultra-high-

frequency” data [17], where time is often measured in seconds. Transaction

data possess a number of unique characteristics that do not appear in lower

frequencies. The most salient feature, however, is that they are fundamentally

irregularly spaced. This feature challenges researchers as standard econometric

techniques refined over the years are no longer applicable. Moreover, recent

models from the market microstructure literature2 argue that time may convey

information and, therefore, should also be modelled.

There are several approaches to tackling this feature of the data. One of

them was originated by Engle and Russell in [18], where the durations between

successive events (trades, quotes, price changes, etc.) are the quantities being

modeled. These authors proposed a class of models called the Autoregressive

Conditional Duration, or ACD, models, where conditional expected durations

are modeled in a fashion similar to the way conditional variances are modeled

using ARCH and GARCH models of Engle [16] and Bollerslev [10].

2See Section 1.1.
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This thesis is devoted to a fairly new model introduced by Bhatti [8], re-

ferred to as the Birnbaum-Saunders autoregressive conditional duration model

(BS-ACD). The model serves a competing alternative to the ACD class. As

noted in [8], the BS-ACD model is not a true ACD model in the construction

of [18], but rather a likelihood defined dynamic point process specified in terms

of a time-varying conditional median duration.

The present work addresses numerical aspects of estimation of the pa-

rameter estimators of a simple case of the BS-ACD model, BS-ACD(1,1), and

contains the following results:

• By performing numerical simulations, we obtain statistical evidence to-

wards asymptotic normality of the maximum likelihood estimators.

• By comparing the numerical efficiency of the Nelder-Mead (NM) and the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithms, we

discuss the efficacy of the methods as applied to the BS-ACD(1,1) model

estimation.

• We illustrate the BS-ACD(1,1) model by fitting it to samples of transaction-

by-transaction data on six stocks traded on the New York Stock Ex-

change (NYSE).

The thesis is organized as follows. Chapter 1 reviews market mi-

crostructure theory and recalls the standard ACD model. In Chapter 2, we

review important properties of the BS-ACD model and produce Monte Carlo

simulations on the maximum likelihood estimation for various sample sizes.

Chapter 4 is devoted to the efficacy studies of the NM and BFGS methods in

the context of the BS-ACD model. In the last chapter we summarize results

and discuss directions for future work.

2



Chapter 1

The basic ACD model

In this chapter, we review the essentials of the market microstructure theory,

recall the standard ACD model and discuss its disadvantages.

1.1 Market microstructure theory

The theory of market microstructure is concerned with the frictions that cause

the behaviour of asset prices to deviate from full-information (complete mar-

ket) expectations. Microstructure literature provides theoretical arguments as

to the possible nature of trading behaviour that could explain such deviations.

The benefit of a high-frequency data model is that factors that are

identifiable at a transaction level might be lost in aggregations when sampling

is fixed at regular intervals, such as analyzing daily or weekly prices. It is not

our intention to provide a comprehensive review of market microstructure,

but rather to highlight theories of direct concern. For a comprehensive review

see [35] or [42].

Since the introduction of the asymmetric information model by Glosten

3
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and Milgrom [23], models usually follow the assumption of two types of traders.

The first type, called informed traders, have superior information unknown to

the general public while the second group of traders, called liquidity traders,

are motivated by non-information related concerns such as inventory control

or portfolio rebalancing. The counterparty to a transaction is called a market

maker. The market maker sets the price to compensate for the possibility that

the trader has superior information. This compensation is incorporated in the

bid-ask spread. The spread is thus, at least in part, a premium for the risk

that the trader’s information is superior to that of the market maker. When

the market maker thinks it more likely that traders are of the informed kind,

he increases the spread with the implication that volatility increases due to,

amongst other things, bid-ask bounce at a wider spread. Over time the market

maker infers the private information of the informed traders from the order

flow and sets the bid-ask spread to “centre” on the new true value.

This provides a possible explanation for the presence of a bid-ask spread

even in an efficient market for a risk neutral market maker with zero expected

profit. Diamond and Verrecchia [13] argue that a proportion of informed

traders might not already own the stock to which private information applies.

If the news is good, this should have little effect, since one who expects the

price to increase would purchase the stock. However, if the news is bad, and

a trader does not own the stock, he would have to sell short. If a proportion

of these traders are restricted from short selling, they will merely refrain from

transacting in the share in question. Therefore, under the Diamond and Ver-

recchia [13] model, lower trade frequency (and hence longer trade duration)

might be an indication of bad news, so that prices would tend to decrease in

periods of relative quiet.

The model developed in [1] distinguishes between two types of liquidity

4
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traders. “Discretionary” liquidity traders who have some control over the tim-

ing of their transactions within a certain time interval and “non-discretionary”

liquidity traders who transact in a random fashion. They find that it is advan-

tageous for “discretionary” traders to concentrate their trades together. As

their model takes the arrival of private information to be exogenous and ran-

dom, this implies that the proportion of informed traders should on average

be higher when transactions occur less frequently, with the implication that

higher average duration should imply higher volatility.

The Easley and O’Hara [14] model also assumes the arrival of liquidity

traders in a random fashion, but does not distinguish between different kinds

of liquidity traders. They argue that informed traders will want to trade while

their information has value. This will cause informed trades to be clustered

together. The market maker knows this and will be mindful of the order low

to determine the likelihood of informed trading. They therefore suggest that

periods of higher trade frequency would imply that informed trading, with the

associated implications for spread and volatility, is then more likely.

Engle and Russell in [18] find evidence consistent with the model from

[14], i.e. high trade frequency implies informed trading.

Thus, trade durations play an important role in market microstructure

theory since they are used as proxies for the existence of information in the

market, and therefore, are predictors for other market microstructure variables.

1.2 The basic ACD model

Recall that trade duration is the waiting time between two consecutive trades.

Let us put this mathematically in the following

5
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Definition 1.1 Let Ti denote a sequence of random transaction times. Define

the trade duration by Xi = Ti − Ti−1, i = 1, 2, ..., N .

The most popular autoregressive duration approach is proposed by En-

gle [17] and Engle and Russell [18]. The basic idea of the autoregressive condi-

tional duration (ACD) model is a dynamic parameterization of the conditional

mean function

Ψi ≡ Ψi (θ) = E [Xi|Fi−1;θ] ,

where θ stands for an M × 1 parameter vector, M ∈ N, and Fi−1 is the

filtration of the processes generating the trades containing both the internal

and external history of the processes up to time Ti−1.

Further, it is assumed that the standardized durations

εi =
Xi

Ψi

follow an i.i.d. process defined on positive support with E [εi] = 1 and in-

dependent of Ψi. Obviously, the ACD model can be regarded as a GARCH

model for duration data.

The basic ACD specification is based on a linear parameterization of

the conditional mean function

Ψi = ω +

p∑
j=1

αjxi−j +

q∑
j=1

βjΨi−j, (1.1)

where ω > 0, α > 0, β > 0. Such a model is referred to as an ACD(p, q)

model.

When the distribution of εi is exponential, the resulting model is called

an EACD(p,q) model. Similarly, if εi follows a Weibull or a (standardized)

Generalized Gamma distribution, the model is a WACD(p,q) model and a

GACD(p,q), respectively.

6
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The expressions of the unconditional mean and variance of the ACD(p,q)

model can be calculated and appear somewhat cumbersome. For simplicity,

here only formulae for the EACD(1,1) model (e.g., [27]) are given:

E [Xi] =
ω

1− α1 − β1

,

V ar [Xi] = (E [Xi])
2

[
1− (α1 + β1)2 + α2

1

1− (α1 + β1)2 − α2
1

]
.

It is evident that V ar [Xi] > (E [Xi])
2 thereby implying that the stan-

dard EACD model is featured by overdispersion. This property might be

regarded as the counterpart to the “overkurtosis property” of the Gaussian

GARCH model.

The weak stationarity1 conditions of the EACD(1,1) model are similar

to the weak stationarity condition of the GARCH model and are furnished by

α1 + β1 < 1,

(α1 + β1)2 + α2
1 < 1.

1.3 Disadvantages of the basic ACD model

There is considerable empirical evidence in the ACD literature against expo-

nentially distributed errors. Paper [18] already considered the Weibull dis-

tribution, [26] suggested the Burr distribution, and [34] used the generalized

gamma distribution. The ACD model is built by specifying a parametric rep-

resentation of the conditional expected duration, and then relying on a quasi

maximum likelihood argument (QML) for deriving the asymptotics of the esti-

mated parameters. This means that the model potentially can be misspecified,

1That is, the first two moments of Xi are time invariant.
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implying that the parameter estimators might be biased and inefficient. Only

the EACD model provides consistent estimators under model misspecification

by QML.

The reason is, as shown in [25], the QML parameter estimators of a

correctly specified conditional mean model are consistent if, and only if, the

quasi-maximum likelihood is based on a distribution belonging to the linear

exponential family, regardless of what the true density is. The exponential

distribution does belong to the linear exponential family, while the Weibull,

Burr, and generalized gamma distributions do not (except for special cases).

This is why the QML approach based on the exponential distribution will

produce consistent estimators regardless of the true error distribution, while

QML based on these other distributions will not unless the distribution used

is the true density.

The degree of misspecification is relatively easily assessed by comparing

the hazard function implied by the parametric specification of the estimated

model with a nonparametric estimate of the same. Certain specifications will

restrict the hazard function to shapes that may misrepresent the behaviour of

the agents in the market.

Another serious drawback of transaction duration studies implemented

so far is that the studies working with the WACD and EACD models are

restricted to monotone hazard functions. Hence these models imply that the

hazard function must either increase or decrease during a time-spell, or stay

constant as for the exponential case. However, the hazard function is often

found to be non-monotone and unimodal: the hazard function appears to

be increasing for very small durations and decreasing for longer durations

(see [34], [17], [26]). This feature is important to recognize since a misspecified

hazard function can have severe consequences, in particular, in finite samples.

8
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In [4], a comparison of several different ACD models is made. They

conclude that a good model has to have a conditional distribution that is able

to put a lot of probability mass on small durations but not too much on very

small durations.

Thus, the combination of lack-of-fit and the absence of QML in existing

models keeps the distributional specification of ACD models an open problem.

9



Chapter 2

The Birnbaum-Saunders

autoregressive model

In this chapter, we discuss the BS-ACD model for trade durations and examine

the results of Monte Carlo experiments.

2.1 The Birnbaum-Saunders distribution

The Birnbaum–Saunders (BS) distribution is an important lifetime distribu-

tion from a problem of material fatigue. It was first introduced in the context

of failure caused by crack propagation [9], where the crack grows due to re-

peated stresses. In view of its importance in reliability, there is a large volume

of literature on the BS distribution including problems of inference [15, 37],

generalizations [32,47,53], and regression models [2, 33,46].

The BS distribution is defined in terms of the standard normal distri-

bution by means of the random variable

X =
β

4

[
αZ +

√
(αZ)2 + 4

]2

, (2.1)

10
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where

Z =
1

α

(√
X

β
−
√
β

X

)
∼ N(0, 1), (2.2)

α > 0 is the shape parameter and β > 0 is the scale parameter. This is

denoted by X ∼ BS(α, β). Based on the (2.1)-(2.2) stochastic representations,

the cumulative distribution function (cdf) of X is given by

FX(x|α, β) = Φ

[
1

α

(√
x

β
−
√
β

x

)]
, x > 0, and α, β > 0, (2.3)

where Φ (·) is the cdf of the standard normal distribution.

The probability density function (pdf) is then

fX(x|α, β) =
1

2
√

2παβ

[(
β

x

) 1
2

+

(
β

x

) 3
2

]
exp

{
− 1

2α2

[
x

β
+
β

x
− 2

]}
. (2.4)

The BS distribution is the equilibrium mixture of the inverse Gaus-

sian distribution and the convolution of this distribution with the chi-square

distribution with one degree of freedom [53].

A property, which will turn out crucial for the purposes of the present

thesis, was noted in [9]: the scale parameter β is the median as FX(β|α, β)

= Φ(0) ≡ 0.5. Further, the mean and variance are given, respectively, by

E [X] = β

(
1 +

α2

2

)
(2.5)

and

V ar [X] = (αβ)2

(
1 +

5α2

4

)
.

As a matter of fact, as shown in [45] and as also can be inferred from

[53], the BS distribution has finite moments of all orders.

As we discussed in Section 1.3, trade durations exhibit unimodal hazard

functions. In this context, it is worth noting that the BS distribution has been

11
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shown to have an unimodal hazard function for all values of α [29]. Hence, in

accord with the conclusions of the previous section, the BS distribution can

be used for an alternative ACD specification.

Example of pdf for different values of β and α = 1 are located in Fig.

2.1, and their corresponding hazard functions are located in Fig. 2.2.

Figure 2.1: The BS pdf: α = 1 and β = 5, 10, 15.

2.2 The BS-ACD model

Beginning from this section, we shall depart from the standard notationBS(α, β)

for the Birnbaum-Saunders distribution toward BS(κ, σ) as we shall reserve α

and β to denote other parameters.

The BS-ACD model was introduced by Bhatti [8]. As noted in the

12
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Figure 2.2: The BS hazard function: α = 1 and β = 5, 10, 15.

paper, the model represents a dynamic point process model, but it is not

however a true ACD model in the conventional sense. Moreover, quoting [8],

We have chosen to refer to the model as an ACD model because it

is an “autoregressive conditional duration” model, and because we

feel that it should be associated with traditional ACD models.

As we saw in Section 2.1, σ is the median of the BS (κ, σ) distribu-

tion. The BS-ACD model to be formulated below takes advantage of this

property and is specified in terms of the conditional median duration σi =

F−1 (0.5|Fi−1), rather than the conditional mean duration. The conditional

13
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pdf of X|σi is given by

fX|σ(Xi|σi;κ) =
1

2
√

2πκσi

[(
σi
Xi

) 1
2

+

(
σi
Xi

) 3
2

]
exp

{
− 1

2κ2

[
Xi

σi
+
σi
Xi

− 2

]}
.

(2.6)

Temporal dynamics of the conditional median is governed by

lnσi = α +

p∑
j=1

βj lnσi−j +

q∑
j=1

γj

[
Xi−j

σi−j

]
. (2.7)

Definition 2.1 The model (2.6)-(2.7) is called the BS-ACD(p,q) model.

By parameterizing of the BS distribution by its median we may hope

to get nice statistical properties. For example, the median is a better measure

of central tendency than the mean in highly skewed distributions. A detailed

account of properties of conditional medians can be found in [51] and [22].

It should be noted that not every distribution admits a parameteriza-

tion in terms of its mean. On the other hand, even if such a parameterization

is possible, often this reparameterization can lead to estimation problems.

One can note from looking at (2.6)-(2.7) that the formulation does

not assume either Xi = σiεi or Xi = Ψiεi, where σi = F−1 (0.5|Fi−1) and

Ψi = E [Xi|Fi−1]. This is in part motivated by a desire to work with the

distribution of Xi per se, conditional on a natural time varying parameter.

In his work, Lunde [34] refers to the absence of the Xi = Ψiεi assumption as

the Nelson-form hinting at similarities with the EGARCH form proposed by

Nelson [39]. On the other hand, Lunde calls the standard formulation (1.1)

the Engle-Russell-form.

The temporal dynamics (2.7) is linear with respect to lnσi. The loga-

rithm automatically ensures the positivity of σi.

14
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In this thesis, we are concerned with a simple situation of the BS-

ACD(p,q) model, namely, the BS-ACD(1,1) model:

lnσi = α + β lnσi−1 + γ

[
Xi−1

σi−1

]
. (2.8)

To capture a clustering effect well known in empirical finance, i.e. large

(small) durations tend to be followed by large (small) durations, the log-linear

model contains a lagged value of log-median process lnσi−1. A large coefficient

(near one ) of β would indicate a strong persistence of clustering in the median.

Remark 2.2 Empirical considerations suggest that the BS−ACD(1, 1) model

be weakly stationary if |β| < 1.

2.3 Monte Carlo simulations

As the requirement Xi = σiεi was dispensed with, an estimation method of

the BS-ACD model to be applied is maximum likelihood (ML) rather than

QML. To estimate the parameters (α, β, γ, κ) of the BS-ACD(1,1) model, we

maximize the logarithm of the ML function:

lnL(α, β, γ, κ|x0, x1, ..., xN) ≡
N∑
i=1

ln fX|σ(xi|σi;κ) (2.9)

=
N∑
i=1

{
− lnκ− lnσi + ln

[(
σi
xi

) 1
2

+

(
σi
xi

) 3
2

]

− 1

2κ2

[
xi
σi

+
σi
xi
− 2

]}
,

where σi = σi(α, β, γ|x0, x1, ..., xi−1) is given by (2.8) and the additive constant

has been ignored.

To study the ML estimators of the BS-ACD(1,1) model, we performed

a simulation analysis. In financial high-frequency data, samples sizes usu-
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ally span from 10000 to over 100000. We therefore chose to simulate BS-

ACD(1,1) samples of sizes N ∈ {10000, 25000, 50000, 75000} thus embracing

small, medium, and large samples. The number of replications for each sample

size is n = 10000.

The vector of true parameters (α, β, γ, κ) = (0.1, 0.9, 0.1, 1.1). The

BS-ACD(1,1) samples were generated by transformation (2.1). All subsequent

computations were done in the R statistical computing environment [43] with a

number of dynamic link libraries written in the C programming language [44].

The R and C codes are listed in Appendix C.

Following [8], the BS-ACD(1,1) model was estimated through a two-

stage procedure. At the beginning, we applied the Nelder–Mead (NM) method

[38] to estimate the ACD parameters with the fixed initial value for κ fixed at√
2

(
X

med(X)
− 1

)
, (2.10)

where X and med(X) are, respectively, the sample mean and the (uncondi-

tional) sample median. This estimator is taken based on (2.5). Since the BS

distribution is right skewed, with high probability (2.10) is well defined.

At the second stage, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

method [11] was employed with the analytical gradient to estimate over the

full parameter space. The gradient of the log-likelihood function is derived in

elementary but technical Lemmas 2.3-2.4 and Proposition 2.5.

Lemma 2.3 In the BS-ACD(1,1) model, the gradient of the conditional me-

dian σi (2.8) with respect to parameter vector (α, β, γ) ∈ R3,

∇σi=
(
∂σi
∂α

,
∂σi
∂β

,
∂σi
∂γ

)
,
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is given recursively by

∂σi
∂α

= σi

(
1 +

1

σi−1

∂σi−1

∂α

(
β − γ xi−1

σi−1

))
,

∂σi
∂β

= σi

(
lnσi−1 +

1

σi−1

∂σi−1

∂β

(
β − γ xi−1

σi−1

))
,

∂σi
∂γ

= σi

(
xi−1

σi−1

+
1

σi−1

∂σi−1

∂γ

(
β − γ xi−1

σi−1

))
,

with ∇σ0 = (0, 0, 0) and i > 1.

Proof Straightforward by applying the chain rule of differentiation. �

Lemma 2.4 The expressions of Lemma 2.3 admit the following representa-

tions:

∂σi
∂α

= σi

(
1 +

i−1∑
k=1

i−1∏
j=k

(
β − γ xj

σj

))
, i > 1,

∂σi
∂β

= σi

(
lnσi−1 +

i−2∑
k=0

lnσk

i−1∏
j=k+1

(
β − γ xj

σj

))
, i > 2,

∂σi
∂γ

= σi

(
xi−1

σi−1

+
i−2∑
k=0

xk
σk

i−1∏
j=k+1

(
β − γ xj

σj

))
, i > 2,

where ∇σ0 = (0, 0, 0) and ∇σ1 = (σ1, σ1 lnσ0, σ1x0/σ0) .

Proof Follows directly from Lemma 2.3 by successive application of the recur-

rent formulae. �

Proposition 2.5 In the BS-ACD(1,1) model, the gradient of the log-likelihood

function (2.9) with respect to parameter vector θ = (α, β, γ, κ) ∈ R4,

∇ lnL=

(
∂ lnL
∂α

,
∂ lnL
∂β

,
∂ lnL
∂γ

,
∂ lnL
∂κ

)
,
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is given by

∂ lnL
∂α

=
N∑
i=1

Gi
∂σi
∂α

,
∂ lnL
∂β

=
N∑
i=1

Gi
∂σi
∂β

,
∂ lnL
∂γ

=
N∑
i=1

Gi
∂σi
∂γ

,

∂ lnL
∂κ

= −N
κ

+
1

κ3

N∑
i=1

(
xi
σi

+
σi
xi
− 2

)
,

where

Gi =
1

2

(xi − σi)
(xi + σi)

((xi + σi)
2 − xiσiκ2)

xiσ2
iκ

2
(2.11)

and the expressions of ∂σi/∂α, ∂σi/∂β, and ∂σi/∂γ are given by Lemma 2.3

or Lemma 2.4.

Proof Straightforward by applying the chain rule of differentiation and elabo-

rating elementary algebraic simplifications of the partial derivatives ∂ lnL/∂κ

and ∂ ln fX|σ(Xi|σi;κ)/∂σi, where we observe that

Gi ≡
∂ ln fX|σ(Xi|σi;κ)

∂σi
.

�

Corollary 2.6 The ML estimator for κ has the following form:

κ̂ =

√√√√ 1

N

N∑
i=1

(√
Xi

σi
−
√
σi
Xi

)2

. (2.12)

Proof Follows by equating ∂ lnL/∂κ to 0 and recalling that κ > 0. �

Corollary 2.6 can be further used to simplify the likelihood equations

for (α, β, γ):
∂ lnL
∂α

= 0,
∂ lnL
∂β

= 0,
∂ lnL
∂γ

= 0. (2.13)

By replacing κ2 in (2.11) by (2.12), we can eliminate κ from equations (2.13).

To any solution
(
α̂, β̂, γ̂

)
to (2.13), then there corresponds a unique κ̂ given

in (2.12).
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For both stages of the ML estimation, the estimation of (α, β, γ) was

initiated at (0.01, 0.70, 0.01) and σ0 was taken to be the unconditional median

of the sample x1, ..., xN . The combination of the direct search (NM) and

gradient based (BFGS) methods is justified by the fact that the two methods

alone may face difficulties with convergence. For example, the NM algorithm

alone may not converge or may converge to a nonstationary point [36]. On

the other hand, the BFGS method need not converge unless the function has

a quadratic Taylor expansion near an optimum.

By using the hybrid of the two methods (NM-BFGS), however, the

convergence is quickly achieved. The issues with convergence and the efficacy

of the NM, BFGS and NM-BFGS methods are addressed in Chapter 4.

We reported the ML estimation results in Table B.1. For each param-

eter and each sample size we report the following sample statistics for the

MLE’s: mean, skewness, kurtosis, bias, mean square error (MSE). In Table

B.1 the sample skewness is defined as

√
n(n− 1)

n− 2

(∑n
j=1 (xj − x)3

)
/n[(∑n

j=1 (xj − x)2
)
/n
]3/2

and the sample kurtosis as

(∑n
j=1 (xj − x)4

)
/n[(∑n

j=1 (xj − x)2
)
/n
]2 ,

where x = (x1, ..., xn) is a realization of a random sample.

The section is concluded by two technical remarks.

Remark 2.7 The estimation of the BS-ACD(1,1) model was performed in the

R statistical environment [43]. Due to the simulated samples size (ranging from
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10000 to 75000) and the recursive definition of the model, C functions were

written for the R shared library [44]. While the simulated data sets would not

be considered massive, they are quite large for time series data. The original

package built in R alone was not able to perform the estimation. Computa-

tional software such as R and Matlab are designed for the efficient execution

of vectorized and matrix computations. The BS-ACD model requires loops and

executes much slower in R than in C. The difference between execution time

in R and C is significant and determined the ability to estimate the model. In

our case, estimation of a single sample of size 10000 was reduced from 57 sec-

onds as an R function to 0.5 seconds as an R function with a C function. The

increase in efficiency was paramount in performing the maximum likelihood

estimation.

Remark 2.8 A computer with processor Intel Core i5-2410M CPU @2.30

GHz and RAM 4 GB was used. The choice of the clock rate and the amount

of random-access memory is essential. Older generation processors (Pentium,

Core 2 Duo) lead to longer execution times. On the other hand, operating sys-

tem (UNIX or Windows) hosting the simulations does not matter. However,

author’s limited experience shows that Windows x64 is strongly preferred over

Windows x32.

2.4 ML estimation results

A quick glance at the estimates in Table B.1 leads to the conclusion that γ̂

and κ̂ might be consistent and marginally asymptotically normally distributed.

However, α̂ and β̂ are persistently skewed and somewhat unstable, nonetheless,

remaining “close” to a Gaussian distribution in terms of their skewness and
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kurtosis values.

We once read the following argument [20]:

We usually apply normality tests to the results of processes that,

under the null, generate random variables that are only asymptot-

ically or nearly normal (with the “asymptotically” part dependent

on some quantity which we cannot make large). In the era of cheap

memory, big data, and fast processors, normality tests should al-

ways reject the null of normal distribution for large (though not

insanely large) samples. And so, perversely, normality tests should

only be used for small samples, when they presumably have lower

power and less control over Type I rate.

Hence, the question arises why we need to test for normality. First,

nonlinearity and processes in empirical finance may lead to non-Gaussian dis-

tributions, and the generating mechanism of the processes can therefore be

better understood by examining the distribution of selected variables. A sec-

ond reason for implementing normality tests is that many statistical procedures

require or are optimal under the assumption of normality, and it is therefore

of interest to know whether or not this assumption is fulfilled. Of course it

may also be of interest to test for the presence of other specific distributions,

for example, extreme value distributions.

There are not many tests for normality which work in a robust way in

the case of large samples. We chose to use the following tests: the Cramér–

von Mises (CVM), Jarque–Bera (JB), and D’Agostino’s (DA) omnimbis test

(see [49] and references therein).

When N gets large, however, even the smallest deviation from perfect

normality will lead to a significant result. A demonstration of this is in Table
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2.1 where each normality test was applied to a simulated random sample from

a genuine N(0, 1)-distribution disturbed by adding points {1, 0, 2, 0, 1} (which

constitute only 0.05% of a sample of size 10000). The procedure was repeated

1000 times for each test and each sample size.

Size of modelled samples

1000 5000 10000 25000 50000 75000 100000

CVM 0.154 0.686 0.965 1.000 1.000 0.966 0.491

JB 0.143 0.809 0.992 1.000 1.000 1.000 1.000

DA 0.178 0.836 0.988 1.000 1.000 1.000 1.000

Table 2.1: Proportion of p-values less than 0.05 in testing for normality (1000

runs).

In almost 100% of the cases, for large sample sizes the distribution is

not seen any more as Gaussian when testing by the CVM, JB, and DA tests.

Yet, by looking at the quantile-quantile (QQ) plots for the samples, one would

probably never decide on a deviation from normality. With a very large sam-

ple size a normality test may detect statistically significant but unimportant

deviations from normality. Hence standard normality tests are not practical

for very large samples.

In this circumstances, the histogram and normal QQ-plot may be the

single most valuable graphical aid in diagnosing how a population distribution

appears to differ from a normal distribution. For values sampled from a normal

distribution, the QQ-plot has the points all lying on or near the straight line

drawn through the middle half of the points. Scattered points lying away

from the line are suspected outliers. Since the histograms and QQ-plots are

similar looking for parameters α, β, γ, and κ regardless of a sample size, for
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conciseness only plots for N = 10000 were provided (see the figures in Section

A.1 of Appendix A).

The histogram in Figure A.1 and the normal QQ-plot in Figure A.2

suggest that the ML estimators for α, β, γ, and κ should be marginally asymp-

totically distributed. However, as has been noted above, α̂ and β̂ prove to be

skewed (to a much higher degree than γ̂, and κ̂). In part, this might be caused

by a residual effect of the estimation procedure (cf. Chapter 4) or/and the

presence of outliers.

Given that the conventional measures of skewness and kurtosis are com-

puted as an average and that averages are not robust [28] in the presence of

outliers, we may want to apply a procedure commonly referred to as trimming,

that is, to remove a percentage of the estimates on the both tails and recal-

culate the descriptive statistics. The trimming was performed separately on

each estimate α̂, β̂, γ̂ and κ̂ after sorting (in the ascending order) the sample

thereof. We chose to trim 0.25% on each side. The trimmed ML estimates are

shown in Table B.2. The quantiles of the trimmed samples were then plotted

against the quantiles of the trimmed Gaussian distribution.

The reference line corresponding the truncated normal distribution is

no longer a straight line but rather an S-shaped curve (see Figure A.3). The

quantile plots for quantiles of γ̂ and κ̂ are close to their normal counterparts.

However, a pronounced gap between the two curves is present in the case of

α̂ and β̂. Whatever the advantages are of such a quick, intuitively meaningful

graphical method, there are pitfalls. A formal test is called for to assess what

manner or extent of deviation from an S-shaped line fit might reasonably be

expected to occur by chance, or how such reasonable variations might diminish

as the sample size increases. Due to the difficulties faced by the standard

normality tests mentioned earlier, a new test is needed tailored specifically for
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the needs of the BS-ACD model.

To be able to judge whether the gap is statistically significant (for

example, at the significance level 0.05 or 0.01), we devised a test for normality

based upon quantiles (a discussion of a similar framework can be found in [21]).

The idea of the test is analogous (and in a sense, which can be formalized, is

equivalent) to that underlying the Kolmogorov-Smirnov test for discrepancy

between two distribution functions.

Recall the following definition:

Definition 2.9 Let X be a random variable with a cumulative distribution

function (cdf) F : D → (0, 1), where D ⊆ R. The quantile function of X is

defined as Q(p) = inf {x ∈ D | p 6 F (x)} .

It is clear that for a strictly monotone F (·) the quantile function Q(p) =

F−1(p).

Sample quantiles provide nonparametric estimators of their population

counterparts based on a set of independent observations {X1, ..., Xn} from the

distribution F . Let
{
X(1), ..., X(n)

}
denote the order statistics of {X1, ..., Xn},

and let Q̂(p) denote the sample quantile definition. Then

Q̂(p) = (1− λ)X(j) + λX(j+1),

where (j − l)/n < p < (j − l + 1)/n for some l ∈ R and 0 6 λ 6 1. The value

of λ is a function of j = bpn+ lc and g = pn + l − j (here bwc denotes the

largest integer not greater than w). To numerically calculate sample quantiles,

we used the default settings of the R function quantile().

Then the proposed test statistic is

DQQ
k = sup

p∈(0,1)

∣∣∣Q̂k(p)− Q̂G
k (p)

∣∣∣ , (2.14)
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where k = 1, ..., K and Q̂k(·) and Q̂G
k (·) are, respectively, the sample quantile

function of the trimmed MLE of a BS-ACD(1,1) model parameter (i.e. α̂,

β̂, γ̂ or κ̂) and the sample quantile function of the trimmed standard normal

distribution, respectively. For computational convenience, before calculating

(2.14), the MLE sample was standardized by applying the transformation:

s(X) =
X −X√
var(X)

,

and then the range of both the transformed MLE Y = s(X) and generated

N(0, 1) samples was standardized to [0, 1] by means of the following transfor-

mation:
Y − Y(1)

Y(N∗) − Y(1)

,

where N∗ = N − 2 bmN/100c is the new sample size after removing m% of

observations from each tail.

Critical values of DQQ
k as k → ∞ can be obtained by Monte Carlo

simulations according to the following scheme:

1. Generate a sample of size N from BS-ACD(1,1) model with true values

θ∗.

2. Obtain the MLE’s θ̂ =
(
α̂, β̂, γ̂, κ̂

)
.

3. Repeat steps 1-2 n times to obtain a sample of θ̂’s of size n.

4. Evaluate (2.14).

5. Repeat steps 1-4 K times to obtain a sample of DQQ
k of size K.

Due to the extremely time consuming nature of the computations, we

chose determine critical values for samples of size N = 10000 only (and n =
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10000). We chose m = 0.25% and K = 100. Analogously, computations can

be carried out for the other sample sizes. The critical values so obtained are

shown in Table 2.2.

Also, this simulation can be viewed as a Monte-Carlo experiment with

N = 10000 and n = 1000000. Plots corresponding to such an interpretation

are depicted in Figure A.4. A distinct gap between the quantile curves of the

trimmed MLE α̂ and β̂ and trimmed N(0, 1) random variables is still in place

whereas the quantile curves of γ̂ and κ̂ are virtually identical to the reference

curves.

Quantile α β γ κ

90% 0.0745 0.0672 0.0291 0.0303

95% 0.0798 0.0712 0.0333 0.0322

99% 0.0882 0.0785 0.0403 0.0376

Table 2.2: Critical values of the test for normality designed for the BS-

ACD(1,1) model.

The distances DQQ between the sample quantiles of the trimmed ML

estimates (N = 10000 and n = 10000) whose descriptive statistics are sum-

marized in Table B.1 are given in Table 2.3.

α β γ κ

DQQ 0.0658 0.0439 0.0111 0.0175

Table 2.3: Distances DQQ for a particular sample of MLE’s (N = 10000 and

n = 10000).

Thus at the significance level of 0.01, we fail to reject the null hypoth-

esis that the marginal distributions of the ML estimators α̂, β̂, γ̂, and κ̂ are
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Gaussian. This result contrasts with the conclusions reached in [8].

Remark 2.10 Since an asymptotically normal estimator is consistent, the

consistency of α̂, β̂, γ̂, and κ̂ follows.

The question remains whether the joint asymptotic distribution of θ̂ =(
α̂, β̂, γ̂, κ̂

)
is normal. To date, as far as we are aware, theoretical regularity

conditions ensuring joint asymptotic normality are only known for an ACD

model with the Xi = Ψiεi assumption [27]. We conjecture that in the absence

of the assumption, limit theorems for martingales would have to be applied [6]

with conditions, such as mixing and ergodicity [31], to be imposed on the ML

function and its gradient.
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Chapter 3

Application to real data

In this chapter, we fit the BS-ACD model to transaction-by-transaction data

of six NYSE stocks. Coincidentally, the results of this chapter are almost

identical to those obtained in Bhatti [8].

3.1 Description of data

We study tick-by-tick trade data1 from the NYSE TAQ (Trade And Quote)

database. Standard filtering rules were applied to the trade data: transactions

recorded outside of normal trading hours (09:30-16:00 EST) were deleted, and

simultaneous transactions were considered as a single transaction.

The following six stocks were chosen for the analysis: General Mo-

tors Corporation (GM), International Business Machines (IBM), Johnson and

Johnson Company (JNJ), the McDonald’s Corporation (MCD), the Proctor

and Gamble Company (PG), and Schlumberger Limited (SLB). The period

considered is from January 1, 2002 to February 28, 2002.

1The data sets were generously provided by Dr. Chad R. Bhatti (V.P., JPMorgan Chase).
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Some descriptive statistics2 are shown in Table 3.1 below.

GM IBM JNJ MCD PG SLB

Sample size 56,408 127,309 82,938 72,979 78,933 90,694

Median 9.000 5.000 7.000 7.000 7.000 5.000

60%-percentile 12.000 6.000 9.000 9.000 9.000 7.000

Mean 15.318 6.787 10.419 11.844 10.949 9.526

70%-percentile 17.000 8.000 11.000 13.000 12.000 10.000

Table 3.1: Descriptive statistics of the sample data: observations from 10:00

to 16:00.

It is known that trade durations are typically right skewed [18]. In the

table, this is reflected by the fact that the sample means for all six samples

lie between the 60%- and 70%-percentiles which are larger than the sample

medians.

3.2 Removal of diurnal pattern

Usually one observes active trading during opening and closing hours and dor-

mant trading around noon. This is reflected by short durations during active

hours and longer durations around noon in a trading day. Figure 3.1 illustrates

the diurnal effect for the GM sample: the trade durations were averaged over

30 minute time intervals (from 09:30 to 16:00) for all forty trading days and

then smoothed by cubic splines. For computational convenience, calendar time

was measured in seconds from midnight.

There are a number of ways to remove the diurnal pattern. For example,

2Technical details of the data representation are explained in Section D.2.
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Figure 3.1: Presence of diurnal effect in GM trade durations.

using splines or Fourier expansions [52]. To remove the seasonal effects present

in the duration process in a manner that is robust to outliers, we applied a

semi-logarithmic version of the method suggested in [18] to get the diurnally

adjusted durations.

Let as before Xk = Tk − Tk−1 be the trade duration, where Tk are

calendar times of transactions and X̂k is the diurnally adjusted durations.

Then we constructed

X̂k = exp
[
lnXk − φ̂(Tk)

]
,

30



MSc Thesis – K. Mayorov McMaster – StatisticsMSc Thesis – K. Mayorov McMaster – Statistics

where φ̂(Tk) is the fitted value from the regression

lnXk =
13∑
j=1

βjYj,k + uk, Yj,k = max(Tk − qj, 0),

where qj is the j-th partition point. Here q1 is the first endpoint, 9:30, and q13

is the last end point, 15:30.

From now on, the term duration is understood as the diurnally adjusted

durations and all of the subsequent data analysis is based on the diurnally

adjusted durations unless stated otherwise.

3.3 Fitting the BS-ACD(1,1) model

Since the beginning of a trading days is usually very much different from the

trading of the rest of the day, only observations in the period 10:00 to 16:00

are used. Further, for each day, we set the initial value σ0 of the conditional

median to be the median trade duration over the period [09:50,10:00). This is

done to ensure that information is not carried over from a trading day to the

subsequent one.

The estimation is performed by maximum likelihood. The parameter

estimates are shown below.

GM IBM JNJ MCD PG SLB

α̂ -0.0193 -0.0432 -0.0175 -0.0175 -0.0184 -0.0194

β̂ 0.9878 0.9513 0.9759 0.9847 0.9864 0.9855

γ̂ 0.0108 0.0309 0.0114 0.0101 0.0118 0.0117

κ̂ 1.2136 0.8742 1.0431 1.2047 1.0636 1.1480

Table 3.2: BS-ACD(1,1) estimation results.
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GM IBM JNJ MCD PG SLB

α 0.001 0.002 0.001 0.002 0.002

β 0.001 0.003 0.003 0.002 0.002

γ 0.001 0.001 0.001 0.001 0.001

κ 0.004 0.002 0.003 0.003 0.003

Table 3.3: Standard errors of the ML estimates.

In the figures, for the sake of brevity, we only display results for GM

(the other stocks present very similar figures). Observe that β̂ is close to 1:

the ACD parameters display strong autoregressive behavior. This effect is

usually referred to as persistent, or tending to have long memory.

Standard errors for θ̂ =
(
α̂, β̂, γ̂, κ̂

)
were calculated based on the White

covariance matrix [18]:

WCov(θ̂) =
(
∇2 lnL

(
θ̂
))−1

{(
∇ lnL

(
θ̂
))(
∇ lnL

(
θ̂
))t}(

∇2 lnL
(
θ̂
))−1

,

where lnL
(
θ̂
)

is the value of the log-likelihood function at the MLE θ̂.The

standard errors are reported in Table 3.3.

Testing of H0 : α̂ = 0, H0 : β̂ = 1, H0 : γ̂ = 0, H0 : κ̂ = 1 against

H1 : α̂ 6= 0, H1 : β̂ 6= 1, H1 : γ̂ 6= 0, H1 : κ̂ 6= 1, respectively, was done through

the Wald statistic:
ζ̂ − ζ0

se
(
ζ̂
) ∼ N(0, 1),

where ζ̂ and ζ0 are a corresponding estimator and its proposed value, respec-

tively. All estimates are statistically significant at the 1% level.
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3.4 A diagnostic check of the BS-ACD(1,1)

model

We now perform a diagnostic check of the ACD(1, 1) model based upon the

Cox-Snell residuals [12]. As opposed to the standard ACD(1, 1) model, where

X̂i/ψ̂i is a valid residual, X̂i/σ̂i is not a valid residual for the BS−ACD(1, 1)

model. However, the Cox-Snell residual

− ln
(
Ŝ (xi | Fi−1)

)
,

where Ŝ (xi | Fi−1) is the fitted conditional survival function, does constitute

a valid residual for the model.

The Cox-Snell residuals will be Exp(1)-distributed if the model is cor-

rectly specified regardless of the model distributional assumption. We cal-

culated the quantiles of the Cox-Snell residuals of the six fitted models and

plotted them together with the quantiles of the Exp(1) distribution (see Table

3.4 and Figure 3.2).

The residual analysis shows that the BS-ACD(1,1) model fits quantiles

of Exp(1) through the 99% quantile. In all six samples, the BS-ACD(1,1)

model fits the sample data sufficiently well to provide valid maximum likeli-

hood inference.

To test the absence of autocorrelations in the residuals, it is customary

in the time series analysis to employ the Ljung-Box-Pierce test statistic

Qm
N (z) = N(N + 2)

m∑
k=1

γ2
k

N − k

across m lags model, where γk = corr (zi, zi+k) and N is the sample size.

For an ACD(1, 1) model, the statistic is χ2(m − 3)-distributed. Fol-

lowing [8], we take m = 15. Then the critical value χ2
0.99(12) equals 26.22. On
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Exp(1) GM IBM JNJ MCD PG SLB

1% 0.010 0.009 0.013 0.012 0.018 0.011 0.022

5% 0.051 0.038 0.030 0.031 0.040 0.033 0.045

10% 0.105 0.107 0.106 0.115 0.096 0.111 0.088

25% 0.288 0.304 0.315 0.291 0.279 0.304 0.272

50% 0.693 0.721 0.735 0.688 0.703 0.702 0.685

75% 1.386 1.423 1.377 1.382 1.406 1.382 1.404

90% 2.303 2.291 2.212 2.298 2.304 2.287 2.303

95% 2.996 2.926 2.886 2.971 2.960 2.962 2.984

99% 4.605 4.371 4.642 4.635 4.457 4.633 4.612

Table 3.4: Quantiles of the Cox-Snell residuals and Exp(1) distribution.

the other hand, calculations show that among the six samples the minimum

of the empirical values for Qm
N (·) is bigger than 63 for the Cox-Snell residuals.

Hence we reject the null hypothesis for all six samples.

For a typical sample size of 50000 observations, as easy algebraic manip-

ulations shows below, in order to fail to reject the null hypothesis the residual

autocorrelation would have to not exceed 0.002 over 15 lags:

15∑
k=1

γ2
k

N − k
6 15

(
max
k
γ2
k

) 15∑
k=1

1

50000− k
≈ 0.0045 max

k
γ2
k,

so if Q15
50000 (z) < 26.22, then |max

k
γk| <

√
26.22

0.0045 · 50000 · (50000 + 2)
,

which is approximately 0.002. Thus, the Ljung-Box-Pierce test is not suitable

for long time series.

Overall, the above practical results indicate that the BS-ACD model

provides a good fit to trade durations and deserves further attention in future
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Figure 3.2: Quantiles of the Cox-Snell residuals and Exp(1) distribution.

considerations in the modelling of trade durations.
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Chapter 4

Efficacy of optimization

methods

In econometrics and time series analysis, there exist many optimization meth-

ods in use. The popular methods include the Berndt-Hall-Hall-Hausman

(BHHH) algorithm [5], Nelder-Mead (NM), Broyden-Fletcher-Goldfarb-Shanno

(BFGS) and biologically inspired genetic methods and simulated annealing.

In this chapter, in the context of the BS-ACD(1,1) model estimation, we

discuss issues of numerical efficacy of the NM, BFGS algorithms, and a hybrid

thereof. We shall try to point out weaknesses and strengths of the methods

and make recommendations to researchers in empirical market microstructure

as to which method to use depending on various criteria.

4.1 The NM method

The Nelder-Mead simplex method [38] belongs to the class of direct search

algorithms. These algorithms are gradient-free and use values of the nonlinear
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objective function f : Rn → R taken from a set of sample points and use

that information to continue the sampling. In what follows, we shall give a

brief description of the NM method as applied to a minimization problem.

Obviously, maximization can be reduced to minimization by considering −f

as the new objective function.

The NM method maintains a simplex S of approximations to an optimal

point. A simplex S in Rn is defined as the convex hull of n+1 vertices {xj}n+1
j=1 ,

(xj ∈ Rn). For example, a two-dimensional simplex is a triangle. The initial

working simplex S has to be nondegenerate, i.e., the points {xj}n+1
j=1 must not

lie in the same hyperplane.

In the algorithm the vertices are sorted according to the objective func-

tion values

f(x1) 6 f(x2) 6 · · · 6 f(xn+1),

where x1 is called the best vertex and xn+1 the worst. If several vertices have

the same objective value as x1, the best vertex is not uniquely defined, but

this ambiguity has little effect on the performance of the algorithm.

The method attempts to replace the worst vertex xn+1 with a new point

of the form

x (µ) = (1 + µ)x− µxn+1,

where x is the centroid of the convex hull of {xj}nj=1 ,

x =
1

n

n∑
i=1

xi.

The value of µ is selected by rules that include reflection, expansion, outside

and inside contraction, shrinking and sorting the vertices. The algorithm ter-

minates if either f(xn+1)− f(x1) is sufficiently small or a user-defined number

of function evaluations has been expended.
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The NM algorithm is not guaranteed to converge, even for smooth

problems. However, the performance of the method in practice has proved to

be generally good [30].

Despite the excellent reputation of the NM algorithm for robust high di-

mensional optimization without the use of derivative information, as applied to

estimation of the BS-ACD(1,1) model, the R implementation of the algorithm

from an initial value for β close to 1 (cf. [7]) repeatedly led to the termination

of the algorithm due to a degenerate simplex or led to an estimate “far” from

the true value. Although there are some documented instances where the NM

algorithm has difficulties [3, 36, 50], this particular problem most likely arises

from the behaviour of the likelihood function with respect to the sample data.

When β is close to 1 or bigger than 1, the sequence of conditional medians σi

tends to be increasing such that the log-likelihood function eventually explodes.

Another reason for ill-behaving estimation by the NM method for particular

initial conditions lies in that the log-likelihood function becomes discontinuous

once a sample point Xi of large magnitude matches a conditional median σi

of small magnitude.

Due to the above complications, convergence properties of the NM al-

gorithm are difficult to study [30].

Remark 4.1 The NM method is available through the R function optim().

4.2 The BFGS method

Another popular optimization algorithm is due to Broyden, Fletcher, Goldfarb,

and Shanno [11, 19, 24, 48]. The method belongs to the class of quasi-Newon

methods. Quasi-Newton methods exploit user supplied gradient and update
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an approximation of the Hessian matrix ∇2f(x∗) as the iteration progresses.

In general, the transition from current approximations xc and Hc of x∗ and

∇2f(x∗) to new approximations x+ and H+ is given by the following steps:

1. Compute a search direction d = −H−1
c ∇f(xc).

2. Find x+ = xc + λd using a line search to insure sufficient decrease.

3. Use xc, x+, and Hc to update Hc and obtain H+.

The way in which H+ is computed determines the method. In partic-

ular, the BFGS method is a secant method because it satisfies the following

(secant) equation:

H+s = y, (4.1)

where

s = x+ − xc and y = ∇f(x+)−∇f(xc).

Specifically, the BFGS method’s update is

H+ = Hc +
yyT

yT s
− (Hcs)(Hcs)

T

sTHcs
. (4.2)

Given the displacement s and the change of gradients y, the secant

equation requires that the symmetric positive definite matrix H+ map s into

y. This will be possible only if s and y satisfy the curvature condition:

sTy > 0, (4.3)

as can be easily seen by premultiplying (4.1) by sT . When f is strongly convex,

the inequality (4.3) will be satisfied for any two points x+ and xc. However,

the condition will not always hold for nonconvex functions, and in this case

(4.3) must be imposed explicitly.
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It is reasonable to ask whether there are situations in which updating

formula (4.2) can produce bad results. If at some iteration the matrix Hc

becomes a very poor approximation, can one hope to correct it? A related

question concerns the rounding errors that occur in finite-precision implemen-

tation of the BFGS algorithm: Can these errors grow to the point of erasing

all useful information in the BFGS approximate matrix?

These and other questions have been studied analytically and exper-

imentally, and it is known that the BFGS formula has very effective self-

correcting properties. If the matrix Hc incorrectly estimates the curvature in

the objective function, and if this bad estimate slows down the iteration, then

the Hessian approximation will tend to correct itself within a few steps.

Remark 4.2 The BFGS method is available through the R function optim().

4.3 Numerical efficacy of the NM and BFGS

methods

In Section 2.3, we introduced the two-stage estimation procedure. Recall that

at the first step, we fix κ and estimate the triple (α, β, γ) by the NM algorithm.

Having done this, the result is used as a starting value for the BFGS method

which is applied to estimate θ = (α, β, γ, κ) over the whole parameter space

Θ, where Θ is a compact subset of R4. We referred to the combination of the

NM and BFGS algorithms as the NM-BFGS method.

For convenience, the problem of the BS-ACD(1,1) model estimation is

restated below.
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N∑
i=1

1

2
√

2πκσi

[(
σi
Xi

) 1
2

+

(
σi
Xi

) 3
2

]
exp

{
− 1

2κ2

[
Xi

σi
+
σi
Xi

− 2

]}
→ max

θ∈Θ
,

where the conditional median is obtained recursively by

lnσi = α + β lnσi−1 + γ

[
Xi−1

σi−1

]
.

We would like to compare and contrast the NM, NM-BFGS, and BFGS

methods in their ability to estimate θ. Usually, the researcher needs to perform

a large number of runs (ranging from 1000 to 1000000) in their simulations.

Therefore, a time efficient method would be preferred. However, one could

also ask about the accuracy of the estimation method. The accuracy can be

characterized by the proximity of the estimates to the true value. Alternatively,

the researcher may choose to work with the method which converges in the

least amount of iterations/evaluations or/and gives the largest value of the

maximum likelihood function.

Hence reasonable criteria for testing the performance of the three meth-

ods are the following:

1. CPU time (min),

2. Euclidean distance to the true value (min),

3. Number of evaluations (min),

4. Function value at the MLE (max),

5. Euclidean distance to the true value (min) and function value at the

MLE (max),

6. Number of evaluations (min) and Euclidean distance to the true value

(min) and function value at the MLE (max),
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where in parentheses the desired objective is indicated.

Recall that throughout Section 2.3, the true value

θ∗ ≡ (α∗, β∗, γ∗, κ∗) = (0.1, 0.9, 0.1, 1.1) (4.4)

was used. Based upon criteria 1-6, the efficacy of the NM, NM-BFGS, and

BFGS methods is scrutinized by considering a 3-dimensional rectangular prism

(also known as a cuboid) containing initial values θ̃0 ≡ (α0, β0, γ0):

Cδ ≡
(
α∗
(

1− δ

100

)
, α∗

(
1 +

δ

100

))
×
(
β∗
(

1− δ

100

)
, β∗

(
1 +

δ

100

))
×
(
γ∗
(

1− δ

100

)
, γ∗
(

1 +
δ

100

))
,

where δ ∈ [0, 100] . We will refer to δ1 = δ/100 as the perturbation factor.

Note that C is a Cartesian product of one-dimensional intervals. The prism

can be viewed as a vicinity of θ̃
∗
≡ (α∗, β∗, γ∗). We chose δ to take up values

10, 50, and 90. Evidently, δ = 10 and δ = 90 represent extreme situations:

C10 gives a prism of points located fairly close to θ̃
∗

whereas C90 is allowed to

contain points at a bigger distance from θ̃
∗
.

As noted in Remark 2.2, |β| < 1 should be imposed to maintain weak

stationarity of the BS-ACD(1,1) model. Hence we modify the prism accord-

ingly:

CδM ≡
(
α∗
(

1− δ

100

)
, α∗

(
1 +

δ

100

))
×
(

max

{
β∗
(

1− δ

100

)
,−1

}
,min

{
β∗
(

1 +
δ

100

)
, 1

})
(4.5)

×
(
γ∗
(

1− δ

100

)
, γ∗
(

1 +
δ

100

))
.

Note that preserving the logic of Section 2.3, the starting value for κ is con-

structed as
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√
2

(
X

med(X)
− 1

)
, (4.6)

that is, independently of θ̃0.

Samples of sizes N = 10000 and 50000 were used for the efficacy study.

The number of runs was n = 1000.

Then we test the performance of the three selected methods based upon

the following algorithm:

1. Generate a sample of size N from BS-ACD(1,1) model with true values

θ∗ from (4.4).

2. Draw an initial vector for (α, β, γ) at random from CδM for a fixed δ. For

κ, take the initial value (4.6).

3. Obtain the MLE’s
(
α̂, β̂, γ̂, κ̂

)
by the NM, NM-BFGS, and the BFGS

methods.

4. Repeat steps 1-3 n = 1000 times.

Then, in accordance with the criteria 1-6 suggested above, comparison

of the three methods was performed. For brevity, let us denote d, eval, time,

respectively, the average Euclidean distance to the true value, average number

of evaluations (of the function and its gradient altogether), and the average

execution time (in seconds) per a single run. These characteristics are sum-

marized in Table 4.1. The other tables were placed in Section B.2 of Appendix

B.

One can observe that regardless of a sample size and the perturbation

factor, the BFGS method is the fastest in terms of the cpu time.
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d eval time
N

=
10

00
0

δ
=

10
NM 0.0190 206 0.7019

NM-BFGS 0.0190 163 0.5142

BFGS 0.0189 97 0.2256

δ
=

50

NM 0.0212 209 0.7220

NM-BFGS 0.0187 181 0.5709

BFGS 0.0187 114 0.2545

δ
=

90

NM 0.0561 221 0.7974

NM-BFGS 0.1333 210 0.6950

BFGS 0.4048 137 0.3061

N
=

50
00

0

δ
=

10

NM 0.0082 203 3.3685

NM-BFGS 0.0082 190 2.7835

BFGS 0.0082 105 1.1947

δ
=

50

NM 0.0110 208 3.1173

NM-BFGS 0.0083 205 2.7191

BFGS 0.0083 122 1.2085

δ
=

90

NM 0.0639 208 3.2499

NM-BFGS 0.0092 219 3.0187

BFGS 0.0728 152 1.4810

Table 4.1: Performance of the NM, NM-BFGS, and BFGS methods.
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Remark 4.3 It is interesting to note at this point that the speed of the BFGS

method is in part due to the fact that the calculations are based upon the analyt-

ical gradient. Once a numerical approximation of the gradient is entertained,

the situation is reversed: the NM method wins the first place whereas the BFGS

algorithm goes last in the ranking. These calculations were not included in the

thesis.

As one could expect, the overall number of evaluations (of the log-

likelihood function and its gradient) and the cpu time grow as δ1 increases. On

the other hand, although the same dynamics holds for the average Euclidean

distance for N = 10000, the pattern breaks down for N = 50000. This is in

part due to the fact the distances are positively skewed and a sample mean is

not always an exhaustive measure of the central tendency. See Figure A.5 of

Appendix A for an example of a histogram of distances.

If accuracy of the estimates is not of crucial concern for the researcher,

then, as Table B.5 indicates, either of the NM, NM-BFGS or BFGS methods

can be used. The table displays the number of times the MLE’s produced

by the methods coincide up to 2, 3, and 4 decimal places after the decimal

point. However, only the BFGS and the NM-BFGS methods give estimates

invariably close to each other up to the fourth decimal place.

It is not uncommon that the researcher may try various starting values

and then select those which lead to estimates little different from each other. If

this is the case and an initial value is close enough to the true value (δ1 = 0.1),

then in terms of the distance the three methods are indistinguishable (see

Figure A.5) and hence either method can be employed.

More interesting are the cases when the researcher does not possess

a prior knowledge about the proximity of a starting value to the true value.
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Consequently, with the lack of information, they might select a starting value

from C50
M or C90

M . To examine the stability of the methods in this situation, we

resort to Tables B.3-B.4. The two tables count the number of times one method

outperforms the other one in the pair in accordance with the six criteria on

page 41.

It is easy to see that the NM algorithm loses in all six categories for sam-

ples of size N = 10000. For samples of size N = 50000, the NM method pre-

vails over the NM-BFGS method in the number of evaluations (δ1 ∈ {0.5, 0.9})

and in the Euclidean distance (δ1 = 0.5). However, in terms the Euclidean

distance to the true value an approximate parity remains among the estimates

produced by all three methods.

Let us now turn to comparing the BFGS and the NM-BFGS algorithms.

Out of the six criteria, the NM-BFGS method wins in only two: 4 and 5.

However, the victory is convincing. In practice, criteria 4 and 5 serve the most

informative indicators. However, if one’s concern is the cpu time as well as the

number of evaluations, the BFGS method is the indisputable leader. Between

the BFGS and NM-BFGS methods, with respect to the ultimate criterion 6,

the BFGS algorithm outperforms its competitor.

When the perturbation factor equals 0.5 or 0.9, it is worth pointing

out that the NM-BFGS method behaves somewhat more reliably than the

BFGS method alone. Once an initial value is drawn from either C50
M or C90

M ,

the NM and the BFGS methods produce estimates which can be regarded as

outliers. The number of outliers is higher than that produced by the NM-

BFGS algorithm. In Figure A.6, histograms of the Euclidean distances to the

true value θ∗ are depicted. The range for the distances is the least for the

NM-BFGS method. As yet another evidence of the stable performance of the

method, for example, consider the MLE’s of κ. Figure A.7 displays the scatter
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plot of the MLE’s κ̂ produced by all three methods.

From the picture, we see that the degree of dispersion is the highest

for the NM method. On the other hand, the NM-BFGS and BFGS methods

produced only 2 and 1 outliers, respectively. That the BFGS algorithm gives

only 1 outlier is misleading. From Figure A.8, it is clear that the true value is

6.

To summarize, in the context of the BS-ACD(1,1) model estimation, the

following considerations are recommended to researchers in empirical market

microstructure:

• The estimates provided by the three methods are virtually identical (up

to 2 decimal places).

• With a prior information about a neighborhood around the true value

θ∗, any of the three algorithms can be employed.

• In the lack of information, the BFGS method with the analytical gra-

dient is preferred if one’s concern is with execution time or accuracy of

computations.

• In the lack of information, the NM-BFGS method with the analytical

gradient is preferred if one wishes to achieve the combination of high

accuracy in estimations and the largest value of the likelihood function.

47



Summary and open problems

Autoregressive conditional duration models play an important role in finan-

cial modelling. In this thesis, we have explored some properties of the BS-

ACD(1,1) model.

Through extensive simulation experiments, we looked into the asymp-

totic behaviour of the ML estimators of the BS-ACD(1,1) model parameters.

A dedicated test for normality was developed. With the numerical simula-

tions and the test, we have demonstrated marginal asymptotic normality and

consistency of the estimators.

We analyzed a real data example and demonstrated how the BS-ACD(1,1)

model applies to data sets originating from intraday trading on the NYSE.

Finally, we studied the numerical efficacy of the Nelder-Mead and the

BFGS methods and their combination in estimating the BS-ACD(1,1) model

parameters. Conclusions have been made about the stability, speed, and ac-

curacy of the algorithms.

As part of future research, it is important to derive regularity conditions

ensuring joint asymptotic normality of the estimators in the BS-ACD(p,q)

model. Also, weak and strong stationarity conditions must be established

rigorously.

Out-of-sample forecasting ability of the model certainly needs a sepa-
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rate study. Also, the forecasting power of the BS-ACD(p,q) model, possibly

with p > 1 and q > 1, can be strengthened by including exogenous economic

variables, such as intraday trading volume, prices, and bid-ask spread, into

the equation governing the temporal dynamics of the conditional medians.

To generalize the BS-ACD(p,q) model, we suggest that a family of Gen-

eralized Birnbaum-Saunders (GBS) distributions [32] should be considered.

Definition 4.4 Let a random variable Z follow a standard symmetrical dis-

tribution on R with the kernel g(·) of the pdf of Z, i.e. Z ∼ S(g). A random

variable X is said to be GBS(κ, σ; g)-distributed if it admits the stochastic

representation

X =
σ

4

[
κZ +

√
(κZ)2 + 4

]2

,

where

Z =
1

κ

(√
X

σ
−
√
σ

X

)
∼ S(g), (4.7)

κ > 0 is the shape parameter and σ > 0 is the scale parameter. This is denoted

by X ∼ GBS(κ, σ).

Standard symmetrical distributions on R include Gaussian, Cauchy,

Laplace, Student t, Kotz-type, and others. The GBS distribution nests the

classical BS distribution when Z ∼ N(0, 1) (also, cf. (2.2)). From the sym-

metry of the kernel and (4.7) it can be readily inferred that a GBS distribu-

tion can be parameterized in terms of the median. Hence we suggest that a

GBS −ACD(p, q; g) model should be developed to compare and contrast the

performance of the new model with the BS-ACD(p,q) one.

Another direction for model generalizations can be developed by impos-

ing the Xi = σi%i, where %i are positively supported i.i.d. random variables.

We expect this assumption to simplify inference. As a particular case of such
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extension, it is of interest to consider %i = exp (εi) with εi being i.i.d. random

variables following the sinh-normal distribution SN(κ, 0, 2) [46], or, more gener-

ally, the sinh-spherical (SHS) distribution SHS(κ, 0, 2; g) [32]. The SN(κ, 0, 2)

(SHS(κ, 0, 2; g)) distribution is symmetric with mean 0. It is related to the

BS-distribution as follows: if εi ∼ SN(κ, 0, 2) (SHS(κ, 0, 2; g)) then exp (εi)

∼ BS(κ, 1) (GBS(κ, 1; g)) and hence Xi ∼ BS(κ, σi) (GBS(κ, σi; g)). How-

ever, in this case the QML estimation approach would have to be involved and

all cautions discussed in Section 1.3 about the QML inference would have to

be taken into account.

Apart from distributional assumptions, a possible generalization of the

BS-ACD(p,q) model which we suggest is to employ an estimation procedure

different from the ML or QML methods. To this end, estimating functions [41]

and the method of modified moments [40] seem to be obvious candidates which

have been demonstrated to enjoy a number of appealing statistical properties

and ease of implementation.
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Appendix A

Figures

A.1 Figures for Chapter 2
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Figure A.1: Histograms of ML estimates (samples of size 10000, number of

runs 10000) with the fitted density curve of a normal distribution.
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Figure A.2: Normal QQ plots of ML estimates (samples of size 10000, number

of runs 10000).
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Figure A.3: Quantile plots of trimmed ML estimates (samples of size 10000,

number of runs 10000). Trimming percentage 0.25%.
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Figure A.4: Histograms of ML estimates (samples of size 10000, number of

runs 1000000) with the fitted density curve of a normal distribution.
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A.2 Figures for Chapter 4

Figure A.5: Histograms of Euclidean distances to true values for samples of

size 10000 and δ=10. From top to bottom: the NM, NM-BFGS, and BFGS

methods.
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Figure A.6: Histograms of Euclidean distances to true values for samples of

size 50000 and δ=90. From top to bottom: the NM, NM-BFGS, and BFGS

methods.
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Figure A.7: Scatter plots of the kappa estimates for samples of size 50000 and

δ=90. From top to bottom: the NM, NM-BFGS, and BFGS methods.

56



MSc Thesis – K. Mayorov McMaster – StatisticsMSc Thesis – K. Mayorov McMaster – Statistics

Figure A.8: Magnified scatter plot of the kappa estimates by the BFGS method

for samples of size 50000 and δ=90.
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Appendix B

Tables

B.1 Tables for Chapter 2
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n 10000 1000000

N 10000 25000 50000 75000 10000

True value 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1003 0.1003 0.1002 0.1001 0.1005

SD 0.0182 0.0114 0.0080 0.0066 0.0182

α̂ Skewness 0.2600 0.1279 0.0936 0.1062 0.2565

Kurtosis 3.1089 2.9553 3.0193 2.9516 3.1308

Bias 0.0003 0.0003 0.0002 0.0001 0.0005

MSE 0.0003 0.0001 0.0001 0.0000 0.0003

True value 0.9000 0.9000 0.9000 0.9000 0.9000

Mean 0.8995 0.8997 0.8999 0.8999 0.8994

SD 0.0077 0.0048 0.0034 0.0028 0.0077

β̂ Skewness -0.2164 -0.0862 -0.0817 -0.0765 -0.2195

Kurtosis 3.0714 3.0224 3.0059 2.9371 3.1058

Bias -0.0005 -0.0003 -0.0001 -0.0001 -0.0006

MSE 0.0001 0.0000 0.0000 0.0000 0.0001

True value 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1006 0.1002 0.1001 0.1001 0.1006

SD 0.0041 0.0025 0.0018 0.0015 0.0041

γ̂ Skewness 0.0290 0.0326 0.0104 0.0417 0.0162

Kurtosis 2.9679 2.9566 3.0047 2.9918 2.9950

Bias 0.0006 0.0002 0.0001 0.0001 0.0006

MSE 0.0000 0.0000 0.0000 0.0000 0.0000

True value 1.1000 1.1000 1.1000 1.1000 1.1000

Mean 1.1014 1.1006 1.1003 1.1002 1.1015

SD 0.0078 0.0049 0.0035 0.0028 0.0079

κ̂ Skewness 0.0140 0.0714 0.0256 0.0194 0.0119

Kurtosis 3.0270 2.9794 2.9850 3.0107 2.9750

Bias 0.0014 0.0006 0.0003 0.0002 0.0015

MSE 0.0001 0.0000 0.0000 0.0000 0.0001

Table B.1: ML estimates by Monte Carlo simulations.
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n 10000 1000000

N 10000 25000 50000 75000 10000

True value 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1003 0.1003 0.1001 0.1000 0.1005

SD 0.0178 0.0112 0.0078 0.0065 0.0178

α̂ Skewness 0.2201 0.1100 0.0618 0.1015 0.2181

Kurtosis 2.8246 2.7334 2.7380 2.7395 2.8320

Bias 0.0003 0.0003 0.0001 0.0000 0.0005

MSE 0.0003 0.0001 0.0001 0.0000 0.0003

True value 0.9000 0.9000 0.9000 0.9000 0.9000

Mean 0.8995 0.8997 0.8999 0.8999 0.8994

SD 0.0075 0.0047 0.0033 0.0027 0.0075

β̂ Skewness -0.1888 -0.0717 -0.0502 -0.0701 -0.1863

Kurtosis 2.8201 2.7656 2.7311 2.7389 2.8172

Bias -0.0005 -0.0003 -0.0001 -0.0001 -0.0006

MSE 0.0001 0.0000 0.0000 0.0000 0.0001

True value 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1006 0.1002 0.1001 0.1001 0.1006

SD 0.0040 0.0025 0.0018 0.0014 0.0040

γ̂ Skewness 0.0241 0.0175 0.0073 0.0319 0.0154

Kurtosis 2.7460 2.7349 2.7493 2.7829 2.7544

Bias 0.0006 0.0002 0.0001 0.0001 0.0006

MSE 0.0000 0.0000 0.0000 0.0000 0.0000

True value 1.1000 1.1000 1.1000 1.1000 1.1000

Mean 1.1014 1.1006 1.1003 1.1002 1.1015

SD 0.0076 0.0048 0.0034 0.0028 0.0077

κ̂ Skewness 0.0086 0.0518 0.0183 0.0162 0.0119

Kurtosis 2.7859 2.7415 2.7525 2.7716 2.7486

Bias 0.0014 0.0006 0.0003 0.0002 0.0015

MSE 0.0001 0.0000 0.0000 0.0000 0.0001

Table B.2: Trimmed ML estimates by Monte Carlo simulations. Trimming

percentage 0.25%.
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B.2 Tables for Chapter 4

Remark B.1 In Tables B.3-B.4, columns are enumerated from 1 to 6 accord-

ing to the following conventions:

1. CPU time (min),

2. Euclidean distance to the true value (min),

3. Number of evaluations (min),

4. Function value at the MLE (max),

5. Euclidean distance to the true value (min) and function value at the MLE

(max),

6. Number of evaluations (min) and Euclidean distance to the true value

(min) and function value at the MLE (max),

where in parentheses the desired objective is indicated.
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1 2 3 4 5 6
δ

=
10

NM 172 484 247 35 17 8

NM-BFGS 815 514 745 963 496 377

NM 3 478 38 135 56 5

BFGS 995 520 958 863 441 422

NM-BFGS 19 447 74 733 329 23

BFGS 979 551 919 261 144 125

δ
=

50

NM 249 477 335 37 16 9

NM-BFGS 743 521 656 961 500 333

NM 14 475 58 135 68 3

BFGS 983 523 939 863 456 422

NM-BFGS 16 489 59 712 363 24

BFGS 980 509 938 285 159 149

δ
=

90

NM 352 446 437 35 16 14

NM-BFGS 636 550 556 960 531 286

NM 63 451 139 97 50 3

BFGS 931 545 857 899 498 390

NM-BFGS 43 503 115 674 338 30

BFGS 952 493 876 316 154 126

Table B.3: Counts: Pairwise comparisons for samples of size 10000.
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1 2 3 4 5 6
δ

=
10

NM 289 465 436 110 58 42

NM-BFGS 710 535 560 890 483 288

NM 6 469 48 134 60 0

BFGS 994 531 951 866 457 437

NM-BFGS 16 496 61 587 283 20

BFGS 984 504 936 412 200 187

δ
=

50

NM 368 504 518 122 67 47

NM-BFGS 626 494 476 876 439 221

NM 19 493 79 130 64 6

BFGS 979 505 916 868 439 393

NM-BFGS 15 502 55 560 281 20

BFGS 983 496 942 437 217 201

δ
=

90

NM 443 403 550 92 45 31

NM-BFGS 555 596 445 907 549 225

NM 122 412 203 105 56 8

BFGS 877 587 794 893 537 367

NM-BFGS 74 518 178 574 307 35

BFGS 925 481 821 424 214 164

Table B.4: Counts: Pairwise comparisons for samples of size 50000.
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m

Method 1 Method 2 2 3 4

N
=

10
00

0

δ
=

10

NM NM-BFGS 998 967 220

NM BFGS 998 942 188

NM-BFGS BFGS 998 973 716

δ
=

50

NM NM-BFGS 984 956 214

NM BFGS 984 921 183

NM-BFGS BFGS 998 968 716

δ
=

90

NM NM-BFGS 909 828 151

NM BFGS 909 811 132

NM-BFGS BFGS 989 960 703

N
=

50
00

0

δ
=

10

NM NM-BFGS 998 963 202

NM BFGS 998 940 173

NM-BFGS BFGS 1000 976 635

δ
=

50

NM NM-BFGS 982 944 177

NM BFGS 982 931 178

NM-BFGS BFGS 998 981 633

δ
=

90

NM NM-BFGS 864 780 122

NM BFGS 863 752 113

NM-BFGS BFGS 990 955 623

Table B.5: Counts: Coincidence of estimates up to 2, 3, and 4 decimal places.
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Appendix C

C and R codes for Chapter 2

C.1 C codes for Section 2.3

/***********************************************************/

/* Simulating BS-ACD(1,1) samples */

/***********************************************************/

#include <R.h>

#include <Rmath.h>

void bssample(double *param, long *n, double *result) {

long i; double z,zstar[*n+1],lns0,lns,bs[*n],a,b,g,k;

a=param[0]; b=param[1]; g=param[2]; k=param[3];

GetRNGstate();

for(i=0;i<*n+1;i++){

z=rnorm(0,1);

zstar[i] =pow(k*z/2.0

+sqrt(pow(k*z/2.0,2.0)+1.0),2.0);

}
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PutRNGstate();

lns0=0.0; result[0]=0.0; bs[0]=0.0;

for(i=1;i<*n+1;i++){

lns = a+b*lns0+g*zstar[i-1];

bs[i-1] = exp(lns)*zstar[i];

lns0=lns; result[i-1]=bs[i-1];

}

}

/***********************************************************/

/* Computing the conditional medians */

/***********************************************************/

#include <R.h>

#include <Rmath.h>

void sigma_seq(double *param, double *ts, long *nts,

double *sigmainit, double *result){

long i; double lns_old, lns_new, s[*nts], a,b,g;

s[0]=*sigmainit; lns_old=log(s[0]);

result[0]=s[0];

a=param[0]; b=param[1]; g=param[2];

for(i=1; i < *nts; i++) {

lns_new=a+b*lns_old+g*ts[i-1]/s[i-1];

s[i]=exp(lns_new); lns_old=lns_new; result[i]=s[i];

}

}

/***********************************************************/

/* Computing the log-ML function */

/***********************************************************/
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#include <R.h>

#include <Rmath.h>

void MaxL(double *kk, double *ts, long *nts, double *s,

double *result) {

long i; double logML=0.0;

for(i=0; i < *nts; i++) {

logML=logML-log(*kk)-log(s[i])+log(sqrt(s[i]/ts[i])

+pow(s[i]/ts[i],1.5))-0.5/((*kk)*(*kk))

*(ts[i]/s[i]+s[i]/ts[i]-2.0);

}

*result=logML;

}

/***********************************************************/

/* Computing the gradient of conditional medians */

/***********************************************************/

#include<R.h>

#include<Rmath.h>

void gradSigma(double *param, double *ts, long *nts,

double *s, double *dsdpar) {

long i; double a,b,g;

a=param[0]; b=param[1]; g=param[2];

dsdpar[0]=0;dsdpar[1]=0;dsdpar[2]=0;

dsdpar[3]=s[1];dsdpar[4]=s[1]*log(s[0]);

dsdpar[5]=s[1]*ts[0]/s[0];

for(i=2; i < *nts; i++) {

dsdpar[(3*i)]=s[i]*(1.0+(1.0/s[i-1])

*dsdpar[(3*i-3)]*(b-g*ts[i-1]/s[i-1]));
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dsdpar[(3*i+1)]=s[i]*(log(s[i-1])+(1.0/s[i-1])

*dsdpar[(3*i-2)]*(b-g*ts[i-1]/s[i-1]));

dsdpar[(3*i+2)]=(s[i]/s[i-1])*(ts[i-1]+dsdpar[(3*i-1)]

*(b-g*ts[i-1]/s[i-1]));

}

}

/***********************************************************/

/* Computing the gradient of the log-ML function */

/***********************************************************/

#include <R.h>

#include <Rmath.h>

void gradML(double *k, double *ts, long *nts, double *s,

double *dsdpar, double *gr) {

long i; double dfds;

gr[0]=0.0;gr[1]=0.0;gr[2]=0.0;gr[3]=0.0;

for(i=0; i < *nts; i++) {

dfds=-0.5*(ts[i]-s[i])*(-ts[i]*ts[i]-2*ts[i]*s[i]

+s[i]*ts[i]*(*k)*(*k)-s[i]*s[i])/(s[i]*s[i]

*ts[i]*(ts[i]+s[i])*(*k)*(*k));

gr[0]=gr[0]+dfds*dsdpar[3*i];

gr[1]=gr[1]+dfds*dsdpar[3*i+1];

gr[2]=gr[2]+dfds*dsdpar[3*i+2];

gr[3]=gr[3]-(s[i]*ts[i]*(*k)*(*k)-ts[i]*ts[i]

-s[i]*s[i]+2*ts[i]*s[i])/((*k)*(*k)*(*k)

*ts[i]*s[i]);

}

}
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/***********************************************************/

C.2 R codes for Section 2.3

#############################################################

# R wrappers for C codes #

#############################################################

# Load shared objects

dyn.load("BSnumGen.so")

dyn.load("Sigma.so")

dyn.load("MLC.so")

dyn.load("gradSigma.so")

dyn.load("gradML.so")

# Wrapper for generating BS-ACD(1,1) samples

BS.C <- function(param,nn){

bs <- .C("bssample",as.double(param),as.integer(nn),

result=double(nn))

bs[["result"]]

}

# Wrapper for conditional medians

sig.C <- function(param,ts){

nn <-length(ts)

s_init<-init(ts)$sigma.init

sig <- .C("sigma_seq",as.double(param),as.double(ts),

as.integer(nn),as.double(s_init),result=double(length(ts)))

sig[["result"]]

}
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# Wrapper for the log-ML function to be used by

# the Nelder-Mead method

ML.C2 <- function(param3, kk,ts){

s<-sig.C(param3[1:3],ts)

nn<-length(ts)

MaxLC <- .C("MaxL",as.double(kk),as.double(ts),

as.integer(nn),as.double(s),result=double(1))

MaxLC[["result"]]

}

# Wrapper for the log-ML function to be used by

# the BFGS method

ML.C <- function(param4, ts){

kk<-param4[4]

s<-sig.C(param4[1:3],ts)

nn<-length(ts)

MaxLC <- .C("MaxL",as.double(kk),as.double(ts),

as.integer(nn),as.double(s),result=double(1))

MaxLC[["result"]]

}

# Wrapper for the gradient of conditional medians

GradSig.C <- function(param,ts,s){

nn <-length(ts)

GradSig <- .C("gradSigma",as.double(param),

as.double(ts),as.integer(nn),as.double(s),

result=double(3*nn))

GradSig[["result"]]

}
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# Wrapper for the gradient of the log-ML function

GradML.C <- function(param,ts){

nn <-length(ts)

kk<-param[4]

s<-sig.C(param[1:3],ts)

dsdpar<-GradSig.C(param[1:3],ts,s)

GradML <- .C("gradML",as.double(kk),as.double(ts),

as.integer(nn),as.double(s),as.double(dsdpar),

result=double(4))

GradML[["result"]]

}

#############################################################

# Initialization estimate for kappa and sigma #

#############################################################

init = function(ts){

k.init=sqrt(2*(mean(ts)/median(ts)-1))

sigma.init=median(ts)

return(list(k.init = k.init, sigma.init = sigma.init))

}

#############################################################

# Main Function for ML estimation of the BS-ACD(1,1) model #

#############################################################

SimNMBF <- function(param,iniest,samsize,simnum,start){

coef.NMBF<-matrix(rep(NA,19*simnum),ncol=19)

for (j in start:simnum){

# Generate a BS-ACD(1,1) sample

sam<-BS.C(param,samsize)
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# Calculate descriptive statistics

d.stat<-c(mean(sam),median(sam),var(sam))

# Starting value of the estimate

est0<-c(iniest,init(sam)$k.init)

t0<-proc.time()

coef.NMBF[j,1:15]<-Opt(1,param,est0,sam)

coef.NMBF[j,16:18]<-d.stat

coef.NMBF[j,19]<-proc.time()-t0

}

return(coef.NMBF)

}

#############################################################

# Realization of three optimization methods #

#############################################################

Opt<-function(method,param,est0,ts){

# Values for method:

# 0 for Nelder-Mead alone;

# 1 for Nelder-Mead and BFGS;

# 2 for BFGS alone;

if (method==0){

vec<-rep(NA,12)

p<-optim(est0,fn=ML.C,gr=NULL,ts=ts,

method ="Nelder-Mead",

control = list(maxit=5000,fnscale=-1),

hessian = FALSE)

vec[1:8]<-c(p$par,est0)

vec[9]<-p$value
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vec[10]<-sqrt(sum((param-p$par)^2))

vec[11]<-p$counts[1];vec[12]<-p$convergence

}

if (method==1){

vec<-rep(NA,15)

p<-optim(est0[1:3],fn=ML.C2,gr=NULL,

kk=est0[4],ts=ts,

method ="Nelder-Mead",

control = list(maxit=5000,fnscale=-1),

hessian = FALSE)

q<-optim(c(p$par,est0[4]),fn=ML.C,gr=GradML.C,

ts=ts,method ="BFGS",

control = list(maxit=5000,fnscale=-1),

hessian = FALSE)

vec[1:8]<-c(q$par,est0)

vec[9]<-q$value

vec[10]<-sqrt(sum((param-q$par)^2))

vec[11]<-p$counts[1];vec[12]<-q$counts[1];

vec[13]<-q$counts[2]

vec[14]<-p$convergence;vec[15]<-q$convergence

}

if (method==2){

vec<-rep(NA,13)

q<-optim(est0,fn=ML.C,gr=GradML.C,ts=ts,

method ="BFGS",

control = list(maxit=5000,fnscale=-1),

hessian = FALSE)
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vec[1:8]<-c(q$par,est0);vec[9]<-q$value

vec[10]<-sqrt(sum((param-q$par)^2))

vec[11]<-q$counts[1];vec[12]<-q$counts[2];

vec[13]<-q$convergence

}

return(vec)

}

#############################################################

C.3 R codes for Section 2.4

#############################################################

# Computation of skewness, kurtosis, bias, and MSE #

#############################################################

skew<-function(ts){

n<-length(ts)

sk<-sqrt(n*(n-1))/(n-2)*mean((ts-mean(ts))^3)/(sd(ts))^3

return(sk)

}

kurt<-function(ts){

n<-length(ts)

kur<-mean((ts-mean(ts))^4)/(sd(ts))^4

return(kur)

}

bias<-function(trueparam,ts){

b<-mean(ts)-trueparam

return(b)
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}

MSE<-function(trueparam,ts){

ms<-mean((ts-trueparam)^2)

return(ms)

}

#############################################################

# Summary of the statistics of interest #

#############################################################

DescrStats <- function(trueparam,ts,k){# ts is a matrix

coef<-matrix(rep(NA,6*4),ncol=4)

coef[1,]<-c(trueparam[1],trueparam[2],

trueparam[3],trueparam[4]) #true parameters

coef[2,]<-apply(ts,2,mean) #mean

coef[3,]<-apply(ts,2,skew) #skewness

coef[4,]<-apply(ts,2,kurt) #kurtosis

coef[5,]<-c(bias(trueparam[1],ts[,1]),bias(trueparam[2],

ts[,2]),bias(trueparam[3],ts[,3]),

bias(trueparam[4],ts[,4])) #bias

coef[6,]<-c(MSE(trueparam[1],ts[,1]),MSE(trueparam[2],

ts[,2]),MSE(trueparam[3],ts[,3]),MSE(trueparam[4],

ts[,4])) #MSE

return(round(coef,k))

}

#############################################################

# Quantile plots of trimmed MLE’s and N(0,1) r.v. #

#############################################################

QPlots<-function(param,simnum,trim,sort=TRUE, std=TRUE,var){
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if (var==1){letter<-"alpha"};if (var==2){letter<-"beta"}

if (var==3){letter<-"gamma"};if (var==4){letter<-"kappa"}

z<-rnorm(simnum);z<-sort(z);

lb<-floor(simnum*trim/100);rb<-simnum-lb+1

z<-z[-union(1:lb,rb:simnum)]

z<-(z-min(z))/(max(z)-min(z))

if (sort==TRUE){p<-sort(param)} else {p<-param}

if (std==TRUE){p<-(p-mean(p))/sd(p)}

p<-p[-union(1:lb,rb:simnum)];

p<-(p-min(p))/(max(p)-min(p))

qn<-quantile(z,probs=c(0.01,0.05,0.10,0.25,

0.50,0.75,0.90,0.95,0.99))

q<-quantile(p,probs=c(0.01,0.05,0.10,0.25,

0.50,0.75,0.90,0.95,0.99))

yrange<-max(max(qn),max(q));vec<-c(1,5,10,25,

50,75,90,95,99)

L<-paste(vec,"%",sep="")

plot(seq(1,9), qn,type="l",col="black",xlab="",

ylab="",lwd=2.5,axes=F)

par(new=TRUE)

plot(seq(1,9), q,type="b",pch=19,col="red",xlab="",

ylab="",axes=F,lwd=2.5,

main=paste("Quantile plot for ",letter,sep=""))

legend(1.0,max(q),c("Standard Normal","MLE"),bty="n",

lty=c(1,1),lwd=c(2.5,2.5),pch=c(-1,19),

col=c("black","red"))

axis(1, at=seq(1,9), labels = L, cex.axis = 0.75)
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axis(2, at=seq(0,yrange,by=0.01),cex.axis = 0.75)

}

#############################################################

# Distance between quantile curves of trimmed MLE’s #

# and N(0,1) r.v. #

#############################################################

QDist<-function(est,simnum,trim,std=FALSE){

z<-rnorm(simnum);z<-sort(z);

lb<-floor(simnum*trim/100);rb<-simnum-lb+1;

z<-z[-union(1:lb,rb:simnum)]

z<-(z-min(z))/(max(z)-min(z))

est1<-apply(est[,1:4],2,sort)

if (std==TRUE){est1<-apply(est1[,1:4],2,

function(x) (x-mean(x))/sd(x))}

est1<-est1[-union(1:lb,rb:simnum),]

est1<-apply(est1,2,function(x)

(x-min(x))/(max(x)-min(x)))

qn<-quantile(z,probs=seq(0,1,by=0.01))

q<-apply(est1,2,function(x)

quantile(x,probs=seq(0,1,by=0.01)))

dist<-apply(q,2,function(x) max(abs(x-qn)))

return(dist)

}

# Critical values of the test statistic.

QDistCrit<-function(dist){

critdist<-apply(dist,2,function(x)

quantile(x,probs=c(0.90,0.95,0.99)))
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return(critdist)

}

#############################################################

# 1000 runs of the CVM, JB, and DA tests for normality #

#############################################################

library(fBasics) # For the JB and DA tests

library(nortest) # For the CVM test

x <- replicate(1000,{ # generates 1000 different tests on

each distribution

c(cvm.test(rnorm(1000)+c(1,0,2,0,1))$p.value,

cvm.test(rnorm(5000)+c(1,0,2,0,1))$p.value,

cvm.test(rnorm(10000)+c(1,0,2,0,1))$p.value,

cvm.test(rnorm(25000)+c(1,0,2,0,1))$p.value,

cvm.test(rnorm(50000)+c(1,0,2,0,1))$p.value,

cvm.test(rnorm(75000)+c(1,0,2,0,1))$p.value,

cvm.test(rnorm(100000)+c(1,0,2,0,1))$p.value)

}

)

rowMeans(x<0.05) # the proportion of significant deviations

y <- replicate(1000,{

c(jarqueberaTest(rnorm(1000)+c(1,0,2,0,1))@test$p.value,

jarqueberaTest(rnorm(5000)+c(1,0,2,0,1))@test$p.value,

jarqueberaTest(rnorm(10000)+c(1,0,2,0,1))@test$p.value,

jarqueberaTest(rnorm(25000)+c(1,0,2,0,1))@test$p.value,

jarqueberaTest(rnorm(50000)+c(1,0,2,0,1))@test$p.value,

jarqueberaTest(rnorm(75000)+c(1,0,2,0,1))@test$p.value,

jarqueberaTest(rnorm(100000)+c(1,0,2,0,1))@test$p.value)
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}

)

rowMeans(y<0.05)

z <- replicate(1000,{

c(dagoTest(rnorm(1000)+c(1,0,2,0,1))@test$p.value[1],

dagoTest(rnorm(5000)+c(1,0,2,0,1))@test$p.value[1],

dagoTest(rnorm(10000)+c(1,0,2,0,1))@test$p.value[1],

dagoTest(rnorm(25000)+c(1,0,2,0,1))@test$p.value[1],

dagoTest(rnorm(50000)+c(1,0,2,0,1))@test$p.value[1],

dagoTest(rnorm(75000)+c(1,0,2,0,1))@test$p.value[1],

dagoTest(rnorm(100000)+c(1,0,2,0,1))@test$p.value[1])

}

)

rowMeans(z<0.05) # the proportion of significant deviations

#############################################################
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C and R codes for Chapter 3

D.1 C codes for Section 3.2

/***********************************************************/

/* Differences for diurnal pattern removal */

/***********************************************************/

#include <R.h>

#include <Rmath.h>

void differ(long *node, long *times, long *ntimes,

long *result){

int j;long k,i=0;

for (j=0;j<13;j++){

for(k=1; k < *ntimes; k++){

if (times[k]-node[j]>0){

result[i]=times[k]-node[j];

}

else{
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result[i]=0;

}

i=i+1;

}

}

}

/***********************************************************/

/* Removal of trades taken place between 09:30-09:59 */

/***********************************************************/

#include <R.h>

#include <Rmath.h>

void truncate(long *times, long *ntimes, double *duradj,

double *result){

long k;

for(k=0; k < *ntimes; k++){

if (times[k]>=36000){

result[k]=duradj[k];

}

}

}

/***********************************************************/

D.2 R codes for Section 3.2

#############################################################

# R wrappers for C codes #

#############################################################
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# Load shared objects

dyn.load("Season.so")

dyn.load("Trunc.so")

dyn.load("Sigma.so")

dyn.load("MLC.so")

dyn.load("gradSigma.so")

dyn.load("gradML.so")

# Wrapper for differences

diff.C <- function(nodes,times){

n <-length(times)

m <-(n-1)*13

dif <- .C("differ",as.integer(nodes),as.integer(times),

as.integer(n),result=integer(m))

dif[["result"]]

}

# Wrapper for trimming trades

trunc.C <- function(data){

dataset<-data[-1,]

n <-dim(dataset)[1]

tr <- .C("truncate",as.integer(dataset$TIME),

as.integer(n),as.double(dataset$X_adj),

result=double(n))

tr[["result"]]

}

# Wrapper for the log-ML function to be used by

# the BFGS method

ML.C <- function(param, dataset){
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ts<-dataset$X_trunc[dataset$X_trunc!=0]

s<-sigma.real(param[1:3],dataset)

nn<-length(ts); kk<-param[4]

MaxLC <- .C("MaxL",as.double(kk),as.double(ts),

as.integer(nn),as.double(s),

result=double(length(kk)))

MaxLC[["result"]]

}

# Wrapper for the log-ML function to be used by

# the Nelder-Mead method

ML.C2<- function(param,kk,dataset){

ts<-dataset$X_trunc[dataset$X_trunc!=0]

s<-sigma.real(param,dataset)

nn<-length(ts)

MaxLC <- .C("MaxL",as.double(kk),as.double(ts),

as.integer(nn),as.double(s),

result=double(length(kk)))

MaxLC[["result"]]

}

# Wrapper for the gradient of conditional medians

GradSig.C <- function(param,dataset,s){

ts<-dataset$X_trunc[dataset$X_trunc!=0]

nn <-length(ts)

GradSig <- .C("gradSigma",as.double(param),

as.double(ts),as.integer(nn),as.double(s),

result=double(3*nn))

GradSig[["result"]]
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}

# Wrapper for the gradient of the log-ML function

GradML.C <- function(param,dataset){

ts<-dataset$X_trunc[dataset$X_trunc!=0]

nn <-length(ts)

kk<-param[4]

s<-sigma.real(param[1:3],dataset)

dsdpar<-GradSig.C(param[1:3],dataset,s)

GradML <- .C("gradML",as.double(kk),as.double(ts),

as.integer(nn),as.double(s),as.double(dsdpar),

result=double(4))

GradML[["result"]]

}

#############################################################

# Description of data #

#############################################################

#source("data_read.R")

#mydata[1,]

# DATE TIME X vol total_valu ave_price hour half open

#2002-01-02 35420 13 1000 48620 48.62 9 9 1

# DATE = date

# TIME = time from midnight in seconds

# X = duration between trades in seconds

# total_valu = total value of trade (shares * price)

# ave_price = average price

# hour = trading hour

# half = h.1 for first half hour and h.2 for second
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# half hour for hours 10-15

# open = 0/1 opening trade of that trading day

#

# Note: total_valu is computed from compressed trades, i.e.

# multiple trades occurring at the same time are aggregated

# in volume, total value and used to compute an average price

# at that point in time

#############################################################

# Removal of diurnal pattern #

#############################################################

# Load useful libraries

# For importing datasets:

library(foreign)

# For accurate computation of Hessian matrix

library(numDeriv)

# Function to fit regression

fitting<-function(data){

counter<-1

dat.lab <- paste("data$dat", 1:13, "[-1]",sep="")

fmla <- as.formula(paste("data$log_dur[-1] ~ ",

paste(dat.lab, collapse= "+")))

fitt<-lm(fmla)

summ<-summary(fitt)$coefficients[-1,4]

num<-which(summ<0.05);v<-length(summ)

if ((v==length(num))||(length(num)==0)){

return(list(fit=fitted(fitt),count=counter,
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summary=summary(fitt)))

}

else{

continue<-TRUE

while(continue){

dat.lab <- paste("data$dat", num, "[-1]",sep="")

fmla <- as.formula(paste("data$log_dur[-1] ~ ",

paste(dat.lab, collapse= "+")))

fit<-lm(fmla)

counter<-counter+1

summ<-summary(fit)$coefficients[-1,4]

num<-which(summ<0.05)

v<-length(summ)

if (v==length(num)){

continue<-FALSE

return(list(fit=fitted(fit),count=counter,

summary=summary(fit)))

}

else if (length(num)==0){

continue<-FALSE

return(list(fit=fitted(fitt),count=counter,

summary=summary(fitt)))

}

}

}

}

# Main function to remove diurnal pattern
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Deseason <-function(dataname){

data<-read.dbf(paste(dataname,"_trades.dbf",sep=""))

n<-dim(data)[1]

data<-cbind(data,matrix(rep(NA,17*n),ncol=17))

colnames(data)[10:22]<-c("dat1","dat2","dat3","dat4",

"dat5","dat6","dat7","dat8","dat9",

"dat10","dat11","dat12","dat13")

colnames(data)[23:26]<-c("log_dur","log_dur_fit",

"X_adj","X_trunc")

node<-rep(NA,13)

for (j in 1:13){

if (j%%2==0){node[j]<-(9+(j%/%2))*3600}

else {node[j]<-(9+(j-1)%/%2)*3600+30*60}

}

dif<-diff.C(node,data[,2])

dif<-matrix(dif,ncol=length(node))

data[-1,10:22]<-dif

data[,23]<-log(data$X)

data[-1,24]<-(fitting(data))$fit

data[-1,25]<-exp(data[-1,23]-data[-1,24])

data[-1,26]<-trunc.C(data)

return(data)

}

#############################################################
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D.3 R codes for Section 3.3

#############################################################

# Initialization of conditional median and kappa #

#############################################################

init.real<-function(data){

dates<-unique(data$DATE)

m<-length(dates)

med<-numeric(m); kk<-numeric(m); k.init<-numeric(m)

t0950<-9*3600+50*60; t1000<-10*3600

for (i in 1:m){

expr<-median(data$X_adj[(data$TIME>=t0950)

&(data$TIME<t1000)&(data$DATE==dates[i])])

med[i]<-expr

}

return(sigma.init = med)

}

k.init = function(dataset){

ts<-dataset$X_trunc[dataset$X_trunc!=0]

k.init=sqrt(2*(mean(ts)/median(ts)-1))

return(k.init)

}

#############################################################

# Conditional median dynamics #

#############################################################

sigma.real <- function(param,dataset){

s_init<-init.real(dataset); l<-length(s_init)
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dates<-unique(dataset$DATE)

for (i in 1:l){

ts <-dataset$X_trunc[(dataset$DATE==dates[i])

&(dataset$X_trunc!=0)]

nn <-length(ts); s0<-s_init[i]

sig<-.C("sigma_seq",as.double(param),as.double(ts),

as.integer(nn),as.double(s0),result=double(nn))

sig<-sig[["result"]]

if (i==1){sigma<-sig}

else {sigma<-c(sigma,sig)}

}

return(sigma)

}

#############################################################

# Estimation of the BS-ACD(1,1) parameters #

#############################################################

DataEst <- function(iniest,dataset){

t0<-proc.time()

est0<-c(iniest,k.init(dataset))

coef<-matrix(rep(NA,8),ncol=8)

p<-optim(est0[1:3],fn=ML.C2,gr=NULL,est0[4],dataset,

method ="Nelder-Mead",

control = list(maxit=5000,fnscale=-1),

hessian = FALSE)

q<-optim(c(p$par,est0[4]),fn=ML.C,gr=GradML.C,dataset,

method ="BFGS",

control = list(maxit=5000,fnscale=-1),
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hessian = TRUE)

coef[,1:4]<-q$par;

coef[,5:8]<-(-1)*diag(solve(q$hessian))

t<-proc.time()-t0

return(list(estim=coef,time=t))

}

#############################################################

# Example: SLB dataset #

#############################################################

company<-"slb"

data<-Deseason(company)

data1<-data[-1,]

init.guess<-c(-0.03,0.8,0.01)

est<-DataEst(init.guess,data1)

MLE<-est$estim[1:4]

#############################################################

# Goodness-of-Fit #

#############################################################

# Cox-Snell residuals

CoxSnellres<-function(param,dataset){

ts<-dataset$X_trunc[dataset$X_trunc!=0]

s<-sigma.real(param[1:3],dataset)

k<-param[4]; arg<-(1/k)*(sqrt(ts/s)-sqrt(s/ts))

res<--log(1-pnorm(arg))

q<-quantile(res,probs=c(0.01,0.05,0.10,0.25,0.50,

0.75,0.90,0.95,0.99))

return(list(res=res,quant=q))
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}

# QQ-plots: Cox-Snell residuals and Exp(1) r.v.

QPlots<-function(MLE,dataset){

qe<-qexp(c(0.01,0.05,0.10,0.25,0.50,0.75,0.90,0.95,0.99))

q<-CoxSnellres(MLE,dataset)$quant

vec<-c(1,5,10,25,50,75,90,95,99)

L<-paste(vec,"%",sep="")

plot(seq(1,9), qe,type="l",col="black",xlab="",

ylab="",lwd=2.5,axes=F)

par(new=TRUE)

plot(seq(1,9), q,type="l",col="red",xlab="",

ylab="",axes=F,lwd=2.5)

legend(6.0,1.0,c("Exp(1)","BS-ACD(1,1) Residuals"),

lty=c(1,1),lwd=c(2.5,2.5),col=c("black","red"))

axis(1, at=seq(1,9), labels = L, cex.axis = 0.75)

axis(2, at=seq(0,5,by=0.1),cex.axis = 0.75)

}

# Visual checks of goodness-of-fit

# QQ plot of Cox-Snell residuals

QPlots(MLE,data1)

# Histogram of Cox-Snell residuals

truehist(CoxSnellres(MLE,data1)$res,xlab="",xlim=c(0,8),

ymax=1,col="lightblue")

lines(seq(0,8,by=0.1),dexp(seq(0,8,by=0.1)),

lwd=2.5,col="black")

#############################################################

# Standard errors #
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#############################################################

# Mean of Cox-Snell residuals

meanRes<-mean(CoxSnellres(MLE,data1)$res)

# Accurate Hessian matrix at MLE

hes<-hessian(ML.C,MLE,method="Richardson",

method.args=list(),dataset=data1)

# Gradient at MLE

gr<-GradML.C(MLE,dataset=data1)

# Inverse of the robust (White) covariance matrix

rob.cov<-solve(hes)%*%gr%*%t(gr)%*%solve(hes)

# Standard errors

std.err<-sqrt(diag(rob.cov))

#############################################################
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R codes for Chapter 4

Remark E.1 Note that only new functions are listed. Functions from Ap-

pendix C are used without notice.

E.1 Estimation

#############################################################

# Draw initial values at random at a predefined distance #

# from the true value (0.1,0.9,0.1) #

#############################################################

UnifRN<-function(param,prop){

n<-length(param); vec<-rep(NA,n)

if (n==3){

vec[1]<-runif(1, min=param[1]*(1-prop/100),

max=param[1]*(1+prop/100))

vec[2]<-runif(1, min=param[2]*(1-prop/100),

max=min(param[2]*(1+prop/100),1-(1e-4)))
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vec[3]<-runif(1, min=param[3]*(1-prop/100),

max=param[3]*(1+prop/100))

}

return(vec)

}

# Main function to do simulations

SimACD <- function(param,prop,samsize,simnum){

coef.NM<-matrix(rep(NA,16*simnum),ncol=16)

coef.NMBF<-matrix(rep(NA,19*simnum),ncol=19)

coef.BF<-matrix(rep(NA,17*simnum),ncol=17)

for (j in 1:simnum){

iniest<-UnifRN(param[1:3],prop)

sam<-BS.C(param,samsize)

d.stat<-c(mean(sam),median(sam),var(sam))

est0<-c(iniest,init(sam)$k.init)

t0<-proc.time()

coef.NM[j,1:12]<-Opt(0,param,est0,sam)

coef.NM[j,13:15]<-d.stat

coef.NM[j,16]<-(proc.time()-t0)[3]

t0<-proc.time()

coef.NMBF[j,1:15]<-Opt(1,param,est0,sam)

coef.NMBF[j,16:18]<-d.stat

coef.NMBF[j,19]<-(proc.time()-t0)[3]

t0<-proc.time()

coef.BF[j,1:13]<-Opt(2,param,est0,sam)

coef.BF[j,14:16]<-d.stat

coef.BF[j,17]<-(proc.time()-t0)[3]
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}

return(list(NM=coef.NM,NMBF=coef.NMBF,BF=coef.BF))

}

#############################################################

E.2 Processing

#############################################################

# Evaluation of the performance of the NM, BF, and NM-BFGS #

# methods by various criteria #

#############################################################

# Pairwise comparison:

Compare2 <- function(data1,data2,ind1,ind2){

#Assume all pathological cases have been removed.

#Values for ind1, ind2:

#0 for NM, 1 for NM-BFGS, 2 for BFGS.

#Compare performance of two 2 methods based on

# COUNTING how many times the following are attained:

#1. Average time (min)

#2. Average distance to true value (min)

#3. Average number of evaluations (min)

#4. Average function value at MLE (max)

#5. Average distance (min) AND function value (max)

#6. Average number of eval (min) AND Average distance (min)

# AND function value (MAX)

perf<-matrix(rep(0,12),ncol=6)

n<-dim(data1)[1]
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#time

perf[1,1]<-length(which(data1[,12]<data2[,12]))

perf[2,1]<-length(which(data1[,12]>data2[,12]))

#distance

perf[1,2]<-length(which(data1[,10]<data2[,10]))

perf[2,2]<-length(which(data1[,10]>data2[,10]))

#Eval

perf[1,3]<-length(which(data1[,11]<data2[,11]))

perf[2,3]<-length(which(data1[,11]>data2[,11]))

#fval

perf[1,4]<-length(which(data1[,9]>data2[,9]))

perf[2,4]<-length(which(data1[,9]<data2[,9]))

#distance and fval

perf[1,5]<-length(which((data1[,10]<data2[,10])

&(data1[,9]>data2[,9])))

perf[2,5]<-length(which((data1[,10]>data2[,10])

&(data1[,9]<data2[,9])))

#distance and fval and eval number

perf[1,6]<-length(which((data1[,10]<data2[,10])

&(data1[,9]>data2[,9])&(data1[,11]<data2[,11])))

perf[2,6]<-length(which((data1[,10]>data2[,10])

&(data1[,9]<data2[,9])&(data1[,11]>data2[,11])))

if (ind1==0){a<-"NM"}else if (ind1==1){a<-"NM-BFGS"}

if (ind2==1){b<-"NM-BFGS"}else if (ind2==2){b<-"BFGS"}

rownames(perf)<-c(a,b)

colnames(perf)<-c("Min time","Min distance",

"Min number of Eval","Max fval",
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"Min dist AND Max fval",

"Min dist AND Max fval AND Min Numb of Eval")

return(perf)

}

# Overall comparison:

Compare3 <- function(data1,data2,data3){

#Assume data1 - NM, data2- NMBF, data3 - BF.

#Compare overall performance of 3 methods based on

#1. Average distance to true value

#2. Average number of evaluations

#3. Average time (sec)

#4. Maximum distance

perf<-matrix(rep(NA,15),ncol=5)

perf[1,3:5]<-apply(data1[,10:12],2,mean)

perf[2,3:5]<-apply(data2[,10:12],2,mean)

perf[3,3:5]<-apply(data3[,10:12],2,mean)

perf[1,1]<-min(data1[,10]);perf[2,1]<-min(data2[,10]);

perf[3,1]<-min(data3[,10]);

perf[1,2]<-max(data1[,10]);perf[2,2]<-max(data2[,10]);

perf[3,2]<-max(data3[,10]);

colnames(perf)<-c("Minimal distance","Maximal distance",

"Average distance","Average number of evaluations",

"Average time (sec)")

rownames(perf)<-c("NM","NM-BFGS","BFGS")

return(perf)

}

# Number of simultaneous coincidences of quadruples
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# (a,b,g,k) up to k=2,3,4 digits after decimal point:

IdMatr<-function(data1,data2,data3){

perf<-rep(NA,3); j<-1

for (k in c(2,3,4)){

perf<-cbind(perf,IdCol(data1,data2,data3,k))

j<-j+1

}

return(perf[,-1])

}

IdCol<-function(data1,data2,data3,k){

perf<-rep(NA,3)

perf[1]<-length(which((abs(data1[,1]-data2[,1])<=10^(-k))

&(abs(data1[,2]-data2[,2])<=10^(-k))

&(abs(data1[,3]-data2[,3])<=10^(-k))

&(abs(data1[,4]-data2[,4])<=10^(-k))))

perf[2]<-length(which((abs(data1[,1]-data3[,1])<=10^(-k))

&(abs(data1[,2]-data3[,2])<=10^(-k))

&(abs(data1[,3]-data3[,3])<=10^(-k))

&(abs(data1[,4]-data3[,4])<=10^(-k))))

perf[3]<-length(which((abs(data2[,1]-data3[,1])<=10^(-k))

&(abs(data2[,2]-data3[,2])<=10^(-k))

&(abs(data2[,3]-data3[,3])<=10^(-k))

&(abs(data2[,4]-data3[,4])<=10^(-k))))

return(perf)

}

#############################################################
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