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‘ABSTRACT

' The overall objective of this program was to develop mathe-
matical and experimental techniques, and thus obtain a mathematical
model, capable of predicting the.crystal. size distributi;n .as a func-
tion of batch time, for a seeded batch crystallizer in whlch alumina
trihydrate was crystalllvlng in a supersaturated=-aqueous solution of
sodium aluminate.

In this regard, a 2g bench-scale crysfallizer was designed
SC as to operate in a similar way (with respect to mechanisms and
rates) as industrial crystallizers in that gentle mixing allowed

significant agglomeration to occur during the crystallization. Thus,

nucleatioﬁ) growth and agglomeration rates had to be predicted in the

crystallizer model as a function of the crystallizer operation condi-
tions. .

Reproduceable and representatiye samples were extracted from
this crystalliser by a developed sampling system which did not contami-
nate or affect the samp;e nor the crfstallizer contents. Analytical
techniques were developed to obtain sodium aluminate and solids con-
centration. Crystal size distribution was measured for each sample by
a special Coulter counter equipped with a Channelizer and a Log-
Transformer apparatus. This equipment measured crystal volume with a
resolution of 100 size intervals over a spherical equivalent diameter
range of 4 to Sd'um. The lack of measurements below 4 um was a source
of trouble in the modeling brograﬁ, and ‘was the main source of error
in tkRe mathematical analyses using the particle size distribution data.
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A special mathematical method based on the population balance )
was developed to investigate and determine each of the rate equations
for the processes growth, agglomeration, and nucleation individually
from the obtained batch data. The method is termed here the 'method
of pseudo moments'. It allows for investigation within feasible computer

L}
. . -
resources and circumvents the confounding of ,each of these pégg;gfes

®

with each other.

The growth rate was modeled by a two-dimensional birth and
spread mechanism, while Ehe model for the agglomeration rate was based
on a mechanism of free-in-space binary cgllisions with an agglomeration
effectiveness kernel. This kernel was modeled by the product of a
crystal environment term and a crystal size effect term. The form of
the environment term suggests that the agglomeration rate is related
to the growth rate lending support to the concept that alumina tri-
hydrate crystals after collision are grown together to form true poly-
crystalline crystals and are not a 'flock' of crystals held together
by physical attractive forces. The size-dependent term is made up of .
an inertial impaction mechanism term which accounts for the collision
frequency,_and a‘term which accounts for thé efficiency of the collision.
It was shown that crystals in the intermediate size range (ca. 10 to
30 ym) agglomerate most effectively. The expression for the nucleation
rate, which was also déveloped using the pseudo-moment hethod suggests
that the formation of nuclei in this experimental crystallizer at 85°C
was not via normal homogeneous or heterogeneous nucleation mechanisms
"but rather occurred through attrition of very small particles from the
seed particles (a’sort of 'dusting-off' of nuclei-sized particles).
These rate expressions still need to be expanded for the effect of
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accuracy.

temperéture, of intensity of agitation, and of impurities.
‘ Althbugh the method of pseudo moments allows for the deter-
mination of rate expressions from size distribution data, it does not
provide a means of predicting the evolution of size digtributions. To
this end a model based on the population balance, mass balances, and
rate equations was formulated. waever, such a model, if it includes
agglomeration, is impractical for'iﬁvestigation of rate eqqgtions due
to long numerical solution times.

Because of the significance of the three rate processes the
Tesulting model was made up of a set of algebraic equations and an
integro-first order non-linear hyperbolic partial differential equation,
with one Bf the integrals being a convolution integral. Numerical
solution schemes of such an equation are prone to exhibit‘stability,
accuracy, and long solution time problems. The stability and accuracy
problems were solved and the long solution time problem minimized by
the development of two numerical solution schemes. One was based on a
developed we%ghted;central difference approximation for the partial
derivative with respect to ¢rystal size and integrating by the Runge-
Kutfa Merson technique along a rectangular grid with respect to batch
time. The other was based on solution along thé characteristics of the
equation and interpolating between the 'charécteriétic grid’ and a

L4 .

speciallf developed rectangular grid for the integral terms. This grid
allows for the convolution nature of one of the integrals. The resultant
quadrature was fast and accurate. Depending on the type of crfstalli:a-

tion process and the shape of the evolving size distribution either

one or the other is best suited with regard to speed of solution and



The method of pseudo moments and numerlcal solutlon schemes
T
allow for any growfh agglomeration, and nucleation expresszons and

any form of size ‘distributions. Thus the numerical methods developed
here for the determination of rate equations and pred;ctlon-of size

distributions are applicable to any particulate process., such-as poly-

merization, microbial reactions, etc.

LS
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- 1.1 General Igsue

~ CHAPTER 1
INTRODUCTION

-

Most of the alumina prqduced'industrially is obtained by . -

extracting it from bauxite ore using the Bayer ﬁfocess (pl).. The

essential features of this prbcess are the same as they were ‘when the

process was 1nvented by Karl Josef Bayer in Austrla and patented by h1m

in 1888.

1.

w

This process resolves 1nto five basic steps

Digestion, in which the alumina trihydrate in the bauxite

ore is dissolved in a caustic solution according to

Al,05.3H,0 + 2NaOH ¥ 2NaAl0, + 4H,0

leav:i'..ng a residue called 'red mud'.

Filtration of the red mud, leaving a cléér concehtrated
solution. .
Concentration of the solution by flash vaporization of the
water and by cooling to produce a supersaturated solution.
Crystallization of the sodium aluminate to aluﬁina trihydrate

[+3 .
in a seeded batch crystallizer according to the reverse

reaction above. ~

- Separation of the solid to ‘provide bath' recycle seed material

and product. This product is then calcined in a kiln to

provide c-alumina for the reduction cells.



-

This study is concerﬁe& with the fundamental phenomena associated
with the_crystallizatibn process. | |

One of the most important variables in determining the character-
istics of any crystallization process is the size distribution of the
crystal hold-up in the crystallizer. This'distribution iﬁdirectly governs
the crystallizer production’ rate and directly détefmines the size distri-
bution of the prodﬁbt. For exaﬁple, crystallization rate depends on the
surface area of the crystals in the crystallizer; hence, for a given mass
hold-up in the crystallizer, the highest rate occurs when the crystals
have the smallest average size. However, the advantage of this high
production rate would be offset by the disadvantage of the handling or
separating difficulties associated with further processing of small |
crystals. Thus, in most crystallization processes there is usualiy a
need to produce crystals with a desired size distribution at a desired
production rate. To understand how this objective can best be achieved
in any given situation requires knowledge of the underlying fundamental
crystallization processes which are occurring in any given system.

Most crystallizers are now operated based on 'state-of-the-art'
oTr operating experience. An attémpt is usually made to control the
operation over a narrow range of operating conditions and the personnel
in charge usually on}y have a qualitative feel for the effect of changing

operating conditions on the resultant crystal production rate and product

-

size distribution.
Several laboratory and pilot plant studies involving the crystal-
lization of alumina trihydrate have been reported (m3,hl,gl,b6). Since

these studies are discussed later, it suffices to'say at this point that



‘ .

these studies were either carried out under conditions which were not
representative of industrial operation (m3), or carried out over a very
narrow range of operating conditions (hl), or concerned mainly with
observations on single crysEals (b6), or based on detailed experimental
observatiqns without attempting to explain the underlying crystallization
processes Igl,g45.'. AlI.Qf t@ésé studies are difficult to ‘compare
because of the dependence of the ovgfili:crystallizafion process
on the type and operation of the crystéllizer employed in the

study. Industrial crystallizers operate with only slight to moderate

agitation and it is this intensity of agitation which affects the crystal.

attrition and agglomeration processes in the crystallizer. Systems with
or without agglomeration behav; quite differently. Certainly, a model
based on laboratory data with insignificant agglomeration has little
relation to thé industrial systems where agglomeration occurs. A narrow
range of operating conditions for laboratory experiments usually leads
to a model which may have limited applicability outside this operating
range. Single crystal studies on the other hand provide valuable funda-
mental insight with regard to growth rate and possibly nucleation rate
{(tl), but they do not shed much light on the overall pérformance of a
cr&stalli:er. Straight observations of the system under lab conditions
wifhout explanation of the underlying processes will be confusing, at
best, because.of the high dimensionality of the problem.

These studies illustrate the gwo basic approaches to crystal-
lization investigations: first, the study of the behaviour of single
crystals and .second, the study of the whole crystal population in a
crystallizer using the population balance equation to unravel the various
phenomena‘occur?ing-therei#. The first is a more fundamental study which

provides direct basic information with regard to the rate and type of

\l
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growth process, nucleation rates and factors affectingAthese processes
(see, for example, G;rside {(g5)). The second also provides basic informa-
tion on growth and nucleation rates, although more on an average or
overall bésis; but, in addition, provide§ some measure of the agglomera-
tion-and attrition rates existing in a given system, and most important

the interaction of all of thesg_processes: This approach leads readi}y'

to the description of an industrial type of crystallizer and is the

approach taken for this work as illustrated by the following objectives.

1.2 Specific Objectives

The objectives of this work are: -
1. To provide a mathematical mode]l for a batch crystallizer
B MR
which will predict the solid p;o&uction rate and the grystal
size distribution as a function of process vériables.
2. To develop a bench-scale experimental crystallizer which will
“behave similar to an industrial type of crystallizer and
which wilil allow the mathematical model to be tested. This
requires the development of sampling and measurement tech-
niques for the variables of the process. | ' .
5. To define the required form of the constitutive equations or
rate expressions in the model and evaluate their. parameters
from the bench-scale experimental program.
Since it is recognized that some of the parameters in the kinetic
Tate expressions depend upon geometry and operation of a crystallizer
(for example, agitation), it is realized that a model developed from a

bench-scale apparatus will not apply directly to an industrial crystallizer.



It is expected, however, that the model for an industrial crystallizer.

~ will at least be of similar form and that this work will provide th$§jﬁ\??.
R . ] . J 'Y

mathematical and experimental procedures necessary to effect a mathe-
- N3 .
. RN P

matical model for an industrial crystallizer. -** . ‘ .

A secondary benefit of this study—ar:ses by virtue of the-nature

.‘.

of this crystallization process. Since the study involves studying all

crystal growth, nucleation, attrition and agglomeration processes

.
— .

simultaneously and involves modelling all of these processes within the
population balance equéfidn, the rather complex non-linear integro—parti#l
dlfferentlal equation which results _must be integrated numerlcallv The
techniques developed for this will have wldespread application in other
than crystallzzatlon woTk, such as for instance: cloud physics, miqrobiai.
processes, polyﬁgrizétion,'liquid-liquid extraction, etc. This shows the

broad applicability of the modelling technique which is used in tﬂis work.

Y



- . -CHAPTER 2 . S
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CRYSTALLIZATION THEORY, LITERATURE REVIEW

2.1 Introduction

) Although_the m§ip_topic of ;his tﬁesis is the crystallization of

' a}ugina'trihydrate, cbﬁsideréb;e discussion and reference will be made
to geﬁeral crystallization phenomena as well. This will lead iﬁto,the
mathematical description of these rate proéesses and how they fit into
the éeneral apprgach to modelling a crystallizer which has been adbpted
here. Throughout this discussiﬁn.the pertinent information which is
available in the literature will be delineated.

Alghough the literaiufe survey will be relatively extensive, it

will not Eé exhaustive. That which is included is, in the author's
opinion, the most relevant to -this work. The empﬁasis will be-on the.

dﬁderlying fundamentals of_cr?étallizatibn which are common to most

cTystallization systems.

- . - /

2.2 Crystallization Processes : //

Crystallization is a very common unit operation in/ihg chemical

~ industry as well as in others. ' Synonyms of crystalli:ation are precipi-
tation and deposition (pl). This operation is used to separate, to.
purify, to combine, to produée, or to improve the handling and appearance
of a certain compound. Crystalli:ation:is the process whéreby a certain

-

component transfers from either the vapor phase to the solid phase or from

2
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the.liquid to the solid phase. The liquid phase is either described as
a solution or a melt, the latter being more common in the metallurgical
industries The operation can be C%Irled out either in a crystallizer
whlch is-operated batch-wise, or ongeigontinuous basis.

There are many different crystallizer desigﬁse each depends on
practical considerations and in many instances o the available 'know-how'
for e cgrtain crystallization System. Recently, substant1a1 progress has
been made in obtarnlng quantitative models for the crystalllzatlon

-

process associated with many practical crystallization systems (rl).

However, ‘for most system;, it is still necessary to base tﬁe-deSign on

inadequate empirical -(or semi—empiricaD equatio;s and other practical

considerations (ml). Inadequate knowledge of the fundamental phenomena

szarqd;ngpd—ihg,iﬁiortant variables in a c¢rystallization process usually

ads to over-desién 534 equipment, the addition of extra equipment and/or-

-in dequate control schemes to maintain the prodﬁzt on the-required quality
',sﬁgiificatiop. This semi-empiricism is a result of the complex nature

/ .
of and interaction in most crystallization processes.

2.2.1 Alumina Trihydrate Crystallitation Process

Pearson (pl) has provided a detailed description of the alumina
trihydrate crystallization chemistry and process. ‘fssentially, it involves
the crystallization of alumina trihydrate from a supersaturated solution

of sodium aluminate. Unseeded precipitate tends to be gelatinous or made
//_ ) ) . )
NP of very small crystals which are very difficult, if not impossible,

to separate by filtering and washing. A seeded solution, however, forms
a much larger sized Drec1vltate whrch is convenient for handling and

further treatment

r g

.\



The most common crystallizer in industry consists of a very large
cylindrical vessel in which the 'magma' or slurry suspension is agitated
either by an external or internal air-lift or by slowly rot?ting agitators.
The supersaturated sofution and seed crystals (thé fiﬁg-materia; sepa-

>
rated from the coarse ¢

roduct) are charged and the crystallizer

operated batch-wise for approximately 24 hdurs. These large crystal-

‘lizers and IAEE’pro time are required because the crystal growth

rate fgr,thir alumina trihydrate system is very slow relative to most

other‘éy
\

2.3 Fundamental &rystallization Process Concepts

\ .

The basic processes that govern a crystallization process afE”

complex, ‘varied, and encompass a broad spectrum of problems which can
satisfy a variety of interests, tastes, and backgrounds of workers in
the field. The eﬁphasis and direction of the research depends to a
large extent on the long range interests and aims of the researcher.
'For,eXample,Ahere the emphasiS'is on predicting the performance of an
industrial crystallizer and therefore the transport and kinetic phenomena
associated with a magma of crystals are important. In this case, for
example, it is desired to represent the overall average crystal growth
rate by a simple (perhaps empirical) functj of supersaturation with
some empirical expression to account for majo impurities; on the other
hand, a solid-state physicist would represent or correlate cryvstal

growth on a much more fundamental basis, looking for such additdonal

effects as surface structure, particular crystal

tension, etc. However important these fundamental scientific studies

s

e



are, they do not shed any light on the interactions occurring among all

the transport and kinetic phenomena occurring in a large-scale crystal-

lizer.

2.5.1 Rate Processes

The main rate processes associated with most solution crystal-

lization processes, as exemplified by the alumina trihydrate systenm,

are:

Crystal Growth

This is the process whereby solute molecules in solution

are incorporated into the crystal lattice of a solid.
Nucleation

This is the process of formation or birth of new crystals. D
These crystals either form spontaneocusly (homogeneous nucle-
ation) or result from larger crvstals being subjected to

some siress such as occurs on impact of a crystal with

another solid object or the crystal contained in a high

shear field in the solution.

Agglomeration

»

This is the process whereby two or more crystals combine to
form one crystal. This means the death of the ¢rystals which

combine and the birth of the resultant crystal.

Attrition

Here, attrition will be considered the process in which a

crystal breaks through impact with other crystals or solid
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objects into relatively large fragments. The process where
very small fragments are chipped off a large crystal will
be considered a form of nucleation since this process cannot
be distinguished from secondary nucleation, as desc;ibed
above. Mathematically, the rates at which the fréé;énts
are formed are represented by birth attrition functions and
the rate of attrition of the original crystal by a death

attrition expression,
¥

5. Induction Pericd

This is the period in which the growth, nucleation and
agglomeration rates are still influenced by prior treatment
of the crystal mass and/or the supersaturated solution.

For instance, prior treatment of crystalline seed might
influence the Initial growth rate, while the prior tempera-
ture history of the solution may have an effect on the
initial nucleation rate. | : -

6. Crystal Habit

Crystal habit is the term used to describe the variation of
"shape of crystals which may be determined indirectly bv a
number of operating variables. These operating variables
affect the crystal g?owth rate of different crystal surfaces
and in so doing determine the shape' of the resultant crvstals.
A conceptual representation of the first four of these processes
is presented in Figure 2.3.1-A. All six processes are discussed in

detail in the next sub-sections.
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T FIGURE 2.3.1-A Crystallization Rate Processes

GROWTH RATE *

AGGLOMERATION RATE

3. |
MAI e./snzo =

NNy o

ATTRITION RATE

/17T
l.Al 03 3H. 20/

NUCLEATION RATE .

*Representing the sodium aluminate golution by A13+ and OH ions is an over-

simplification. The nature of the actual alumlnate complex(esj in solution is

e et wall awmdAvetand_falY
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2.3.2 Process Variables

The crystallization rate processes are indirectly or directly

2a function of the following process variables:

1.

Solution Supersaturation

Supersaturation is defined as the difference between the
actual concentration of the solution and the equilibrium
concentration, that is, the solubility of the solute under
the conditions that pertain at that instant. The equilibrium
concentration is a function of temperature and concentration
of other species that may be present. The actual correlation

for the alumina solution will be presented in section 2.10.1.3.

Temperature

Temperature is an important variable in that it affects the
crystal growth rate; its dependence is often expressed
through an Arrhenius type relationship.

Other Variables

Other variables which influence the crystallization processes
are: impurities, type of solvent, degree of agitation in a
crystallizer. These variables may affect any one or all of
the basic phenomena. In a crystallizer, however, an effect
on any one of the basic processes, indirectly affects the

others.

2.5.3 Crystallizer Performance

The above-mentioned operating conditions affect the rates of the
]

various crystallization processes and these rates and the interaction



between the various processes will determine the capacity of a crystal-

llzer the resultant crystal size distribution, and the shape and purity
of the individual crystals. Because of these interactions, the descrip-
tion of all the processes becomes difficult and complex. The problem

deserves considerable attention considering the importance of this unit

operation to the chemical and related industries.

2.4 Crystal Growth Rate

Crystal growth rate from solution is the rate at which solute
molecules are transferred from the solution to the solids phase. These
rates are measured or obtained either by direct measurement on single
crystals (sl1) or indirectly by studying mixed suspension systems (rl,m3).
Growth rate models consist either of empirical correlations or equations
based on physical concepts of the growth process. These physical models
are most often based on the screw dislocation theory of Burton et al. or
on the theory that postulates two-dimemsional nucleation éh the crystal
surface (sl).

As with other mass transfer processes with chemical reaction,
the crystal growth rate may be controlied by the diffusion or mass
transfer of solute molecules through the solvent to the crystal-solution
interface or by the reaction Or incorporation of the solute into the

Crystal lattice. .In some instances, both rate processes may be of equal

importance in determining growth rate.
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2.4.1 Diffusion Controlled Growth

The diffusional process is determined by the hydrodynamics of

the system. It is most often correlated by an equation of the form (g2):

Sh = £(Sc,Re) | (2.1)

Many different functional forms have appeared in the chemical
industry and in the main, they depend on the fluid mechanie regime:
Garside (g2) discusses methods of measuring these mass transfer coef-
ficients aﬁd the effects of neglecting diffusion on growth rate correlations.
Grgg?h_rates for the alumina trihydrate system are relatively
quite slow éégjhave been measured to be of the order of only several micro-
metres per hour. Moreover, since agitation does not affect this growth
rate, it can be said that the growth rate is surface-reaction controlled
(m2,21). This means that the growth }a£eAdoes not depend on the hydfo-
dynamics of the suspension, the type of the apparatus or the method of
agitation, but is only a function of the surface phenomena associated
with the incorporation of solute molecules into the alumina .trihydrate

crystal lattice. '

2.4.2 Surface Reaction Controlled Growth

In general, a surface reaction controlled growth rate is a func-

tion of the following variables:

1

temperature

solution supersaturation

crystal size (r4)

type of crystal face (b2)
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- crystal surfacé structure (w2)

- solution impurities concentration (b1}

There are a relatively large number of ways of Edrrelating érowth
rates'(ol,r;). These correlafions incorporate all of the above variables
or only some of them depending oﬁ the extent of empiricism. For a given
crystal-solution System, hogevéé, the growth rate may be suitably cor-
relatédjwith femperature and supersaturation. Without elaborating on
the détails of the models, tqe main correlating equations may have the

following forms:

-t

SHELE U (acy®? (2.2)
(2) ;: 6 = bl x o - (2.3)
(3) 6 = bl xo® x ;:anh(bg/c) | (2.4)
(4) 6 = bl x o>/ x exp(- bZ/0) | . (2.5)
wﬁere G = rate at which the faces of the crystal advance;

distances measured normal to the faces

4C = C - C, = a measure of supersaturation

c = AC/Ce = also a measure of supersaturation

bl,b2 "= model parameters .which, depending on the theory
of the underlying model, incdrporate a large
number qf variables, such as: surface diffusion,
thickness of growth layer, absolute temperatufe,

activation energy, etc.
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Models 1 and 2 are widely used in the eﬁgineering literature.

They are empirical power:laws which fit growth rate data reasonably well
depehding on the accuracy and range of the data (g2). Model 4 follows/}
from the 'nuclei above nuclei' theory or in‘oéher words, from the theorv
of the 'birth and spread of two-dimensional nucleation' (sl,ol,b2).
Simply, it is based on the concept that crystals grow by the formation
of one or several nuclei on a surface. .These nuclei mark the start of
the formation of a new layer of atoms oﬁathe crystallface, this layer

" forming quite rapidly after it is initia£ed. Model 3 follows from the
BCF or Burton, Cabrera, Frank theory of dislocatioq growth. It is based
on the concept of growth on ledges, in particular, on spiral ledges formed
by screw dislocations. This forms a self propagating mechanism and cir-

cumvents the need for nuclei formation. This model reduces to:

G = bl xg (2.6)
for low supersaturation, and to:

G = 2blxb2xg (2.7)

for high supersaturation. The above theories and modifications thereof

have been discussed and investigated extensively (sl,bl,ol).

2.4.3 Effect of Crystal Size on Growth

Another well-established concept has been forwarded by McCabe

{ml), referred to as the 'McCabe AL Law'. This 'law' states that ‘the

2
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linear growth rate or rate at which the crystal éuréaces grow or increase
in the direction normal to the surface is independent of the.size of the
"individual erystals. In other words, all crystals regardless of size
increase in size at the same linear rate, expre;sed for example as micrometres
per second. This concept is reaéonable‘if the growth rate is surface reaction
controlled, that is, controlled by the mechanisms suggested earlier. In
many instances, this law represents the observed average behaviour quite
well. Single crystal studies, however, have indicated that the growth
rate may be different on different faces of the crystal; in fact,-it is
this variation which gives crystals their characteristic shape (needles,
flat disk-like shape, etc.). If the crystal surface structure changes
with size, then the average growth rate is expected to change with size.
If the shape remains the same throughout the growth period,’then the
average growth rate may be expected to remain constant independent of
size as long as the growth rate is surface reaction rate controlled. It
1s worthwhile noting here that if diffusion of solute to the surface is
important, then mass transfer rate considerations would suggest that the
growth rate is proportional to the size of the crystal.

Randolph (rl) has proposed a model for growth rate which suggests

a linear dependence on size, viz.

- . b2 :
G = G,(1+ bl Dp) _ . (2.8)

He shows (r4)} that for the system potassium sulfate-water a size

dependent model represents his experimental data better than the McCabe
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AL law. It must be recognized, however, that this apparent size dependence
may be due t; the wrong choice of the characteristic linear dimension 6f
the crystal. As mentioned, it may-be a true dependence that may have
reflected the importance of mass transfer or an apparent dependence which
results from the inieraction of the other processes which may be occurring
- for example, agglomerapion'and attrition. These latter processes prob-
ably do depend on size. From these arguments it is-seen that the growth
rate might well depend on crystal size, but on the other hand, a plot of
growth.rate vs. a linear crystal dimension might be very misleading and’

should be analyzed with care.

2.4.4 Observations of Growth Rates for the Alumina Trihydrate System

Although-electron micrographs of some tvpes of stals have .
shown the prominent spiral ledges which have been hypotheSized by the
BCF model, this type of dislocation has not been observed with the alumina
trihydrate system. Brown (b7) has observed inste#& surface layer type
of defects. These observations led Brown to conclude that the growth
rate of alumina trihydrate does not follow the BCF mddel but rather a
mechanism involving surface nucleation followed by a surface spreading.

As pointed out by Garside (g2), it is difficult to discrimipate
aﬁong any of the models for growth on the basis of observed growth rate
variation with supersaturation since all models may be.approx;mated by
a ﬁarabolic type function. Very accurate growth Tate data over a wide
rangg_pf supersaturation is needed in order to effeét any discrimination

-

among\Fhe models which have been proposed.
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2.4.5 Review of Growth Rate Models for the Alumina Trihydrate System

The crystallization of alumina trihydrate follows the chemical
reaction: T e

- 4

2NaAl0, + 44 0 "~ Al.0_.3H_ O + 2NaOH
2 2 . T273 2_

A number of studies of crystal growth of alumina tiihydrate have

appeared in the literature. These are discussed in turn below.

{a) Misra and White (m3)

Misra {mS)hcondubEed bench-scale seeded batch crystallization
experiments of ;;e alumiﬁa trihydrate in an impeller-agitated vessel,
They concluded that the growth rate appeared to be independent of size
and from the same data Whlte (w2) made the ebservatlon that the difference
in growth rate as a ;esul; of differences in crystal surface structure is
negligible for this.sysﬁem. Their observations and hence conclusions are

-
confounded, however, by the high level of agitation in their crystallizer
which probably led to considerable attrition of the crystals in the

crystallizer.

Their growth rate expression is:

dD 2 - l
Gy = = - kG,M x (CA - CAe) (2.9}
where kg y = rTeaction rate constant (um‘zth gz)
o] = spherical equivalent diameter (um)

T = batch time (h)
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-CA = alumina solution concentration (g A1,0./2 sol.).
CA, = equilibrium concentration
R = 8.314 J/mol K

T = absolute temperature { K).

The reaction rate constant, kG M» 1S expressed as a function of
. : LM

temperature through the Arrhenius relationship:

Koy = 1.96x10° x exp(- 4E/RT) (2.10)
L G:M
M /

- i .
where the activation energy is 3:98x104 J/mol (14.3x103 cal/mol).

-
- hl
=

*A-*‘“ .
E
The abgyé.correlatlon for growth rate was based on' experiments

in which the 1mpur1t1es in the solution were negllglble. Impurities are
expected to affect‘both growth rate and equilibrium concentration (pl)

®) Pearson (Di)

-

Pearson (pl) reports that the rate of dec*ease of the molar .con-

centratzon of sodlum alumlnate in 2 batch seeded solution is given by

the expression:

w2
d : {x - x 1" N :
= —kp xAx 5 » {2.11)
‘ {ae + xe} . , ,

VY

where ' x(t) = molar concentration of NaA102 - e
a(s) =- molar concentration of NaQH

A(z) = crystal surface area (mz/z sol.)

/.
—
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T

For

expression,

T

| 5 B

¢

= parameter dependent on temperature
Y »
= batch time (h)

= "subscript denoting equilibrium

comparison between Pearson's growth rate expression and Misra's

equation tz.ll) is transformed as follows:

First X is expressed in terms of the total crystal weight,

'NT, as follows:

d(WT/VL)rg Al OS.JHZO) . > mol A1203.3H20} 3 E( mol NaAlO2 )
dT  h 2 sol. 156 g Al,05.3H.0 17 mol Al,05.3H,0
- dx

——
-

-

Therefore, for approximate constant VL with respect to 1:
1

£ -

xLxsz T o
v 156 ©~ 1

t? | dt

h 3+
Similarly for the Al® concentration, the relationship between

dWT

CA and § is equal to:

® ’ -
Al,0.- 1 A : h
CA(g 2 a) § 1 : mol 1203) x<£( mol NaAl_Zj, - .
% sol. 102 g A1203 1" mol AIZU3
I‘ 9
CA"X —— =
10
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Y

.

+ s .
and for the Na concentration the relationship between CN and

a is given by:

5 l' mol NaZ0 2. mol NaCH
B2 x &

% sol.’ 62 g Nao0 mol Na,0

g NaZO

CN( )

[

2 mol NaOH, .
- CN st | e e s
X 62( 2 sol. )

which is equal to the total Na® concentration expressed as

NaQH, or in Pearson's nomenclature, equal to the 'free'.

sodium ion concentration which is defined as:

"NaZO (free) = Na20 equivalent to Na.AlO2 + NaQH"

Therefore: ' -
N -
L

62 102

Substitution of x and a by CA and CN in equation (2.11) gives:

2
2 2 e
M o112 {CA x o7 - G4, & 102} { \
— Xy X1 X T k, x A x

QT. L 156 1 {CV X éi" CA X -—-+ hA X Tﬁ%?‘h\\*\\

or
dw,
T ' -1 2 A
— - 57. S A - Cf =
el { 6 x kg x x {CA CAe) bxsxV,

2 2
(CN,) |
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4. . Comparison of this equation with the first moment of the

population balance which can be written as: _ )
\

dW. 2

T8 - 85 A

— &) (h)x242[ ) x & _Tso) _ |
x V (2 551 ) ; lgi(cmz L =Ty | |

L 1 m2 04 um —)

or . N -
dWw,

T A :
shows that: N

2
GD - kG,P x (CA - CAe) (2.12)
) : -1, K
where kG p = 2.38 x 10" x (2.13)
N 2
(CN,)

-"

‘The factor kG,P is approximately constant for an isothermal Erystal-
lization process. Therefore, equation (2.12) is of the same form as the
gen;rallf ised expression for a size independent crystéf'growtﬁ rate.
Pearson'(pl) states tne factor k increases by a factor of 2.25 for every

‘\niﬁpﬁgzemperature increase, ThlS*tompares.to a factor of v 1.90 for every

10°¢ increase for Misra's growth rate expre551on, equatlon (2.10).

(c) Halfon and Kaliaguine, Model A (h1) J
' Halfon and Kaliaguine report on crystallization in an impeller-

(}gf%ated-400 % tank from solutions which contained very low supersaturations
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and had an impurity level 'equivalent to that of plant liquor'. Their

& . ..
growth rate expression is:

. 2 ) ’
GD - kG,H x (CA - CAe) (2.14)

-
"

where ko . = 3.6x107% 8 60°C

All‘experiments were carried out at 60°C so no temperature
dependence was reported. Pearson's kG,P value at this .temperature and
at Halfon's caustic concentration of about 110 g NaZO/z sol. is 3.1x10'4,
while Misra's is 8.1x107™% at this temperature and concentratian. Note
that these rate constants are all of the .same order of magnitqde but do
differ by as much as a 62% , i.e. 3.1x10°7 a; compared to 8.1x10*4, in
absolute value. These differences may be due to the influence of impuri-
ties on the growth rate. On the other hand, thgy might be due to different
procedures used in célculating the growth rate Gp- The main difficulty
in this experiméntal woTk is the measurement or definition of the actual

crystal's surfaGe area at every instant of time.

{d) Halfon‘ghd Kaliaguine, Model B (hl)

Halfon states.that the Previous models, all of which are of the
same general form, fail to account for the induction period, which is
known to occur with this system. His secoﬁd model for the growth rate of
alumina trihydrate is purported to account for an induction period. It

is given by:



X

O x s, x (ca -'CAe)z (um/h) . {2.18)

G. = 1.62x1072

D
where GD = linear growth rate (um/h)

CA = alumina concentration (g Alzos/z sol.)

CA, = equilibrium concentration of alumina (g Aizos/z sol.)
s = number of nucleation sites per Jhit surface area (dm'z)

1

The yvariable S, is caleulated from:
- -\

-
r

L } 2 i
P 5saxa0 N°°} 1.55x107% x (CA - CA)°
a?— J. X 7 x-——s—- - . X xsu a \
S (2.16)
where S = external surface area of crystal per unit volume of
suspension at timé T (dmz/l susp.)
. Ncc = number of crvstals with a size greater than 2 um per
<k | ‘
unit volume of suspension (number > 2 um/% susp.)
'S = maximum value for s
o u .

-

-

This equation holds as long as s;(1) < So» while otherwise s, (<)

is a constant equal to S,. The model reduces to model A for Sy =~ S, with

s, equal to 2.11x1071%. Model B in essence reduces the available crystal
surface area for growth by means of the variable Su- These authors describe
s, as the "number of vacant sites per unit surface area of crystals".

They hypothesize that during the induction periéd, growth takes plaﬁe on

. -only part of the available crystal surface area, while the rest of the
surface inhibits growth presumably due to poisoning of that part of the

surface.
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Although this is a reasonable argument the-actuél determination
of the number of vacant sites per unit a?ea of crystals seems a very
difficult problem. Another weakness of the model is the use of the
number of crystals with a size greater than the minimum size that could

be measured with.the particle counter which they used. This means that

~

with another type of mgaguring device the equatiﬁn for S, could very well
hbye different parameters or, inaeed, have a completely .different form.
Moreover, the use of the surface area variable S introduces uncertainty
since surface a}ea is a difficult variable to measure and strongly
depends on the method of surface area measurement. Thus, although this

. o
model predicts the smaller growth rates during the induction period, the

development of it seems somewhat arbitrary especially in the use of the

variables Ncc and Sy-

2.4.6 Effect of Poisons on the Crystal Growth Rate of Alumina Trihydrate

Pearson (pl) discusses the effects of impurities or poisons on

the growth rate of alumina trihydrate crystals. He lists as effective

poisons: ''saponin, gum arabic, cane sugar and numerous other organic
- .
substances containing hydroxyl groups''. As inorganic poisons he states

that dissolved iron and calcium salts are fhe most common. The overall
effect of these poisons is to retard the crystal growth rate.

Pearscen (pl) exﬁresses.this poisoning effect through a 'poison
factor' which he presents graphically as a function of temperature. This

poisoning factor corrects the equilibrium concentrations of sodium, aq,

LY

and aluminate, X for the poisons and thus allows the growth rate to be



calculated under.these contaminated conditions by use of the same expres-
sion, eduation (2.12). The reduction in growth rate arising from poisons
becomes less as the temperature increases up- to and above about 80°C, at

which temperature the effect of the poisons becomes negligible.

2.4.7 Summary of the Available Information on the Growth Rates
for the Alumma Trihydrate System

From the literatur?® the following is known or concluded from
experimental observations with ;egard to the crystal growth rate of

alumina trihydrate from a supersaturated sodium aluminate solution.

- The growth rate is surface reaction controlled, not diffusion
controlled. - :”“ |
- Surface reaction or growth takes place by surface nucleation.
followed by the fa;rly raﬁid spreaaing.of a2 molecular solid
. layer over the surface. ' ,/////

. McCabe's AL law seems to be valid.

- Differences in the growth rate due to structural differences
in the crystal surface are neghtigible for this system.

- Poisons or impurities slow the growth r;te, the fractionatl
decrease being a definite function of temperature up to about
80°c; atthigher temperatures this effect is negligible.

- The alumina trihydrate syétem exhibits an>inductiorn period
which is probably a function of seed treatment and crystal-
lizer operating conditions.

- The growth rate models which have been developed to date are

empirical (or semi-empirical) and are all of the form:
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X

nucleation is governed by chemica{ and physi

. 2
G kg x (CA - CA)) (2.17)

The rate parameter, kg, has Been-cstimated from experiments and

although various different estimates have been reported, these differences

' may reflect the shortcomings of the experiments and/or modelling procedure

for the complete crystallization process. .
. :

It is known that. an induction period of varying duration occurs

in this seede& crystallizatioq.process. One attempt %t modelling this

induction phenomena has Séen reported but the model is shown to have a

number’ of shortcomings..

2.5 Nucleation Rate -

Nucleation rate in the context of this work denotes the rate at

which new,crystals are’ generated other th by attrition; however, it is

difficult to distinguish between nucleatfion and attrition when veryvsmall
crystals are formed by attrition. Att i1tion is most often thought to
result from mechanical fracture of the c vstal whicﬂ'in turn arises from
impact on the crystal causing internal stre3¢es. On the other hand,
‘Dhenomenon. Although in

actice, since there are so many

theory this distinction can
different mechanisms for ﬁucleation, the formation of small crystals by
AN
. . TN . . . .
attrition is really another mechaplsm by which small, nuclei-sized, crystals

are formed. The vario echanisms of nucleation are discussed below, and

presented in Figu;e 2.5-A. The classification presented here, although

general, is by no means the only classification (b5).
f/;
/ -
-

v



FIGURE 2.5-A Line Diagram of Different Nucleation Mechanisms
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~2.5.1 Homogeneous Nucleation

This is the process whereby a solid or liquid is'forméd from the
solution or vapour phase with a size greater than some 'critical size'.
The critical size is one where crystals greater than this size remain
crystals and crystals less than this size will dissolve or disappear.
For homogeneous nucleation as opposed to heterogeneous nucleation, the

phase transformation takes place without the benefit of the lower ‘energy

IS -

barrier which results when a foreign solid surface with the correct
crystal strucfure and interatomic, distances is present. Classical nucle-
ation theory predicts the size of the crit#cal nucleus and its rate of
formation or nucle§tion (ml,s1). The.theorf shows that homogeneous
nucleation is strongly dependent on supersaturation. In general, rela-
tively very high supersaturation levels are required for any significant
nucleation rate. It is either the predominant mechanism;fér nuclei for-

Ps -

mation or its contribution is insignificant.

2.5.2 Heterogeneous Nucleation

This refers to the formation of crystal§ as a result of lowering
of the nuclei formation energy barrier.by the presence of foreign solid
matter. Because traces of insoluble matter are difficult to eliminate
and, in any event, the container walls are a foreign surface upon which
crystals may form, heterogeneous nucleation can becomé a primary or pre-
dominant mode of forming new crystals (nﬁclei). Moreover, heterogeneous.
nucleation requires much lower levels of supersaturation than homogeneous
nucleation. The mechanism of heterogeneous nucleation is complex. It is

probably a function of the following variables: temperature, supersatura-



-

-

tion, type-of solid-liquid interface, crvstal structure of the foreign
substance, etc. (r2). Besides the molecular form of ths,interface, other
interface variables such as an electrostatic double layer and/or trace
#Mmounts of poisons might significantly influence the rate of heterogeneous
nucleation (ré).

From a practical viewpoint, heterogeneous nucleation is in general
undesirable since it causes scaling, or in industrial terms salting out
on or fouling of vessel walls and heat exchanger surfaces. This results
in additional maintenance costs and poorer average performance of a
crystallizer. One way to minimize this is by specially treating the heat

exchanger surfaces. For instance, electropolishing of cooling coils has

met with some success.

2.5.3 Secondary Nucleation .

Secondary nucleation refers to the production of nuclei crystals
in the presence of suspended parent crystals. It takes place at high
and low to Telatively very low supersaturation level$® The rate being
still large ;t supersaturation levels far below those for any significant
heterogeneous or homogeneous nucleation rates (mi). It is generally
accepted that the superfluous productio£ of nuclei iﬁ crystallizers at
very low supersaturations results from some mechanism of secondarv nuclé-

ation. Conceptually, secondary nucleation might take place by one or a

combination of the following mechanisms (s2).

{(a) Initial Breeding

This might occur when seed crystals are introduced into a super-



saturated solution. The seed surfaces are thought to have attached to
ig,in a "loose way' lVf.'_ry fine crystals which are washed off and then
BTOW as new crystals. 'This would result in an initial 'shower' of nuclei
the quantity of which would depend on the pretreatepnt of the seed,:aﬁd
to alsmall extent on the supersaturation level and temperature which
would determine the size of surviving cryvstals. Equation (2.21) showé
the relationship between the minimum crystal size and the variables,

saturation and temperature.

(b) Needle or Dendrite Breeding
[ ]

.

This occurs when crystals grow needles or dendrites which might
then break off due to external forces, and grow as new crystals. Growth
of dendrites most often ocecurs under conditions of high supersaturation

and temperature and relatively mild agitation.

(¢} Polyecrystalline Breeding

As ;n needle growth, this formati;n of nuclei is due to imperfect
crystal growth. At high supersaturations the crystals might gro; imper-
fectly forming 'polycrystalline' or Crystalline masses which are locsely
held together and which might break up when subjected to external forces.

/
The conditions favourlng this nucleation mechanism are similar to those

for dendrite formation. Bot .mechanisms might be classed as a special

kind of attrition rather than nucleation; however, when the resulting
crystals are of the same order-of ssize.as those produced bv other nucle-

ation processes, this process is referred to as nucleation as well.
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(d) Collision Breeding

- -

This occurs very readily when a c;ystalzis subjected to external
forces, either from contact or near contact with other crystals ana/or
foreign objects such as stirrers and vessel walls. Large numbers of
crystals are produced even at. low gupersaturétions by this mechanism.

It appears tﬂat this is the principle mechanism of nucleation in most
agitated seeded crystallizers. Two conceptual mechanisms of collision
breeding are (s2):

From Solution Phase

The hypothesis is that clusters of molecules form in the liquid-~
phase and these grow while being loosely held to the parent erystal by
physical attractive forces. Strlckland Constable (s2) desﬁrlbes these
molecules as being 'associated with the parent crystal surface' After
the clusters of molecules grow to a stable nucle1 size, thev usu lv
detach by virtue of some Telatively small or weak external force; thHere-
;fter they grow and are ébserfed as new crystals. This phénomeqpn is
enhanced at higher supersaturations.

.

From Crystal Surface Region

,

This mechanism assumes that instead of being associated with the
surface, the cluster of mdlecﬁles is actually attached by chemical bonds
to ;he,crystal surface. These crystalline masses of nuélei size are then
detached by means of Telatively high shearing forces. Indeed, McCabe
et al. (j2) found that collision breeding does not occur by contact between
a2 rubber surface and a crystal.‘ It was hypothesiczed that if one of the
approachiné surfaces is elastic it will accogmodate the hydrostatic forces

“on both faces and consequently reduce the shearing action on the crystal

face. .



It is thought that the rate of co}lti?on bfeeding is a function
of (b4); ) ’
' - temperature - -
~ level of supersaturation
~ size of contacted crystals ' |
- crystal hardness

- hardness of contacting matter -

- magnitude of forces on crystals or agitation intensity
\

2.5.3.1 Secondary Nucleation Rate Correlations

’

- A typical correlation for secondary nucleation is given by (02):

.y bl e b2 | _
BFn - k n X D x (C Ce) cox ¢D x ED X FD (2,%8):

which .when integrated over all Crystal sizes gives the total nucleation

rate, viz:
2 .
D '
BN A S BF_ x dD
n-— D n
0
. ) o -
where “BF_ = crystal birth rate density function (number /(h dn’sol.pum))
' BNn =~ secondary nucleation rate (number/ (h dm°sol.))
D = linear crystal dimension {gm) “
C - C. = supersaturation (g/dmssol.) L . ,
. -
g5 = collision frequency density function (number/(h pm))
£, — surface impact energy density function (J/um)
- — . .
Fp = crystal number density functioen (number/(dm°sol.umJ)?§
k'n = Tate constant which includes the effect of temperature,

type of collision, and birth size distribution of

formed nuclei



'j ‘ i
bl',b2'" = model parameters ‘ f/
255 I

R - . . v

Ottens et al. (o2) related the collision frequency and surface

imﬁact energy variables to the total mass of crystals and a variable

X : related to the dissipated energy per unit mass of crystals giving:

bl . .b2 '
BNn - kn X g X Rf Cox FC - Cp) (?.19]

=
¢

where | ~ variable related to the dissipated energy per
- unit ma;S of crystals : :
L ' . = crystal mass per unit suspension ‘
bl = model paraﬁeter related to the domineering mode
of collision breeding; it is 1 for ¢rystal-wall
collisions and 2 for crystal-crystal collisions
b2 . . = model parameter h - )
k . = rate constant which might differ depending on the

.
type of collision breeding

aln

C-C% BN = same as in equation (2.18)

-

-

Evans et al. (el) also suggest a value for ﬂi of ﬁbgut unity for
crystal-wall collisions. ~However, for crvstal-crvstal collisdons they
make a distinction between cryétal—crystal collisioné‘due toigravity and
turbulence driving forces; bl is equal to 2 for gravity and 1 for turbu-
lence, reépectively. ’ o

Randeolph (rl) also proposés a relationship of the same form as

. equation {2.19) for the secondary nucleation rate, i.e.
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b2 (2.20)

BN, = k" xWP " x(c-c)
n n t e
Here the variable related to impact energy,-y, and the rate constant kn
are lumped intc the one parameter, kn”. This circumvents thé difficult
and ambiguous problem of determining y; however, it means that this
equation is only valid for a particular type of crystallizer and a parti-

cular intensity of agitation.

?"_::’

2.5.4 Observations on the Nucleation Rates
of the Alumina Trihydrate System

At the supersaturations normally encountered in industrial practice,
it is quite unlikely that homogeneous nucleation takes plac; for the alumina
trihydrate system (pl). Heterogeneous nucleation prob;bly takes place to
some extent depending on supersatﬁration as well as on ihe type and con-
centration of impurities in solution, and type of material from which the
crystallizer is'made.

In industrial practice, it is well known that a considerable rate
of nucleation exists even.at low levels of supersaturation. All labora;-
tory work suggests that the dominating mechanism for the formation of
these nuclei must be the secondary one, probably involving the collision
breeding mechanism. . ) : -

At présent there is essentially no quéntitatiVe information
available on the nucleation rate for the alumina trihyd%EEE\system. Some
very limited information is provided by Misra (m2,m3). He states that
nucleation does not occur at 75°C and above. However, it must be remembered

that secondary nucleation depends very much on the crystallizer apparatus



and intensity of agitation. Therefore, there is a real question as to
whether Misra's observations may be of éeherél appl;cability. Certainly,
his aﬁparatus was extremely well agitated. Moreover, the limitations of
his experimental work and data analysis did not allow definitive state-

ments on this subject to be made.

2.5.5 Estimate of the Minimum Nuclei Size for the Alumina Trihydrate System

In the above dis'.cussi_on nothing has been said about the size dis-
tril;ution of the nuclei as they are formed. Unfortunately, these nuclei
are 50 small that they cannot be easily observed until they have grown
to a relatively much larger size. Therefore, their actual size distribu-
tion is unknown. Thermodynamic considerations suggest.a critical or

minimum nuclei size, as given by (ml):

: ) .
Dy = {&xMxol/{RxTxopgx ln(%i_)} x 10 (2.21)
e

Several assumptions are made in the derivation of this equation.

For a typical case of the alumina trihydrate system:

M = molecular weight, = 0.078 kg/mol

g . = solid solution interfacial tension, = 1.25 J/m2
R = gas constant, = 8.31 J/(mol X}

T = absolute temperature, = 328 K

X 2420 kg/m°

P = solids density,
CA_ = equilibrium alumina concentration, = 44 g Al,0./¢ sol.
for CNC = 200 g Na,CO-/2 sol. and T = 328 K

D = critical nuclei size (um)



“Therefore, for typical values of CA the minimum size nuclei are:

CA cA - D .
(g AL,0./2 sol.) °© () -
140 44 0.05
88 a4 ~ 0.09
46 44 1.3

This provides an order of magnitude calculation for D,- Nuclei

of a size greater than the critical will continue to grow while those

N
smaller than D0 will dissolve. This is known as the ‘'survival theory'.

Fi

+

2. S 6 Summary of the Available Informatlon on Nucleatlon
for the Alumina Trihydrate System

Thus, from the literature, it follows that::

- The nucleation of alumina trihydrate probably occurs by a
secondary nucleétion mepﬂanism.

- No quantitative nucleation rate expressions are available for
ihis.system. Other nueleation studies suggest that the secon-
dary nucleation rate might be modell;a-py expressions such as
given by equatien (2.20).

- No information is available 'with regard to the size distribution
of alumina trihydrate nuclei. An order of magnitude estimate

of the smallest nuclei size is given by equation {2.21).



2.6 Agglomeration Rate

L

Agglomeration is the process whereby two or more particles combine
to form one particle. This means the loss or death of the particles whicﬁ
combine and the birth of the resultant particle. This combining process
consists essentially of two main steps in series. First, the particles
need to collide and second, they need to remain joined after col isign.
Frequency and intensity of collision is determined by the hydrodvnamics
of the suspension and. by the size distribution of the particles involved.
Joining or bonding of the collided particles may consist of the breaking
of droplet interfaces, in the case of a liquid dispersedpin a gas oT
liquid phase, or be due to physical forces which hold the particiesf
together to form a2 loosely agglomerated floc. On the other hand, the
bonding may involve the same chemical forces whiéglﬁfgd the molecules in
the colliding particles. The agglomeration of crystals which then form
true crystals is'an example of the latter case.

The phenomenon of agglomeration redqces the total number of particles
and the total surface area available for growth. This in turn results
in a reduced production rate even for the same gréwth rate, while simul-
taneously the particle size distribution shifts to the larger size ana
at a rate considerably above that due to growth. Thus, the net effect
of agglomeration is that it slows down transfer of'solute from solution
to the solids phase and that it makes the resulting particle~size distri-

bution broader.
- - . - .
The agglomeration process in crystallization svstems has not been
investigated very extensively either experimentally or in modelling work.

In fact, if a crystallizing system exhibits onlv a relatively small

.

i
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. agglomeratlon rate and the experlmental conditions are changed only over
V;Ismall range, then the resultant change in the si:ze distribution might
mistakenly be modelled by a size dependent growth rate, with the largest
Tate being associated with the largest particles. Modelling of the
agglomeration process is avoided by many because of the non-linear partial
integrodifferential equation which results when growth, nucleation and
agglomeration-exist and the severe difficulties which arise in trying tg
obtain a numerical solution.
Considerable work has been done on the agglomeration process,
when it is the omly process, in the field df aerosol science - in parti-
.

culat, in the branch of cloud physics (hS). In this system, the increase
in size of droplets results from vapour to liquid mass transfer (growth
process) and also from agglomeration or coagulation of droplets (d1,d2).
In addition, agglomeration has been coﬁsidered in some detail in such
fieids as emulsion polymerization (w3), liquid-liquid or gas-liquid mass
transfer processes (r5), and microbial systems (t2). Pure agglomeration
occurs in the granulation production step in making ammonium nitrate
fertiliser. In this case, small particles are upgraded to larger ones
'to improve their further processability. Thus, there is a very broad
applicability of any general modelling procégute for the agglomeration

phenoqgnon.

2.6.1 General Agglomeration Rate Model

Regardless of the differences in the systems in which agglomeration

occurs, the agglomeration process should be modelied by an equation of

L4
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the same general form. Thié}equation should reflect the rate of collision
‘between two different sized particles which in turn is determined by the
relafive size and concentration of thg two particles in question. More-
over, the effectiveness of the.collision in producing a stable agglomerate
must be included and this effectiveness is expected to be determined by
the prime variables, such as supersaturation and temperature as well as
such c¢rystallizer tapparatus) variables as level of agitation, erc. The
total agglomeration rate is the sum of all agglomerations which occur

between all particle pairs, viz.:

V-V,

0 ~ 1 1

—(F v, _— vr,v - v F '

{BT(. V,T ,T))}a {VL(T)} X {2 -rvo kv’.a » ,T) V’T(V.)T)
A

—

V-V, o)av

Fv,1¢ °

number of crystals that
agglomerate into size V
per hour

Vv
u Y, .
TR TRy L (VY )Ry VT

“ o Y
~—

number of crystals that
agglomerate cut of size
- V per hour

where kv a

= agglomeration rate effectiveness kernel
s .

= 0 for (V+V'} > vy -
V < Vo

V' < ¥V
o
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0 for (V « V') <V,

. ; ‘-V E.Vo
ARSI
. - 0
Fy T - number density function with respect to particle volume
2 B
Vi = sclution volume
v = particle volume

T = batch or residence time

The above kernel incorporates*the effects of the variables:

temperature

particle size

supersaturation

3

suspension hydrodynamics

The assumption made in the formulation of this model is that the
agglomeration rate of crystals of volume V' and V-V' is proportional to
th; product of the number densities F,(V',7) and Fy(V - V',t}; that is,
lit is a binary pro;ess only. This model is developed in detail in

Chapter 5.

Sastry (s3) makes a distinction between 'free-in-space type' and
'reséricted-in-Space type' agglomeration process models. The distinction
being that in the free-in-space case each particle has an equal probability
. of encountering any other particle, while restricted-in-space means that
each pafticle can encounter only those particles in its immediate vicinity.

His free-in-space model I, identical to the general equation presented

before, while the restricted-in-space concept leads to:



3 - 1 1
ey, p(hm} V(MmN (D) v

Fy p0V'0Fy o0V = V', 0av

vV -
u

- FV’TW,T)IV ky 2 V'V, 00Fy (VY ,13dV" )
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Where the variﬁbles are the same as those in equation (2.22); here the
ad@itional variable, NQ(T); denotes the total number of crystals per unit
volume of solution. .

The model function kV,a is usually split into two fac?ors. One
factor incorporates the effect of temperature and supersaturation, the
other the effect of particle size and the hydrodynamics of the suspension
on the agglomeration rate. The strong dependence on the hydrodynamics )

means that agglomeration, like nucleation, is very dependent on the type

of vessel and mode or intensity of agitation.

2.6.2 Review of QObservations on Agglomeration and Agglomeration Rate
Models for the Alumina Trihydrate System

For the alumina trihydrate system, plant experience indicates that -
under normal operating conditions the occurrence of agglomeration is an
established fact. Mo%eover, plant experience suggests that it occurs for
all supefsaturations and that smaller crystals agglomerate at a faster

rate than larger ones. Pearson (pl) suggests that agglomeration is

favoured by:
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fine seed

high seed concentration

high temperature

high supersaturation

slow stirring rates

Gnyra (g4) concluded from electron micrograéh observations—that
agglomerated crystals are true crystals and not flocs held together by
physical attractive forces. This is in accord with the concept that alumina
trihydrate crystals form an agglomerate-by being 'grown' together after
collision. In the alumina industry this is referred to as 'welding' tkl)
or"cementing' (pl) of a pair of. crvstals.

The only quantitative work on the aggiomeratioﬂ for thislsystem

ﬁas been reported by Halfon (h2). He found that ‘the general typggbf model

(equation (2.22)) fitted his data with an agglomeration rate constanf or*

-

agglomeration rate effectiveness kernel given by:

Y

X (CA - ca )4 £ susp {2 sol.J (2.24)
e h g

16°

ky,aly - 2{1x107
- 60% \/\
Unfortunately this fgﬁ%tion was developed without taking into
'3&3§%§14;he effects of growth and nuclgatiqn on the size distribution.
In addition, no at#empt was made to inclﬁ&e the effects éf the uﬁknown,
" number of crystéls of a size less than that which could be measured.
Moreover, their’numerical solution of the agglomeration equation was
only approximate and-their data, from .which the function (equatibn (2.24))
was developed, covered only a very narrow range of operating conditions.

All of these factbrs would tend to confound the form and values of this
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agglomeration kermel and explain why this function does not reflect the
expected dependence of the agglomeration rate on the crystal size distri-

bution.

2.6.3 Summary of the Available Information on Agglomeration
for the Alumina Trihydrate System

In summary, the following can be deduced from the literature
with regard to agglomeration of alumina trihydrate crystals:
1. Agglomerated crvstals are true crvstals and not a cluster

of crystals held together by other than primary chemical’

' bonds.

2. Agglomeration is favoured By:

fine seed ?’ -

- high seed concentration

i

high temperature

Kigh supersaturation

Ve
slow sterring rates

One agglomeration model with a size independent kernel has

i
.

been reported, but as discussed here, the development of
this model has seversl shortcomings which explains why the

kernel does not show the expected size dependence.

2.7 Attrition Rate

Attrition is the process whereby a particle breaks into two or
more fragments. If the fracture results in relatively large particles,
it is a clear attrition process. If on the other hand, it results in an

original particle of essentially the same size and chipped off particles



of nuclei‘§ize, the distinction between attrition and nuclkeation is at
best vague. Attrition as comﬁared to nucleation requires probably more
fofce, and the resultant number of particles formed is in general less
than that arising from secondary nucleation. From a populatlon balance
standp01nt attrition means the death of the fractured particle and the'
birth of the resultant‘particles.' Depending on the field of study
attrition is also referred to as: breakage and comminu;ion.-

Attrition is most often thought to Tesult: from mechanical forces
only which g{ve rise to excessive stresses within the particle. The
mechanicallstressés to which the particle is subjpctgd will depend pri-
marily on the operating conditions-within the crystallizer, partiéularly
the intensity.of agitation within it. In addition, the strength of the
particles will determine their ability to withstand these stresses.

Such operating conditions as crystallizer tgﬁperature and level of super-
saturation will determine the shape (habiti and strength of the crystals

-

so formed.

2.7.1 General Attrition Rate Model

A general model describing the population balance on size V in

a process where only attrition occurs is:

V
3 ~71 -— u ’ LI - - t
G By, 1Vomdly = 2 Ty UYLV = VLR (V7 T)av
0
V-Vo
S, R pMLVLY - VDR e
o]
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Here kv b is a rate function .denoting the rate at which crystals of size
» . .

V break into two fragments of sizes V' and V - V'. Its value is:
-0 for V j"Z.VO @ ' ( .
. vV o>V SR
. - u
V! o< Vg

>0 for V > 2V
- - "0
-V _.Vu
) vt o>V )
—0 .
VT <« V - Vo

This equgfioﬂ is based on the’concept that the attrition rate
for particles of siie V is proporticnal to the number 6f parficles of H\hﬂb
that size. The rate function kv,b is a function of the interaction of
these particles with its environment (for eiample, intensity of agitationm,
strength of particles); it is not thought to be a function of the inter-
action between different particles. \This latter assumption means that
the attrition process is a first-order process and thus beéémes easier
to deal with mathematically than the agg;omefation process which is a

second-order one.

. \
2.7.2 Observations on “she Attrition Rates __,/)
for the Alumina Trihvdrate Svstem ;

Not much is known with regard to the attrition of alumina tri-

hydrate crystals. The attrition process for this system is confounded

o
-
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.
by nucleatioﬁ'and_aggloﬁeration. However, some Quantitétive information

in the form of crystal size distribution graphs has been obtained (g3,r6)
for the attrition of alumina trihydrate particles.suspeqded in a saturated
solution of sodium aluminate. In such a solutien, nucleatioﬁ-and\q,
agglomeration do not take place, and the SKift towards the lower end of

the size distribution is solely due to attrition. As might be expected,

it was found that attrition is related to the intensity of agitation and
.-the residence time of the crystals in this agitated system. After a con-
siderable time interval, the attrition rate became negligible. This sug-
'gés;éd that a stable size distribution correqunding_to a certain intensity

of agitation had been obtained. - ' “

| Attrition under these conditions is of co;rse not the same as
that under crystallization operating conditions. The intensity of agita-
tion could be the same for both systems but a saturéfed selution environ-
ment is definitely different from a supé;saturated solution environmeﬁt

in which growth and agglomeration take place simultaneously.

As mentioned earlier these rate processes will affect the strength
of the particles and henc& the rate of atfritioﬁ will depend on the rates
of growth and agglomeration in a specified system. This interaction_amoqg
these processes suggests that it isvimpossible to obtain information on
any one of them in independent experiments and therein lies the experi-
m;htal problem. To date, no quantit§tive or qualitative information
on attrition in a crystallizer is available. It is known,'however, for

the alumina trihydrate system that:

.

. . b R e L
1. Attritien takes place under relatively intense conditions

of agitation.

1i



2. Given that no growth and agglomeration take plate a stable

‘ ' . ‘ s
size distribution results after a certain time interval of
agitation. '

3. No information is available for attrition under crystallizer

' operating conditions.

2.8 1Induction Period _ =

The induction period refers to that initial batch time interval

-

* } . . ) - - -
over which the rates of growth, nucleation, agglomeration, and attrition

are different, that is, slower or faster as compared to the rates which

would occur at the crystaliizer operating conditions after the crystal-
N &

: »
lization processes had been proceeding for a long period. This induction

process is a poorly understood phenomenon. Generally, it is thought to

be related to the state or properties of the crvstal surfaces. The
dominant ﬁroPerty is probably the numper and size of surface ledges and/or
imperfections. From the point of view of ; research prégram which is
attempting to study the normal crystallization processes, this induction
periqd'should be minimized as much as possible. In this_study, tq&; is

Y

gchieved by pretreating the seed material.

-

2.8.1 Effect of the Induction Phenomenon on the o
Alumina Trihvdrate Rate Processes

-

If the seed is not pretreated the alumina trihvdrate syvstenm
exhibits prominent induction effects (g3,m2,hl,pl). These effects are

: ‘ . :

a function of temperature as well as other operating conditions. In

general, it has been observed that the higher the temperature the smaller



-~

the induction effects, both in the duration of the period and in the
magnitude of rate changes. The effect on.the growth rate has been
observed qualitatively bf several authors (e.g., g3,pl). As indicated ]
earlier,ﬁﬂglfon modelled this growth rate change over very limited condi-

tions (hl). No information is avapilableson the effects of induction on

L -
the other rate processes of nucleation, agglomeratiii;’gﬁz'attrition.

2.9 Crystal Habit

SfThe shape‘or form of the individual crystals making up the
crystalline éro&ué; is referred to as the crystal habit. The struc;ure
of the.crystals is a regular, three-dimensional pattern of ﬁtoms in
space. ' These patterns are made up of repeatéd identic;I*unifs, or unit
cells, which are joined together.by either primary or seéondary bonds .. ..
in either a éégglar or irregular way. The iréegularities are referred
to as lattice d%fects. In practice, most crystals are imperfect and it

- .
is these defects which determine some of the important properties of the
crystals, sucHi;s: resistivity, éurity and strength. The geometry of
a unit cell remains invarign; for a particular crystal syétem, regard-
less of changing eﬁviroqmentalréonditions. On the other hand, the rela-
tive areas of the different faces of a unit cell are strongly influenced
by the crystal's environment,‘q;fh the slowest grgyihg faces dominating
N
the shape or habit of the crygﬁél. What actually influences and/or
e

controls crystal habit is pobrly‘understood; certainly it is unique for
each crystal system. It has been observed that habit has been'influenced
by type of solvent, pH of solution, ;mpu}ities [particﬁiarly surface
active agents), degree of supersaturation, rate of cooling, temperature

of crystallization, and degree of agitation (ml):
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2.9.1 Alumina Trihydrate Crystal Shape

Thg unit cell for the alumina trihydrate crystal has a monoclinic
shape (mé), i.e. three axes of unequal lepgths with two axes inter#écting
at right angles. Figure 4.4-C shows a'ppoto micrograph of typical alumina
trihydrate crystals. It shows that the crystal is made up from regularly
shaped monoclinic structu}es which are joined together to form an irregu-
larly shaped crystal. The reguiar shapes are joined together byAprimafy
bonds {g4) to form 'true' crystals, as opposed to for instance graphite,

which is made up-of layers held together by secondary molecular forces.

-

-

4

2.10 Modelling of a Crvstalli:zer

As for any pracess, two basic modelling approaches can be followed. .

for the modelling of a crystallizer. One-is a purely empirical approach
a A
and the other is based on mechanistic contepts of the underlving process.
The empirical aﬁpfoach is very limited in scope and only suitable for
modelliné of small dimengiongl problems wikhout providing any extrapola-
tive power. A ﬁechanistic approach on the other hand allows one to deal
with liarge dimensional problems, as it pertains in many crystallization
systems, and given that the mechanistic concepts of the underlving
proéesses are correct a model based on fundamental mechanisms allows for
extrapolation and possibly even transfer to other crystallization svstems.
The mechanistic appsoach has the following‘advantéges over an empirical
one: -
. - It éliows the modelling of large diﬁensional problems with

»

complex iInteractions among the variables.
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- It allowé for predicfions with reasonable confidence beyond
the'range of the modelled variables. Thus this approach most
often leads to model§ with extrapolative-perrs.

- It provides. for model development with 2 minimum of experi--
mental effort.

- It provides a meaﬁs of furthering or developing knowledge of
the underlying processes that govern the overall behavioﬁr of
a particular system. .

In view of these a@vantaggsrand the fact that the alumina tri-
hydrate crystallization problem isycomplex with highly interactive pro-
cesses, 3 mechanistic approach was adopted for this work. Thq trend in
crystallization work seems to be towards the increased Qse'of mechanistic
models (rl,h4,ml,nl). The difference among different investigators is
in the complexity of the proposed me&hanistic models and the corresponding

extent of empiricism.

2.10.1 Mechanistic Model

In general, 2 mechanistic model which will allow prediction of
crystal production as well as crystal size di¥stribution, requires applica-

tion and develdpmept of:

A. Conservation Laws

1. Mass balances.

tJ
"

Energy balance.

[ 93]

Momentum balance.

4. Cr?q&al;population balance.
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B. Constitutive Relations

1. Crystal growth kinetics.

2. Crystal nucleation kinetics.

- 3. Crystal agglomeration kinetics.

4. Crystal attrition kinetics.

.C. Empirical Semi-Empirical Correlations:

1. Solubility data.
2. Solution density data.
3. Crystal geometry data.

Each of these will be discussed in turn as they apply to the

.alumina trihydrate system under study.

2.10.1.1 - Conservation Laws

The conservation equations are of the general form:
]

~Accumlation = Input - Qutput + Net Generation (2.26)

where the conserved quantities are:
- mass
- energy R b

- momenium

H

~ crystal numbers.

-

The first three are the familiar conservation equations that are

often considered in process design where flows of material, energy, and
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momentum into and out of equipment have to be accounted for. Vessel
' hydrodfnamics determine the spatiai distribution of these quantities
with plug flow béhaviour at one extreme and well mixed flow behaviour
at the other.

The fourth conservation law, the crystal population balance,
accounts for all crystéls, as they are remdved or introducgd into a
vessel and nucleated, agglomerated, attritted, and grown out of and into
different size ranges. This 'keeping track of' individual species is
not usually done in chemical unit operations. Depending on the type Sf
operation it ming>gr might noﬁ provide additional information over that
obtained by appliéélion of the usual conservatfon laws. However, the
unit operation of crystallization, among others, is a definite candidate
for the application of the population ﬁalance. Cr;étallization'models
that are not based on the.population balance will provide at best the
crystallizer production rate and some average or mean.proddct size. Such
models are laigiéy_empirical and appl;c;bie only over a narrow range-;}‘
operating conditi;ns. Use of the population balance, on the.other hand,
will result in models that predict the production‘raqe as well as the
Jcrystal size distribution at any insﬁant in time and place. This provides
éga means of optimizing the crystallizer operation and at the same time

produce'a product with an acceptable size rangé for further processing

or héndling.

2.10.1.1.1 Conservation Laws for the Batch Alumina Trihvdrate System

‘ ‘ r - - - -
For the alumina trihvdrate batch crystallization operation the

conservation equations are:
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1. Mass Balances °

(1) Overall d
d_ v + W}l = 0 (2.27)
dt "L Py T -

(ii)  Alumina Component

4

dT'{V'L CA + .654 Wl = 0 ' _ (2.28)

(iii) Caustic Component

%_?-{VL N} = 0 (2.29)

‘where %: Wr is obtained from the population balance and Pe i1s related to
CA and CN by an empirical relationship presented later. These eguations

are derived and discussed in detail in Chapter S.

2. Energy Balance o w

In this work the energy balance is not required since the batch

experiments will be carried out isothermally.

vy

3. Momentum Balance

In this experimental program, the batch crystallizer is operated
with constant agitation; thus, the internal and external forces are mafin-

- .
tained essentially_cSﬁstant and the momentum balance does not play a

direct role in the model. It must be remembered, however, that although

”
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L i
the momentum balance is neglected in the model, the intensity and mode

LY

of agitation indirectly affect the crystallization process since many of
the parameters in thg model will be a function of the intensity of agi-

e

tation. These effects are beyond the scope of this study.

4. Population Balance

This balance provides the framework for a particulate mechanistic
model. The success of developing such a model will depend to a large
extent on an abjility to solve the mathematical complexities and difficul-
ties associated with the population balance equation. For the batch
alumina trihydrate system and under certain not too restricting assump-

tions this balance is givem by:

BF, ) = -2 (GFy,.) +V (BF: . + BF - DF -
Gtvt, T EVD T e T Py e T Pyea
accumulation  output-input ' . T *
of crystals inte size V '
of size V due to crystal

growth .
+ BFV,i,b - DFV,z,g) {2.30)

output-input into size V due

to crystal birth and death —

processes, €.g. nucleation, /
agglomeration, and attritégi_’///

The initial and boundary conditions for this equation are

respectively:
~
FV,T(V’O) = FV,T,O(V) (2'31)‘
and ;
F, m{(V ,7) = 0 <L (2.32)
vV, T 0’ C

— N
A
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e -
This equation is derived in Chapter 5. It can bef solved once

the constitutive relationships are known. The complexity and corresponding
difficulty of solution depend on the form of these relationships.

\

. . . &, .
2.10.1.2 Constitutive Relations; Alumina Trihvdrate Svstem Relations

These relationships relate the basic crystallization phenomenon,
as discussed in Sections 2.4, 2.5, 2.6 and 2.7, to the process variables.
They indicate thé kinetic behaviour of each crystal while the population
balance keeps track of the change in number of crystals of ;ach size.

In general terms, the constitutive relationships are giveﬁ by

the following functionals:

(I) Growth Rate

Gy = 0g{V,8, (A - CA)L ‘ (2.53)
. y
(I1) Nucleation Birth Rate S
BFy s = falVs8N, (R - CAL)LAPA] (2.54)

(III) Agglomeration Birth and Death Rate

N
'BFy g4 " DFy 3.2 ™= ¢b’a{v|,(v - V), 8, (CA - CA),
Fy p(V1)LFy 0V - V'), APA) -
- 8y LEV,VT,8, (CA - CAej,FV,T(V),pV (1), 4PA}

...... (2.33)
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(IV) Arttrition Birth and Death Rate

; ’ BFy,ob " DFy g p = & V'V, (V' - V),8,(CA - Ca),Fy 1(V'),APA}
- ¢d,b{V’V"V - V',s8,(CA - CAe),FV,T(V),%PA}
e (2.36)
where V - 6fystal volume

F = crystal size density function

8 ' == temperature

W, = crystal mass weight per unit suspension

CA - CA, = supersaturation

APA T - variablg Telated to type of apparatus and intensity

of agitation
’ The first three of these functionals will be develéped in this : \\;‘~J

work. Sections 2.4, 2.5 and 2.6 present the information which is cur-
réntly available in the literature with regard to these functions for
crystélli:ation systems in general and for the alumina trihydrate system
in particular. The behaviour of the alumina trihydrate system during

the induction period and the effect of operating variables on the crystal
habit will not be investigated in detail in this program, although
obvi;usly, their effect will affect the course of the batch crystalliza-

tions.

2.10.1.53 Empirical Correlations; Alumina Trihvdrate Svystem Correlations

These type of correlations provide basic information with regard

to such variables as solubility, solution density, and crvstal area-volume

relationships.
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A. Solute Solubility

Solute solubility is required to establish the level of super-
saturation at any instant or under any given operating condition. Super-
saturation is one of tﬁe basic operating variables and‘is the driving
force for the crystallization processes of growth and ﬁucleation and also
indirectly affects agglomeration and attrition. The relationship of
solubility to solute, concentration, temperature and the concentration
of other solute and/or impurities is a basic requirement in any mechanistic
model for a crystallization process.

Misra (#4) developed the following relétionship for a pure

A

alumina trihydrate-sodium aluminate system:
CAp = CN x exp{6.2106 + [((1.08753 x CN) -§2486.7)/(275.16 + 8)] )
with a range of applicability of: g 25 -+ 100°C
CN 30 -~ 320 g Na,0/2 sol.

B. Solution Density

Solution density is required to relate the solution volume and
concentration variables to the mass balances. Misra (m2)} developed the
following empirical relationship for solution density of this system:
oy = 1.051 + (9.92x107% - 1.1x1077 x CN) x CN + 5.66x107% x Ca =

+ (-9.4x107* + 5. 1x10% x5y x8 ... (2.38)
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With a range of: g 20 + 100°C

CN 50+ 250 ¢ Na20/z sol.
CA 15 - 300 ¢ Alzos/z sol.

e
C. Crystal Geometry Relationship

aﬁhﬁ\‘f\‘““‘- Crystal geometry establishes a relationship between crystal

volume and crystal area. Crystal volume and density are required to
establish a relationship between size and mass; crystal surfaée area is
required in any crystal growth rate model. In this work, the crystal
volume distribution of the crystals is measured by a Coulter Counter;
hence some relationship is required between this measurement and the
surface area of the crystals. This relationship is difficult to establish
since it depends on the shape of the crystals, which in turn depends on
the agglomeration and attrition effécts in the cTysta i=er. Moreover,

these effects may cause a change in shape with crvstal size.
Scott (gl) has attempted to relate crystal volume and surface
area through a variable ¥ which he calls an angularity factor, which is

defined as:

- surface' atea of particle
surface area of sphere of equal volume

It is noted that this angularity factor is the inverse of the
'sphericiiy' which is a shape factor used in flow through porous media
(£1) and in sedimentation theory- (wd).

Scott (gl) determined ¥ by measuring the specific surface area

by air permeability and by calculating the 4?3%~fr°m particle size distri-
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bution measurements assuming pe t spheres. Particle sizes were deter-
mined by sieﬁing and by sedimentation. He presented a table of values

of ¢ vs. D which were correlated by the expression: -

¥(D) = 1.9055 - (1.0562x10°2 + 2.924x10°% x D) x D (2.39)

where D = equivalent sieving or sedimentation diameter (um)
Although y probably varies with other process variables, here if is
assumed that it is only 2 function of particle size,

The system of empirical, copstitutive, and conservation equations
which has been presented constitute a mechanistic model for the batch
crx;tallization of alumina trihydrate. It predicgs the crystal produc-~
tion rate as well as the crystal sice distribut:ﬁ at any instant of

batch time.

\‘ - -

-
-
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\“ | © CHAPTER 3

EXPERIMENTAL; MEASUREMENT OF PROCESS VARIABLES

Pl

3.1 Crystallization Experiments; Introduction

During the develongpt of any mathematicai model for a systenm,

‘the formulation of its mathematical equations should be directed by
exper1menta1 obse;vatlons and the desire to explain these obs*;}atlons

by the model. This procedure ensures fhgt the final model will include
most, if not all, of the important phenoéena occurring'ip the system.

Ig addition, experimental measurements/observations are required to
" discriminate among alternative models which are possibie and/or allow the
evaluation of parameters within the overall model. This procedure should

nsure that the 'best' fit of‘thé experimen:ai data by the model ensués
Zan the confidence intervals on the parameters and the 'goodness of fit’

of the model are determined. The éxperimental progr%m'which is described

herein was designed to provide the required informatipn for the model

development whict_ii/gaﬁb;igff in later chapters. ‘;

!

3.1.1 Experimental Features of the Alumina Trihvdrate System

The alumina trihydrate system has several features'whqu affect

. the choices%f a bench-scale experimental apparatus. For example, it is

known-that the crystal growth rate is relatively slow, that is of the

order of a few micrometres per hour. This results in relatively long -
) . . - . by
batch or continuous crystallization experiments,”and this in turm means

that the system conditions change relatively slowly with time. This also
, : : = ‘
~ 62

(N~



means that it is not critical to control the sampling and sample analysis

procedure to ;ery short times. ‘It is also known that the agglomeration
of crystals occurs at a measureable rate. This phenomenon does not
‘present any serious expeéimental difficulties except that the crystal
size distribution covers a'gide rang; of particte sizes. It is also
known thgf the alumina trihydrate system does not nucleate readily “from
a supersaturated ﬁomogeneous solution (highly supersaturated solutions.
may befstored for very long times_without nucleation), but &oes exhibit
very significant secondary'nucleation. Whether this is true secondary
nucleation or a manifestation of very féiable (weak) crystals which
exhibit high attrition rates is opqﬁ to conjecture. Because of these
phenomena and thg basic mechanisms involved, it is éxpected that the
observations on' the cr&stallization.of this system will be verv apparatus

k)
dependent. For example, it can be expected that verv vigorous agitation .

will promote secondary nucleation or attrition. Thus, if it is desirable

to minimize the nucleation rate, agitation should be as gentle as >

practically possible. On the other hand, reaggnapie mixing of the system
is required to ensure that the crystal suspension and solute are uniform

throughout the solution. ‘ .

The fact that supersatura;;E\SOIution$.are verv stable, means
that preparation and handling (preparation, cooling, filtering) of this

solution is quite easy. It does wean, howeyer, that in order to carry

1

- out the crystallization process, the supersaturated solution must be
L] - .

*seeded' with alumina trihydrate crystals -and thus, the size distribution

of this seed must_bé kqown.



3.1.2 Experimental Variables -

The basic variabIES'for a crystallization proceég are solution
supersaturation, tempera;ure, and crystal size distriﬁution. Solution
concentration determines the driv%?g force for the rﬁfe of crystallization
processes. Temperature Qgtermines the equilibrium condition at the
crystal-solution interface andrtpe rate Lf the different processes. The
crystal size distributipn and Fhe total mass or number of crystals deter-
;ines the inferfacial surface area and thus indirectly governs these-rate_
proéesses. Thus it is important to measure crystal siﬁe distribution

1for_a'mathematical modellwhich is capable of predicting not only the &
crystél production rate but also the_size distribution of the product.
Such a ﬁddel cannét be developed without knowledge of or a dirétt measure-

A o .
ment of crystal size distributibn with time. It is ﬁo be noted that
dlthough solution concentration and température_;re straightforward
measurements, the measurement of crysta} size distribution can be ‘rather
&ifficult. This difficulty is related in part fs the range of crystal |
sizes that must be measured and to the strength of the crystals, their

shape, etc.

3.1.3 Batch vs. Continuous Experiments

The experiments may be carried oﬁt ié a batch or a continuous
crystéllizer.\ Each processing scheme has its advantages and disadvantages.
In most cases, the batch system is easier and cheaper to set up. On the
‘other hand, sincetHB\gEEii;Z;?s in a batch éyszfm change continuously,

‘it is more diﬁficult to ext ct.representaf§Ve samples. In the alumina
trihydratelfygtem, ;he batch gystém is %deal Since the solution needs fo

/ - : ' r

an”
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. but may not be serious if the variation is relatively small.

65.

be seeded and the changes occur relatively slowly and hence little

difficulty is\experienced with it. On the ot&er hand, mathematical

modeling is more difficult for the batch system if agglomeration takes

Place 0 any extent. This difficulty arises since for a batch system

an int§gro-partial differential equation needs to be solved in order to
predict the qrystal-size distribution with time.. For the continuous

system, it is mgcessary to solve an integro-ordinary differential equa-

. tion. Both systems prasent difficult numerical problems although the

batch probiem i more difficult.

Randolph (rl,r8) has™geinted out another possible difficulty with

A,
a2 continuous process; that is, hefact that such a process may exhibit

cyclic behaviour under certaiw conditions. This means that the system

1s never at' a true steady-state condition but keeps changing continuously

with time. The problem of replicating results is an obvious difficulty

It is to be noted that a- continuous crvstallization procéss~m£?_“\\ﬁ\\__\\
take a relatively long time to reach steady state and -then this steady
n l*\"' =
k
state provides one set of data at one particular operatlng condition.

-

This 1€ads to tedious and expensive’ experimehtal_work. In.the batch

system, each experiment covers a wide .range of experimental conditions

and hence provides a lot more information from each experiment.

In this work with.the alumina-trihydrate system, a batch system

does not present any particular disadvantage from an experimental stand-
- "’\

p01nt. Certalnly, it is expected that this bench-scale anQ’;atus should

not necessarllv behave as the full-scale 1ndustr1al batch Ulant because
*» -

some ‘of the crystallization processes are apparatus dependent.

4 . . Ld
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3.1.4 Mixing of tﬁe Crystal Suspension

In the design of the batch system, it must be kept in mind that
the mode and degree of mixing are important. In general,. vigorous
agitation ;nhances secondar} nucleation, and probably slows down agglomera-
tion. It is probably for this reason that in the industrial plant mixing
is carried out relatively gently by means of‘an air-lift system. Thus,
in order to have the rate processes of the same relative importance in
the bench-scale model, it is important that the mixihg be relatively
gentle. Practically this may be achieve@ by using an air-1ift or by
slowly tumbling a partly-filled crystallizer through 360° in an oscil-
latory manner. The action of the ;ir bubble in this container provides
sufficient mixing to maintain a homogeneous suﬁpension while subjecting
the crystals to minimal forces. Both.methods of mixing should closely
approximate the plant mixing method, and therefore have a similar effect
on the érystallization,rate procésses. If this was not done it is con-
ceivable that the agglomeration would be small or. insignificant in the
bench-scale while_in the actﬁai process, it could be an overriding effect.
The model for the bench-scale expe?iment would th#s not be applicable at

all to the actual fuli-scale operation.

3.1.5 Pure vs. Impure Solutions ] ' : 3

»

In this type of research work,.it is possible to work with- pure

solutions, or with solutions which might more closely represent the solu-

.

tion as it exists in the plant. A pure solution contains only sodiuym

hydroxide and sodium aluminate dissolved in water, whereas the plant solu-

tion contains, in addition, such chemicals as iron, silicates, organic

fiy



67.

material such as oxalic acid, sodium carbonate, etc. Since these
impurities add another dimeﬁsion to an already large and difficult
Ve 'ﬁroblem, it was decided to use pure solutions in this research program.
The effect of impurities can thus be determined independently later.
It is expected thet the mathematical models will have the saﬁe form,
but the parameter values may be different in the impure sﬁE?Em;_certainly
' k3

the equilibrium solubility is expected to be affected by/the impurity

level.

3.1.6 Caking and Corrosion Problems

‘AJproblem of particulaf'iﬁpoftance in this crystallization work
o is the 'caking' problem which resuits in a crystal mass growing on the
walls of the container. In 2 small bench scale apparatus with large
i sﬁrface-to-voluﬁe rtatio, this crystal layer can affect the overall
'crgstalli#ation proeess significantly. At the same time, it is difficult
to model and its effect will not be nearly as important in the large-
scale eystem., Thus; the bench-scale  apparatus should be comprised of
: : . \
material which has-a"non-sticking' characteristic for the crystals .(this
-iﬁpliee that ;mperfections, etc.'will_not cause nucieation-of crystals
on the walls).. Moreover, the material must also be inert-to a hot sodium-

-
e

aluminate sclution.

3.1.7 Initial Batch Conditions and Batch Sampling

In a batch system, it is important to be able to control the
Anitial conditions; such as the supersaturation level, temperature, seed
* concentration, seed size distribution. The seed must be prepared in a -

. -
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standard way s0 that the initial induction period is approximately the
same for each run. The control of initial conditions is necessary ' if
Teasonable replication of any of the ex;erimental runs 1s to be achieved.
Without replication model discrimination is more difficult.

The sampling procedure of the Batch-system has to be well thought
out. It is necessary to. obtain a represeﬁtafive sample from the crystal;
lizer in a short time withoutlaffecting the sample or the suspension in
the crystallizer. The sampling procedure must not affect the crystallizer
operation or else all subsequent measurements could be correlated with

it, which would introduce additional problems in the analvsis of the

results and in the estimation of parameters.

3.1.8 Sample Analysis Difficulties

A

Once a representative sample has been extracted from the ¢rystal-
lizer, there still remains ﬁhe difficult task of sample.analysis. First,
after the crystallizer contents are‘sampled, it will be necessarv to
extract a relatively small representative sample from this sample for
crystal size analysis. The.remainder of the sample is then used for

-

" solution analysis. .
L ]

The analysis of the solution can be doné by welllestablished

titration procedures. On the other hand, a particle size analvsis is’

.

~

tedious and.difficult to obtain without considerable.cari’ii§>expertise.
The problem with the present system is that the crystalﬁ are relatzvely
weak and hence the particle.size dls;rlbutzon must be cétalned in a short

time with gentle treatment of the_sample. In addithon s it is important

to measure the distribution over as wide a range of sizes as possible.
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This will facilitate the modelling work. The next sections show how

these experimental difficulties have been tackled and solved.

3.2 Bench-Scale Crystallizer Apparatus

»

Since the bench-scale apparatus was to provide éxpergfnce in

testing and modelling a lafée-scale unit, it was desirable to design thé
bench-gcqle unit so that it would behave similarly to the plant crystal-
lizer. fhis behaviour is directly related to the mixing characteristics
within the crystallizer since the degree of mixing probably affects the

rates of nucleation, attrition and agglomeration in this chemical system.

Thus, the basic requirements for the bench-scale crystallizer are:

1. Gentle !ixing

The industrial crystallizer-employs an air-lift within or outside
of .the crystallizer. In the bench-scale apparatus, the gentle mixing is
achieved by rotating the entire crystallizer slowly backward and forward

through 360°. The air bubble within the crystallizer provides the required

mixing.

2. Temperature Control

The crystallization reactiohnis slightly exothermic. In industry,
tﬁe ;rystallizations are usually carried out at about GOOC. Some cooling
'is piowided; however, the sclution may increase several degrees duriﬁg
the initial stages when the rate of crystallization is relatively high.

- \' ' - - -
In the bench-scale apparatus, isothermal operation is relatively easily
el
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achieved by surrounding the crystallizer with a temperature-controlled
‘water bath. The large surface-to-volume ratio ensures isothermal opera-

tion over the enti:gﬁfrystallization period.

ALY
*

3. Rapid Charging of Chemicils

A method of chafging the seed and solution rapidly and achieving
intimate mixing rapidly is requi?ed to establish known initial conditions.
This is important in any unsteady-state operation. The requirements here
are ﬁot_too stringent because the batch times are in the order of 24 h:;
however, much of the crystallization occurs over the first hour OoT two
and if a good initial condition is not achiéveé, this can affect all

subsequent processes.

I

4. Representative Sampling . -
' \

It is required to obtain representative samples in order to

determine the instantaneous supersaturation level, the particle-size
- : 13 = + ) - ) - \ -
distribution, and the solids concentration, all of which are required

in the latter modelling work.

5. Negligible Cakin

-
-

The main £rystallization processes should occur in solution.
This means that ahy nucleation and subsequent growth of crystals on the
Va b . ~
walls of the small crystallizer should be avoided as much as possible

since this behaviour would add further complications to a process which

is complex already.
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3.2.1 Develdpment of Crvstallizer Apparatus d

The development of a sultable apparatus for these seeded batch
crystallization experlments is reviewed here since many of the sallent
featu}es of the final apparatus grew out of this program. The'develop-
ment'program‘invglved the designing and testing of four bench-scale
crystaliizef;. A brief description of the design and operating features
of each of them is presented below along with their major operating
problems.

Flgure 3.2.1-A shows the first crystallizer tested. This unit
was a scaled-down version of one type of industrial crystalli:e}. The

external air 1ift system, which provides the mixing, is a common mixing

rrangement in the industry. .In its operation in the laboratory, the
a\r flow was adjusted to providé near‘maximum pump-around r;te (as
observded directly). The air was saturated with water at the crystallizer
operau1ng uemperature before it was fed to the crvstalll er. _As
crystalll_atlon of the seeded solution occurred, it was observed however,
that a significant amount of alumina trikvdrate deposited on the StalanSS
steel walls of the ;rystalli:er. Thus, becau;e of the modelling difficul-
ties diséussed earlier, this crystallizer design had to be abandoned.

To overcome tﬁis deposition problem, a second crystallizet was
constructed,_as shown in Figure 3.2.1-B. This apparatus had éhe following

design features:

I

1. It was made from pyrex glass which, although attacked sllghtlv
by the caustic solutions at the concentrations and tempera—
tures employed, was not expected to. provide a surface to which "

alumina trihydrate crystals would adhere.
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FIGURE 3.2.1-B 'G]:gss Batch Crystallizer with Air Lift
. -

g 180 mm

- "‘7/_‘ tube for sampling
' |
T T

_'/"

| .
I seed and solution

_,,,/A charge tube

vent

- . ; blind tube to hold

mercury thermometer

O

—-—-:———— Jevel indicater

1/2" air 1ift’

/— air supply

-



74.

2. 1t was e;sily constructed and its cost ;as relatively small.
Moreover, it could be easily modified.

3. The steep cone angle kept the solids moving rapidly downward,
thus reducing thg probability of crystals sticking to the
walls. |

4. It was also mixed by an air 1ift system. The off-center
position of the air 1lift retumn imbarted a swirling movement
to the slurry. This facilitaté& pixing and at the same time -
hindered settling of solids on the crystailizer walls. .

However, it was found that for hig

solids loading the air 1ift
capacity was insufficient to remove the solias from the bottom of the |
crystallizer at the required ratre. This resulfed in blockage of the
elbow connecting the vessel and ;ir lift‘tube. Also,‘it was observed .
that after a few experiﬁents some 'caking'-on the walls started to occur.
Déposit§ were formed on locations where the glass, had become 'rough'.
Thus, although the caking on the walls had been reduced, it still presented
a serious problem with this apparatﬁs; The problem seemed to be associated
with the material and finish of the walls of the c%ystqllizér. For this
Teason, the use of plastic was investlpated.
The third crystallizer, shown in Figure 3.2.i~C, was made-entirely
of plastic m;terial. 1It had‘tge following gesign‘features:
1. It was constructed entirely offglasfic which is inert towards
the caustic solution at all operaéggg conditions. The plastics”
in contact with the caustic sclution were polypropylene and

teflon while the gohstant temperature bath was made from poly--

‘carbonate.
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It was rocked backward and forward through.SGOo, thus

providing quite good mixing (from the air bubble which °

moved up and down through the suspension}, while at the
. 3 ‘ - - " .

same time not subjecting the suspension to desﬁructive

-

agitation.

" The sampling arrangement allowed for the extraction of

separate "known volumes of suspension from the crystallizer.

-

for solute analysis and for crystal size distribution

analysis on an absolute basis. v

The sample which was used for crystal size analvsis cbﬁld

be brought into contact with an inert solution very'quickly,,.ﬂ

thus quenching the crystallization processes. )
The sample used for solute analysis-was filtered'gﬁ<§;;;:
thus providing fast separation of the supersaturated solu-

tion from the crystals. These sampling procedures meant

‘that the sampling time was well defined.

ot

Although this’ crystallizer performed satisfactorily in all ways ~

-

relat%xsugo the previously observed problems (no caking on the wails, good

mixing), it failed in other respects as follows:

1.

- -

The plastic crystallizer and -supersaturated solutidn pre-

heater 'buckleaT_at the process operétingtconditions. This
. ’. . " . N d
was caused .by the loss of strength of the polypropylene at

the operating temperature. .

. {
A discontinuity in the solute concentration-time curve was

- -

observed at about each time of sampling.i:éﬁis;was attributed

x

. . . . ) . ot
to contamination which was introduced wh@n_the solid sample”

<

TN
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was extracted, since this procedure tould have introduced
a small amount of the electrolyte used to quench the reac-
tion and provide the media for the Coulter Counter particie
size analysis. This electrolyte probably affecteg the
crystallization processes. .
In spite of these negative features, this design-had the folloﬁing
very significant positive.points:
. 1. The method of mixing was satisfa;tory.

2. C(Caking did not occur.

3.2.2 The Experimental Crvstallizer

The final design of the experimental cr?staliizer was based on
the experience gained during the development stages. Thus, the experi-
ment;}lcrystallizer,-as shown in Figure 3.2.2-A, was made of nylon ‘sup-

.
ported by an aluminum casing; it a1§6 was equipped with a modified
samplipg\§ys§em. The design and‘constructién_depails were as follows:

?h;‘crystallizgr consisted of a 3.8" diameter by 14.5" long,
closed plastic (nylon) cylinder which, because of its lack of strength
at ;he operating temperature, was enclosed.in an aluminum cylinder.
Fortunately, aluminum and nylon have about the.same coefficient of thermal
expansion: The crystallizer was contained in ancther closed vessel con-
taining thermostatically-controlled water. The-entire system was hgld
at its balance point by aﬁ axle as shown and rotated at about 5 éo é RPM
first through 360° in é clockwise and then through 360° in a counﬁer-_

clockwise direction.



FIGURE 3.2.2-A -Experimental Batch Crystallizer
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A gentle:mixing action resulted mainly from the action of the
; .

air bubble in the crystallizer although some crystal motion would occur

. " " /
because of the changing gravitational force and the effect of the small

centrifugal force. Diragt observation in a transparent system indicated

that the mixing action of the air bubble was good but relatively gentle.

The crystallizer was equipped with a saméle port.whi
during ﬁormal operation. When é sample of the suspension was t
extracted, the crystallizer was stopped in aﬁ upright posjtion, the sample
port Plug removed and a dip-stick type sampler, as shown ip Figure 3.2.2-B,
was inserted. So as not to affect the-crységllization pfocé in the
cry%&allizer, it was rinsed with distilled water and heated to the
crystallizer opé}afing teﬁperature Befére sampling. The extracted sample
was processed separate from'the crystallizer in order to avoid the con-
tamination problem which was encountered previously.

The crystallizer and sampling scheme was found to be completely

satisfaétory from all standpoints.

5.3 Preparation of a Supersaturated Solution of Sodium Aluminate

The batch crystallization experiments required a supersaturated
solution of sodium aluminate. This supersaturated solution Qas prepared
by digesting a known amount of A1203.3H20 in a hot caustic solution.

The Al,0:.3H,0 crystals were dissolved or digested at about 300°F
in the aﬁparatus shown diagrammaticall? in Figure 3.3-A. The temperature
was obtained and maintained by passing steam at 100 psig through a copper

coil which was wrapped around the outside of the cylindrical part of the

stainless steel tank. To prevent settling of the A1203.3H20 crystals,
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FIGURE 3.3-A Alumina Trihydrate Digester
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the whole apparatus was rotated at about 50 rpm while the steam flowed
through the coil. After the solution was digested at tempergfﬁre for
about an hour, it was cooled, filtered and stored for future use.

This supersaturatéd solution was very stable and could uéu@lly
be kept in its supersaturated state for up to a few days depenu;ng”ﬁpo .
the supersaturation level. Just before a cryst;lli:ation experiment, ?D
was preheated 'to the c;;stallizer operating temperature and then trans-
ferred to the'crysiallizer.

A compﬁter program which calculates the required quantities of
wéter, caustic and alumina trihydrate to make up a desired composition

Is presented in Appendix E. This program accounts for temperature

effects by means of a dilution factor.

5.4 Preparation of Alumina Trihydrate Seed Crystals ‘

It is well known with this crystallizing system that the pre-
treatment of the seed material can affect the crystallization processes
during the initial stages of batch crystallization (m2). Therefore, the
seed material for this batch crystallization experimental program was
prepared in an identical manner before each experiment. This procedure,
as deséribed below, was developed by experimentation to ensure that the
lnitial attrition in the crystallizer would.be 2 minimum.

Initial seed crystéf?}&ere obtained either from a very highly
Vo
\_7,

—_
~

supersaturated solution thr?yéh heterogeneous and secondary nucleation,
. \ X .

or from chemically pure alumina trihydrate crystals as obtained from a

supplier. In each case, the size distribution was relatively wide and

the average diameter was quite small (of the order of a few micrometres).
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Because of ;he limitations of the Coulter Counter (to be discussed later)
which was.-used to measure the crystal size distribution, only the.upper
part of the seed size dist;ibﬁtion could be measured; the lower end of
the distribution (less than 4 pm) was unknown. This presented a
considerable difficulty in the médelling work, since this initial condi-
tioh in the model was ill-defined. The only ;ecourse was Lo assume some
size distribution function over the unmeasured'size interval and estimate
parameters in this function (in a least-squares sense) so that the overall
weight of seed as calculated from the distribution was the same as
measured. To minimize the error in this procedure, the fraction of seed
with size less than the smallest measured value had to be minimized. To
achieve this result the fine seed material was introduced into a gently
stirred supersaturated solution and thus causing the crystals to increase’
in size by growth and agglomeration. The resulting crystal suspension
was either:

(a} . filtered and dried at 110°C and then stored, or

(b) diluted with water to achieve a saturated solution in which

the crystals were stored until required for use.

It was observed, however, that if these crystals were subjected
to agitation their size dis;ribution would shift progressively towards
the smaller end. That is, by direct measurement it was determined that
the number of crystals in the upper size intervals would decrease while
the number in the lower éntervals would increase. It was determined
experimentally (g3} that after approximately two hours of intense stirring

of this seed material, no further attrition took place; therefore, crvstals

so treated were regarded as 'stable’. It was hoped that this procedure
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‘would minimize the complications which could arise at the start of a
crystallization experiment as a result of an unknown attrition Tate

which would be difficult to reproduce.

gy .

Before the start of each experiment, thérefore, 2 predetermined

amount of seed was weighed and suspended in a saturated solution, and
then vigorously stirred for approximately two hours. Afterwards, the
seed suspension was preheated to the crystallizer operating temperature,

bl

and at the start of a batch experiment transferred to the crystallizer.

3.5 Alumina Trihydrate Batch System Process variables

To define this two-phase, fou:ksggponégt system, the Gibbs Phase
Rule indicates that at eguilibrium four variables must be-specified.
These are: - i -
1. Solids concentration, Wz.
2. Alumina concéntration, CA
3. Caust i_c concentration, CN

4. System pressure, P
In addition to these intensive variables, it is necessary to specify the
extensive variable: total suspension volume, Vo, in order to specify

total quantities.
For a batch system, it is necessary to medsure these variazbles
at known times from the start of the crystallization. This information

gives the rate of change of these variables with time for any given process

condition. : \

The solids concentration can either be measu:eﬁ directly or calcu-

lated indirectly from.crystal size distribution measurggents. The advantage

AY
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of crystal size distribution méasurement_is that it can be related to the
basic crystallizatisn‘processes, such as growth, nucleation, agglomeration,
and attrition. %or example, the overall growth rate, which is reflected
in the ‘rate of decrease ig solute concentration, will depeﬁq on the total’
surface area of the particles which, in turn, is related to the total
' mass éf sélid_ani its size distribution. The solids concentration measure-
ment, on the other hand, will allow only the deéelopment of empirical -
models and such models would require a large experimental effoft_fof a
relatively small return in information. Moreovér, model development work
based on crysial size distribution will greatly enhagce'thg understanding
of the overall crystallization process, and the relative:significance of
and interaction between the different crystailization pkenomepa.

For this reason, the variables which were measured or held constaﬁ;
for this work are:

- seed weight and initial solution volume

- batch crystallization time

- suspension temperature

- ¢rystal size distribution (on.an absolute basis)

- solids concentration

- alumina conc;ntration -

- caustic concentration

- method of seed preparation

- type of crystallizer

- intensity of agitation

- impurities concentration.
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L]

pr%ng the experiments in this program the following conditions
prevailed:':' ’ | _HJ ‘
| ‘ (a) The témperature during any one experiment was maintained
at.a constant value by the thermostatically controlle@
water bath. fhis meant that iﬁ the model formulations, the
energy balance, with all the complications of predicting
heat transfer rates, could be distegarded.
(b) Use of the same type of crystallizer aﬁd mode of mixing
: \\_' meant that those processes, such as attrition agglomeration
~and-to' some extent nucleation, which depend on geometry and
intensity of agitationm, should not vary as a result of
these variables. : l ' !

(¢} As indicated earlier, the.\eed was prepared in an identical.
way to reduce the effect of a highly Qariable seed quality
which could not be measured.-

(d) Although impurities are present in industrial processes,
this complicating effect was avoided here by using a
chemically pure reacting system.

The variables which were measured for -each experiment as a func-

tion of time were: suspension temperaéure, crystal-size distribution
{on an absolute basis, - number of a given size per unit volume), solids

~.

concentration, dissolved alumina concentration, and caustic concentration.

" i
The range of these variables in the experiments was as wide as practically
possible and cértainly included that of industrial importance. This wide
range ensured that the model which was to be developed from the experi-

mental data would have a broad range of applicability and also be tested
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over a wide range of conditions where all crystallization phenomena
would be interacting and proceeding at\a significant rate. In this way

also the likelihood of formulatin® thi\correct model is improved and the

-

parameter estimates in the model should\hg\good.
v'ﬁkr )

"™

3.6 Batch Crystallizer Sampling Procedure

—
In developing a sampling procedure for this batch crystallization

experimental program, it was necessary to satisfy the following features: °

b .
1. The extracted sample must be 2 representative sample, that is,

-

o

it should not introduce any bias into the result.
~.2,/ The time to remove and isolate a sample must be insignificantly
small compared to the time of the experiment.
3. The samplfﬂg procedure should no£ interfere with the course
of the crystallization process.

4. The sampling procedure.should not affect the sample in any

way.

Based on a number of tests, the following sampling equipment and
procedure wefe found to satisfy thése criteria.

First, the crystallizer was momentarify stoppea in gn upright
position; the sample port plug was removed; and the sampler shown in
Figuré 3.2.2-B was inserted. Tg;s sampler was made of teflon since
pfeviously it had been determined thét the alumina trihydrate suspension
did not stick to teflon either on the inside or outside of the tube.
rThis apparatus and procedure.did ngt interfere with the cr}stallizer
e

suspension dnd moreover, it was demonstrated by experimentation that it

did not introduce any bias in the extracted sample. The end of the
~
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sampler, where the sample entered the sampler, and the ball valve were

- designed so as to minimize any segregation effects while the sampler

was being inserted, again to minimize any sampling bias introduced in

this way. Before taking each sample, the sampler was preheated to the
suspension temperature so as to prevent thermal-shock and a resulting

local increase in supersaturation néar the sampler. In particular, this
procedure minimized the secondary nucleation effects ;hat could be expected
to occur if a cold sampler were inserted.

After the sampler was inserted, the tefion ball was raised to trap
a sample of the suspension. This sample was then transferred to the
secondary. sampling system, the sample port closed and the crystallizer
tumbling resume&.' This entire pro;edure only required a fraction of a
minute,

The system for extracting samples from the overall sample (the
secondary sampling system) is shown in Figure 3.6-A. This system provided
2 sample for particle-size analysis using a Coulter Counter model Z g and
another for solute analysis and for determining the solids concentration
of the suspension.

The sample for the Coulter Counter analysis was extracted with
the secondary sampler by gen;iy shaking this device and then trapping a
knowh volume of the suspension in the annulus of the plunger system shown
in Figure 3.6-A (this sampling device was preheated as well). This
suspension was then transferred to a jar filled with the electrolyte
used in Fhe Coulter Counter. The plunger was washed with this electro-
lyte by immersing it directly into it aﬁd shaking gently. The electrolvte

quenched the crystallization process since the sodium aluminate solute
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FIGURE 3.6-A Crystallizer Suspension Sample Sampler .
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N,

was dispersed in it. The‘crystals were stored in this inert solution
until their size di#tribution could be determined at a ldter convenient
time. It was demonstrated that these samples could be stored for

extended Fimes (a day or more) without a'detectable change in size
distribution. The detailed procédure for determining the particle-size
distribufion using the Model ZB Coulter Counter is presented in Appendix C.
It should be pointed out that considerable effort went into developing
this sampling system. Other systems which were tried (g3) were found to
biés either the larger or the smaller particles or to affect the suspen-
sioﬁ goncentration. It was demonstrated by experiment that the secondary
sampler sy;tem empldyed here allowed a fast -extraction of a representative
sample of a few drops of suspension %s-requiréd for the Coulter Counter
analysis.

. The sample suspension which remained after extracting the Coulter
Counter sample was then transferred to the filtering apparatus shown in
Figure 3.6-B. This suspénsion was filtered under air pressure through
a 0.5 ym Solvinert* filter. Moét of the filtrate in the cake was removed
by an air blow. The filtrate was collected, weigﬁgd and stored in a
closéd bottle for solute analysis at a later time. Because the solution
was filtered, further crystallization did not occur. The cake was then
washed three times with distilled water, after which it was dried for at
least 24-éours at 110°C. ,The dried filter cake was weighed and stored
for future possible use,‘that is, as a check ‘on the sice distribution

analysis. N

+

- L4
*Trade name which is used by the Millipore Corporation for a membrane
structure type of filter resistant to acids and alkalies.
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FIGURE 3.6-B Crystallizer Suspension Sample Filtering'
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All of these sampling and filtering procedures were developgd
so that with a skilled operator sampling, separatibn or quenchiﬁg could.
be achieved in a very short overall time (ca. 1 minute). Hence the time
of sampling was very short relative to the time of the overaii crystal-
lization process and could be considered essentially instantaneous.
\Furthermore, it was determined by experimentation that all of the criteria
required of the sampling system wére satisfied,

This procedure provided the following information at each sampling

time during the batch run:
(i) Size distribution of the-crystals per unit suspension
volume.
(i1) A direct measurement of the solid concentration of the
suspension.
(11i) The concentration of alumina and total sodium ion.
These data could be checked for consistency in the following way:
The solids concentration pPer unit suspension volume maf be calcu-
lated from the size distribution data, since the Coulter Counter measureé

particle volume, by the relationship

m
Cs z

= 1x107M% g AR" . x (V.

x Da'cT x { 2, ] jel *

3 S

j=1

Also the mass of solids in suspension at any time may be obtained

by the material balance on alumina, viz:



Cs; = LIV, x CA/-654] - [0V o x ONG/CN) x. (CA /.654)]

"Wy NV o % QNG/ON T+ [Wy /(1000 x 53]} (5.2)

Equations (3.1) and (3.2) are\H%:;yed in Appenaix D where also
the symbols are defined.

The direct measurement of solids coné;ntrafion may be compared
with these derived values to test the consistency of the data.

The actual amalytical procedﬁres are discussed in the following

sections and described in detail in Appendices B and C.

3.7 Analysis of the Sodium Aluminate Solution Sample

‘The concentration of a particular ion in solution can either be
measured dirgctly or indirectly by measuring solution properties cor-
responding to a certain ion concentration. Ex?mples of the indirect
method are: solution density (gé), refractive'index (m7), and solution
conductivity (m3). For this.work the solution density change with ion

v
concentration change is much too insensitive to allow reliable measure-

-

ments. Similarly refractive index is relatively insensitive to concen-
tration changes; moreover, it is quite sensiti;é to temperature changes,
The measurement of conductivity has been tried for this system (m3) but
considerable difficulties due to deposition on the electrodes were
encountere&.

Examples of the direct method are: atomic absorption and titri-

metric methods. Atomic absorption has been used for estimating caustic

and alumina concentrations (m3). The method used for this work was a
”

/



volumetric titration procedure (wS5). This is a well established method
of analysis in the aluminum industry, while it; reproducibility has

'been demonstrated in previous work (g3). A thermome;ric titration method
which allows fast and accurate concentration measurements has been
developed by Alcan (k2). It was decided, however, that the slight gain
in speed of analysis and in the accuracy of the measurement'of.solution
conceﬁ£ration, could not justify the relatively large expense for this
study.

The volumetric titration procedure or wet analysis* used in this
study is described in all details in Appendix B. The standard deviation
of the wet analysis for the measurement of a5t expressed as equivalent
grams of Al;0; per litre of solution, was found through replicate tests
of‘several samples to be 0.6, while that for the sodium concéntratiog
expressed as equivalent grams sodium carbonate per litre of solution ;éé
0.7 (g3). Caustic concentration has also been expressed as equivalent
Nazd** in some instances in this work in order to compare the results of

this study with those of others where this concentration has been used.

" 3.8 Analysis of the Alumina Trihvydrate Crystals Suspension Sample

Some well jestablished methods of particle size analysis are:

microscopy, sieving, sedimentation, and 'Coulter Counter' (b8,d3). Based

* '""Wet analysis', is the usual term.used in industry for the chemical

analysis of a sodium aluminate solution, which in turn is referred to
as "liquor". :
** Note: 1 g/2 sol. Nazo = 1.712 g/2 sol. Na7C03
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on these methods geypral devices are commercially available, each
measuring a particular characteristic of the particle. For this
research work all four methods are possible (b8), but the Coulter
Cqunter appeared most suitable. The reliability of the Coulter Counter
in comparison with other instrument§ has been demonstrated repeatedly by
several workers (m8,d3), while its reproducibility for the alumina tri-
hydrate system has been shown to be satisfactory (see Chapter 4, Section
4.5.2).

Some features of the Coulter Counter are:

1. It has a very fast analysis time, i.e. of the order of 15

seconds for one crystal size distribution analysis.
2. The instrument response’}s proporticnal to the particle

volume which is an unaﬂgiguous particle size measurement.

(73]

The measurement obtained is total particle count (in a
specified smail size range) per unit volume of suspension

per size- fraction and hence relates directly to the probability
density function for the particle mixture.

4. It has been found that the lower cut-off size is related to

orifice diameter by the relationship:

v
dpin = 0.02 x d 56506 2
For particles less than this size, the noise-to-signal ratio
is too large to allow meaningful measurements to be made.
This lower sice limit also relatés to the cleanliness of the

test solution since the electrolyte or test solution must be
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relatively free of foreign particles. The ramifications of
this feature are discussed in detail in Chapters 4 and 7.
s .

The choice of the Coulter Counter over other instruments was
based mainly on the-advantages offered by items 1 and 3 above. The
details of the operating principle, calibfation technique, function of
peripheral equipment, and count correction equations for the equipment
used in this work are presented in Appendix C.

Theﬁmain feature of the Model Zg Coulter Counter equipped with a
Channelyzer and channel 'Log Transformer' is that it automatically records
the number of particles in each of 100 size groups on one p;gs of the
suspension through the orifice. This 'one-pass' feature meant that the
suspension was agitated for a very short time (v 30 seconds) and hence
the amount of attrition of these very fragile particles was reduced
accordingly. The addition of the "log-size transformation' device meant that
the size groups were concentfgéed at the lower end of the size spéctrum,
that is, the AV size intervals were smaller for the smaller sizes and
progressively increased as the size increased. This feature was very
important in this work, since the size distribution changed rapidly over
the smaller particle sizes but not over the larger sizes; as a result,
gbod resoldtion was obtained for the distribution. fhis resultant well-
defined measurement :% particle size distribution greatly facilitated
the subsequent model development work. In addition to cryvstal size distri-

bution on an absolute basis, the Coulter Counter analvsis provided an

indirect measurement of the variable solids concentration.



87.

3.9 Experimental Procedure

The previous sections presented the rationale: for the experi-
mental system and procedures; the details of the actual proceduré for a
batch Erystallization experimental run are presenéed below in point form. -
1. Before the start of an experiment the following preparatory

work was' carried out:
(a) A sufficient'%uantity of sample jars was filled wiéh

S 250 ml of the electrolyte used in the Coulter'Counter.
These jars were capped to prevent dust contamination.

(b} The crfstallizer sampling tube, the Coulter Counter
sampler and the sample filtration assembly were pre-
heated in an oven to the crystallizer operating tempera-
ture. -

(¢c) The supersaturated solution for the crystallization
trial was prepared as follows: The caustic required
for a specified supersaturation level, as determined by
the computer program presented in Appendix E, was dis-
solved, ;ith cooling on the outside of a stainless steel
beaker in about three-quarters of the required water.

The required alumina trihydrate was added to the caustic
solution. The suspension was then transferred to the
digester shown in Figure 3.3-A. The stainless steel
beaker was rinsed repeatedly with the remaining water,
which was tr;nsferred to the digester also. The digester
was closed and then rotated at about 40 rpm. Steam,

at 115 psia was passed into the copper ccil, which
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is wound around the digdster”and imbedded in Thermon
cement (a graphite base Tateribl used to conduct heat
in such situaéions). Thé‘&ontents were thus heated at
about }00°F in this closed container for about one
hour. After this digestion period, tﬂe solution was
cooled by passing water through the coils. The solu-
tion was then transferred to a Buchner type filter for
filtr;%ion and preheated to the crystallizer operating
temperature in a hot water bath. Extensive use of
plastic ware was made in these operations€because poly-

ethylene, nylon or teflon are inert to the chémicals

and, since plastics are non-wetting, accurate measure-

‘meént and transfer of solutions and suspension were easily

éccomplished.

The crystallizer which has already been described

was preheated to the desired operating temperature by

the water bath surrounding it. The crystalli:er.was

then tumbled at approximately 6 IPm to ensure a

uniform tempewature throughout.

The seed for the batch crystallization was prepared as
follows: A predetermined amount of alumina trihydrate

was weighed out and mixed with a quantity of.distilled
water (about 2 2). This suspension was stirred vigofcusly
with a s%ainless steel turbine for about two hours in

order to ensure that the seed crystals which were to be
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charged into the crystallizer wéuia not readily break
up in the crystallizer. This ensured that any ensuing
nucleation, attrition or agglomeration arose out of
the crystallization processes which followed and did
not arise from the seed material. At the end of the
two-hour period, the water was decanted to give the
£inal desired concentration of soiids at the start of;:
the crystallization runl
(e) Samples of the supersaturated'solution and seed suspension
were faken and stored for future analysis.
An experiment was started by transferring first the seed water
suspension and then the supersaturated solution into the
crystallizer. This charging and mixing was completed within-
about 30 seconds and this marked the start of the experiment.
Samplesrwere taken at predetermined times: first, at very
short time intervals (ca. 10 min. apart), and later at longer
intervals (ca. every 2 or 3 hours). These sampling periods
were necessary since about 80 per cent of the c¢rvstallization
occurred within the first houTr; the actual crystallization
trial continued fo¥ 24 to 48 hours or until the raé% of change
of solution concentration was very small.
Each sample was processed as follows:
(a) After extraction of the sample from the crystallizer -
it was transferred to the graduated cylinder of the
Coulter Counter sampling assembly, and a Coulter Counter

sample was extracted by pulling the sampler plunger
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‘while shaking the assembly. ‘This sample was transferred

to the Coulter Counter electrolyte in the plastic jars
by ﬁushing the plunger back while in the electrolyte,
and shaking it to make certain all of the saﬁple was
traﬁﬁferréd. The electrolyte solution was then stirred

with a teflon stick to hasten the-diffusion of mother

liquor from the crystal surface. The electrolyte}
crystal suspension was stored for Coulter Counter analysis.
The remaining sample in the graduated cylinéer of the
Coulter Counter sampling assembly was transferred to the .
fiiter assembly, and filtered under air pressufe. After
this the filtered solution was weighed by difference, and
a s;mple extracted bylpipetting 5 ml into a polyethylene
sample bottle and diluted to 50 ml with distilled water.
This bottle was stored for the 'wet analysis'.

Before weighing of the solution, the filter cake was
washed repeatedly (at least three times) with distilled
water and put aside to dry first at room temperature

and then after the completion of the experiment in an
oven for at least 24 hours at 110°C. This dried the

cake and left the cake in the alumina trihydrate form
(AIZOS.SHZOJ. For this'process it was essential that

the filter cake was-properly washed, otherwise a solid

cake of crystals and solution would form when dried.

.The dried filter cake was weighed by difference and

stored for possible future use.
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(d) . The sampling procedure was completed by rinsing the
crystallizer samplé}, the Coulter Counter sampler, and
the filtering appgratuﬁ with distilled water, and then
drying them at the crystallizer opefating temperature.

4. The prepared samples were analyzed when convenient according
to the procedures outlined in Appendices B and C. The wet
analyses were carried out during the later part of the experi-

- ment, while the Coulter Counter particle-siie analyses were
performed after the experiment was completed. |

The experimental results are presented in the next chapter, where

also the large amount of data obtained in each batch experiment is processed.
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CHAPTER 4

EXPERIMENTAL PLAN AND EXPERIMENTAL RESULTS

4.1 Introduction; Experimental Plan

Typical industrial operating conditions and the range of experi- .
mental conditions over which the experiments in this study were' performed
are indicated in Table 4.1-A. The actual experimental coﬁditions for
each of the experiments conducted in the various bench-scale equipment
are summarized in Table 4.1-B. This series of runs traces the develop-
ment of the experimental apparétus and although considerable useful éata
were obtained, not all of it was self-consistent because of sampling and
anal?sis prdblems, as discussed. The last and most successful experi-
ments were carried out at about SSOC,‘at which temperature the init;al
induction effects were observed to be negligible. Thus, the data obtained
during the early stages of éﬁese“experiments were not confounded by tﬁis
phenomena and the problems assoéiated_with.predicting the initial condi-
tion at the start of the 'nmormal' behaviour period were avoided. Mﬁreover,
all of the data from this Tun were self consistent (e.g. crvstal mass peT
unit volume as measured checked the particle size distribution and the
mass of solute which crystallized); consequentlf, these data were used

to develop and test the mathematical models which are to be presented in

Chapter 7.
The main difficulty in obtaining good {consistent) experimental
data was in obtaining a reliable measurement of the crvstal size distri-

-

bution for each sample. These measurements were only possible using the

[
102
3y



0

-~

TABLE 4.1-A

Range of Alumina Trihydrate Batch Process Variables

Variables . Plant . Laboratory
temperature t°C) S0 - 70 40 + 90
caustic 2
concentration-

(g Na,COS/i sol.) 150 - 250 150 - 250
“alumina
concentration

(g_Alzosfz‘sol.) 150 -+ 40 150 - 40 .
seed charge :
(g Al,05 . 3H,0/

£ susSpl) °© 100 -+ 300 10 - 300
residence time (h) - 20+ 40 +~ 60

. o '
"gentle gentle + vigorous

type of mixing

e

ar

ayhe
'Y
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Experimental Conditions and Type of Experimental Appatratus

!
-

Experiment #

Experimental Conditions o

batch temperature (°C)

seed concentration (g/f susp.).

alumina concentration (g Al,03/% sol. )
caustic concentration (g Nazcﬁ </%2 sol.)
suspension volume (&)

batch time (h)

Type of Exverlmental Annaratus

type of crystalll er
crystallizer material

type of crystallizer sampler
method of mixing

" method of crystal size measurement

70.4

102

72.1 - 47.8
156.2 -+ 150.2
3.6

5.1

E;H , Figure 3.2.1-A

stainless steel
e

i //f% , drain on air Lift

! external air lift

Cqulter Counter Model B

Remarks E—apparatus and sample'
. analysis development
experiment - T
Experiment # 2 '
erimental Conditions
batch temperature ( C) ‘-\\\ 75.3
seed concentration (g/f Susp.) 43.1 .
alumina concentration (g Al.03/% sol.) 106.9 - 85.9
caustic concentration (g NapCOs/2 sol.) 195.0 -~ 187.4
suspension volume (%) 3.6
batch time (h) 5.6
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Type of Experimental Apparatus

type of crystalliier

crystallizer material

type of crystallizer sampler
. p—

method of mixing

method of crystal size measurement

Remarks

!

, Figure 3.2.1-A .
stainless steel |
+, drain on air lift
external air lift
Coulter Counter Model B
—apparatus and sample

analysis development
experiment

Experiment #

Experimental Conditions

batch temperature °c)

seed concentration {g/i susp.)

alumina concentration (g Alp0-/2 sol.}
caustic concentration (g Nazcasln sol.)
suspension volume () '

batch time (h)

Type of Experimental Apparatus

type of crystallizer

crystallizer material

type of crystallizer sampler
method of mixing

method of crystal size measuremént

RemaTtks

|
L
|
!

|

o

3

25.3
22.2
11.8 -~ 12.4
151.2 + 151.0
3.6

24.6

, Figure 3.2.1-A
stainless steel
, drain oﬁ air 1lift
external air lift
Couiter Counter Model B
—attrition experiment

—developed a sample system
comsisting of: 'dip stick'
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TABLE 4.1-B (cont'd.)

Experiment # : 4
//v
Experimental Conditions
batch temperature (°c) 83.8
seed concentration (g/% susp.) 13.9 o~
alumina concentration (g Al,0./2 sol.} 128.7 -~ 127.8
caustic concentration (g Na,C 3/% sol.) 276.2 ~ 276.0
suspenfion®volume (%) 3.6
batch time (h) 19.0
Type of Experimental Apparatus :
. | . O] o
type of crystallizer , Figure 3.2.1-A
¢rystallizer material stainless steel
type of crystallizer sampler : m , Figure 3.2.2-B
method of mixing external air lift
method of crvstal size measurement Coulter Counter Model B
Remarks — attrition and equilibrium

Lg\\concentration experiment
Experiment # 1 S\\\\\

|

|

Experimental Conditions

batch temperaturecgﬁﬁ‘ , , o 74.0

seed concentration™(g/% susp.) 13.8

alumina concentration (g Al,0:/2 sol.) 125.8 ~ 74.2
caustic concentration (g Nazcas/l sol.) 199.0 - 1985.1
suspension volume (2} . 3.6 :
batch time (h) ' 26.0
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107.

Type of Experimental Apparatus

type of crystallizer
crystallizer material

type of crystallizer sampler
method of mixing

methed of crystal size measurement

Remarks

, Figure 5.2.1-A
stainless steel

ﬁ , Figure 3.2.2-B
external air lift

Coulter Counter Model B
and Model TA

— last experiment with this
tvpe of crystalljzer due
to severe 'caking' on the
crystallizer walls under
supersaturated conditions

Experiment #

Experimental Conditions

batch temperature (OC)'

seed concentration (g/% susp.).

alumina concentration (g Al,0:/12 sol.)
caustic concentration (g NazCls/% sol.)
suspension volume (2)

batch time (h)

Type of Experimental Apparatus

type.of crvstallizer

’crystalli:er material

type of crystalliler sampler
method of mixing

method of crystal size measurement

Remarks

-

54.8

24.8

124.6 ~ 70.5
194.2 -~ 201.3
2.1

16.0

., Figure 3.2.1-B

ﬂ , Figure 5.2.2-B
external airlift
Coulter Counter Model TA

— further improved crystal
size distribution
analvsis technigue
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TABLE 4.1-B (cont'd.)

Experiment # . 7
Experimental Conditions
o] T
batch temperature ( C) ‘) 54.8
seed concentration (g/% susp.) ) 24.2
alumina concentration (g Al,04/2 sol.) 141.8 -~ 80.2
caustic concentration (g Nazcﬁs/l sol.) 186.0 - 203.0
suspension volume (&) 2.0
batch time (h) 8.0
Type of Experimental Apparatus
| type of crystallizer , Figure 3.2.1-B
crystaliizer‘ma;erial glass
tvpe of cryﬁtallizer sampler ﬂi , Figure 5.2.2-B
O
method of mixing . extemal air lift .
method of c¢rystal size measurement Coulter Counter Model TA
|[Remarks ' — developed a 'two tube'’
Coulter Counter analysis
procedure
— discontinued the use of
this type of crystallizer
«{ - due to severe caking on
. the glass surface of this
r~ crystallicer
Experiment # 8
Experimental Conditions
batch temperature (OC) ' 54.5
seed concentration (g/2 susp.) 7.28 N
alumina concentration (g Al;0:/2 sol.) 86.2 - 52.2
caustic concentration (g Na,C 3/% sol.) 164.5 - 172.4
suspension volume (%) ’ 1.7 ‘
batch time (h) 10.2 -
A (cont'd.)
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Type of Experimental Apparatus

type of crystallizer
crystallizer material

type of crystallizer sampler
method of mixing =

. v
method of crvstal size measurement

Remarks f

|

ﬂij , Figure 3.2.1-C

polypropylene

E , plunger type of
sampler

tumbled partially filled
crystallizer back & forth

Coulter Counter Model TA

— designed a more automated
type of experimental set-up

— the results were invalidated
due to crystallizer contents
contamination with Coulter
Counter electrolyte

Experiment #

Experimental Conditions

batch temperature (OC)

seed concentration (g/% susp.)

alumina concentration (g Al,0:/2 sol.)
caustic concentration (g Na;Cﬁs/z s0l.)
suspension volume (%) -

batch time (h)

Type of Experimental Apparatus

type of crystallizer
crystallizer material

type of crystallizer sampler
method of mixing

method of crystal size measurement

9
55.2
4.9
103.9 - 68.5
192.1 - 200.1
1.8
30.3
m , Figure 3.2.1-C
polypropviene

Eg , plunger type of
sampler

tumbled partially filled
crvstallizer back & forth

Coulter Counter Model TA

..... (cont'd.)
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TABLE 4.1-B (cont'd.)

y

‘Remarks ) : — discontinued the use of

: this type of crystallizer
for contents contamination
and crystallizer material
buckling reasons

Experiment # 10

Experimental Conditions

batch temperature (°C) 54.9
seed concentration (g/2 susp.) 5.0
alumina concentration (g Als0:/% sol.) 102.8 - 83.2
caustic concentration (g N32C83/£ sol.) 190.0 - 194.8
suspension volume (%) 2.7
batch time (h) 10.0
Type of Experimental Apparatus
type of crystallizer [U] , Figure 3.2.2-A
crystallizer material ’ nylon supported by an
aluminum casing
type of crystallizer sampler . AT m , Figure*STZ.ﬁ-B
.
method of mixing . : i tumbled partially filled
crystallizer back & forth
method of crystal size measurement Coulter Counter Model TA
Remarks — designed more robust type

of plastic crvstallizer
— further improved sampling
--and Coulter Counter
analysis techniques

Experiment # - 11

Experimental Conditions

batch temperature (°C) 84.8
seed concentration (g/% susp.) 10.0
alumina concentration (g Al,0:/2 sol.) 134.7 - 82.4
caustic concentration (g NapCls/2 sol.) 196.6 -~ 188.7
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_TABLE 4.1-B (cont'd.) A
suspension volume (&) 2.7 Oy
batch time (h) _ 24.0
Type of Experimental Apparatus
type of crystallizer ) [HJ , Figure 3.2.2-A
crystallizer material nylon supported by an
aluminum casing
type of crystallizer sampler m , Figure 3.2.2-B
method of mixing tumbled partially filled
crystallizer back & forth
method of crystal size measurement Coulter Counter Model TA
Remarks ‘EZ; — Tesults were invalidated

by contamination of
crystallizer contents by
water from the hot water

! jacket
Experiment # _ 12
Experimental Conditions
batch temperature (°C) ' 85.3
seed concentration (g/% susp.) 10.0
alumina concentration (g Al,0./2 sol.) 137.1 - 96.3
caustic concentration (g NajCUs/2 sol.) 206.7 » 215.2
suspension volume (1) : 2.5 b
batch time (h) « 20.2
. !
|Type of Experimental Apparatus E
type of crystallizer DI} , Figure 3.2.2-A
crystallizer material . nylon supported by an

aluminum casing

type of crystallizer sampler ' ” , Figure 3.2.2-38

[

-
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method of mixing

method of crystal size measurement

-

Remarks

tumbled partially filled
crystallizer back & forth

"Coulter Counter Model TA

— further improved the

_Coulter Counter analysis
technique for the size
distribution measurement
on an absolute basis

Experiment #

Experimental Conditions

batch temperature (°C)

seed concentration (g/% susp.)

alumina concentration (g Al,0:/2 sol.)
caustic concentration (g Na2C63/2 sol.)
suspension volume (%)

batch time (h)

Type of Experimental Apparatus

type of crystallizer

crystallizer material

type of crystallizer sampler

method of mixing

method of crystal size measurement

Remarks

85.1

9.94

136.4 -~ 94.7
212.8 - 219.4
2.5

44.0

@ , Figure 3.2.2-A

nylon supported by an

. aluminum casing

—

ﬂ , Figure 3.2.2-8

tumbled partially filled
crystallizer back § forth

Coulter Counter Model TA
and by Coulter Counter
Model Zg with a Channelyzer
and channel size Log Trans-
former ’

—~ obtained size distribution -
3
measurements on an abhsolute

basis suitable for mathe,
matical analvsis

*




Coulter Counter Model Zg eﬁuipped with Channelyzer and Log Transformer.
Although other less sophisticated Coulter Counters were used, each
required too much proéessing time in the instrument because of the
requirement for multiple pass of the solution througﬁ the orifice. Other
problems such as caking on the crystallizer walls, extracting unrepre-
sentative samples, non-homogeneoﬁs mixing, contaminating the crystallizer
contents thfough the sampling procedure were all eliminated by progres-

sively improving the experimental system. ‘

4.2 Presentation and Discussion of Experimental Data

All the experimental conditions and actual observations of the
one experimental run which has been thoroughly tested and analyzed in
this study are presented in Appendix A. trhese data afe typical of the
information which may be obtained from the experimental equipment.

These experimental observations are presented here in different
forms with particular empha;is on the different ways that the raw measure-
ments of the crystal si:ze distfibution may be presented. It will also be
shown how the various observations may be used to test them for consistency
among them. Also, some of the significant overall observations with
regard to system behaviour Qill be delineated to indicate the type of

crystallizer model which has to be developed.

4.2.1 Solution Density and Equilibrium Alumina Concentration

Misra's solution density and equilibrium alumina solution con-
centration correlations Q:z,m4) for a2 pure solution were checked by making

some spot measurements. THe  results are presented in Table 4.2.1-A. The

E



TABLE 4.2.1-A

Spot Checks on Misra's Solution Density and

Equilibrium Alumina Solution.Concentration Correlations

114.

experiment # 3 4 9
suspension temperature (°C) 25.0 83.8 -
solution temperature (OC) - - 24.0
|

caustic concentration
(g. Na,0/2 sol.) - 88.3 161.2 1 116.2
alumina concentration ]
(g AIZO-/i s0l.) - - P 118.2

2 .
equilibrium alumina concentration : :
(measured) (g A1203/£ so0l.) 12.17 127.8 -
solution density (measured)
(g/cm?) - - 1.210
Misra's equilibrium correlation }
(g Al,05/2 sol.) 1446 125.7 -
Misra's solution density
correlation (g/cm?) - - 1.212
percentage deviation (%) 16 3 .2
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agreement was found to be reasonable and it was not deemed necessary to

check his correlations more thoroughly.

~4.2.2 Typical Experimental Batch Data

The data from the analyzed batch run, experiment number 13, are

presented and discussed in the next sub-sections.

4.2.2.1 "Solution Concentration Measurements : a

The alumina and sodium (as sodium carbonate) concentrations as
measured as a function of time are shown in Figure 4.2.2.1-A. It 1s seen
that the total sodium concentration changed little during the run because

the change in volume of the solution due to solute crystallization was

small for these relatively dilute suspensions. The decrease of the

-t

alumina concentration provide% a méésure of the rate of depletion ofu
Al(OH)3 from solutiqn due to crystal growth. Again, however, to achieve
this exact equivalence; the small change in volume of the solution must

be taken into accoﬁnt. Moreover, a temperature correction must be applied,
since the solution density changes with temperature and the measurements
of solution concentration were made at room temperature which was lower

" than the crystallizer operating temperature. This difference in volume
is‘proportional to the temperature difference and this proportionality,

which is derived in Appendix B, may be expressed by:*

*Subgeript 1 refers to the concentrations at room temperature, while 2
reflers to those .at the crystallizer operating temperature.



Caustic Solution Concentration
CN(g Naj0/% sol.)

Alumina Solution Concentration
CA(g A1203/£ sol.)
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FIGURE 4.2.2.1-A Solution Concentration Measurements
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. S
T =, =ca/a ey
N =N, = ON/o - S (4.2)
:
where o = {c2 * [(€2% - (4 xClxC3)T Y2 xC ‘
1 = 1.051 * (5.1x10°% x 8, - 9.4x107%) x o,
€2 = (9.92x10™% % ON)) * (5.66x107% x CA) -, |
€3 = -1.1x1077 x (@ )?
.%,.1 = 1.051 * (-1.1x1077 x N, 9.9;::10'4) x CN,
+'5.66x10™% A % (5.1x1076 x g - 9.4x107%) x 8
CA = alumina-concentration (g A1203/1 501;) Lo
CN = causticlco;centration (g NEZO/Z sol.) | »
el = room temperature (°C)
&, = crystallizer operating temperature (°Cy
N r & o : . , -

This derivation is based on the density correlation which was developed
by Misra (m2).

¥

4.2.2.2 Crystailizer Operating Temperature

]
WIth tlme for this typlcal exnerzment. The temperature was Draculcally

kent constant bv 1n1t_ally coollng the bench scale crystallizer and then
~
by heating to.make up for heat losses to the environment during the later

stages of the batch experiment. If no cooling had been provided the

operating temperature would have increased due to the slightly exothermic



10040

95 .0

-0 (°C)
[s 0] Q0 (¥}
() wn o .
[} [ [ e
[an ] (o) [ ]

~
wn
]

o

~3
o
[

o

Crystnlliz(:-r Temperature %‘

§5.0

80.0.

55.0

-

. PP S g - > - - -
i
. .
w
0.0 1.0 2.0 3.0 4.0
In(t + /?271-) .
Scaled Batch Crystallization Time (h)

——




119,

nature of the crystallization process. For a well insulated bench scale
batch crystallizer or for an industrial crystallizer with a much larger

ratio of volume-to-surface area, cooling is required throughout to main-

tain an approximate constant operating temperature.

[

4.2.2.3 Crystai Size Distribution . . -

The crystal size distributign as measured by the Coulter Counter
and auxillary equipment for a typical experiment is shown - in Figure
4.2.2.3-A. In order that 2 comparison on an absolute scale can be
effected between different batch samples to provide a true indication of
the* change of the crystal size distribution with time, a number of cor-

rections havg,to be apﬁlied, namely:

(1} Channelyzer Number Rejection Losses

As a result of the electronics design of the Coulter Counter and
Channelyzer, the channelyzer cannot process the signals or pulses as
fast as they are sensed by and then sent from the Coulter Counter; this
results in low cﬁannelyzer counts. . The correct for this, the following

equation was developed for this work (see Appendix C):

bl
100

ce x &n, )/, (4.3)

-5
where bly = 2x ¢8-95x10 ~ X Neh

Nch = total channelyzer count
T N channelyzer count in each channel
2 B

- £
Ancc,i corrected channelyzer count for each channel

——
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FIGURE 4.2.2.3-A Number Density Function with Respect
to Crystal Volume
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FIGURE 4.2.2.3-A (cont'd.)
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FIGURE 4.2.2.3-A (cont'd.)
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FIGURE 4.2.2.3-A (cont'd.)
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FIGURE 4.2.2.3-A (cont'd.)
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" FIGURE 4.2.2.3-A (cont'd.)
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J

(2) Coulter Counter Ceoincidence Losses

The following equation, which is developed in Appendix C, corrects

for the fact that in some of the Coulter Counter counts a loss.of count

may océur,due to two or more particles passing through the sampling aper-

ture simultaneously; thus only a single pulse or count is registered.

L]

. 100
. Ana,i = {(Ancc,i/nvi) * bcc x {(Ancc,i/ﬂvi) x zfi Ancc,z
i i-7 )
_(2_2‘6 Ancc’i/AV%)/'f x !.il ,:mcq’z]} X z_\.vi ..... (4.4)
R
where Ancc,i = corrected channelzyer count br Coulter Counter
measured number of particles in channel i

Ana,i - 'aétual' or corrected number count for channel i

&Vy = volume sizé interval of channel i
b - exﬁérimentally determiged coincidence correction

. parameter

In most instaégﬁi, replicate samples of particles were measured

and these measurements were averaged, viz.:

m

cC -
X - PV s S m 4.5
a,l’J [2_1 a}l,J,lj/ CC - ( )
where m = number of repeat Coulter Counter measurements
cc :
EE; i3 = ‘averaged corrected number count for volume interval
» 3 -

i for batch sample j ”
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< ' '
These average counts were then converted to the number of ,particles in

" the size interval-per unit volume of suspension by relating the counts
in the volume of electrolyte sampled in the Coulter Counter sample to

the original volume sampled from the crystallizer. This was done through

a dilution factor, Dlt:

AN, . = An_ . . x Dlt. . (4.6
’ 1,3 a,1,) ] ( )

T = (VB./VM.) x W
where DltJ ( BJ/ J) x (CS?’J/ CC,J)

AN. . = number of crystals in,olume interval i for batch

s

sample j per & suspension’

~ .-

VBj - électrolyte volume to which sample j was added (cm3)

VM. = sampled Coulter Counter manometer volume (pms)

(352,j = crystallizer solids concenffation calculated by
method 2 which is described in Appendix D (g/% susp.)

W__ . = weight of solids added to electroliyte (g)

AN j is equal to the number of crystals in volume interval
b

\
Lav .
] p,l

measurements are made is changed. To remove this dependence it is neces-

Note, &N; 3 will change if the volume interval over which the

sary to express size distributions in terms of a density function which .

is defined by:

Fygg & &N 5/8V . 4.7

|
|
|
|
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where FV ij =~ number density function with respect to crystal
> 3 .
volume on a unit suspension volume basis averaged

here over size interval i (number/m” 2 susp.)

-

»

The data presented in Figure 4.2.2.3-A are the-?b values which are
calculated as described above. Note that there are no data on the
density function below about 39 cubic micrometTes, the cut-off size on
the Coulter Counter. This limitation of the Coulter Counter causes
considerable difficult;es in using these size measurements as will be
described from time to time during the course of this dissertation.

The size measurements do show the excellent resolutioﬁ that 1is
obtained with the Coulter Counter-Log Transformation-Channelyzer combi-
nation, particularly over the lower size range where there is consider-
able variation in the size distribution. Normally probability density
functions are normalized by dividing by the total number of crystals.
This‘is not done here because due to the unknown number of crystals below
the cut-off size the total number of crystals is unknown and such a
division would thus confound the me#sured size distribution by a variable
dependent'on the;cut—off size. Instead, forjfﬁt? work, the density func-
tion has been measured on 2 'per unit suspension volume' basis and this
allows a direct comparisen of a distribution at one time with_that a;
another time dﬁring the batch crystallization: This is demonstrated by
experiment at selected times. This figure demonst;ates how fast the
distribution spreads from the relatively narrow seed distribution and

also shows the creation of a bimodal distribution which is characteristic
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of an agglomeration process. Note also 'that most of the change occurs
within the first few hours of the experiment during which time the
alumina concentration is at its highest, thus suggesting a strong

dependence of 2ll processes on supersaturation.

-

-

A
-

4.3 Consistency Check of the Measurements

A consistency check of the me;surementslwas made by means of
calculating and then comparing tﬁé same variable, namely solids‘concen-
tration, from three independent measurements. The three ways-are:

(i) from a material bglance inveolving the seed and the measured dissolved
alumina and sodium concentrations, (ii} the direct measurement of gndis-
solved solids concentration and (iii) from the crystal size distribution .

on an absolute'concentratipn basis. The basis of the calculations for

each of these methods is de cribed below in turn.

(1) The Solute Material Balance .

As described in detail- in Appendix D the solids concentration

+

can be calcﬁlated from the Al,Os, Nazcos, and seed weight measurements

from the equation:

sy - C1/E(V o x CN_/CN_) + (Cl/pg x,1000)} (4.8)
where Cl = {(Vg,, x CAD/'ssﬁlal*EEELP/X CN,/CN_ x CA_/.654)} + MI o
(P - CS1 = solids concentration (g/¢ susp.)

)

WT,o = seed weight (g)
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CN = sodium concentration (g N320/£ sol.)
7

CA = alumina concentration (g Al

& .

zos/g sol.)

(ii) Direct Measurement of Solids Concentration from Sample

Y

- As described, a sample of the suspension was filtered and the

. . . - 3 .
‘mass of dried solids and filtrate were measured semarately.  The sclids
concentration was then calculated from: -

\

- 3+, : -
CSZ (ws,spl x 10 )/{WL,spl/pi,z * wS,spI/ps} . (4.9)
. . ’ ) i
where Cs, = solids concentration (g/% susp.) ]
WS,5§1 = sample solids weight (g)

wL,spl = sample filtrate weight .(g)

' (iii) Integration of the Measured Crystal Size Distribution , -
~In this case, the crvstal size dis;ributibn of the solid in a

known volume of suspension {as taken directly from the crystallizerj wag
measured in the Coulter Counter. This measurement then gave the con-

4
g ’ \
centration of the crystals in each small size interval (number per unit p

. - . ‘/
suspension volume); this is what is referred to as 'on an absolute basis'.

The total undisso?fved solids concentration is obtained by integrating

- S _ -
this observed crystal size distribution over the ‘entire range of measured
sizes, viz.:
2 - m '
. -1 - . C
CS;" » 1x10 XpgxDlt x{ [Ana,i x (Vi+l_+ Vi1l - (4.10)

.o1=]
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where Cij‘- solids concentration {g/& susp.)
® o -

This approximation is also derived in detail in Appendix D; while the

other symbols in thi§ relationship have been defined in the previous

sub-sections.

These three completely separate means of determining solids

concentration provide a way of testing the internal consistency of each
of the measurements; indeeé, it pro*ides a_severe test of the s;mpling
and analytical procedﬁ}eﬁ. The comparison among these methods is indi-
cated on Figure 4.3-A and Table 4.3-A. It is seen that the relative dif-

ference between methods 1 and 3 is considerable over the first quarter

hour of the experiment. The solute analysis is expected to be very

accurate, .as is the measurement of total seed 'and liquid added at the
beginning of the experiment; m?thod 1 should; therefore, be the most
accurate measurement. Thus, this comparison éflsolids cdncentratidn
gives a good indiﬁation of the accﬁracy of the particle si:ze measure-

o

ments and/or of the goodness of the sampling and analysis procedures for
it. Ergor in method” 5 may be either purély random or random plus
systématic. Certainly, if the crystallizer suspension is non-homogeneous
particularly with respect to solids, then differ;nces aﬁong these methods
would show up. The difficulty of extracting a representagive sample. from
the cfystallizer, then a refresentdtive sample.fr5m this éample (for the
size distribution measurement) should not be underestimated. The fact

that the differences between the’ three methods are much less after the
: ;

first quarter of an hour suggests that these difficulties were overcome.
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TABLE 4.3-A
Consistency Check of the Measurements
by means of the Variable Solids Congentration
Batch Solids Concentration Relative Difference
Sample T . Csy s, "CS3 4Csy 4GSy =
# (h) (g/2 susp.) ’ (%)
; .
1 0 10.2 "10.2 6.30 0.0 -38
2 0.25 18.2 14.7 13.4 -19 -26
3 0.50 23.9 23.3 22.8 - 2.6 - 4.4
4 0.75 29.6 28.8 30.8 - 2.4 4.3
5 1.0 34.6 35.2 34.6 1.7 0.0
6 1.33 39.3 42.0 47.0 6.9 20
7 1.66 42.3 42.7 46.8 0.92 10
8 2.0 46.2 45.5 46.1 - 1.6 - 0.29
9 | 4.0 56.4 52.5 55.0 - 6.9 - 2.4
10 L 6.0 61.8 61.5 58.2 - 0.244 - 5.8
11 . 10.0 67.0 67.0 68.6 0.0 2.4
12 - 22.0 72.6 .74.2 75.5 2.1 3.9
13 t 33.0 74.3 77.8 75.6 4.7 1.8
14 i 44.0 76.6 . 76.5 75.7. - 0.21 - 3.8
CS, - CS .
* ;3CS1,2 A oS, ) x 100% .
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-
3

On the other hand, the Coulter Counter has many possible sources of error,
such as: o ’
(i) A non-representative sample passes through the Coulter
Counter orifice.
(ii) The agitation of the Coulter Counter suspenéién may have:
caused attrition of the sampie. This would not cause
a problem if all crystal sizes were measuréd.sigce the
Cﬁulter Counter measures volume directly.
(iii) Thé}e are inherent errors associated with the.Coult;r
Counter, such as incorrect volume-to-current relations@ip

N

while the particle passes through the orificé due to un-

. .

known effects such as 'shadowing' or non-centre passage
™

of the crystals (d4,k3). Moreover, compensation correc-

tioné must be made for coiqcidence in the Counter and the

Channelizer may lose pulse counts as discussed in Appendix

C. A systematic_e%ror could also be introduced by using

an. incorrect calibratipn..

Notwithstanding these many'sourées of error, it is felt, however,

that the'greatest source of the differences indicated between methods 1
an@ 3 is that caused by not measuring the crystal sice distribution bélow
the Counter's cut-off size. This source is strongly suggested by theh
decrease in difference in the solids concentration as the crystals grow
in size and a smaller fraction of the crvstal 'distribution 1s contained

in a size less than the cut-off size. :

v

The conclusion from this analysis is that the Coulter Counter

measures with high accuracy the size distribution of a representative sample



from the crystallizer, but that a considerable fraction of the crystals,

“

during the initial period at least, is of a size less than the cut-off

3 : ‘.
N -i - - -

size of the Counégi. The cut-off size is necessarily relatively high

because of the need to have a relatively large orifice in the Counter

to accommodate the relatively large crystal sizes which result from the

agglomeration process.

4.4 Different Presentations of the Crvstal Size Distribution

For a better appreciation of the size distribution change with
batch time the number density functions with respect to crystal ®&@lume

were transformed into-the following related density functions.

1. Number Density Function with Respect to Spherical Equivalent Diameter

Expressing the number density function with respect to spherical
equivalent diameter provides for direct visual information with regard
to the number of crystals within particular diameter intervals and the

change with batch time. This density function is defined by:

I3 . AN. ./aD . ~ : S 4.11
0,5,57 & 5,570 > . @

-

where &Ni j is the number of crystals in the spherical equivalent dia-
L .

meter interval ADP j- The FD values are plotted for selected batch times
. A

in Figure 4.4-A.-

.
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FIGURE 4.4-A Number Density Function with Respect to
Spherical Equivalent Diameter for
Selected Batch Times
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2. Area Density Function with Respect to Spherical Eqpivaient Diameter

A density function may be calculated which indicatés the surface
area of the crystals in any particular size interval. It can be calcu-
lated by first calculating the areas of the crystals in each size interval

via the formula:

V.
8 i+l 2/3
M, = 107° f WV Fy dV - (4.12
p.1 v AV P v p’ - ( )
1
where AAp,i = crystal area in crystal volume interval Viwl - Vi
(cm2/£ susp.)
Yay = area volume shapé factor (dimensionless)
L] .
1078 = unit equalization constant

V. = crystal volume (Ums)

If it is assumed that the density functionm, ?b, is constant and
equal to the average value over the interval, then this equation may be

.easily integrated to give the reasonable approximation:

' 2se 1/3.2/3,. -8 5/3 -
AA L 5 6 (Vv - . .13
i 2 35T (0 0%y 05 5 7 %8 (4-13)
. .
where Viy has been assumed to be equal to w(ﬁ/w]”/a. Thus, the area

densi®y function as defined by:

FA. . . = AA . . . A .
D,i,] P,l,J/ADP,l ' (4.14)
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is a close approximation to the 'true' value since the Coulter Counter

.

measurements were nade over;a 1arge number of small.sizé intervals with
good resolution. This area density function at selected batch times is
plotted égainst the spherical volume equivalent diameter in Figure 4.4-B.
| Note that by defining the area volume shape factor equa£ to
n(G/w)z/s,_the crystal area is defined as the area of a sphere with ;

volume equivalent to the volume of the crystal. Since a crystal of

alumina tfihydrate is formed from a number of platelets (as shown by the ;
e;cellent electron micrographs published by Brown (b6) and reproduced
here in Figure 4.4-C), the crystal area palculaféd,from equation (4.13)
can only be an approximation, at best. What 1is needed is an'area—fo- '
+ volume sh;pe factor, Vuy- Although Mista (m2) attempted to determine <<i
this shape factor from adsorption measuremeﬁts, there is still the ques-
tion whether this area for adsorption is the appropriate area for crystal
growth. If the shape of the crystals remains essentially the éame Tegard-
less” of crystal size and phe.environment from which it was grown, then
the area distribution den;ity.function as qalculated from equation (4.14) -
; a goqd approximation and will only be iﬁcorrect by a constant factor.
/:::té\gggh as that on Fiéur; 4.4-B will give a good indication of the

evolution of ¢rystal surface area with time..

3. Mass Density Function with Respect to Spherical Equivalent Diameter
Another useful density function in this work is the mass or weight

density function which may be defined by:

(4.15)
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FIGURE 4.4-B Area Density Function with Respect to
Spherical Equivalent Diameter for
Selected Batch Times
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FIGURE 4.4-C Electron Micrographs of
Typical Alumina Trihydrate
Crystals (from Brown (b6}))




where aW_ . . o~ 10 tp f FVV?dV

or with FV assumed to be constant over the interval Vi to V.
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P»l,J - s V

i+l

-12 =

Moo 100 F i‘j(v2

b,i,j & P, i+l Vi,,i)/z (4.16)

- A plot of ?Wb.versug'DP for selected batch times as shown in
Figure 4.4-D, gives a good indication of the relative crystal mass in
eaéh size interval and the distribution of the crystal mass.

These distribution function plots aklow for a very good visual
obserﬁation of how_the crystal size distributiéﬁfﬁs changing with fime
during the batch crystallization under any given operating condition.
They show that the number distribution changes from 2 unimodal narrow

size distribution to a bimodal wide spread distribution. In addition,

it is seen that on a number basis the part of the distribution below

"'..
the Coulter Counter cut-off size was quite 51gn1f1gant, espec;ally

"dnrlng the earlier stagggrof a batch experiment. The difficulties which

arige due to this cut-off size will be discussed in detail later. Note,
however, that the area and mass distributions show that, especlally after
the initial stages of the Crystallizaticn, the crystals below the cut-off

size contribute relatively little to the total area and mass of the total

suspension.

4.5 Moments of the Crystal Size Distribution

As described previously, the total mass of c¢rystals per unit

suspension volume may be easily calculated from the measured crystal size

v
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-FIGURE 4.4-D Weight Density Function with Respect to
Spherical Equivalent Diameter for
Selected Batch Times
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d!ktribution, subject to the limitations imposed by the cuthoff size of

)
the Coulter Counter. This total mass is calculated directly from the

first moment with respect to the cry5Stal volume, viz.:
o

WL ;o VEAV w ‘-z' AW . .
T, o P vip = ] P,1,2

(4.17)

“Thus the total mass as a functlon of time may bjggallowed by
this 1ntegrat10n as was shown in Figure 4.4-D. "The crystzi size distri-
bution measurements also allow the calculation of the’ total,crystal sur-
face area and the total number of crystals as a function of time by
defining, respectively, tﬂé two-thirds moment and thergero moment rela-

tive to crystal volume; that is:

- - N (-] 2/3 . m . - ]
A = J VI FdV_ ~ I B8A_ . . , (4.18)
3 o P VP jmq  Pbis] ~
and . b
- Z m _ .
~N = [ FAdV_ ~ I AN, . '{4.19
t,] V'd P - sl i, . ( J

These %a;iables are plotted in Figure 4.5-A.

Although these varla?>es are subJect to the errors associated
with the f1n1te difference approximation to the integral and specifically
the cut-off size ﬁroblem, the plots shown on Figure 4.5-A do provide some
significant cobservations relating to this crystallization process. First,
the decrease of the total number of crystals during the initial period
-of the crystallization indicates that agglomeration occurred to a signi-

ficant extent. If only growth had taken place, the total number above

the cut-off size would have increased because minute crystals originally
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FIGURE 4.5-A- Moments of the Crystal Size Distribution
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in the seed (but not measured at the outset) would have grown into the _
measurable size range. Thls-lncrease in number would have ccﬁtlnued
untll a{}‘crystals would have grown to a size greater than the cut-off
size; thereafter, the number of crystals would have remained constant.

If in addition to growth significant nucleation of new cr}Stals would |
have occurred, then the total number.of crystals in the measurable regiéﬁ
;ould hgve increased continuously‘as‘the nuﬁlei grew to a size which
could be méasured by the Coulter Counter. This same incfease would occur
if considerable'attrition of large érystals had occurred. If,~on the
other hand, attrition of small crysials had occurred énd tﬂe fragmehﬁs'
had been small enough not to be measurable, then a decreas; in number
‘with time would have been observed. Thislﬁrocess, however, seéms highly
unliiely since 1it wéul&uhave required small ﬁartigles to break‘up pre~
ferentially to large ones. This is most unlikely particuléfly considering
_the pretreétment of the seed and the mixing ;ct;pn in the crystallizer.

Thus, it can be concluded from the shape of the total number-time
, o :

LS
plot that 51gn1f1cant agglomeration of the partlcles did take place.

The decrease in number and subsequent levelling off of the number is a
1=‘:"f:sult of a high rate of agglomeratlon, particularly du;ing the early stages
of the.processQ Note that the total area of iﬁe cryStai suspension is
decreased by agglomeration and this is observed on Figﬁré 4.5-A as well,
thus adding-credence to the conclusion relating to. akglomerations

. These particular ob;ervations are pertingnt’here since they sug-

gest that the agglomeration process must be included in any model to be

proposed for the crystallizer. This is important since, as we shall see,
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including a description of agglomefation in adfdition to growth and
m.igg.eation in the mathematical model, makes the modelling mathematics
much more difficult. Thus, in general, ﬁhexl""modelling a proecess, it is
impor-ia:‘nt. to have pertinent experimental obs#rvations to indicate in a
qualitative way what -proceAsses of the many that could occur need be

included in the mathematical deseription.



CHAPTER 5

-

DEVELOPMENT®F THE MODEL_EQUATIONS FOR A SEEDED BATCH
CRYSTALLIZER FOR ALUMINA TRIHYDRATE

5.1 Introduction

-

The mathematical model for the seeded batch crystallizer is
comprised of a large number of mathematical equations. Some of these

are derived from the fundamental conservation laws; othefs are consti-
tutive relationships based on empirical curve fittings of experimental

observétions or based 6n ocur theoretical understanding of the phenomena
involved. Particular emphasis is placed.qn the derivation of the popu-

lation balance equation and its appropriaté boundary conditions for use

in the present context. Also, a constitutive relationship for the

L]

agglomeration process 1is derived in detail since it is particularly

dmportaﬁ; infthis'work. The intent of presenting these deérivations is ///’}
to delinﬁate the impoQtanpe and interaction of the phenomena associated

- with crystallization processes.

The pcpulation'balan;e equation, derived in terms of the number
density function, is ‘then transformed into terms of the cumulative number
distribution function in anticipation of the solution method presented
in Chépter 6. Also, from the population‘balance equation, a set of
equations are derived whichweightthe number density function by a general
weigﬁting fupction. These equations are named }pseudo moment equations' -
rin ;his wbék and they are used in Chapter 7 to develop appropriate consti-

tutive relationships for the crystallization rate processes for growth,

148~
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. e gl 1D
agglomeration, and nucleation. Lastly, mass balance and auxiliary Q;§;<\
tions are presented; these complete ‘the full set of model equations for /

a seeded batch crystallizer for alumina trihydrate.

5.2 Population Balance Derivation*

. The population balance equation is a general conservation law
that accounts for the number of crystals'(particles, chemical species)
of a particular size. It may also be referred to as the particle-number
continuity equation or as.an equation of change for the number of
particles. The derivation is similar to the technique one adopts in
deriviﬁg the conventional equations of change. 1In this case the entity
for which a balance is derived is the number of particles in a certain
control volume. A convenient way of expressing the number of partiélqs-
in this contro; volume is by the use of a2 particle density function,
FQ,t(i’T)’ defined on an {m+4) dimensional set. Here, x is the set of
external and internal coordinates comprising the particle phase space Q.
The value of FQ,t thus depends on its location given by three spatial

dimensions, time and on the m independent internal particle dimensions

or properties. ~ Some typical internal.di;ensions (proéerties) are:
particle volume, spherical equivalent diameter, chemical activity, particle
age, ‘particle growth activity, etc.

| The number of particles existing éf time t in the differential

or incremental volume of particle phase space dQ is:

*Although, the population balance has been derived by several other
authors (rl,h4), a particular derivation is presented here for complete-
ness and clarity. ‘

’
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dNt - FQ’F dQ . : (5.1)
This equation assumes that the particles behave as a continuum. The
total number of particles in some fixed subregion of Q, say Qi, is:
N.Q) = S FQ’tdQ (5.2)
Q1
.Taking the Eulerian viewpoint®, an accounting of the particles in
volume Q1 leads to the general equation:
accumulation = input - output + net generation
= net inflow + net generation (5.3)

The accumulation term is the rate of storage of the number of

particles in the control volume Q1.

\ | .
= le Fq,t9Q (5.4)

Applying the Leibnitz rule for differentiating an imtegral, with

:_-r Q1 = 0 (since the Eulerian viewpoint has been taken), this integral
becomes:
3
IQ1 5T FQ,t dqQ (S.S-_);

*An excellent derivation of the population balance is given by Randolph
and Larson (rl) who took the Lagrangian viewpoint.
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\\U’A\} The flow of p cicles by convection across a boundary area
- " U
"~ element, dA, of Ql is: ’
FQ,t~ v.n dA : ' (5.6)
- : (
The n;é\;nflow is expressed through the surface integral:
A . .
- FQ,t ¥y.n dA _ 7 (5.7)

Al

where n is an outward directed unit vector normal to the surface, and v
is defined.as the particle phase-space velocity vector. This vector is
made up of external, Vext? and intermnal, v velocity components, i.e.

—~int?

l -— (Vx 5—XJ + (v}‘, 9"}:) + (vz 5_2) + (Vl 6_1) + (Vz -OzJ

+ ...+ (Vm 6_m)
- + . ’ —
T Text  Line _ TR

O |

Taking v‘x and v, as e:'camples, v, could be the medium or fluid
velocity in the x direction given that the slip velocity between particle
and fluid in this direction is zero, while-vl might describe the time

rate of change of the spherical volume equivalent particle diameter,

d

ED' Thus if the linear cfystal growth rate, GD' is defined as:

Ja) . - . - .
GD —%ED, then it is seen that GD 1s the convective velocity of a

particle along the internal D axis.

Similarly, the ne't rate of diffusion into the region Q1 is:

".
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dA (5.9)

A
V|3

where j% is the number diffusive fluxyector of particles. The vector

is taken to represent a convective velocity which is proportional to

%
VF

Q,t resulting in second oxrder partial differentials.
' -

The net generation term is made up of birth, BFQ e and death,
L4 ?

DFQ,t' rate density functicns, and is:

n (BFQ,t-- DFQ,t)dQ _ (5.10)

Q1
The birth and death rate density functions account for the rate of change
of N, as a result of particles entering_the volume Q1 without crossing

the Boundar&; that is, there is a source of particles (generation) or
sink for partitles (loss) within the control volume Ql. Substituting
these terms into equation (5.3) gives:
I )

IQI E?(FQ,t)dQ - -.f'Al FQ,t vy .n dA -7

+IQ1(BFQ,t - DFQ,t)dQ ..... {5.117

-

The two surface integrals in equation (5.11) can be converted to

volume integrals by use of the Gauss divergence theorem:

3
S =(F,.)dQ = -f g _.vF dQ - S ¥ .0
Ql 9T Q,t Ql -_ -_— Q,t Ql - -3

X

o1 5o - DR Jde e (5.12)
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Rearranging terms, the population balance can be written for the volume

" Ql as:
4
3 ,
;S [—(F ) £V . (v ) Ve (v. F ) + % .
t°Q,t/ ,t -

Ql 3t Q,t \L —eX Q —int Q Y
: N + DFQ,; - BFQ,tJdQ -0 - L. FS.I;)

As the region Ql was arbiﬁrarf, the integrand ﬁust be identically
zero.

_(FQt)+v'(thQt)+v‘ (VntQt)*E'EA*DEQ,t
- BFg,t -0 (5.14)
»

Equation (5.14) is the general microscopit population balance subject to
the assumption that the particle coﬂéentrationfis dense enough to approxi-
mate a continuum.

If the system under consideration behaves as a well-mixed or
homogeneous suspension, then equation (5.14) can be averaged over the
external phase space to yield an equatiog whicﬁ is distributed only iﬁ
the internal phase space. Multiplying equation (5.14) by dV and inte-
grating over the total suspension volume, which might be some function

of time, VT({), gives:

. ™~
. 3 -
JVT(rilg?(FQ,t) T Weefoe) T WyneFo, o)
4} + 7. EA + DFQ,‘C - BFQ,'C]dV - 0 ..... (5.15)
c
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-
Since, under the above assumption, FQ,t’ DFQ,t’ BFQ,t and the internal
Tegion divergence term ¥ . (lr_intFQ +) are independent of V they can be
taken out of the integration. Also, for this well-mixed suspensioh thed

contribution of the diffusion term is neglected, therefore:

»
3

Converting the volume integral into the following surface integral

s Vaev v = V_.n F, dA

F
Vp() T TR T T TG

facilitates its interpretation, and shows that this term represents the
rate of change of FQ t due to particle suspension inflow and outflow of
>

streams k to the system volume‘VT, represented by

i Ut(k)FQ,t(k) (5.17)

*

Also, since AT(T) is a function of time this term accounts for the rate

of change of the total suspension volume, represented by FQ + %?{VT)'

That is, the volume VT'eipénds or contracts in.time dr making it neces-
sary for FQ thT particles to cross fhe boundary AT to still be in the

system at time Tt + dv. Thus:

d‘
W= 2o, em) T Foue i

«nF
Q,t K

IAT( )1 (5.18)
T
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Collecting terms, rearranging, and dividing by VT allows equation

: (5.16) ~to be written as:

é_ -+ ' - ,' d_
ariQel L e YinFa,e * By o/Vy x G0V

d,t - DFQ’t - i Ut(k)FQ,t(k)/VT © . (5.19)

Equation (5.19) is the external, spacially-averaged, ma;roséopic popula-
tion balance subject to the following assumptions:
| - particle continuum
- homGgeneous suspension
™~

5.2.1 Use of the General Population Balance Equation to )
Describe 2 Batch Crystallizer - .

» . ' —
It s assumed that the internal state of the crystals is completely

defined by one internal coordinate, namely crystal volume, V. This implies
that the surface activity or whatever else determines'the ¢rystal growth
Tate is uniform and independent of timé. This éssumpfion, therefore, also
_impliés that the observed induction period has been excluded in this
mathematical description.

Equation (5.19) is applicable to a well-mixed batch crystallizer.

Considering each term of this equation, it is seen that the term,

 Veofe,ea0)Vr

1s zero because a batch system has no inflow or ocutflow of crystals. The
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term can be written by the above assumption as:

z Zint Q t.

i-(.G F., .) , where GV j

SBVEUVIVLE

Thus, equation (5.19) reduces to: i : '
i—(F- ) + 2-(G,F } *+ (F d—(V )J/V. = BF - DF.
ar- V,t IVVIV,t V,t dr* T°'T v,t V,t
or

3
vt T) + EV(GVFV,tVT) VT(BFV,t _'DFV;t) (5.20)

—E
For mathematical convenience, tpat 1s, to avoid implicit equations, the
* .
¥
number density function, Fv > is redefined on the basis of total opera-
» .

ting volume of the system; therefore:

The total birth and death rate density term, V-(BFV - DF

v,t)
is redeflned on a solution volume (mother llquor) basis. This seems at
least reasonable for the pure blrth proces;es, because crystals come
only into being in the solution phase and not in the solids phase. In
this context, a-pure birth process reférs to the rate at which cr}stals

enter size interval {V,V + dV] from the solution phase as opposed to

those that enter from another size interval, i.e. from the solids phase.

Thus,
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-

VL (BF, , - DFy ) & Vp(BFy . - DRy ).

,t
The birth and death processes for most crystallization systems
are the nucleation, agglomeration, and attrition rates. Thus each of

" these processes may be accounted fef by their particular birth and death

functions, viz:

BFV,E'Jn ‘+ BFV,Eia * BFV)E"b B DFVJE,a - DFV)llb 'A- BFV,E.'- DFV’E

where BFV,L,ndV - nucleation rate into size interval
[v,v + dv]
BFv,zjadV,DFv,g,adV - agglomeration rate-into and out of
size interval [V,V + dV]
BFv,z,de’DFV,g,bdv - attrition rate into and out of size

interval [V,V + 4V]

Using these definitions, equation (5.20) becomes:

- 3 - a— -
. BT(FV,T) 3V(GVFV,T) VL(B?FV,E,,II + BFV,l,a DFV,},,E.

+ BFV,g,b - DFV,z,b) (5.21)
Equation (5.21) is the population balance for a batch crystallizer subject

to the assumptions made and the definitions employed.

\

-
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5.2.2 Bounda and Initi‘& Condition for:

the Batch Crystallizer Population Balance
) .

A complete mathematical statement of a problem requires specifi-

cation 'of boundary conditions around the domain under consideration.
The initial and-boundary condition for the population balance, equation
(5.21), for a batch crvstallizer requires some careful consideration

since there are some subtleties which are not immediately obvious.

5.2.2.1 Initial Condition -

—_ The initial condition for the population balance equation as
T

—_—

applled to a seeded batch~ crystallzzer 1s Fv T(T V) --FV T, O(V)

‘number density function of the seed crystals introduced to the cryétal-

.lizer at time zero. The problem arises, however, in that this expre551on

‘-
does not account for the act1v1ty of the seed which manlfests itself

as an 1nduct10n period in the crystalllzatlon process. This difference
in initial crystal activity could’ lead to quite different behaV1ou; of
batch crystallizations which could be identical in all other ‘respects; .
hence, this activity must be characterized.

There are\Eyo ways of dealing with this problem. Qne is to try

|
to include the seed activity as a function of internal propertie

account for the e{f?ct on activity of the crystallizer operAting
T

tions and/or pretreatment of the seed. This approach
knowledge and understanding of the crystallization kine ics during the

induction period which is 2 major study in itself. The seco
« !

- - - - - . ‘.
specify as time zero some finite time after the" introductifn of the seed

crystals at which point the ‘seed activity is no longer a function of the
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#~ .
. .seed pretreatment. After this time, the crystallization processes

should proceed at a rate determined only by the system operating condi-f\\\\\_ﬂ

b\\\tionsl

5.2.2.2 Boundary Condition \

The boundary condition cannot be stated a priori wiéhout some
éonsideratibn of thelpﬁysical system and the mathematical_équations
involved. The difficulty is in how the nucleation phenomenén is expressed
mathematically. In many instances,‘modellers of the overall cfystal-

lization process have treated nucleation®as a boundary condition. This

F

, means that all the nuclei formed at a time t are of size'vo. On” the kS
other hand, nucleation may be expressed as a birth density funpfion which '__\

/" allows for nuclei to be formed with a distribution of sizes over a finite

size range, viz:

.oV .
. u . .
BNz,n,o(T) IV BFV,E,F(Y,r)dY_ | (5.22)
‘o - S -
where BN - number of crvstals fbrmed PéT hour ﬁer litré'solution

BFV’E;A,‘“nunhg% of crystals of volume V um® formed per hour per
»

litre solutioe

The latter method is adopted here.
Thergeneral appro;ch to oStain the boundary condi;ion in this
case is to rederiye the equation oﬁer a différential control volume, the
boundaries of which include the system boundaries. -This procedure has
>

been sﬁggested by Smith and Pike (s4) for the type of problem encountered

here. - ’ \v- - "
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Thus, rederiving équapion (5.21) on the system boundary'Vo fbr

a number balance over the internal size interval [VO,V° + 4V Jover the

increment of time 4t with:

-4

accumlation = input - output + net generation

Y

gives for each term:

FV,TCV’T + AT)AV - FV’T(V,T)AV

Gy(Vy * &VsT)Fy p(V, + 8V, 7)ac

V BFy , n(V,1)avar

5

VL[BFV,E,E.(V’T) - DFV,E,R(V’:)]AVAT

VLIBFy o p (Vs - DFy (Vo) fevar,

[FV,T'(V,-: * 47) - Fy,1(V,7)1/ac = q

e N

Coflecting terms and dividing by AVAt gives:

-

N &
accuﬁh;htion

output due to
. growth :

.generation due
to nucleation

-

generation. due
to agglomeration

generation due
to attritiof

-

-6y (v, + AV,:)FV,T[y; ~ aV,7)1/av

L

. < s . .
‘ ) - . V‘L[BFV,E,nCV,-) + BFV’E',aCV")

- DFV,L,a-,(V’T) + _BFV,.?,,b(V’T)

- DRy, L(V,T)T ...l (5.23)

\b
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Taking the limit as &t + 0 and multiplying by AV gives:

DY = G ¢ AR 10 ¢ 9 v L T

-

Now, taking the limit as &V - 0, gives:,

. IR |
o A : -
. i | -
.From this equation it follows that
' ' ' ‘ v
By g0V, = 0 since GyMVoo?) # 0 (5.24) -

In the above derivation, as in the derivation of equation (5.21),

the nucleation, agglomeration, and attrition rate processes are expressed
. - \_\

by means of rate density functions. Expressing agglomeration and attrition

rates in this manner is common practice; however, this is not the case
ot

for the nucleation rate which, as indicated earlier, is quite often

treated as a boundary condition. The boundary condition definition leads

to the following expression for Fy T(VO,T): ‘

FV’TO‘"\O,T)." VL(T)BNﬂ’n”?(r)/GV(Vo,r)' P L 5.29)
) ,

That 1s, the ter;\ﬂﬁng L, n[V 7) in equation (S 23) has been replaced by

-

~

LB 2, YAV after whi rypame steps weie fofiowed as in the deriva-
tion of FV,Tﬁyo’f) - _0. Note that the use of ?he variable, BNg,n,o’
" modifies equation (5,23} in-that it excludes the nucleation term, VLBFV 4.0
S B e

”

A
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In this work, the density functlon deflnltlon has been adopted
since it is consistent with the def1n1t1on of the other generation terms
{agglomeration, and attrition). Moreover, it allows for a more general
model in that it has the capatility of handling the birth of nuclei

- Crystals over a particular size range. ’

To summarize, the initial and boundary conditions for equation

- (5.21) are, respectively:

?V,TCV’O)’&_ Fy 7o) (5.26)

”
H

. Fy 1(Vg,) = 0 ‘ (5.27)

%Q; 5.3 Derivation of the Functional Relationship for Growth,
- Nucleation, Agglomeration, and Attrition

<
The populatlon balance equation (equation (5 21)) contalns

general functlonal relationships for attrition, agglomeratlon nuclea-
tion, and growth. It is desirable to derive general relationships based
on postuleted mechanisms which are expressed oﬂ?} as functions of the
dependent variable, Fy T and the 1q\ependent variables V and r. Those
factors whlch are functions of concentration, temperature etc. are
indicated as functions of time. It is through the external- materzal

- energy and momentum balances that the experimental condltlons are related
to time. This method o{ formulation maintains flexibility in tﬁe model-

. ling ptocedure. The derivations of the general functional relationships
~ -

are presented below. .



(a) Growth Rate
The average growth rate: G(V, ) -'%%, may be expressed as the
- product of two functions, each of which depends on only one of the inde-

pendent “variables, viz: ° N

G,(V,© = Gy(7) . ¢g(V) ' (5.28)

where Gy is the constitutive relationship expressing the dependence of
the growth rate on the instantaneous concentrations, temperature, etc.,
and ¢g(V) expresses how this growth rate varies with the size of the

rd

crystals.

(b) Nucleation Rate

In 2 similar manner, the nucleation rate density function may be

written as:.
BFV,z,n(V’T) - ??l,n(r) . ¢n(V) ©(5.29)

The birth function BF£ n(r) accounts for the external conditions, whereas
. 2 . .
the function'¢n(V] accounts for the crystal size dependence of the nucle-

ation rate ffor example, through the secondary nucleation phenomena).

(¢) Agglomeration . ‘ .

In deriving a mathematical model for the agglomeration rate

_pProcess, an attempt is made to include a description of the mechanisms

which are expected to be involved. In this way, 1t is assumed that only
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binary' collisions take place and the crystal concentration is dilute
enough that only 'free-in-;pace' type agglomeration takes place (s3).

To derive the funcéional form of the agglomeration rate function
based on these assumptions, consider the rate of change of the number of
crystals per unii volume of solution in the'trystal size inf?rval V to
V + AV over an incremental time At due to agglomeration only. The

x

accumulation term is: —

[Fy p(V,7 + 4T)aV - Fy p(V, D)V (1)

The birth of the number of crystals into this.size range in time
At is equal to the numbér of 'successful' binary collisions in time At
that have a combined volume of V. Ba;ed on the assumptions concerning
the agglomeration process, the total number of binary collisions between
crystals of volume size range V' to V' + AV' and V" to V" + aV" in time

At -aTe:
Ky VLV Ry g0V, 08V V()] [Fy g (e)av /vy ()1ad—"

where ky a(V',V",r) is the collision frequency rate function. The number
) :

of 'successful’ bngry collisions or the nqmbef ofoagglomerated crystals

are:

VLV ) [Fy (V0L TAVT VL () TR, V", 7)aV"/V, (1)1 4t
v,a v,T L vV,T L

LY
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wPerg kv,a'is the combined collision frequency rate-agglomeration rate
function which designates the fraction per unit time of the theoretical
total number of collisions which result in‘agglomeration. The function
kV,a will be referred to in this work as the ‘'agglomeration rate effective-‘

-

ness kernel'.

Since the crystal mass (volume) is conserved during agglomerationm,

V = V' '+ V" and the expression becomes:

kv’é(V'.V-V',TJ[FV’T(V',T)AV'/VL(?)][FV,T(V-V',r)AV/VL(T)]QT
where it is to be noted that AV" = AV for constant V'.  Summing over-
all possible combinations of V' and V-V' that give V, the term for the
rate of input is: :

AR
3 r . kva(V',V-V',r)[...][... ] &t

Vi m V

)
where Vo is the volume of the smallest particle in the system and the
" factor i accounts for the fact that a collision between two particles

of sizes V" and V"', and a collision between V"' and V' constitute only

-

one collision and not two. ' - )

The loss of the number of crystals in size range V to V + AV due

to agglomeration over time At is equal to all 'successful' binary col-
lisions over time At between crystals of volume‘yft2>v + oV and all other
" crystals, jincluding those in this size range. us,vthe Qeath-raté term

for the agglomeration process is:
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4

V' o=y i
[Fy p (VL DVN (0] ¢ ° Ky, oV IRy OV, 1) aV/V, (D101

t
LA R
where Vo and v, are the volume of the smallest and largest particles in

the system, réspectively. Equating accumilation to birth-death and

dividing by AVAt gives:
. 8

HFV’T(V,T * A1) - FV,T(V,T))/VL(r)]/Ar -

VH = V—Vo

Vi m Y
0

2 : . -
VIV (1% x [3 . 1 ky,a (VS V=V1, 1By (VL TFy p(V-V',)AV!

Vi =V

: _ .
- Fy p(V,7) o z , ky o (V,V', 8)Fy 1 (V?,7)av! ]
P

-

Taking the limits as At -+ 0 and avV' = 0

3
| /v (1) x Py FV,T(V’T)

N V-V
.z o .
N AR £ ko VYV OR, (VT Fy (VYA

o}

Vu

" Fy g Uem) £ Ry O IRy 7,0V ]

0

and thus:

.

N

V-V

BFV,E,aCV’T’FV,T) - I/WL(T)]z X [i S

Q
ko (V12 VV9)
VO

¥ S

Py, VR (-0 ol L (5.30) .

-

(¢ ]
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e

e . V .
u
DFV,z,a(V’_T’FV,T) '- I/EVL(;rjjz x [FV,T Iv kV,a(v"V!T)Fv’T(V'DT)dV'] _

° - ... (s.31)

where

S
ky o (V,V',1) = 0 for (V. + V') >V and

%
: for V and/or V' < Vo

| v
o

for (V + V) :-Vu and

r
for V and V' 3_V°

(d) Attrition

If it is assumed that the attritior of efystals arises solely
as a result of the environment (collision with container walls, agitator,
high shear fields) and not through the interaction or collision with

other crystals, then the attrition rate of crystals in the size range

to V + AV will be directly proportional to the number of crystals per
unit volume of solution in that size interval and independent of the - .
number of crystals in any other size range.

The attrition rate functions may be derived‘in the same way as
that for the agglomeration process. In this case, the folibwing expres-

sion results:

”meW”fmﬁ"WmeW”fmﬁ -
v
1/V (1) x [2 {va Ky pV'SYSVI=V, )Ry (V! 2)dv
o}
vy, -
- fv kv,b(v,v',v-v'LT)FV’T(v,T)¢v'a S (5.32)
0

-
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+y

where kv:b(V,V',V-V',T) is- the rate function denoting the rate at which
crystals of size V breék.intp ﬁwo'fragmpnts of sizes V' and V-V'. Its
value is equal to zero fo;; Vv, v ; Vu; V' o< VO; V'->'CVQV;j;-andi
it is 3_0.for V> ZVO;'V :_Vu; Al Eﬁvo; and V' j_V-VO. The factor 2 in
’ eﬁuagion (5.32) accounts for the fact that the Preakége (atzféffsas{ggsv\
a particle with a volume V' into two fragments of volumes (V) and (V'-V) *

leads to one particle of size V while the breakage into fragments (V'-V)

N s

and (V) leads to another particle of size V.

5.4 Mathematical Manipulation of the Population Balance Equations;
Including the Functional Relationships

In order to facilitate the solution of the population balance
equation, it is worthwhile recognizing some fundamental mathematical:
properties of the equation and the terms in it. These mathematical

manipulations are discussed in the following subsections.

4.1 The Symmetric Property of the Agglomeration Convolution Integral

The value of the convolution integral, in.the agglomeration birth

_function must be approximated using numerical methods. In most cases,

it is faster and more accurate to solve the following equivalent equation: <
i ,

2 V/2 ) .
BFV’g,a(V’T,FV’T) b 1/[VL(T)] X {fv kv‘a(v“V_VI,T

o -

1 7 Yt [
FV,T(V ’T)FV,T(V Vr,t)dv]
. . N |
The following derivation shows that this convolution integral is equivalent o

4

to equation (5.30). Starting with equation (5.30), \\H_‘

1Y
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first the indépendeht variable‘V' is changed to V" « V'-(V/2),
which gives V' =V/2 + V", V-V' = (V/Z)' -4 V' e dV" and the limits
of the integration equal to -(V/2)+ V, to v/2) -‘Vo.w Hi;hlpﬁis trans-

formation the right-hand side of equation (5.30) becomes:

', V/25V
1/ v e01° x [1/2 f ky o(V/2 + V", V/2 - V)

-V/?*Vo ?

Fy p(V/2 + V', 1)Fy 1(V/2 - v, 7)dvr]

From this equation it is seen that if V" is replaced by -V' the integrand
"has the same value,.i.e. it is symmetric with respect to V/2, given that
ky é. is symmetric,  therefore it may be written as:

>

0

Ky (V72 + VrV/2 - VD)

/v i<
L V/2H 2

FV,T(V/Z +* V",T)FV,T(V/Z - V",T)dV"J

Changing the independent variable V" back to V' gives the desired result, i.e.

v-v .
1V, (0 x . %y VYV Dy (VTR (VY1) ] -
o . ‘
s V/2 o .
l/[VL(T)] X UV ky,a(v','V-V-,r)FV,T(Vl’r)FVT(V-VI,-r)d\h]
. ° (5.33)
o \\ ) —~— '



A

. \
- 170,

- b

5.4.2 SEatiaé;Averagéd Number Density Population Balance for a Batch
System with the-Rate Processes Growth, Nucleation, Agglomera-
tssnlfand Attrition .

Substitution of the general rate expressions from sub-section

5.3 into equation (5.21) gives the following integro-partial differential

equation:

I.C.

B.C.

Iy Vo001 * 6,00 &7 [¢ (DFy 701 = V() x

SEFNOING

. | , V2 '
+ 1/ [VL(T)] X [I\f ‘k-v’a(vt,v'v‘:T)FV’T(V'.sT)

o}

FV,T(V-V',r)dv'q - 1/[VL(r)]2 X

. V .
. u .
[Fy, 10V ky o (V12 V, 0)Fy (V' ©)dV]

-

v, .
* I/V (1) x [2 f kV b(V' v, V -V, T)FV T(V',r)dV']

V-V ’
. . Q
v - 1/VL(_1:) X ['j'v kV,b(V-V':V'Vr:T)Fv,T(V’T)dV']}

° - cee.s(5.34)

v, T

FV,T(VO’T? - 0 , A l

&

>
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f

Equation (5.34) is the population balance for the number density
function for crystals in a batch crystallizer which includes general
models for the rate processes of growth, nucleation, agglomeration, and

attrition.

5.4.3 Spatial-Averaged-Number-Cumulative Population Balance for a
Batch System with Growth, Nucleation, Agglomeration, and Attrition

All attempts to find a successful (accurate) numerical solutién
of equation (5.34) have failed. It has been found, however, that a suc-
cessful numerical solution of the population b#lance equation can be
effected if equation (5.34) is expressed in terms of the cumulative
" number distributioﬁ funcpion, HTCV.T)- Tﬁe cumulative number and number.
density functions are related by:

Vv

S(V,T) A S . By o (VM 7)dvn . (5.39)
v 0T -
o]

which, when differentiated, shows that:

2 : -
Fv,T(V,T) - “aVHT(V,T) ‘ - (5.36)
Also, from the boundary condition for Fy T(Vo,r), it follows that:

Hp(V,,7) = 0 . (5.37)
The transformation of the population balance equation (equation

(5.34)) from the number density function to the cumulative -distribution



. o
A5 R

. - ‘ 172.

function is carried out by integrating each term over the interval v, to

V as follows: ' _ /
(a) Accumulation Term ) . /\/ .

v

g—TIFV,T(V".r)]dV" - g?HT(V,._T) (5.38)
o] . . .

by definition of HT(V, T).

(b) Growth Term

Vv R . .
, 5o (9 Fmb MRy B Olar = 6 () [ (V")Fy £ (V")
0 : .

v

f

: v
0

| ﬁ - GDcmgCV)FV,ch,TJ
- G(x)e, (VIFy (¥ ,7)

~ - G (g 10, - 0

(¢} Nucleation Term ‘ -

o v

-, I VL(RIBR, (24, (Vdve = VL (TBF, ()8 (V) (5.40)
0 - ' :

- - ~
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v
where @n(V) iy J'V ¢n(V"')an
o . : '
(d) Agglomeration Input Term .

-

The integration of the agglomeration input ‘term requires the

evaluation of the following expression:

v N T2 :
I VL(T) ——-————- s kv,aCV',V"-V',r)FV;T(V',r)Fv,T(V"-V',r)dV'dY"
LA v (T) Vo .

’

=

This double integral is transformed 1nto a double 1ntegra1 of a
‘mQre tractable form with Tespect ‘to the 1ntegrat10n 11m1 s and order of.
integration with the ald of the Heaviside unit functions ¢ and ¢ as

o

follows: St

v vn/z . ' . - h
(...) =71 r (V1 V)0, (V! VIO (V-Vr VY, 2)dY v
_ . v .

where "V Ly p (VL Fy V-V, )

.-

L 4
1 ) K " ivv ivn‘/z . - .-
0,0V, V) = | - o e . :

0 , V! <'-Vo > V' o> /2

i ' _ 1
< _

‘;l -

-



Therefore, with.these definitions, the integrations can be
extended to cover the full range from zero to infinity, --e.:
o -] ]

(-..) = 7 f e (VLYo (VY V)S VIV, VT, )dvIdyn
o o 1 2

which when changing the order of integration bécomes:

(o) = FF e (VI (VI VIR(VISY! LV ) dvrayT
o o .

The integration limits of this integral are now'reduced such that the
only region covered is that for which both ¢, and ¢, are equal to one.
Thus ¢2 and ¢y =1 for V. > Vv, v > 2v', V' i_ZVO and, therefore,

V> V"> 2V > 2V or V/2 > VM/2 > V' > V. Also 4, = 1 for V" > 2V

2

and ¢11!-1 for V" < V wirich shows that the integration limits for V"

are [2V',V]. For V', 9y =1 for V! 3_V0 and ¢, =1 for V' < V'"/2 and

1
since VW’EZV br’V"/2 < V/2 for (¢1 = 1) it follows that V' < V"/2 <Vv/2,
while from the integration limits for V' the only possible values for
V" are those for which V"/2 >V, thus V' < V"/2 is not a constraint on
V', ;nd V'-E_V/Z. The integration limits for V' are, therefore, [VO,V/ZJ,‘
and the integral term becomes:

: , S, V/2 v

(...) = VL(T)/[VL(T)]“xf I ky a(v',v"-v',r)

v.oooavr
o v

|- n_ytr . e [
Fy p (V' 0)Fy p(VI=V", 2)dvav -

174,
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-

which by means of the variable V'"/'such that: V''a V'-V' o, dV'e 4V

yierfvr,v-vr] , gives: -
' 2 v/2 v-v!
...) = VL(TJ/[VL(T)] x [ ! kv,a(V',V"',f)
v A
)
FV’T(V',T)FV’T(V"',T)dV"'dV' ..... (5.41)

which is the desired result.

(¢) Agglomeration Output Term

N :

¥ 2 1 u ’ Te | - "
i J\ML(T)/[VL(t)] X FV,T(V , 1) fv ky a(v ,V ,r)FV’T(V ,T)dv'av

v ]
0

o}

v v
il - .
- -V /DRSS L Yy VLV TR IV DFy gV )dvTav
O . ’ ’

(f) Attrition Input Term.

V v
u .
fv ZVL(T)/VL(T) X fv+v kv,b(V"VH,VT..VH,!JFV’T(VI,T)dvtdvu
0 o
v v
ZVL(T)/VL(T) x/ S

: V. V+Y
0 0

u kv b(V',V",V'-V",T)FV T(V',T)dV'dV”
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(g) Attrition Output Term £
v vy ‘
IV V() xS Ky o (V0 VYV O (U, 2)dvTave
VO Vo ; ‘
v V—Vo
- noyr yn_ye " A
- V(D (D) x J’V Iv ky p (VYYD E SV, VIV
° o .o (5.44)
Collecting terms shows that: (C’\
3 3 _ - . .
‘a'-{mr(v’ﬂ] *\GD(T)%(V)[BV Hp(V,7)] 7
+ VL(T)BFl,n(T)Qn(V) : -
, V2 vy o
T 1t - t " "
sV (/Y (0] x fv J’V' ky L (VY TF LV 0)F OV, 1)dvav
o]
5 Vv Vu ;
- T oyn 1 "o Y Ve
VL(T]/QYL(T)] X fv fv kV,a(V LV ,T)FV’T(V ,T)FV,T(V ,T)dv'dv
o 0 .
' Vv Vu
+ 2V, ()Y, (=) x S S (V',vr, V-V o)F (V',t)dv'dve
L L V. vy V.5 ‘ v,T
o (o}
VooV _ .
- VL(r)/YL[T) X IV IV kV,b(V",V',V"-V',T)FV’T(V",TJdV'dV"
° e (5.45)
B.C. H(V,7) = O | ' _ (5.46)
. : . ~
e Hi(V,0) = Hp (V) (5.47)

S
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‘with growth, nucleation, agglomeration, and attrition -rate processes,
expressed indirectly in terms of the cumulative number distribution ar
function He(V, )~ The [.C. is subjeff-to the same arguments that were

presented in sub-section 5.2.2.1 for the I.C. of equation (5/21). The

B.C. follows directly from the definition of 'thé cumulative number
distributiom function. The assumptions made *ix’ the derivation of

equation (5.45) are repeated here .for clarity. Thus, it has been
R 'd -
: _ /

assumed that {
\

- The crystals concentration 15_32333 enough to be approximated

by a number continuum. \\\_\ //"'7" : .

- The batchjs?‘fem behaves as a homogeneous suspen51on. (::;
- *The internal state of the, crystals is completelv defined by

the ofe internal coordinate, crystal volume.

- .The growth and nucleation rate functions can be split into two
 factors, one depending on the crystal environment and the other

on the crystal dimensions.

-

- The crystal concentration is dense enough to allow for a deter-

_//*Although Fv,T still appears in this equation, it appears only iy the
integrand exure551ons whlchvwhen integrated out are proportiocnal to Hr

by definition of Hr, i.e. v 1dV = Hp(V). If the integrand expres-
sion is too complex for an aﬁalyflcal solution, the Fy T or 5HT/3V values
can be numerically approximated and the integrals evaluated bv quadrature.

Equation (5.45) is the population balance for a batch system ”—‘>

*)
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ministic formulation of the agglomeration rate procesé, but at
the same time is dilute enough to have "free-in-space type“
agglomeration, and to have oﬁiy binary collisions take place:
- - The attrition rate of crystals in-the size range V to V + I\
is independent of the number of crystals in any other size
_range. |
- The Qolume of agglomerating crystals is conserved in the

agglomeration process.

5.5 Pseudo Moment Equations for a Batch System with the Rate Processes,
Growth, Nucleation, Agglomeration, and Attrition

Althoughlghe cumlative number expression, equation (5.45), might
present f&er numerical problems than the number density function expres-
sion, equation (5.34), it still is an integro-partial differential equa-
tion which in most cases requires considerable computer power (time and
storage) to effect 2 satisfactory‘numerical solution. To alleviateb{Lis
problem the number density function expression can be transformed to a
set of 'pseudo moment' equations.

Pseudo moment equation; aré obtained by multiplying equation (5.34)
by a general weighting function, xi(V), and integrating over the independent
variable V. The resulting equations are called 'pseudo moment equations',
instead of merely 'moment equations', for the following two reasons.

First, the weighting functions can be any function of V and are not
restricted to the particular forms, xi(V) Q.Vi, hich are the weighting

functions commenly used for the moment transformation of the population

balance equation. Secondly, the resulting equations might for certain

Y
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A

, xi(V) functions not be a set of equations exclusively in terms of the

B

-

eudo moments, that is, they still contain functions of the independent

variable V.

These types of equations, where V has not been integrated out
completely can be useg to advantage, however, as ‘is explained later in—
this section. On the other hand, if the independent Variable V can be /;:\>
1ntegrated out of the equation, then the SOlUthH is simplified greatly
because wrltlng the populatlon balance equation in. terms of the moments
or pseudo .moments transforms the integro-partial differential equation
into a relatively small set of ordinary differential 6? algebraic equa-
tions, which are relatively easier to solve. The derivatiocn of these
pseudo moment equations is demonstrated below.

The ith pseudo moment of the number distribution is defined as:

Y

X, (VIFy p{V,)aV (5.48).

Therefore, multiplying ®equation (5.34) by xi(V] and integfating over V
from V_ to Vu gives for each term the following expressioms:
L4

(a) Accumulation

* 4
v, ; A
Iv X, (V) E;[FV’T(V,T)]dV —_S;[IV Xi(V)FV,T(V,T)dV]
¢ ' o
& d ) -
- -d—n ('r) ..... (5.49‘)

’"‘S\i;ffh\ o

(

4
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{(b) Growth

Integration by parts yields:

Vv ;

u , ] . .
Iv Xy (V)G (1) ﬁwg(v)-Fv,T(V.r)JdV . |
0 : *

Y B

u
- GD(T){ [¢g(v)FV,T(V’ )] [xi(V)]/V
o]

V.
u d
- 1 VT, (F, 2V, DG, D14V

v
0

6 (9) (0, (V) Fy p(VuX; (V) = 85 (VIR p(Vgn )X (V)

v .
u d
-7 [ (VFy 1V, D1G7X; (N1 S (5.50)

o)

. “The second and first terms on the right-hand side of this equation
2
are zero because'Fv,T(Vo,f)-and FV,T(VU’T) have zero values, Tespectively.
The zero value of the density fiunction at Vo is the boundary condition
(5.27), while at V 1t follows”from the fact that the value of Vu musi\
always be large enough such that the solution domain contains the whole

size distribution at all times (i.e. Vu is defined by F(V,t) = 0 for all

V> Vu). Hence,

v n | -
u I -
[=)
- G—)Ivué VIE. _(v,7) LIx. (v)]av 5.51
= D(‘- v g( V,T( J'-) EV ‘l( )] """ ( . )

0
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The possibility of expressing (5.51) in .terms of the pseudo moments,

n, (1), will depend on the functional forms of ¢g(v) and X; (V).

(¢) Nucleation

-
Vu <N Vu
fv X; (VIVL(DBF, ()¢, (V&V = VL(T)BFﬁ,n(T)IV X; (V)6 (V)V
o] Q.
: ‘ ° ..... (5.52)
Vu
where [ Xi(V)¢n(V)dV must be a known function of i in order that a
Vv
meaningfulosolution can be effected.: N

-

{d) Agglomeration Input

v, , Vv,
i .XiCV)iVL(T)/[VL(T)]" x J k a(V',V-V',T)FV,T(V',T)

Vv
Vo Vo ’

JoV',2)dVTdY T = (...
FV’T(V V',7)dv'd (...}

This integral expression is trangformed into a more manageable form with

regard to the integration limits with the aid of the functions ¢, and %,

as follows:

i

Define: ¢,(5,7) = 9,(5,7) L Fy 1(8,7) , Vyxez2V
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For convenience the independent variable t is dropped in the following

derivation. Thus: ’ N
AR
. - —_— BRTIRTIRY'S ' V-V! 1
(. ! kA Ty o (VL V-VTX; (V) 6 (V) 0y (V-V1)JaV'aV
o o

1 T
- 3V—f“f [...]dvrav
L Vv V
o ©
while, from the relationship - L]
Vu 3 = 3 |
R RS SFy (VDI
) o

it follows that the integration limits can be written as:
11 ]
- 2TI f [...]dVdV

Changing the order of integration yields:

o -}

- i%,—f ;s f...]avav?

L Vv Vv
0 o

and, again from ¢2(V‘) = 0 for V' < Vo, the integration limits can be

changed to:

- ’z%—! ! [...74vav’



and changing to the

which, since ¢l ")

-1l u
iy S
L Vo
Therefore,
(...) = 1}
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new-variable V' = V-V' gives:

fv [k\( a(vl,vu)xicvn + V')Ql(V')‘Dz(V")]dV"dV'
0

— @2(\“) = 0 for V' > Vu’. becomes:

v
S Y., Jdvraye

v

]
1 Vu Vu
=7 I k (Vl ’vn,.r)x_(Vn - Vl)
Viy Ty Yea 1

L} - " " 1 =
Fy p(V DRy pQy,odviave L (5.53)

which is the desired expression for the aggl-omeration rate input term.

(e) Agglomeration Qutput

sy

-

v

FEX M-
- V0
- - 1
¢ VL(T)

Combining t

v

2 u T 1 4
VL(T)/[VL(JJ PV,T(V’T) IV kv’a(v ,V,T)FV’T(V'T)dV Jjav
0
v, Yy
o J V', V,2)X. (VIF, ~(V',7)F, ~(V,7)dV'dV
A Vo kV,a i v,T v,T

he agglomeration input and output terms gives for the

net agglomeration rate the expression:
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[N
(f) Net Agglomeration
1 Vu Vu
_  f I k VAIRTALE PXLOVY o+ VY - XL (VM)IF v,
'VL(T) v v V,a( T) [2 1(V ) 1( )] V,T( 'r)'
o 0
oEN “
' FV,T(V",T)dV"dV' ..... {(5.55)
-
The possibility of expressing (5.55) in terms of the »seudo
moments, n;(r), will depend on the functional fogis of kv a(V',V",T)
and Xi(V").
AN
\\\‘J///;;;H\X::;}fion Input
- Vu
S ky p(V',V,VI-V,2) x Fy p(V',2)dV']dV
vo
- u ' ' ' - Ft
2 IV IV kv,b(v + V,V,V ’T)xi(v)FV,T(V + V,z)dv'dv
°oe (5.56)
*
(h) Attrition Qutput
r
Vu V-Vo )
- ks L =4t -~ 1]
P , fv X. N[ V&)V () va kv,b(v,v V-V ,1) x FV,T(V_“)dV Jav
o 0
Yy Vu
= -1 J k, ((V*V V, V' )X (VV)F, (V*+V,7)dV'dV
v VQ V,b b OV, T -
° (5.57)

- . -y

Combining the attrition in and out terms:
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@
(i) Net Attrition
Vu VU.
1 T - i 1 T
Iv Iv Ky p (V1 0VLV 002 X, () - X WIF, O +V,1)dV'av
o o (5.58)

As noted, for the growth and agglomeration the feasibility of
expressing (5158) in terms of the pseudo moments, ni( , will depend on
the functional) forms of kv’b(V'+V,V,V',1) and Xi(g}:/

Al -

Collecting terms:

d -
E[ni(ﬂ‘}

- v
: u a .
* Gy () fv ¢g(v)§y’T(v,r) T X, (V31 av e~
o] 1
N Vu :
* Vi (DBF, (D) fv 6 (I, (V. -
Q
vV
- —;%- rers lv' VI T)F. o (VY , 1) Fy (V1)
VL 1) v v kv’a 7 VeyT*® ? v,T ’
0 0 ‘ )

/\

[ X; (V0sV') - X, (V)]dVrav

Y .
e p U TRy JOVVL VLY TR TV, ) [2X, (V) - X; (V'+V)]avav
v, v, "’ LV .

4

/‘.

o]
° U (5.59)

, i=1,2,3, ..., mp

I.C. ni(OJ - no(i)' (5.60)
. Vy
where ni(r) L fv Xi(V)FV’T(V,r)dV
]

o
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Equationr(STSQ) is the ith equation of the set-of mp pseudo moment
equations for a batch system with growth, nu;leation, agglomeration,
and attrit;on rate processes. The alsumptions made in the Aerivat%pn
of this set.of equations are the saime as those for equation (5.34).

At this point it shpuld be noted that in most cases a majoT
difficulty arises in using these pseudo moment equations. This is
becausE:;EF functional form for X.(V”) that is 'desirable' for the
agglomeratlon term is ‘'undesirable' for the growth term and vice versa.
That 'is, when the term {¢ V) x dV[x (V}]} equals a function of the
X;(V)'s the term {kv LV V",rj x [3X (V'VT) - X ; (V] } can most often
not be expressed as the product or sum of functions of the X, ;1 (V}'s,
while if the last condition can be met the first fails for most forms
of xi[V). For example, 2 suitagifbfsrm for Xi(V] for the agglomeration
term with kV,a - 1 is: Xi(V) -e L ‘where the bi's are positive para-
meters. With tﬁis form for Xi(V) the agglomeration term becomes:

-b. (V"‘*‘V') “b.v"
{1x(ie . - e * 1} which equals:

_b.Vll -bivr _b-V" .
{1x(e * )x (e ) - (e P ) x (), -}
. 1

This shows that the agglomeration term can be written as the products

and sums of the pseudo moments given by:

Thus for an agglomeration only process with ky , =1 the populatiecn
’

balance equation can be transformed to a set of closed pseudo moment

*To form a product in terms of the pseudo moments for this last term
one of the b;'s must be set to tero.



equations. However, it is seen that the| growth rate term, which for m;b o
¢g(V) -v/3, i equal to:

(V33 x (b)) x (¢ '3}

vV, -b.V - nx
cannot be expressed in terms of [f e FV Td\.f because of the ve/3 factor.
- = V 2

Other funttions for X;(V}, such as'o‘xi V) —Vi, with ¢g —V2/3, and i = 0,\

A1/3, 2/3, ..., shows that -a set of n.i\omenft equations can be develope‘c-i_\fg;’

a groﬁth only process without difficulty. The real difficulf.y‘, however,

is finding a function which is suitable for both growth and aéglomeration

processes simultaneoﬁsly with realistic functions for b and %‘V,a' -
Thus, although the usefulness of equation (5.60) migh{t “be limited

in obtainiﬁg a closedt set of pseudo moment equations, it cén ?}e used to' - .

advantage in the investigation of the constitutive expression,;; for

Gp» BF?.,n’ and kV,a' That is, if for a process with negligible attrition

the measured values of F, .. are weighted by a function X such that the

v,T

nucleation and agglomeration term vanish, and the accunulation and growth
¢ J i

rate integrals are calculated by numerical quadrature, then the only

unknown remaining in equation (5.60) is the function G,. This allows

then for the investigation of and discrimination among diffetent possible

functions for Gp by means of a relative

small set of equationsasi =~
.,.-U'""'u-.- -

can be investigated..-BJuition (5.60) is “used

Similarly kv,a and BFz’

- A
_A-few examples of different functions for

xiw) are given JBelow.
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. Xi(V] = 1 , zeroth moment
V-
d u 4
a?[fv By p(V,0dV] & o001 = .
o
¢
-+ 0. -
Vu
+ VL(1)BF, [ (x) fv $, (V)dv
o}
1 Vu VU.
- iv (T) f f kV,a(v"V"’T)FN,T(V"T)FV,T(V"’T)dV"dv'
L Vo Vo )
Vo Vo ' v )
« £ 00T Ky p VIRV, VLVY )R, (VY T)AV Y ... (5.61)
VO Vo
I.C.  Np(0) = Np, _ (5.62)

Equation (5.61) is the expression for ge rate of change of the total

number of crystals, NT(r), in a batch system.

Case II

X; (V) = $(VV
This represents the first moment with respect to V, where $(V) is a
function that accounts for the solids density and volume shape factor
such that the first moment is equal to the total weight of crystals in

-

a batch system. Thus:
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. v _
d u d -
. d—T[fv ¢(VJVFV,T(V:T)dY- L d_T[wT(T)]
. 0 .
- ’ J_vu VIF., _(V d [6(V)V1dV J
o
vu
+ VL(t)Binn(r) Iv 6 (V) (VIVAV
: 0 . " . .
. *?—-hl" ’
+ 0
“ 0 - [ (5.63)
LE WO = W S (5-64)
e -

Equation (5.63) is the eiﬁression fo; the rate of change of the total
weight of crystals, W.(t), in a batch sysfém. This equation shows

that volume (mass} is conserved in the agglomeration and attrition
process models; which is in agreement with the concept of these physical

hl
processes. .. =T

Case III (

The two previous cases~are .examples of commonly used weighting .
functions which for Case I rélates he‘change of the total number of
crystals in a system to the relevant rate processes; and for Case II
Telates the change-of the total crystal weigﬁé to éﬁe rate processes.

The weighting function presented below for Case III is not as common and
is ag’illustration of the general applicability Sf equation (5.59). The

first case allows one to investigate the nucleation rate expression since
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that is the only unknown in equation (5.61) given values for ¥y T and

'expresszons for t/f(agglomeratlon and attrition rates, while the second
L 4
case provides £{; an 1nvest1gat10n of the growth rate expression given

that Fv T js known and the nucleation term in equation (5.63) is insigni-

flcant in comparison to the other terms in that equation. Case III

provides an example of a weighting function which allows for the investi-

-

.-

gation of the agglomeration rate expression given that Fy o and the

’ . -
growth rate are known and that by particular choice of weighting functions
the nucleation term equals zero and that the attrition rate in the process

under investigation is relatively insignificant. Such a function is:

-CZiV
, 1=1,2, ..., mp

2
X; (V) C1.V

which, when substituted in equation (5.59), gives:

v -C2
d .. u 2. "1 _ d _
P UV_ CliV € FV’T(V, )dV ] & d—'r[ni(ﬂ ]
[v]
v, -C2,V
+Gp(r) [ 0 (V)F oV, 1) _-[c1 vZe T 14v
v ¢ |
o]
Vo 5 ~C2;V i
* Vy(0BF, (0 fv 4 (VI [C1;V7e Jav
o -2
1 vu Vu ~.'
r— V',V ) Fy (V1 ,T)Fy (V1) X
VL) v v Xy a v,T Iy 1l
. 0 o
x (V""V"] .
[ c1 x v x e - c1y x vm?

-C2. x Vv

x.e > Jdvrav e

VR
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vu Vu )
? 1 T
* fv fv kv’b(V +W,V,V ,r)FV,T(V +V,1) X
Q o
_ , ~C2;V - ) -C2; x (V'+V)
[ 2C1,V7e - Cly x (V'+V)® x e ldvrav
o, i=1,2, ..., mp. cese.(5.65)
“I.C. .ni(O)- — ni’o , 1 = 1’2_’ cee, WP (5.66)

Equation (5.65) 1is the ith equation of a set of mp pseudo moment
equations. The vector of parameters Cl and C2 can be chosen such that
a set of equations result which describe the change of the nﬁmber of
particles in particular sections of the size distribution. MoreOVer;
it is possible to choose these paramefers so that the nucleation term
can be eliminated from the set of equations. Furthermore, by proper
choice of these parameters the change in the number of particles in each
size range due to agglomeration can be represented by a relatively small
set of equatiohs which are still sensitive to the form and parameter
values of the agglomeration effectiveness kernel. The vectors El and C2
could be chosen such that instead of a small set of equations only-one
equation resulted. The galin in ease of solution would, however, be
offset by the insensitSyity to the agglomeration rate expression. This

p

expression by its very nature of agglomerating in and out of certain
sections of the size distribution provides for the poésibility of cancel-
lation of negative and positive deviations over parts of the distribution

such that a good overall fit is obtained for a poor agglomeration model.
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-

rate expression is solved in Chapter 7 where this solution method is

A set of equations for the investigation of the agglomeration
explained in greateﬁ;?etail.

5.6 Mass Balances and Auxiliary Relations for the
Batch Alumina Trihydrate System

The sol&fzah of the population balance éqﬁation provides the
size distribution of the ctystals in the batch crystallizer as 2 func-
tion of batch time. The‘popplation balance equation/requires, however,
conétitg&ive relatioﬁships for the kinetic -rate processeé occurring in
the system. These expressions will contain §upersaturatioh as an, inde-

L 4

pendent variable which in turn varies with time. Thus it is necessary

to obtain simultaneocusly the concentration of individual components in

—

the solid and liquid phase. This fequires solution of the equations

which are formulated from the mass balances on each component. These
balances are described below along with the required number of empirical
relationships needed to ensure the same number of independent equations

as system unknowns. Also, the relationship between the population bi&ﬁnce

and the mass balances is presented. Different sets of equations result

depending on the assumptions made.

5.6.1 Mass Balances

- The total and component mass balances for the batch alumina tri-

-

hydrate system are:

(a) Total Mass Balance
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%WL% * Wy * Vg iilcp;(i)]‘ - 0 | (5.67)
(b) Alumina Component Mass Balance .
?1—1["1. CA + 654 Wl = 0 . , (5.68)
() Caugtié Component Mass Bal;nce | )
d v, oNy= 0 (5.69)
dt- L R -
(d) Water Componént Mass Balance
Sfv, cH + .3;16 W ] - 0 ' | (5'-7;))
drt L T _
(e) Impurities Comvonenf Mass Balances
d v e, .+ V. CP . ] = 0 (5.79)
dr- L T 2(i) 5 s (1}

i = 1,2, ..., kp

s

where kp denotes the number of impurities.

The concentration of a component in solution is traditionally
expressed as mass per unit solution volume, e.g. grams per liter. The
concentration of the aluminum ele;zentor'ion, A13+, in solution is commonly
expressed as grams aluming, AIZOS, per liter, while the sodium ion, Na+,

is either expressed as grams sodium carbonate, NaZCOS, oT as grams

» ;
~
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&

sodium oxide, Nazo, per liter solution. To comply with existing consti-
tutive relations, the caustic concentration is expressed in this work as
sodium oxide. Note that, 1 gpl N320 = 1.712 gpl Na,CO4. The 0.654 and
0.346 factors account for the stoichiometry of the chemical reaction,
that is, 0.654 is the mass fraction of the solid alumina trihydrate, Wy
which is alumina; while 0.346 is the fraction of water in alumina tri-
hyd?ateJ‘ The mass balances on the impurities need to be included and
the equations solved if in fact impurities are present and some or all
of. these impurities affect the cgnstitutive relations-of the

system, éagh as for instance solution density, solubility,‘growth, and

nmucleation rate.

-\ . ! » _

5.8.2 Auxiliary and Empirical Relationships

An auxiliary relation for this system is the relationship between

total slurry and. solution volume, 1.e.

Vo = Vi * WT/pS (5.72)
- ' : 4
while the solution density can be calculated from the following empirical

correlation which was developed by Misra (mZ)Z

o, — 1.051+ (9.92x107% - 1.1x1077 x CN)CN

-

. 5 66x10-% x CA + (-9.4x107% + 5.1x107® x @)8..... (5.73)
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Misra (m4) also developed a semi-empirica relationship for alumina

—

solubility in a system where impurities arg absent; it is .

el

- (1.08753 x - _2486.7 ' RORR
CA CN x exp_{s.zlos + AR } (5.74) e s

e

~

o~
-

5.6.3 RelationsﬁjpS'Between Population Balance and Mass Balances

The direct relationship between the mass balances and the popu-

lation balance, that is, the number density function, is given by the

following two equations:

.

Fy, 1

(1) The relationghip between the number density functicn,
and the total solids weight at any instant 1is obtained by multiplying - o
Fy 1 by ($(V) x V) and integrating over all crystal sizes, viz.:
Vu . -
Wo(t) = IV 6(V).V FV,T(V,r)dV‘_ : (5.75)
[#] .

(2) The relationship between the rate of change of the total
. e

mass of solids®with respect to time and the number denqi:y function is

given by: .
S ()] .= Gylo) IV“ )y (V1) & (e (VIVIAY
de T(T) : D+t Y d’g( ) V,T(V:T) av [¢() ]
s}
v, ,
* V(B p(0) (Ve VIVAY e (5.76)
o

T
has been solved and, therefore, is not an unknown in the 4+kp mass balance

. Thus, W can be calculated once the population balance equation

equations. However, there are still only 4+kp equations for 5+kp unknowns ;
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which indicates that an adddtional independent relationship or condition
is reqﬁired. An example of a realistic condition is the aéproximation
of_constaﬁt batch suspension volume, while an example of a relationship
for a "pure".sy%temlis given by the solution density model which elimi-
nates the unknown p,. Each ?f tpese possibilities are discussed in turn
in the subsequent sub-sections.

5.6.4 Number of Independent Mass Balance Equations

A closef examination of the mass balance equations reveals that
the sum of equations (5.68).to (5.71) is equal to equation (5.67). That
kp :

3 - + + - : 3 '. .
is, VLCA V. CN VLCH - VL ii;,cplti) VLDE' This indicates that the

4+kp :Egigéegfﬁﬁre not an independent set and that only 3+kp equations
need Yo be solved. ‘The equation which is usually eliminated from the
set is the water component mass balance. Furthermore, it is shown below
that for this batch sys;em, it is not necessary to solve the set of 3+kp
ordinary diffe;ential equations, but_;hat it is only necessary to solve
a set of 3*kp algebraic equations.

Equations (5.67) to (5.71) are:diffe?gntials which can be inte-

) ) '.w
grated over any time interval. For instance, integrating

4 kp
c + T -
dTLVLpl Wp + Vg Z Cps(i) ] 0
i=1
from state I to Il gives:
- kp

VL(II)pz(II] + Wp(II) - VS(II)ii1 Cps(i](II) - VL(I)pz(I) .

-

Wo(I) V(I)k? CP ..\ (D) 0
T st Ts(d)
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, where state I could be zero time and state II any other batch time.

That is,
-
VL(T)DE(T} Wp(D) + Vs(r)iz CPs(i)(r)

. kp
= YV (0)p,(0) *W.(Q) +V (0) £ CP_..
L L T S ) s(i

,(0) L (5.77)

Y

The zero denotes initial condition values. In a similar maﬁ%er, equations

(5.68) to (5.71) are reduced to the following algebraic equations:
o VL(T)CA(':) * .654 Wp(t) = V[ (0)CA(0) * -654' W (0) (5.78)
V (CN(T) =V (0)TN(0) e . (5279)

VL(TICP, () (7] * VgICP( g (1) =V (0)CP, o

Thus these 3*kp algebraic equations can be solved for the 3+kp
unkno;?s given that the initial conditions are known and WT(T) has beenl
obtain%d from the solution of the population balance equation. Here, the
3+kp unknowns are: CA(t), ON(1), VL(r) or Vs(r), and Cps(i)(r) where

i=1,2,...,kp.
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5.6.5 Mass Balances for 3 Batch Alumina Trihydrate System
with Approximate Constant Suspension Volume .

-

For relatively dilute suspensions, small differences between
solids and solution phase densities, and low supersaturations, it is
reasonable to assume that the %rystallizer suspension volume remains

essentially constant during the cTystallization process. Therefore, “for

d

E;‘VT(T) = 0 and neglecting impufities, thé mass balances that need to

be solved simultaneously with the population balance‘gquatidn are given
by the following set of explicit algebraic equations (obtained from

equations (5.67) to (5.75)

W (D) - _J’:“ 6(V) v FV’T(V,‘(‘-T&'\\ (5.75)

0
IR A e . e
CA) = LV, (GAy * -654 Wy - 654 Kp(DINVL (D) (5.82)
oN(T) = [V ON, /Y (D) _ (5.83)

The zero subscript variables are the minimum number of initial
conditions that need to. be specified to define the batch systeﬁ at the
beginning of the batch process. The assumption of constant suspension

volume also eliminates the need of having to develop an empirical solu-

-

tion density model. Also, note that WT o can be calculated from:
;

v

u .
Hoo = T 207 Fy,1 o (V&Y , (5.75)
0
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Therefore, to initialiie this batch system only the following variables

need to be specified: FV,T,b(V) s VL,o » CA, and CNO.

-

5.6.6 Mass Balances for a Batch Alumina Trihydrate System
with a Given Empirical Solution Density Correlation
- b

- When the assumption of constant suspemsion volume cannot, be made,
then it is necessary to develeop a solution density model which is a fung-
tion of the concent{ation of components in solution and of the solution
temperature. Given such a_reiationship-the fai%owing séi'of'impiicit
’algebraic mass balance eduhtions results: - "

v

1% eV F(V,T)AV ‘ ' (5.75)

(5.34)-

- Y{Ttrn/pz(_ﬂ | (5.85)
CA( - {'VL,OCAO + 654 Wy o - 654 W ()1/V, (1) — (5.82)
CNF‘I:) - [V, OGN I/V (x) 3 . (5.83)

L,

Similar equaéions may be formulated for the impurities.

This set of equations can be transformed to an explicit set by
incorporating the particular functional form of PR For a .'pure’ alumina
trihydrateiéaﬁution, MisTta's equation (5.73) has been deménstrated te

give a satisfactory representation of solution density with component

Va

N/
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concentrations and temperature" If this equation is substituted into
equation (5.67) the following set of explicit algebraic equations
o . . '
representing sthe mass balances may be derived:
R, :
WT(1) - fv ¢(V) V FV.T(V,r)dV ) (5.75)

~ o

V0 = U2 - W) ¢ L2 - Wp()? e (4 x L x P x

..... (5.86)
CA(T) = [C4 - .654 WTtT)]/VL(T) (5.87)
CN(t) = C5/v (1) ' _ (5.88)

- The functions Cl to CS5 are calculated from the initial conditions, -namely:

Cl(x) = 1.587715 x [1051. + (.0051 x 8(x) -_.94) x 8(<)1(5-89)

v

€2 = 1.587715 x {V x 1000.) - (.992 x CN,)

Lo * [(pz,o

L) . .

- (566 x CANT} =ML e (5.90)

4 2

C3 = 1.746486x10 " x IV o x.CNOJ (5.91)
~ - _.\-:‘.

4 = (Vo % CN,) + (.654 x wT’O) (5.92)

€5 = Vp , % Ny . (5.93)
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i

-~
-

For a non-isothermal operation, the temperature, &, would vary -
with time and would have to be calculated simultaneously from an energy

. balance for this alumina trihydrate batch system. Note,

the initial conditions, WT o'and Py oare not specified but calculated
»

?

from the following initially specified variables:

-

v .
u .
W o IV SV V FV’T’O(Y)dV . . (5.75)
S > *

0 - 1.051 + (9.92x107% - 1.1x1077 x CN_ )N,

2,0

o
-

+ 5.66x107% x CA_ + (-9.4x107% + 5.1x10°% x 8)e  (5.73)

Thus to initialize the system the following variables need to be specified:

F ca CN 8

V,T,0 "’ VL,o > % 2 o’ o’

-

5.6.7 Mass Balances for a Batch Alumina Trihydrate System

Wwith a Given Empirical Alumina Concentration- Model
~

If one could predict the decrease in dissolved alumina concentra~

_ tion with time fsay with some empirical model for Ehe batch crvstalliczer
operating under specified conditions) aﬂd‘also had an empirical expression
relating density po system variables, then the performance of the batch . -
crystallizer could be predicted. This would follow from the solution of

the mass balance equations without reco;:;;\§o the population, energy

and momenfum balance equations. Thus, given an empirical relationship

which rglates alumina concentration with time and an expression which
relates solution density to solute concentrations (as, for'examplé,

presented by ﬁisra (m2)) the following syvstem of eguations can be developed:

o . - 9
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-

CA(7) = ¢1(x,9) o a = (5.94)

N(r) = {-C3 + {(C3)% - 4 x C2 x [CA() - .654 x

(1051, + CA(x) + CHIRVE xC2) e (5.95) -
VL(T) - VL,OCNO/CN(T) ' —(5.96)
. * ./
WT(T) - {[(Vf;o % CAO) - (VL,O X_CNO x CA(t)/CN(7)) /6541 + WT,é
..... (5.97)

S

where ‘Cl = (.0051 8(t) - .94)8 (1)
C2 = .654 x .00011 .

C3 = .654 x [1051./CNo - .00011 CNO +
-

. 566 CAO/CN0 - Cl/CNo] - CAO/CNO

Vi,o » WT,O » CAg CN_ , and 8  are initially specified variables.

e
B

From the above set of equations the crystallizer production rate,
WT(r), can be calculated without, as mentioned, having to solve simul-
taneously the population, energy, and momentum balance.e The advantage
"\2 .
of not having to solve these equations in this model scheme is offset by
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the disadvantage of not being able to predict the other important process
variable, namely, the crystal size distribution. This solution scheme is

applied in Chapter 7, Section 7.3.1. -



CHAPTER 6

NUMERICAL SOLUTION OF THE MECHANISTIC BATCH CRYSTALLIZATION MODEL

~

6.1 Introduction

As shown in Chapter 5, the mechapistic model for a batch crystal-

R R ‘ ~ . o
lizer invelving nucleation, growgh, agglomeration and attrition leads to

a non-linear, integro-partial differential equation for the size distri-
bution function, FV" This equation is rathef complex and, in general, 1is
difficult to solve. Indeed, except for very special situations, the
solution can only be effécted by numerical methods. Since these numer&cal
methods are approximations which can’lead to inaccurate solutions if

some care is not exercised and at the Same time they may require exces-
sive Eomputer time, this difficult numerical problem requires considerable
study and effort. The reward for this effort is considerable since not
only is the crystal production rate, but also the size distribution,
predicted as a function of time. Thus, the effect of controlled operating
variabléé on all aspects of the performance of the crystallizer may be
determined. In addition, the fundamental kinetic rate models together
with their sate éonstants for the growth, nucleation, agglomeration-an{__
attrition can only be determined if the size disfribution for the crystals
at any instant is known. This fundamental information arises however at
the expense of complexity and difficulties associated with the solution

of the mathematical problem.

in khis chapter, the solution of the crvstallizer model equations

is presented, including the method of solution of the integro-partial
F

L=
204
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differential eqﬁ;tion. Specifically, the following topics are cbvered:
a summary of the set of equations in the crystallizer model which must
be solved, a review of the solutions which have been reported in the

- current literature, a number of different ways that the integro-partial
differential equation was solved by the author; with the%r advantages,
disadvantages and shortcomings, and finally, the strategy and numerical
solution which was adopted for the crystallizer problem at hand. Since
the p;pulation balance eduation has widespread application, a general
solution for this equation should have considerable interest here and in

related fields.

6.2 Mechanistic Model for the Batch Crystallization
-of Alumina Trihydrate

The mathematical Qodel for the batch crystallization of pure
alumina trihydrate from a supersaturated solution of sodium aluminate
_consists cof the following non-linear integro-partial differential equation
and a set of explicit algebraic equations. These equations were derived
and discussed in Chapter 5. They are repeated hérg as a set to allow a

Y

.
guick overview.

A. Conservation Equations

The conservation equations for the crystallization ‘process -are:

Al. Population Balance s

3 . Ca ;)
= Hp(V,1) <ED(T)¢E(V) v HT(V,~5

S

accumulaticn . growth




—

(

+ {\vL(T] -BFV,R.,I'I(V’T’HTJ)} ,

nucleation

g5¥ ﬂYL(r) BFV,E,a(V,T,ﬁzl} .

- -
agglomeration 1in.

{YL(T) DFV,l,a(v,T-’HTz'}

agglomeration out

+

+

and agglomeration term} ° (number/h)

/,
‘_’I

I.C. Hi(V,0) = Hp ()

=5}

.C. HT(yo,r) - 0

AZ. Maés Balances

- Number-Mass Equality
V '

Wp(t) = fV“ $(V) V Fy p(V,3)dV (g)
o]

- Solution Volume*

V() = (€2 - () + [(C2 - W) e

1/2}/(:2 Cl) (&)

- (4 C1C3)]

206.

{attrition term which is compounded in the nucleation

" (6-2)

(6.3)

*This equation is conditional on the correctness of the solution density

correlation as given by Misra (m2).
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[
- Alumina Concentration
CA(r) = {C4 - .654 W.(1)}/V, (x) (g Al,0./2 sol.) (6.4}
- Caustic Concentration -
CN(r) = CS/V (%) (g Na,0/i sol.) £6.5)
N @
- Impurities ‘Concentratron
. . \-/ -
////ﬁ\\ For this work no mass balances are-required to account for the
N .

impurities since chemically-pure alumina trihydrate and caustic were used

d hence the impurity level was negligible.

&

In the above equations, the follow1ng functlons pertain:

C1(8)* = 1.5877{1051 + (-.94 + (.00518)36} (6.6)
.. &
C2 = 1.5877{VL,°(:C6 - .992 CN_ - .566 CAO)} * W, 6.7)
B Sl -
- -4 2 . )
C3 = 1.7465 x 10 (VL,OCNO) : (6.8)
C4 = VL’OCNO + .654 wT,o (6.9)
| hnee)
- Ccs = VL,OCNO n : . (6.10)
2 2

C6 = 1051 + .992 CN, - .00011 CN_“ + .566 CA_ - .94 8_+ .0051 9
- 0 o 0 )

*for an isothermal batch system Cl is a constant. -~
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The o subscript denotes initial condition values.

A3. Energy Balance -

An energy balance is not required here since all batch runs were

carried out under isothermal conditions, therefore for batch p:

eP(T) ~ Bp o for all t. : (6.12)

H

A4: Momentum Balance

A momentum balance is also not required because all runs were
performed under iqiptical agitation conditions. As 2 consequence, it is
expected that thézzgystallization phenomené were influenéed to the same
extent throughout this study by liquid shear forces and particle-particle

interaction. The effect ‘of agitation on the crystalli:atién process 1is

of considerable importance dnd should be investigated.

B. Constitutive Relationships

o

The relationships which are presented below are shown in Chapter 7
to represent the kinetic behaviour of the alumina crystallization system
quite well. The development of these relationships and the evaluation

. . : N
of the parameters contained within them is presented in Chapteg 7.

/

Bl. Growth Rate Kimetics / '
As discussed in Chapters 2 and 5, it is reasonable to represent
to volumetric growth rate by the product of a linear growth rate facto

and a factor relating these two rates, vizI.:



Y
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6,(V,1) = Gp(x) 4,0 (/) RN RS

where the linear growth rate, GD’ may be represented by a powér law

function of supersaturation

-

Gy(x) = BG1(6) 4CA(T) %% (ua/h) K (6.14) -

Other rate expressions as discussed and presented in Chapter 2
may be used as well. If it is assumed that the characteristic length

of the crystal is the spherical volume equivalent diameter, then
3.2/3,,2/3 2
003 = 13633 G (6.15)

On the other hand, if the volume-surface area relationshié obtained from
data published by Scott (gl) is valid, then:‘s

2 5 ~ .
¢g(V) - --—¢(D) (um™) (6.16)

where D = diameter of 2 sphere with same volume as the particle

y = Scott's angularity factor (correlated by equation (2.39))

It is to be noted that equation (6.13) assumes that the growth
rate is independent of the’ selected linear growth rate variable, that is,
*McCabe's AL law pertains. «d@ this is not the case, then equation (6. 14)

X

may be modified as follows:
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£3%% 5 @) () (6-17)

where ¢D is a functi hafy accounts for the dependence of the linear
growth rate on some characteristic linear dimension of the growing

crystals. i

B2. Nucleation Rate Kinetics ”

Again, as discussed in Chapter 2, the nucleation rate is usually

expréssed as the product of two factors, viz.:

,

BFV,L,H(V’T) - BFR,H(T) ¢, (V) (6.18)

where BF£ n(r) expresses the dependence of nucleation on system conditions

and ¢n(V) indicates the probability of a new nuclei being of size V.
Typical functional relationships are:

(3) a power law relationship for BF, (1) (number h™iz sol.)'d):

: f BN2 '
BF, (1) = BNI(CA(r) - CA_(x)) (6.19)
(b) 2 log-normal function for ¢, (V) (um-l):
1
. - . - ;——1—2 (1nV-BN3)°
4
¢ (V)7 = ———— (BN4) : (6.20)

BN4Y27 V

B3. Agglomeration Rate Kinetics

" As shown in Chapter 5, a reasonable model to express the agglomera-

tion rate is:
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v/z v-v!

———f Tk VLVLTF (V)

BF, , (V,r}H) = ——s
V,E;a HT Q’L(T))Z Vo vy

F, (V" T)AVIGV'  (number n e so1.)7H

! A
OF, , it H) = ——— 7 s Ty

O R A A

a(v' JV";T)FV,T[V' ’T)

Fy, (V',1)dV"dV'  (number h"i(z s01.)™h

' 3 o - -1 -
where FV,T(V’T) - EV-HT(V,&) (number ym “) ..... (6.23)

The function, ky ,» accounts for the effect of operating conditions

2 i .
(e.g. supersaturation) and the efficiency of agglomeration when particles
of different size contact each other (the effect of crystal size on the

' aggomeration rate). One possible form for this kinetic rate comstant is:

k, LOVVT) = BAL obA2 AR (number th™12 sol.)

where the size dependent factor could have a form which indicates that \

the agglomeration process occurs more readily with”smaller particles, viz.:

-~

4

oy L) = (e @R /E L w3

2/3

BAs V)3 L vy

S

-
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This functional relationship can accounfﬁ(through parameter BA3) for the
observation.in practice that larger crystals of alumina trihydrate do

not agglomerate as readily as Sm%iler ones. Moreover, as discussed
earlier, the.parameter kV a should depend on the crystaliization apparatus

F

and the degree of agitation within it.

B4. Attrition Rate Kinetics

In Chapter 2, it was shown that when dealing with the population’h
balggce of crystal sizes, the'attrition-or crystal break-up process had f
to be considered. This process probably occurs tﬁ some extent in any
mixed suspenéion system., Unfortunately, if it occurs simultaneéusly with
agglomeration, it is only the net effect of attri;i;n and agglomeration
‘which can be measured for aﬁy particular crystal size; hence the attrition
process is confounded by the agglomeration process.. 'In this crystallizef
system, the agitation in the system was designed to minimize attrition as

much as possible while still maintaining a homogeneous suspension.

Consequently, because attrition is relatively small, modelling of'the

attrition process was not attempted.

C. Empirical Correlatigns

- The empirical correlations which are required for this crystal-

lization system are the following:

Cl. Solute Solubility

" - - - - -
The equation used in this work was developed by Misra (m4); it is:
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-

© 1.08753 CN - 2486.7 |
- CN .2106 Al_0 )
CA, - CN exp{6.2106 + ({ 57316 6 1} (g AL, 3/2._501 )

( _ - . ceee(6:26)

/

. ; .
This correlﬁtion is only valid for pure sodium aluminate solutions,

while its ra%ges of applicability are: k‘\ A___,////ﬁf’\\><j¢<’
\ ™~

-

o

During the course of this study t?;s—equaxigﬁﬁuai\checked from time to

time and found to be satisfactorf (Table 4.2.1-A) .-
. I

I T
)
/

C2. Solution Dehsity//

Mista (m2) also defeloped a correlation relating solution density

*

to aluminate and-caustic concentrations and temperature. This correlation

is:

. {
v -

p, = 1.051 + 9.92x10" CN - 1.1x107 N2 + 5.66x107% CA -

)2

"9.4x10"% 8 + 5.1x107%2 (g/em®) ... (6.27)
/__/—\

It is valid over the fangeé of ! 20 - IUObC
50 +.250'é Na20/2 sél.
CA—" '15 = 300 g A1,0,/2 sol.

A number of spot checks of this correlation indicated‘that it was
quite satisfactory. Equation (6.27) is not required explicitl& in-tais
model solution, but it is needed to develop an explicit set of algebraic

—

equations for the mass balances.



. ) . - ) 214.

C3. Crystal Geometry Relationships

The function, ¢(V), which is needed in the npmber‘mass equélity

(equation (6.2)), is given by:

- _2 * - -
$(V) = 0 X107 X gy (g/cm) ~ (6.28)
L
where p_ = solids density which for Gibbsite equals 2.42 g/cm° 7
™~ ) — measured to 'true' crystal volume relationship

_ (dimensionless) o - L\;‘_ﬂ—;;///
=12 y ) - -

. . - ol
10 = dimensions conversion factor (em’/um”)

-

.' -‘
The value of 1.0 is msed ip\this study for Yyye This is probably 2 : ‘J/TSH
~good approxlmatlon since for thils work FVT was obtained from Coulter - -
. Yy -
Counter measurements whlch measures crystal volume directly. Therefore,

6(V) is independent of V and equal to 2. 42x10 12. -{ ' ;

+ The other geometrig relatioqéPip neeggg iﬁ this work is a function

.which relates meagpred crystal volume to crystal surface area.. This need
arises because the overall crystal growth phenomena is related to crystal

surface area. In the population balance équativn, this surface area muist

be related to crystal volume. The fuqction is denpted here by ¢g {equation
(6.12)). A detailed d§scussion on this function is contained in Appendix D.

The equations presented in this sub-section constitute a complete .
. ! .

is

model for the batch crystallization of alumina trihydrate. The "mode
subjecr fo those assumptions expressed here and in Chapter 5.

equatjons are pre ed in summarv form in Table 6.2-A

~

AN
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-

~H@BLE-6.2-A Summary of Model Equations

Initial Conditions

8

o)

Fy 1(¥,0),V| (1A, DG, 8

Constants

8 = 8_
° v

- ) _ u . '
Wp o = 2.42x10712 Iv V Fy (V,;6)dV »
o _

1051 + (.992 - .00011)CN + .566 CA_ + (.0051 6_ - .94)8_

- -4, .2
C3 = 1.7465x10°°(CS)

[

—

€2 - 1.5877{VL10(C6 - .992 CNO - .566 CAO)} e wT,o

Cl = 1.5877{1051 + (-.94 + 0051 8)8} -

-

’

Mass Balanc'eS )
-12 u . .
Hp(v) = 2.42x107°° s BV By p(V,7)dV

Vo
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TABLE 6.2-A (cont'd.)

v (= {(C2 - W)+ ((C2 - W)™+ (4 C1C3))

216.

.\.

2 1/2

(2 C1)
CA(T) = .{C4 - .654 Wpl/V,
MN(t) = CS/VL
Empirical Correlation ’
' 1.08753 CN - 2486.7
- 6.2106 +
Che (D o exPF . 275.16 + © !
| Crystal Volume - Area Relationship
i < 2 -
¢ (V) — 2‘,17173 62/3 VZ/J
B
;; Constituitive Relationms
! - 2 :
' Gy(x) = BGI(CA - CAe)BG
P
- _1daV_- BN3y2
BE, , (V,7) = {BNL(QA - CA)" H————c BNa 7y
27 ‘ BN4 V27 V
V2o vev .
_BFV’E,a(V,r,PLr) - V—va j'v',. ky o (V1 V,DFy 2V, 1F (V' T)dviave
. L o
1 v Vu
Dy 5, (Vo Olp) = g ST Ry g (VYR (VL DEy (V2 diRel
L g 0
. | LI -— ._a_ ) -
wz.th- FV,T(V ,J‘ V. HT(V“)/V'
9 3 = 977 =
. kv a(V',V",-:) = {BAl UBA"}{(V')U"’ + (V")l/-*’}z-l(v-)-/*’ _ (V")Z/"!
- ” s
B e v
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. ~TABLE 6.2-A (cont'd.)

Population Balance

A

with

L, ¢ Gpn) o () gy (D) =V DBFy (),

+ BFV,Q,,&(V’T’HT)
- DRy, L 0LTHD)

1.C. - H (V,0) = Hp (V)
B.C. H(V,7) = 0

217.
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L]

6.3 Solution of the Model Equations

6.3.1 General

The solution of the model equations summarized in Table 6.2-A
ﬁrovides the desired model resﬁonse. Solution of the model is in
essence effecéed by sol§ing the population balance. The ease or dif-
: fi;ulty in solving the population balance equation depends on the choice
.Ef.the constitutive equétions. The particular choice oflthe aéélomeration
model tFfansforms the partial differential equation into an integro-partial

differential equation. In addition, the integro part has the special

characteristic in that one of the integrals is a convolution integral.

6.3.2 Solution of the Population Balance Equation

-

- Substitution of the agglomeration rate terms into the population

balance results in the following non-linear integro-partial differential

18

equation:

. -
S ) & -
.B—T FV,TW’T) - GD(L) Y ¢2(V)FV,T(V’L)

Y | o -
+ VL(T)BFg,n(T)%W)

\1 . E
e 1 YT - | B Ut T
+ VL(T) S kv,a(v LV-V ,L)FV’T(V jf)FV,T(V V',t)dv

v
[+

» |
I S u ' PRI ‘
e FV,T(V,T)IV ky ROV, TR, 0V, (6.29a)

L
0

I.C. Fyp(V,0) = Fy o ()

E i |

B.;. FV’T(VO,T) -0
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or written in terms of the cumulative number distribution function this

equation is: , ‘ :

3 3
-— : V . \
* V() BF, (D) fv 6 (V')av"
. o]
V/2 V-V
fv fvr kv’a(\”,V",‘r)Fv,T[V',T)FV,T(V",T]dV“dV'
v)
1 v Vu
- Fatal "o T t 1
WIV fv kV,a(V ,V ’:)FV,T(V"T)FV,T(V ,T)dV"dV N,
N _ ° ° . (6.29b)
I.C. HT(V,O) -— HT,O(V)

B.C. HT(VO,':) = 0

& ' R
Thus, to effect ; del solution either equation (6.29a) or, alternatively,

equation (6.29b) musy be solved.

-

6.5.2.1 Surveyﬁo'f Previous Solutions of the Population Balr;mce Equation

h-ggggfglrable effort has beeh expended over the years in finding
a so;ution of the population balance equation in its %gplication to a
number of different natural processes. Drake (d1,d2,h5) has examined
this problem in great detail. In thé%e references_are presented some of
his ow work and an extensive literature survey s. . rizing the work of
others. .In his reviews he considered the following points:

". What ;re the various mathematical models proposed for deter-

mining the size spectra as functions of time?

&
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Are these models well posed with respect to’ such prdperties
as the existence and uniqueness of solution{;\i?e continuity
of solutions with respect to the initial and boundary condi-

tions and physical parameters of the system, the boundedness

i . L
" of solutions, and the positiveness of solutions?

What are the proper.choices of the physical parameters/ind the
initial conditions‘ah the various models?
What is the-time evolution of the power moments of the size .
spectrum? -
~
What exact solutions are known? ) '

kY

What approximate solution techniques are known?" e

One of Drake's main conclusions was that in the general case

equation (6.29)} can only be solved successfully by using numerical tech-

niques

well kn

in the literatune (m

ich require-Targe)high spéed computers. This is a generally

. > U
niques. Although, several numerical schemes are presented

4,p2,1r9,s7), a particular method was developed

for this study siXce nore f the schemes had the flexibility of solution

desired, and indeed required her;T\\(EEE/élexibility requires that the

method of solution be: -

(2

-

(a) independent of the functional form of the agglomeration kernel;

(b) suitable for any shape of size distribution;

(¢) applicable to the equation when it contains both growth and

agglomeration acting together, along with-nucleation.
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6.3.2.2 Initial Investigation of Different Numerical Solutions

-

The rumerical solution requires that starting from the initial
_distribution the function %V,T or HT be evaluated at a sufficienﬁ number
. of two-dimensional grid points (independent variables V and t) so that

the continuocus function FV,T or HT be adequately repreéentgd by disc?ete
approximations.- A general type of 'marching forward' technique neces-
sitates the repeated calculation of two quantities: (i) the agglomeration
integrals and (ii) the growth partial differential, both at a sufficient
. number of discrete particlé volumes V for gach time step . The calcu-
lation of the agglomeration integrals is a time consuming process due to
-the convolution form of one of the integrals. This property results from
the very characteristic of agglomeration, namely: that eath particle has
an opportunity to interact with any other particle in the crystallizer.
'Eigil/gﬁ essénce; the integration keeps track of all particles in the
@kfs{allizer and” this explains the laborious calcuiation ipvolved. More-

-

over, this evaluation of the integral needs to be repeatgd a great number

of times due to the elatively fast changing size distribution which has
beeh observed with this crystallizing system. Thus, it is essential that
the numerical evaluation of the agglomeration integrals be fast to keep
the computer time requiremeﬁts wit?in pfactical'limits.

‘' In addition to-being Fast, the gquadrature approximation ghould
be relafively accurate, since quadrature truncation errors at éach.Lime -

- step might add to or interact in some otﬁer way -with the numerical

integration errors of FV,T with respect to time. This means that ntj-

truncation errors of one time step become the input errors for the next

time step. The combination of these errors might lead to very inaccurate

~
P

-
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&

solutions and/or in some cases to unstable solutions if the input errors
are magnified instead of damped at each integration step. This is a
well-known behaviour for numerical solutionms df partial differential
equations, but here the broblem is magnified due to the required quad-
rature calculationgq\\

These combined requirements for both speed and accuracy led to
investigating a number of possible numerical integration schemes; For
background and to complete the presentation here, some of these attempts

-

are outlined and discussed in the following sub-sections.

6.3.2.2.1 Successive Approximations Combined with the
Method of Characteristics

In brder to facilitate the use of the method of characteristics,

convenient to express equation (6.29a} in terms of variable L
instead qf V sifce, by assuming McCabe'slAL law, the growth rate 1s ,
assumed canstant for all crystal diameters. The growth rate term can
then be removed ffom the differential operatorfjthus equation (6.£§a),r\

transformed to variable L, may be written as:

2= 16 Gy ) 3 B gL

‘ +{VL(FL,T)BFL,2,n(FL,T,L)}

N v/2
VALV (F

! VL VVTy
L,T) v,

F
kV,a( L,T

- [ _yt ' t
xF, (V',0)F, V-V ,7)dv'} (cont'd...)

]



v

_ 1 ; u,
Yo LT n L G VY

VL(FL,7) .

» T T
x FV,T(V ,T)dV'}

For solution by successive approximations, this equation can be

_written in terms of averages over small intervals'of t and L, namelyg

~

8 + 3 . - .
_’_/ FLT T SLSTFLT CLF 5+ C2

. dav
. F - F —_—
where LT V,T L

L = some function of V

1
Cl = T g

&

(6.31)

Pl

- &Ly VoYY ' RV} '
c2 VL BFL,R,n + VL 30 fv N,atv V-V )FV,T(V ) x FV‘,{E; V')dv
. 0

Equation (6.31) can now be solved analytically by the method of character-

istics (a2). This integration method applies to hyperbolic-type partial

.differential equations. The method transforms the integration of the

1

partial differential equation to that of integration of -ordinary differential

equations along certain lines called characteristics.

In this case,

application of this method to equation (6.31) leads to the requirement

that equation (6.32); -given by:
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be integrated along the characteristic x, where x is related to t and L by:

3

AL = Ax cos8 ' | ] (6.32a)
At ™ Ax sing ’ (6.32b)
with g = arc tan(l/GL) , (6.32¢)

The integration of equation (6.32) is easily effected analytically if

!
Cl1 and C2 can be assumed constant. This solutien is:.
' " ’ *

.
N
!

C2 b -
FL,T - ot C exp(- Cl ax) (6.33)

-

The constant of integration is evaluated from the initial condi-

tion as: -
r
' c2
¢ F1.,'r/>c -0 Cl
\\\
and thus: T

€2 -
FL,T - T {1 - exp(- C1 ax)} = FL,T/x - 0e:ncp(- Cl ax) (6.35)
quation (6.35) can be solved along a grid of lines which may be
equally {spaced in L (line specified by integer i), while marching in the
direction of increé.sing time, =t (eaci'l time interval specified by integer

+ j). This method of solution for F Tequires knowledge of representative

L,T

/ \ constapt values of Cl and C2 over the integration interval, but it is to

N
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bo'noted (equation (6.31)) that these constants contain Fv T; thus an

»

procedure is required. Also, the integration interval, Ax,
€1f depends on.a changing value, namely Gi'(equation (6.32a)). For-

" tunately, the change of GL is very small for small integration intervals
- .
so that the growth rate at i,j may be used without significant error.

L 3

In this case:

AB{6 2(5,5) + 1ni/2
Ax = AL/cosg ™= —
'—\‘ GL[J-:J)

Af};r’calculation of FL T @t all grid points i.at time (j+1) the updated
]
| g .
values for C1l(i,j+1) and C2(i,j+1) can be evaluated by numerical integration.

Thg;e new valpes are

en to bg’ Compared to those assumed and if they do
not agreé within a specified toleran¢e the calculation procedure must be
repeated.

If this iterative procedure converges and if Cl and (2 are rela-
tively slow changing functions of both L and T, this‘method‘shoula be
very attractive. It.wag not gq!sued further in this case since it was
known that in the crystallization of élumina trihydrate, the agglomeration
process takes place to quite a significant extent and consequently Cl and
especially C2 shoul& vary considerably over a small interval of asx. More-
over, some AOubt also exists with regard to the convergence of the iterative

process because of the strong interactions of all F values through the

L,T
agglomeration integrals.

6.5.2.2.2 Method of Moments and Pseudo Moments o -

" | .
Solution of special forms of equation (6.29) by the method of

moments. 1s a standard type of solution procedure (h4). It is a very
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attractive method of solution if it is possible to convert the integro-
partial differentlal equation into a small bounded set of coupled ordinary
differential equations. This allcwsgﬁor accurate and very fast solutions
and conseﬁuently this method is suitable for parameter estimation and
investigation of dlfferent constltultlve models. 3

The general pseudo moment equation was derived in Chapter 5,

equation (5.59)- For the purpose of this discussion it can be writien as:

R

d ,u u d .- .
=, X (VIFy (0D =« G0 S 0, (G X3 (VTHFy g (V200
Yy o
- Va
+‘VL(T)BF2,H(T) I, ¢n(V)XiCV)dV
Vv
)
e 1 Vu Vu
> o, (1) J "L oy v,V
VL(T) E,a v v V,a /’-)
- \ ! ) ¢ J /\/
- 3 " 1 - . " . .
| x {1 X, (V') X; (V1 o
£ ' x FV,T(V.:T)FV,T(V",T?dV"dV"
i iomm1,2,.0.,@p  eeres (6:37)
‘ whgre ii is the i weighting function. . q\\\J
An attempt was made in this work to select a set of Xi's such that: _
&} » T o xawy 3
¢E(V) ik ( )} o E.E-l Elz X, (V) . (6.38)
and - v -",_ g
- - ~ ‘ -/‘-
<
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. . \
/“Qy,_e(r' VI X, (VYY) - XL (V) A mg m?: €2,C2 X, (V)X (V")
) ! ,a ’ 1 1 - foue] peel L P L - P
S (6.39)

Here the Clend C2's are a set of constants such that the right-haﬁd

side of these equations is a clos

approximation of the left-hand func-
fions. Thesejare%gét the only typé of possible -approximations. If these
series approximafions can be effected)\equation (6.37) reduces to a

bounded get of pseudo moment equations (i.e. a set cohsisting of mp

moments and mp independent equations). This was aFCOmpliShed in thJE‘_::}?"

work but due.to stability problems and the complexity of finding suitable

/
approximations for each different kermel oy o this approach was abandoned.
[ M >

[

6.3.2.2.3 Finite Difference Solutions Using a Fixed Grid

_“Equation (6.29) wa§ solved in terms of finité;difference approxi-

_~ . . mations along a fi;ed rectangular grid with respect to V and t. That is,

the %V term was approximated by finite differences, the integral terms

calculated from sectional approximations of FV T
. >

by 'mafchingﬁ along the grid lines in the direction of increasing t. Thus

-and the %;-term obfained

approiimating %V by finite differences transformed the integro-partial

differential equation to a coupled set of integro-ordinary differential.

ions. This set of equations was then solved using a '"Runge Kutta

. ) --L
Merson' algorithm (c2,c3) which provides for automatic- step-5%ze adjust-
ment. This step-size adjustment is needed here because of the wide range

of time constants for the équations within the set and also since these

time constants change dramatically with time.
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It was found, however, that forward and central difference
approximations for 3/3V for certain step sizes led to instabilities,
. while the use of backward differences, although stable, resulted in

gross inaccuracies. The inaccuracies were most pronounced at the tail

ends of the size distribution. The instability problem with these finite

difference approximations in first-order hyperbolic paftial differeftial

- )

™
equations is well known and has been discussed in detail by Mitchell (m9).
Solution of the equation in terms of the cumulative distribution,

A .
HT’ markedly improved the accuracy and no further attempts were made to
. \ .
"solve equation (6.29) in terms of the number density function, Fv T
. . >

However, in spite of this improvement the solution was still unsatisfactory

due to inaccuracies. Thus, this ’'standard' way of solution by approxi-

3 - 3
mating the e term by backward differences, and solving for E——-by the
. 9T

RKM fourth order approximation with error estimate(was not applicable to

this problem. _ J/"\\\ .
. _ 7N
X ™~
) i : \\ _
+6.3.3 Strategy for Obtaining a Solution for the Population Balance Equation
- ' \

- As numerical schemes for the solution of the complete population

balance equation ran into difficulties involviﬁg either }oné solution times,
~
. gross inaccuracies, of instability problems, it was decided to attack the
Jproblem in a more systematic way by investigating solutions of specf{ic
{farts of the equation separately. As a fi?s{(iffg in effecting the solu-

tion, the partial differential part and the integral part were considered

separately. _ B ~

r

The accuracy of the various nggs;ical solution methods which were

tried was checked by solving, by numerical techniques, parts of the equa--
) V . ; 3
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tion for which analytical scolutions are known:pgaexist,.and then cor-
paring the numericallwith the analytical solut;Zn. Thus Ehe population
balance, equatioﬁ (é.ng), was solved for a growth-only process and then
sgparayely for an agglomeration-only procéss. This uncoupled the partial ’
differential and the convolution type integral parts of thé equation.

These pﬁmerical solution methods we%é’then combined to form a numerical

solution for the 'full' population balance.

6.5.3.1 Solution of the Integro Part of the Integro-Partial
Differential Equation =

-

J Q
In this sub-section an efficient quadrature scheme is developed

~

for the integro-part of equation (6.29b); thus the equation to be

. . 4
considered is:

v/z v-Vv!

- 1 1 " ,..- T
/‘;—va,r) ORI GRELLE
o}

v v
’ 1 u
F Vi T)avdve - ;o2 VAIR'ALIE
v,V o Ly Yy Hvat )
. Q
-+ F V' x)F V<) dvrdv! ' 4
- V,.T( ) V,T( ,oydvrdve L (6.402
I.C.° H_(V - \' . i
+(V,0) HT,o( ) .
and k . . -

-‘ _a— -~
Fy,p V) = g7 09/

This is essentially the standard type of model for an unsteady

state agglomeration process. Because of the dependence of HTJon the
variables V and t the right-hand side of this equation must be computed

_at a sufficient number of V size intervals-and batch time,<?a steps. The
f
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number of éteps is determined by how fast Hflghanges wiF? respect to'V
and T. Mdieover, the number or sizé of steps i; also.defermined by the
need to provide a good approximation for the continuous variable HT when
interpolating between the discrete valuesiof HT which are,calcula;e@ by
the numerical methods. In general,rfor the same accuracy, a comﬁlex
interpolation function requires few discrete HT

evaluations and vice versa.
A complication unique to this type of equation is the convolution

character of the first-integral expression. This is not obvious when the

-

term is expressed in cumulative .form by the double integral but it is
nevertheless present in the integration limits. When expressed in termg
of the dénsitx function (see equation (6.29a) it is seen that in evaluating
the integrand, which represents.the interaction between pairs of crystals,
it is necessary that for eacﬁ FV:T(V') é corresponding FV’T(V-Y') be found.
J1f FV,T(V-V') is not one of the calcuiatéd grid values it would need to
be approximated by interpolaticn after location of_stra&aling'grid values.
This would require a search—ﬁﬁd‘intcrpolation scheme just to be abie to
evaluate the integrand at one particular size V', This procedure would
need to be repeated for each V' over Fhe range V _ to V/2 in order to
evaluate the igkegrand in the‘ﬁonvolution integral corresponding to
size V. After evaluation of the discrete integrand values the integral-
could then be appro;imdted by a quadrature scheme, This procedure would
need- to be‘repeated for eéch volume grid point at eacﬁ particular time
step. The same coﬁplicated p?ocedure arises in evaluating the double

-
‘integral since again a search and interpolation procedure is required in
evaluaéing the integrénd becausq the integration boundaries do not fall

. 4
on particular grid points.
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A further complication arises with tie agglomeration process in .

" that the range of particle volumes can become. relatively large. In the

process: under study, the particle volume can vary from 10-6 to 10+6 um”

2

»2

(particle diameter ca. 10" to 10  um), or twelve orders of magnitude.

This is a natural consequence of the agglomeration process. Combination

_of particles results in rapid discrete increases of particle volumes

-t

and consequently rapid spreading of the particle size distribution. In
addition, for this process the size distribution with.respect to particle
volume is very much skewed towardsthe smaller end, and therefore for—a
'proper' presentation of the distribution by discrete values it is neces-
sary to use an unequally spaced grid with the grid density decreasing

with increasing particle volume.

6.3.3.1.1 Special Grid and Quadrature Expressions
for the Evaluation of the Agglomeration Term

The above discussion points out the need for developing a numerical

method which would avoid the complications arising out of any interpolation

N

scheme and the search for matching convolution number density functions.

[~

The scheme should also be able to handle the problem of a wide particle-

size distribution and the rapidly varying density function over the small
particle sizes which arises because of the skewed nature of thé distribu-
tion. A particle volume grid which avoids or resolves all of these dif-

ficulties is.the following:

k2 *
k2 2 ‘
Vp = @7 Grx (- 1- (RLxk2))) x (6.41) .
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where 2 0= 2,3,4,...,m+1 _ N

K1 = 2 (na-1)

, ha = 1,2,3,..- ' ' )\)

k2 =- [[(s.-l)/k:[[[ *

The variable (m+1) denotes the ngmﬁer of grid points with respect to
crystal volume and na 1s a variable which determines the grid density.

For na = 1 the grid has a logarithmic characteristic given by Vl

while for 2("3-1) < m the grid becomes an equ#i volume interval grid.
The latter spacing is used for‘nar:ow—sized, non-skewed distribution
while the formgrr?s suitable fbr wide-spread distributions which are
skewed towards the gmall end. |
~
v -~ The advantages of this particular grid spacing for the crystal
volume are: ) . g
(I} It reduces to an equal interval grid for narrow size
distributions.’
(II) It has a logarithmic characte;istic for widespread dis-
tributions. .
© (III) It achieves a good approximation to.the crystal size
distribution by a sequence of discrete ;alues, or in
other words, it has a good resolution for either wide-

spread or narrow size distributions.

(IV) It allows for the selection of a coarse oT fine grid in

an automatic manner. \\\\// ‘

>

*The double square bracket is an integer operatdr symbol, i.e. Ex:ﬂ
is the integer value of x.



(V) It allows the convolution integral to be expressed
exclusively in term; of a set of discrete grid point
values and thus proyides a fast and convenient algorithm
for numerical quadrature.

The derivation of quadratures based on this special grid is as

- follows: First, the dependence of HT on T has been dropped here for

. . . . \
convenience since it is not relevant to this derivation; second, V' and

V" are treated as two independent variables as is shown in the following

discussion. Furthermore, referring to Figure 6.3.3.1-A, it is seen that:

Loz vev o
'Ii(Vk) A fv .f'v'_ i;...}dV"dV: - A . (6.42)

(o} -
where (...} = Ky (V' ,VOF, ((V)Fy L0,

and Io(Vk) AL T {...} dv''dy't == Ak + Bk + Ck +D +E

, Y

- Moreover, since the integrands of both integrals are symmetric with

respect to axis I, the integraltlo also equals: \Wss\

Io(vk) - Z(A.k + Dk) +?Ekﬁ3_ _ (6.44)
This shows that the integrands need to be evaluated only on one side of
the axis I. Thus, for the evaluation of I, and I it is nece;§zry to
calculate A, D, and E which is done here by secticnalizing the inteérals
over each grid interval and integrating along strips parallel .to the V¥

axis as follows: K g



234,

L 2

FIGURE.6.3.3.1-A Grid to Facilitate The Repeated Calculation
o of the Agglomeration Rate Expression
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na-1

(1) or £ =1,2,...,(m-2 ), calculate:

v v -

' >
ol(+1) = UL VL oy avmav (6.45)
‘ v V! . .
2 ] .
SV,
. . £2+1 1 . -
O1(i) = o1l(i-1) + f ! {...} dVMaV' , i = 242,8+3,.., m+1
Ve V., :
= . (6.46)
) v V_-vr \ -
02(p) = oi(i) + £ L P javiave |, pege1s287D pupipnacl
Y, .V,
. co,m*l ... (6.47)
whe?e i = g-1 ~ fop 0 < VR.+1 < (Vp-vp_l)
* []
- ptz v 'Vp-rl) <V s V)
F\ . . \}
. ' \
na-1 ~
p-2 (VP-VP+1_2na-1) < V9.+l.‘-<— {Vp-Vp_zna-l)
/.
P

S

These are the integrals evaluated over the I, II's, and I“II,",domains,
g 2 > — 2

respectively, while the integrals denoted by A, D, and E are equal to:y
» g F

(A*D), = (A+-D), + ¢1i'_ , 1= g+1,242,...,m%1  ..... (6.48)
A, = A+ 02, , imgpels2®l o™l L (6.49)
i, 1 i ‘

E. = E, - Ol - ol , i mmgel,p+2 m (6.50) \
i l m"'l i » ' ] LA | ) - g \

with the sequence initiated by initially setting the vectors (A « D), A,

and E equal to zeyo.
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(ii) Similarly forg -Qm*l-zéa-l,m+2-2na-l,,..,m, calculate:
: Voo Voo - .
pr(e+1) = LRI {...} avrav' " (6.51)
. v A .
2 .
V£+l ' .
$1(i) = ¢1(i-1) + S It {...} dvrdvr | i = g+2,2+3,...p+1
Voo Vi
..... (6.52)
and
(A+D) = (A+D) +ol ,i- 2+1,242, .. .m+1 (6.53)™
-, i : -
[~ r
E. = E. + &1 ‘. - ¢l. , i == 2£+1,2+2,...,m - (6.54)
1 1 m+-1 1 . ) )

After these calculations the iptegrals Ii(vk) and Io(Vk) can thus be

evaluated directly, 1i.e.
Ii(vk) - A ‘ (6.55)
Io(v_k) - 2(A + D)_k *, 'Ek (6.56)}

The above scheme involves the minimum number of calculations for I. and Io.

1

The next step is the development of sectional approximations for \\
g \

kV a and ¥, 5 over each grid interval. Simple approximations will probably \\‘h’)/
» » ) H . . -

'require a large number of grid points while the reverse is probably true

. for more complicated approximations. For this work low order approxima-

tions were used since:

_ (1) for higher order~3§proximations the computation time -
. .o -*
becomes excessive, and -/
(1i) higher order functions might magnify instead of dampen

errors in the integrand\ grid values (s6). . > -
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The numberq;f/&rid points needed to achieve a certain accuracy for low

order apprakimations is evaluated later in this chapter.

.The approximations used. in this work are:

(1) First order collocation for H, i.e.

2+1 ~ . v '
’ .l{T/y- - ago 82 . (6.57)

(ii) Zero order collocation for the size dependent factor of

/s
. kV a which is ¢V 2’ i.e. .
2+1 p+l - 3
. ~¢V,a/£ ./P A ng’p (fug

. - ) '."
With these approximations the integrals needed in-the calculation for ¢I

and ¢2 are equal tFéF\ '
\

2
v v AV .
] 2+ : . 2 L ‘ -
I I {...} dvdvi = i
v, v R L (6-59)
Veer i ; '
1" t -
.rV IV {} LA .¢E’a(r)ci,i_lslsi_lavzw.i_l (6.60)
2 i1 ' -
Voup V-V .
SR {lY dvmav A $g ,(7)C .8 8.4V
v V. ) ‘E,a 2,141 &
L 1 .
V . *V
x V-V, - (—9—‘—-;——1)}.‘....(6.61)
. (_{-
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Being able to approximate the fifst-and last integrals by these
simple expressions_(equations (6.59) and (6.61)) is a direct consequence
of the special grid which takes into account the special nature of the
convolution integral. That is, the 135° boundary line of the integral
-Ii only crosses the vertical grid ligés at node points, which\me
the number of evaluations of the most time consuming inte§raf; equation
(6.6;) is minimizéd. The expressions for I and.Io are ﬁact given that
the finctions ¢a and FV,T are equal to the respective sectioﬁal approxi-
mations. This sectional approximation feature makes this a very powerful
method suitable for any shape of size distribution.

In general, the advantages of this special grid and sectiomal
approximation methéd‘are: .

(I) It provides for an accurate solution. »
(II) Itlls relatlvely fast because it involves a minimum’
umber of computer operatlons. . -,'

-

(II1) It requlres a relatlvely small amount of computer storage

-

(IV) It does not place any restrictions on the form of the

initial distribution:or on the fupcticmal form of the

\

kernel. ' . .
(v) It places no restriction on the form of the distriﬁutiqp

at any instant in time; fd:ﬁeiample, the distribution may

-

be bimodal or have any pthef{shapé:

6.5.3.1.2 Invest1gatlon of the Numerical Accuracy of the
Quadrature Expressions for the Agglomeratlon Term

Although an analytical solutlon does not exist fqr the general

case of.the agglomeratlon-only process (equatlon (6.40)), 1t can be solved

-
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for specific cases where the functions k‘V and H'T have special forms.

. Th.lS allows for a comparison between the solution obtained by the numerical
scheme and that obtained analytlcally and thus provides a test of the
accuracy of the method. - \

. As an example, consider the following form for.kv’a and I-Lr(V,o):

4

kv,a - C VL(T) ’ (6.62)
J\
HT(V,o) - No(exp(-V/Vave) - c_axp(-vo/vave)) (6.63)
R h-
The analytical solution of equation (6.40) is then (s5):
‘ No 4 1 | )
(V,7) = ¢( ) = {exp(a V) - exp(a V }} (6.64)
| H'I' : Vave (T+2)2 a . 0
where T = 'C Not ' (6.65)
! '-f_.' r-
."'- ’ —_— - _ 2 % . N4
. a v (6'.66}

. ave

C = agglomeration rate constant

N = initial total number of particles

-0 -
.. 7 = batch time
"~ - - . s
Vave = average initial particle volume

The comparisons between HT obtained analytically by equation
(6.64) and that calculated by quadratures (6.59) to {6.61) and numerical

integration by means of the Runge-Kutta-Merson method (c2), is shown in
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Table 6.3.3.1.2-A. In this calculation, the agglomeration process was
allowed to proceed over a long time périod so tﬁ}t any accumulation of

truncation errors in approximating the function H_, would become apparent.

T
In this'period, the total number of particles changed frgm-l.QxlOll“to
7.9x10% and thus this problem should provide a good test of the numeric¢al

method. It should also be noted that this magnitude of change is expected

in the alumina crystallization process.

9.46%; while" with 121 grid points this was reduced to 2.45%. Jncreasing

The maximum accumulated error wity 61 grid points is a;SFoximately
the numerical integration routine error tolerance from 0.1% to 0, 001% \H/////
incre éd qpé number of agglomeration term evaluations f&omxéso to 635 .
for a 61 grid point system, but the maximum accumulated error wés still 9.46%.
This indicates that the error is not due to numer#ﬁal integration but
instead results from accumulated errors of the qﬁadrature approximation.

’ N
Since a relative numericad error of 9.46% is not %cceptable.for this study,
it follows that the!sumber of grid points with regpgctJté crfstal volume
should be at least 121. Note also that without checks, nugerical solu-

tions of equation (6.40), or of more complicated population balance equa-

tions, might be misleading as a.result of numerical errors. These would

be superimposed o it of/pny proposed model (constituitive relation-

R —

ship) for the

dgglomeration 'rate kernel. This could lead to misleading

models or a poorfit of a goo
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