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Abstract

The rapid development of fiber optic communication systems requires higher trans-

mission data rate and longer reach. This thesis deals with the limiting factors in

design of long-haul fiber optic communication systems and the techniques used to

suppress their resulting impairments. These impairments include fiber chromatic dis-

persion, the Ker nonlinearity and nonlinear phase noise due to amplified spontaneous

emission.

In the first part of this thesis, we investigate the effect of amplified spontaneous

noise in quasi-linear systems. In quasi-linear systems, inline optical amplifiers change

the amplitude of the optical field envelope randomly and fiber nonlinear effects such

as self phase modulation (SPM) convert the amplitude fluctuations to phase fluctua-

tions which is known as nonlinear phase noise. For M-ary phase shift keying (PSK)

signals, symbol error probability is determined solely by the probability density func-

tion (PDF) of the phase. Under the Gaussian PDF assumption, the phase variance

can be related to the symbol error probability for PSK signals. We implemented the

simulation based on analytical phase noise variance and Monte-Carlo simulation, and

it is found that the analytical approximation is in good agreement with numerical

simulations. We have developed analytical expressions for the linear and nonlinear

phase noise variance due to SPM using second-order perturbation theory. It is found
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that as the transmission reach and/or lunch power increase, the variance of the phase

noise calculated using first order perturbation theory becomes inaccurate. However,

the variance calculated using second order perturbation theory is in good agreement

with numerical simulations. We have also showed that the analytical formula given

in this chapter for the variance of nonlinear phase noise can be used as a design tool

to investigate the optimum system design parameters such as average power and dis-

persion maps for coherent fiber optic systems based on phase shift keying due to the

fact that the numerical simulation of nonlinear Schrodinger (NLS) equation is time

consuming, however, the analytical method based on solving NLS equation using per-

turbation approximation is quite efficient and therefore the analytical variance can

be obtained more easily without requiring extensive computational efforts, and also

with fairly good accuracy.

In the second part of this thesis, an improved optical signal processing using highly

nonlinear fibers is studied. This technique, optical backward propagation (OBP), can

compensate for the fiber dispersion and nonlinearity using optical nonlinearity com-

pensators (NLC) and dispersion compensating fibers (DCF), respectively. In contrast,

digital backward propagation (DBP) uses the high-speed digital signal processing

(DSP) unit to compensate for the fiber nonlinearity and dispersion digital domain.

NLC imparts a phase shift that is equal in magnitude to the nonlinear phase shift

due to Fiber propagation, but opposite in sign. In principle, BP schemes could undo

the deterministic (bit-pattern dependent) nonlinear impairments, but it can not com-

pensate for the stochastic nonlinear impairments such as nonlinear phase noise. We

also introduced a novel inline optical nonlinearity compensation (IONC) technique.

Our Numerical simulations show that the transmission performance can be greatly
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improved using OBP and IONC. Using IONC, the transmission reach becomes almost

twice of DBP. The advantage of OBP and IONC over DBP are as follows: OBP/IONC

can compensate the nonlinear impairments for all the channels of a wavelength di-

vision multiplexed system (WDM) in real time while it would be very challenging

to implement DBP for such systems due to its computational cost and bandwidth

requirement. OBP and IONC can be used for direct detection systems as well as for

coherent detection while they provide the compensation of dispersion and nonlinear-

ity in real time, but DBP works only for coherent detection and currently limited to

off-line signal processing.
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Notation and abbreviations

ASE Amplified Spontaneous Emission

BER Bit Error Rate

CD Chromatic Dispersion

DGD Differential Group Delay

DCF Dispersion-Compensating Fiber

DPSK Differential Phase-Shift Keying

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

FNL Fiber Nonlinearity

FFT Fast Fourier Transform

FWM Four-Wave Mixing

IFWM Intra-channel Four-Wave Mixing

XPM Cross-Phase Modulation

IXPM Intra-channel Cross-Phase Modulation

IONC Inline optical nonlinearity compensation

NLSE Nonlinear Schrodinger Equation

NPS Nonlinear Phase Shift PMD Polarization Mode Dispersion

PSP Principle State of Polarization

PDE Partial Differential Equation
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SPM Self-Phase Modulation

SMF Single Mode Fiber

SNR Signal-Noise Ratio

SSFS Split-Step Fourier Transform

DFS Dispersion-Shifted Fiber

WDM Wavelength-Division Multiplexing

EDFA Erbium-Doped Fiber Amplifier

OE Optical-to-Electrical

EO Electrical-to-Optical

GVD Group velocity Dispersion

ISI Inter-Symbol Interference

FP Forward propagation

DBP Digital Backward Propagation

OBP Optical Backward Propagation

NRZ Non-Return-to-Zero

NLC Nonlinearity Compensator

PRBS Pseudo-Random Bit Sequence

FEC Forward Error Correction

HNLF Highly Nonlinear Fiber
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Chapter 1

Introduction

A communication system transmits information from one place to another, whether

separated by a few kilometers or by transoceanic distances. Information is often car-

ried by an electromagnetic carrier wave whose frequency can vary from a few mega-

hertz to several hundred terahertz. In the virtually infinite broad electromagnetic

spectrum, there are only two windows that have been largely used for modern-day

broadband communications. The first window spans from the long-wave radio to

millimeter wave, or from 100 KHz to 300 GHz in frequency, whereas the second win-

dow lies in the infrared lightwave region, or from 30 THz to 300 THz in frequency.

The first window provides the applications that we use in our daily lives, including

broadcast radio and TV, wireless local area networks (LANs), and mobile phones.

These applications offer the first meter or first mile access of the information net-

works to the end user with broadband connectivity or the mobility in the case of

the wireless systems. Nevertheless, most of the data rates are capped below gigabit

per second (Gb/s) primarily due to the lack of the available spectrum in the RF

microwave range. In contrast, due to the enormous bandwidth over several terahertz

1



M.A.Sc. Thesis - MAHDI MALEKIHA McMaster - Electrical Engineering

(THz) in the second window, the lightwave systems can provide a staggering capacity

of 100 Tb/s and beyond. In fact, the optical communication systems, or fiber-optic

systems in particular, have become indispensable as the backbone of the modern-day

information infrastructure. While initial deployment of optical fiber was mainly for

long-haul or submarine transmission, lightwave systems are currently in almost all

metro networks. Fiber-to-the-premise (FTTP) and fiber-to-the-home (FTTH) are

being considered seriously in most parts of the world right now [1].

Optical communication systems have been deployed worldwide since 1980 and

have indeed revolutionized the technology behind telecommunications. Indeed, the

lightwave technology, together with microelectronics, is believed to be a major factor

in the advent of the information age.

1.1 Evolution of Fiber-Optic Communications

A point-to-point fiber-optic communication system, the simplest kind of lightwave

system, consists of a transmitter, followed by transmission channel (fiber), and then

a receiver. The evolution of fiber-optic communications has been promoted along with

the advent of the above three major components in a fiber communication system.

In 1960, the invention and the realization of laser [2] provided a coherent source for

transmitting information using lightwaves. After that, In 1966, Kao and Hockman

proposed the idea of using the optical fiber as the lightwave transmission medium

despite the fact that optical fiber at the time suffered unacceptable loss (over 1000

dB/Km). They argued that the attenuation in fibers available at the time was caused

by impurities, which could be removed. Their prophetic prediction of 20 dB/Km for

telecom-grade optical fiber was realized 5 years later by researchers from Corning
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[3]. In 1979, the low loss fiber was realized at the operating wavelength of 1550

nm [4] with a loss of 0.2 dB/Km. The simultaneous availability of stable optical

source (laser) and a low-loss optical fiber led to an extensive research efforts and

rapid development of fiber-optic communication systems, which can be grouped into

five distinct generations [5]. A commonly used figure of merit for point-to-point

communication systems is the bit rate-distance product, BL, where B is the bit

rate and L is the repeater spacing. In every generation, BL increases initially but

then begins to saturate as the technology matures. Each new generation brings a

fundamental change that helps to improve the system performance further.

The first-generation of lightwave systems operated near 800 nm and used GaAs

semiconductor lasers. They operated at a bit rate of 45 Mb/s and allowed repeater

spacings of up to 10 Km. The repeater spacing of the first-generation lightwave

systems was limited by fiber dispersion which lead to pulse-spreading at the operating

wavelength of 800 nm. In 1970s that the repeater spacing increased considerably by

operating the lightwave system in the wavelength region near 1300 nm, where optical

fibers exhibit minimum dispersion Furthermore, fiber loss is below 1 dB/Km. This

realization led to a worldwide effort for the development of InGaAsP semiconductor

lasers and detectors operating near 1300 nm. The second generation of fiber-optic

communication systems became available in the early 1980s, but the bit rate of early

systems was limited to below 100 Mb/s because of intermodal dispersion in multimode

fibers. This limitation was overcome by the use of single-mode fibers. By 1987,

second-generation lightwave systems, operating at bit rates of up to 1.7 Gb/s with a

repeater spacing of about 50 Km, were commercially available.

The repeater spacing of the second-generation lightwave systems was limited by
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the fiber losses at the operating wavelength of 1300 nm (typically 0.5 dB/km). Losses

of silica fibers become minimum near 1550 nm. Indeed, a 0.2 dB/Km loss was realized

in 1979 in this spectral region. The drawbacks of 1550 nm systems were a large fiber

dispersion near 1550 nm, and the conventional InGaAsP semiconductor lasers could

not be used because of pulse spreading occurring as a result of simultaneous oscillation

of several longitudinal modes. The dispersion problem can be overcome either by

using dispersion-shifted fibers designed to have minimum dispersion near 1550 nm

or by limiting the laser spectrum to a single longitudinal mode. For a dispersion

shifted fiber (DSF) [6] the zero chromatic dispersion (CD) is shifted to minimum-loss

window at 1550 nm from 1300 nm by controlling the waveguide dispersion and dopant-

dependent material dispersion such that transmission fiber with both low dispersion

and low attenuation can be achieved. Third-generation lightwave systems operating

at 2.5 Gb/s became available commercially in 1990. Such systems are capable of

operating at a bit rate of up to 10 Gb/s. The best performance is achieved using

dispersion-shifted fibers in combination with lasers oscillating in a single longitudinal

mode.

A drawback of third-generation 1550 nm systems is that the signal is regenerated

periodically by using optoelectronic repeaters, spaced apart typically by 60 - 70 Km,

in which the optical signal is first convert to the electrical current and then regen-

erate by modulating an optical source. The repeater spacing can be increased by

making use of a homodyne or heterodyne detection schemes because its use improves

receiver sensitivity. These optoelectronic regenerating procedures are not suitable

for multi-channel lightwave systems because each single wavelength needs a separate

optoelectronic repeater, which leads to high cost and excessive system complexity.
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Another drawback of using electronic repeaters is that due to high data rate in op-

tical communication systems, the high speed electronic devises are required which is

very hard and expensive to make. The advent of optical amplifiers, which amplify the

optical bit stream directly without requiring conversion of the signal to the electric

domain, revolutionized the development of fiber optic communication systems in the

late 1980s. Only adding noise to the signal, optical amplifiers are especially valuable

for wavelength division multiplexed (WDM) lightwave systems as they can amplify

many channels simultaneously without crosstalk and distortion.

The fourth generation of lightwave systems makes use of optical amplification for

increasing the repeater spacing and of wavelength division multiplexing for increasing

the bit rate. The optical amplification was first realized using semiconductor laser am-

plifiers in 1983, then Raman amplifiers in 1986 [7], and later using optically pumped

rare earth erbium doped fiber amplifier (EDFA) in 1987 [8]. The low-noise, high-gain

and wide-band amplification characteristics of EDFAs stimulated the development of

transmitting signal using multiple carriers simultaneously, which can be implemented

using a wavelength division multiplexing scheme. WDM is basically the same as the

frequency-division multiplexing (FDM) as the wavelength and frequency are related

λ = v/f where v is the speed of light and f is the frequency. In optical WDM system,

multiplexing and demultiplexing are realized at transmitter and receiver respectively

using arrow waveguide grating (AWG). The advent of the WDM technique started

a revolution in optical communication networks due to the fact that the capacity

of the system can be increased simply by increasing the number of channels with-

out deploying more fibers. That resulted in doubling of the system capacity every

6 months or so, and led to lightwave systems operating at a bit rate of 10 Tb/s by
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2001. Commercial terrestrial systems with the capacity of 1.6 Tb/s were available

by the end of 2000, and the plans were underway to extend the capacity toward 6.4

Tb/s. Given that the first-generation systems had a capacity of 45 Mb/s in 1980, it

is remarkable that the capacity has jumped by a factor of more than 10,000 over a

period of 20 years.

The fifth generation of fiber-optic communication systems is concerned with ex-

tending the wavelength range over which a WDM system can operate simultaneously.

While WDM systems can greatly improve the capacity of fiber optic transmission

systems by increasing the number of channels, achievable data rate is limited by the

bandwidth of optical amplifiers and ultimately by the fiber itself. The conventional

wavelength window, known as the C-band, covers the wavelength range 1530 - 1570

nm. It is being extended on both the long- and short-wavelength sides, resulting in

the L- and S-bands, respectively. The Raman amplification technique can be used

for signals in all three wavelength bands. Moreover, a new kind of fiber, known as

the dry fiber has been developed with the property that fiber losses are small over

the entire wavelength region extending from 1300 to 1650 nm. Availability of such

fibers and new amplification schemes may lead to lightwave systems with thousands

of WDM channels.

The fifth-generation systems also attempt to increase the data rate of each channel

within the WDM signal. This could be addressed by improving the signal spectral

efficiency. The signal spectral efficiency is measure in bit/s/Hz, and can be increased

using various spectrally efficient modulation schemes, such as M-ary phase shift keying

(MPSK) and quadrature amplitude modulation (QAM) and/or polarization division

multiplexing (PDM) technique. In fiber-optical transmission systems the transmitted
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signal power can not be arbitrary large due to the fiber nonlinearity and therefore

it requires a high-sensitivity optical receiver for a noise-limited transmission system.

The power efficiency can be improved by minimizing the required average signal power

or optical signal to noise ratio (OSNR) at a, given level of bit error rate (BER). In a

conventional fiber optic communication system, the intensity of the optical carrier is

modulated by the electrical information signal and at the receiver, the optical signal,

transmitted through fiber link,is directly detected by a photo-diode acting as a square-

law detector, and converted into the electrical domain. This simple deployment of

intensity modulation (IM) on the transmitter side and direct detection (DD) at the

receiver end called intensity modulation-direct detection (IM-DD) scheme. Appar-

ently, due to the power law of a photo diode, the phase information of the transmitted

signal is lost when direct detection is used, which prevents the use of phase-modulated

modulation schemes, like MPSK and QAM. Therefore, both spectral efficiency and

power efficiency are limited in a fiber-optic system using direct detection.

In contrast, like many wireline and wireless telecommunication systems, homodyne

or heterodyne detection schemes can be introduced to fiber optic communications.

This kind of system are referred to as coherent fiber optic systems. The coherent op-

tical communication systems have been extensively studied during 1980s due to high

receiver sensitivity. However, coherent communication systems were not commercial-

ized because of the practical issues associated with phase locked loops (PLLs) to align

the phase of local oscillator with the output of the fiber optic link and with the emer-

gence of the EDFA, the former advantage of a higher receiver sensitivity compared

to direct detection disappeared, the more so as the components were complex and

costly.
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Nowadays however, coherent optical systems are reappearing as an area of in-

terest. The linewidth requirements have relaxed and sub-megahertz linewidth lasers

have recently been developed. More recently, the high-speed digital signal process-

ing available allows for the implementation of critical operations like phase locking,

frequency synchronization and polarization control in the electronic domain through

digital means. Former concepts for carrier synchronization with optical phase locked

loops (OPLL) can be replaced by subcarrier OPLLs or digital phase estimation. Thus,

under the new circumstances, the chances of cost effectively manufacturing stable co-

herent receivers are increasing.

In addition to the already mentioned potentials of spectral efficiency, coherent

detection provides several advantages. Coherent detection is very beneficial within

the design of optical high-order modulation systems, because all the optical field pa-

rameters (amplitude, phase frequency and polarization) are available in the electrical

domain. Therefore, the demodulation schemes are not limited to the detection of

phase differences as for direct detection, but arbitrary modulation formats and mod-

ulation constellations can be received. Furthermore, the preservation of the temporal

phase enables more effective methods for the adaptive electronic compensation of

transmission impairments like chromatic dispersion and nonlinearities. When used

in WDM systems, coherent receivers can offer tunability and enable very small chan-

nel spacings, since channel separation can be performed by high-selective electrical

filtering.
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1.2 Thesis Contribution

This thesis deals with analysis of nonlinear phase noise and a novel optical nonlin-

earity compensation technique to mitigate fiber impairments in coherent fiber optic

communication systems, and it is organized as follows. In chapter 2, a literature on

the major fiber optic communication systems impairments such as the fiber Ker effect

and chromatic dispersion is reviewed and coherent transmission technology, dispersion

compensation techniques and backward propagation (BP) are discussed.

In chapter 3, we investigate the effect of amplified spontaneous noise in quasi-

linear systems. In quasi-linear systems, dispersive effects are much stronger than

the nonlinear effects, and therefore, the fiber nonlinearity can be considered as a

small perturbation on the linear system. We have developed analytical expressions

for the linear and nonlinear phase noise variance due to noise added by amplifiers

and SPM interaction using second-order perturbation theory. For M-ary phase shift

keying (PSK) signals, symbol error probability is determined solely by the probability

density function (PDF) of the phase. Under the Gaussian PDF assumption, the

phase variance can be related to the symbol error probability for PSK signals. We

implemented the simulation based on analytical phase noise variance and Monte-Carlo

simulation, and it is found that the analytical approximation is in good agreement

with numerical simulations.

In chapter 4, an improved optical signal processing using highly nonlinear fibers

is studied. This technique, optical backward propagation (OBP), can compensate

for the fiber nonlinearity using optical nonlinearity compensators (NLC) and disper-

sion using dispersion compensating fibers (DCF). NLC imparts a phase shift that is
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equal in magnitude to the nonlinear phase shift due to fiber propagation, but op-

posite in sign. In principle, BP schemes could undo the deterministic (bit-pattern

dependent) nonlinear impairments, but it can not compensate for the stochastic non-

linear impairments such as nonlinear phase noise. We also introduced a novel inline

optical nonlinearity compensation (IONC) technique which incorporate inline optical

nonlinear compensators and dispersion compensating fiber at receiver. We have im-

plemented OBP and IONC techniques numerically and compared their performance

with convectional digital backward propagation (DBP) for multi-level quadrature am-

plitude modulation (QAM) signals. The transmission reach without OBP, DBP and

inline nonlinearity compensation (but with DCF) is limited to 240 Km at the forward

error correction (FEC) limit. The maximum reach can be increased to 1040 Km and

1440 Km using OBP and IONC, respectively and in the case of DBP maximum reach

is 800 Km. We also investigated the effect using imperfect optical nonlinearity com-

pensators in OBP and IONC, and we found that these techniques have reasonably

good tolerance and there is no performance degrading in this situation.

In chapter 5, the conclusions of present works and future plans are given. All

references are placed at the end of this thesis.

This research work has resulted following publication and manuscript:

M. Malekiha and S. Kumar, ”Second-Order theory for Nonlinear Phase Noise in

Coherent Fiber-Optic Systems Based on Phase Shift Keying”, CCECE, P. 466-469,

2011.
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Chapter 2

Literature Background

2.1 Fiber Optic Communication Systems Impair-

ments

In fiber optic communication systems, linear impairments are due to the fiber loss,

chromatic dispersion (CD) and polarization mode dispersion (PMD). Optical power

loss dues to light propagation inside the fiber results from absorption and scatter-

ing and it can be easily compensated by optical amplifiers. CD and PMD are the

main linear impairments for optical communication systems. Major degrading effects

due to fiber nonlinearity are self phase modulation (SPM), cross phase modulation

(XPM), four wave mixing (FWM), stimulated Raman Scattering (SRS) and Stimu-

lated Brillioun Scattering (SBS).

In its simplest form, an optical fiber consists of a central glass core surrounded

by a cladding layer whose refractive index nc is slightly lower than the core index nl.

For an understanding of evolution of optical field in the optical fiber, it is necessary

11



M.A.Sc. Thesis - MAHDI MALEKIHA McMaster - Electrical Engineering

to consider the theory of electromagnetic wave propagation in dispersive nonlinear

media. Like all electromagnetic phenomena, the propagation of optical fields in fibers

is governed by Maxwells equations. For standard single mode fibers (SMFs), the

pulse,propagation is described by nonlinear Schrodinger equation (NLSE). it describes

the evolution of optical field at the transmission distance z as [9]

∂A

∂z
−β1

∂A

∂t
+
iβ2
2

∂2A

∂t2
− β3

6

∂3A

∂t3
+
α

2
A = iγ

[
|A2|A+

i

ω0

∂|A2|A
∂t

− TRA
∂|A|2

∂t

]
(2.1)

where A represents the optical field envelope, γ is the nonlinearity coefficient, α

is the attenuation constant, β1, β2 and β3 are first-order, second- and third-order

derivations of the propagation constant β about the center frequency ω0 and they are

related to the dispersion of the optical fiber, and TR can be related to the slope of

the Raman gain spectrum and is usually estimated to be 3 fs at wavelengths near

1.5 µm. The term proportional to β3 account for third-order dispersion, and only

becomes important for ultrashort pulses, because of their wide bandwidth. The last

two terms in the right side of the equation are related to the effects of self-steeping

and stimulated Raman scattering, respectively. For pulses of width To > 5 ps, the

parameters 1/(ω0T0) and TR/T0 become so small (< 0.001) that the last two terms in

Eq. (2.1) can be neglected on such condition, and if the reference time frame moves

with pulse at the group velocity, vg i.e. T = t− z/vg = t− β1z, the Eq. (2.1) can be

simplified

∂A

∂z
+
iβ2
2

∂2A

∂t2
+
α

2
A = iγ|A2|A (2.2)
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2.1.1 Chromatic Dispersion

Chromatic dispersion, or group velocity dispersion (GVD), is primarily the cause of

performance limitation in the long haul 10 Gb/s and beyond fiber optic communica-

tion systems. Dispersion is the spreading out of a light pulse in time as it propagates

down the fiber. As a result short pulses become longer, which leads to significant inter

symbol interference (lSI), and therefore, severely degrades the performance. Single

mode fibers (SMFs), effectively eliminate inter-modal dispersion by limiting the num-

ber of modes to just one through a much smaller core diameter. However, the pulse

broadening still occurs in SMFs due to intra-modal dispersion which is described as

follows.

When an electromagnetic wave interacts with the bound electrons of a dielectric,

the medium response, in general, depends on the optical frequency ω. This property

manifests through the frequency dependence of the refractive index n(ω). Because

the velocity of light is determined by c/n(ω), the different frequency components of

the optical pulse would travel at different speeds. This phenomenon is called group

velocity dispersion or chromatic dispersion to emphasize its frequency dependent na-

ture.

Assuming the spectral width of the pulse to be ∆ω, at the output of the optical

fiber, the pulse broadening can be estimated as [5]

∆T ∼ L
d2β

dω2
∆ω = Lβ2∆ω (2.3)

where β2 = d2β/dω2 is known as GVD parameter and L is the fiber length. It can be

seen from Eq,(2.3), that the amount of pulse broadening is determined by the spectral
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width of pulse, ∆ω.

The dispersion induced spectrum broadening would be very important even with-

out nonlinearity for high data-rate transmission systems (> 2.5 Gb/s), and it could

limit the maximum error-free transmission distance. The effects of dispersion can

be described by expanding the mode propagation constant, β, at any frequency ω in

terms of the propagation constant and its derivatives at some reference frequency ω0

using the Taylor series,

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + ... (2.4)

where

βm(ω) =

[
dmβ

dωm

]
ω=ω0

(m = 0, 1, 2, ...) (2.5)

It is easy to get first-order and second-order derivatives from Eqs. (2.4) and (2.5)

β1 =
1

c

[
n+ ω

dn

dω

]
=

1

vg
(2.6)

and

β2 =
1

c

[
2
dn

dω
+ ω

d2n

dω2

]
∼ λ3

2πc2
d2n

dλ2
(2.7)

where c is the speed of light vacuum and λ is the wavelength. β1 is the inverse group

velocity, and β2 is the second order dispersion coefficient. If the signal bandwidth is

much smaller than the carrier frequency ω0, we can truncate the Taylor series after the

second term on the right hand side. As the spectral width of the signal transmitted

over the fiber increases, it may be necessary to include the higher order dispersion

coefficients such as β3 and β4. The wavelength where β2 = 0 is called zero dispersion
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wavelength λD. However, there is still dispersion at wavelength λD due to higher

order dispersion and they should be considered in this case. This feature can be

understood by noting that β2 = 0 can not be made zero at all wavelengths contained

within the pulse spectrum centered at λD.

Dispersion parameter, D, is another parameter related to the difference in arrival

time of pulse spectrum which more often being used. With a dispersion coefficient of

D, two signals with wavelength separation of ∆λ walk-off by a time of D∆λL after a

distance of L. The relationship between D, β1 and β2 can be found as following

D =
dβ1
dλ

= −2πc

λ2
β2 ≈ −

λ

c

d2n

dλ2
(2.8)

From Eq. (2.8) it can be understood that D has the opposite sign with β2. If λ < λD,

β2 < 0 (or D > 0), It is said that optical signal exhibit normal dispersion. In the

normal dispersion regime high-frequency components of optical signal travel slower

than low-frequency components. On the contrary, When λ > λD, β2 > 0 (or D > 0),

it is said to exhibit anomalous dispersion. In the anomalous dispersion regime high-

frequency components of optical signal travel faster than low-frequency components.

The anomalous dispersion regime is of considerable interest for the study of nonlinear

effects, because it is in this regime that optical fibers support solitons through a

balance between the dispersive and nonlinear effects.

The impact of the group velocity dispersion can be conventionally described using

the dispersion length define as [9]

LD =
T 2
0

β2
(2.9)
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where T0 is the temporal pulse width. This length provides a scale over which the

dispersive effect becomes significant for pulse evolution along a fiber. Dispersion

and specially GVD plays an important role in signal transmission over fibers. The

interaction between dispersion and nonlinearity is an important issue in lightwave

system design.

2.1.2 Fiber Kerr Nonlinearities

The response of any dielectric to light becomes nonlinear for intense electromagnetic

fields, and optical fibers are no exception. The optical fiber medium can only be

approximated as a linear medium when the lunch power is sufficiently low. For the

long-haul fiber optic transmission system and wideband wavelength division multi-

plexed (WDM) systems, to combat accumulated noise added by the amplifier chain

along the transmission fiber link, the launch power must be increased to keep signal

to noise ratio (SNR) high enough for the error-free detection at receiver. As the

launch power increases, the nonlinearity of fiber becomes significant and leading to

severe performance degrading. Nonlinear effects in optical fibers are mainly due to

two causes. One root cause lies in the fact that the index of refraction of many ma-

terials, including glass, is a function of light intensity. The origin of this nonlinear

response is related to anharmonic motion of bound electrons under the influence of an

applied field. This phenomenon is called the Kerr effect and it is discovered in 1875

by John Kerr. The second root cause is the nonelastic scattering of photons in fibers,

which results in stimulated Raman and stimulated Brillouin scattering phenomena.

These are in addition to the dependence of the index of refraction on wavelength,
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which gives rise to dispersion effects. The refractive index can be written as

n(ω, P ) = n0(ω) + n2
P

Aeff

(2.10)

where n0 is the linear part of the refractive index, n2 is the Kerr coefficient with typical

value of 2.2−3.4 ×10−20 m2/W, P is the optical power, and Aeff is the effective core

area. In fiber optics, the Kerr coefficient is small compared to most other nonlinear

media by at least two orders of magnitude. In spite of the intrinsically small values

of the nonlinear coefficients in fused silica, the nonlinear effects in optical fibers can

be observed at relatively low power levels. This is possible because of two important

characteristics of single mode fiber (SMF): (i) a small effective core area and (ii)

extremely low loss (< 1 dB/Km). The dependence of the refractive index on the light

intensity results in the propagation constant, β, varying as the light intensity due to

β = 2πn/λ, and the propagation constant can be written as

β(ω, P ) = β0(ω) +
2πn2

λAeff

P (2.11)

where β0(ω) is the propagation constant in the absence of nonlinear effects, and

γ =
2πn2

λAeff

(2.12)

is known as the fiber nonlinear coefficient. The total nonlinear phase shift due to the

Kerr effect after the distance L is given by

φNL =

∫ L

0

[β − β0]dz (2.13)
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Substituting Eq. (2.11) in Eq. (2.12), using Eq. (2.13) and noticing that

P (z) = P0 exp(−αz) (2.14)

where P0 is the launch power, and α is the loss coefficient, we obtain [10]

φNL = γP0

∫ L

0

exp(−αz)dz = γP0
1− exp(−αL)

α
=
Leff

LNL

(2.15)

where

Leff =
1− exp(−αL)

α
(2.16)

is the effective length, and

LNL =
1

γP0

(2.17)

is the nonlinear length. Physically, the nonlinear length, LNL, indicates the distance

at which the nonlinear phase shift reaches 1 radian, and it provides a length scale

over which the nonlinear effects become relevant for optical fibers. It can be seen

from Eq. (2.15) that the fiber nonlinear effect enhances when LNL decreases, or

equivalently power P0 increases. There are three types of fiber nonlinearities due to

the Kerr effect. Type (i) self phase modulation (SPM) (ii) cross phase modulation

(XPM), and (iii) four wave mixing (FWM). The SPM, Refers to the self-induced

power-dependent phase shift experienced by an optical field during its propagation in

the optical fiber as shown in Eq. (2.15), and it is responsible for spectral broadening

of the optical pulses. Interacting with fiber dispersion, the SPM can cause temporal

pulse broadening (in normal dispersion regime (β2 > 0)), or pulse compression (in

anomalous dispersion regime (β2 < 0). The well known interaction of SPM with
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anomalous dispersion is the formation of solitons. The cross phase modulation causes

the nonlinear phase shift due to optical pulses from other channels or from other state

of polarization. The XPM effects are quite important for WDM lightwave systems

since the phase of each optical channel is affected by both the average power and the

bit pattern of all other channels.

In WDM systems, the nonlinear phase shift in K − th channel can be written as

φNL = γLeffP
(k)
0 + 2

N∑
h=1,h 6=k

γLeffP
(h)
0 (2.18)

where P
(k)
0 denotes the peak powe in K − th channel. The first term is the SPM

and the second term denotes the contribution of XPM. In deriving Eq. (2.18), P
(k)
0

was assumed to be constant. In practice, time dependence of P0 makes φNL to vary

with time. In fact, the nonlinear optical phase shift changes with time in exactly the

same fashion as the optical pulse due to SPM. It can be seen from Eq. (2.18), that

the XPM induced phase shift is twice of SPM when the optical power of all of the

channels are equal. XPM causes asymmetric spectral broadening of optical pulses,

timing jitter and amplitude distortion in time domain.

The four wave mixing (FWM) is another effect that generates new frequency

components. For WDM systems, with carrier frequencies of fi, fj and fk the signal

at new frequency fh = fi + fj − fk can be generated by FWM, which leads to

serious performance degradation when the newly generate frequency components fall

into other WDM channels. For a single carrier systems, when the pulse have strong

broadening due to chromatic dispersion, the nonlinear mixing of overlapped pulses

generates ghost pulses in neighboring time slots due to intra-channel four wave mixing
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(IFWM), which is one of the dominant penalties for high bit rate (above 40 Gb/s)

fiber optic systems [11–13]. The difference between FWM and IFWM is that echo

pulses appear in time domain instead of in frequency domain.

As far as transmission on fibre is concerned the non-linear effects are nearly al-

ways undesirable. After attenuation and dispersion, they provide the next major

limitation on optical transmission. Indeed in some situations they are more signif-

icant than either attenuation or dispersion. A lot of research goes into suppressing

the impairments induced by SPM, XPM and FWM for long haul and wideband fiber

optic communication systems.

2.2 Coherent Transmission Technology

A coherent receiver linearly down-converts the optical signal to the electrical domain

by using homodyne/heterodyne detection. A schematic diagram of a single branch

coherent receiver is shown in Fig. 2.1. The basic idea of the coherent is that the

received optical signal is mixed with a coherent local oscillator before it passes through

a photo-detector.

Figure 2.1: Schematic diagram of a coherent detection.
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Suppose that the polarization of the received signal is perfectly aligned with that

of the local oscillator (LO). The state of polarization of the received signal can be

controlled using the polarization controller (PC). Let the transmitted signal be

ET (t) = A0s(t) exp(iωct) (2.19)

Let us assume a perfect optical channel that introduces neither distortion nor noise.

Only the phase of the optical carrier is changed due to propagation. Let the received

signal after the PC be

ER(t) = Ass(t) exp[i(ωct+ φc)] (2.20)

where Ass(t) is the complex received field envelope, ωc is the optical carrier and φ is

the phase. The electrical field of local oscillator is given by

ELO(t) = ALO exp[i(ωLOt+ φLO)] (2.21)

These two signals are combined using a optical beam combiner and pass through a

photo-detector (PD). The output electrical current of the PD is proportional to the

absolute square of the incident optical field, and it can be written as

I(t) = R

∣∣∣∣qS(t)√
2

+
qLO(t)√

2

∣∣∣∣2 =
R

2
|Ass(t)|2 + |ALO|2 + 2AsALORes(t)exp[i(ωIF t+ φc − φLO)]

(2.22)

where

ωIF = ωc − ωLO (2.23)

is called the intermediate frequency. Typically, the LO output power, A2
LO, is much
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larger than the signal power, A2
s, and therefore, the first term in Eq. (2.22) can be

ignored. Since the LO output is continues wave, A2
LO is a constant and it leads to a

DC component in the photo current, which can be removed by capacitive coupling.

Therefore, the signal that goes to the front-end can be written as

Id(t) = RAsALORes(t)exp[i(ωIF t+ φc − φLO)] (2.24)

If ωIF = 0, such a receiver is known as homodyne receiver. Otherwise, it is called

heterodyne receiver. For homodyne receiver, the phase of the received carrier φc

should be exactly the same as the phase of the local oscillator φLO. This can be

achieved using optical phase locked loop, or it can be post-corrected using the digital

phase estimation techniques. When the phases are exactly aligned (φc = φLO), Eq.

(2.24) can be written as

Id(t) = I0Re[s(t)] (2.25)

where I0 = RAsALO. If the transmitted signal is real such as that corresponding to

the amplitude modulated signal, the real part of s(t) has all the information that

is transmitted. If the transmitted signal is complex such as that corresponding to

multilevel phase shift keying (MPSK) and quadrature amplitude modulation (QAM),

phase diversity receivers are required to fully restore the transmitted information. The

received signal and LO outputs are divided into two parts using power splitter (PS),

and they are mixed together similar to what is done before. To recover the real part

of s(t), LO phase should be aligned with the optical carrier. Similarly, to recover

the imaginary part of s(t), the LO phase should be shifted by π/2, (exp(iπ/2) = i)

with respect to optical carrier. Fig. 2.2 shows the block diagram of the single-branch
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in-phase/quadrature coherent receiver, and as can be seen the phase information of

optical carrier could be preserved using coherent detection.

Figure 2.2: Schematic diagram of the single-branch in-phase/quadrature coherent

receiver

For homo dyne detection, If the phase of the local oscillator is not fully aligned

with the phase of the carrier, Eq. (2.24) can be written as

Id(t) = I0Re[s(t) exp(i∆φ)], (2.26)

where ∆φ = φc − φLO is the phase error. If ∆φ is π/2 and s(t) is real, Id(t) = 0,

and therefore, the phase error leads to bit error. In contrast in heterodyne detection

when, when local oscillator frequency ωLO = 0 is deviating from the received optical
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carrier frequency ωc = 0. The optical signal first converted in to the microwave

domain. Typically intermediate frequency is in the microwave or radio wave range

and the resulting signal can be interpreted as the message s(t) being modulated by

the microwave or radio carrier of frequency ωIF . It is because the microwave LO

phase could be achieved using electrical phased locked loop (PLL), and therefore

the optical PLL is no longer needed in heterodyne detection. However, this merit is

gained at the cost of 3-dB penalty in the receiver sensitivity compared to homodyne

detection. Recently, with the advent of high speed digital signal processors (DSPs),

phase estimation can be done in digital domain for homodyne/heterodyne receivers,

and therefore, analog PLL is no longer required. ,Advantage of homodyne detection

is the optical receiver bandwidth (and also speed of A/D converter) is of order of

symbol rate, Bs. In contrast for heterodyne detection, the receiver bandwidth should

be ∼ 2Bs centered around ωIF .

Since the coherent detection is linear in nature, the complex-valued electrical field

with phase information can be achieved, and therefore, the amplitude, phase and

frequency of the optical carrier can all be utilized to carry the information. There

are several advantage for a coherent detection over a direct detection. First, the

receiver sensitivity can be greatly improved by making the power of local oscillator

sufficiently large. Second, the availability of higher-order modulation schemes in a

coherent optical communication can further improve the spectral efficiency compared

to conventional intensity modulation direct detection systems. Third, the heterodyne

detection allow closely spaced WDM channels compared to that of direct detection

systems. Last, the linearly detected signal by coherent detection enables the post

signal processing in the electrical domain. Therefore, the electronic compensation
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of chromatic dispersion (CD), polarization mode dispersion (PMD), and the fiber

nonlinearity can be performed after the coherent detection using advanced DSP tech-

niques. The combination of coherent detection and DSP is expected to become a

very important transmission technique for the next generation of fiber optic commu-

nication systems due to its potential capacity and flexibility with various pre- and

post-signal processing schemes in the electrical domain [14–22].

2.3 Dispersion Compensation Techniques

In fiber optic communication systems, information is transmitted over an optical fiber

by using a coded sequence of optical pulses, whose width is set by the bit rate B of the

system. Dispersion-induced broadening of pulses is undesirable as it interferes with

the detection process, and it leads to errors if the pulse spreads outside its allocated

bit slot (TB = 1/B). Clearly, group velocity dispersion (GVD) limits the bit rate B

for a fixed transmission distance L. The dispersion problem becomes quite serious

when optical amplifiers are used to compensate for fiber losses because L can exceed

thousands of kilometers for long-haul systems. The implementation of fiber dispersion

compensation can be done at the transmitter, at the receiver or within the fiber link.

In this section, several dispersion compensation techniques are discussed, and their

advantage and disadvantage are also compared.

Before the development of high-speed powerful DSPs, conventional optical sys-

tems employ a dispersion management scheme that places a dispersion compensation

module (DCM) at the amplifier site to negate the dispersion of the transmission link.

The DCM compensates GVD while the amplifier takes care of fiber losses. A DCM
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could be a dispersion compensating fiber (DCF) with the reverse sign of GVD pa-

rameters as that of the transmission fiber, or an optical filter with inverse transfer

function of the fiber channel.

The use of DCF for dispersion compensation was first proposed in 1980, but due

to the high loss of DCFs, this technique was not applied in practice until 1990s when

the erbium-doped fiber amplifier (EDFA) was presented. A typical transmission fiber

(TF) consisted of the standard single mode fiber (SSMF) with anomalous dispersion

at 1550 nm and the DCF placed at the optical amplifier site within a double stage

amplifier and it is shown in Fig 2.3.

Figure 2.3: A transmission span with a DCF. β21, L1 and β22, L2 are the GVD

parameter and length for SSMF and DCF, respectively

It can be shown that the total transfer function of SSMF cascades with a DCF is

given by

Hspan(ω) = exp

[
jω2

2
(β21L1 + β22L2)s(t)

]
(2.27)

It is evident from Eq. (2.27), that the perfect dispersion compensation is realized if

β21L1 + β22L2 = 0. (2.28)

Therefore, the optical pulses at the receiver are not broadened, and there is no ISI due
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to dispersion. Since β21 is negative (anomalous GVD) for standard fibers, therefore

DCF must have normal dispersion β22 > 0, such that the accumulated dispersion

in Eq. (2.28) becomes zero. The DCF with large positive value of GVD have been

developed for the sole purpose of dispersion compensation in order to keep L2 as

small as possible. The use of DCFs provides an all-optical technique that is capable

of overcoming the detrimental effects of chromatic dispersion (CD) in optical fibers,

provided the average signal power is low enough that the nonlinear effects remain

negligible.

This scheme is quite attractive but suffers from two problems. First, insertion

losses of a DCF module typically exceed 5 dB. Insertion losses can be compensated

by increasing the amplifier gain but only at the expense of enhanced amplified spon-

taneous emission (ASE) noise. Second, because of a relatively small mode diameter

of DCFs, the effective mode area is only ∼ 20 µm2 . As the optical intensity is large

inside a DCF at a given input power, the nonlinear effects are considerably enhanced

[23]. These two shortage limits the use of DCF in the long-haul fiber links.

Since the early 1990s, there has been great interest in using electronic equalizers as

replacements for optical dispersion compensating modules at the receiver. Compared

with the optical counterpart, the electronic dispersion compensation (EDC) has the

advantages of lower cost and ease of adaption.

For a transmitter based dispersion compensation scheme, fiber dispersion can be

canceled by pre-distorting the input pulses before they are launched in to the fiber

link. Koch and Alferness presented a technique in 1985 to compensate fiber dispersion

using the synthesis of pre-distorted signal [21]. The pre-chirped Gaussian pulse were

obtained using a frequency modulated (FM) optical carrier as input to an external
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modulator for amplitude modulation (AM). The output pulse is a chirped Gaussian

pulse with the chirp parameter C > 0 such that Cβ2 < 0 in a single mode optical

fiber with typical β2 = −21 ps2/Km. The dispersion induced chirp is canceled out the

intentionally induced chirp in the input pulses, and therefor, the pulse broadening is

suppressed at the output of fiber. An alternative to implement signal pre-distortion

is making use of DSP. With the advances in the performance of high-speed devices

since 1990s, the signal pre-distortion can be done in electrical domain using DSP for

the bit rate of 10 Gb/s and above in fiber optical transmission systems.

The disadvantage of pre-compensating scheme is that the exact dispersion com-

pensation can not be achieved without the knowledge of the transmission fiber link.

Furthermore, even if the transfer function of the fiber link is fully known, the op-

timum performance of the dispersion compensation is still hard to reach because in

fiber link when an optical pulse propagate, other linear and nonlinear effects such as

polarization mode dispersion and self phase modulation, interact with dispersion and

change the pulse shape further and leading to lower performance of pre-compensation

schemes. To avoid prior-knowledge of the fiber link setup requirement and achieve

the optimum dispersion compensation, the dispersion compensation moved from the

transmitter to the receiver and this schemes called dispersion post compensation or

receiver based dispersion compensation.

There are several receiver-based EDC techniques. A linear equalizer can be used

between the receiver and the detector to compensate for the ISI caused by fiber dis-

persion. A transversal filter (tapped delay line) is often used as a linear equalizer, and

the weight coefficients can be adaptively adjust using well known least-mean square
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(LMS) and zero-forcing (ZF) algorithms. For a conventional fiber optic communi-

cation system with direct detection, due to the power-law detection the linear EDC

techniques discussed above can only partially undo the fiber dispersion because linear

dispersion-induced distortion in optical domain becomes nonlinear in the electrical

domain. Some nonlinear equalization techniques were therefore developed for direct

detection.

For a fiber optic communication system with direct detection, the nonlinearity in-

duced by power law of the photo-detector make the dispersion compensation scheme

more complex and less efficient. With development of powerful digital signal proces-

sors (DSPs) during the 2000s, the difficulty in tracking the received optical carrier

phase in an optical coherent receiver was overcomed by using digital carrier phase

estimation circuit [24]. Hence, the coherent receiver combined with electronic disper-

sion compensation (EDC) using DSP has become more practical in past decade. Since

the phase information of transmitted signal is preserved in the coherent systems, in

the other words the complex valued electrical field is fully detected at the coherent

receivers, more options are available in coherent optical systems compare to direct

detection.

One of the most attractive advantage of the receiver-based EDC is that the fiber

dispersion can be adaptively compensated either in frequency-domain or time-domain

even without the knowledge of the transmission link, since the impairment introduced

by power-law detection is absent in coherent receivers. With the rapidly increasing

demand for the bandwidth, the fiber optic communication tends to transmit high

bit-rate information data through multi-carriers and WDM systems and this will

suffer from the distortion caused by higher-order dispersion effects due to its large
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bandwidth. Therefore, the compensation of higher-order dispersion effects become

more and more important in long-haul high-speed fiber-optic communication systems

and it seems that receiver-based EDC going to be main dispersion compensation

technique of future.

2.4 Backward Propagation

In high-speed wavelength division multiplexed (WDM) systems, the interaction of

fiber nonlinearity and dispersion leads to many degrading effects, limiting the total

capacity as well as the achievable transmission distance. Digital backward propaga-

tion (DBP) schemes have drawn significant research interest recently because of their

ability to undo fiber linear and nonlinear impairments. Electronic backward propa-

gation was first studied in 2007 by Killey et al. as a transmitter-based compensation

method [19]. Since in the absence of coherent detection, manipulation of the field is

only possible at the modulator. However, with the coherent detection, recovery of the

received electric field enables receiver-based backward propagation, which was first

studied in 2008 [25]. Receiver-based backward propagation has the advantage that it

can ultimately be adaptive without the need for a feedback channel. The basic idea

behind backward propagation (BP) can be understood from the governing equation

of fiber propagation. The propagation of the electrical field envelope of an optical

signal can be modeled by a scalar nonlinear Schrdinger equation (NLSE) in optical

fiber [9]

∂u

∂z
=
[
D̂ + N̂

]
u, (2.29)
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where D̂ denotes the linear operator given by

D̂ = −iβ2(z)

2

∂2

∂t2
+
β3(z)

6

∂3

∂t3
− α(z)

2
(2.30)

and N̂ is the nonlinear operator given by

N̂ = iγ(z)|u|2, (2.31)

where β2(z), β3(z), α(z) and γ(z) are the profile of second-order and third-order

dispersion coefficients, loss/gain and nonlinear coefficient, respectively. The NLSE is

an invertible equation in absence of noise, and the transmitted signal can be exactly

recovered by backpropagating the received signal through the inverse NLSE. If the

sign of z reversed in Eq. (2.29) and the received signal is taken as the input signal,

Eq. (2.29) can be written as

∂u

∂z
=
[
−D̂ − N̂

]
u, (2.32)

which is equivalent to passing the received signal through a fictitious fiber having

opposite-signed loss/gain, dispersion and nonlinearity coefficients. Therefore, the

transmitted signal can be exactly recovered using this method. This technique is

referred as backward propagation. Eq. (2.32) can be numerically solved using split-

step Fourier method (SSFM) in DSP. The performance of this scheme is limited by

noise and step size used in SSFM for backward propagation. In principle, in the ab-

sence of noise, BP can completely compensate both fiber dispersion and nonlinearity

when the step size used to solve Eq. (2.32) is chosen small enough. However, when
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the noise is present, the transmitted signal can not be completely recovered using

backward propagation because BP-based schemes can not compensate for stochastic

nonlinear impairments such as nonlinear phase noise. In fiber optic communication

systems inline optical amplifiers change the amplitude of the optical field envelope

randomly and fiber nonlinear effects such as self-phase modulation convert the am-

plitude fluctuations to phase fluctuations which is known as nonlinear phase noise.

The computational cost in digital BP increase as the step size decreases, as a result,

in practice the step size should be chosen large enough to make computational ef-

fort at transmitter/receiver affordable. BP has the advantage that it can be used

to compensate for any higher order dispersion. BP also can be implemented digi-

tally, either at transmitter/receiver or jointly at both. since backward propagation

operates directly on the complex-valued field u(z, t), this technique is universal, as

the transmitted signal can have any modulation format or pulse shape, including

multicarrier transmission using orthogonal frequency-division multiplexing (OFDM)

with quadrature amplitude modulation (QAM). The compensation of fiber nonlin-

earity and dispersion using BP has been demonstrated to enable larger launch power

and longer transmission distance in any fiber optic communication system. For this

reason, a novel backward propagation technique using highly nonlinear fibers was

proposed in this thesis for jointly compensation of fiber nonlinearity and linear effects

in optical domain.
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Chapter 3

Analysis of Nonlinear Phase Noise

in Fiber-Optic Communication

Systems

3.1 Introduction

The response of all dielectric materials to light becomes nonlinear under strong op-

tical intensity and optical fiber has no exception. Due to the fiber Kerr effect, the

refractive index of optical fiber increases with optical intensity, inducing intensity

dependent nonlinear phase shift. The spontaneous emission of light is a phenomena

which appears during the optical signal amplification. It is not correlated with signal

and has an additive nature. In long-haul lightwave systems with lumped amplifiers

placed periodically along the link, each amplifier adds noise caused by the amplified

spontaneous emission (ASE) that propagates with the signal in multiple fiber sections.

The nonlinear term in the NLS equation couples the ASE and signal, and therefore,
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modifies the signal through the three nonlinear effects, self phase modulation (SPM),

cross phase modulation (XPM) and four wave mixing (FWM).

Gordon and Mollenauer (1990) first showed that when optical amplifiers are used

to periodically compensate for fiber loss, nonlinear phase noise is induced by the in-

teraction of the fiber Kerr effect and optical amplifier noise, often called the Gordon-

Mollenauer effect [26]. Here, nonlinear phase noise is induced by self phase modulation

through the amplifier noise in the same polarization as the signal and within an op-

tical bandwidth matched to the signal. Phase modulated optical signals, both phase

shift keying (PSK) and differential phase shift keying (DPSK), carry information by

the phase of an optical carrier. Added directly to the phase of a signal, nonlinear

phase noise degrades both PSK and DPSK signals and limits the maximum transmis-

sion distance. Early literatures studied the spectral broadening induced by nonlinear

phase noise [27–29]. The performance degradation due to nonlinear phase noise is

assumed the same effect as that due to laser phase noise. However, the statistical

properties of nonlinear phase noise are not the same as laser phase noise. The prob-

ability density function (PDF) of nonlinear phase noise is required for performance

evaluation of a phase modulated signal with nonlinear phase noise. However, because

of fiber nonlinearity, it is usually hard to obtain the exact expression for PDF of

nonlinear phase noise but if the actual PDF is approximated by a Gaussian one can

use variance in order to evaluate system performance. When the optical signal is

periodically amplified by optical amplifiers, amplifier noise is unavoidably added to

the optical signal. In long-haul optical communication systems, nonlinear phase noise

is accumulated span after span and the accumulation of nonlinear phase noise is the

summation of the contribution from each individual span. As a result the system
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performance is dominated by nonlinear phase noise, rather than thermal and laser

phase noise.

In addition to nonlinear phase noise, amplifier ASE noise also affects optical pulses

and induces not only energy and phase fluctuations but also timing jitter by shifting

each pulse in a random fashion from its original location within the bit slot. The

physical origin of ASE-induced time jitter can be understood by noting that optical

amplifiers affect not only the amplitude but also the phase of the amplified signal.

Time-dependent variations in the optical phase shift the signal frequency from the

carrier frequency by a small amount after each amplifier. Since the group velocity of

an optical pulse depends on its carrier frequency, because of dispersion, the speed at

which a pulse propagates through the fiber is affected by each amplifier in a random

fashion. Such speed changes produce random shifts in the pulse position at the

receiver and are responsible for the ASE-induced timing jitter.

In this chapter, we derive an analytical expression for electric field and variance

of nonlinear phase noise in dispersion-managed coherent fiber optic system based on

binary PSK using a perturbation theory. At the end of the chapter we validate our

analytical results and show that the results are in good agreement with numerical

simulation. We are also suggesting that our analytical expression for variance of

nonlinear phase noise could be used as a design tool to optimize the various parameters

such as launch power or pre- and post-dispersion compensation percentage of the

coherent optical system.

35



M.A.Sc. Thesis - MAHDI MALEKIHA McMaster - Electrical Engineering

3.2 Quasi-Linear Systems

In many occasions fiber link can be seen as a quasi-linear system, if transmitted

power is well controlled such that the nonlinear effect of fiber is not too large. Our

work is based on this assumption and the nonlinearity of a fiber can be described

by first-order and second-order perturbation approximation. In quasi-linear systems,

dispersive effects are much stronger than the nonlinear effects, and therefore, the fiber

nonlinearity can be considered as a small perturbation on the linear system. Since

the dispersive effects are dominant in quasi-linear systems, neighboring pulses overlap

and this system is also known as strongly pulse overlapped system [13] or pseudo-

linear system [30]. Fig. 3.1 shows the typical coherent fiber-optic transmission system

based on binary PSK.

Figure 3.1: Schematic diagram of a coherent fiber optic system.

The optical field envelope in a fiber-optic transmission system can be described

by the nonlinear Schrodinger equation (NLSE),

i
∂u

∂z
− β2(z)

2

∂2u

∂t2
− iα

2
u = −γ|u|2u+ iR(z, t) (3.1)
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where α(z) is the loss/gain profile which includes fiber loss as well as amplifier gain,

β(z) is the second-order dispersion profile and γ is the fiber nonlinear coefficient.

R(z, t) represents the noise field due to amplification, i.e.,

R(z, t) =
Na∑
m=1

δ(z − Lm)n(m)(t), (3.2)

where Lm is the location of an amplifier, Na is the number of amplifiers, and n(m)(t)

is the noise field due to an amplifier located at Lm. The mean and autocorrelation

function of the noise field are given by

〈n(m)(t)〉 = 0, (3.3)

〈n(m)(t)n(m)∗(t′)〉 = ρmδ(t− t′) (3.4)

and

〈n(m)(t)n(m)(t′)〉 = 0, (3.5)

where ρm is the amplified spontaneous emission (ASE) power spectral density (PSD)

per polarization of an amplifier located at Lm The spectral density of spontaneous

emission-induced noise is nearly constant (white noise) and can be written as [26]

ρm = nsphν(Gm − 1), (3.6)

where Gm is the gain of the amplifier, h is Planck’s constant and, v̄ is the mean optical

carrier frequency. The parameter nsp is called the spontaneous-emission factor (or the
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population-inversion factor) and is given by

nsp =
N2

N2 −N1

(3.7)

where Nl and N2 are the atomic populations for the ground and excited states, re-

spectively. We assume that the amplifier compensates for the fiber loss. To separate

the fast variation of optical power due to fiber loss/gain, we use the following trans-

formation [31],

q = α(z)u, (3.8)

and

∂q

∂z
=
∂a

∂z
u+ a

∂u

∂z
, (3.9)

if

∂a

∂z
= −α(z)

2
a. (3.10)

Substituting Eqs. (3.9) and (3.10) in Eq. (3.1), we obtain

i
∂u

∂z
− β2(z)

2

∂2u

∂t2
= −γa2(z) |u|2 u+ iR(z, t). (3.11)

Solving Eq. (3.9), we find

a(z) = exp

[
−
∫ z

0

α(s)

2
ds

]
. (3.12)

Between amplifiers, when the fiber loss is constant and Eq. (3.12) becomes

a(z) = exp (−αz/2) . (3.13)
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Note that the mean optical power fluctuates due to fiber loss and amplifier gain,

but < |U(z)|2 > is independent of distance since the variations due to loss/gain is

represented by a(z). Fig. 3.2 shows the typical dispersion and loss/gain profiles of

a long-haul dispersion-managed fiber optic system. Eq. (3.11) can be solved using

perturbation theory.

Figure 3.2: Typical dispersion and loss/gain profiles of a long-haul dispersion-

managed fiber-optic system. Pre- and post- compensation are not shown.
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The solution of Eq. (3.11) can be written as

u(t, z) = u0(t, z) + γu1(t, z) + γ2u2(t, z) + · · · , (3.14)

where uj(t, z) is the j-th order solution. Using Eq. (3.14), we find

|u(t, z)|2u(t, z) =

∣∣∣∣∣
∞∑
n=0

γnun

∣∣∣∣∣
2 ∞∑
n=0

γnun. (3.15)

submitting Eq. (3.15) in Eq. (3.11) and separating terms proportional to γn, n =

0, 1, 2, . . . , we obtain

(γ0) : i
∂u0
∂z
− β2

2

∂2u0
∂t2

= 0, (3.16)

(γ1) : i
∂u1
∂z
− β2

2

∂2u1
∂t2

= −a2(z) |u0|2 u0, (3.17)

(γ2) : i
∂u2
∂z
− β2

2

∂2u2
∂t2

= −a2(z)
(
2 |u0|2 u1 + u20u

∗
1

)
. (3.18)

Eq. (3.16) is the linear Schrodinger equation. Eqs. (3.17) and (3.18) represent the

first- and second-order corrections to the linear solution due to the nonlinear effects.

When nonlinear effects are small, the terms of the order γn, n > 2, can be ignored.

Eq. (3.16) can be solved using the Fourier transform technique. The solution is

u0(t, z) = F−1
{
ũ0(ω, 0) exp

[
iω2S(z)/2

]}
, (3.19)

where ũ0(ω, 0) = F [u0(t, 0)], u0(t, 0) = u(t, 0) and S(z) is the accumulated dispersion

S(z) =

∫ z

0

β2(x)dx. (3.20)
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Eqs. (3.17) and (3.18) can also be solved using the same technique. Typically, in

pseudo-linear systems, the nonlinear effects are smaller than dispersive effects and

first order correction u1(t, z) is often adequate to describe the nonlinear propagation.

However, when the transmission distance is long and/or launch power is large, second

order perturbation theory is needed [32]. Therefore, in the next section, we derive

an analytical expression for electric field and variance of nonlinear phase noise in

dispersion-managed coherent fiber optic system based using a second-order perturba-

tion theory.

3.3 Mathematical Derivation of Nonlinear Phase

Noise Variance

In this section, we derive the variance of nonlinear phase noise for the received phase

shift keying signals in a coherent fiber optic system. In the absence of nonlinear effects

and amplifier noise, if a Gaussian pulse is launched to the fiber, its propagation is

given by Eq. (3.19)

u0(z, t) = ulin(z, t) =
√
EF (z, t), (3.21)

and

F (z, t) =

[
p(z)√
π

]1/2
exp

{
− [p2(z) + iC(z)]t2

2
+ iθ0(z)

}
(3.22)

This appendix A.1 provides details of the calculation and E is pulse energy, p(z),

C(z) and θ0(z) are the inverse pulse width, chirp and phase factor, respectively, and
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they are given by

p(z) =
T0√

T 4
0 + S2(z)

, C(z) =
S(z)p2(z)

T 2
0

(3.23)

θ0(Z) =
1

2
tan−1[

S(z)

T 2
0

]. (3.24)

Here, T0 is the half-width at 1/e intensity point, and S(z) is the accumulated disper-

sion given by Eq. (3.20). The peak power, P and energy, E are related by

P =
E

Teff
(3.25)

where Teff =
√
πT0, and F (z, t) is normalized such that

∫ +∞

−∞
|F (z, t)|2dt = 1 (3.26)

Solving Eqs. (3.17) and (3.20) using the Fourier transform technique for a single

Gaussian pulse, the first-order and second-order nonlinear correction terms can be

found as

u1(z, t) = γ|E|
√
Eg(1)(z, t)F (z, t), (3.27)

and

u2(z, t) = γ2|E|2
√
Eg(2)(z, t)F (z, t), (3.28)

where g(1)(z, t) and g(2)(z, t) can be found as

g(1)(z, t) = j
T 2
0√
π

∫ z

0

exp(−a(s)−∆(s)t2)

T1(s)|T 2
1 (s)|

√
δ(z, s)R(s)

ds (3.29)
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and

g(2)(z, t) = −2g(2)x (z, t) + g(2)y (z, t) (3.30)

where

g(2)x (z, t) =
T 3
0

π

∫ z

0

∫ s

0

exp(−a(s+ s′)−∆x(s)t2)

T1(s′)|T 2
1 (s′)||T 2

1 (s)|
√
δ(s, s′)R(s′)

× dsds′√
δx(s, s′, z)Rx(s, s′)

(3.31)

and

g(2)y (z, t) =
T 3
0

π

∫ z

0

∫ s

0

exp(−a(s+ s′)−∆x(s)t2)

T ∗1 (s′)|T 2
1 (s′)|T 2

1 (s)
√
δ∗(s, s′)R∗(s′)

× dsds′√
δy(s, s′, z)Ry(s, s′)

(3.32)

where T 2
1 = T 2

0 −iS(z) and ∆(s) , ∆k(s, s′, z) k = x, y, δ(z, s), etc are given by Kumar

et. al. [32] (Appendix A.2), where a second-order perturbation theory was developed

for self phase modulation (SPM).

Now, consider the optical field envelope immediately after an amplifier located at

Lm. The optical field envelope in the absence of amplifier noise can be written as

u(Lm, t) =
√
E

+∞∑
j=0

γj|E|jg(j)(Lm, t)F (Lm, t). (3.33)

In this section, we study the combined effect of SPM and amplifier noise using the

second-order perturbation theory. For the analytical treatment of the problem, we

approximate the field given by Eq. (3.33) with best-fitting Gaussian pulse, which is

in the form of

u(Lm, t) '
√
EmF (Lm, t), (3.34)
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where √
Em =

∫ +∞

−∞
u(Lm, t)F

∗(Lm, t)dt. (3.35)

Here
√
Em is a complex electrical field amplitude which takes into account the first-

order and second-order nonlinear effects.

Focusing only on the impact of the noise added by this amplifier, the optical field

envelope at Lm+ can be written as

u(Lm+, t) =
√
EmF (Lm, t) + n(t), (3.36)

where n(t) ≡ n(m)(t) is the noise field added by the amplifier at Lm. In this section,

we consider only two noise modes given by

n(t) = (n0r + in0i)F (Lm, t) (3.37)

where n0r = Re{n0}, and n0i = Im{n0} are the amplitudes of the in-phase and

quadrature components of the noise field added by the amplifier at Lm, respectively,

and n0 is the complex amplitude of the noise field. The analysis of nonlinear phase

noise with higher order noise modes (arbitrary DOF) have been carried out in Ref.

[33], and the result show that the impact of higher order noise is negligible for dis-

tances of practical interest. Substituting Eq. (3.37) in Eq. (3.36), we find

u(Lm+, t) = (
√
Em + n0)F (Lm, t) (3.38)

Thus, the complex amplitude of the field envelope has changed because of the amplifier

noise. Treating Eq. (3.38) as the initial condition, the zeroth-order (i.e. linear) optical
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field envelope is described by

u(0)(z, t) = (
√
Em + n0)F (z, t), z > Lm (3.39)

In practical systems operating in the pseudo-linear regime, the dispersion of the trans-

mission fibers is fully compensated at the receiver either in optical or electrical do-

main. i.e. S(Ltot) = 0, and therefore, F (Ltot, t) = F (0, t). Solving Eqs. (3.17)

and (3.18) with the zeroth order solution given by Eq. (3.39) and the condition

S(Ltot) = 0, the total field envelope at the end of the transmission line is

u(Ltot, t) = (
√
Em + n0)×

+∞∑
j=0

γj|
√
Em + n0|2jg(j)(Ltot, t)F (Ltot, t)

= (
√
Em + n0)×

+∞∑
j=0

γj|
√
Em + n0|2jg(j)(Ltot, t)F (0, t)

(3.40)

where g(0)(z, t) = 1, and g(j)(z, t), j = 1, 2 are given by Eqs. (3.29) and (3.30).

The output of in-phase-quadrature (IQ) coherent receiver has two output currents

which are proportional to real and imaginary parts of the optical field envelope. For

simplicity, we assume that the constant of proportionality to be unity, since it does

not affect the performance of a long-haul fiber-optic system. The output of the IQ

receiver passes through the digital signal processing (DSP) unit after A/D converter

and arbitrary filter shapes can be realized using DSP. We assume that the output of

the IQ receiver passes through a matched filter, or equivalently a correlator and the
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decision is based on the correlator output

uf =

∫ +Ts
2

−Ts
2

u(Ltot, t)F
∗(0, t)dt

'
+∞∫
−∞

u(Ltot, t)F
∗(0, t)dt

(3.41)

where Ts is the symbol interval. Substituting Eq. (3.40) in Eq. (3.41) and keeping

the terms up to second-order in γ, we find

uf = (
√
Em + n0)

+2∑
j=0

γj|
√
Em + n0|2jg(j)f , (3.42)

where

g
(j)
f =

+∞∫
−∞

g
(j)
f (Ltot, t)F

∗(0, t)dt. (3.43)

The phase of the correlator output is

φ = tan−1
[
Im{uf}
Re{uf}

]
= φd + δφm (3.44)

where φd is deterministic phase change due to self phase modulation in the absence of

amplified spontaneous emission (ASE), and δφm is the stochastic phase change due

to ASE of amplifier located at Lm and signal due to SPM. δφm can be divided into

three parts,

δφm = δφ(0)
m + δφ(1)

m + δφ(2)
m (3.45)

where δφ
(0)
m is the linear phase change due to ASE, δφ

(1)
m and δφ

(2)
m are the first- and

second-order nonlinear phase changes due to ASE and SPM interaction, respectively.
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They can be calculated as

δφ(0)
m =

1√
Emr

n0i +

√
Emi

Emr

n0r, (3.46)

δφ(1)
m = 2γ

√
Emi g

(1)
fr n0i + 2γ

√
Emr g

(1)
fr n0r (3.47)

and

δφ(2)
m = 4γ2|Em|

√
Emi {g(2)fr − g

(1)
fr g

(1)
fi }n0i

+ 4γ2|Em|
√
Emr {g(2)fr − g

(1)
fr g

(1)
fi }n0r

(3.48)

where g
(j)
fr (z) = Re{g(j)f (z)} and g

(j)
fi (z) = Im{g(j)f (z)}, where j = 0, 1, 2 and n0r =

Re{n0} and n0i = Im{n0}. In Eqs. (3.47) and (3.48), we have ignored terms pro-

portional to γ3, n2
0r, n

2
0i and n0rn0i. Variance of phase noise can be easily found by

squaring Eq. (3.45), and averaging the noise terms using Eqs. (3.3) to (3.5), we

obtain [34]

〈δφ2
m〉 =

ρm
2

{
1√
Emr

+ 2γ
√
Emi g

(1)
fr

+ 4γ2|Em|
√
Emr [g

(2)
fr − g

(1)
fr g

(1)
fi ]

}2

+
ρm
2

{√
Emi

Emr

+ 2γ
√
Emrg

(1)
fr

+ 4γ2|Em|
√
Emr [g

(2)
fr − g

(1)
fr g

(1)
fi ]

}2

.

(3.49)

Eq. (3.45) provides variance of the phase noise that includes both first-order and

second-order nonlinear effects and derivation of this equation is the main contribution

of this chapter.
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Since the noise of amplifiers are statistically independent, variance of phase noise

due to all the amplifiers is

〈δφ2〉 =
Na∑
m=1

〈δφ2
m〉 (3.50)

For M-ary PSK signals, symbol error probability is determined solely by the prob-

ability density function (PDF) of the phase. Under the Gaussian PDF assumption,

the variance calculated from Eq. (3.50) can be related to the symbol error probability

for BPSK signals [23, 35]. Eq. (3.50) is valid for arbitrary dispersion map when the

dispersion of the transmission fibers is fully compensated either at the transmitter,

receiver or inline (i.e. S(Ltot = 0)).

3.4 Numerical Simulations and Result

To test the accuracy of the perturbation theory, numerical simulation of the NLS

equation is carried out using the symmetric split-step Fourier scheme (SSFS) [9]. The

main idea of SSFS is to separate the linear and nonlinear part of the NLS equation.

More specifically, propagation from z to z + h is carried out in two section, in the

middle of which the nonlinearity is lumped. In the middle, the nonlinearity acts

separately while in the neighboring sections, dispersion and absorption acting alone.

Schematic illustration of symmetric SSFS is given in Fig. 3.3.
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Figure 3.3: Schematic illustration of symmetric-SSF scheme

In Section 2.4, we have seen that NLS equation can be written as

∂u

∂z
=
[
D̂ + N̂

]
u, (3.51)

where

D̂ = −iβ2(z)

2

∂2

∂t2
+
β3(z)

6

∂3

∂t3
− α(z)

2
(3.52)

N̂ = iγ(z)|u|2 (3.53)

In SSFS, for the linear part, D̂, fast Fourier transform (FFT) is employed, and for the

nonlinear operator N̂ , the ordinary differential equation can be solved analytically, if

the step size is chosen small enough such that the nonlinear term can be assumed to

be constant. Therefore, the analytical solution of Eq. (3.51) can be approximate as

u(z + h, t) = exp

(
h

2
D̂

)
exp

(
hN̂
)

exp

(
D̂
h

2

)
u(z, t) (3.54)
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3.4.1 Variance of Nonlinear Phase Noise

In this section, we implement the simulation based on analytical phase noise variance

given by Eq. (3.49) and also Monte-Carlo simulation to verify the result from the

analytical formula. 8192 runs of NLS equation are carried out and the phase variance

of the decision variable is calculated in Monte-Carlo simulation. The lumped ampli-

fication is assumed throughout this chapter. The critical simulation parameters are

listed in Table 3.1.

Table 3.1: Simulation parameters.

Bit rate 40 Gb/s

Pulse width (FWHM) 7.5 ps

Pulse shape Gaussian

Peak power (P0) 2 dBm

Spontaneous-emission factor (nsp) 1

Amplifier spacing (Lspan) 80 Km

Transmission distance (Ltot) 2400 Km

Num. of NLS runs in Monte-Carlo sim. 8192

Computational bandwidth 320 GHz

We consider a dispersion-managed fiber-optic system with two segments. The first

segment is a standard anomalous dispersion fiber and this is followed by a reversed

dispersion fiber of equal length and the same absolute dispersion. The fiber loss α

and nonlinear coefficient γ for both of the fibers are 0.2 dB /Km and 2.43 W−1Km−1

, respectively. Spontaneous-emission factor nsp is equal to 1 which corresponds to a
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noise figure (NF) of 3 dB. Matched filter is used in electrical domain at the end of

the transmission line in the receiver and no optical filter is used.
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Figure 3.4: Optical power as a function of time at total transmission distance of (a)

160 Km, (b) 480 Km and (c) 960 Km. The dotted, broken, and solid lines show the

numerical, first-order, and second-order solution, respectively. |D| = 4 ps/nm.Km.

Fig. 3.4, shows the optical power as a function of time at different total transmis-

sion distance calculated using Eqs. (3.27) and (3.28). The peak power is 2 mW and

absolute value of dispersion is 4 ps/nm.Km. It can be seen from Fig. 3.4 at large

transmission distance, the first-order perturbation theory becomes inaccurate. How-

ever, results of second-order perturbation theory is in good agreement with numerical

simulations.
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Figure 3.5: Phase variance dependence on the total length of the transmission line.

In Fig. 3.5 the ’-’ and ’+’ marks show the phase variance calculated using the first-

and second-order analytical perturbation theory, respectively and the solid line shows

the numerical simulation results. As the dispersion increases, the variance of non-

linear phase noise due to SPM decreases consistent with the results of [36, 37]. The

nonlinear phase variance grows cubically with distance [33] and, therefore, the differ-

ence between the variances for the case of |D| = 4 ps/nm.Km and |D| = 10 ps/nm.Km

increases significantly for longer transmission lengths. In long transmission lengths,

as can be seen, there is a discrepancy between the first-order analytical results and

numerical simulation results. However, results of second-order perturbation theory is

in good agreement with numerical simulations.
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Figure 3.6: Dependence of phase variance on peak launch power. Ltot = 2400 Km

and |D| = 10 ps/nm.Km

Fig. 3.6, shows the dependence of phase variance versus the launch power at to-

tal transmission distance of 2400 Km and |D| = 10 ps/nm.Km. When the launch

power is low, the linear phase noise dominates (because of dependence 1/E). At high

launch power, nonlinear phase noise becomes significant (because of E dependence).

At large launch powers, the first-order perturbation theory is known to become in-

accurate. However, as can be seen, results of second-order perturbation theory is in

good agreement with numerical simulations.

3.4.2 Optimizing Dispersion-Managed Fiber-Optic Systems

Fig. 3.7 shows the fiber link CONSIST of pre-, post- and inline dispersion compen-

sation.
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Figure 3.7: Dispersion-managed fiber link with pre- and post-dispersion compensa-

tion.

As we mentioned before the variance calculated using Eq. (3.50) can be related

to the symbol error probability for PSK signals and it is valid for arbitrary dispersion

maps when the dispersion of the transmission fibers is fully compensated either at

the transmitter/receiver or inline (i.e. S(Ltot) = 0). Therefore our analytical formula

can be used to optimized such systems. Fig. 3.8, shows the dependence of phase

variance on the launch power at total transmissin distance of 2400 Km and |D| =

10 ps/nm.Km using analytical and numerical methods. As can be seen in Fig. 3.8

the phase noise variance become minimum at P = 1.6 mW which corresponds to

minimum bit error rate power.
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Figure 3.8: Dependence of phase variance on peak launch power. Ltot = 2400 Km

and |D| = 10 ps/nm.Km

The numerical simulation of NLS equation is time consuming, however, the an-

alytical method based on solving NLS equation using perturbation approximation

is quite efficient and therefore the analytical variance can be obtained more easily

without requiring extensive computational efforts, and also with fairly good accuracy

for quasi-linear systems.

3.5 Conclusion

We have developed analytical expressions for the linear and nonlinear phase noise

variance due to SPM using second-order perturbation theory. It is found that as

the transmission reach and/or lunch power increase, the variance of the phase noise

calculated using first order perturbation theory becomes inaccurate. However, the
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variance calculated using second order perturbation theory is in good agreement with

numerical simulations. We have also showed that the analytical formula derived in

this chapter for the variance of nonlinear phase noise can be used as a design tool to

investigate the optimum system design parameters such as power and dispersion maps

for dispersion-managed coherent fiber optic systems based on phase shift keying.
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Chapter 4

Optical Back Propagation for Fiber

Optic Communications Using

Highly Nonlinear Fibers

4.1 Introduction

Backward propagation (BP) schemes have drawn significant research interest recently

because of their ability to undo fiber linear and nonlinear impairments [20, 33, 38]. In

principle, BP schemes could undo the deterministic (bit-pattern dependent) nonlinear

impairments, but it can not compensate for the stochastic nonlinear impairments such

as nonlinear phase noise. Inline optical amplifiers change the amplitude of the optical

field envelope randomly and fiber nonlinear effects such as self phase modulation

(SPM) convert the amplitude fluctuations to phase fluctuations which is known as

nonlinear phase noise. The impact of nonlinear phase noise was first studied in Ref.

[26] for dispersion-free fiber-optic systems. Refs. [37] and [39] have found that the

57



M.A.Sc. Thesis - MAHDI MALEKIHA McMaster - Electrical Engineering

fiber dispersion lowers the impact of nonlinear phase noise. When the BP schemes

are used, deterministic nonlinear impairments such as self phase modulation (SPM),

cross phase modulation (XPM) and four wave mixing (FWM) can be suppressed

and therefore. stochastic nonlinear impairments such as nonlinear phase noise could

become dominant. The analysis of nonlinear phase noise is given in chapter 3 where an

analytical expressions for the linear and nonlinear phase noise variance using second-

order perturbation theory is calculated.

In this chapter, we investigate two types of backward propagation (BP) schemes.

The first scheme is the digital BP (DBP) in which the distortions due to fiber dis-

persion and nonlinear effects can be undone by solving the nonlinear Schrodinger

equation (NLSE) in digital domain with the sign of distance being reversed. The

DBP improves the transmission performance significantly. However, it requires con-

siderable amount of computational resources, and therefore, currently transmission

experiments have used DBP only in off-line signal processing. The second scheme is

optical BP (OBP) which could undo the fiber dispersion and nonlinear effects in opti-

cal domain. The OBP module is placed at the end of the fiber optic link which consists

of dispersion compensating fibers (DCF) and nonlinearity compensators (NLC). NLC

imparts a phase shift that is equal in magnitude to the nonlinear phase shift due to

fiber propagation, but opposite in sign.

In this chapter, we also introduce a novel inline optical nonlinearity compensa-

tion technique which incorporate inline optical nonlinear compensators and dispersion

compensating fibers at receiver. We will show that the in line nonlinearity compen-

sation has better performance than OBP and DBP schemes.
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4.2 Theoretical Background on Backward Propa-

gation

The signal propagation along a fiber is governed by nonlinear Schrodinger equation

(NLSE) [9] in the loss less form

∂u

∂z
= −iβ2

2

∂2

∂t2
+
β3(z)

6

∂3

∂t3
+ iγ(z)a2(z)|u|2u, (4.1)

or

∂u

∂z
=
[
D̂ + N̂

]
u, (4.2)

where D̂ and N̂ denote the linear and nonlinear operators, receptively, which are

given by

D̂ = −iβ2
2

∂2

∂t2
+
β3(z)

6

∂3

∂t3
(4.3)

N̂ = iγ(z)a2(z)|u|2 (4.4)

where β2, β3 and γ are the second-order and third-order dispersion coefficients and

nonlinear coefficient, respectively and

a2(z) = exp[−mod(z, Lspan)α] (4.5)

Here α is the fiber loss/gain coefficient and Lspan is the amplifier spacing (i.e. the

fiber span length between amplifiers). For simplicity, we have assumed that the

fibers in the link are identical and amplifier spacing is uniform and fiber loss is fully

compensated after each span by erbium doped fiber amplifiers (EDFAs). Eq. (4.1)

can be numerically solved using split-step Fourier method (SSFM). The solution of
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Eq. (4.1) is given by

u(t, L) = Mn(t, 0) (4.6)

where

M = exp

{∫ Ltot

0

[D(z) +N(z)]dz

}
(4.7)

Here, Ltot is the total transmission distance. The distortions caused by dispersion

and nonlinearity, can be undone by means of digital signal processing (DSP) or an

optical back propagation module (OBM). Suppose we multiply Eq. (4.6) by M−1, we

obtain

u(t, 0) = M−1u(t, Ltot) (4.8)

Since exp(x) exp(−x) = 1 for any operator x. it follows that

M−1 = exp

{
−
∫ Ltot

0

[D(z) +N(z)]dz

}
(4.9)

which is equivalent to solving the following partial differential equation

∂u

∂z
= −

[
D̂ + N̂

]
u, (4.10)

with the initial condition u(t, Ltot). Since Eq. (4.10) can be obtained by reversing the

spatial variable z in Eq. (4.1), this technique is referred to as backward propagation.

4.2.1 Digital Backward Propagation

Digital back propagation (DBP) is a technique which could undo the fiber dispersion

and nonlinear effects in electrical domain at the receiver. In DBP, fiber transmission

process is entirely reversed using fictitious fiber in digital domain with parameters (
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i.e. α, β2, β3 and γ ) with opposite sign of the transmission fiber to recover initial

signal. The amplifier with gain G is replaced by an attenuator with loss G.

Figure 4.1: Symmetric split-step Fourier method (SSFM) used to simulate the signal

forward propagation through the transmission fiber.

Typically, the NLSE is solved in electrical (digital) domain with the above param-

eters using the conventional symmetric SSFS, which is shown in Fig. 4.1. The length

of each fiber span is divided into M small segments of step size, h. Smaller h gives

better performance, but leads to more extensive calculation efforts. At the receiver,

after the coherent detection, the received signal with complex field envelope passes

through a DBP compensator implemented using DSP. An ideal DBP compensator is

shown in Fig. 4.2. In this work. we will discuss two types of DBP.
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Figure 4.2: An ideal backward propagation for a single span.

For type 1. the DBP has step size equal to amplifier spacing, called AS-DBP,

and for type 2, very small step size (same step size as that used in forward propaga-

tion) is used in BP. We call this perfect DBP. In this chapter. the NLSE is solved

using the non-iterative symmetric SSFM, and its corresponding forward propagation

mathematical expression for one fiber span is given by [9],

u(z + h, t) = exp

(
h

2
D̂

)
exp

(∫ z+h

z

N̂(τ)dτ

)
exp

(
h

2
D̂

)
u(z, t) (4.11)

Note that, at the end of each span, the gain G = exp(αLspan) is applied. The

mathematical expression of backward propagation therefore can be written as

u(Ltot− (z+h), t) = exp

(
−h

2
D̂

)
exp

(∫ L+(z+h)

z

N̂(τ)dτ

)
exp

(
−h

2
D̂

)
u(Ltot−z, t)

(4.12)
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where Ltot is the total transmutation distance. One of the disadvantages of the ideal

DBP is that computational complexity increases significantly as h decreases. In Ref.

[143], it is proposed to use asymmetric split-step Fourier scheme step size equal to

amplifier spacing (AS-DBP) and with a variable parameter to optimize the BER. The

AS-DBP can be realized as [40, 41],

u1(z + h, t) = u(L− z, t) exp
(
−iηγ|u(L− z, t)|2Leff

)
, (4.13)

where

ũ(Ltot − (z + Lspan), ω) = ũ(z, ω) exp

(
−i
[
β2
2
ω2 +

β3
6
ω3

]
Lspan

)
, (4.14)

Leff =
1− exp(−αLspan)

α
, (4.15)

α is the fiber loss coefficient, ũ(z, w) is the Fourier transform of ul(z, t) and η is

the variable parameter to be optimized to increase the performance. In the case of

AS-DBP. the computational complexity increases linearly with the number of spans.

4.2.2 Optical Backward Propagation

Optical back propagation (OBP) is a technique which could undo the fiber dispersion

and nonlinear effects in optical domain using optical back propagation module instead

of electrical domain [42]. The optical back propagation module consists of dispersion

compensation fibers and nonlinear compensators. A nonlinear compensator uses two

highly nonlinear fibers (HNFs) to compensate the nonlinearity of the transmission

fiber. At the end of the fiber optic link, an optical back propagation module (OBP)
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is placed as shown in Fig. 4.3a.

Figure 4.3: (a) Block diagram of a fiber-optic link with optical back propagation. (b)

Block diagram of NLC.

Let the input of OBP module be the output of fiber optic link. In order to recover

the initial field envelope at the output of OBP, the transfer function of the OBP

should be the inverse of that of the fiber-optic link M−1 given by Eq. (4.9). To

realize M−1, we utilize the symmetric split-step Fourier technique with step size of h

[9],

M−1 ≈ A(t, 0, h/2)B(t, h)A(t, h/2, 3h/2)B(t, 2h) . . . B(t, Ltot)A(t, Ltot − h/2, Ltot)

(4.16)

where

A(t, x, y) = exp
(
− iD(t)(y − x)

)
(4.17)
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and

B(t, x) = exp

(
− i
∫ x

x−h
a2(z)|u(t, z)|2dz

)
. (4.18)

Here, A(t, x, y) represents the fiber dispersive effects over the interval [x y] and B(t, x)

represents the nonlinear phase shift accumulated over a fiber length h at x. Typically,

the function a2(z) varies more rapidly than |u(t, z)|2, and therefore, in the interval

[x−h x], |u(t, z)|2 can be approximated to be independent of z, i.e. |u(t, z)|2, |u(t, x)|2

and now, the integral in Eq. (4.18) can be evaluated analytically using Eq. (4.5) as

B(t, x) = exp

(
− iγheff exp[−mod(x, Lspan)α]|u(t, x)|2

)
(4.19)

where

heff =
m[1− exp(−αLa)]

α
+

1− exp[−mod(h, Lspan)α]

α
, (4.20)

with m = floor(h/Lspan). When the step size is equal to amplifier spacing, Eq. (4.19)

reduces to Eq. (4.13) i.e. AS-DBP, for simplicity we assume that the step-size is an

integral multiple of the amplifier spacing, i.e., h = mLspan , m being an integer. The

operator B takes the form

B(t, x) = exp

(
−iγm[1− exp(−αLspan)]

α
|u(t, x)|2

)
. (4.21)

The operator A can be realized using a dispersion compensating. fiber (DCF) as

shown in 4.3a. The first DCF of OBP compensates for the half of the accumulated

dispersion of the last span of the fiber optic link assuming that the step size is equal

to the amplifier spacing. The launch power to DCF is low, so that nonlinear effects

in DCF can be ignored. An amplifier is introduced to compensate for the loss in
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DCF. If there exists a fiber with negative nonlinear coefficient, the operator B can be

easily realized through self phase modulation (SPM) in such a fiber. Unfortunately,

such a fiber is not available. Here, it is proposed to realize the operator B using a

nonlinearity compensator (NLC) whose schematic is shown in Fig. 4.3b. First the

output signal of the fiber-optic link, us (= u(t, Ltot)/
√

2) and a CW pump beam

(pump 1) of frequency Ω (relative to optical carrier frequency) are launched into a

highly nonlinear fiber HNLF1. The field envelope of the pump beam after propagating

a distance L1 in a dispersion-free HNLF1 is given by [9]

up1(t, L1) = up1(t, 0) exp
(
i2γ1Leff,1|us(t)|2 + iθ1 + iΩt

)
, (4.22)

where Leff,1 and γ1 are the effective length and nonlinear coefficient of HNLF1, re-

spectively and θ1 = γ1Leff,1|up1(t, 0)|2. In Eq. (4.22), the first and second terms on

the exponent represent the XPM and SPM, respectively. Lef and γ1 are so chosen

that the nonlinear phase shift due to XPM is equal in magnitude to the phase shift

given by Eq. (4.21), but of opposite sign,

γ1Leff,1 = −γm[1− exp(−αLspan)]

α
. (4.23)

The signal us and the pump beam at the output of HNLF1 are multiplexed using a

WDM coupler and its output is launched into a highly nonlinear fiber HNLF2. A

second CW pump beam, pump 2 that has the same frequency as pump 1 is launched

into HNLF2. The polarization of pump 2 is chosen to. be orthogonal to signal

polarization. Typically, highly nonlinear fibers are birefringent fibers and the field
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envelope of pump 2 at the output of HNLF2 is given by [9]

up2(t, L2) = up2(t, 0) exp

(
i2γ2Leff,2|us(t) + up1(t, L1)|2

3
+ iθ2 + iΩt

)
, (4.24)

where Leff,2 and γ2 are the effective length and nonlinear coefficient of HNLF2, re-

spectively, and θ2 = γ2Leff,2|up2(t, 0)|2. As before, first and second terms on the

exponent of Eq. (4.24) represent the XPM and SPM effects, respectively. We choose

the nonlinear coefficient γ2, effective length Leff,2, powers of signal and pump 1 such

that the phase shift due to XPM in HNLF2 is quite small,

2γ2Leff,2|us(t) + up1(t, L1)|2/3� π. (4.25)

Under these conditions, Eq. (4.24) can be approximated as

up2(t, L2) ≈ up2(t, 0)

(
1 +

i2γ2Leff,2|us(t) + up1(t, L1)|2

3

)
exp

(
i(θ2 + Ωt)

)
≈ up2(t, 0) exp(iθ2)

{
1 + 2iγ2Leff,2(|us|2 + |up(t, 0)|2)

3
exp

(
iΩt
)

+
2iγ2Leff,2usu

?
p1(t, 0)

3
exp

(
− i2γ1Leff,1|us(t)|2 − iθ1

)
+

2iγ2Leff,2u
?
sup1(t, 0)

3
exp

(
i2γ1Leff,1|us(t)|2 + iθ1 + 2iΩt

)}
.(4.26)

The first, second and third terms on the right hand side of Eq. (4.26) correspond to

optical signals centered around Ω, 0 and 2Ω, respectively. If we introduce an optical

band pass filter (OBF) with its center frequency at zero and bandwidth equal to the

bandwidth of us (which is much smaller than Ω), frequency components centered
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around Ω and 2Ω will be rejected by OBF. Therefore, the output of OBF is

uout = Kus(t) exp
(
−i2γ1Leff,1|us(t)|2

)
(4.27)

where K = i2γ2Leff,2up2(t, 0)u∗p1(t, 0) exp[i(θ2 − θ1)/3] is a complex constant. Thus,

the phase shift provided by the OBP is of the form given by Eq. (4.21) which is

required for back propagation. The phase of K is a constant and it has no impact

on direct detection systems. When coherent detection is employed, this phase shift

is removed by digital signal processing (DSP) unit of the coherent receiver.

4.2.3 Inline Optical Nonlinearity Compensation Scheme

Inline optical nonlinearity compensation (IONC) is a novel technique which could

effectively undo the nonlinear effects in optical domain similar to OBP. This tech-

nique divides optical back propagation module to two parts, unlike OBP which has

both nonlinear and linear compensators at receiver, it uses optical nonlinear compen-

sators distributed throughout the fiber link before each amplifier to compensate for

each span nonlinearity and therefore, makes the system efficiently linear. Dispersion

compensation fiber (DCF) at the end of fiber link (i.e. receiver) to combat fiber

linear effect. In the next section, we will see that this scheme can outperform both

OBP and DBP techniques and gives the system longer reach and better tolerance to

nonlinearity.
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4.3 Results and Discussion

We have simulated a N−span fiber-optic transmission system without inline pre- and

post-dispersion compensation in optical domain. Table 4.1 shows the system param-

eters listed in our simulation. For perfect-BP very small step size is chosen so that

nonlinear phase does not exceed 0.0005 rad. A pseudo-random bit sequence (PRBS)

of length 262144 is used in the simulations. The symbol rate is 25 GSym/sec, mod-

ulation format = 32 quadrature amplitude modulation (QAM). We assume that the

coherent receiver is ideal and mainly focus on the impairments caused by dispersion

and nonlinearity. Backward propagation provides equalization for both linear and

nonlinear impairments, and therefore, no other equalizer is used.

Table 4.1: Simulation parameters.

Symbol rate 25 GSym/sec

Modulation format 32-QAM

Pulse shape Gaussian

Transmission fiber dispersion (β2) -21 W−1Km−1

Transmission fiber loss (α) 0.2 dB/Km

Transmission fiber nonlinear coefficient (γ) 1.1 W−1Km−1

Amplifier spacing (Lspan) 80 Km

Spontaneous-emission noise factor (nsp) 1.5

Computational bandwidth 320 GHz
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The numerical simulations of optical back propagation module and inline optical

nonlinearity compensation are carried out with the following parameters: dispersion

of DCF = -130 ps2/Km, loss of DCF = 0.4 dB/Km, nonlinear coefficient of DCF

= 4.2 W−1Km−1, nonlinear coefficient of HNLF1 fiber, γHNLF1 = 2000 W−1Km−1,

effective length of HNLF1 = 232 m, pump 1 power = 10 mW, frequency of the pump

1 (and also pump 2), n = 400 GHz, the full bandwidth of the optical band pass

filters = 87.5 GHz. When the product of effective length and nonlinear coefficient

of HNLF2 is large, the linear approximation done in Eq. (4.4.26) for XPM breaks

down leading to performance degradations. On the other hand, if the product is too

low, NLC would not compensate for transmission fiber nonlinear effects. Therefore,

we have optimized the fiber parameters of HNLF2 to obtain the best transmission

performance. The nonlinear coefficient γHNLF2 and effective length of HNLF2 are

chosen as 1000 W−1Km−1 and 200 m, respectively, and power of pump 2 = 5.625 mW.

When the step-size is equal to amplifier spacing, effective length of HNLF1 = 232 m.

When the step-size is twice the amplifier spacing, the effective length is doubled so

that the nonlinear phase shift accumulated over two spans can be compensated. It

may be possible to design the OBP module with all the NLC units sharing the same

pump.
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Figure 4.4: Optical field envelope vs normalized time. Ts = symbol interval, trans-

mission distance = 800 Km, peak launch power to fiber-link = 0 dBm and nsp =

0.

Fig. 4.4 shows the real part of the optical field envelope for different cases. The

amplifier noise is turned off to see clearly the distortions due to fiber nonlinear effects.

The solid and broken lines show the field envelopes at the transmitter output and

OBP output, respectively. The dotted line shows the field envelope at the receiver

with DCF and without NLC. As can be seen, the field envelope with OBP is closer

to the transmitter output than that in the case, with DCF and without NLC.
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Figure 4.5: Bit error rate vs average launch power to the fiber-optic link. Transmission

distance = 800 Km.

Fig. 4.5 shows the bit error rate (BER) as a function of transmission fiber launch

power. Solid lines show the cases of optical backward propagation with step-size equal

to Lspan (1-span OBP) and step size equal to 2Lspan (2-span OBP). The dotted and

broken line shows the cases when NLC is absent and when digital backward propa-

gation is used to compensated linear and nonlinear effects in fiber optic transmission

system. As can be seen, OBP improves the performance significantly and 1-span

OBP outperforms 2-span OBP and DBP.
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4.3.1 Optical BP Vs. Digital BP
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Figure 4.6: Bit error rate vs average launch power to the fiber-optic link for DBP,

perfect-DBP, OBP and inline nonlinearity compensation.

Fig. 4.6 shows the BER as a function of average launch power to the fiber optic link for

the DBP, perfect-DBP, OBP and inline nonlinearity compensation for transmission

distance of 1040 Km. As can be seen, the perfect-DBP has the best performance

among other schemes. In our simulations we have find out that perfect-DBP has

reach of 46 span i.e. 3680 Km which is due to the fact that it is using very small

step size to solve inverse NLSE which can undo the fiber nonlinearity and dispersion

effects very effectively, but on the other hand it requires huge computational cost and

as a result, it can not be used in current off-line signal processing because its large

delay. Therefore, in practical systems, DBP step size is chosen to be equal to amplifier

spacing (typically 80 Km), i.e. AS-DBP should be used. As can be seen from Fig. 4.6,
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OBP and inline optical nonlinearity compensation can out perform AS-DBP while

inline optical nonlinearity compensation has the best performance between this three

schemes.
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Figure 4.7: Bit error rate vs transmission reach for DBP, perfect-DBP, OBP and

inline nonlinearity compensation (IONC).

Fig. 4.7 shows the .BER as a function of transmission reach. Each point in Fig.

4.7 is obtained after optimizing the launch power. The transmission reach without

OBP, DBP and inline nonlinearity compensation (but with DCF) is limited to 240

Km at the forward error correction (FEC) limit of 2.1 × 10−3. This is because the

multi-level QAM signals are highly sensitive to fiber nonlinear effects. The maximum

reach can be increased to 640 Km, 1040 Km and 1440 Km using 2-span OBP, 1-span

OBP and inline optical nonlinearity compensation, respectively and in the case of

perfect-DBP and AS-DBP maximum reach can be increased to 3680 Km and 800
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Km, respectively.
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Figure 4.8: Bit error rate vs average launch power to the fiber-optic link for DBP

schemes with 2, 4, 8, 16 sample per symbol.

Fig. 4.8 shows the BER as a function of average launch power to the fiber optic

link for DBP schemes with 2, 4, 8, 16 samples per symbol when Transmission distance

is equal to 800 Km. In Fig. 4.8 we find that the performance of 1-span DBP is almost

the same for all of the cases and by increasing the number of samples per symbol in

DBP we can not increases performance. 1-span OBP and AS-DBP is sharing the same

basics in dispersion and nonlinearity compensation in the other word both of them are

are realizations of split step Fourier method, while 1-span OBP has infinite number

of samples per symbol (analog in time) therefore, the performance improvement in

1-span OBP could not be because of its analog nature OBP.
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Figure 4.9: Bit error rate vs nonlinearity coefficient of HNLF2. Transmission distance

= 800 Km.

Fig. 4.9 shows the BER as a function of nonlinearity coefficient of HNLF2, γHNLF2.

If we carefully look at the Eq. (4.26), we will find that when

2γ2Leff,2|us(t) + up1(t, L1)|2/3� π. (4.28)

The OBP and AS-DBP should lead to the same solution for the inverse NLS equation,

and therefor, they should have the same performance. As it can be seen from Fig.

4.9, when product of effective length of HNLF2, Leff,2, and nonlinear coefficient of

HNLF2 ,γHNLF2 is small enough these two schemes should have the same performance

(∼ 1W−1Km−1), but when it is large, the linear approximation done in Eq. (4.26)

76



M.A.Sc. Thesis - MAHDI MALEKIHA McMaster - Electrical Engineering

for XPM breaks down leading to performance degradations. On the other hand, if

the product is too low, NLC would not compensate for transmission fiber nonlinear

effects. In all of our simulations for OBP, we have optimize all of the parameters to

get the best performance. Therefor, Eq. (4.28) is partially satisfied and other terms

from Eq. (4.26) are contributing to the final solution which in this case leads to the

better system performance.

4.3.2 Sensitivity Analysis

Eqs. (4.24) and (4.22) are only valid if the dispersion is equal to zero, but in reality

it is hard to maintain zero dispersion throughout all the fiber during manufacturing

process and dispersion value varies slowly in different parts of the fiber. Let us

introduce the term called dispersion correlation length (DCL) which is the length

that fiber segment in which dispersion can assume to have constant dispersion value

and this value can be modeled as a Gaussian random variable with zero mean and

the standard deviation (STD), βDCL. Due to advanced fabrication techniques βDCL

can be smaller than 0.5 ps2/Km.
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Figure 4.10: Bit error rate vs dispersion standard deviation of HNLF1 and HNLF2.

(a) IONC Transmission distance = 1440 Km, (b) OBP Transmission distance = 1040

Km.

In this section, we have used the split-step Fourier method (SSFM) instead of

analytical solution to simulate the system to investigate the effect of dispersion in

OBP and IONC. Fig. 4.10 shows the BER as a function of dispersion standard

deviation of HNLF1 and HNLF2 with dispersion correlation length equals to 1 m

and 5 m for OBP and IONC. As can be seen, system performance is not affected for

the STD smaller than 0.5 ps2/Km, and therefor, these systems have reasonably good

tolerance for this situation, and there is no performance degrading due to random

fluctuation in fiber dispersion.
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4.4 Conclusion

In conclusion, an optical back propagation and inline optical nonlinear compensation

techniques can effectively undo the fiber dispersion and nonlinear effects. An optical

nonlinear compensation module consists of two highly nonlinear fibers to compensate

for the nonlinear phase shift accumulated over a specific fiber link length and dis-

persion compensating fibers to mitigate the fiber dispersion distortions. Numerical

simulations show that the transmission performance can be greatly improved using

optical back propagation (OBP) and inline optical nonlinear compensation (IONC).

The OBP and IONC have the following advantages over DBP. (i) DBP is currently

limited to compensate the nonlinear impairments of a single channel. It would be very

challenging to implement DBP for wavelength division multiplexed system (WDM)

in real time since the computational effort and bandwidth required in this case would

be enormous. In contrast, OBP and IONC can compensate for all the channels of a

WDM system simultaneously without additional cost provided the DCF and HNLFs

are designed for wide band applications. (ii) OBP and IONC can be used for direct

detection systems as well as for coherent detection, but DBP works only for coherent

detection. (iii) OBP and IONC provide the compensation of dispersion and nonlin-

earity in real time whereas DBP is currently limited to off-line signal processing.
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Chapter 5

Conclusions and Future Work

The rapid development of fiber optic communication systems requires higher trans-

mission data rate and longer reach. This thesis deals with analysis of nonlinear

phase noise and other limiting factors in design of long-haul fiber optic communica-

tion systems such as the fiber Ker effect and chromatic dispersion. A novel optical

compensation technique to mitigate fiber impairments is also studied in this thesis.

Fiber optic communication systems use optical amplification to increase the re-

peater spacing and wavelength division multiplexing for increasing the bit rate. Inline

optical amplifiers change the amplitude of the optical field envelope randomly and

fiber nonlinear effects such as self phase modulation (SPM) convert the amplitude

fluctuations to phase fluctuations which is known as nonlinear phase noise. For M-

ary phase shift keying (PSK) signals, symbol error probability is determined solely

by the probability density function (PDF) of the phase. Under the Gaussian PDF as-

sumption, the phase variance can be related to the symbol error probability for PSK

signals. We have also showed that the analytical formula given in this chapter for

the variance of nonlinear phase noise can be used to optimize the system parameters
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for dispersion-managed coherent fiber optic systems based on phase shift keying more

easily without requiring extensive computational efforts for Monte-Carlo simulation.

In this thesis, we also studied an improved optical signal processing techniques

such as optical backward propagation (OBP) and inline optical nonlinearity com-

pensation (IONC), to mitigate the fiber impairments in optical communication sys-

tems. OBP and IONC use optical nonlinearity compensators (NLCs) and dispersion

compensating fibers (DCFs) to compensate for the fiber nonlinearity and chromatic

dispersion, respectively versos digital backward propagation (DBP) which uses the

high-speed digital signal processing (DSP) unit to compensate for the fiber nonlin-

earity and dispersion in digital domain. NLC uses highly nonlinear fibers to impart

a phase shift that is equal in magnitude to the nonlinear phase shift due to Fiber

propagation, but opposite in sign. In principle, BP schemes could undo the deter-

ministic (bit-pattern dependent) nonlinear impairments, but it can not compensate

for the stochastic nonlinear impairments such as nonlinear phase noise. Our Nu-

merical simulations show that the transmission performance can be greatly improved

using OBP and IONC. Using IONC, the transmission reach becomes almost twice

of DBP with the following advantage, It can compensate the nonlinear impairments

for all the channels of a wavelength division multiplexed system (WDM) in real time

while it would be very challenging to implement DBP for such systems due to its com-

putational cost and bandwidth requirement. OBP and IONC can be used for direct

detection systems as well as for coherent detection while they provide the compen-

sation of dispersion and nonlinearity in real time, but DBP works only for coherent

detection and currently limited to off-line signal processing.

Finally, there are still some work, that can be done in the future. In chapter 3,
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only interaction between dispersion, SPM and ASE on a single pulse is considered,

but in some fiber optic system set up, interaction between IXPM and ASE, could

be important therefore, The interaction of SPM, IXPM and ASE for arbitrary data

sequence can be investigated using perturbation theory in the future works. In optical

backward propagation (OBP) simulation only 1-span and 2-span OBP schemes have

been investigated but based on the theoretical result if we use smaller step size in

backward propagation the system performance should increase further. Therefor,

half-span OBP and quarter-span OBP can be implemented in future. The research

outcomes obtained in this thesis mainly result from the computer-aided simulation.

Therefore, in future, to better verify the results, more efforts will be made in the

experimental investigation.
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Appendix A

Linear, First-Order and

Second-Order Nonlinear Solutions

of NLS Equation

A.1 Gauss-Hermite Solutions (Linear Solution)

Consider the Schrodinger equation given by Eq. (3.11) with γ = 0 and R = 0. Using

the lens-like transformation

u(z, t) =
√
p(z)ν[p(z)t, z] exp(iC(z)t2/2) (A.1)
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in Eq. (3.11) with γ = R = 0 leads to

i

(
∂ν

∂z
+K0τ

∂ν

∂τ

)
− β2(z)p2(z)

2

∂2ν

∂τ 2

=
(Ċ − C2β2)τ

2

2p2
ν − iK0

2
ν = 0, (A.2)

where

K0 =
ṗ− Cβ2p

p
(A.3)

τ = p(z)t, and . denotes the differentiation with respect to the argument. Dividing

Eq. (A.2) by β2p
2, we get

i
∂ν

∂ź
− 1

2

∂2ν

∂τ 2
+
K1τ

2ν

2
= 0, (A.4)

where

ź =

∫ z

0

β2(s)p
2(s)ds, (A.5)

K1 =
C2β2 − Ċ
β2p4

. (A.6)

If we choose

K1 =
C2β2 − Ċ
β2p4

= constant(= 1), (A.7)

and

K0 =
p− C2β2p

p
= 0 (A.8)

we obtain

i
∂ν

∂ź
− 1

2

∂2ν

∂τ 2
+
τ 2ν

2
= 0. (A.9)
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Let

ν(ź, τ) = φj(τ) exp(iλj ź), j = 0, 1, 2, ... (A.10)

Substituting Eq. (A.10) in Eq.(A.9), we obtain

1

2

d2φj

dτ 2
− τ 2φj

2
= −λjφj, (A.11)

The above equation is the eigenvalue equation corresponding to the quantum har-

monic oscillator. The eigenfunction φj equals Gauss-Hermite functions of Eq. (A.11)

and the eigenvalue λj is given by

λj = 2j + 1. (A.12)

The constraints imposed in Eqs. (A.7) and (A.8) on p(z) and C(z) with the initial

condition p(0) = l/T0 and C(0) = 0 lead to the following solution,

p(z) =
T0√

T 4
0 + S2(z)

, C(z) =
S(z)p2(z)

T 2
0

, (A.13)

Note that Eq. (A.13) is same as Eq. (3.23) which is obtained using Fourier transform

technique. Substituting Eq.(A.13) in Eq.(A.5), we find

ź =
1

2
tan−1

[
S(z)

T 2
0

]
. (A.14)

Combining Eqs. (A.l),(A.l0) and (A.12), we obtain the final solution

u(z, t) =
√
p(z)kjHj(pt)exp[iC(z)t2/2 + i(2j + 1)θ0(z)], (A.15)
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To our knowledge, the above solution was first obtained by Lazaridis et. al. for

temporal pulse propagation using a different approach.

A.2 First-Order and Second-order Nonlinear So-

lutions

Consider the nonlinear Schrodinger Eqs. (3.17) and (3.18)

i
∂u1
∂z
− β2

2

∂2u1
∂t2

= −a2(z)|u0|2u0 (A.16)

and

i
∂u1
∂z
− β2

2

∂2u1
∂t2

= −a2(z)(2|u0|2u1 + u20u
∗
1). (A.17)

To solve these two equations, we first derive the following identity. Consider a differ-

ential equation

i
∂f

∂z
− β2

2

∂2f

∂t2
= F (z, t) (A.18)

where the forcing function F (z, t) is of the form

F (z, t) = η(z)× exp

{
2∑

m−1

[t− Cm(z)]2Rm(z)− ik(z)t

}
. (A.19)

Taking the Fourier transform of Eq. (A.18), we have

i
∂f̃(z, ω)

∂z
− iω2β2(z)

2
f̃(z, ω) = iF̃ (z, ω) (A.20)
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where f̃(z, ω) is the Fourier transform of f(z, t) and

F̃ (z, ω) = η(z) exp

[
−

2∑
m=1

C2
mRm+

]∫ +∞

−∞
exp

[
−Rt2 − it(C3 + 2iCr − ω)

]
dt

=

√
π

R
η′ exp

[
−ω2

4R
− ωD

]
(A.21)

where

R = R1 +R2, (A.22)

R̄ =
R1R2

R1 +R2

, (A.23)

Cr = C1R1 + C2R2, (A.24)

D = −C3 + 2iCr

2R
and (A.25)

η′ = η exp

[
−

2∑
m=1

C2
mRm +

4C2
r − C2

3 − 4iCrC3

4R

]
. (A.26)

The solution of Eq. (A.20) with initial condition f̃(z, ω) = 0 is

f̃(z, t) = −i
∫ z

0

F̃ (z, ω) exp

[
iω2A(z, s)

4

]
ds (A.27)

where

A(z) = 2[S(z)− S(s)] (A.28)

and

S(z) =

∫ z

0

β2(x)dx. (A.29)
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Using Eqs (A.21) and (A.26) and inverse Fourier transforming, we obtain

f(z, t) =
−i

2
√
π

∫ z

0

η′(s)√
R(s)

×
∫ +∞

−∞
exp

[
−ω

2δ

4
− ω(D + it)

]
dωds, (A.30)

where

δ(s, z) =
1

R(s)
− iA(s, z). (A.31)

After evaluating the inner integral in (A.29), we obtain

f(z, t) = −i
∫ z

0

η′(s)√
δ(s, z)R(s)

exp

[
−(D(s) + it)2

δ(s, z)

]
. (A.32)

Using Eqs. (A.22) to (A.25) and (A.31), the solution of Eq. (A.18) can be simplified

as

f(z, t) = −i
∫ z

0

η(s)√
δ(z, s)R(s)

× exp

[
−R̄(C1 − C2)

2 +
kA(k + 4iC̄R)

4Rδ

]
× exp

[
(t− C̄)2R + ikt

Rδ

]
ds (A.33)

where

R = R1 +R2, (A.34)

R̄ =
R1R2

R1 +R2

, (A.35)

C̄ =
C1R1 + C2R2

R1 +R2

and (A.36)

δ =
1

R
− iA. (A.37)

(A.38)
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To find first-order solution we make use of the the result given by Eq. (A.32) and the

forcing function F (z, t) in this case is

F (z, t) = a2(z) |u0|2 u0, (A.39)

where u0 is given by Eq. (3.21). Therefore, the firs order solution u1 is given by

u1(z, t) = γ|E|
√
Eg(1)(z, t)F (z, t), (A.40)

where

g(1)(z, t) = j
T 2
0√
π

∫ z

0

exp(−a(s)−∆(s)t2)

T1(s)|T 2
1 (s)|

√
δ(z, s)R(s)

ds (A.41)

and

a(s) = exp(−αs/2), (A.42)

T 2
1 (s) = T 2

0 − iS(s), (A.43)

T 2
2 (s) =

|T 2
0 − iS(s)|2

2T0
, (A.44)

R(s) =
T 2
1 (s) + T 2

2 (s)

2T 2
1 (s)T 2

2 (s)
, (A.45)

δ(s, z) =
1

R(s)
− iA(s, z), (A.46)

∆(s, z) =
1

δy(s, z)
− 1

2T 2
0

and (A.47)

A(s, z) = 2[S(z)− S(s)]. (A.48)
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Similarly, the second-order solution can be found by repeating the same procedure

and the forcing function F (z, t) in this case is

F (z, t) = −a2(z)
(
2 |u0|2 u1 + u20u

∗
1

)
(A.49)

where u0 and u1 are given by Eqs. (3.21) and (3.27), respectively. Therefore, the

second-order solution u2 is calculated as

u2(z, t) = γ2|E|2
√
Eg(2)(z, t)F (z, t), (A.50)

and g(2)(z, t) can be found as

g(2)(z, t) = −2g(2)x (z, t) + g(2)y (z, t) (A.51)

here

g(2)x (z, t) =
T 3
0

π

∫ z

0

∫ s

0

exp(−a(s+ s′)−∆x(s)t2)

T1(s′)|T 2
1 (s′)||T 2

1 (s)|
√
δ(s, s′)R(s′)

× dsds′√
δx(s, s′, z)Rx(s, s′)

(A.52)

and

g(2)y (z, t) =
T 3
0

π

∫ z

0

∫ s

0

exp(−a(s+ s′)−∆x(s)t2)

T ∗1 (s′)|T 2
1 (s′)|T 2

1 (s)
√
δ∗(s, s′)R∗(s′)

× dsds′√
δy(s, s′, z)Ry(s, s′)

(A.53)
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where

Rx(s, s′) =
1

T 2
1 (s)

+
1

δ(s, s′)
, (A.54)

δx(s, s′, z) =
1

Rx(s, s′)
− iA(s, z), (A.55)

∆x(s, s′, z) =
1

δx(s, s′, z)
− 1

2T 2
0

, (A.56)

Ry(s, s
′) =

1

T 2
1 (s)

+
1

δ∗(s, s′)
, (A.57)

δy(s, s
′, z) =

1

Ry(s, s′)
− iA(s, z) and (A.58)

∆y(s, s
′, z) =

1

δy(s, s′, z)
− 1

2T 2
0

. (A.59)
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