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Abstract

In this thesis, noncoherent cooperative amplify-and-forward (AF) half-duplex relay

systems and wireless communication systems equipped with a single transmitter an-

tenna and multiple receiver antennas (SIMO) are considered, in which perfect channel

information is unavailable at the destination end. For the AF half-duplex relay sys-

tems, the use of the least square error (LSE) receiver is proposed for detection. By

using perturbation theory on the eigenvalues, an asymptotic formula of pairwise error

probability for the LSE detector is derived. The result shows that the full diversity

gain function mimics coherent cooperative AF half-duplex relay systems, whereas the

coding gain function mimics noncoherent multi-inputs multi-outputs (MIMO) sys-

tems. In addition, it is proved that for any given nonzero received signal, the unique

blind identification of both the equivalent channel and the transmitted signals in a

noise-free case is equivalent to full diversity with the LSE detector in a Gaussian noise

environment.

In order to design full diversity noncoherent signals for both systems, a novel

concept called a uniquely factorable constellation (UFC) is proposed in this thesis.

It is proved that such a UFC design guarantees the unique blind identification of

channel coefficients and transmitted signals in a noise-free case for the SIMO channel

by only processing two received signals, as well as full diversity with the noncoherent
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maximum likelihood (ML) receiver in a noisy case. By using the Lagrange’s four-

square theorem, an algorithm is developed to efficiently and effectively design various

sizes of energy-efficient unitary UFCs to optimize the coding gain. In addition, a

closed-form optimal energy scale is found to maximize the coding gain for the uni-

tary training scheme based on the commonly-used quadrature amplitude modulation

(QAM) constellations.

Based on the signal design criterion and UFCs established in this thesis, the

systematic designs of noncoherent full diversity unitary constellations for the nonco-

herent SIMO systems and the noncoherent AF half-duplex protocol with three nodes

are proposed. We also derive the closed-form decision rule for the generalized like-

lihood ratio test (GLRT) receiver for the relay systems. Comprehensive computer

simulations show that error performance of the unitary UFC designed in this thesis

is superior to those of the differential schemes, the optimal unitary training schemes

presented in this thesis and the signal-to-noise ratio (SNR) efficient training schemes

using the QAM constellation for the SIMO systems, which, thus far, performs the best

error performance in current literatures. Computer simulations also demonstrate that

error performance of the unitary diagonal distributed space-time block codes proposed

in this thesis outperforms those of the differential codes and the optimally precoded

training schemes for the relay systems.
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Acronyms

AF Amplify-and-Forward

DDUFC Diagonal distributed unitary-UFC

GLRT Generalized Likelihood Ratio Test

LSE Least Square Error

MIMO Multi-Input Multi-Output

ML Maximum Likelihood

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

SIMO Single-Input Multiple-Output

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio
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Glossary of Symbols

a Column vector a

A Matrix A

(·)T The transpose of a vector or matrix

(·)∗ The complex conjugate of a vector or matrix

(·)H The Hermitian of a vector or matrix

Tr(·) The trace operator

det(·) The determinant operator

‖ · ‖F The Frobenius norm of a vector or matrix

‖ · ‖2 The 2 norm of a vector or matrix

IN N ×N identity matrix

Φ Empty set

ln Natural logarithm

E[·] Expectation operator

<{·} Real part of the variable in the curly bracket

⊗ Kronecker product
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j
√
−1

f(x) = O(g(x)) There exists a positive real number M and a real number x0,

such that |f(x)| ≤M |g(x)| for all x ≥ x0

f(x) = o(g(x)) limx→∞
f(x)
g(x)

= 0

A � B A, B are positive semi-definite and B−A is also positive semi-definite
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Chapter 1

Introduction

1.1 Noncoherent AF Relay Systems

Over the past several years, various forms of diversity have been employed in practical

wireless communication systems to overcome the effects of channel fading. Among

them, spatial diversity is most commonly utilized since it can be readily combined

with the other forms (such as time, frequency) of diversity. The gain in employing

spatial diversity is usually measured by the product (full diversity) of the number of

transmitter and receiver antennas in the MIMO system with linear flat fading chan-

nels. The full spatial diversity can be achieved by the use of space-time block coding.

Another form of spatial diversity called cooperative diversity has more recently been

proposed for mobile wireless communications [1–4], in which the in-cell mobile users

share the use of their antennas to create a virtual array through distributed transmis-

sion and signal processing. When channel state information is available at the receiver,

a full diversity gain for the coherent cooperative relay system with product flat fading
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channels is characterized by the diversity gain function [5–7] and achieved by utiliz-

ing well designed precoders [8, 9] or distributed space-time block codes [5–7, 10, 11].

Unfortunately, full channel state information at the relay nodes and the destination

nodes, in practice, is difficult to be attained. If the channel changes slowly, then, the

transmitter may have sufficiently long coherence time to send training signals for the

accurate estimation of the channel coefficients. However, the fading coefficients in

mobile wireless communications may vary rapidly and the coherence time may be so

short that it is impossible to allow the reliable estimation of the coefficients. There-

fore, the time utilized on transmitting training signals has to be counted since more

training signals need to be sent for the precise estimation of the channel [12–14].

Therefore, in recent years, more and more research work has focused on the non-

coherent cooperative relay system [15–19], where the channel coefficients are assumed

to be unknown at both relay nodes and the destination, but remain unchanged within

certain time slots, after which they change to a new independent realization and so

on. In spite of the fact that the design criterion of full diversity for noncoherent

MIMO systems has been well established with the ML detector and the GLRT de-

tector, this result cannot be directly applied to the noncoherent cooperative relay

systems. Since the probability density function of the received signal conditioned the

transmitted signal for the noncoherent relay systems is very complicated, there is no

explicit decision rule for the ML receiver. In addition, the GLRT detector is also very

complicated for the noncoherent relay systems, since the channel now is a product

of Gaussian channels, which is not necessarily Gaussian anymore, and the additive

noise, which depends on the relay-destination channel coefficients, is not white Gaus-

sian. As a result, unlike the noncoherent MIMO systems, the GLRT receiver for the

2
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noncoherent relay systems is not equivalent to the LSE receiver anymore and has no

explicit decision rule in general.

1.2 Noncoherent SIMO Systems

In this thesis, we also consider a wireless communication system having a single

transmitter antenna and N receiver antennas, where channel state information is

not available at either the transmitter or the receiver, and is constant during 2 time

slots, after which it changes to new independent values that are fixed for another

2 time slots, and so on. Particularly for N = 1, i.e, a single-input-single-output

(SISO) system with the fast changing flat Rayleigh fading, in a 1969 technical report,

Richters [20] made a rather unexpected conjecture for the channel with a continuous

input under an average power constraint that the capacity-achieving input distribu-

tion is discrete. In 2001, Abou-Faycal, Trott and Shamai [21] proved rigorously that

the conjecture was true. In fact, the optimal input distribution is discrete with a

finite number of mass points and one of them located at the origin. This result,

afterwards, was extended by Gursor, Poor and Verdu [22, 23] into the fast-changing

Rician fading channel. Since then, the extensive studies on the ergodic channel capac-

ities for general MIMO channels have become an important research topic in wireless

communications [14,24–26].

In this thesis, we are interested in the design of constellations from the standing-

points of blind signal processing and detection theory for the fast-varying flat Rayleigh

fading SIMO channel. It is known that the optimal design of constellations is a classic

problem for an additive white Gaussian noise (AWGN) channel [27–32]. However, just

as Gallager said [33], the resulting discrete optimization problem is ugly, since it is

3
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extremely difficult to be formulated into a tractable optimization problem. On the

other hand, the QAM constellation carved from the Gaussian integer ring is very easily

designed, very efficiently modulated and demodulated. Hence, it is commonly used in

modern digital communication systems. Recently, the hexagonal constellation [34–36]

carved from the Eisenstein integer ring has attracted much attention because of the

fact that it is more energy-efficient than the QAM constellation [31] and that an

efficient demodulation algorithm has been found [36].

Meanwhile, current research on coherent MIMO communications tells us that if

perfect channel state information is available at the receiver, then, any signaling

scheme for the specific SIMO channel enables coherent full diversity for any constel-

lations and with linear receivers. Unfortunately, this is no longer true for noncoherent

communications, even if the commonly-used QAM constellations are transmitted and

even if the noncoherent ML receiver is employed, since some signal points of the

constellation do not necessarily satisfy the unique factorization in the sense of mul-

tiplications (see more details in Theorem 3). Also, it is for the same reason that

either the channel coefficients or the transmitted signals are not necessarily able to

be uniquely identified, even in a noise-free case. Hence, for the noncoherent SIMO

channel, signals must be carefully designed. The unknown of the fading channel at

both the transmitter and the receiver requires that the transmitted signals emitting

from two distinct time slots must be so correlated that reliable communications with

noncoherent full diversity are made possible under a maximum allowable transmission

rate.

In addition, attaining perfect channel state information at the receiver, in prac-

tice, is a challenging problem [12–14]. Therefore, noncoherent space-time block code

4
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designs [37–42] have been recently developed. It has been proved that the unitary

constellation is optimal [14, 26, 37, 43] when either SNR is high or coherence time is

long. Therefore, most of the noncoherent space-time block code designs have been

mainly focused on unitary designs [37–42, 44, 45]. The Cayley [44, 46] transform and

the exponential transform [42] are now two well-established transforms which map

respective linear dispersion and linear codes into unitary codes. The exponential

transform [42] requires that the number of the receiver antennas is not less than that

of the transmitter antennas. In general, it cannot guarantee full diversity for the non-

coherent ML receiver. The Cayley transform aimed mainly at differential modulation

and a differential receiver.

1.3 Contributions of This Thesis

There are two contributions in this thesis. The first contribution is to propose the

use of the LSE detector for the noncoherent cooperative relay systems and analyze

its asymptotic behavior [47]. The significant advantage of the LSE detector is that it

requires statistics of neither the channel nor the noise, which makes it very attractive,

particularly for the noncoherent relay systems. Despite the fact that asymptotic

formulae of pairwise error probabilities for the noncoherent MIMO systems with the

ML and GLRT receivers have been developed by Brehler and Varanasi [43], when

these asymptotic formulae are applied to the relay system for given the transmitted

signal and the channel gains from the relay to the destination, the resulting channel

covariance matrix depends on these relay-destination channels, incurring the fact

that the dominant term of the corresponding asymptotic formulae is not integrable

when an expectation is taken over the relay-destination channels (see more details

5
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in Chapter 3). Therefore, we re-derive a more accurate asymptotic formula using

perturbation theory on the eigenvalues. With this, the asymptotic formula of the

pairwise error probability for the noncoherent relay systems with the LSE receiver is

obtained.

The other contribution is to invent a novel concept, a uniquely factorable con-

stellation (UFC) [48], for the systematic designs of noncoherent full diversity unitary

constellations for the noncoherent SIMO systems and the noncoherent AF half-duplex

protocol with three nodes. By using the Lagrange’s four-square theorem, an algorithm

is developed to efficiently and effectively design various sizes of energy-efficient uni-

tary UFCs to optimize the coding gain. In addition, a closed-form optimal energy

scale is found to maximize the coding gain for the unitary training scheme based on

the commonly-used QAM constellations.

6



Chapter 2

Detection for Noncoherent

Space-Time Block Coded MIMO

Systems

In this chapter, we first briefly review the ML and GLRT receivers for noncoherent

space-time block coded MIMO channels. Then, we introduce the asymptotic for-

mula of pairwise error probability with the GLRT receiver established by Brehler and

Varanasi [43]. Finally, using perturbation theory on the eigenvalues, we re-derive a

more precise formula for the analysis of the asymptotic behavior of pairwise error

probability for the LSE receiver in noncoherent cooperative relay systems.

2.1 Channel Model

Let us first consider a space-time block coded noncoherent MIMO system with M

transmitter antennas, N receiver antennas. The channel state information is not

7
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known at either the transmitter or at the receiver, and remains constant for T time

slots, after which it changes to a new independent realization and so on. The equiv-

alent vector channel model is given by

r =
√
ρSh + ξ (2.1)

where r denotes an MN × 1 received signal vector, h denotes an MN × 1 channel

vector, S̃ is a T ×M codeword matrix, S = IN ⊗ S̃, ξ denotes an MN × 1 noise

vector and ρ is the signal-to-noise ratio. We assume that the channels linking to the

same receiver antenna are correlated among themselves, but are uncorrelated with

the channels linking to different receiver antennas, i.e.,

E[h`h
H
n ] =


Σ̃ ` = n,

0 ` 6= n.

where hl = (h(l−1)M+1, · · · , hlM)T . Then, the covariance matrix of h is Σ = E[hhH ] =

IN ⊗ Σ̃. We also assume that the elements ξn of ξ are samples of independent

circularly-symmetric zero-mean complex Gaussian random variables with each having

unit variance.

2.2 ML Detection

Under these assumptions made for the channel model (2.1), the probability density

function of the received signal vector r conditioned on the transmitted signal matrix

8
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S, f(r|S) is the Gaussian distribution, i.e.,

f(r|S) =
1

πMN det(ρSΣSH + I)
× exp

(
−Tr

(
rH(ρSΣSH + I)−1r

))
and thus, its likelihood is −Tr

(
rH(ρSΣSH + I)−1r

)
− ln det(ρSΣSH + I)−MN lnπ.

Then, the maximum likelihood receiver for the noncoherent MIMO system is to

solve an optimization problem: Ŝ = arg minS

(
Gs + Tr

(
rH∆sr

) )
, where ∆s =(

ρSΣSH + I
)−1

and Gs = log det
(
ρSΣSH + I

)
.

2.3 GLRT Detection

In order to circumvent the difficulties in variance estimation of noise, the gener-

alized likelihood ratio test receiver is proposed. Under the assumptions made in

Section 2.1, the probability density function of the received signal matrix r condi-

tioned on the channel matrix h and the transmitted signal matrix S is the Gaus-

sian distribution, i.e., 1
πMN exp

(
−‖r−√ρSh‖2

2

)
, and thus, its likelihood is given by

−‖r−√ρSh‖2
2 −MN ln π. Therefore, the GLRT receiver for the joint estimation of

h and S is to maximize the likelihood, which is essentially equivalent to solving the

following nonlinear least squares optimization problem [49]:

{ĥ, Ŝ} = arg min
h,S
‖r−√ρSh‖2

2

We should note that in this case, the GLRT receiver is equivalent to the LSE receiver.

The solution of the optimization problem can be obtained by first estimating the

9
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transmitted signal matrix S as

Ŝ = arg max
S

tr
(
rHS

(
SHS

)−1
SHr

)
, (2.2)

and then, estimating the channel vector h as ĥ = (ŜHŜ)−1ŜHr/
√
ρ. In fact, the

GLRT detector for the estimation of the transmitted signal projects the received

signal r on the different subspaces generated by S and then computes the energies of

all the projections and selects the projection maximizing the energy. To study the

asymptotic behavior of the pairwise error probability with the GLRT receiver for the

noncoherent MIMO systems, we first introduce several necessary propositions and

then, establish some lemmas, which facilitate our analysis.

Proposition 1 Let A be a Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λn and

A be a non-Hermitian perturbation of A, i.e., E = A −A is non-Hermitian. If we

let λ̃1, λ̃2, · · · , λ̃n denote the eigenvalues of A with <{λ̃1} ≤ <{λ̃2} ≤ · · · ≤ <{λ̃n},

then, we have
n∑
k=1

|λ̃k − λk|2 ≤ 2||E||2F (2.3)

See [50] for the proof of Proposition 1. We also need the following proposition, whose

proof is given in [51].

Proposition 2 For an M ×N matrix A with rank N and an N × P matrix B, the

following inequalities hold

||A||2 ≤ ||A||F ≤
√
N ||A||2

||AB||2 ≤ ||A||2||B||2

||AB||F ≤ ||A||F||B||F

10
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where the F-norm and 2-norm are defined as

||A||F =

√√√√ M∑
i=1

N∑
j=1

|aij|2

||A||2 =
√
λmax(AHA)

Let us now consider the analysis of the asymptotic behavior of the GLRT receiver.

For notation convenience, let {Si} denote all the distinct codeword matrices, then,

the GLRT detector (2.2) can be rewritten as

î = arg min rHFir = arg min∇i

where Fi = −Si(S
H
i Si)

−1SHi and ∇i = rHFir. The pairwise error probability can be

expressed by

Pr(∇j < ∇i) = Pr(xHFijx < 0)

where Fij = Fi − Fj. For discussion simplicity, let Rij = SHi Sj and Pwŵ =

(W,Ŵ)H(W,Ŵ). Then, the following lemma is the key to obtaining an asymp-

totic formula for the pairwise error probability with the GLRT receiver.

Lemma 1 If we let ν1 ≤ · · · ≤ νMN denote the eigenvalues of Σ1/2(Rii−RijR
−1
jj Rji)Σ

1/2

and λ1, · · · , λ2MN denote the eigenvalues of Σrr|iFij, where <{λ1} ≤ · · · ≤ <{λ2MN},

then, the following asymptotic formulae hold,

λk = −1 +O

(
κ

ρν1 + ε

)
, for k = 1, · · · ,MN

λk = ρνk + 1 +O

(
κ

ρν1 + ε

)
for k = MN + 1, · · · , 2MN

11
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where κ = max(1,
√
λmax(Σ))/min(1,

√
λmin(Σ)).

The proof of Lemma 1 is provided in Appendix A.

Proposition 3 Let {λl}Ll=1 be the distinct nonzero eigenvalues of Σrr|iFij with mul-

tiplicity {µl}Ll=1, and let {λl}Kl=1 be negative and {λl}Ll=K+1 positive eigenvalues, re-

spectively. Then, the pairwise error probability is given by

Pr{∇j < ∇i} = −
K∑
k=1

Res

(
s−1

L∏
l=1

λ−µl

l

(
s+

1

λl

)−µl

, sk =
−1

λk

)
(2.4)

Proposition 3, which is given in [43], establishes a connection between the average

error probability and the eigenvalues of matrix Σrr|iFij. Using Proposition 3, Brehler

and Varanasi [43] proved the following formula,

PGLRT(Si → Sj) =


2MN − 1

MN

 det(Rjj)ρ
−MN

det(Σ) det(Psisj
)

+ o
(
ρ−(MN+1)

)
(2.5)

However, we cannot directly apply this formula to the relay systems. The reason

is as follows: the conditional received signal is not Gaussian distributed. Even if

the received signal is Gaussian distributed for given the transmitted signal and the

channel gain from the relay to the destination, the resulting covariance matrix Σ

depends on the relay-destination channel, incurring that the dominant term in (2.5)

is not integrable when an expectation is taken over the relay-destination channel.

See more details in Chapter 3. Therefore, for our purpose, we need to re-derive a

12
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more precise asymptotic formula of the GLRT detector for the noncoherent MIMO

systems. Now, combining Lemma 1 with Proposition 3 yields

Property 1 If each of matrices Sij = (Si,Sj) has full column rank for all distinct

pairs of i and j, then, the resulting space-time block code provides full diversity for the

GLRT receiver. Moreover, the average pairwise error probability PGLRT(Si → Sj) of

transmitting Si and deciding in favor of Sj 6= Si has the following asymptotic formula:

PGLRT(Si → Sj) =


2MN − 1

MN

 ρ−MN

det[Σ(Rii −RijR
−1
jj Rji) + ρ−1IMN ]

+O
(
ρ−(MN+1)

)
(2.6)

The proof of Property 1 is provided in Appendix B. We like to make two comments

on Property 1.

1. When ρ tends to infinity, (2.6) amounts to,

PGLRT(Si → Sj) =


2MN − 1

MN

 det(Rjj)ρ
−MN

det(Σ) det(Psisj
)

+O
(
ρ−(MN+1)

)
(2.7)

2. Compared with the asymptotic formula (2.5), the asymptotic formula (2.6)

leads to a more precise characterization of the coding gain as well as of the

perturbation term.

13
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3. From the proof of Property 1 we can see that the condition that Psisj
has full

rank for all the distinct pairs of i and j is actually a necessary and sufficient

condition for the GLRT receiver to achieve full diversity.

14



Chapter 3

LSE Detection for Noncoherent

Cooperative Relay Systems

The primary purpose of this chapter is to propose the LSE detector for the noncoher-

ent cooperative relay systems and extend the asymptotic formula for the noncoherent

MIMO systems with the GLRT receiver into that for the noncoherent relay systems

with the LSE receiver.

3.1 Channel Model

Here, we are interested in the following two kinds of Gaussian product channel mod-

els, which usually appear in recently-developing cooperative relay communication

systems.

1. Linear and product mixed channels:

z1 =
√
ρX1h1 + η1, (3.1)
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where h1 = (h, f1g1, f2g2, · · · , fMgM)T and X1 is a T1 × (M + 1) transmitted

signal matrix with T1 ≥M + 1. A typical example for this kind of the channel

model is the AF half-duplex protocol proposed in [4], where each node has a sin-

gle antenna and the coefficients h, fm and gm for m = 1, 2, · · · ,M in model (3.1)

are respective the channel from the source to the destination (linear channel),

the channel from the source to the mth relay and the channel from the mth

relay to the destination (product channel). For the block length between the

source and each active relay to be 2, the signal matrix X1 specifically takes the

following form:

X1 =



s1 0 0 · · · 0 0

s2 s1 0 · · · 0 0

s3 0 0 · · · 0 0

s4 0 s3 · · · 0 0

...
...

...
... 0 0

s2M−1 0 0 · · · 0 0

s2M 0 0 · · · 0 s2M−1



. (3.2)

16
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2. Only relay channels:

z2 =
√
ρX2h2 + η2, (3.3)

where h2 = (f1g1, f2g2, · · · , fMgM)T and X2 is a T2 × M transmitted signal

matrix with T2 ≥ M and a normalized power. For example, the AF protocols

proposed in [5–7] belong to this family of the channel model, in which the direct

channel between the source and the destination is not allowed and X2 in (3.3)

is the distributed space-time block coded signal matrix.

In developing our analysis on an average pairwise error probability, we adopt the

following assumptions:

1. Perfect channel information is not available at either the source node and the

relay nodes or the destination;

2. The channel coefficients fm, gm and h are independently circularly-symmetric

complex Gaussian distributed with zero-mean and unit variances ;

3. For any fixed g = (g1, g2, · · · , gM)T , each ηi for i = 1, 2 is independently

circularly-symmetric complex Gaussian noise with the zero mean and covari-

ance matrix

Σ1 = diag(gHB11g,g
HB12g, · · · ,gHB1T1g) + IT1

and

Σ2 = diag(gHB21g,g
HB22g, · · · ,gHB2T2g) + IT2

17
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where Biti = diag(δ
(1)
iti
, δ

(2)
iti
, · · · , δ(M)

iti
) with at most one of δ

(m)
iti

for m = 1, 2, · · ·

,M being one and the others being zeros.

4. The average energy of Xi, Exi
is normalized into Exi

=
∑Ti

ti=1 Tr(Biti) + Ti .

3.2 ML and GLRT Detectors

Despite the fact that it looks that the mathematical channel models between the

noncoherent MIMO systems (2.1) and the noncoherent cooperative relay systems (3.1)

and (3.3) are almost the same, there are in fact two major differences.

1. The MIMO channel is linear, but the cooperative relay channel is nonlinear,

since it involves a variety of product channels from the source to relay and from

the relay to the destination.

2. Under the assumptions on the channel models, the probability density func-

tion of the received signal vector conditioned on the transmitted signals for

the noncoherent MIMO systems is Gaussian distributed, but it is not for the

noncoherent cooperative relay systems.

Because of these, the probability density function of the received signal vector zi, (i =

1, 2) conditioned on the transmitted signal matrix Xi has no closed-form formulae and

in general, ML detection for the noncoherent relay systems is too complicated to be

implemented.

On the other hand, although the conditional probability density function of the re-

ceived signal vector zi, (i = 1, 2) given the channel coefficients and the transmitted sig-

nal matrix is still the Gaussian distribution, i.e., 1
πTi det(Σi)

×exp
(
−(zi −

√
ρXihi)

HΣ−1
i

18
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(zi −
√
ρXihi)

)
, and thus, its likelihood is given by−(zi−

√
ρXihi)

HΣ−1
i (zi−

√
ρXihi)

− ln det(Σi) − Ti ln π, the covariance matrix Σi depends on the channel coefficients

from the relay to the destination. Therefore, unlike the noncoherent MIMO systems,

the GLRT detector for the noncoherent cooperative relay systems of maximizing the

likelihood over the channel coefficients and subsequently over the transmitted signals

is not equivalent to the LSE receiver anymore [17]. As a result, the optimization of

the likelihood function is quite involved and no closed-form decision rule can be easily

obtained generally. However, for some particular protocols, the GLRT receiver [17]

may have a closed-form expression. Hence, suboptimal receivers such as the maximum

energy selection receiver [18] and the LSE receiver [19] have been recently proposed

for some specific noncoherent cooperative relay systems.

3.3 LSE Detection

In this thesis, instead of employing GLRT detector in noncoherent relay systems,

we propose the use of the LSE receiver for more general noncoherent cooperative

relay systems. Essentially, the LSE receiver to deal with the problem of jointly and

optimally estimating the transmitted signals and channel coefficients for our channel

model (3.1) or (3.3) is equivalent to solving the following optimization problem [49]:

{X̂i, ĥi} = arg min
Xi,hi

‖zi −
√
ρXihi‖2

2 = arg min
Xi

min
hi

‖zi −
√
ρXihi‖2

2 (3.4)

For the inner minimization, differentiating the objective with respect to hi and equat-

ing it to zero yields ĥi = (Xi
HXi)

−1Xi
Hzi/
√
ρ, which, when substituted into (3.4),
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leads to

X̂i = arg max
Xi

zi
HXi

(
Xi

HXi

)−1
Xi

Hzi (3.5)

The following propositions and lemmas are presented to assist the derivation of the

average pairwise error probabilities.

Proposition 4 Let x > 0. Then, we have

E(x) =

∫ +∞

x

e−t

t
dt = γ − lnx−

∞∑
n=1

(−1)nxn

n!n
, (3.6)

where γ is the Euler constant.

The proof of Proposition 4 is provided in [52].

Property 2 For a given constant a > 0 and integers m,n ≥ 1, the following asymp-

totic formulae hold

∫ ∞
0

exp(−t)
aρt+ 1

dt = O(ρ−1 ln ρ)∫ ∞
0

tn exp(−t)
aρt+ 1

dt = O(ρ−1)∫ ∞
0

exp(−t)
(t+ aρ−1)n

dt = O(ln ρ)∫ ∞
aρ−1

tn exp(−t)dt = 1 +O(ρ−1)∫ ∞
aρ−1

exp(−t)
tn

dt = O(ln ρ)∫ ∞
0

tm exp(−t)
(t+ 1)n(t+ aρ−1)

dt = O(1)

when signal-to-noise ratio ρ tends to infinity.
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The proof of Property 2 is provided in Appendix C.

Proposition 5 Let

K =


K11 K12

K21 K22

 (3.7)

be a positive semi-definite matrix. Then, the following two statements are true.

1. If K11 is invertible, then, its Schur complementary matrix K22−K21K
−1
11 K12 is

also a positive semi-definite matrix and det
(
K
)

= det(K11) det
(
K22−K21K

−1
11 K12

)
.

2. If K22 is invertible, then, its Schur complementary matrix K11−K12K
−1
22 K21 is

also a positive semi-definite matrix and det
(
K
)

= det(K22) det
(
K11−K12K

−1
22 K21

)
.

See [53] for the proof of Proposition 5.

Lemma 2 For an M ×M semi-definite matrix P with rank N1, if we let J(g,P) =

det
(
I + ρ diag(g)HPdiag(g)

)−1
and F (ρ,P) = Eg[J(g,P)], then, F (ρ,P) has the

following asymptotic formula,

F
(
ρ,P

)
=

lnN1 ρ

det (I + ρP)
+O

(
lnN1−1 ρ

ρN1

)
(3.8)

when signal-to-noise ratio ρ tends to infinity.

The proof of Lemma 2 is given in Appendix D. Now, we formally state the main

result of this thesis.

Theorem 1 The following two statements are true.
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1. If Px1x̂1 is invertible for all the distinct pairs of X1 and X̂1, then, the resulting

code enables full diversity for the LSE detector. Furthermore, the average pair-

wise error probability of the LSE detector of transmitting X1 and deciding in fa-

vor of X̂1 6= X1 for the linear and product mixed channels (3.1), PLSE(X1 → X̂1)

has an asymptotic formula as follows:

PLSE(X1 → X̂1) =


2M + 1

M + 1

 det(X̂H
1 X1) lnM ρ

det(Px1x̂1)ρ
M+1

+O(ρ−M−1 lnM−1 ρ) (3.9)

2. If Px2x̂2 is invertible for all the distinct pairs of X2 and X̂2, then, full diversity

is achieved with the LSE detector for the only relay channel (3.3). In addition,

an asymptotic formula of the average pairwise error probability is given by

PLSE(X2 → X̂2) =


2M − 1

M

 det(X̂H
2 X2) lnM ρ

det(Px2x̂2)ρ
M

+O(ρ−M lnM−1 ρ) (3.10)

The proof of Theorem 1 is postponed until Appendix E. Some perspectives of Theo-

rem 1 are given below:
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1. Unlike the noncoherent MIMO systems, the “diversity gain” for the noncoher-

ent cooperative relay systems involves an exponential function as well as the

logarithm of SNR, which results from the effect of the Gaussian product chan-

nels on the error performance. The order of the logrithm is equal to the number

of the relays nodes, whereas the order of SNR in the denominator is equal to

the total number of the source-destination channel and the relay nodes. Hence,

the diversity gain completely mimics the coherent cooperative relay systems,

which should be called the diversity function rather than the diversity order.

2. In addition to full diversity, the coding gain exactly mimics the noncoherent

MIMO system and is proportional to the determinant of the autocorrelation of

the error matrix formed by distinct pairs of codeword matrices. We can use the

rank and the determinant criteria to design the optimal distributed space-time

block codes for the noncoherent cooperative relay systems.

3. It can be observed from the proof of Property 1 that in fact, the condition that

Pxix̂i
has full rank for all the distinct pairs of Xi and X̂i is a necessary and

sufficient condition for the LSE receiver to extract full diversity.

Recently, Zhang, Huang and Ma [54] have proved that the unique blind identification

of the channel and the transmitted signal is equivalent to full diversity for the nonco-

herent space-time block coded MIMO systems with the GLRT detector. This result

can be extended in a straightforward manner into the noncoherent relay systems. For

completeness of the exposition, this generalization is given as the following theorem

and its proof is also provided.
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Theorem 2 Let each codeword matrix Xi have full column rank. Then, for an ar-

bitrarily fixed nonzero received signal vector zi = vi 6= 0 without any noise; i.e.,

vi =
√
ρXihi, the transmitted signal codeword matrix Xi and the equivalent channel

vector hi is uniquely determined if and only if Pxix̂i
has full rank for any pair of

distinct codeword matrices Xi and X̂i.

Proof: First, we prove the sufficient condition. Suppose that there exist two pairs

of Xi,hi and X̂i, ĥi for some nonzero received signal vector vi such that

vi =
√
ρXihi =

√
ρX̂iĥi (3.11)

then, Xi must be equal to X̂i. Otherwise, if Xi 6= X̂i, then, we would have that Pxix̂i

has full rank by assumption and that


X X̂i




hi

−ĥi

 = 0 (3.12)

Hence, (3.12) has only zero solution; i.e., hi = ĥi = 0. As a result, vi = 0, which

contradicts with the assumption. Therefore, Xi = X̂i and consequently, hi = ĥi =

(XH
i Xi)

−1XH
i vi/

√
ρ. This completes the proof of the sufficient condition.

Now, we prove the necessary condition. If there existed a pair of distinct codeword

matrices X0,i and X̂0,i such that Px0,ix̂0,i
would not have full column rank, then, the
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following linear equations with respect to variables hi and −ĥi


X0,i X̂0,i




hi

−ĥi

 = 0 (3.13)

would have a nonzero solution h0,i and ĥ0,i. Let v0,i =
√
ρX0,ih0,i. Then, we would

also have v0,i =
√
ρX̂0,iĥ0,i. In other words, for a given nonzero received signal vector

v0,i, equation v0,i =
√
ρXihi has two distinct pairs of solutions, which contradicts

with the assumption. This completes the proof of Theorem 2. �
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Chapter 4

Uniquely-Factorable Constellation

Design and Its Applications

4.1 Uniquely-Factorable Constellation for Nonco-

herent SIMO Channels

In this section, we first discuss the noncoherent SIMO channel model and a transmis-

sion scheme. Then, we propose a novel concept, i.e., uniquely-factorable constellation

, and prove that it is this kind of the unique factorization that enables the unique

blind identification of the channel coefficients in the noise-free case as well as full

diversity in the noisy case.

4.1.1 Signaling scheme for SIMO channel

Let us consider wireless communication systems having a single transmitting antenna

and multiple receiving antennas with flat fading. For such systems, the discrete-time
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baseband-equivalent channel model can be represented as

r =
√
ρhs+ η (4.1)

where ρ is the signal-to-noise ratio and the n-th element of h is the channel coefficient

from the transmitter to the n-th receiver for n = 1, 2, · · · , N . We assume that the

channel coefficients are constant during two time slots, after which they randomly

change to new independent values that are fixed for another two time slots, and so

on. Let U ⊆ C2 be a given complex two-dimensional constellation to be designed.

Then, our noncoherent signaling scheme is now described as follows: randomly, inde-

pendently and equally likely choose a vector (x, y)T from the constellation U. During

the first time slot, the signal s = x is sent for transmission, i.e.,

r1 =
√
ρhx+ η1

During the second time slot, the signal s = y is transmitted through the channel

model (4.41) for transmission, i.e.,

r2 =
√
ρhy + η2

Stacking these two received vectors yields

r =
√
ρ


xIN

yIN

h + η =
√
ρSh + η (4.2)
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where r = (rT1 , r
T
2 )T ,S = (xIN , yIN)T and ξ = (ηT1 ,η

T
2 )T . Now, from the standing-

points of blind signal processing and detection theory, a natural question immediately

comes up:

Problem 1 Find conditions on the constellation U such that

1. in a noise-free case, for any given nonzero received signal vector r 6= 0, the

equation reduced from (4.2)

r =
√
ρSh (4.3)

with respect to the transmitted symbol variables x and y, and the channel vector

h has a unique solution, and

2. in a noisy environment, full diversity is enabled for the generalized likelihood

ratio test receiver.

4.1.2 Unique identification and full diversity

First, let us attempt to answer the first question of Problem 1 on the unique identi-

fication. In this case when the noise is free, then, during the first time slot, the n-th

received signal un can be expressed by

un =
√
ρhnx (4.4a)

whereas during the second time slot, the n-th received signal vn can be written as

vn =
√
ρhny (4.4b)
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Eliminating hn from (4.4) results in

un
vn

=
x

y
(4.5)

Hence, for any given un

vn
, (4.5) has a unique solution with respect to x and y if and

only if the constellation U must satisfy such a condition that if xŷ = x̂y, then, x = x̂

and y = ŷ, i.e., the unique factorization of the constellation.

Now, let us answer the second question of Problem 1 regarding the noncoherent

full diversity. According to (2.7), if the GLRT receiver is employed at the receiver

in this SIMO system, the pairwise error probability PGLRT(S→ Ŝ) of transmitting S

and deciding in favor of Ŝ 6= S has the asymptotic formula below:

PGLRT(S→ Ŝ) =


2N − 1

N

 detN(ŜHŜ)

detN(Psŝ)
× ρ−N +O

(
ρ−N

)
if det(Psŝ) 6= 0. It is not difficult to prove that the statement that Psŝ has full rank

for all pairs of distinct codewords S and Ŝ is equivalent to the one that (S, Ŝ) has full

rank for all pairs of distinct codewords S and Ŝ. Hence, the full diversity condition
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is equivalent to the one that

(S, Ŝ) =


xIN x̂IN

yIN ŷIN

 (4.6)

is invertible for any (x, y)T 6= (x̂, ŷ)T ∈ U. After some algebraic manipulations, we

can obtain that the determinant of (S, Ŝ) is given by

det
(
(S, Ŝ)

)
=
(
xŷ − x̂y

)N
(4.7)

Therefore, the full diversity condition is also reduced to the one that for any (x, y)T 6=

(x̂, ŷ)T ∈ U, xŷ 6= x̂y, which is equivalent to saying that if xŷ = x̂y, then, x = x̂ and

y = ŷ, i.e., the unique factorization of the constellation.

All the above discussions can be summarized as the following theorem.

Theorem 3 (Unique Identification and full diversity for SIMO channels) Let U be a

given complex two-dimensional constellation with |U| > 1, and u and v be two received

signal vectors in the first two time slots transmission from the channel model (4.2) in

a noise-free environment; i.e.,

u =
√
ρxh, (4.8)

v =
√
ρyh (4.9)

for (x, y)T ∈ U. Then, the following three statements are equivalent.

1. For the arbitrarily given nonzero received signal vector (uT ,vT )T , the channel
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vector h and the transmitted symbols x and y can be uniquely determined.

2. In a Gaussian noise environment, U enables full diversity for the GLRT receiver.

3. U satisfies a so-called unique factorization property, i.e., xỹ 6= x̃y for any

(x, y)T 6= (x̃, ỹ)T ∈ U.

4.1.3 Uniquely factorable constellation

Theorem 3 motivates us to formally introduce the following new concept:

Definition 1 Let U be a set composed of some two-dimensional complex column vec-

tors. Then, U is said to form a uniquely-factorable constellation (UFC) if there exist

(x, y)T , (x̃, ỹ)T ∈ U satisfying xỹ = x̃y, then, we have x = x̃ and y = ỹ.

Example 1 Here is a UFC example with 2 vectors:

U =




1

0

 ,


0

−1




(4.10)

Example 2 Here is another UFC example with 4 vectors:

U =




1

1

 ,


−1

j

 ,


−j

1

 ,


j

−j




(4.11)
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Example 3 (Training UFC). This example shows that the constellation in the tra-

ditional training scheme for the scalar AWGN channel is actually a special UFC. Let

Y be an arbitrarily given one-diemsional complex constellation. Then, for any fixed

nonzero complex number x0, the constellation U = {(x0, y)T : y ∈ Y} derived from Y

forms a UFC, since if (x0, y)T , (x0, ỹ)T ∈ U and x0ỹ = x0y, then, y = ỹ.

In order to systematically design a UFC, we need to develop some necessary

conditions which a UFC must satisfy.

Proposition 6 Let U be a UFC with |U| ≥ 2. Then, the following statements are

true.

1. (0, 0)T /∈ U.

2. If (x, y)T ∈ U, then, −(x, y)T /∈ U.

3. If (0, y1)T ∈ U, then, for any complex number y2 6= y1, (0, y2)T /∈ U. Similarly,

if (x1, 0)T ∈ U, then, for any complex number x2 6= x1, (x2, 0)T /∈ U.

4. If (x, x)T ∈ U, then, for any complex number y 6= x, (y, y)T /∈ U.

Proof : Statement 1. Since |U| ≥ 2, there exists a nonzero vector (x0, y0)T ∈ U. Now,

suppose that (0, 0)T ∈ U. Then, we would have 0 × y0 = x0 × 0 = 0, but one of x0

and y0 is not zero, which contradicts with the assumption that U is the UFC.

Statement 2. If there existed (x, y)T ∈ U such that (−x,−y)T ∈ U , then, we

would have xy = (−x)(−y), but (x, y) 6= (−x,−y), since we just know from the

Statement 1 that the zero vector does not belong to U.

Statement 3. Assume that (0, y1)T , (0, y2)T ∈ U with y1 6= y2. Then, 0 × y2 =

0 × y1 = 0 with y1 6= y2, which contradicts with the assumption that U is the UFC.

Similarly, we can prove that at least, one of (x1, 0)T and (x2, 0)T cannot belong to U.
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Statement 4. Suppose that (x, x)T , (y, y)T ∈ U with x 6= y. Since x × y = y × x

with x 6= y, U is not any UFC. This is a contradiction, which completes the proof of

Proposition 6. �

4.1.4 Unitary UFC and coding gain

In recent years, extensive research work on noncoherent space-time block codes has

been mainly focused on unitary designs [37–42,44–46,55], since unitary constellations

are optimal [14, 26, 37, 43] when either SNR is high or coherent time is long. It

is known that the Cayley transform [44, 46, 55] and the exponential transform [42]

are two well-established transforms that convert respective linear dispersion codes

and linear space-time block codes into unitary codes for a general MIMO channel.

However, particularly for the noncoherent SIMO channel, a unitary constellation can

be immediately attained by simply normalizing the nonunitary constellation., i.e., for

a given constellation X ⊆ C2 with 0 /∈ X, its unitary constellation, denoted by X, is

given by

X =

{
x̄ =

x

‖x‖
: x ∈ X

}
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By Definition 1, we know that X is a UFC if and only if X is a UFC. Now, apply-

ing (2.7) to the constellation X yields

PGLRT(x̄→ ˆ̄x) =


2N − 1

N


detN(Px̄ˆ̄x)

× ρ−N +O
(
ρ−N

)
if det(Px̄ˆ̄x) 6= 0. Therefore, when SNR is large, the error performance is dominated

by the worse case of det(Px̄ˆ̄x). Following the way similar to coherent MIMO commu-

nications [56], we define the coding gain for the unitary constellation X as

G(X) = min
x̄ 6=ˆ̄x∈X

det(Px̄ˆ̄x) (4.12)

In addition, notice

det(Px̄ˆ̄x) = | det((x̄, ˆ̄x))|2 =
| det((x, x̂))|2

‖x‖2‖x̂‖2

Hence, for discussion convenience, we particularly introduce a definition below.

Definition 2 A distance between any two vectors x1,x2 ∈ C2, d(x1,x2), is defined

as

d(x1,x2) =
| det(X)|
||x1|| ||x2||

(4.13)

where X = (x1,x2) is a 2-by-2 matrix formed by these two column vectors.
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Definition 3 The distance of a given constellation X ⊆ C2, which is denoted by

D(X), is defined as the minimum distance of any two distinct vectors within this

constellation, i.e.,

D(X) = min
x1,x∈X,x1 6=x2

d(x1,x2)

Thus, the distance of X is nothing but the square root of the coding gain for its

normalized constellation X, i.e., D(X) =
√
G(X). Hereafter, we mutually use these

two concepts in this thesis wherever it is convenient.

4.2 Energy-Efficient Unitary Training Scheme

The main purpose of this section is to simply attain a unitary constellation design

by just normalizing the nonunitary training constellation based on the QAM con-

stellation and then, find a closed-form energy scale to maximize the coding gain or

distance.

4.2.1 Training scheme

When channel information is not available at either the transmitter or the receiver,

a simple and practical way to estimate the channel coefficients is to send training

signals. Particularly for the SIMO channel, only one bit is needed for the channel

estimation. Hence, the constellation of the training scheme can be represented as

TQp =


t

∣∣∣∣∣∣∣∣∣∣∣∣
t =


1

t




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where t is randomly, independently and equally likely chosen from a certain constel-

lation. In this thesis, we focus on the case when t is randomly, independently and

equally likely chosen from the 2p-ary cross QAM constellation Qp, a formal definition

of which, for the completeness of the exposition, is provided here.

Definition 4 A cross 2p-ary QAM constellation Qp is defined as follows:

1. If p is even, Qp is the standard square 2p-ary QAM constellation, i.e.,

Qn =
{

(2m− 1) + (2n− 1)j : −2
p−2
2 + 1 ≤ m,n ≤ 2

p−2
2

}

2. If p = 3, then,

Q3 =
{

3 + j, 1 + j,−1 + j,−3 + j,−3− j,−1− j, 1− j, 3− j
}

3. If p is an odd number exceeding 3, Qp is the union of a horizontal rectangular

QAM constellation and a vertical rectangular QAM constellation, i.e.,

Qp =
{

(2m− 1) + (2n− 1)j : −3× 2
p−5
2 + 1 ≤ m ≤ 3× 2

p−5
2 ,−2

p−3
2 + 1 ≤ n ≤ 2

p−3
2

}
⋃{

(2m− 1) + (2n− 1)j : −2
p−3
2 + 1 ≤ m ≤ 2

p−3
2 ,−3× 2

p−5
2 + 1 ≤ n ≤ 3× 2

p−5
2

}

Based on this definition, we can immediately obtain the following lemma.

Lemma 3 For the 2p-ary cross QAM Qp given in Definition 4, let P denote one of

the corner points of Qp with the largest energy E1. If we let P̃ denote such a nearest

neighbor of P that it has the largest energy E2, then, the following three statements

are true:
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1. If p = 3, then, E1 = E2 = 10.

2. If p is even, then, E1 = 2(2
p
2 − 1)2 and E2 = (2

p
2 − 1)2 + (2

p
2 − 3)2.

3. If p is odd and greater than 3, then, E1 = (2
p−1
2 − 1)2 + (3 × 2

p−3
2 − 1)2 and

E2 = (2
p−1
2 − 3)2 + (3× 2

p−3
2 − 1)2.

Lemma 3 can be verified directly by calculation and thus, its proof is omitted.

4.2.2 Energy-efficient unitary training scheme

Particularly for the noncoherent SIMO channel, the unitary constellation of the train-

ing constellation TQp can be directly obtained by simply normalizing the nonunitary

training constellation, i.e.,

TQp =


1√

1 + |t|2


1

t

 : t ∈ Qp


Let us now consider an energy scaled version of the training constellation, i.e.,

TQp(α) =


t′

∣∣∣∣∣∣∣∣∣∣∣∣
t′ =


1

αt

 : t ∈ Qp


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for α > 0. Then, the corresponding normalized constellation is given by

TQp(α) =


1√

1 + α2|t|2


1

αt

 : t ∈ Qp


(4.15)

According to Definition 2, the distance between t′1 and t′2 is given by

d(t′1, t
′
2) =

α|t1 − t2|√
1 + α2|t1|2

√
1 + α2|t2|2

, d(t1, t2, α) (4.16)

for t1, t2 ∈ Qp, which is called a distance function or coding gain function. Here, we

are interested in solving the following optimization problem:

Problem 2 Find an energy scale α such that D(TQp(α)) is maximized, or equiva-

lently, the coding gain of TQp(α) is maximized, i.e.,

α̂ = arg max
α

D(TQp(α))

= arg max
α

min
t1 6=t2∈Qp

d(t1, t2, α) (4.17)

The solution to Problem 2 is given in Theorem 4.

Theorem 4 The optimal solution to Problem 1 is given by

α̂ =
1

4
√
E1E2

(4.18)

D(TQp(α̂)) =
2√

E1 +
√
E2

(4.19)
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where E1 and E2 are determined as follows:



E1 = E2 = 10 if p = 3

E1 = 2(2
p
2 − 1)2, E2 = (2

p
2 − 1)2 + (2

p
2 − 3)2 if p is even

E1 = (2
p−1
2 − 1)2 + (3× 2

p−3
2 − 1)2, E2 = (2

p−1
2 − 3)2 + (3× 2

p−3
2 − 1)2 if p > 3 is odd

Proof: The proof of Theorem 4 is composed of the following two steps.

Step 1: Solve the inner minimization problem. In order to attain an optimal

solution to the inner minimization problem, we split the original feasible domain into

the following two disjoint sub-domains:

D = {(t1, t2) : t1 6= t2 ∈ Qp}

= {(t1, t2) : (|t1|, |t2|) 6= (E1, E1), t1 6= t2 ∈ Qp}

∪{(t1, t2) : (|t1|, |t2|) = (E1, E1), t1 6= t2 ∈ Qp}

= D1 ∪ D2

Therefore, solving the original inner minimization problem is equivalent to first solving

the corresponding two sub-minimization problems and then, taking the minimum of

these two minimums, i.e.,

min
(t1,t2)∈D

d(t1, t2, α) = min{ min
(t1,t2)∈D1

d(t1, t2, α), min
(t1,t2)∈D2

d(t1, t2, α)} (4.20)

1. Solution to minimization problem: min(t1,t2)∈D1 d(t1, t2, α). Let us first reveal
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some very interesting optimality properties on the fractional objective funcation.

(a) The numerator of d(t1, t2, α) is lower bounded by

α|t1 − t2| ≥ 2α (4.21)

where the equality holds, i.e., the minimum of the numerator is achieved

when t1 and t2 are the nearest neighbors each other.

(b) Since (t1, t2) 6= (E1, E1), the denominator of d(t1, t2, α) is upper bounded

by

√
1 + α2|t1|2

√
1 + α2|t2|2 ≤

√
1 + α2E1

√
1 + α2E2 (4.22)

where the equality holds, i.e., the maximum of the denominator is achieved

when one of t1 and t2 is located in the corners of the QAM constellation with

the largest energy and the other has the second largest energy.

Hence, the above two observations naturally come up with an interesting ques-

tion: When do both inequalities (4.21) and (4.22) hold simultaneously? It is

very amazing to observe that the answer to this question is that one of t1 and t2

is the corner point with the largest energy E1 and the other is its nearest neigh-

bor with the second largest energy E2. Therefore, the minimum of d(t1, t2, α)

is given by

min
(t1,t2)∈D1

d(t1, t2, α) =
2α√

(1 + α2E1)(1 + α2E2)
(4.23)
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2. Solution to minimization problem: min(t1,t2)∈D2 d(t1, t2, α). Note that in this

case, the denominator of d(t1, t2, α) is constant, i.e.,
√

1 + α2|t1|2
√

1 + α2|t2|2 =

1 + α2E1. Hence, to solve the problem, we only need to consider the following

cases on the numerator:

(a) Either p = 2 or p = 3. In this case, it is very interesting to observe that

the lower-bound (4.21) and the upper-bound (4.22) are achieved simulta-

neously when t1 is one of the corner point and t2 is its nearest neighbor,

i.e., |t1 − t2| = 2. Hence, we have

min
(t1,t2)∈D2

d(t1, t2, α) =
2α

1 + α2E1

(4.24)

(b) p = 2k is even, where k ≥ 2. In this case, the numerator achieves its

minimum,
√

2E1α. As a result, we obtain

min
(t1,t2)∈D2

d(t1, t2, α) =

√
2E1α

1 + α2E1

(4.25)

(c) p = 2k + 1 is odd, where k ≥ 2. Notice that when t1 and t2 are located

in the same quadrant with the largest energy, the numerator reaches its

minimum, 2
p−2
2 α. Thus, we have

min
(t1,t2)∈D2

d(t1, t2, α) =
2

p−2
2 α

1 + α2E1

(4.26)
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Now, substituting (4.23), (4.24), (4.25) and (4.26) into (4.20) yields

min
(t1,t2)∈D

d(t1, t2, α) =



min{ 2α√
(1+α2E1)(1+α2E2)

, 2α
1+α2E1

} if p = 2 or p = 3

min{ 2α√
(1+α2E1)(1+α2E2)

,
√

2E1α
1+α2E1

} if p = 2k, k ≥ 2

min{ 2α√
(1+α2E1)(1+α2E2)

, 2
p−2
2 α

1+α2E1
} if p = 2k + 1, k ≥ 2

=



2α
1+α2E1

if p = 2 or p = 3

2α√
(1+α2E1)(1+α2E2)

if p = 2k, k ≥ 2

2α√
(1+α2E1)(1+α2E2)

if p = 2k + 1, k ≥ 2

=
2α√

(1 + α2E1)(1 + α2E2)

Step 2: Solve the outer maximization problem. We know from Step 1 that the

distance of the scaled version of the QAM constellation can be rewritten as

D(TQp(α)) =
2√

α−2 + E1 + E2 + E1E2α2
(4.27)

Using the geometrical and arithmetical mean inequality: A2 + B2 ≥ 2AB, we can

derive from (4.27)

D(TQp(α)) ≤ 2√
E1 + E2 + 2

√
E1E2

=
2√

E1 +
√
E2
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where the equality holds, i.e., the maximum is attained when α−2 = E1E2α
2. This is

equivalent to

α̂ =
1

4
√
E1E2

Hence, the resulting maximum is given by

D(TQp(α̂)) =
2√

E1 +
√
E2

This completes the proof of Theorem 4.

Some observations on Theorem 4 are made as follows:

1. It is worth emphasizing a very interesting optimality feature on the fractional

distance function (4.16) (or the coding gain function), i.e., the coding gain is

attained when the numerator of the objective achieves its minimum, whereas

the denominator achieves its second maximum.

2. In spite of the fact that the QAM constellation is generally regarded as a good

constellation for the modern digital communication systems, the aforementioned

Observation 1) explicitly reveals its drawback for the nocoherent SIMO channel,

i.e., the minimum Euclidean distance between the signal points with large ener-

gies is the same as the minimum Euclidean distance between the signal points

with small energies.
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4.3 Energy-Efficient Unitary Uniquely-Factorable

Constellations

Just as we have pointed out in the comments of Theorem 4, a good constellation

for the noncoherent SIMO channel should be such a constellation that its minimum

Euclidean distance is supposed to increase as the energies of the signal points become

large. It is this motivation that leads us to developing two algorithms to efficiently

and effectively design the UFCs.

4.3.1 Lagrange’s four-square theorem

First, we introduce a very famous theorem in additive number theory, the Lagrange’s

four-square theorem. Lagrange discovered and proved that every positive integer can

be represented as the sum of four squares, i.e.,

N = a2 + b2 + c2 + d2 (4.28)

where a, b, c, d are integers. A fast algorithm is provided in [57] to find a solution to

(4.28). If we let r4(N) denote the number of solutions to (4.28), then,

r4(N) = 8
∑

m|N,4-m

m (4.29)

which is the summation of all divisors of N not divisible by 4. It has been proved

that r4(N)/8 is a multiplicative function. Hence, if we let

N = 2k0 × pk11 × pk22 × · · · × pkn
n
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where p1, p2, · · · , pn are all odd prime numbers, k0 is a nonnegative integer, k1, · · · , kn

are positive integers, then, the number of different representations r4(N) is also given

by

r4(N) = 24
n∏
i=1

1− pki+1
i

1− pi
(4.30)

See more details in [58] on this theorem and some related results.

4.3.2 UFC constructions

Our primary target in this subsection is to find an efficient and effective method

for the design of a UFC, Un, with a given size of 2n. Theoretically speaking, we

should find a UFC from the complex two-dimensional plane C2 such that its distance

is maximized. However, just as we have mentioned in the introduction, this design

problem is extremely difficult to be formulated into a tractable optimization problem,

even for the AWGN channel [27–33]. Therefore, the basic idea of efficiently and

effectively finding a good UFC here is to use the Lagrange’s four-square theorem. We

start with N = 2 and find all the solutions to (4.28). Then, all the combinations

of all the solutions a, b, c and d form (x, y)T as all the possible candidates. Now, by

Proposition 6 and the following two rules:

Rule 1: (0, y)T /∈ Un, since we do not require that infinity belongs to the training-

equivalent UFC (see the definition of the training-equivalent UFC in Subsection 4.3.3),

Rule 2: (x, 0)T /∈ Un, since we do not require that zero belongs to the training-

equivalent UFC

we select out such a set of 4 vectors that its distance is maximized. This set is

designated as the first UFC U2 with 4 symbols. Then, we increase N by one and use

the the Lagrange’s four-square theorem to add another 4 vectors to U2 so that the
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resulting set of 8 vectors, which is denoted by U3, has the maximum distance among

all such additions. Continue this process until Un with size 2n is constructed. All

these procedures can be summarized as an algorithm below.

Algorithm 1 This algorithm consists of the following six progressive steps:

1. Initialize n = 2, and W = Φ.

2. Given N = 2, find all possible combinations of (a, b, c, d) to generate vectors

according to Rules 1 and 2.

3. Check every vector. If the distance between this vector and any other vector

already in W is not equal to 0, i.e., the unique factorization condition is satisfied,

then, add it into W.

4. Find all the subsets Xn of W with size 2n such that Un−1 ⊆ Xn and D(Xn) >

D(TQn(α̂)), go to 5). Otherwise, go back to 2) and increase N by 1.

5. Among all the candidates Xn1 ,Xn2 , · · · ,XnM
, select the index nm such that Xnm

has the largest distance and then, let Un = Xnm.

6. Go to 2) and increase n by 1.

In Step 5), if there is more than one candidate having the largest distance, then,

choose the one that makes the corresponding training-equivalent UFC as symmetric

as possible. Some UFCs with 4, 8, 16, 32 and 64 symbols designed using Algorithm 1

are given in the Appendix F. Other larger sizes of UFCs can be found in [59]. All

these constellations enjoy some nice geometrical properties described as follows.
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Proposition 7 Let the UFC Un be designed by Algorithm 1. If we let

Zn =
{y
x

: (x, y)T ∈ Un

}
(4.31)

then, Zn satisfies a certain of rotation-invariant properties, i.e., if z ∈ Zn, then,

ejθz ∈ Zn, where θ = π,±π/2.

4.3.3 Unitary and Training-Equivalent UFCs

After we have designed a UFC Un, a unitary UFC is immediately obtained by nor-

malizing the nonunitary UFC Un, i.e.,

Un =


1√

|x|2 + |y|2


x

y

 : (x, y)T ∈ Un


(4.32)

In addition, a new constellation resulting from Un is defined as

TZn =


z =


1

z

 : z =
y

x
, (x, y)T ∈ Un


TZn is nothing but the collection of every vector in Un divided by its first element.

As a result, the first element in the new constellation is always 1, which is exactly the

same as training scheme using the one-dimensional constellation Zn and thus, is called

a training-equivalent constellation, whereas Zn itself is called a training-equivalent
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UFC. In addition, since the one-dimensional constellation Zn can be plotted on a

complex plane, it provides us with intuitive understanding of the constellation. So,

by symmetry mentioned in Subsection 4.3.2, we mean that the constellation Zn is

geometrically symmetric. In addition, notice that the distance between any two

vectors z1 and z2 in the training-equivalent constellation TZn is

d(z1, z2) =
|y1/x1 − y2/x2|√

1 + |y1/x1|2
√

1 + |y2/x2|2

=
|y1x2 − y2x1|√

|x1|2 + |y1|2
√
|x2|2 + |y2|2

= d(u1,u2)

for u1 = (x1, y1)T ,u2 = (x2, y2)T ∈ U. Hence, the distance is maintained, i.e.,

D(TZn) = D(Un)

It is for this reason that from now on, we will work only on the training-equivalent

constellation instead of the original one.
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4.3.4 Optimal unitary UFC

Similar to the definitions of TQp(α) and TQp(α), the energy-scaled version of the

training-equivalent UFC, TZn(β), and its unitary UFC, TZn(β), are defined, respec-

tively, as

TZn(β) =




1

βz

 : z ∈ Zn



TZn(β) =


1√

1 + β2|z|2


1

βz

 : z ∈ Zn


Then, the distance between any two vectors z′1 and z′2 in TZn(β) is equal to

d(z′1, z
′
2) =

β|z1 − z2|√
1 + β2|z1|2

√
1 + β2|z2|2

, d(z1, z2, β) (4.33)

Hence, we desire to solve the following optimization problem:

Problem 3 Find an energy scale β such that the distance of the constellation TZn(β)

is maximized, i.e.,

β̂ = arg max
β

D(TZn(β))

= arg max
β

min
z1 6=z2∈Zn

β|z1 − z2|√
1 + β2|z1|2

√
1 + β2|z2|2

= arg max
β

min
z1 6=z2∈Zn

d(z1, z2, β) (4.34)
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In order to efficiently solve Problem 3, we first notice that the objective function

d(z1, z2, β) is symmetric with respect to the variables z1 and z2, i.e., d(z1, z2, β) =

d(z2, z1, β). Hence, we can always assume |z1| ≥ |z2| without loss of generality.

Moreover, since the constellation Zn satisfies the rotation-invariant Proposition 7,

d(z1, z2, β) = d(ejθz1, e
jθz2, β) for any z1, z2 ∈ Zn, where θ = π,±π/2.

Lemma 4 Let a constellation V contain such 12 points vk for k = 1, 2, · · · , 12 that

v1 = 2a, v2 = −2a, v3 = 2aj, v4 = −2aj, v5 = a + aj, v6 = a − aj, v7 = −a + aj, v8 =

−a − aj, v9 = a, v10 = −a, v11 = aj, v12 = −aj and the other points satisfy |vk| < a

for k ≥ 13, where a is positive. If we define the distance of v1 to the other points in

V as

g(v1, β) = min
v1 6=v∈V

d(v1, v, β) (4.35)

then, we have g(v1, β) = d(v1, v9, β).

Proof: For clarity, the diagram of the constellation V is plotted in Fig. 4.1. Let us

first consider the distances of v1 to v2, v3 and v4. Since

d1 , d(v1, v3, β) = d(v1, v4, β) =
2
√

2aβ√
1 + 4a2β2

√
1 + 4a2β2

|v1 − v2| > |v1 − v3| = |v1 − v4| and |v2| = |v3| = |v4|, we can arrive at the fact that

d(v1, v2, β) > d1. Hence, we have

min{d(v1, v2, β), d(v1, v3, β), d(v1, v4, β)} = d1 (4.36)
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Figure 4.1: Set V on the complex plane
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Now, we consider the distances of v1 to v5, v6, v7 and v8. Notice that

d2 , d(v1, v5, β) = d(v1, v6, β) =

√
2aβ√

1 + 4a2β2
√

1 + 2a2β2
(4.37)

Since |v1 − v7| = |v1 − v8| > |v1 − v5| = |v1 − v6| and |v5| = |v6| = |v7| = |v8|, we have

d(v1, v7, β), d(v1, v8, β) > d2. Therefore, we derive that

min{d(v1, v5, β), d(v1, v6, β), d(v1, v7, β), d(v1, v8, β)} = d2 (4.38)

Finally, we consider all the distances of v9, v10, v11 and v12 to v1. Since

d3 , d(v1, v9, β) =
aβ√

1 + 4a2β2
√

1 + a2β2
(4.39)

|v1 − vi| > |v1 − v9| and |vi| = |v9| for i = 10, 11, 12, we attain d(v1, vi, β) > d3. For

the other points vk ∈ V with k ≥ 13, since |v1 − vk| > |v1 − v9| and |vk| < a = |v9|,

we have that d(v1, vk, β) > d3. Therefore, the minimum distance of v1 to the other

points in V is determined by

g(v1, β) = min{d1, d2, d3} (4.40)

Since

d1

d2

=

√
4 + 8a2β2

1 + 4a2β2
> 1

d2

d3

=

√
2 + 2a2β2

1 + 2a2β2
> 1
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we obtain d1 > d2 > d3 and thus, g(v1, β) = d(v1, v9, β). This completes the proof of

Lemma 4. �

From the proof of Lemma 4, we can immediately obtain the following corollary.

Corollary 1 We have

d(v1, v5, β) = d(v1, v6, β) < d(v1, v3, β) = d(v1, v4, β) < d(v1, v2, β)

The proof of Corollary 1 is ommited. Now, by taking advantage of the geometrical

properties of Zn and the distance function d(z1, z2, β), Lemma 4 and its corollary, we

can find all the solutions to Problem 3 with the size 2n ranging from n = 2 to n = 6.

Theorem 5 The solutions to Problem 3 for n = 2, 3, 4, 5 and 6 are given as follows:

β̂ =



1 if n = 2 or 6

1
4√2

if n = 3 or 4

√
2+
√

61
6

if n = 5
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D(TZn(β̂)) =



1√
2

if n = 2

1
1+
√

2
if n = 3

1√
5+3
√

2
if n = 4

√
57

431+79
√

61
if n = 5

1
3
√

6
if n = 6

The proof of Theorem 5 is given in Appendix G. In spite of the fact that Theorem 5

explicitly gives the optimal solutions to Problem 3 only for small size of UFCs, if we

carefully read through its proof, we find that it actually provides us with an elegant

machinery to efficiently attain the optimal solution to Problem 3 for sizable UFCs.

The key here is to gradually reduce the size of the constellation by properly making

use of the geometrical properties of Zn and the objective function, Lemma 4 and

Corollary 1. Some major steps are highlighted as the following algorithm:

Algorithm 2 The optimal solution to Problem 3 is found based on the following 5

steps.

1. Sort all the elements in the constellation Zn by descending magnitude order

such that |z1| ≥ |z2| ≥ · · · ≥ |z2n|.

2. Starting zk with k = 1, go through zk+1, zk+2, · · · , z2n to find

g(zk, β) = min
k+1≤i≤2n

d(zk, zi, β)
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Figure 4.2: A single relay system

3. Go back to 2) and increase k by 4 until k = 2n − 3.

4. Compare all functions g(zk, β) for k = 1, 5, · · · , 2n − 3 to obtain D(TZn(β)),

i.e.,

D(TZn(β)) = min
k
g(zk, β)

5. Maximize D(TZn(β)) over the energy scale variable β.

4.4 Diagonal Distributed UFC Space-time Block

Codes

In this section, we particularly consider a noncoherent AF half-duplex cooperative

relay system with three nodes. Using Theorem 1 just established in Chapter 3 and

the UFCs constructed in Subsection 4.3.2, we propose the design of full diversity

unitary diagonal distributed space-time block codes with the LSE receiver. We also

derive the closed-form decision rule for the GLRT receiver for such a system with the

proposed code.

55



M.A.Sc. Thesis - Li Xiong McMaster - Electrical Engineering

4.4.1 Design of unitary UFC codes

An AF half-duplex cooperative relay system with three nodes: a source S, a destina-

tion node D and a relay node R, is shown in Fig. 4.2. Each node has only a single

antenna that cannot transmit and receive simultaneously. The channel gain from the

source to the destination is denoted by hsd, whereas those from the source to the

relay and from the relay to the destination are denoted by hsr and hrd, respectively.

It is assumed that the channel gains are completely unknown at the destination, but

remain unchanged within four transmission time slots, after which they change to

new independent values that are fixed for next four time slots, and so on. We are

interested in the AF half-duplex protocols introduced in [4, 10, 11]. Particularly, we

adopt the orthogonal cooperative transmission scheme proposed in [11], Then, the

channel model can be written as

r =
√
ρSh + η (4.41)

where h = (hsd, hsrhrd)
T ,η = (η1, η2 + hrdη3, η4, η5 + hrdη6)T and S = (s1I2, s2I2)T ×√

3/Es, with a pair of (s1, s2) randomly, independently and equally-likely drawn from

a certain constellation S to be designed and Es being the average energy of S. We

assume that the noise ηi, i = 1, · · · , 6 are independent circularly-symmetric complex

Gaussian random variables with each having zero mean and unit variance. Then, the

covariance matrix D of vector η is D = diag{1, 1 + |hrd|2, 1, 1 + |hrd|2}. Here, we aim

at the design of a full diversity unitary diagonal distributed space-time block code

for this system. From Theorem 1, we know that in order to achieve full diversity,

we need to design such a constellation S that the matrices Psŝ = (S, Ŝ)H(S, Ŝ) are
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invertible for all the distinct pairs of S and Ŝ. Notice that in this case,

Psŝ =
3

Es
×


s∗1I2 s∗2I2

ŝ∗1I2 ŝ∗2I2




s1I2 ŝ1I2

s2I2 ŝ2I2


Since

det(Psŝ) = (s1ŝ2 − ŝ1s2)2(3/Es)
4 (4.42)

the fact that the matrices Psŝ = (S, Ŝ)H(S, Ŝ) are invertible for all the distinct pairs

of S and Ŝ is equivalent to the fact that s1ŝ2 6= ŝ1s2 for all (s1, s2)T 6= (ŝ1, ŝ2)T ∈ S,

which is nothing but the UFC. Therefore, designing the constellation S such that full

diversity is achieved with the LSE receiver is equivalent to designing the constellation

S to be a UFC. Fortunately, various sizes of UFCs have been designed in Subsec-

tion 4.3.2. Once the UFC has been constructed, a unitary UFC can be immediately

attained by simply normalizing the nonunitary UFC (4.32). Hence, the resulting

full diversity unitary diagonal distributed space-time block code is generated from

the unitary UFC S = Ū. Such a code is called diagonal distributed unitary-UFC

(DDUFC) code.

Since the implementation of the ML receiver is intractable, we derive the decision

rules for the GLRT receiver as well as for the LSE receiver in the following two sub-

sections. In order to arrive at a general decoding algorithm, we consider an arbitrary

constellation S instead of a unitary constellation.
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4.4.2 GLRT detection

We first examine the case when the GLRT detector is employed at the receiver

end. Conditioned on the channel coefficients h and transmitted signals S, the prob-

ability density function of the received signal z is the Gaussian distribution, i.e.,

1
π2 det(D)

× exp
(
−(z−√ρSh)HD−1(z−√ρSh)

)
, and thus, its likelihood is given by

−(z−√ρSh)HD−1(z−√ρSh)−2 lnπ−2 ln(1+ |hrd|2). By maximizing the likelihood

function, we can obtain the estimated channel coefficient h and transmitter signal S

as

{Ŝ, ĥ} = arg min
S,h

(z−√ρSh)HD−1(z−√ρSh) + 2 ln(1 + |hrd|2)

= arg min
S

min
hrd

min
f

(z−√ρSAf)HD−1(z−√ρSAf)

+2 ln(1 + |hrd|2) (4.43)

where A = diag(1, hrd) and f = (hsd, hsr)
T . For the innermost minimization prob-

lem, differentiating the objective with respect to f and equating it to zero yields

f̂ = (AHSHD−1SA)−1AHSHD−1z/
√
ρ. Then, substituting f̂ and A back into (4.43)

results in

{Ŝ, ĥrd} = arg min
S

min
hrd

{
zHD−1z− zHD−1SA(AHSHD−1SA)−1AHSHD−1z

+2 ln(1 + |hrd|2)
}

= arg min
S

min
hrd

{ |s1z4 − s2z2|2

(1 + |hrd|2)(|s1|2 + |s2|2)
− |s

∗
1z1 + s∗2z3|2

|s1|2 + |s2|2

+2σ2 ln(1 + |hrd|2)
}

(4.44)
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Letting x = (1 + |hrd|2)−1 and equating the derivative of (4.44) with respect to x to

zero leads to

x =
2σ2

ē

where ē = |s1z4−s2z2|2
|s1|2+|s2|2 . Therefore, the estimated magnitude of the channel coefficient

hrd is determined by

|ĥrd|2 =


ē

2σ2 − 1 if ē ≥ 2σ2,

0 if 0 ≤ ē < 2σ2

(4.45)

Substituting the result back into (4.44), the estimated transmitted signal Ŝ is given

by

Ŝ = min
(s1,s2)T∈S


2σ2 ln(ē/2)− |s

∗
1z1+s∗2z3|2
|s1|2+|s2|2 + 2σ2 − 4σ2 lnσ, if ē ≥ 2σ2;

ē− |s
∗
1z1+s∗2z3|2
|s1|2+|s2|2 , if 0 ≤ ē < 2σ2

(4.46)

4.4.3 LSE detection

If the LSE receiver is used at the destination node, the following optimization problem

needs to be solved,

{Ŝ, ĥ} = arg min
S,h
‖z−√ρSh‖2

2 (4.47)
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Differentiating the quadratic function with respect to h and equating the result to

zero, we can obtain the estimated channel coefficients

ĥ = (SHS)−1SHz/
√
ρ (4.48)

then, the estimated signal matrix is found out to be

Ŝ = arg max
S

zHS(SHS)−1SHz

= arg max
(s1,s2)T∈S

|s∗1z1 + s∗2z3|2 + |s∗1z2 + s∗2z4|2

|s1|2 + |s2|2
(4.49)

It is worthwhile to point out that in general, the variance of the noise must be

available for the GLRT detector, whereas the LSE detector doesn’t require that in-

formation.
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Chapter 5

Computer Simulations and

Discussions

5.1 Computer Simulations for SIMO Systems

In this section, we perform computer simulations and examine error performance of

the unitary UFC design proposed in this thesis by comparing it with other schemes in

the literatures which can be used in the SIMO system, where channel state informa-

tion is completely unknown at both the transmitter and the receiver. The coherence

time is T = 2 and the number of the receiver antennas ranges from N = 1 to N = 4.

All the schemes that we like to compare here are discussed as follows:

(a) Differential scheme based on Phase Shift Keying (PSK) constellations. For

the necessity of performance comparison and decoding with the GLRT receiver, the
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(a) 1 receiver antenna (N = 1)
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(c) 3 receiver antennas (N = 3)
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(d) 4 receiver antennas (N = 4)

Figure 5.1: Performance comparison for transmission bit rate Rb = 1 bits per channel
use

unitary codeword matrix is expressed by

Sa =
1√
2
×


IN

saIN

 (5.1)

where sa is randomly, independently and equally likely chosen from the 2K-ary PSK
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(b) 2 receiver antennas (N = 2)
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(c) 3 receiver antennas (N = 3)
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(d) 4 receiver antennas (N = 4)

Figure 5.2: Performance comparison for transmission bit rate Rb = 1.5 bits per
channel use

constellation and the normalization constant assures E
[
tr
(
SHa Sa

)]
= N .

(b) SNR-efficient nonunitary training scheme based on QAM constellations. The
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(b) 2 receiver antennas (N = 2)
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(c) 3 receiver antennas (N = 3)
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(d) 4 receiver antennas (N = 4)

Figure 5.3: Performance comparison for transmission bit rate Rb = 2 bits per channel
use

codeword matrices for this SNR-efficient training scheme are characterized by

Sb =
1√
2Eb
×


√
EbIN

sbIN

 (5.2)

where sb is randomly, independently and equally likely chosen from the 2K-ary cross
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(b) 2 receiver antennas (N = 2)
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(c) 3 receiver antennas (N = 3)
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(d) 4 receiver antennas (N = 4)

Figure 5.4: Performance comparison for transmission bit rate Rb = 2.5 bits per
channel use

QAM constellation. The energy constantEb is normalized in such a way that E
[
tr
(
SHb Sb

)]
= N . Here, the optimal average energy distribution over the training phase and com-

munication phase is attained by maximizing the training efficiency [14,60,61].

(c) Energy-efficient unitary training scheme based on QAM constellations. This
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(c) 3 receiver antennas (N = 3)
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(d) 4 receiver antennas (N = 4)

Figure 5.5: Performance comparison for transmission bit rate Rb = 3 bits per channel
use

design is proposed in this thesis and the codeword matrices are represented by

Sc =
1√

1 + α̂2|sc|2
×


IN

α̂scIN

 , sc ∈ QK (5.3)

where the energy scale α̂ is determined by Theorem 4.
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(d) Unitary UFC. The constellation is designed in this thesis and the codeword

matrices are of the form:

Sd =
1√

|x|2 + |y|2
×


xIN

yIN

 , (x, y)T ∈ UK (5.4)

(e) Optimal unitary UFC. The optimal constellation design is proposed in this

thesis and the codeword matrices are characterized by

Se =
1√

1 + β̂2|se|2
×


IN

β̂seIN

 , se ∈ ZK (5.5)

where the optimal energy scale β̂ is given by Theorem 5.

It can be seen that the above five transmission schemes have the same spectrum

efficiency, i.e., each transmission rate is Rb = K/2 bits per channel use. To make all

the comparisons fair, we decode all the codes using the GLRT detector, i.e.,

Ŝ = arg max
S

rHS
(
SHS

)−1
SHr.

For K = 2, 3, 4, 5 and 6, the coding gains for all the constellations are listed in

Table 5.1 and the average codeword error rates versus SNR are shown Fig. 5.1 to

Fig. 5.5. It is observed that the optimal unitary UFC designed in this thesis performs

the best error performance among all the five transmission schemes.
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Table 5.1: Coding Gains for Different Constellations

K G(Sa) G(Sb) G(Sc) G(Sd) G(Se)

2 0.5 0.5 0.5 0.5 0.5

3 0.1461 0.125 0.1 0.1667 0.1716

4 0.0381 0.0714 0.0730 0.1 0.1082

5 0.0096 0.0370 0.0335 0.0476 0.0543

6 0.0024 0.0143 0.0117 0.0185 0.0185

5.2 Computer Simulations for Three-Nodes Relay

Systems

In this section, we carry out computer simulations and examine error performance

of the DDUFC space-time block code designed in this thesis with the GLRT and

LSE detectors. We compare this new code with the differential scheme and optimally

precoded training method for the noncoherent AF half-duplex relay system.

(f) Differential schemes. First, we compare the DDUFC code with the differential

coding scheme proposed in [15]. Despite the fact that the binary phase shift-keying

(BPSK) constellation was only used in [15], it can be generalized in a straightforward

manner into the 2K−PSK constellation. Basically, the transmission scheme in [15] is

that the relay scales the received signals from the source before transmitting them to
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the destination. Therefore, the transmitted signal Sf in (4.41) can be represented as

Sf =
√
Ef ×


I2

sfI2




1 0

0 1/
√
Ef + 1


where sf ∈ 2K-PSK and Ef = ρ− 1 +

√
ρ2 + ρ+ 1. The noise vector is η = (η1, η2 +

hrdη3/
√
Ef + 1, η4, η5 + hrdη6/

√
Ef + 1)T with covariance matrix D = diag{1, 1 +

|hrd|2/(Ef + 1), 1, 1 + |hrd|2/(Ef + 1)}. If the GLRT detector is employed at the

destination node, then, after proper optimization over f , which is the exactly same

procedure as shown in Subsection 4.4.2, the objective function evaluates to

{ŝf , ĥrd} = arg min
sf

min
hrd

{ 1 + Ef
1 + Ef + |hrd|2

|z2sf − z4|2

2

−
|z1 + s∗fz3|2

2
+ 2 ln

(
1 + Ef + |hrd|2

1 + Ef

)}
(5.6)

Following a similar procedure, the estimated magnitude of the channel coefficient hrd

is given by

|ĥrd|2 =



√(
|z2sf−z4|2

2
− 1
)

(1 + Ef ) if |z2sf − z4|2 ≥ 4,

0 if 0 ≤ |z2sf − z4|2 < 4

(5.7)
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and the estimated signal is determined by

ŝf = min
sf


4 ln |z2sf − z4| −

|z1+s∗f z3|
2

2
if |z2sf − z4|2 ≥ 4,

|z2sf − z4|2 − |z1 + s∗fz3|2 if 0 ≤ |z2sf − z4|2 < 4

(5.8)

(g) Precoded training schemes. The second transmitting scheme we would like

to compare here is the precoded training scheme. For this scheme, the information

symbols sg1 and sg2 transmitted from the source node are first precoded by a rotation

matrix F, i.e.,


s1pre

s2pre

 = F


sg1

sg2

 , F =


cosα sinα

− sinα cosα


with α ∈ [0, 2π]. Correspondingly, the transmitted signal matrix is represented by

Sg =


√

6
2
× I2

1√
Eg
×G

 , G =


s1pre 0

s2pre s1pre


where Eg denote the average energy per information symbol. The optimal rotation

angle [9] for this system with the QAM constellation of size K is given by α =

tan−1(1/
√
K). At the receiver end, the transmitted signal is estimated using LSE
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detector, i.e.,

{ŝ1pre, ŝ2pre} = arg max
Sg

{rHSg(S
H
g Sg)

−1SHg r}

(h) Diagonal distributed unitary-UFC codes As described in Section 4.4, the uni-

tary signal matrix is characterized by (4.32). However, for notation consistence in

this section, we change notation S for the unitary UFC codeword matrix into Sh, i.e.,

Sh = S. Hence, we have

Sh =

√
3

|x|2 + |y|2
×


xI2

yI2

 (5.9)

The codeword error rates versus SNR with a variety of transmission bit rates are

plotted in Fig. 5.6. It can be observed that among all the schemes which we compare,

the DDUFC code performs the best performance. In addition, there is almost no

difference between the GLRT receiver and the LSE receiver for the DDUFC coded

systems. As the size of constellation increases, the gap between the error rate curves

also increases. Specifically when three 64-points constellations are used, the DDUFC

code outperforms the differential scheme by about 13dB at the error rate of 10−3. In

addition, another interesting observation is that in spite of the fact that the symbol

rate of the DDUFC code is 1/4 symbols per channel use and that of the precoded

training scheme is 1/2 symbol per channel use, the error performance of the DDUFC

code is still better than that of the precoded training scheme with both transmission

bit rates being 0.5bits and 1bit per channel use (see Figs. 5.6(a) and 5.6(c)) and with
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the same LSE detector. When the transmission bit rate is increased to 2bits per

channel use, within the region of SNR from 0dB to 40dB, i.e., the error rate being

greater than 10−3 shown in Fig. 5.6(f), the error performance of the DDUFC code is

worse than that of the precoded training scheme, whereas it is better when SNR is

larger than 40dB.
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(a) Transmission bit rate Rb = 0.5 bits per chan-
nel use
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(b) Transmission bit rate Rb = 0.75 bits per chan-
nel use
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(c) Transmission bit rate Rb = 1 bits per channel
use
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(d) Transmission bit rate Rb = 1.25 bits per chan-
nel use
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(e) Transmission bit rate Rb = 1.5 bits per chan-
nel use
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(f) Transmission bit rate Rb = 2 bits per channel
use

Figure 5.6: Average codeword error rate comparison with different transmission bit
rates 73



Chapter 6

Conclusion and Future Work

In this thesis, we have first considered the noncoherent cooperative AF half-duplex

relay systems and then, discussed the noncoherent SIMO systems, where full channel

state information is completely unknown at both the source and the destination sides,

but remains constant for a period of coherence time, after which it changes to a new

independent realization that are fixed for the next period of coherence time, and so

on. We have analyzed the asymptotic behavior of the pairwise error probability for

the relay systems with the LSE receiver. A novel signal design method using the UFC

has been proposed for the systematic constructions of the full diversity energy-efficent

unitary constellations for the noncoherent SIMO channel and the unitary diagonal

distributed space-time block codes for the relay channel with three nodes.
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6.1 Asymptotic Performance Analysis of AF Relay

Systems

For the AF half-duplex relay systems, we have proposed the use of the LSE receiver

for detection. Since the currently available asymptotic analysis of the pairwise error

probability for the noncoherent MIMO systems with the GLRT detector cannot be

directly applied to the noncoherent cooperative relay systems with the LSE detector,

we have re-derived the more accurate asymptotic formula using perturbation theory

on the eigenvalues. With this, we have established the asymptotic formula of the pair-

wise error probability for the noncoherent relay systems with the LSE receiver. The

result demonstrates that the full diversity gain function imitates coherent cooperative

AF half-duplex relay systems, whereas the coding gain function imitates noncoherent

MIMO systems. In addition, we have rigorously proved that for any given nonzero

received signal, the unique blind identification of both the equivalent channel and the

transmitted signals in the noise-free case for the AF relay systems is equivalent to

full diversity with the LSE detector in the Gaussian noise environment.

6.2 Energy-Efficient Unitary UFC Designs

For the SIMO systems, we have first considered the design of the optimal unitary

training constellation based on the commonly-used QAM constellations to maximize

the coding gain. A deep investigation of the fractional coding gain function has re-

vealed that the coding gain is achieved when the numerator achieves the minimum and

meanwhile, the denominator achieves the second maximum. Therefore, a technical

approach developed in this thesis to maximizing the coding gain is to appropriately
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design an energy scale to geometrically compress the first two largest energy points

in the corner of the QAM constellations in the denominator of the objective. Closed-

form optimal energy scale and coding gain have been attained. The result explicitly

exposes a significant drawback of the QAM constellations for the nocoherent SIMO

channel, i.e., the minimum Euclidean distance between the signal points with large

energies is the same as the minimum Euclidean distance between the signal points

with small energies. It is this drawback that has greatly motivated us to invent the

novel concept, uniquely factorable constellation. We have proved that the UFC de-

sign assures the unique blind identification of channel coefficients and transmitted

signals in the noise-free case for the SIMO systems by only processing two received

signals, as well as full diversity for the GLRT receiver in the noisy case. By using

the Lagrange’s four-square theorem, an algorithm has been developed to efficiently

and effectively construct various sizes of energy-efficient unitary UFCs to optimize

the coding gain.

Particularly for the noncoherent AF half-duplex protocol with three nodes, we

have used the full diversity criterion and UFCs established in this thesis for the

systematic design of the full diversity unitary diagonal distributed space-time block

codes. Furthermore, we have derived the closed-form decision rule for the GLRT re-

ceiver for this specific protocol. The comprehensive computer simulations have shown

that error performance of the unitary UFC designed in this thesis is superior to those

of the differential schemes, the optimal unitary training schemes presented in this

thesis and SNR-efficient training schemes using the QAM constellation for the SIMO

systems, which, thus far, performs the best error performance in current literatures.
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The computer simulations have also demonstrated that error performance of the uni-

tary diagonal distributed space-time block codes designed in this thesis outperforms

those of the differential codes and the optimally precoded training schemes for the

relay systems.

6.3 Future Work

As we have observed, the concept of the UFC is the key to the systematic design of

energy-efficient full diversity unitary constellations for the noncoherent SIMO channel.

However, some constructions and properties on the UFC which have been presented

in this thesis are just initiative. More research and deeper investigations need to be

done. Our future work will first focus on the following two aspects:

1. Instead of a pair of coprime PSK constellations, whether could the UFC con-

structed in this thesis be utilized to systematically design full diversity non-

coherent space-time block codes for a general MIMO system by following the

strategy similar to [54]?

2. The construction of the UFCs has been derived from the Gaussian integer ring

using the Lagrange’s four-square theorem. How about the Lagrange’s four-

square theorem in the Eisenstein integer ring? since the hexagonal constellations

carved from the Eisenstein integer ring are more energy-efficient than the QAM

constellations carved from the Gaussian integer ring [31].

In addition, in spite of the fact that full diversity space-time block code designs

have recently been developed for the noncoherent MIMO systems by using a pair of
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coprime PSK constellations [54], this result cannot be directly applied to the nonco-

herent cooperative relay systems, since different protocols have different signal matrix

structures. On the other hand, it is known that the PSK constellation is not as energy-

efficient as the QAM constellation. Therefore, our future work will then concentrate

on the systematic design of full diversity distributed space-time block codes for a

general noncoherent AF half-duplex relay system based on the UFCs.
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Appendix A

Proof of Lemma 1

Let Sij = (Si,Sj). Then, matrix Σrr|iFij can be rewritten as

Σrr|iFij = (ρSiΣSHi + IMN)[Si(S
H
i Si)

−1SHi − Sj(S
H
j Sj)

−1SHj ]

= Si(ρΣ + R−1
ii )SHi − ρSiΣRijR

−1
jj SHj − SjR

−1
jj SHj

= Sij


ρΣ + R−1

ii −ρΣRijR
−1
jj

0MN −R−1
jj

SHij

Since the nonzero eigenvalues of matrices AB and BA are equal, we can equivalently

move Sij to the right to form a matrix Mij given by

Mij =


ρΣRii + IMN − ρΣRijR

−1
jj Rji R−1

ii Rij

−R−1
jj Rji −IMN


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Then, the eigenvalues of Mij are equal to those of Σrr|iFij. For discussion simplicity,

let

A = Σ1/2(Rii −RijR
−1
jj Rji)Σ

1/2

Ã = (ρA + IMN)−1Σ−1/2R−1
ii RijR

−1
jj RjiΣ

1/2

T1 =


Σ1/2 0

0 IM



T2 =


IMN −(ρA + IMN)−1Σ−1/2R−1

ii Rij

0 IMN



T3 =


IMN 0

−R−1
jj RjiΣ

1/2(ρA + IMN − Ã)−1 IMN


and

C =


C1 C2

C3 C4

 = T−1
3 T−1

2 T−1
1 MijT1T2T3
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where each submatrix of matrix C is given by

C1 = ρA + IMN − Ã + (IMN − Ã)Ã(ρA + IMN − Ã)−1

C2 = (ρA + IMN)−1Σ−1/2R−1
ii Rij − Ã(ρA + IMN)−1Σ−1/2R−1

ii Rij

C3 = R−1
jj RjiΣ

1/2[IMN − Ã− (ρA + IMN − Ã)−1(IMN − Ã)Ã](ρA + IMN − Ã)−1

C4 = −IMN + R−1
jj RjiΣ

1/2[IMN − (ρA + IMN − Ã)−1(IMN − Ã)]

×(ρA + IMN)−1Σ−1/2R−1
ii Rij

Since eigenvalues do not change under any similarity transformation, the eigenvalues

of matrix C are identical to those of Mij. In addition, let

C̃ =


C1 − ρA− IMN C2

C3 C4 + IMN



D =


ρA + IMN 0

0 −IMN

 (A.1)

E = C−D = C̃

Now, according to Proposition 2, we can bound the 2-norm of matrix Ã by

||Ã||2 ≤ ||(ρA + IMN)−1||2||Σ−1/2||2||R−1
ii RijR

−1
jj Rji||2||Σ1/2||2 =

cκ

ρν1 + 1
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where c denotes the largest singular value of matrix R−1
ii RijR

−1
jj Rji. As a result, the

asymptotic behavior of the F-norm of matrix Ã is

||Ã||F = O

(
κ

ρν1 + 1

)
(A.2)

By the triangular inequality of norm, we have

||IMN − Ã||F ≤ ||IMN ||F + ||Ã||F =
√
MN +O

(
κ

ρν1 + 1

)
(A.3)

and

||(ρA + IMN − Ã)−1||F = O

(
κ

ρν1 + ε

)
(A.4)

where ε = 1− cκ
ρν1+1

. Utilizing (A.2), (A.4), (A.3) and Proposition 2, we can obtain

||(IMN − Ã)Ã(ρA + IMN − Ã)−1||F ≤
[√

MN +O

(
κ

ρν1 + 1

)]
×O

(
κ

ρν1 + 1

)
O

(
κ

ρν1 + ε

)
= O

(
κ

ρν1 + ε

)

Similarly, we can derive

||IMN − Ã− (ρA + IMN − Ã)−1(IMN − Ã)Ã||2F

≤ 2||IMN − Ã||2F + 2||(ρA + IMN − Ã)−1(IMN − Ã)Ã||2F

≤ 2

[√
MN +O

(
κ

ρν1 + 1

)]2 [
1 +O

(
κ2

(ρν1 + ε)2

)
O

(
κ2

(ρν1 + 1)2

)]
= 2

[
MN +O

(
κ2

(ρν1 + ε)2

)]
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and

||IMN − (ρA + IMN − Ã)−1(IMN − Ã)||2F

≤ 2MN + 2||(ρA + IMN − Ã)−1(IM − Ã)||2F

≤ 2MN +O

(
2κ2

(ρν1 + ε)2

)[√
MN +O

(
κ

ρν1 + 1

)]2

= 2MN +O

(
κ2

(ρν1 + ε)2

)

As a result, the norm of each submatrix of C̃ is bounded by

||C1 − ρA− IMN ||2F = || − Ã + (IMN − Ã)Ã(ρA + IMN − Ã)−1||2F

≤ 2||Ã||2F + 2||(IMN − Ã)Ã(ρA + IMN − Ã)−1||2F

= O

(
κ2

(ρν1 + 1)2

)
+O

(
κ2

(ρν1 + ε)2

)
= O

(
κ2

(ρν1 + ε)2

)
||C2||2F = || − (ρA + IMN)−1Σ−1/2R−1

ii Rij

+Ã(ρA + IMN)−1Σ−1/2R−1
ii Rij||2F

≤
[√

MN +O

(
κ

ρν1 + 1

)]2

O

(
κ2

(ρν1 + 1)2

)
= O

(
κ2

(ρν1 + 1)2

)
||C3||2F = ||R−1

jj RjiΣ
1/2[IMN − Ã− (ρA + IMN − Ã)−1(IMN − Ã)Ã]

×(ρA + IMN −A)−1||2F

≤
[
MN +O

(
κ2

(ρν1 + ε)2

)]
O

(
κ2

(ρν1 + ε)2

)
= O

(
κ2

(ρν1 + ε)2

)
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and

||C4 + IMN ||2F = ||R−1
jj RjiΣ

1/2[IMN − (ρA + IMN − Ã)−1(IMN − Ã)]

×(ρA + IMN)−1Σ−1/2R−1
ii Rij||2F

≤
[
2MN +O

(
κ2

(ρν1 + ε)2

)]
O

(
κ2

(ρν1 + 1)2

)
= O

(
κ2

(ρν1 + ε)2

)

Therefore, the norm of matrix C̃ is bounded by

||C̃||F = O

(
κ

ρν1 + ε

)
(A.5)

In addition, since the eigenvalues of T−1
3 CT3 satisfy condition: <{λ̃1} ≤ · · · ≤

<{λ̃2MN} and the eigenvalues of D are λ1 ≤ · · · ≤ λ2MN with λ1 = · · · = λMN = −1

and λMN+1 = ρν1 + 1, · · · , λ2MN = ρνMN + 1, by Proposition 1, we have

2MN∑
k=1

|λ̃k − λk|2 ≤ 2||E||2F (A.6)

By (A.5), the F-norm of the perturbation matrix has the following asymptotic be-

havior,

||E||F = ||C̃||F = O

(
κ

ρν1 + ε

)

As a consequence, each individual term in the sum (B.9) is given by

λ̃k = λk +O

(
κ

ρν1 + ε

)
(A.7)

84



M.A.Sc. Thesis - Li Xiong McMaster - Electrical Engineering

for k = 1, 2, · · · , 2MN . Substituting λk into (A.7) above completes the proof. �
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Appendix B

Proof of Property 1

By Lemma 1, we can let ν̄` for ` = 1, 2, · · · , L − 1 denote all distinct eigenvalues of

νl for l = 1, 2, · · · ,MN with multiplicity µ`+1, and λ̄i for i = 1, 2, · · · , L denote all

distinct eigenvalues of λl for l = 1, 2, · · · , 2MN with multiplicity µi. In addition,

λ̄1 = −1 + O
(

κ
ρν1+ε

)
, µ1 = MN, λ̄` = ρν̄`−1 + 1 + O

(
κ

ρν1+ε

)
, ` = 2, · · · , L and

L∑̀
=2

µ` = MN . By Proposition 3, the pairwise error probability can be written as

Pr{∇j < ∇i} = − 1

(MN − 1)!
L∏̀
=1

λ̄µ`

`

lim
s→−λ̄−1

1

dMN−1

dsMN−1

(
s−1

L−1∏
`=1

(
s+ λ̄−1

`

)−µ`

)
(B.8)
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Since κ and ν1 are constant, we have O
(

κ
ρν1+ε

)
= O

(
1
ρ

)
. Then the product of

eigenvalues becomes

L∏
`=1

λ̄−µ`

` =
MN∏
k=1

[ρνk + 1 +O(1/ρ)]−1[−1 +O(1/ρ)]−MN

= (−1)MN

MN∏
k=1

(ρνk + 1)−1 +O(ρ−MN−1)

= 1/ det(D) +O(ρ−MN−1)

where D is given in (A.1), and the derivative term in (B.8) can be expressed as

dMN−1

dsMN−1

(
s−1

L∏
`=2

(
s+ λ̄−1

`

)−µ`

)
=
∑

f(n2, · · · , nL−1)
(−1)MN−1

sn1+1
L∏̀
=2

(
s+ λ̄−1

`

)µ`+n`

(B.9)

where

f(n2, · · · , nL) =
(MN − 1)!

n2! · · ·nL!

L∏
`=2

(µ` + n` − 1)!

(µ` − 1)!

and the summation in (B.9) is over all possible combinations of nonnegative integers

n1, · · · , nL such that
L∑̀
=1

nl = MN−1. Since −λ̄−1
1 = −1/(−1+O(1/ρ)) = 1+O(1/ρ),

we have lims→−λ̄−1
1
s−n1−1 = 1+O(1/ρ) and lims→−λ̄−1

1
(s+ λ̄−1

` )−µ`−n` = [1+O(1/ρ)+

(ρνk + 1 + O(1/ρ))−1]−µ`−n` = [1 + O(1/ρ)]−µ`−n` = 1 + O(1/ρ). Substituting these

results into (B.8) yields

Pr{∇j < ∇i} = − (−1)MN−1

(MN − 1)!
L∏̀
=1

λ̄µ`

`

∑
f(n2, · · · , nL)(1 +O(1/ρ))

L∏
`=2

(1 +O(1/ρ))

= − (−1)MN−1

(MN − 1)!
[1/ det(D) +O(ρ−MN−1)](1 +O(1/ρ))

∑
f(n2, · · · , nL)
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Finally, after some calculation and simplification, we can arrive at the conclusion,

Pr{∇j < ∇i} =


2MN − 1

MN


det[ρΣ1/2(Rii −RijR

−1
jj Rji)Σ1/2 + IMN ]

+O(ρ−MN−1)

=


2MN − 1

MN

 ρ−MN

det[Σ(Rii −RijR
−1
jj Rji) + ρ−1IMN ]

+O(ρ−MN−1)

This completes the proof of Property 1. �
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Appendix C

Proof for Proprosition 2

Here, we provide a proof only for the last equation in Property 2, since the proofs for

the other equations are very similar. Using partial fractions, we have

tm

(t+ 1)n(t+ aρ−1)
=

n∑
p=1

cp
(t+ 1)p

+
c0

t+ aρ−1

where the residues are given by

c0 = O(ρ−m)

cp =
1

(n− p)!
dn−p

dtn−p
tm

t+ aρ−1

∣∣∣∣
t=−1

(C.10)
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The derivative term in (C.10) can be rewritten as

dn−p

dtn−p
tm

t+ aρ−1
=

dn−p

dtn−p
(t+ aρ−1 − aρ−1)m

t+ aρ−1

=
1

(n− p)!
dn−p

dtn−p

[
(−aρ−1)m

t+ aρ−1
+

m∑
j=1

bj(t+ aρ−1)j−1(−aρ−1)m−j

]

=
(aρ−1)m

(t+ aρ−1)n−p+1

+
1

(n− p)!

m∑
j=1

bj(−aρ−1)m−j
dn−p

dtn−p
(t+ aρ−1)j−1 (C.11)

Now, substituting (C.11) into (C.10) and letting t = −1 lead to

cp = O(1)

Hence, we obtain

∫ ∞
0

tm exp(−t)
(t+ 1)n(t+ aρ−1)

dt =
n∑
p=1

cp

∫ ∞
0

exp(−t)
(t+ 1)p

dt+ c0

∫ ∞
0

exp(−t)
t+ aρ−1

dt

= O(1) +O(ln ρ/ρm)

= O(1)

This completes the proof of the last equation in Property 2 and thus, of Property 2

itself. �
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Appendix D

Proof for Lemma 2

We prove this lemma by the induction on M . When M = 1, in this case, N1 = 1,

P = p11 6= 0, diag(g) = g1 and hence, F (ρ,P) becomes

F
(
ρ,P

)
= E

[
1

1 + ρ p11|g1|2

]
=

∫ ∞
0

e−zdz

1 + ρ p11z

=
e

(
p11ρ
)−1

p11ρ
E
(
(p11ρ)−1

)
(D.12)

Using Proposition 4, we can have

E((p11ρ)−1) = ln ρ+ γ + ln p11 +O(ρ−1) (D.13)

In addition, the Taylor expansion of e

(
p11a(θ,ρ)

)−1

gives us

e

(
p11ρ
)−1

= 1 +O(ρ−1) (D.14)
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Substituting (D.14) and (D.13) into (D.12) yields

F
(
ρ,P

)
=

ln ρ+ γ + ln p11

p11ρ
+O

( ln ρ

ρ2

)
(D.15)

Hence, Lemma 2 is true for M = 1. Now we assume that Lemma 2 is true for M = L.

In the following we will prove that it is also true for M = L + 1. For notation

simplicity, let

P =


p11 P12

P21 P22

 (D.16)

where P21 = PH
12. By Proposition 5, we have that,

det
(
I + ρdiag(g)HPdiag(g)

)
=
(
1 + ρ|g1|2p22

)
det
(
I + ρ(diag(g1))HP22diag(g1)

)
(D.17)

where g1 = (g2, g3, · · · , gM)T and

p22 = p11 − ρP12diag(g1)(I + (1 + ρ)(diag(g1))HP22diag(g1))−1

×
(
diag(g1)

)H
P21 (D.18)
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On the other hand, we notice that if we let I1 =


0 0

0 I

, then, applying Proposi-

tion 5 to matrix
(
I1 + ρ

(
diag(1,g)

)H
Pdiag(1,g) twice yields

det
(
I1 + ρ

(
diag(1,g)

)H
Pdiag(1,g)

)
= ρp22 det

(
I + ρ(diag(g1))HP22diag(g1)

)
= ρp11 det

(
I + ρ(diag(g1))H

(
P22 − p−1

11 P21P12

)
diag(g1)

)
Therefore, we have

p22 =
p11 det

(
I + (diag(g1))H

(
P22 − p−1

11 P21P12

)
diag(g1)

)
det
(
I + (diag(g1))HP22diag(g1)

)
= p11 det

(
I− ρp−1

11 P21P12diag(g1)(diag(g1))H
(
I + P22(diag(g1))Hdiag(g1)

)−1
)

= p11 det
(
I− p−1

11 P21P12P
−1
22 +

p−1
11 P21P12

(
I + ρP22(diag(g1))Hdiag(g1)

)−1
)

(D.19)

Similar to the discussion of (D.12) , we can have

E

[
1

1 + p22|g1|2

]
=

ln ρ

1 + p22ρ
+O(ρ−1) (D.20)
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Since g1 and g1 are independent, using (D.17) and (D.20) we obtain

F
(
ρ,P

)
= Eg1

[
1

det (I + ρ(diag(g1))HP22diag(g1))
Eg1

[
1

1 + ρp22|g1|2

]]
= Eg1

[
ln ρ(

1 + ρp22

)
det (I + ρ(diag(g1))HP22diag(g1))

]
+O
(
ρ−1Eg1

[
J(g1,P22)

])
= Eg1

[
ln ρ

det (I + ρ(diag(1,g1))HPdiag(1,g1))

]
+O

(
lnr1−1 ρ

ρr1

)

where we have used the induction hypothesis and
(
1+p22

)
det
(
I + (diag(g1))HP22diag(g1)

)
= det

(
I + ρ(diag(1,g1))HPdiag(1,g1)

)
. Again, by Proposition 5, we have

det
(
I + ρ(diag(1,g1))HPdiag(1,g1)

)
=
(
1 + ρp11

)
det
(
I + ρ(diag(g1))HP22diag(g1)

)
(D.21)

where P22 is defined by

P22 = P22 − ρ
(
1 + ρp11

)−1
P21P12 (D.22)

Therefore, we obtain

Eg1

[
ln ρ

det (I + ρ(diag(1,g1))HPdiag(1,g1))

]
=

ln ρ(
1 + ρp11

)Eg1

[
1

det
(
I + ρ(diag(g1))HP22diag(g1)

)]

=
lnN1 ρ

det (I + ρP)
+O

(
lnN1−1 ρ

ρN1

)
(D.23)
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This completes the proof of Lemma 2. �
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Appendix E

Proof of Theorem 1

We just prove the second statement in Theorem 1, since the first statement can be

proved similarly. From the definition of pairwise error probability, we have

PLSE(X2 → X̂2) = Pr
{

z2
HX̂2

(
X̂H

2 X̂2

)−1
X̂H

2 z2 >

z2
HX2

(
X2

HX2

)−1
X2

Hz2

}
(E.24)

The received signal vector z2 conditioned on the channel coefficient g and the trans-

mitted signal matrix X2 is Gaussian distributed with zero mean and covariance matrix

Σz2z2 being given by Σz2z2 = ρX2GGHX2
H + Σ2, and thus, the conditional prob-

ability density function fz2|X2,g(z2) is determined by fz2|X2,g(z2) = 1
πT2 det(Σz2z2 )

×

exp
(
−z2

HΣ−1
z2z2

z2

)
. Since g is Gaussian distributed with zero mean and unit vari-

ance, the probability density function fz2|X2(z2) of z2 conditioned on the transmitted

signal matrix X2 is given by

fz2|X2(z2) =
1

πM

∫
C
fz2|X2,g(z2) exp

(
−gHg

)
dg
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For discussion convenience, let E denote the erroneous decision region, i.e.,

E = {z2 : z2
HX̂2

(
X̂H

2 X̂2

)−1
X̂H

2 z2 > z2
HX2

(
X2

HX2

)−1
X2

Hz2}

Then, the pair wise error probability (E.24) can be represented as

PLSE(X2 → X̂2) =

∫
E
fz2|X2(z2)dz2

=
1

πM

∫
C

∫
E
fz2|X2,g(z2) exp

(
−gHg

)
dz2dg (E.25)

In order to analyze the asymptotic behavior of PLSE(X2 → X̂2), we first notice that

ΣL = ρX2GGHX2
H + IT2 � Σz2z2 � ρX2GGHX2

H + (|gM |2 + 1)IT2 = ΣU

where we assume that |gM | has the largest magnitude in g. Therefore, we have

1

πT2 det(Σz2z2)
exp

(
−z2

HΣ−1
L z2

)
≤ fz2|X2,g(z2) ≤ 1

πT2 det(Σz2z2)
exp

(
−z2

HΣ−1
U z2

)
which can be rewritten as

det(ΣL)

det(Σz2z2)
Fz2|X2,g(z2) ≤ fz2|X2,g(z2) ≤ det(ΣU)

det(Σz2z2)
Gz2|X2,g(z2)

with

Fz2|X2,g(z2) =
1

πT2 det(ΣL)
× exp

(
−z2

HΣ−1
L z2

)
Gz2|X2,g(z2) =

1

πT2 det(ΣU)
× exp

(
−z2

HΣ−1
U z2

)
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By doing so, the pairwise error probability PLSE(X2 → X̂2) can be lower and upper

bounded, respectively, by

PLSE(X2 → X̂2) ≥ 1

πM

∫
C

det(ΣL)

det(Σz2z2)
× exp

(
−gHg

)
×
∫

E
Fz2|X2,g(z2)dz2dg (E.26a)

PLSE(X2 → X̂2) ≤ 1

πM

∫
C

det(ΣU)

det(Σz2z2)
× exp

(
−gHg

)
×
∫

E
Gz2|X2,g(z2)dz2dg (E.26b)

At this moment, it is important to realize that the integral
∫

E Fz2|X2,g(z2)dz2 is ac-

tually the pairwise error probability of the GLRT detector for the space-time block

coded MIMO system with M transmitter antennas, a single receiver antenna, the

codeword matrix X2, the circularly-symmetric zero-mean complex Gaussian chan-

nel having covariance matrix Σhh = GGH , signal-to-noise ratio ρ, and independent

circularly-symmetric zero-mean complex Gaussian noise having covariance matrix IT2 ,

whereas the integral
∫

EGz2|X2,g(z2)dz2 is the pairwise error probability of the GLRT

detector for the same MIMO system, but the noise covariance matrix is (|gM |2 +1)IT2

instead of IT2 , and signal-to-noise ratio ρ/(|gM |2+1) instead of ρ. Applying Property 1
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to the both integrals yields

∫
E
Fz2|X2,g(z2)dz2 =


2M − 1

M


det[ρAGGH + IM ]

+O

( √
κ

(ρ|g1|2c1 + ε)M+1

)
(E.27a)

∫
E
Gz2|X2,g(z2)dz2 =


2M − 1

M


det[ρAGGH + (|gM |2 + 1)IM ]

+O

(
(|gM |2 + 1)

√
κ

(ρ |g1|
2c1

|gM |2+1
+ ε)M+1

)
(E.27b)

where matrix Rx2x̂2 = XH
2 X2,A = Rx2x2 −Rx2x̂2R

−1
x̂2x̂2

Rx̂2x2 ,
√
κ = max{|gM |,1}

min{|g1|,1} , and

c1 is the smallest eigenvalue of matrix A. By letting ti = |gi|2, i = 1, · · · ,M , the ratio

of the two determinants in (E.26b) can be bounded by

det(ΣU)

det(Σz2z2)
≤ det(ΣU)

det(ΣL)
=

det[(tM + 1)ρX2GGHX2
H + (tM + 1)IT2 ]

det[ρX2GGHX2
H + IT2 ]

It can be seen that

det(ΣU)

det(Σz2z2)
≤ (tM + 1)T2 = 1 +

T2∑
k=1

ckt
k
M
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where ck for k = 1, 2, · · · , T2 are constants. In addition, the denominator in the

dominant term of (E.27b) can be rewritten as

1

det(ρAGGH + (tM + 1)IM)
≤ 1

det(ρAGGH + IM)
≤

M∏
i=1

1

ρν1ti + 1

where ν1 is the smallest eigenvalue of matrix A. Now, the error probability can be

upper bounded by

PLSE(X2 → X̂2) ≤


2M − 1

M


{

Eg

[
1

det(ρAGGH + IM)

]

+
1

πM

∫
C

T2∑
k=1

ckt
k
M

M∏
i=1

exp(−ti)
ρν1ti + 1

dg1 · · · dgM

}

=


2M − 1

M

Eg

[
1

det(ρAGGH + IM)

]

+


2M − 1

M


[
T2∑
k=1

ck

∫ ∞
0

tkM exp(−tM)

ρν1tM + 1
dtM

]

×

[
M−1∏
i=1

∫ ∞
0

exp(−ti)
ρν1ti + 1

dti

]
(E.28)
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Using the results in Proposition 2 and Lemma 2, we simplify the upper bound into

PLSE(X2 → X̂2) ≤


2M − 1

M

 lnM ρ

det(IM + ρA)
+O

(
lnM−1 ρ

ρM

)
(E.29)

On the other hand, the ratio of the two determinants in (E.26a) can be lower bounded

by

det(ΣL)

det(Σz2z2)
≥ 1

(tM + 1)T2
= 1 +

T2∑
k=1

c′k
tkM

(1 + tM)T2
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where c′k are also constants. Hence, the pairwise error probability can be lower

bounded by

PLSE(X2 → X̂2) ≥


2M − 1

M


{

Eg

[
1

det(ρAGGH + IM)

]

+
1

πM

∫
C

T2∑
k=1

c′k
tkM

(1 + tM)T2

M∏
i=1

exp(−ti)
ρν1ti + 1

dg1 · · · dgM

}

=


2M − 1

M

Eg

[
1

det(ρAGGH + IM)

]

+


2M − 1

M


[
T2∑
k=1

c′k

∫ ∞
0

tkM exp(−tM)

(1 + tM)T2(ρν1tM + 1)
dtM

]

×

[
M−1∏
i=1

∫ ∞
0

exp(−ti)
ρν1ti + 1

dti

]

=


2M − 1

M

Eg

[
1

det(ρAGGH + IM)

]

+

[
T2∑
k=1

c′k

∫ ∞
0

tkM exp(−tM)

(1 + tM)T2(tM + ρ−1ν−1
1 )

dtM

]
O

(
lnM−1 ρ

ρM

)
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Using Proposition 2 and Lemma 2, we have,

PLSE(X2 → X̂2) ≥


2M − 1

M

 lnM ρ

det(IM + ρA)
+O

(
lnM−1 ρ

ρM

)
(E.30)

Now, combining (E.29) with (E.30) results in

PLSE(X2 → X̂2) =


2M − 1

M

 lnM ρ

det(IM + ρA)
+O

(
lnM−1 ρ

ρM

)
(E.31)

Therefore, when ρ tends to infinity, the asymptotic behaviour of the average pairwise

error probability of the LSE detector is given by

PLSE(X2 → X̂2) =


2M − 1

M

 lnM ρ

ρM det(Rx2x2 −Rx2x̂2R
−1
x̂2x̂2

Rx̂2x2)
+O

(
lnM−1 ρ

ρM

)
(E.32)

Noting that det(Rx2x2 − Rx2x̂2R
−1
x̂2x̂2

Rx̂2x2) = det(Px2x̂2)/Rx̂2x̂2 , we completes the

proof of Theorem 1. �
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Appendix F

UFCs designed by Algorithm 1

F.1 4-UFC

U2 =


1

1

 ,


1

−1

 ,


1

j

 ,


1

−j


F.2 8-UFC

U3 =


1

1

 ,


1

−1

 ,


1

j

 ,


1

−j


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
1

1 + j

 ,


1

−1− j

 ,


1

1− j

 ,


1

−1 + j


F.3 16-UFC

U4 =


1

1

 ,


1

−1

 ,


1

j

 ,


1

−j




1

1 + j

 ,


1

−1− j

 ,


1

1− j

 ,


1

−1 + j




1 + j

1

 ,


1 + j

−1

 ,


1 + j

j

 ,


1 + j

−j




1

2

 ,


1

−2

 ,


1

2j

 ,


1

−2j


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F.4 32-UFC

U5 =


1

1

 ,


1

−1

 ,


1

j

 ,


1

−j




1

1 + j

 ,


1

−1− j

 ,


1

1− j

 ,


1

−1 + j




1 + j

1

 ,


1 + j

−1

 ,


1 + j

j

 ,


1 + j

−j




1

2

 ,


1

−2

 ,


1

2j

 ,


1

−2j




1 + 2j

1 + j

 ,


1 + 2j

−1− j

 ,


1 + 2j

1− j

 ,


1 + 2j

−1 + j


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
2 + j

1 + j

 ,


2 + j

−1− j

 ,


2 + j

1− j

 ,


2 + j

−1 + j




1

2 + 2j

 ,


1

−2− 2j

 ,


1

2− 2j

 ,


1

−2 + 2j




2 + 2j

1

 ,


2 + 2j

−1

 ,


2 + 2j

j

 ,


2 + 2j

−j


F.5 64-UFC

U6 =


1

1

 ,


1

−1

 ,


1

j

 ,


1

−j




1

1 + j

 ,


1

−1− j

 ,


1

1− j

 ,


1

−1 + j


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
1 + j

1

 ,


1 + j

−1

 ,


1 + j

j

 ,


1 + j

−j




1

2

 ,


1

−2

 ,


1

2j

 ,


1

−2j




1

1 + 2j

 ,


1

−1− 2j

 ,


1

1− 2j

 ,


1

−1 + 2j




1

2 + j

 ,


1

−2− j

 ,


1

2− j

 ,


1

−2 + j




1 + 2j

1

 ,


1 + 2j

−1

 ,


1 + 2j

j

 ,


1 + 2j

−j


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
2 + j

1

 ,


2 + j

−1

 ,


2 + j

j

 ,


2 + j

−j




1 + j

1 + 2j

 ,


1 + j

−1− 2j

 ,


1 + j

1− 2j

 ,


1 + j

−1 + 2j




1 + j

2 + j

 ,


1 + j

−2− j

 ,


1 + j

2− j

 ,


1 + j

−2 + j




1 + 2j

1 + j

 ,


1 + 2j

−1− j

 ,


1 + 2j

1− j

 ,


1 + 2j

−1 + j




2 + j

1 + j

 ,


2 + j

−1− j

 ,


2 + j

1− j

 ,


2 + j

−1 + j


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
1

2 + 2j

 ,


1

−2− 2j

 ,


1

2− 2j

 ,


1

−2 + 2j




2

1 + 2j

 ,


2

−1− 2j

 ,


2

1− 2j

 ,


2

−1 + 2j




2

2 + j

 ,


2

−2− j

 ,


2

2− j

 ,


2

−2 + j




2 + 2j

1

 ,


2 + 2j

−1

 ,


2 + 2j

j

 ,


2 + 2j

−j


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Appendix G

Proof of Theorem 5

G.1 n = 2

The diagram of constellation Z2 is plotted on the complex plane in Fig. G.1. Since

there are only four points, we have from Corollary 1 that D(TZ2(β)) = g(1, β), where

g(1, β) = d(1, j, β) =

√
2β

1 + β2

Notice that

D(TZ2(β)) =

√
2

β−1 + β
≤

√
2

2
√
β−1β

=

√
2

2

where the equality in the inequality is achieved when β−1 = β. Thus,

β̂ = 1

D(TZ2(β̂)) =

√
2

2
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Figure G.1: 4 symbols training-equivalent UFC Z2
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G.2 n = 3

The diagram of Z3 is shown in Fig. G.2. By Definition 3, it can be verified that

D(X) = D(ejθX). In other words, rotation does not change the distance. Since

e−jπ/4Z3 has the same geometrical structure as the subset of V in Fig. 4.1, consisting

of the outer 8 points vk for k = 1, 2, · · · , 8, using Corollary 1 gives us

g(1 + j, β) = d(1 + j, 1, β) =
β√

1 + 2β2
√

1 + β2

g(1, β) = d(1, j, β) =

√
2β√

1 + β2
√

1 + β2

and thus,

D(TZ3(β)) = min{g(1 + j, β), g(1, β)}

Since g(z1, β) < g(z5, β) for any positive β, we have

D(TZ3(β)) = g(1 + j, β) =
1√

β−2 + 2β2 + 3
≤ 1

1 +
√

2

where we have used the geometrical and arithmetical mean inequality with the equal-

ity holding when β−2 = 2β2. Therefore, we obtain

β̂ =
1
4
√

2

D(TZ3(β̂)) =
1

1 +
√

2
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Figure G.2: 8 symbols training-equivalent UFC Z3
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Figure G.3: 16 symbols training-equivalent UFC Z4
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G.3 n = 4

For discussion clarity, the diagram of constellation Z4 is shown in Fig. G.3. There

are four layers and each layer contains 4 symbols with equal energy. First, utilizing

Lemma 4 and Corollary 1 with v1 = 2 yields

g(2, β) =
β√

1 + β2
√

1 + 4β2

Then, delete the most outer 4 points, 2,−2j,−2, 2j and consider the remaining set,

V1 = Z4 − {2,−2j,−2, 2j}. Now, applying Lemma 4 and Corollary 1 into e−jπ/4V1

with starting point
√

2 produces

g(1 + j, β) =

√
2

2
β√

1 + 0.5β2
√

1 + 2β2

Then, delete 4 points, 1 + j, 1− j,−1− j,−1 + j, from V1 and consider the remaining

set V2 = V1−{1+ j, 1− j,−1− j,−1+ j}. Again, applying Lemma 4 and Corollary 1

into V2 with starting point 1 yields

g(1, β) =

√
2

2
β√

1 + 0.5β2
√

1 + β2

Following the same strategy, after we have deleted another four points, 1,−j,−1, j,

from V2, we find that there are only four points left with the same geometrical struc-

ture as the case of n = 2 and hence,

g(0.5 + 0.5j, β) =
β√

1 + 0.5β2
√

1 + 0.5β2
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Overall, the distance of the constellation TZ4(β) is determined by

D(TZ4(β)) = min{g(2, β), g(1 + j, β), g(1, β), g(0.5 + 0.5j, β)}

Since g(2, β) < g(0.5 + 0.5j, β) and g(1 + j, β) < g(1, β) for any β > 0, we attain

D(TZ4(β)) = min{g(2, β), g(1 + j, β)}

On the other hand, when β ≤ 1
4√2

, g(2, β) ≤ g(1 + j, β), whereas g(2, β) ≥ g(1 + j, β)

when β ≥ 1
4√2

, we have

D(TZ4(β)) =


g(1 + j, β) =

√
2

2
β√

1+0.5β2
√

1+2β2
, β ≤ 1

4√2

g(2, β) = β√
1+β2
√

1+4β2
, β > 1

4√2

Since g(1+j, β) is monotonically increasing when β ≤ 1
4√2

and g(2, β) is monotonically

decreasing when β > 1
4√2

, the maximum of D(TZ4(β)) is obtained at this turning point

β = 1
4√2

. Therefore, we arrive at the fact that

β̂ =
1
4
√

2

D(TZ4(β̂)) =
1√

5 + 3
√

2

G.4 n = 5

The diagram of constellation Z5 is plotted in Fig. G.4. Following the argument similar
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Figure G.4: 32 symbols training-equivalent UFC Z5
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to the case of n = 4 and taking advantage of Lemma 4 and Corollary 1 three times

lead to

g(2 + 2j, β) =

√
2β√

1 + 2β2
√

1 + 8β2

g(2, β) =
β√

1 + β2
√

1 + 4β2

g(1 + j, β) =

√
2

2
β√

1 + 0.5β2
√

1 + 2β2

In addition, it can be verified that j,−j,−1,−0.5 + 0.5j,−0.5 − 0.5j are not closer

to z = 1 than points z = 0.5 + 0.5j or z = 0.5 − 0.5j are, whose distances to z = 1

are equal, given by

d(1, 0.5− 0.5j, β) = d(1, 0.5 + 0.5j, β) =

√
2

2
β√

1 + 0.5β2
√

1 + β2

whereas the distances of two points 0.6 + 0.2j and 0.6− 0.2j to 1 are also equal, i.e.,

d(1, 0.6 + 0.2j, β) = d(1, 0.6− 0.2j, β) =

√
5

5
β√

1 + 0.4β2
√

1 + β2
< d(1, 0.5 + 0.5j, β)

For the other points z inside the disk |z| < |0.6+0.2j|, since |1−z| > |1−(0.6+0.2j)|,

we have d(1, z, β) > d(1, 0.6 + 0.2j, β). Therefore, we obtain

g(1, β) =

√
5

5
β√

1 + 0.4β2
√

1 + β2
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Similarly, we can attain

g(0.5 + 0.5j, β) =

√
10

10
β√

1 + 0.4β2
√

1 + 0.5β2

g(0.6 + 0.2j, β) = min

( √
8

8
β√

1 + 0.125β2
√

1 + 0.4β2
,

0.4β√
1 + 0.4β2

√
1 + 0.4β2

)
g(0.2 + 0.6j, β) = g(0.6 + 0.2j, β)

g(0.25 + 0.25j, β) =
0.5β√

1 + 0.125β2
√

1 + 0.125β2

Over all, the distance of the scaled training-equivalent constellation, D(TZ5(β)) is the

minimum among the above eight functions. However, since g(0.25+0.25j, β) > g(2, β)

and g(1+j, β), g(1, β), g(0.6+0.2j, β), g(0.2+0.6j, β) > g(0.5+0.5j, β) for any β > 0,

then, D(TZ5(β)) can be simplified to

D(TZ5(β)) = min
{
g(2 + 2j, β), g(2, β), g(0.5 + 0.5j, β)

}
(G.33)

In addition, notice that

g(0.5 + 0.5j, β) ≤ g(2 + 2j, β) ⇐⇒ 0 < β ≤

√
2 +
√

61

6

g(0.5 + 0.5j, β) ≤ g(2, β) ⇐⇒ 0 < β ≤
√

1 +
√

5.5

g(2 + 2j, β) ≤ g(2j, β) ⇐⇒ 0 < β ≤
4
√

2

2
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Equation (G.33) can be further simplified into

D(TZ5(β)) =


g(0.5 + 0.5j, β) =

√
10

10
β√

1+0.4β2
√

1+0.5β2
, β ≤

√
2+
√

61
6

g(2 + 2j, β) =
√

2β√
1+2β2

√
1+8β2

, β >
√

2+
√

61
6

Because of the fact that g(0.5+0.5j, β) is monotonically increasing when β ≤
√

2+
√

61
6

and g(2 + 2j, β) is monotonically decreasing when β >
√

2+
√

61
6

, the maximum of

D(TZ5(β)) is achieved when β =
√

2+
√

61
6

. Thus, we have

β̂ =

√
2 +
√

61

6

D(TZ5(β̂)) =

√
57

79
√

61 + 431

G.5 n = 6

The diagram of constellation is shown in Fig. G.5. Following the strategy much
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Figure G.5: 64 symbols training-equivalent UFC Z6
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similar to the cases of n = 4 and n = 5, we can obtain

g(2 + 2j, β) =
β√

1 + 8β2
√

1 + 5β2

g(1 + 2j, β) =

√
2

2
β√

1 + 5β2
√

1 + 2.5β2

g(2 + j, β) = g(1 + 2j, β)

g(2, β) =

√
2

2
β√

1 + 4β2
√

1 + 2.5β2

g(1.5 + 0.5j, β) =
0.5β√

1 + 2.5β2
√

1 + 1.25β2

g(0.5 + 1.5j, β) = g(1.5 + 0.5j, β)

g(1 + j, β) =
0.5β√

1 + 2β2
√

1 + 1.25β2

g(1 + 0.5j, β) =
0.5β√

1 + 1.25β2
√

1 + β2

g(0.5 + j, β) = g(1 + 0.5j, β)

g(1, β) =

√
5

5
β√

1 + β2
√

1 + 0.4β2

g(0.5 + 0.5j, β) =

√
10

10
β√

1 + 0.5β2
√

1 + 0.4β2

g(0.6 + 0.2j, β) =
0.2β√

1 + 0.4β2
√

1 + 0.2β2

g(0.2 + 0.6j, β) = g(0.6 + 0.2j, β)

g(0.4 + 0.2j, β) =

√
10

20
β√

1 + 0.2β2
√

1 + 0.125β2

g(0.2 + 0.4j, β) = g(0.4 + 0.2j, β)

g(0.25 + 0.25j, β) =
0.5β√

1 + 0.125β2
√

1 + 0.125β2
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The distance of Z6 is the minimum among all the above 11 functions. Comparing

any two of them results in

D(TZ6(β)) =


g(0.4 + 0.2j, β) =

√
10

20
β√

1+0.2β2
√

1+0.125β2
, β ≤ 1;

g(2 + 2j, β) = β√
1+8β2

√
1+5β2

, β > 1;

Using the same argument, we conclude that the maximum of D(TZ6(β)) is reached

at the turning point, i.e.,

β̂ = 1

D(TZ6(β̂)) =
1

3
√

6

This completes the proof of Theorem 5. �
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