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ABSTRACT -

Empirical, analytical, and semi-rational methods for the stabi-
1ity analysis and design of bnderground openings are generaliy not
adequate to consider the majbr design parameters for tunnels in squeez-
ving ground. Tunnel construction in squeezing ground and the iﬂcreasing
North American use of the precast concrete segmental ljiners Wére/}ﬁg
prime motivation for developing an e]astic-p1astié;creepi§Tmu%§£§on of ™~

tunnel excavation and liner placement.

Based on the finite €lement method, the siHu]ation method incor-
porates: the primary state of stress; \excavatio; iq/§§ages; liner
placement delay; -and determination of the:e{astic-p]astit~creep
response for each stage of construction, including ground-interface-
support system interaction for both plane strain (fWo-dimensional) and
advancing face (three-dimensional) conditiohs. Construction sequences
of excavation and support placement are simulated using 'deactivation’
and 'reactivation' operations on the stiffness matrix terms correspond-
ing to the se]ected rate of face advance. Incorporatipn of the inelas-
tic behaviour of both ground yielding and time-dependent deformations
is basgd on the initial stress and initial strain methods, respectively.
The three-dimensional stress ané]ysis near the advancing face is based
on an axisymmetric approach and Fourier series appfoximatiod that allows
the non-symmefric radial and axial loadings due to fhe primary state of
stress to be considefed. The axisymmetric approach is also extended to

include inelastic ground behaviour.
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A comprehensive design for a tunnet in a formation th;t may ex-
hibit squeezing is given. Using this typical field problem, several
parametric studies are presented. It is shown that the elastic defor—“
matiops are only significant near the advancing face and their influence
is very minor at a distance of about two times the tunnel diameter.

The consideration of the actual advancing face condition, lining place-
ment delay, and the use of a soft backinQ can significantly reduce the

design stresses developed in the Tiner.

The simulation method presented can be used to develop 1mproved
Jground characterization through the monitoring of tunnel convergence

fol]owed by back analysis.
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CHAPTER 1
INTRODUCTION

1.1 TUNNEL DESIGN

The analysis of underground openings and their support systems
involves the consideration of ground-structure interaction, and it is
essential to recognize this coupling in developing safe and economic
designs. The ground-structure interaction is particularly important for
underground openings in weak formations and/or formations having pro-
nounced time-dependency such as ‘squeezing ground'. Terzaghi (1946)
referred to the squeezing ground condition as one in which the loading
on a tunnel support s}stem is Tikely to increase after construction to
values many times higher than the initial loading. Recently, this term
has been applied rather broadly to describe ground yielding (Lane, 1975)
and time-dependent deformations (Myer et al., 1977) due to: relief of
stress concentrations; simple swelling related to moisture changes;
and progressive ground movements accompanied bv a gradual build up of

loads on the support system (Lee and Lo, 1976).

In this study, both ground yielding and time-dependency of defor-
mations, and their influences on underground opening and support system
integrity, are of major concern. Typical examples of damage and time-
dependent convergence for construction in squeezing ground in Southern

Ontario, the area of main interest herein, are given in Table 1.1.

1



‘ TABLE 1.1
- TYPICAL EXAMPLES OF DAMAGE TO TUNNELS

AND OPEN EXCAVATIONS IN SOUTHERN ONTARIO
"SQUEEZING GROUND'

EXAMPLE 1 : Thorold Tunnel

Intense cracking in a 1.80 m thick concrete wall observed several
years after construction near the end of the Thorold Tunnel under the
Welland Canal that was excavated as a 5 x 5 m open trench through hori-
zontally bedded dolomite (Lee and Lo, 1976; Franklin and Hungr, 1978).

EXAMPLE 2 : Hamilton Sewer Trench

Damage to a 6 m wide culvert constructed near Hamilton by open
trenching into horizontally bedded dolomite and limestone (Franklin and
Hungr, 1978).

EXAMPLE 3 : Milton Quarry

Pressure ridges (pop-ups) of about 1 m developed in the floor of
a lTimestone/dolomite quarry near Milton that is under1a1n by shale
(Franklin and Hungr, 1978).

EXAMPLE 4 : Niagara Turbine Wheel Pits

Convergence (inward movement) in excess of 80 mm recorded in the
turbine wheel pits excavated as vertical deep shafts of 125 m into hori-
zontally bedded dolomite and shale rocks of the Niagara Gorge in 1903.
Such convergence has caused alignment dislocation (Lee and Lo, 1976;
Franklin and Hungr, 1978).

EXAMPLE 5 : Toronto Water Intake Tunnel

Continuing convergence and liner pressure increases in a water
intake tunnel constructed near Toronto. For example, after four months
the monitored liner stresses were four times the initial values following
inst§11ation (Franklin Trow Associates Limited, Personal Communication,
1978). )



These case records cover recent engineering practices and indicate that
the désigns‘often failed to rationally account for potential squéezing
ground behaviour that influences excavation-support system performance.
This deficiengy makes the determination of a safety factor for such
ground conditions extremely difficult, particularly if long term time-

dependency is involved.

The overall design parameters involved in tunnelling are summar-
ized in Table 1.2. Consideration of these parameters is vital in judging
the suitability of the tunnel and lineér system proposed for a given site,
and potential associated geotechnical problems. Also, they strongly in-
fluence the overall stability of the excavation during construction and
the magnitude and time-dependency of support 1oédings for liner design
(Peck, 1969; Egger, 1974; Ward, 1978). A compyéhensive design method
that takes into account the range of tunnel design parameters involved
is not currently available. (A brief review of available tunnel design
method is presented {n Section 1.3.) With the increasing use of under-
ground space involving excavations in weak formations and/or formations
having pronounced time-dependency, a systematic design methodéis nece;sary
to overcome deficiencies in current procedures. In order to develgp a
method for determining the stresses and deformations for tunne]-supéort

systems in squeezing ground, it is necessary to understand the key para-

meters involved.



TABLE 1.2
DESIGN PARAMETERS FOR UNDERGROUND CONSTRUCTION

Overall Ground Conditions

a. Geological
b.  Hydraulic

Mechanical Properties of Formation
a. Strength and deformation parameters
both intact rock and d1scont1nu1t1es)
b. Time-deperdency
c. Post-failure behaviour

Primary State of Stress

a. Magnitude
b. Orientation

Underground Layout

a. General layout
b. Orientation
¢. Shape

Construction

a. Excavation method
b. Construction sequence
€. Support system



1.2 IMPORTANT FACTORS FOR TUNNEL DESIGN IN SQUEEZING GROUND

The factors that are considered most important to tunnel design,
particularly in squeezing ground, are: the grimary state of stress; po-
tential ground yielding and time-dependent beﬁaviour; ground-structure
interaction; the construction sequence; and three-dimensional influences

near the tunnel face.
1.2.1 Primary State of Stress

One of the important factors which influences potential ground
movements is the primary state of stress prior to excavation, particularly
the existence of high horizontal (lateral) in situ stresses. In forma-
tions with high lateral stress unloading due to excavation, creep and/or
sliding over planes of weakness can cause large support system foadings
resulting in failure or intolerable deformations. Stress measurements,
the monitored behaviour of tunnels and excavations, and recent folding
and faulting of near surface formations indicate that high lateral stresses
exist near the ground surface in many areas of Canada and around the world.
They also indicate that at shallow depths (less than 500 metres) these
horizontal stresses can be significantly greater than the vertical stress,
and are much higher than expected fromﬂsimp]e overburden and elasticity
considerations. Fof depths in excess of about one kilometre, the average
horizontal stress and vertical stress tend to equalize (Brown and Hoek,

1978).

For Southern Ontario, the existence of high lateral stresses is

now recognized and accounted for through various methods in recent designs



(Frank]iq,gnd Hungr, 1978). The major principal stress is in a north-
east to easterly direction, and only a small difference in magnitude be-
tween the two horizontal principal stresses is found, €xcept where the
stresses are influenced by major topogngshic features such as the Niagara
Gorge. The measured vertical stresses were generally close to the esti-
mated overburdén stresses. The average stress ratio K (between the hori-
zontal and vertical stresses) varies considerably at shallow depths,
reaching values as high as ten (Franklin and Hungr, 1978). There are at
least two possible explanations for high horizontal stresses that have
been advanced: a direct consequence of tectonic forces on a major scale
(for example, a north-east to easterly trending maximum compressive
stress in Southern Ontario that is probably of much larger extent); or
erosional unloading processes in which, due to lateral confinement, the
horizontal stresses are reduced much less than the vertical stress (Sbar
and Sykes, 1973; Herget, 1974; Lo and Morton, 1976; Franklin and
Hungr., 1978).

Regardiess of the causative mechanism(s), it is important that
sites with potentially high horizontal stresses be recognized early in
the design stage for underground openings, and adequate measures taken
to avoid adverse effects due to creep and/or movement along planes of
weakness. In many cases, it is difficult to assess fully the primary
state of stress from stress monitoring at the site in advance of const-
ruction, so that initial designs should reflect conservative assumptions
regarding lateral stresses. The importance of monitoring‘during actual

tunnel excavation and liner placement to check design assumptions cannot

-~
5

be overemphasized.
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1.2.2 Ground Yielding and Time-Dependent Behaviour

Pgtentia1 ground yielding and time-dependent behaviour are im-'
portant factors inf1uenéing tunnel designs in squeezing ground. Damage,
and even failure, of underground openings in sqdhgiing ground of the
type outlined in Table 1.1 indicates the importanée\gf this time-
dependency. Typical ground movements are illustrated in Figure 1.1 which
gives time-convergence (diametral closure) measurements at two different
sections (profiles) during excavation of an underground opening. This
tunnelling example was selected since the figld measurements are avail-
able, and the methods described herejn were used during the tunnel's
design and construction. The water*iQtake tunnel constructed near
Toronto is 4 metres in diameter at a:depth of approximately 60 metres in
horizontally bedded shale. ﬁ{gh horizghtal stresses exist in this area
and the average strgss ratio K is likely to be equal to, or slightly
greater than, uni;y at depth of interest. Each asterisk on Figure 1.1
corresponds ‘to a face advance of approximately 2.5 metres and the instru-
mentation was\initia11y %ﬁgtal1ed close to the face at an average dis-
tance of 2.5 metres. Ithéan be seen that the convergence rates are
very high fo]]g;%ng each successive blast as the face is advanced and
they then decrease with time. The convergence for this example is ap-
parently mainly elastic, or elastic-plastic, with a fairly small time-
dependent creep component. It can also be seen that the convergence of
the vertical spans (1-5) is greater than for the horizontal spans (3-7).

This is probab]& due to bedding influences (transverse isotropy) and ~

the high lateral stresses resulting in some crown separation.
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Similar behaviour is observed during,grgep testing, even at low
stress levels (Robertson, 1963; Boresi and Deere, 1963; Hobbs, 1970;
Afrouz and ﬁarvey, 1974) which fall into the range of stresses emcoun-
tered in the vicinity of many underground openings (Lo an& Morton, 1976).
The typical creep behaviour observed for many materials under compress-
ive loading is- shown schematically in Figure 1.2. The total strain
(elastic and creep components) at any time t for a particular stress

level may be represented by:
e(t) = €y * sp(t) + es(t) + eT(t) 1.1

where £, is the instantaneous strain; ep(t) is the primary creep; ss(t)

is the secondary creep or 'steady state' creep; a eT(t) is the ter-
tiary creep. Through the empirical approach, whfc?uappears to have
gained the widest acceptance to describe creep, parameters such as
strain and strain rate are ﬁeasured experimentally in terms of time,
stress and temperatu}e. These values are then used to develop creep re-

lationships.
1.2.3 Ground-Support Interaction

Ground-support interaction is the predominant factor governing
tunnel designs in squeezing ground. Stresses within the tunnel support
system generally depend on the ground-support interaction, and in par-
ticular on: the time of installation; distance of support system from
tunnel face during installation; and support system rigidity relative

to the formation. Installation delay (time or space, or both) and/or

soft backings have a dramatic effect in reducfng the stress build-up.
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1.2.4 Construction Sequence

In order to take into'account the full ground-support inter-
action, the construction sequence has to be .considered. Conventioanl
construction of tunnel support systems in North America typically com-
bines two systems of support - primary and secondary linings - each re-
quiring very different construction techniques and equipment. It has
been long recognize& that the primary support is often adequate for load
cérrying purposes and the secondary lining may not be loaded to any ex-
tent (Peck, 1969). For this reason, and for improved construction eco-
nomiés, single support systems have been widely used in Europe. One
such system, precast segmental concrete liners, has now gained attention
in North America with a number\of recent applications, as it couples ;

ease of construction with improved support system economics.
~ ¥

During excavation, when the tunnel face is being advanced, the
precast concrete segments are usually installed up to some construction
1imited distance from the face. The typical sequence of tunnel excava-

tionr and support p]aéement‘to be- simulated in any analysis is shown in

Figure 1.3. The tynne} zonérof length zu~near‘tﬁé‘advanc4ﬁg~£aee is-
assumed to be un;#pported after the last ring of support segments ha§/
been installed. This ring of segments and the face position are shown

in Figure 1.3 a. For a new round of excavation, the tunnel face will ad-
vance and reach the position shown in Figufe 1.3 b. Then a new ring of
segments as shown in Figure 1.3 ¢ is installed and the construction

cycle is repeated. , -
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Following excavation, there will be a change in the stress field
and a load redistributign around the tunnel. Much of the redistributed .
‘lqad is’transfe}red to the tunnel support already in place, particularly
the ‘last ring of -segments installed. A sfgnificant portion of the load
is also transferred to the unexcavated ground ahead of the advancing
face. This lodd redistribution will cause a 'coﬁp]ex' threezdimensional
pattern of movements within the ground hass (Einsfein and Schwartz,

1978). . v

1.2.5 Three-Dimensional Influence

If the support system is installed near the advanciné faﬁe, i.e.
within the zone of three-dimensional influence , prediction of lining
stresses becomes a complicated problem, and the three—dimensional'Tnf]u-i

ences must be taken into consideration during design.

A ]

A]thqugh the primary emphasis in this s?udy was directed towards“
the aspects of tunnelling in squeeziné ground'summarized above, it is |
afecognized,that other parameters are significant such as beading, ani-
sotropy and &iscqhtinujtiesl

— A\

1.3 "REVIEW OF AVAILABLE- PROCEDURES FOR TUNNEL DESIGN ot

The avéi?ab]e methbds for tunnel design may be classified into
tﬁree general groups: empirical; sémf-rationa]; and analytical. In
the empirical methodg‘(Szechy, 1973) sevgral design procgdhres‘have been
estabtished to estimate»tép load acting on the support system based on

the ground characteristics and the dimensions of the opening (Terzaghi's

-
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-method, for %nstgnce). These meﬁhods do not generally account for
groung-support interaction. In addition, these empirical methods can
only be justified for shallow tunnels and formations with no significant
time-dependency (Lombardi, 1974). Semi-rational design methods (Tunnel-
ling Technology, 1976) are based on case records of existing practice
and various ground c]assi%ication systems in an attempt fb relate’ sup-
port requirements to ground characteristics. The limitations on this
approach are perhaps best given in Ward's Rankine Lecture: "This ap-
proach uﬁfortunate]y perpetuates existing practice, and does not neces-
sarily distinguish conservative work, or even perhaps unsatisfactory
practice. It takes no account of the complex rock-support interaction
mechanics or the fact that the same support can be both satisfactory and
unsatisfactory in the same rock conditions depending on construction
procedure." (Ward, 1978). Analytical methods (Obert and Duvall, 1967)
based on elastic theory. are directly applicable only to formations which
can be considered linearly e&gstic at stress levels below faiiure, and
Without time-dependent behaviour. Thus, they are quite limited in

their épp]icabi]ity. In addition, they do not take ground-structure in-

tg;action into account (Lombardi, 1974).

Alfhough these degign methods may achieve their intended goal,
when used with good engineering judgement:within limited ranges of app-
Ticability for which eiberience is available, often they cannot be
easily extended or.generalized. In some cases, particularly for tunnels

in squeezing ground, their use is generally not acceptable.

Improved analytical and numerical solutions for tunnel design
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have recently become available. Ladanyi (1976) introduced a complete
plane strain solution for a circular opening in an %nfinite, non-linear,
elastic-plastic medium subjected to uniform internal pressure. The pro-
cedure is most relevant to the design of pressurized tunnels. Lombardi
(1973, 1974) developed a design method which can be employed near the
tunnel face by introducing assumptions of axial symmetry and plane de-
formations. Florence and Schwer (1978) presented a stregs analysis
solution for a circular opening in the idealized plane strain condition.
This analysis allows for a failure criterion and assumes an ideally
plastic post-failure behaviour. Krenk (1978) developed a solution
taking creep into consideration in érder to estimate the convergence
around spherical and cy]inérica] cavities. These solutions are quite

useful for unlined openings subjected to uniform axisymmetric stresses.

Two-dimensional, plane strain, finite element solutions have
been extensively used (for example, Pariseau, Voight and Dahl, 1970;
Shieh and Sandhu, 1970; Meek, 1973; Zienkiewicz, 1977) to predict the
deformations and stresses within the excavation vicinity and the support
system in elastic-plastic mediums. Recently, three-dimensional analyses
have been performed using both the finite element and boundary integral
equation methods. The finite element method was used for an unlined
tunnel in an elastic meéium (Descoeudres, 1974), and for a.1ined tunnel
in an elastic-perfectly plastic medium (Wittke and Pierau, 1976). The
boundary integral equation metho& was used for unlined tunnels in an
infin{te,'homogeneous, isotropic, linear elastic medium (Hocking, 1976).

This method is well suited to some problems of the type mentioned above.
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However, the important time-dependency of deformations was not consid-

ered in these tunnelling simulation analyses.

1.4 PRIMARY OBJECTIVE OF THE STUDY

The primary objective of this study was to develop a practical
method for simulating tunnelling that can be systematically applied to
the analysis and design of underground openings in squeezing ground.
Based on the previous review of factors influencing tunnel and support
system behaviour, the following features were considered important:

e

ability to predict stresses and deformations i? %he ground-support sys-
tem; ability to consider ground and support s;stem as a Fomposite unit,
so that important interaction effects can be accounted for; ability to
onsider potential ground yielding and time-dependency so that, in
add¥tion to any elastic response, plastic and viscous behaviour can be
incorporated; versatility to cover both two-dimensional plane strain
conditions (far from the advancing face) and three-dimensional influen-
ces (near the advancing face); and ability to include the independent

parameters for any idealized tunnel system (geometry, material proper-

ties, primary state of stress and construction sequence).

1.5 SIMULATION APPROACH ADOPTED

Given the 'complexity' of tunnelling simulation, the general
approach adopted herein is based on the finite element method (De$ai and
Abel, 1972; Zienkiewicz, 1977) which seems to be the most realistic

approach available at this time. Using the finite element method, the
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primary factors influencing tunnel design in squeezing ground can be .

considered and readily incorporated into the simulation. The finite
element method simulation is divided into two approaches or conditibns:
the plane strain (far from the tunnel face) and the three-dimensional
(near the advancing face) cases. Incremental techniques are adopted to
simulate the construction sequences of excavation and support placement,
and to allow the incorporation of the inelastic ground behaviour of
yielding and creep. Deactivation and reactivation processes on the ele-
ment stiffness matrices are used for excavation and support placement
simulation, respectively. The initial strain and initial stress methods
(Zienkiewicz, 1977) are used for the creep and yielding analyses, res-
pectively, adopting the explicit approach (Zienkiewicz and Cormeau,

1974). .

The simulation approach is still based on a fair amount of ide-
alization and several assumptions. Adopting the continuum mgchanics
approach the ground, which is actually anisotropic aad discoﬁtinuous on
both the micro- and macro-scales, is replaced by an idealized isotropic
continuum (Zienkiewicz, 1968; Daemen, 1§75). However, major discontin-
uities such as jointing can be readily incorporated in the analysis
using elements such as the linear joint element developed by Goodman et
al (1968). This has been described in detail previously and does not
form part of the study (Hanafy, 1976). This idealized ground medium is
assumed to deform linearly elastic under loading or unloading with con-

stant moduli up to a certain limit of the stress state at which plastic

or permanent deformations become possible. This stress state limit is
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defined by an appropriate yield function such as the von Mises or the ex-
teﬁded von Mises (Mohr Coulomb) criteria. The ground medium at thi§
1imit is assumed to be a perfectly plastic material. It is also assumed
that the yielding behaviour can be equated to ductile behaviour and

using the rules of plasticity a stress redistribution process is formu-
lated. The time-dependent deformations are assumed to have elastic and
non-recoverable components in which the non-recoverable components are
determined from the appropriate nonlinear ti$e—dependent creep relation-
ship. These are the general assumptions involved, and they will be dis-
cussed in detail along with supplementary assumptions in the following

chapters.

It should be noted that while these idealizations and assump-
tions are involved, the great 'flexibility' of the finite element method

allows the incorporation of more realistic assumptions as the necessary

characterization information becomes available.

In Chapter 2, a finite element method approach for excavation
"and support placement simulation is developed for the idealized plane

strain ground medium condition.

-

In the second approach to the problem, a solution technique is
developed in Chapter 3 using the axisymmetric finite element method to
formulate the problem of the three-dimensional behaviour of cylindrical

openings considering tunnel advancement.

In both approaches, the sequence of incremental excavation, sup-

port liner installation and time-dependent creep analysis have be%n
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modelled in such a way that any sequence of processes can be performed.
Simple finite element mesh generating programs for underground'excava—
tion and support .installation analyses have also been developed to con-

siderably decrease the overa]] time for.mesh and input data preparation.

The application of the finite element method simulation approach
developed is demonstrated for typical underground cavities in two-dim-
ensional plane strain and three-dimensional axisymmetric situations in
Chapters 4 and 5, respectively. Particular attehtion is given to the
effect of high initial lateral stresses and the effect of the squeezing
condition on the deformations and stresses in both the ground and support
system. The results are reported in a format useful for future design

implementation purposes.



CHAPTER 2
PLANE STRAIN SIMULATION OF UNDERGROUND OPENINGS

2.1 INTRODUCTION : S i

The underground openings simulation presented in this chpater is
based on assuming a plane strain condition in which there is no strain
along the opening axis (i.e. €, = 0). This plane strain simulation is
based on the finite element method using triangular, linear displacement,

constant strain elements.

‘The main features of the simulation procedure are presented in
following sections, starting from the initial in situ stress field prior
to excavation. The 'deactivation' and ‘reactivation' processes used for
excavation and support placement -simulation, respectively, are then ex-
plained (i.e. staged construction). The <incremental initial stress and
incremental initial strain methods for nonlinear stress analysis have
been adopted for the time-independent yielding and time-dependent creep
response, ﬁespective]y. With the aid of a mesh generation program de-
veloped for simple circular openings, the effects of boundary location and
condition on the deformations and stresses have been considered. Finally,
the advantages and limitations of the plane strain simulation approach are
discuésed in preparation for the advancing face simulations discussed in

the following chapter. The accuracy of both the solution procedure and

20
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the computer program developed have been verified through comparisons
with closed form solutions, where possible. Some typical field cases
involving tunnels excavated in various formations are discussed later in

Chapter 4 to demonstrate the program's capabilities.

2.2 EXCAVATION SIMULATION

The single step, finite element method, excavation simulation
program, developed previously (Hanafy, 1976) has been extended and modi-
fied to simulate excavation in stages and to permit an incremental
load analysis. fhis analysis is based on the general numerical procedure
developed by Goodman and Brown (Desai and Abel, 1972) for simulating .
embankment construction and excavation problems in geotechnical engineer-
ing. The main aspects of the excavation simulation approach are shown
in Figure 2.1. The final stresses after excavation are the sum of two
cases: the initial stresses at the site prior to excavation; and the
perturbation stresses resulting from the application of 'release forces'
acting around the opening to.give a stress-free excavated surface (Meek,

1973; Kulhawy, 1974). The steps in the analysis can be summarized as follows:

1. Determining the initial in situ element stresses {co}e in terms
of the site overburden conditions and free field transverse

stress ratio Kt: s

o = vh 2.1

A 1
op = Ktcv . 2.2
Th T Thy 0 2.3.
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(assuming level ground, no residual shear stresses and the plane
strain condition) where o, is the vertical stress at depth h; v
is the unit weight of the ground; o, is the horizontal stress;
and t ., T, are the shear stresses. Near the surface, the
initial state of stress varies considerably with the depth D of
the element centroid (i.e.,.considering shallow tunnels). How-
ever, in the case of deep tunnels, the initial state of stress
can be considered constant with depth. In this case, D is taken

as the depth of the tunnel axis below the ground surface.

Removing the influence of the elements contained in the excava-
tion stage by reducing their stiffness matrix coefficients to
very small values w;;h respect to their initial values prior to
excavation. The factor x 1076 was found (Kulhawy, 1974) to be
appropriate to ensure that these excavated elements do not in-
fluence the succeeding computations. This process is called

'deactivation’.

Computing the equivalent nodal forces {q}e for the stresses
within the 'excavated' elements which have common boundaries

with the unexcavated elements (i.e. at excavation boundary). To
obtain these forces, the simplest p%ocedure is to impose a vir- =
tual disp1acehent at the nodes of the excavated elements and to
equate the external work done by the forces and the strain en-

ergy recovered during that displacement:

{q}e' = f [B]eT{oo}e dv 2._4
vol
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where [B] is the strain-displacement matrix. This load, with
opposite sign, represents the equivalent nodal forces to be
applied at the excavated boundary to simulate excavation of the

element.

Assembling the nodal forces acting only at the excavated bound-
aries. The resulting load vector gives 'the release forces'

{Q} required to produce the 'stress free' excavation surface.

Computing the perturbation stresses {ac} resulting frqg‘the ap-
plication of the release forces {Q}, totally or increménta]]y,

on the finite element configuration obtained in Step 2.

Determination of the final stresses {of} for this excavation
step by adding the perturbation stresses to the initial in situ
stresses. In the case of incremental loading, Steps 5 and 6 are

repeated until the total forces {Q} are applied.

For each excavation stage, Steps 2 to 6 are repeated until the

excavation is completed.

It should be noted that the above general approach is often used

in excavation simulations based on the finite element method. The vari-

ous methods are basically the same except:

1.

The 'excavated' elements either have their stiffnesses reduced
to very small values relative to initial values, or are removed
completely from the mesh configuration. Both methods are accu-

raténand similar in formulation. Using the reduced stiffness
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approach has the fundamental advantage that these elements then
remain available for use in representing further construction

stages such as lining placement as explained in Section 2.3.

“The equiva]ént boundary nodal forces {q}e should be determined

from the stresses at the 'excavated' surface. For constant
strain elements, where the resulting constant stresses are usu-

ally considered to act at the centroids, two major methods have

- been proposed (Clough and Duncan, 1969; Christian and Wong,

1973) to determine boundary stresses. The first methdd (Clough
and Duncan, 1969; Meek, 1973; and Kulhawy, 1974) involves de-
termination of the equivalent boundary forces directly from the
excavated elements adjacent to‘the excavation boundaries, while
the sécond (Clough and Mana, 1976) involves determination of
these forces from both the adjacent excavateq and unexcavated
elements. The first method is adopted throughout this study,
with the provision that the thickness of the excavated layer ad-
jacent to the excavation boundaries should be minimized. This
ensures the desired accuracy in boundary stresses and nodal

forces. N
Plane Strain Analysis Capability Verification

Following development of the finite element program, runs were

completed to verify the accuracy of both the excavation procedure and

actual program. This involved comparing computed results for the prob-

lem of a uniformly stressed continuum with a cylindrical hole, to closed

form solutions from linear elasticity (Obert and Duvall, 1967). Details
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of the problem are given in Figure 2.2.

Two different checks were completed: treating the problem as an
initially unstressed medium subjected to external uniform boundary
stresses with a circular opening made up of ;1ements with very Tow
stiffness values relative to the surrounding medium (x 107¢); and G
starting from a uniformly stressed medium, complieting.one and three
stage excavations to form the circulér opening, as shown in Figure 2.3.
Since the problem being considered is linear elastic, either simulation
should give the same results. The first type of check was performed to
determine if the presence of low stiffness elements in the excayated
zone influences the predicted rgsﬁ]ts as this is an important aspect of
the excavation simulation routine adBpted. The second type of check

allows the a;fha] excavation in stages aspects to be checked.

Tﬁe.finite element mesh.used in all studies is shown in Figure

2.4, and the checks confirmed that:

1. The ‘'deactivation' process is a satisfactory procedure since
the reduced stiffness elements have no noticeable influence on
the results.

2. The results for the one and three stage excavations are identi-

cal as anticipated for the linear elastic assumption.

3. A1l of the finite element method (FEM) results are very close to
the closed form solution as indicated for the radial apd tan-

gential stresses in Figure 2.5. |
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2.3 YIELDING GROUND ANALYSIS

The principé] feature of any yielding ground stress analysis
associated with excavations is the e]astic—p]asti;fﬂ%gt—yie1ding be-
haviour. The solution of such problems requires & yield criterion and

a constitutive relationship for post-yielding.

Experimentally, it is known that yielding can occur only if the

stresses {o} satisfy the general yield criterion (Mendelson, 1970):
F({c}, K) = 0 2.5

which is an hypothesis giving a relationship between stresses and mate-
rial properties at the limit of elastic behaviour. The three most
common criteria used in geotechnology have been the Mohr-Coulomb, von
Mises, and Tresca (Pariseau, 1972). In their original form, the von
Mises and Tresca criteria were developed to study the yie1d{ng of metals
and on]& account for deviatoric stress components. ForAporous materials
such as rock, soil and concrete, it is known that yielding depends not
only on the deviatoric components of stress, but also -on the hydro-
static components. The Mohr-Coulomb criterion was ‘originally developed
for soils and provides for internal friction or dependence of the yield
strength on confining stress. It does not, however, include any influ-
ence of the intermediate principal stress on yield. For this reason,
‘Drucker-Prager (1952) developed a generalized version of the Mohr-
Coulomb criterion or an extended von Mises criterion which is that most

accepted for rock and soils:

F o= (111+7/32“K, 2.6
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where o and K are the yield parameters which are relat&d-to the Mohr-
Coulomb C and ¢ parameters ﬁsed in geotechnology. I, is the first in-
variant of the stress tensor and J, is the second invariant of the devi-
atoric stress tensor (Fung, 1965). This yield function (Equation 2.6)
differs from the von Mises criterion by the addition of the oI, term.
When a = 0, i.e. a perfectly plastic material, the function is identical

to the von Mises criterion {Pariseau et al, 1970).
}

The major concern in using any failure criterion for geotech-
nology problems is to relate the material constants a and K in the yield
function to the material parameters ¢ and C obtained in standard labora-
tory shear testing. A constitutive relationship for post-yielding is
also required for plastic analyses. Such avconstftutive relationship,
thodgh idealized, is used to relate the strafn and stress increments in

the plastic region.
2.3.1 Idealization

In the elastic range, the strains are related to the stresses by
the generalized Hooke's law for linear elastic, isotropic materials
(Zienkiewicz, 1977). The general elasticity matrix for this case [D;]

is given in Appendix A.

To relate increments of strain to increments of stress in the
plastic region, major assumptions :normally adopted in plasticity of

metals analyses are also assumed to be yg]id in-the simulation approach:

1. The ground is assumed to be an elastic-perfectly plastic material

/K f ;;}
» .
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in which no strain-hardening is anticipated. The stress-strain
curve idealization for loading and unloading is shown in Figure

2.6.

>

The voﬁ Mises yield criterion which is equivalent to the gene}—
alized Mohr-Coulomb yield criterion (extended von Mises) for the
special case of elastic-perfectly plastic materials is assumed

to be applicable.

The Prandtl1-Reuss condition (components of plastic strain incre-
ments are proportional to, and paraltel to, the corresponding
stress deviator with no volume change due to plastic deformation)

is assumed to be applicable. Then, the increments of plastic

strain components Aesj are determined using the Prandtl-Reuss
equation:
Aep
P _ 37"e :

where AEZ is the equivalent plastic strain increment, % is the

equivalent stress and S,. are the deviatoric stresses. :

iJ

Dorn's definitzz;s for the equivalent strain and equivalent

e
stress are adopted (Lubahn and Felgar, 1961). In these defini-

'tions, the equivalent strain increment is related to the octa-

hedral shear strain increment, and the equivalent stress is re-

lated to the octahedral shear stress:

P _ 1 P : .
Aee = 7 Ayoc ' 2.8
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. 3
fnd gy = 7§'Toct 2.9

5. The associated flow rule (Mendelson, 1970), which implies the
normality principal, is adopted to determine the accumulated
plastic strain. Geometrically, this implies the normality of
strain increment vectors to the yield surface in the stress
space. The plasticity matr{x based on the von Mises yield cri-

terion is given in Appendix A.

Some of these assumptions were made to simplify the overall ana-
lysis. The inclusion of more refined plasticity idealizations such as

strain-hardening will Be the subject of future research.

In order to obtain the full constitutive equations, a lengthy
process is involved. Derivations for the von Mises and Drucker-Proger
yield criteria are given in detail in the literature and will not be re-
pe;ted here (Reyes and Deere, 1966; Marca1'and'King, 1967; Yamada et
al, 1968; Zienkiewicz et al, 1977; and Shieh and Sandhu, 1970). The
final yielding ground plastic constitutive equations based on the von

Mises yield criterion are given in Appendix A. Ihe'appropriate consti-

tutive relationship is then used to form the stiffness matrix depending .

-

on whether the element is behaving elastically or p1asticé11y.”
2.3.2  Plastic Analysis: Incremental Intitial Stress Method

1 To incorporate the potential plastic response of the opening in
the staged excavation and creep simg]ation analyses, a numerical tech-

nique compatible with incremental loading must be adopted. Various

e

AN
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approaches have been proposed, and are available for use in nonlinear
finite e]ement\prob1ems (Desai and Abel, 1972; Zienkiewicz, 1977): the
incremental elasticity method (variable stiffness method); the initial
strain method; and the initja] stress method. Understanding the limi-
tati$n§ of each method helps when seTecting the most appropriate method

for use in the analysis.

In the incremental elasticity method (variable stiffness method)
(Marcal and King, 1967; Yamada et al, 1968), the nonlinear analysis is
completed by using small load increments. For each load increment, the
material is considered to be elastic with a variable stiffness: There
are two serious disadvantages with this method: excessive computer time
~required for changing the element stiffness matrices at each step to
take into account the ﬁ]astic deformation through a new tangent (or
secpnt) modulus; and changing material proberties which are not appro-
priate with.tpe creep analysis. For these reasons, the initial strain
and initial stress methods haQe been developed. Both of these methods
usé the same technique to approach the solution of a nonlinear prob}em
using small load increments (Zienkiewicz, 1977). ‘Edr gach ]oad incre-
- ment, the material is treated as an e]asiiclmaterial with a constant
stiffness. If the stress-strain level reached is higher than the true
stress-strain level, a correction must be made to bring thig point to its
actual position. In the initial stress method,'the stresses are brought
down to the correct 1eyé1 by introducing an initial stress Ag, while
in the inifial strain method, the strains are adjusted by introducing an

initial strain, be. 'A set of body‘forées equilibrating these initial
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values can be applied to the structure (without ghanging the elastic
properties) to deform it further, resulting in an additional set of
strains and corresponding stress increments. If the final stress-strain
level exceeds that permitted for the nonlinear relationship, the cycle

has to be repeated using the new initial values.

In problems where the stress levels can be determined for given
strains, the initial stress method can be used. This method is particu-
Tarly useful when the strains increase rapidly with increasing stress.
Typical example problems for this method areﬁQﬁen the degree of harden-
ing is small, or if the material behaves in an e]astfc-perfect plastic

manner,

In some problems such as creep where there are residual (locked
in) stresses, the stress levels cannot be explicitly determined in terms
of strains. On the other hand, it is possible to determine strains in
terms of stresses. In these cases, the initial strain method offers

significant advantages.

_ In this study, the initial stresggmethod and the initial strain'
method have been used in the elastic-plastic and‘creep analyses, respec-
vtively. .A computer program for the plastic analysis of plane strain
usituation; hés been ¢eve1oped based on the general procedure out]fned
by Zienkiewicz (1977) using the initia1‘§tress method. The main steps

in this procedure are:

"1. Applying the first load incremsnt and determining increments of

elastic. strain {Ae} and correspondin§ elastic stress {Ac} using
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the elasticity matrix [DE].

Obtaining the final stress-strain level existing at the end of

this increment:

{c'} {oo} + {Ag} 2.10

and {e'} {ee} + {Ae} 2.11

LY

where {co} and {eo} are the initial stress and strain at the be-

ginning of this increment (if any).

Checking theﬂyje]d condition using the final stress level

reached:

(a) if F{{c'}) < 0, the element is still elastic and no plas-
tic process is needed. Apply the next load increment (if
any) aﬁd proceed from Step 1.

(b) if F({o'}) > O (mathematically only, since F > 0 is unde-
fined) and F({oo}) = 0 (this means that the element goes
into yield at the beginning of this increment), use the
elastic-plastic matrix [DEP] (computed with {oo}, where
[DEP] = [DE] - {DP]) to‘find the correct stress increment
{4c'}:

.

(ac'y = [0fF7 (aed | 2.12
. (c) if F({c'}) > O (mathematically only) and F({oo}) < 0, find
the intermediate stress-strain level ({&*} and {e*}) at
which yield begins. The difference between the final and

the intermediate stress-strain levels gives the elastic

-
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stress and strain increments, above the yield point, which

have to be adjusted:

{4Ao*}

{ae*}

{c'} - {o*} - 2.13
{e'} - {e*} 2.14

Then find the correct stress increment with the elastic~

plastic matrix [DEP]:

(a0'} = [DEP] {ae®) " 2.15

4. Computing the initial stress which has to be redistributed by a

)
set of forces:

in case (3-b) {ac"} = {ac'} - {ao} 2.16
and in case (3-¢) {ac"} = {ac'} .-.{Ac*} 2.17
Obtain cufrent stress-level
{6} = {o'} - {ad"} - 2.18
{e} = {e'} 2.19 -
5. Computing the residual nqdal forces using:
= T " ' .
{q} = J (8], {ag"}, dv _ 2.20
e e e

vol
6. Applying these r%sidua]_forces and obtaininQAa new elastic solu-

tion ({Ac} and {Aec}) using the original elastic properties.

o

7. Repeating Steps™2 to 6,

-

The process is stopped if the residua1‘fofces obtained in any

iteration are small relative to the ébplied external forces and the

*
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system can then take the next load increment. If this is not achieved
in a reasonable nubmer of iterations, a collapse condition has been

reached and the process is stopped.
2.3.3 Vertification of the Plastic Analysis

A thick-walled cylinder under incremental, increasing internal
pressure was used to verify the accuracy of the elastic-plastic analysis
developed. This particular example was chosen since the closed form
solution has been given by Prager and Hodge (1951). Their?solution was
obtained.for the plane strain situation and the assumption that the
material is elastic-perfectly plastic following the von Mises yield cri-
tgrion. In the finife element solution, the same assumption of ideal
plasticity was made, again using the von Mises yield criterion. A
quarter of this thick-walled cylinder as shown in Figurg 2.7 was used be-
cause of the symmetry of the problem. The internal pressure was applied
in sma11 increménts of 34.475 kPa. When the internal pressure reached
344.75 kPa, the stresses near the inner radius siafted to exceed the
yield stress, and the stress redistribution stage of the plastic analy-
sis was automatiéa]]y initiated. Eventually, with the iteration process
and increasing pressure increments, the thick-walled cylinder yieldéd
completely aé anticipated; TheAspread of the‘pléstic zoneés is given in

Figure 2.8. ‘ ' .

The computed tangential stress distribu;ions for different elas-
tic-plastic boundaries are compared with the closed form solution in

Figure-2.9. The finite element method results also showed that the

-
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MODULUS OF ELASTICITY E = 689.5x10° kPa
POISSON'S RATIO v = 0.3

COHESION C = 689.5 kPa
ANGLE OF INTERNAL FRICTION ¢ = 0°

" INCREMENTAL
INTERNAL
PRESSURE

RN

25.4 mm N 25.4
; PR
8

144 ELEMENTS AND 91 NODES

OF A THICK-WALLED CYLINDER . ‘
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INC | ITR | P, kPa
(%) 2 | 6 '344.75
& | 3 | .1 | 3.
@D 4 | 18 | 413.70
1 5 | 16 | 448.175
1@ | s | 13| 4265
§§§ 7 | 29 | 517.125
| E | 8|19 551.6
) | 8| 40 | 5516
O 9 | 15 | 586.075
INC = INCREMENT
ITR = ITERATION

INTERNAL PRESSURE

PROGRESSIVE GROWTH OF PLASTIC DOMAINS
IN THE THICK-WALLED CYLINDER WITH IN-

CREMENTAL INTERRAL PRESSURE, FEM
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radial displacements ére in excellent agreement with the closed form

solution.

2.4 CREEP ANALYSIS'

The analysis of thg‘time-dependent behaviour of excavations re-
quires the gelection of an appropriate constitutive relationship that
adequately describes the material behaviour involved. Further, the sel-
ected constitutive relationship should be in a form that can be inco}-

porated in the selected solution method (Emery, 1978). In order to de-

velop such a relationship, there are three general approaches available

in geomechanics (Emery, 1971): the fundamental or ‘micromechanistic
approach; the phenomenological or rheological model approach; and the

empirical approach. In the fundamental approach, the strain rate equa-

. tioﬁs for creep are developed direhtly from considerations of micro-

mechanistic behaviour. This approach provides an insight into the‘bond-
ing mechanicsms and shear resistance on the molecular scale that contri-

bute to creep movements (Hirst and Mitchell, 1968), but is difficult to

apply at the macro level. In the rheological model approach, a mathe-

matical description of creep behaviour can be developed using bhysica]

models (springs, dashpots and sliders) that are assimed to behave, under

loading and unioading, in a similar manner to the actual material. The

adequacyro? the final solution lies in how wei] the rheological model
represents the actual material. The constitutive equations based on
linear rheological models, which have been used extensively in flow

problems, represent an.idealized condition'since the creep response for

© e = P gt o
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. most soils and rock is sjgnfficahtly nonlinear (Hirst and Mitchell,

. Vi
5

1968). 'Such behaviour may be best categorized by the empirical abproach

(Robertson, 1963; Hirst and Mitchell, 1968). fn the empirical ap-
proach,.pa;amefers such as straiﬁ;and strain rate are measﬁrgd‘experi-
ménta]ly in‘terms d?ﬁgfme,'stfess and tempgﬁature, under controlled
conditions. The resui%ﬁ may thenaﬁe used to develop constitutive re-
lationships represeﬁting the mﬁteriq!'s creep béhaviour. While the em-
pirical app;oach was adopted in this study, the o£her two methods can

be incorporated with some modifications.

A creep relationship must satisfy several criteria before being -

‘applied 'to an excavation problem: it must describe the anticipated

creep behaviour for the stress paths involved; it must be applicable

‘ over fhé stress ranges anticipated; the parameters must be readily de-

termined; and it must be in a form suitable for the solution method
adoptea. Most available creep relationshjps are based on uniaxial,
constant load, compressive testing. Thereforé, they must be extended
through some idealization to describe the muitiaxig1 changing stress

state that ‘is representative of the actual field conditions.

_2.4.1  Multiaxial Creep Behaviour Idealization

Based on the following three major.assumptions, a suitable mul-

tiaxial idealization can be achieved:

1. Adopting certain definitions to relate the actual creep~stra1ﬁ
increhents and stresses to equivalent bbrresponding values.

These are then directly compared to the uniaxial creep strain

S e e
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increment and‘stnesses in any creep }elationéhip. The most
appropriate definitions are those given by Dorn (Lubahn and
. Felgar, 1961), where tﬁg equivalent creep strain fncrement'is
‘related to the octahedral creep shear strain increment and the

‘equivalent stress is related to the octahedral shear stress by

" ‘the equations:

e . 1 ,¢c ‘
' Aee = 7 AYoct 2.21
*and o = g 2.22
? e /2 oct _ °

where Aeg'is the equivalent: creep strain increment; L is
the octahedral creep shear strain increment; Tq is the equiva-

Tent stress; and Toct

is the octahedral shear stress.
2. Assuming the Prandtl-Reuss condition (the components of creep
'~ ._ strain increments are proportional to, and parallel to, the
corréspond%hg—stresé deviator with no volume change ‘due to

creep) is applicable. Then, the increments of creep strain

cemﬁbnents As1J, are determined using the equation:
c .
Ae : )
c . 3 _=e v
ST ST | | 2.23

~ . where S.. are the déviaioric stresses. This equation is ana-
logous”’ to the PrandtT-Reuss equation of plast1c1ty (Lubahn and
Felgar, IQSIQ

3. Adopt1ng a cumulative rule to determine the accumua1ted creep

. N
stra1ns when the stresses are changing. The apprppr1ate one

- T
- -

g

v St e it gl e




P

47
which has been widely adopted is the strain-hardening cumulative
strain rule. This rule states that the component of strain rate

_depends only on the current creep strain and current stress,

the effect of‘previoué strain.rates being negligible.  The rule
is show:hjingm&f?E;TTy in Figure 2.10 and is often referred to
as.a mechanical equation of'state (Lubahn and Felgar, 1961).

' It should be noted that this generalization from the uniaxial to

the multiaxial case is based on various assumptions from the theory of

_plasticity and the validity of these assumptions in geotechnology is

still an open question which requires further research. However, fhe
s;rain-hardening‘approach is éupported by considerable data reported in

the literature (Emeny, 1971).

2.4.2 Creep Analysis: 'Incrémen£a1 Initial Strain Method
_ In general, an incremental procediure is adopted for the creep
analysis in which the final solution is determinéﬂ by solving a number of

linearized prob]ems dwstributed between the initial and final des1red

~ time. The components of the creep strain increment for each time 1nter—

val are assumed to be g1ven by Equation 2.23. During creep, the stresses

w111 be changing with tlme and can be represented by the typica] smooth

stress-time curve shown in F1gure 2.11. The creep strain increments are

assumed to fo]Tow the strain~hardening cumulative creep law. The 3naly-

sis is sxmp11f1ed by consxderTng'1ncrementa1 creep strains in a constant

- stress t1me fnterval At, followed by an 1nstantaneous stress increment.

The error 1ntroduced through keep1ng the stresses constant in the time

‘interval At decreases as the t1me 1nterva1 is decreased (Greenbaum, 1966;

3

e e e g s o e e
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Emery, 1971). . \

At the beginning‘pf each £ime interval the.stqesses, and elas-
tic and creep strains, w{}1 be known fraom the calcu]at&ons for the p}e-
ceding tjme‘interva].A For the first creep ianeﬁent,>ﬂhere are no creep
strains so that the elastic solution is tﬁe starting po&nt. The incre-

mental procedure can be summarized as:

1. Determining the equivalent stress value 9e from the stresses ob-

tained at the end of the preceding time interval.

2. Calculating tgé equivalent cresp strain increment Acg for‘this
time intervai from the appropriate se]écted uniaxial creep re-
1atiobship usiﬁg the eqyiva]ent stress obtained in Step\T.
Siﬁce the equivalent stress will usually change for each time
interval, ;he strain-hardening cumulative creep law shown in

Figure 2.10 is used to determine the fictitious time t. at the

f

beginning of this interval. Then, tf,>At and o, can be used in

the creep relationship to determine Asg.

M

. . )
3. Calculating the components of the creep strain increment Asgj
using Equation 2.23, with 9 and Aeg obtained in Steps 1 and 2,
© respectively. - : k '

4, Caﬁcu]ating the accumulated creep strains at the end df this

time interval by adding the creep strain increments acS, bbtaineq

ij -
in Step 3 to the creep strains at the beginniﬂgﬁof the time o

-

interyal.

[ WU
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5. Calculating the stress increment foys at the end of the time in-

terval using the creep strain increments obtained in Step 3 to-

gether with the constitutive, kinematic, and équi]ibrium equa-

tions and boundary conditions for the particular problem.

The previous steps are repeated for each time interval up to the
——
final desired elapsed time. In the present analysis, there are no in-

v

ternal interactions to improve the solution accuracy using the stresses

determined at thé en¢ of the time interval. However this could be .done,

if desired, in a similar manner to the plastic analysis explained pre-
viously. Generally, as shown by Greenbaum (1966) the time intervals
can be selected sufficiently small to yield the desired accuracy without

)

jteratidps. ’ CLe

" 2.4.3 Determination of Time Increments

«

In the incremental procedure ﬁdr non?%near creep problems, the
time intervals selected'must be small enough to ensure the stability of
the solution process. Greenbaum (1966) studied this time interval sel-

ection and suggesfed'the following 1imits in order to ensure stability:

e
valent elastic stra}h, and

e

C E * a - . ’ .
Aee/s:-e < 1/25' . ‘ . ' 2.24
L . . .
‘where Aec is the equivalent creep strain ipqrement, and eE

is the equi-

’Atj"'] S ']cZAtj . . 2.25

The computer program for creep analyses based on -the above

- procedures, and developed by Emery (1971), was incorporated as a sub- '

T
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program in theApresent analysis after completing any necessary modifica-

tions. Further details on the methods adopted are given by Greenbaum

(1966) and Emery (1971). o
2.4.4 Verification of the Creep Analysis

A thick-walled cylin&er under a constant internal pressure of
2.5 MPa was used*to check the accuracy of the creep analysis since the
closed form solutions are avai1ab]e.%or this problem (Greenbaum, 1966).
Dug.to symmetry, a quadrant of the cross-section was used (boundary con-
dition restrictién)Ato obtain the radial deformations and stresg distri-
butions:in the cylinder using the finite element method. The same mesh

idealization shown in Figure 2.7 was used with inside radius 4.064 mm

and outside radius 6.350 mi. The creep relationship used was:
e = 6.4x 10718 gH4y | 2.26

where ¢ is the creep strain, o is the stress in psi, and t is the time
in minutes. Figure 2.12 gives a -comparison of the finite element method

solution with the closed form solution for the stresses in the thick-

walled cylinder for both the elastic and steady state creep conditions,

while Figure 2.13 gives the computed radial creep deformations compared
to the fini§g~¢1ement solution obtained by Greenbaum (1966). It can be

seen that there is a close agreemenf between .all of these solutions.

et e - - e e —
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2.5 SIMULATION OF TUNNEL SUPPORT INSTALLATION

The tunnel support instaf]ationfis simulated by reactivatiﬁg

" the elements which were deactivated durxng the excavation simu]at1on

The react1vation process has been formulated by adjusting the appropr1- .

ate modu11i for elements representing the liner and inc]udwng them in
the global stiffness matrix. Stresses and strains within these 1iner

elements and their nodal disp]acements are set to zero to obtain ele-

" ments free of stresses, strains and displacements afger installation

and before any kind of loading. . The tumnel support can be a rigid, or

soft-rigid, liner. The rigid liner, with a stiffness generally greater

than that of the ground, can be represented by one of more layers of

elements. The soft-rigid support, which consists of a rigid Tiner and

+

a soft backing between the liner and the ground, is constructed from

two materials. Each of these materials can be represented by one or

more layers of elements. The soft becking should have a very low stiff-
ness with respect to the ground and rigid part of the liner as its

funct1on is to reduce stress butld-up By readIIy deforming under t1me§

;dependent loadxngs ‘ e . T

“
&~ '

A]though the lxner has been.traated as a lwnear elast1c, isotro-
pic material having no t1me~dependency, the analysis does allow the in-

corporation of liner twme-dependency if desired.

For a"more detailed strees distribution in the 1iner, a refined

mesh for the tiner can be used separately, and the stresses obtained by

imposing the approprtate displacements from the coarser mesh as boundary

conditions.
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2.6 FINITE ELEMENT METHOD cpngmsg PROGRAM AND GENERAL DESCRIPTION

EY

‘A plane-stra1n, smaIl 1inear displacement triangular finite

element computer program has been developed using the approach described

previous!y. The resu1t1ng computer program, PSEA, (Plane Strain Exca-

-vation Analysis) _deve_]oped for -homogeneous-or nonhemogeneous 1sotro_pic,

1inear elasti'é-perﬁect]y plastic media having 't'ime-dependént‘character- .

istics -can simulate the following conditions:.

.

4 }
1., excavaﬁt)n in-stages for any shape of opening and incremental -

B ' 1oadings, )

2. . support placement delay to aHow ‘the major t1me—dependent def- -
-ometmns to occur if s.a-gnifmaqt creep beha‘kur is involved;
3. 'shpport ‘pfaceme'nti simulation with, or without, soft backing;
4 eiasﬁc-mast:c a?ialyszs following any change in-the stress N
| state as a hmting stress cmd1t1on- L
5 '_ creep analysis :after support mstaﬂatwn “to predict the long
L] term behakur of the support system and the maxmum stress

' ; .deve]oped. T -

Bt - < ‘. *

27 ‘Mssn Geusk}ineh é'aeexm '

A mesh generat‘ron program has been devetoped for circular open-
'lngs to provide the 1nput data for the ﬁmte element excavation program.

The mesh and the ‘input data cards are generated automaﬁcaﬂy by the

_computer using on'ly two input data cards. Severe‘i hundred data cards

ar

_describing noda‘i f1x'ldity concﬁt‘ions, noda! coord‘inates, and e'lement

' :coding, as nen as a genera? mesh p‘tot are provided This prOQram
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ccnsidenably deeteases‘the overall time for mesh and input data nrepara—‘

. p \
tions. It minimizes the errors due to Key punching.™ Also, it will help

in cases where parametnﬁc studfes or detailed éggesé analyses for the
4 tugnel support ane required. This program can be used as a subroutine

-in anquther’finite element program with a few'modifications in notations.

Due to the symmetry ‘of the geometry and the loading about :the
vertical axis, one half of the regign is seiected for the analysis when
the initial in situ stress field increases with depth. If these
stresses do.not.vary yith the depth, one quarter of the.region is re-
qudred for the analysis. The boundary was cnosen as a 'semi' circ1e at
a disiance'from the tunnel face. The mesh consists of trianguIar ele-
ments formed by 'semi’ circiee;‘located at increaéing distances epart,
with a_number of radials. The excavated elements can be represented by
one or more layers as shown in Figure 2. 14 These excavated elements
wi1} then be used 1ater to represent the tunnel support es explained

befone.

To~1nvest1gate mesh ref1nement influences on the pred1cted re-
sults severa1 cases were 1nvestxgated for a. circular opening in a

radialiy uniform in situ stress field. These cases were varied from

. coarse to f1neumeshes with the boundary located TO rad11 from the tuhnel

centre. The results ‘show thet with an 1ncreas1ng number of elements,

the‘resu]ts agproach the closed form solution. It was a]so'found‘that

_ -meshes with a min%mum of fEO-TBd elements would provide a reasnnab]e'
) idealization,fbr piane stra1n excavet1on analyses where only one ha1f of

mmmem. I o
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OUTSIDE BOUNDARY CAN
BE FREE OR FIXED

B

® = TUNMEL RADIUS

Ry = OUTSIDE BOUNDARY
RADIUS

. 192- ELEMENTS AND 117 NODES

TYPICAL MESH GENERATED FOR UNDERGROUND
- EXCAVATION AND LINER PLACEMENT SIMULATION;

PLANE STRAIN CONDITION »
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’2.8 BOUNDARY CONDITION INFLUENCES

Since thé finite element method invo1ves.a 'truncation' of the
meq1um to a finite size, a boundary located near the ppeﬂing will. influ-
ence the computed results. The boundaries must be located far enough
from the opéning‘to_not on]y minimize the boundary location influences,
but also to ensure results independent of the boundary condition cﬁosen.
The question ofkthe'boundary condition -influences has been raised since
there are two boundary idealizations that can be adopted: fixgd (no
displacement); - and free-boundaries. To investigate the difference
between,both boundary iﬁea]izations, a number of éxcavation-anajyses

for a circular cqvity having radially uniform in situ stresses, with

different boundary locations for both boundary conditions were conducted.

The other boundaries were located at 3 to 10 times the tunnel radiﬁs

away from the ‘tunnel ayis. "Half the mesh shown in Figure 2.14 was used

(since uniform stresses were involved) for all cases with the same num-

ber of elements and nodes (§6 e]eménts and 63 nodes). The results are
plotted in Figure 2.15. ' The results show that if the boundary is '
sufficiently disfant, whether it is.fixed or freé,‘the analysis gives
results which are not significantly d%?ferent. For example, i?‘thé
boundary is 1ocated~b§tween 7 and 10 times the tunnel radius away from
the opening, the results obtaiqed from both boundary condif?on ideali-

zations are withiii 2% of each other‘and‘approaching the closed form

‘solution, Also, these results can_be improved if the number of élements

LS

i$ increased.
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2.9 ADVANTAGES AND LIMITATIONS OF THE PLANE STRAIN ANALYSIS

The two-dimensional plane strain analysis of gxcavations has
inherent advantages which make it popllar, and it is still widely used
in practice. It is simple and economic when'cdmgared with three-
dimensional stress an%lysis. It can accommodate any shape of excava-
‘tion, and can be Eséd for nonhomogeneous ground conditions. It can
hand]e'bandary conditions such a§,1oads or displacements, and discon-
tjnuities canlbe incorﬁorated without difficulty. Moreover, using a .
two-dimensioﬁa] plane stréin analysis for &esigning tunnef support sys-
tems is genera11y sat1sfactory if the support system will be placed

.
~

some distance from the advanc1ng Face.

. ' &
(:::;;‘ " However, a two-dimensienal plane strain analysis is not appli-
b

le for simulating excavatioﬁ~(face advancement) and support plécement
near the advancing face where the tﬁree-djmensional deformations and
stresses must be coﬁsidéred. In addition, s&ch ; stress analysis cannot
be used to simulate the progressive jnte;action during face advancemeni
and subport.pTACement Td remove‘tﬁese limitations, a three-dimensional
axisymmetric approach has been adopted to deal more correct1y with the

®
prob1ems c1ted Th1s approach is explained in Chapter 3.
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‘ "CHAPTER 3 _
THREE-DIMENSIONAL SIMULATION OF-<+CYLINDRICAL TUNNEL

EXCAVATIONS FOR AXISYMMETRIC OR NON-AXISYMMETRIC
STRESS STATES NEAR THE ADVANCING- FACE

!

3.1 INTRODUCTION = - ' ' ' .

. The two-dimensional (plene strain) simu]atibnldf tunnel exca-
vation and ]dner placement presented in Chapter 2 was extended through
an ax1symmetr1c approach to 1nc1ude the full representat1on of the.
actua1 three-dxmenstonal behaViour near the advanc:ng tunne] face. As

ment1oned prev1ously, tunne111ng 1n squeezxng ground and the 1ncreas1ng

use of precast concrete segﬁenta] 11ners wereqthe prime mot1vation for

[ 3

develop1ng the three-dimensiona] simulation. e

~e
.

The. axtsymmetr1c approach was adopted to cons1der the two most

»

common }oading condltions due to- ax1symmetr1c and non-axasymmetrwc

b}

initial-in situ stress states The first case is 11mited to ax1$ymmetr;c _

tunne1 structures and ax1symmetr1c Toadzngs due to a unvform rad1a1

stress conditlon. For th1s case, thertransverse stress ratie Kt (ratio

between the lateral and vertical stresses) 1s equa] to un1ty, The

finite element formu1at1on for this case is then similar to that for

plane strain analyses.,

.-,

- Since K is not genera]]y equa? to unlty, the more ijmportant

second case of axisymmetric tunne? structnres subaected to non-

’axjsymmetrac loadings due to non-uniform nad1ai stress condition

- 61 .
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(Kt # 1) was also considered. This generalization requires separation of —

the variables by expanding them into Fourier series with respect to the

angular direction 8. The approach is thus identical to the analysis of
1977).

¥

The axisymmétriq app(oach useq%;s-restricied to axisymmetric
structures whose geometry and mate#{;1‘pﬁope;ties do not vary with the
angular direction 6. In other words, it is applicable to cylindrical
cavities constructed in isotropic, homogenéous media. The ana]_y_sispré?~
sented he;e is also restricted to cases where one of the in situ principal
stress directions coincides with.the tunne1'§.axia1 direction. (This
aspect of the analysis is discussed in Section 3.2.) While discontinu--
ities (joints, bedding, faults) and individua1.1iﬁer segment jo%ﬁ%é cannot
be considered in thé axisymmetric simu1atibn, the importaﬁce and potential

behaviour of these features can be considered wfth supplementary b]ane‘

strain analyses of the type presented in the prgviéus:chapter. This

-

typically involves the use of displacement boundéﬁy conditions'from tﬁe

axisymmetric simuTation in conjunction with the plane strain analyses.

The axisymmetric simulation has been developed in the forg of a

general finite element program which can be used during engineering design.

It can be applied to simu]été fhe foT]oQing conditions involved during

>
v

tunnelling processes:

'.1. Excavation of the full tunnel cross sectiohiin'stpges to simulate

t

. face advancement (incremental advance). < . . ~

solids of revolution subjected to non—;>Tsymmetrié loadings (Zienkiewicz,

e e s il bl R b b oot s e =

[ o T .



P R

Ho o aaas piren < e LS
. -

o e

ettt YO i e b

63

2. Installation of the’ tunnel support system, with or without soft

backing, at a selected distance from the advancing face,

3. Support installation de]ay;to allow most of the time-dependenf

displacements to occur if creep.behay{our is involved.
4. g]astié-p1astjc analysis following any change in the stress. state.

'8. Creep analysis after support insta]]aiion to determine the maxi-

mum stresses'deVe1opea in the liner.

‘Excavation and sdppprt placement are simulated using the deactivation and

reactivation operations during the analysis. Simulation of the incremen-
tal advance of the tunnel face is thus possible by deactivating ea;h

‘round’ of elements sequéntﬁa]ly.

Details of thexaxiéymmetric simulation progedures and ﬁethodology
@xisymmefric fiﬁite.e]ement‘method, initial fn situ stresses, excavation
simulation, ground yielding, creep ané1ysis, and tunnel tiner placement)

are dé§cribed'in fp?lowing sections of this chapter. Simplified flow

“diagraﬁﬁ afe given along with a‘he§h generation program developed for ease

of data input A typical underground open1ng problem selected to compare
the ax1symmetr1c s1mu1at1on method’results with other methods is then
described. .The results from thvs analys1s are also reported to demonstrate

the capahility of the proposed axasymmetrzc s:mulatwon method Further

, applications of the three-dzmens1ona1 (ax1symmetr1c) s1mu1at1on method .

are given as a series of examples in Chapter 5.

w,\ﬂjt
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3.2 AXISYMMETRIC FINITE ELEMENT METHOD

' 3
-A-typical axisymmetric, triangular, finite element of the type

adopted in the analys1s is- shown 1n Figure 3.1. The tr1angu1ar Cross

. section of the element 'ijk' is rotated about the Z- ax1s fbrming a com-

plete axisyﬁmetfie solid ring element concentric with the Z-axis. In the
case of ax{symmetr%c solids, it is convenient to work with cylindrical
coordinates, i.e. the angular direction o and two coordinetes r,z in the

R-Z plane shown in Figure 3.1. The corners of this element are nodal

. circles, each with three degrees of freedom (1. e mot1on in. the r,z and ]

directions is permitted), and 2 three-dimens1ona1 stress analysis is

1nvolved ’ ) . '

The radial, axial, and circumferential load and dispiacement com-

pogents are Pr’ Pz and Pe’ and u, v-and w'in the-r;-; and 6 directions,

- respectively:

T

(P} PP, Py} T o (3.1)

r-z 6

T

L]

W o= {u v oWl . e (3.2)

" The strain components, which correspond to these displacements, are:

T.

el = e, 2 %8 Yrz Tro Y26} - , _ - (3.3)
‘ o . 3
‘where 7 €p T
€ = 3& !

B 1 ‘
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TYPICAL AXISYMMETRIC, TRIANGULAR; FINITE

~ELEMENT .OF ‘AN AXISYMMET RIC SOLID
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= ..a.y_+.§_v-
) Yoz = 3z or .
o= ](..8._‘.‘. w) .3_.‘!.
Yre r ‘36 ar
= 3_w+ ]_.a_v.
Y28 3Z°r3

. -’

\ rd '.
ananthe’correspond1ng stress components are:

y o (3.5)

T _
{a} = {0,r 9, 9 Tps Tpe Tz0

While a 'simple’' element has been adopted, the analysis can be

made more sophisticated in this regard. The full finite element formula-

tion for the axisymmetric case of loading is very similar to that for the

"plane straiﬁ and plane stress cases and will not be repeated here (Desai

and Abel, 1972; .Zienkiewicz; 1977). However, it should be noted that "

lengthy expressions (see Appendix B) are %nvo]ved when.exact integrations

are adopted for any expression invo]ving radial terms. It is also possible

to use an appfoximate.procedure.(Nair; 1975) to evaluate such expressions

for the céntroidal points as an average -of the nodal element coordinates

- (see Figure 3.1):

F=1§(r+r3+rk) B @)

2 = (zi + 2z,

3 +\;k) ' - S (3.7)

s

While reasonably abcurateArésults are.achieved using this .approximate pro-

cedure, exact integrations have been adopted throughout. Further details

on these integratlons are—g%ven in Appendix B.

| S
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\

N
Combining all of the elements representing the excavation'problem,

using the displacement method, yields the general equation to be solved:

[Kl{u} = (P}. - - (3.8)

where [K] is the global stiffness matrix assembled from all elements, {u}
is the vector of unknown nodal displacements and (P} is the nodal 1oading/

vector due to excavation.

The major change in this approach from the plane strain case is in

the Toad vector formulation (Equationu3w8)l In the axisymmetric case, the

" nodal forces rebresent the combined effect of the forces acting along the

circumference of the circle form{hg the element node. The load vector

then becomes:

(P} '= 2r H (817} r dr dz (3.9)
where {co} is the vec;or of tote1 stresses within the removed elegent.

The moet general case of non-axisymmetric loading can be resolved -
into two components: symmetric and antisymmetr{c modes with respect to
the plane containing the‘a =0 ax1s .as shown in ngure 3.2. Expansion
for a number of harmonzcs in both the symmetric¢ ; and antisymmetric modes

then gives a full Four1er series representation.

As stated previously, the present ana]ysis is restrlcted ‘to cases
tunne} s axia1 dlrect1on. For example, th1s swtuat1on is shawn in F1gure

3.3 for a horizontal tunne}r The Z-axis (see Figure 3.1), which is the‘ i

~
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Prn cos ne : -Pen sin ne
Pzn cos ne .
(a) nth SYMMETRIC MODE

" Pen sin ne Pen.cos né
Pzn sin ne ¢
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~ FIGURE 3.2 FQURIER SERIES REPRESENTATION
: OF THE APPLIED LOADING
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‘axis of revolutionm for thé ax%symmetric elements and the tunnel axial

" direction, coincidesswith one of the in situ principE] stress directions.
This axis is 5150 directed towards the direction of excavation and face
advaﬁdement, Figure 3.2'a1so shows the vertical and lateral directions
whieh_are the directions of.the other in eitu principal ‘stresses in the
R -~ 6 plane. In the case of a vertical shaft being excavated downwards,
the Z;axis will be downwafd'and the R-8 plane will ee in the horizontal

plane containing the major and minor horizontal in situ stresses.

Since most ‘tunnels ane shafts involve this situatioﬁ of a piane
of symmetry in the ra&iel in s%tu sirees conditfoﬁe, the necessity of
considering the antisymmetric mqggglshown in Figure_3.2 is elimipated.
For this reason, aqd to 1imit computer core and time }equirements, only
symmefrie modes of the type shown.in Figqre 3.2 were considereé in the
present analyses. However, for special stress conditioes, the more .
general ease with bothisymmeeric_and antisymmetric medes can be readily
developed using the existing progreﬁ. Ig_fhis'case, a full %hree-di@en-
sional analys?s using three-dimeneional eiemenis and represehiation of

. dlscontznu1t1es may be more apprOpr1ate from a computer t1me and cost

po1nt of view.
A For the case where sxmmetr1c-modes are adequatey the app]1ed\
loads and the. noda? czrcle dzsplacements are expanded in a Fourier series

for symmetr:c modeg is. follows S .

vom et w s den -
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loads - .
Pf(r,;,e) = zPrn(r,z) cos ne |
S P(riz.e) = EPzn(r’i) cosne . ~(3.10)
?e(r,z,e) = I (r,z) sin ne
disp]écements_« .
u{r,z,8) = zu, (r,z) cos ne N
N :?(. - - .
~v{r,z,8) = v, {r,z) cos ne - : (3.11)

w(r,2,8) = W (r,z) sin ne

where P (r,z), (r,z) and P ( r,z) are the known load ampliEgdes and

zn -
(r z) v, (r,z) and W, (v, z) are the unknown disp]acemént amplitudes for

a partxcu]ar harmon1c n.

The Strainé'cofrespbndihg to the displacements of Equation 3.4

can alse be expanded as a Fourier series of strain amplitudes given by:

"' i ) . . \
N €. = I e, €OSnNo o . .

-r SN £ 1

g, = L cosme .

(\\. Tpg, T % ern cos ne }
" - Yro é; 2 Yren 31n ne'
Yie‘, 2 yzen 51n ne

e

“Jﬁﬁﬁ;lthgvs;raih aéBﬂifudes can éigo be qbfaiqeq in, terms of nodal circle

" displacements. Usingxthe;cbgstitﬂtiyg gQuatiqn,:éIement;stress,amp]ifudés

i:%::::; ;8' =- I &g §o§n6i~ A ';:54_ . CL(3.12)

=
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can be readily evaluated as functions of element strain amplitudes.

" The number of harmonics selectad for the analysis must be suffi-
cient to rep%esent adequately thg aeplied loading shape or the initial in

situ stress state (Wilson, 1965).

Tﬁe finite element formulation and derisations'adopted.for the
analysis follow theigeneral procedures outlined by Wilson (1965). The
element stiffness matrix is eva]uated.using standard energy principles
(Fung,rléés; Lienkiewicz, 1977) for the ﬁarmonic n. Knowjng the global
stiffness matrix for the entire continuum, the unknown displaceﬁent
amplitgdes for eaeh'harmonic can then pe'eve]uated. Using ssuch an axi-

symmetric approach, the three-dimensional analysis is reduced to a set

of uncoupled two-dimensional analyses in which the total number of problems

is.equal to the number of harmonics being used, i.e. one for each Fourier

index n (Wilson, 1965; Brebbia and Conner, 1974; Zienkiewicz, 1977).

Summation then yields the final solution for the non-axisymmetric loading

case (Zienkiewicz, 1977; - Brebbia, and Conner, 1974).

G“
3.3~'DETERMINATION OF THE IN SITU STRESS FIELD -

- oL LS
¢

Ther1n situ stresses must be known for each element. This requ1res

’knowmng the Four1er coeffxcients of the stress field and the minimum num-

ber .of harmon1cs required to adequately represent the gtress f1e1d These
3

da%% can bevobtaxned if the in srtu stresses are known numerically at a

set of pcants w1th vary1ng angu]ar direction o as a function of the over—

-

burden veréical stress.‘

- e A&
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" The initial state of/Stress is expressed in termé of the vertical,
transverse and 1ongitudin51 (axial) stresses, typically as ratios of the

overburden ve}tical stréss at-the.tunnel centre line:

= vh
Syy ~ 7
Opy =" Kf} Sy
' (3.13)
0,y = Kg Uyy
TX)’ = Tyz = 'rzz‘( = 0

where: %y is the vertical stréss at depth h; vy is the unit weight of

the ground; Oy is the transverse (lateral) stress in terms of the trans-

verse stress ratio Kt;' o__ is the axial stress in terms of the longitud-

2z
inal (ax1a}) stress ratio Kz’ and the shear stresses Tey? Tyz? Tzx arg .
assumed to be zero. For this case, o vy’ and 0,, are principal in
situ stresses. ] >

_In, the present case of -symetric -modes of the non-axisymmetric
loading, ihe‘stress componen%s given by Equation 3.13 are determined for
each element only at a set of points, M', spaced along a semi circle as .

-~

shown in Figure 3.4. These circles represent the paths of the element

~ centroidal po%qts\at which stresses are‘spécified for the constant stress

eTeménté adopted. The number of p01nts (M ) selected is somewhat arb1trary

"~ and depends upon'the desired accuracy 3n representing the stress shape

using the Four1er serﬂes approach Us1ng the Fourier expansion (as a

numer1caT method of approximatfnn) with s1ne and cosane funct1ons which

"satisfyrtheforthogpnglity,re]at;onsh1p§,w1th respect to.summatlon over
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VERTICAL
DIRECTION

_LATERAL
DIRECTION

A.SET‘OF‘POINTS

 le—— AXIS-OF SYMMETRY WITH RESPECT TO
|” LOADING (NUMBER OF pqznrs\i') )

FIGURE 3.4  SET OF Palufs SPACED ALONG A CIRCLE AT WHICH"

>

 STRESSES-CAN BE-SPECIFIED:TO ‘REPRESENT THE
‘ ;STRESS ﬂISTRIBUTIGN USING FOURIER SERIES
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" the points, the complete in situ stress functions for each ring ‘element

-

are obtained.

. | L
3.4 DETERMINATION OF FOURIER COEFFICIENTS '

The in situ stress field o, with varying angular direction e, can

P N S PN

- be -approximated using éhe_Fourier expansion of function o*:
9(8) = a*(8) = Ao, (8) + Ag -+ ...uy + Ag (0) (3,14)

_Where: ¢0, b9 By voees 9, are functions chosen in advance depending on

e .

whether symmetric or antisymmetric harmonics are involved, and
) . 4 ) ‘ . .
i Ao’ Al, ceees An are expansion or Fourier coefficients (i.e. amplitudes)

which are to be determined.

', ) ’ For the preseht case of onty symmetrip-modes, the stresses are:

. ~ * = ; oo
0,(9? = ox(e) L a,, COS N
? ,‘ ) -~ * » - > ] ) .
d,(e) a3(e) L, +COS ne
= gk =
AC) ag(e) I oy, COS NO .
) ' (3-.]5)
‘ = % -
Trg(8) = Tp(e) =z .znz(e) cos ne
) K ‘7\'7 i = .‘* = ) N . . '
Y g8 tx(e) = £t 4(8) sin ne

*

- . .
rze(e) 129(9) =. 3 rze(e) sin ne

where n= 0; 2, 47.... N and K 1s the tota1 number of . harmonacs selected

“’;~> It TS necessary to determine the»stress amp?ztudes so that c*(ej a{s)

:holds exactly, or as closely as possib]e, at a]] po1nts M‘ This~cond1tzon

© Teads-to a set of 11near equat10ns.w1th R number of unknowns and M'

-3 - ! - -



R S I,

e ik e

B A - i

76

equations (i.e. N equals the total number of harmonics and M' ‘equals the

total number of points spaced afong the semi circle, Figure 3.4. The

radial stress is given to'demonstrate the analyéis used:

- or in matrix form:

°r(eo) =-Ay + A, cos 296 + A, cos 46, +
g (61) = A, + A, cos 20, f A, cos 48, + ...
cr(ez) = A, A, cos 28, +'A, cos de, + ..,
P (3.16)
Ur(em) = Ap + A, cos .28 + A, cosde + ...
{d(em)}M. = [cos(ne)]M.XN {An}N ‘ ' | (3.17)

~

where m = M'-1 apd N is the total number of harmonics. -

To solve Equation 3.16 in order to-obtain the unknown coeff1c1ents

(Ao=Az’A .)s two cases must be considered:

1.

-

If M' = N. The numbér of poxnts equals the number of harmon1cs
. !

This indicates that the number of unknowns.equa1s the number of

- iequat1onsw Then the above system of equations has exactly one

;:‘:solution In this case the method of determ1natmon ‘of c*(a) 1s

ca])ed Tnterpolatxon (Dahiqulst and Bjorck, 1974) Equation 3 14

can be d1rect1y selved using a suitab]e numer1ca1 method such as

s

S e e s 2 P e
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- the Gauss eliminaiion_methqd (Conte gnd Boor, 1972).

2. If M' > N. Th1s is the common case where ﬁhe number of points is
greater than the number of harmon1cs Th1s indicates that the
system has more equat1ons than the number of unknowns, i.e. it is
overdeterm1ned.‘ In such'g‘case, the function obtained o*(8) is
satisfied only approximately. In some cases, o*(8) = a(e) at all
points can be obtained depen&fng on the shape of the stress func-
tion and the number of harmonics used. An Hmportant method for
the treatment of_overaeterminéd linear eguation systems is the
ledst squares method (Conte and Boor,.1972). To solve the system

~ I .
‘of overdeterminéd equations, the following procedure was used:

where {S} and .[C] are known and {A} is unknown, Then; mu]tip}ying'

both S1des of Equat1on 3.16 by [C] yields:

n

T . _
[C]NxM.{S}M. [c]NxM_.[C]M.xN{A}N o - (3.19)
e o [esly = [CTCIy Al ‘ (3.20)

Qhere [CTC]'is a symmetric matrix. Equati6n<3.17 gives a set of

N 1inear equations for the N unknown coefficients of A LA ,A ,...A

07727 > "

and it can be solved -by a suitable numerical method such as’the

Gauss e1imination methqd‘

The ana?ysfs descrtbed above has been used for all the stress com-

ponents to obtain the stress amp]xtudes for each r1ng element for a number

Sues
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of harmonics. This part of the analysis has been formulated in a sub-
proéram called FCS (Fourier Coefficients for Strgsses). fhe outpuf is
given for each computation step in tabular form as well as in figures
(curves). Plots for each individual harmonic, summation of harmonics and
comparisons with the actual stress %uﬁctions are also provided. The pro-
gramming for this analysis has been tested using the examples presented'

at the end of this chapter.

3:5 EXCAVATION SIMULATION

The simulation of circular tunnel and shaft excavations, and the

face. advance of cylindrical cavities, which are three-dimensional analyses,

can be.siﬁplified by taking advantage of the axial symmetry of ;hese struc-
tures. The éxiéymmetric exgayat{on simulation method used in the advancing
face analysis follows the general procedure "described in Chapter 2 for
the plane strain condition using the deactivation process. .Two‘majbr

assumptions must be made and recogniged at this stage'in-order to adopt

“the axisymmetric approach. First, the grdund is considered to be a homo-

geneous and isotropic medium. Secondly, the excavation process is assumed

to proceed across the full circular cross section .in singie or multiple

drifts. With the trend to turinel1ing machines, this can be considered a

. reasonable assumption.

1

+

Tﬁe excavation simglation for axisymmetric structures subjected to

‘ nonlaxisymmetric inttial in situ stress fields using axisymmetric ring

* finite elements and the deaéiivation process is summarized by the simpli-

fied "flow diagram given in Figure 3.5, To illustrate the simulation of an
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EVALUATION OF THE INITIAL STATE OF STRESS AND STRAIN AT PRESELECTED
LOCATIONS WITH VARYING ANGLE QF ROTATION e

DETERMINATION OF THE STRESS AMPLITUDES, FOR THE ELEMENTS EVENTUALLY
TO BE REMOVED IN THE CURRENT EXCAVATION STAGE, BY EXPANDING THE
STRESSES WITHIN THESE ELEMENTS INTO A NUMBER OF HARMONICS USING
FOURIER SERIES APPROXIMATION

DETERMINATION OF THE NODAL FORCE AM?LITUDES, REPRESENTING THE RE-
MOVAL OF THE SUPPORTING GROUND AND USING THE STRESS APLITUDES PRE-
VIOUSLY CALCULATED, FOR EACH FOURIER INDEX

ELIMINATION OF THE CONTRIBUTION OF THE ‘ELEMENTS, TO BE REMOVED IN
THE CURRENT EXCAVATION STAGE, FROM THE GLOBAL STIFFNESS MATRICES

DETERMINATION OF THE NODAL DISPLACEMENT AMPLITUDES BY HMPOSING THE
EQUIVALENT NODAL FORCE AMPLITUDES AT THE EXCAVATION BOUNDARY AND
SOLVING THE EQUATIONS OF EQUILIBRIUM -

'DETERMINATION OF THE STRAIN AND STRESS.INCREMENT AMPLITUDES USING

THE COMPATIBILITY AND CONSTITUTIVE EQUATIONS

EVALUATION OF THE DISPLACEMENT, STRAIN AND STRESS INCREMENTS AT
THE PRESELECTED LOCATIONS WITH VARYING ANGLE OF ROTATION s, FOR
EACH FOURIER INDEX °

2

SUMMATION OVER THE HARMONICS FOR THE DISPLACEMENT, STRAIN AND
STRESS - INCREMENTS WITH THE CORRESPONDING INITIAL VALUES YIELDS THE

FINAL SOLUTION AT THE END OF THE CURRENT EXCAVATION STAGE

THE PREVIOUS PROCEDURE IS REPEATED UNTIL THE SPECIFIED TOTAL
NUMBER OF EXCAVATION STAGES IS COMPLETED -

FIGURE 3.5

SIMPLIFIED"FLOW'DIAGRAM FOR THE EXCAVATION ANALYSIS OF AXISYMMETRIC
STRUCTURES SUBJECTED TO NON-AXISYMMETRIC INITIAL IN SITU STRESS \
© SYMMETRIC RING FINITE ELEMENT AND THE DEACTI- !\
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underground excavation near the advancing face, consider the finite element
mesh shown in Figure 3.6. The elements shown in this figure by broken
lines are the elements to be excavated. The procedure then consists of

-

the following steps:

1. Determination of the in situ stresses within the excavation vicin-
ity (see Section 3.3) in order to initiate the excavation simul-
ation. This requires evaluation of the initial state of stress
(and strain)‘at preselected locations with varying angle of

rotation 8. . 2

N

2. Determination of the stress amplitudes for thé specified elements
to Ee eventually removed in the current excavation s%age, by ex-
panding the stress within these elements into a number of harmonics

using the Fourier series approximation described in Section 3.4.

3. Determination of the nodal fofge ampli;udes for éach Fourier index
using equation 3.9 at the excavation boundarieg. These nodal
forces-represent.the removal of the supporting ground and are
equivalent to ihe stress amplitudes previously calculated within

the elements to be removed.

4, Elimination of the contribution of the elements, to be removed in
the‘currept éxcavation stage, from the global stiffness matrix by
reducing their coefficients by 1 x 106 for each Fourier index.

‘ Thes; reduced stiffness g]ements'are refqinéd to represent any
further construction steps such as fhnnel support placement througﬁ

. redactivation.
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o

5. Determination of the ﬁoda} displacement amplitudes by imposing the
equivalent nodal force amplitudes at the excavation boundaries
and solvin;u£he gquatibns of equilibrium. The caf@u}ated equiva-
lent nodal forces-are applied only to the corresponding npda?
pofﬁts on the excavation boundaries to giéekthe deéired stress-free

condition.

6. Determination of the strain and stress increment amplitudes using

" the compatibility and constitutive equations.

7. Evaluation of the displacement, strain and stress increments at

the pre-selected locations with varying angle of rotation o, for

each Fourier index.

- )

. : \ \ S

8. 'Summation over the harmonics for the disp]acgments,,strain and
stress }ncrements wjgh'tggfcorrequnding initia1~vé?dg§ yieldsifhe
final so{uiion at the end of the current stage. These values are

considered the iniiia? state for a further excavation step.

9. The prévious procedure is repeatéd until'the,specified total number

of excavation steps is completed. -

- If the ground -is assumed to behave in a linearly elastic manner, .
the previous)brodedure/for'excavatinn‘simulatfon,anaszis is followed. In
the case of stresses above the yield stress (termed 'excessive' stresses),

ground yielding may océur'ana the analysis is modified to include this
. o -

e,




3.6 -GROUND-YIELDING ANALYSIS

. The plastic analysis during the axisymmetric excavation and ad-
vancing face simulation of cylindrical cavities subjected to non-axisym-
metric. in situ stresses, which are symmetric about a plane containing the
axis of reVo]ution, is similar to the method previously adopted for the
plane straiﬁ conditions. The initial stress method adopted for plastic
analyses is sﬁi]] appropriate for non-axisymmélric yielding. In the case
of a uniform axisymmetric in situ s£fess coﬁdition (Kt = 1), which is a
special case, yielding occurs uniformly and in complete rings around the
“tircular opening. In the case of non-axisymmetric in situ stresses,
yielding does occur non-uniformly around a circular opening. Yielding
may occur at the springline if in situ overburden vertical stresses are
greater than the horizontal stress components or may occur at the crown

if horizontal stress components are greater than the overburden vertical

stresses, to relieve the high tangential stresses around the opening.

N

In the initial stress method, which seems to be the best available
for the axisymmetric approacﬁ, there is no need to change the material
properties due to plastic yielding during the iterative procedure. Fic-
titious equivalent forces are used to let the excavation vicinity deform
to simulate yielding and to redistribute the excessive stresses around the
opening. (This method is also consistent with the creep analysis since
the material properties afe assumed to be constant during creep.) This
general plastic analysis method is explained in Chapter 2 and will not be

repeated here. Only the additional features to incorporate the plastic
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N
analysis into the three-dimensjona] simulation using the axisymmetric

approach will be given.

The method also involves the expansion of the excessive stresses
above the elastic stress 1imit into Fourier series with the assumption
that the ground is a linearly elastic-perfectly plastic material. In the
computation, pseudo forces equivalent to the excessive stresses are deter-
mined and the stiffnesses of the elements that have yielded are unchanged.
The general procedure for the ground yielding analysis is given, in simpli-
fied form in Figure 3.7. The overall procedure is repeated until the
specified convergence criteria are achieved. The best stress criterion
used is that the'equivalent stress during yielding is within 0.2 to 0.5%
of the limiting stress state with a limitation on the number of itq?ations
of 10 to 20 to achieve this condition. The plastic analysis is formutated
in a subprogram and incorporated into the excavation simulation analysis
to handle ground yielding for the three-dimensional stress analysis near

the advancing face.

It should be mentioned that the analysis has been checked for the
special case of an axisymmetric loading with the same problem given in
Section 2.3. The results are in excellent agreement with both the closed
form solution and plane strain analysis. TyﬁTZ:; results for the general

case are given in Chapter 5 where actual example problems are analyzed.

In order.to consider creep behaviour, the analysis is extended
and modified to incorporate time-dependent deformations as described in

the next section.
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EVALUATION OF THE INITIAL STATE OF STRESS AND STRAIN AT PRESELECTED
LOCATIONS WITH VARYING ANGLE OF ROTATION e

4

-

DETERMINATION OF THE EXCESSIVE STRESS INCREMENTS, ABOVE THE SPECIFIED
ELASTIC STRESS LIMIT, AT THE SAME PRESELECTED LOCATIONS WITH VARYING
ANGLE OF ROTATION s

DETERMINATION OF THE EXCESSIVE STRESS INCREMENT AMPLITUDES BY EXPAND-
ING THE EXCESSIVE STRESS INCREMENTS INTO A NUMBER OF HARMONICS
USING FOURIER SERIES APPROXIMATION

—

DETERMINATION OF THE NODAL FORCE AMPLITUDES FOLLOWING THE INITIAL
STRESS METHOD AND USING THE STRESS AMPLITUDES PREVIOUSLY CALCULATED,
FOR EACH FOURIER INDEX

DETERMINATION OF THE NODAL DISPLACEMENT AMPLITUDES BY IMPOSING THE
EQUIVALENT NODAL FORCE AMPLITUDES AT THE CORRESPONDING NODES AND
SOLVING THE EQUATIONS OF EQUILIBRIUM '

DETERMINATION OF THE STRAIN AND STRESS INCREMENT AMPLITUDES USING
THE COMPATIBILITY AND CONSTITUTIVE EQUATIONS

EVALUATION OF THE DISPLACEMENT, STRAIM AND STRESS INCREMENTS AT THE

PRESELECTED LOCATIONS WITH VARYING ANGLE OF ROTATION &, FGR EACH |
FOURIER INDEX ‘
)

|

SUMMATION OVER THE HARMONICS FOR THE DISPLACEMENT, STRAIN AND STRESS
INCREMENTS WITH THE INITIAL CORRESPONDING VALUES YIELDS THE FINAL
SOLUTION AT THE END OF THE CURRENT PLASTIC ITERATION

THE PREVIOUS PROCEDURE IS REPEATED UNTIL THE SPECIFIED CONVERGENCE
CRITERIA ARE ACHIEVED

FIGURE 3.7  SIMPLIFIED'FLOW'DIAGRAM FOR THE PLASTIC ANALYSIS OF AXISYMMETRIC
STRUCTURES SUBJECTED TO NON-AXISYMMETRIC INITIAL IN SITU STRESS
FIELD USING THE AXISYMMETRIC RING ELEMENT AND THE INITIAL STRESS
METHOD
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3.7 CREEP ANALYSIS

In excavation design cases where the time-dependent stress-strain
behaviour of the ground mass is relevant, a creep analysis$ must be con-
sidered within the excavation analysis performed near the édvancing face.

Such an analysis is essential to cover five major questions:

1. The effect of face progression on tunnel inward displacements;

2. The appropriate time-delay before any support system (1iner) is
placed to limit stress development; ‘

3. How far back from the advancing face the liner must be installed
to both 1imit stress development and potential yielding;

4. The necessary thickness of the soft backing between the rock and
the rigid support system to limit stress development; and

5. The maximum stresses developed in the liner due to the long-term

time-dependent creep response.

¢

These major questions must be answered béfore starting construction
since. in some cases, the support must be placed as close as possible to
the tunnel face if limiting fhe tunnel closure is critical. ‘In other
cases, the support must be placed at a distance from the advancing face
and/or a time-delay is required to attenuate the ground displacements and
minimize the required support thickness. For the general case of non-axi-
symmetric stress field, closure due to creep will not be uniform around

the opening as compared to the special case of an axisymmetric stress field.

The nonlinear creep analysis during the excavation and face advance

simulation of cylindrical cavities subjected to non-axisymmetric in situ
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stresses, which are symmetric ébout a plane containing the axis of revolu-
tion, was based on the initial strain method. This approacﬁn}s common in
the numerical ana]ysis of creep problems. The general procedure is simi}ar‘
to that developed by Samuelson (1970) who analyzed the creep behaviour of
cylindrical shell under arbitrary loadsf With the incremental procedure,
the creep strain increments are evaluated for small time intervals. By
éxpanding these creep strain increments in Fourier series, the equivalent
force amplitudes, which are regatded as pseudo loads, can be evaluated. A
series of séts of problems are obtained with one set for each Fourier index

that can be solved independently of each other,

The creep formulation based on the axisymmetric creep analysis andI
computer program developed by Emery (1971) has been 1n&orporated into the
excavation aha1&sis as a subprogram after.completing the necessary modi-
fications.' The analysis method and the computer program Have been checked
'fér the thick-walled Ey1inder given in Section 2.4 as an axisymmetric prob-
lem. The results are identical to thé closed form plane strain, and

Greenbaum (1966) finite element method, solutions.

The general procedure for the time-dependent analyses of axisym-
metric structures subjected to non-axisymmetric initial in situ stress
fields, 'using axisymmetric ring elements and the initial strain method, is
given iﬁ simplified form in Figure 3.8. The procedure is- repeated until

the specified total elapsed time is reached.

Such time-dependent analysis can be performed after excavation and

before and after support installation. Also, a plastic analysis as a
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EVALUATION OF THE INITIAL STATE OF STRESS AND STRAIN AT PRESELECTED
LOCATIONS WITH VARYING ANGLE OF ROTATION 6

DETERMINATION OF THE CREEP STRAIN INCREMENTS, DURING THE SELECTED
TIME INTERVAL, AT THE SAME PRESELECTED LOCATIONS WITH VARYING ANGLE
OF ROTATION 6

DETERMINATION OF THE CREEP STRAIN INCREMENTS AMPLITUDES BY EXPANDING
THE CREEP STRAIN INCREMENTS INTO A NUMBER OF HARMONICS USING FOURIER
SERIES APPROXIMATION

DETERMINATION OF THE NODAL FORCE AMPLITUDES FOLLOWING THE INITIAL
STRAIN METHOD AND USING THE STRAIN AMPLITUDES PREVIQUSLY CALCULATED,
FOR EACH FOURIER INDEX

DETERMINATION OF THE NODAL DISPLACEMENT AMPLITUDES BY IMPOSING THE
EQUIVALENT NODAL FORCE AMPLITUDES AT THE CORRESPONDING NODES AND
SOLVING THE EQUATIONS OF EQUILIBRIUM

DETERMINATION OF THE STRAIN AND STRESS INCREMENT AMPLITUDES USING
THE COMPATIBILITY AND CONSTITUTIVE EQUATIONS

EVALUATION OF THE DISPLACEMENT, STRAIM AND STRESS INCREMENTS AT
THE PRESELECTED LOCATIONS WITH VARYING ANGLE OF ROTATION e, FOR

EACH FOURIER INMDEX

SUMMATION OVER THE RARMONICS FOR THE DISPLACEMENT, STRAIN AND
STRESS INCREMENTS WITH THE INITIAL CORRESPONDING VALUES YIELDS THE
FINAL SOLUTION AT THE END OF THE CURRENT CREEP ITERATION

|

| ' .
THE PREVIOUS PROCEDURE IS REPEATED UNTIL THE SPECIFIED TOTAL !
ELAPSED TIME IS REACHED

FIGURE 3.8  SIMPLIFIED "FLOW'DIAGRAM FOR THE CREEP ANALYSIS OF AXISYMMETRIC
STRUCTURES SUBJECTED TO NON-AXISYMMETRIC INITIAL IN SITU STRESS
FIELD USING THE AXISYMMETRIC RING ELEMENT AND THE INITIAL
STRAIN METHOD

1
i

\
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1imiting stress state can be performed after each time-increment during

-

the creep analysis, or following several time-increments.

3.8 TUNNEL SUPPORT INSTALLATION

Tunnel Tiner support installation is simulated by the rea]istig.
assumption that the liner rings are axisymmetric structures made up of
segments with respect to the tunnel axis and the support system is advanced
by ring installation. In{this formulation, complete compatibility is
assumed between the support system and the ground and there is no sl%ppage
allowed at the interface. The analysis can be improved in this respect
by introducing a frictional interface element sﬁch as joint elements
(Goodman et al, 1968). This would of course require further program de-
velopment. However, the simulation method allows for a soft backing bet-

ween the support system concrete segments and ground that can take dis-

torted deformations.

The procedur; used to simulate the support system rings in the
present approach is similar to the procedure described in Chapter 2. The
reactivation process for the elements representing the liner rings at the
current stage is utilized and this reactivation has to be carried through
the global stiffness matrix for all harmonics. Stresses and strains within
these elements and the nodal displacements, are initially set to zero.

This is essential to obtain elements free of stresses, strains and dis-
placements immediately after installation and before any stress redistribu-
tion has occurred. After a new excavation step, the equivalent nodal,

forces are applied at the corresponding ndoes and the Response of both the
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ground and support system can be obtained.

Typical examples aré‘given in the following section to verify and
check the analysis procedures and the computer program developed, and to

demonstrate its capabilities.

3.9 SIMULATION EXAMPLES

To check the analysis procedures and the program developed, a
typical elastic problem involving an underground excavation, considered
by others in a three-dimensional finite g1ement method analysis (Descoeudres,
1974), wﬁs examined. (No closed form analytical results are &vai]ab]e.)
The rock properties and initial stress assumptions are given in Figure 3.9
with the ;ﬁe and five step excavation simulations indicated. The general
finite etement mesh idealization is shown in Figure 3.10. This mesh and
the computer input daga were prepared by the mesh generation program which
~ was developed for the finite element method analysis using the axisymmetric
approach. Four harmonics were used througho;t the analyses to represent
the syﬁmetric mode. The tunnel inward displacement results for both one
and three excavation steps are given in Figures 3.11 and 3.12 f&r crown
and springline, respectively. Jhe tunnel closure curve obtainéd by
Descoeudres (1974) using three-dimensional isoparametric finite elements
is also shown in the same figure. Since a linear elastic material was
assumed, all these solutions {(one step, three step and three-dimensional)
should yield the same predicted deformations if all of the excavation simu-
Tation apprgsches and programs are developed correctly. As shown in

Figure 3.11 and 3.12, the predicted tunnel wall inward displacements in
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ROCK _PROPERTIES:

E =5x 106 KPa
v = 0.2
lf IN-SITU INITIAL
P STRESSES |

UNIFORM STRESS
CONDITION = 8 x 103 KPa

A.
ONE-STEP EXCAVATION

40 m

25 m

65 m

i U ESN

ROCK PROPERTIES:

E =5 x 10° KPa

v = 0.2

IN-SITU INITIAL
STRESSES:

" TUNIFORM STRESS
CONDITION = 8 x 103 KPa

//j7 35 m

8.
FIVE-STEP EXCAVATION

===
|
| I

T
i
I

———l e

40 m

25 m

FIGURE 3.9

5m

5m

ONE AND FIVE-STEP EXCAVATIONS FOR THE TEST
PROBLEM USING THE AXISYMMETRIC APPROACH
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the radial direction obtained by the one-step (instantaneous) and three-
step (incremental) excavation simulatigns are identical as anticipated,

-~

and in good agreemei{'wifh Descoeudres' published solution.

Figufes 3.11 and 3.12 also show that radial displacements occur
"ahead of the face in the unexcavated ground along the tunnel wall. These .

movements gradually decrease with increasing distance ahead of the face.

Fighre 3.13 shows the effect of a new excavation step on the radial
displacements. The face is advangg@rby a distance of one diameter (2R). ___
from the current position (at 5R). These incremental radial deformations
are af a maximum at a distance of about one tunne1 radius (R) from the new
face and gradually decrease with’increasing distance from the‘new face.

. At a distance of about.twice the tunnel diameter (4R), no siénificant-

radial displacements occur due to the new advance.

In order to demonstrate the effect of face advancement on tunnel
inward displacements, the radial elastic displacements at the reference
point B.shown in Figure 3.14 are tabulated in Table 3.1. Point B represents
any reference poiﬁt along the future tunnel wall that the tunnel face will
-advance and then pass. As shown in Table 3.1, when the tunnel face reaches
the point of interest (i.e. point B), an accumulated radial displacement
of more than 35 percent of the\tota] displacement will already have
occurred. When the tunnel face advances one radius ahead of the reference
point, about 80 percent bf the total displacement will have accumulated at
the point of interest. More than 90 percent of the total displacement
will have occurred at the same point (B) if the tunnel face advances to .

one diameter (2R) ahead of the refewence point. It can also be seen that
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the complete elastic radial inward displacements are not achieved until
the face has advanced approximately three diameters (6R) from the point
under consideration. This example demonstrates quantitativély the per-
centage of the total predicted elastic di§b1 cement occurring before
support system (liner) installation. Therefbrg, the load to be carried
by tﬁe Tiner feenf any elastic excavation response depends on the distance
between the advancing face and the location where the liner is pressed

against the ground.

To demonstrate the applicability of the tunnel support system
installation simulation method for considering the advancing face situa-
tion, two elastic cases were considered to show the effect of the support
installation location on tunnel inward displacements and support
stresses, and to compare these results with those predicted assuming a
plane strain condition. Figure 3.15 shows these two cases where stiff
liners (no soft backing) are used. In the first case, the Tiner is
placed very near to the advancing face, while in the second case, the
liner is placed at a distance of one radius (R) from the advancing face.
The sequences of excavation and support placement are advanced in stages
té a distance of seven R from the control section. The finite element
mesh configuration shown previously in Figure 3.10 was used with the same
rock properties and a uniform initial stress condition. The finite ele-
ment mesh used for the plane strain assumption is shown in Figure 3.16
which represents a section remote from the advancing face. The support
system modulus of elasticity used was in thé practical range for precast

concrete segmental Tiners of 6 times the rock modulus.



100

SISV INIW3DVTd INIWD3S OHNINIT  SL°€ FUn9Id

© (SNIOVY T3NNNL = ¥) 30V
JHL WOYd ¥ 3JONVISIQ 1V Q3IV1d LINIWD3S ONINIT 2 3SVD

- - - T - - i - -
- ~  JONYAQY 30V4
<} d _ P
pib v e
4 a4 I II4EIIJ§!IJIIIAII|4
0 ¥ 4e g€ dt 4s 49 4/

" (SNIGYY 13INNRL = ¥)
30V4 JHL 0L ¥Y3IN AY3IA G30¥1d LNIWD3S ONINIT 1 3ISY)D

- - - > -
7 3ONYAQY 3DV4
i

S N M
7 71 T i T T
ye ie 174 us 49 YL

;o



101

. ch
[ad
~
A S KA KL S K LK o B S K
TUNNEL WALL 1 N
N \—-——— FUTURE LINING
TUNNEL AXIS + | s ) é 3 EXCAVATLON

14 ELEMENTS AND 16 NODES

FIGURE 3.16 AXISYMMETRIC FINITE ELEMENT IDEALIZATION
(NO STRAIN IN AXIAL DIRECTION - REPRESENTS
SECTION REMOTE FROM ADVANCING FACE)
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Figure 3.17 gives the elastic radial displacements along the tunnel
wall which are plotted for both cases of support placements as well as for
the unsupported tunnel for comparison. It can be seen that in the first
case wheré the support is placed very near to the advancing face, the in-
ward displacements have been reduced by about 25% of the total inward dis-
p1aceménts for the unsupported tunnel, while in the second case of support
placement, the tunnel inward displacements have been reduced by less than
10%. This indicates that if the‘support is placed far from the advancing
face (i.e. 4 to 6 R), it will not result in any significant reduction in
the tunnel elastic closure due to excavation and face progress. On the
same figure, the results from the plane strain analysis are also plotted
for both the unsupported and supported cases. The instantaneous excavation
and liner placement case has been considered for the supported plane strain
condition. This represents the extreme conditions for the rock displace-
ments and support stresses {i.e. no consideration of displacements follow-
ing excavation and prior support placement). From this comparison, it can
be seen that the plane strain analysis cannot simulate the progressive
excavation-support placément interaction near the advancing face. This is
much clearer when comparing the stresses developed in the liner for both
cases. Figure 3.18 shows the support system stresses as both the tunnel
face and liner rings are advancing. The stresses developed in Case One
where the liner is installed very near to the advancing face, represent
about 46% of the plane strain case (i.e. instantaneous excavation and
support placement). While in Case Two, where the support is installed at
a distance of one radius (R) from the adva@ncing face, the stresses in the

1iner are less than 20%. It can also be noted that when the face advances
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three times the tunnel diameter (6R) ahead of the support ring of interest,
the stresses reach their maximum value and no significant increases occur

after further face advancement.

To demonstrate the effect of creep on ftunnel inward displacements,
the same design problem discussed in Section 3.3 was used with the same
mesh configuration given in Figure 3.10. The rock properties and the
uniform stress field were also kept the same. The simple creep relation-
ship (Robertson, 1963) shown on Figure 3.19 was adopted since it is appli-
cable for many soft rock types. The parameters for this creep relationship
were adopted to be appropr%ate for the stress level involved (Robertson,
1963). The tunnel length of seven R was excavated instantaneously in a
single step and then a time-dependent analysis was initiated. The tunnel
was kept unsupported. Figure 3.19 shows the inward radial displacements
of the tunnel wall for different creep times. The following observations

can be made from Figure 3.19:

1. The creep has a great effect on increasing the tunnel inward dis-
placements with the total inward displacements after about four
days being more than four times the instantaneous elastic displace-

ments at t = 0.

2. The creep increases the tunnel face influence zone. “For example,
the tunnel face influence zone has increased from 3R for the
elastic case to at least 6R after abput 4 days creep. This indi-
cates that too much time-delay prior to liner placement for this

example may result in excessive closure with potential failure,
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and the liner must be installed at an appropriate time-delay to

prevent such a condition from developing.

The compTete analysis considering different excavation and liner
placement sequences, and the elastic-plastic creep responses, will be

given in Chapter 5 where actual design problems are considered.
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CHAPTER 4
PLANE STRAIN SIMULATION OF TYPICAL TUNNELS

4.1 INTRODUCTION

The excavation simulation procedures developed for the plane strain
assumption (Chapter 2) have been applied to several design problems where
fair materials and tunnel configuration data were available. The analyses
and typical simulation results for two tunnels that are now constructed
are summarized here to illustrate the capabilities of the method in assess-
ing potential tunnel performance. The limitations of the available mate-
rials properties must be recognized at this stage as simulation capabili-
ties often exceed characterization abilities. Further, thg limitations
of the plane strain assumption are recognized and dealt wi;h in the ﬁext
chapter. For the first example, a linear elastic analysis was required
and considered adequatg for the preliminary design. A complete elastic-

plastic-creep ana]ysi§'wa§ required for the second design example. Some

parametric studies were involved for each design.

4.2 ELASTIC ANALYSIS OF A TUNNEL CONSTRUCTED IN GLACIAL TILL

A 1310 m lTong storm water tunnel constructed at a depth of 31 m
in Edmonton was selected as a typical example where a plane strain elastic
analysis is considered adequate for preliminary design purposes. This

tunnel had a circular cross section of diameter 2.57 m, and was constructed

108
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with a tunnel boring machine entirely through a glacial till formation.
A precast concrete segmental liner was used ?or the support system (Franklin
Trow Associates Limited, 1979). Potential ground movements were of cen-

cern for the construction method and support system adopted.

The geometry, material properties and boundary conditions of the
section analyzed using the finite element method are shown in Figure 4.1.
The simulation considered a simplified two-layer soil stratigraphy: the
upper layer representing the clay material with a modulus of 50 MPa and
the iower layer representing the glacial till with a higher modulus of
140 MPa. The lateral stress ratio of unity (i.e.’Kt = 1.0) was assumed
to be the most 1ikely value for the region from a review of available data
on the till (Eisenstein and Morrison, 1973). However, Kt values of 0.7
and 1.3 were also considered to check the influence of lateral stresses
on the elastic convergence as this range of Kt values might be involved.
The available data for the till also indicated that any convergence
(closure) due to tunnelling would be essentially elastic. Both effective
and unit weight total stress analyses ;gre completed for the Kt'va]ue of

1.0 as ground water data were minimal at the ear]&‘design stages.

The finite element mesh used in the analysis to simulate excava-
tion and support placement is shown in Fiqure 4.2. The first row of
elements at the tunnel boundary were ‘'deactivated' to simulate excavation
and then ‘reactivated' to represent installation of the simplified precast
concrete segmental liner. The results of the various simulations are pre-

i .
sented in Tables 4.1 and 4.2. Table 4.1 give$ the elastic displacements

]
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FUTURE LINER

180 ELEMENTS AND 110 NODES

FIGURE 4.2  FINITE ELEMENT MESH FOR LINEAR ELASTIC
PLANE STRAIN ANALYSIS OF A TUNNEL IN
TILL
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at the tunnel and ground surfaces following excavation. For an initial
uniform stress condition (i.e. Ky = 1.0), and total unit weight analysis,
an approximately uniform tunnel diametrical closure of 15 mm was predicted
with a maximum surface settlement of about 1 mm. Based on an effective
unit weight analysis, these values were approximately 50% of the total
unit weight values, as expected. The predicted displacements were
affected comparatively little by changes in the assumed initial stress

ratio.

- Stresses in the precast concrete segmental liner were also deter-
mined. The liner had a thickness of 110 mm and elastic modulus of
2.1 x 103 MPa. The maximum compressive stresses at the locations corres-
ponding to the crown, spring line and invert tabulated in Table 4.2 are
based on the conservative assumption of instantaneous liner placement.
These results indicate that for an assumed stress ratio of unity (i.e.
Kt = 1.0), the liner stresses are entirely compressive with an average
value of 7.65 MPa. However, for stress ratios of 0.7 and 1.3, tensile
stresses developed in the liner with maximum values in the range of 440
and 370 kPa, respectively. These compressive and tensile stress levels

are well within tolerable levels for 41 MPa compressive strength concrete.

Although the analyses assumed immediate liner placement and/or
instantaneous excavation, the actual inward displacements do not occur
immediately in the field due to the restraining effect of the tunnel face.
The complete elastic displacements are not achieved until the face has
advanced approximately 3 diameters from the point under consideration

(see Table 4.1). The percentage of the total predicted elastic displace-
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ments occurring before liner placement, and the load to be carried by the
liner, will depend on the distance between the face and the location where
the liner is actually installed. Moreover, no joints were used in the
concrete liner representation in these analyses so that it is stiffér

than the segmental concrete liner actually used. This aspect will be dis-
cussed further as part of the next design example. Even with these con-
servative assumptions, the stresses predicted are well within the antici-
pated compressive strength range for the concrete used (41 MPa), with

minimal tensile stress development.

The tunnel has now been completed, and while detailed monitoring
data are not currently available, the liner performance during and after
construction was most satisfactory. Ground movements were well within
tolerable levels, but somewhat greater than predicted as there was some

movement of soil into voids behind the liner.

4.3 ELASTIC-PLASTIC-CREEP PLANE STRAIN ANALYSIS OF A TUNNEL CONSTRUCTED
IN SILTSTONE

4.3.1 General Site Details and Constraints

The design example selected to illustrate a typical elastic-plastic-
creep plane strain analysis involved a circular water intake tunHé] to be
constructed through a siltstone formation near Beulah, North Dakota. Over-
burden depths above the tunnel axis range from about 58 m at the inlet to
87 m at the outlet. The average lake elevation above the tunnel éxis is
80 m. For the tunnelling machine design, a 2.667 m diameter leading edge

(i.e. tunnel diameter) was required to allow for the recovery of parts of
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the machine following completion of the contract. Previous experience in
the area had indicated the siltstone to be in the squeezing ground classi-

fication and the existence of high lateral stress conditions.
4,3,2 Tunnel Liner and Mesh idealization

A precast concrete segmental liner with each ring consisting of
4 segments flexibly joined at the 45°, 135°, 225°, and 315° positions was
to be used. Each segment in the ring was also 'notched' at its mid-point
to further reduce the f]exural‘rigidity, giving an essentially flexible
liner capable of withstanding fairly large ground movements. A soft back-
ing behind the liner was also considered desirable for the following

reasons:

1. It allows for movements associated with squeezing ground conditions;
2. It provides some tolerance for variations in tunnel diameter:

3. It reduces localized stress concentrations;

4. 1t introduces some waterproofing action; and

5. It should eliminate the need for grouting. «

The preliminary design data supplied for use during the excavation
and liner installation simulation are given in Table 4.3 (R.V. Anderson
Associates Limited, personal communication). Compressive properties of
the Ethafoam soft backing are given in Table 4.4 (R.V. Anderson Associates

Limited, personal communication}).

The finite element mesh wsed in the analyses to simulate excavation

and support system placement ic shown in Figure 4.3, with fixed boundaries
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TABLE 4.3
PRELIMINARY TUNNEL DESIGN DATA

OQutside Tunnel Diameter 2.667 m

Ethafoam Soft Backing Thickness 45 mm

Precast Concrete Segmental Lining Thickness 171 mm

Inside Tunnel Diameter 2.235m
TABLE 4.4

COMPRESSIVE PROPERTIES OF THE ETHAFOAM SOFT BACKING

Compression, Percent Stiffness, kPa
5 300
25 370
50 520
80 2070

located more than 7 radii away from the tunnel axis. The left boundary
representing the line of symmetry was taken to be free vertically and

fixed horizontally. The first two rows of elements at the tunnel bound-
ary were deactivated to simulate excavation and then reactivated to re-
present support system installation. The thin element layer in Figure

4.3 represents the Ethafoam soft backing, while the thick element layer
represents the precast concrete segmental tunnel liner. Both the joints
between segments and notches at their midpoints were presented in a very

simplified way to give some reduction in the flexural rigidity. These
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STRAIN ANALYSIS
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simplifications could be much improved in supplemental detailed stress
analyses for the support system (i.e. refined mesh and/or bending ele-
ments) using displacement boundary conditions at any time from the elastic-

plastic-creep simulation.
4.3.3 Properties Adopted for the Analysis

It was difficult to select appropriate properties for the siltstone
as the available laboratory data were limited. No infermation on appro-
priate creep relationships was available, and the initial {ﬁ situ stress
ratio (Kt) estimate required refinement. Given these limitations, estim-
ates of properties were made where necessary that appear reasonable from
the available data and technical literature. Since the siltstone probably
behaves 1ike a soft rock or a heavily preconsolidated hard clay (R.V.
Anderson Associates Limited, personal communication), the creep properties
for London Clay (Bishop and Lovenbury, 1969) were used in the Singh and
Mitchell three parameter creep relationship (1969). This equation is dis-
cussed in detail in Appendix C. The propergies used in the analysis for
the siltstone and tuqne] support system are given in Tables 4.5 and 4.6
respectively, with supplemental comments on the values adopted. The pre-
cast concrete segmental liner joint stiffness was assumed to be 1/100 of
the Tiner stiffness, while the soft backing stiffness was obtained by

linearizing the Ethafoam compressive stiffness data.
4.3.4 Cases Considered and Typical Results
The following cases were considered:

1. Elastic, no liner, Kt = 0.75, 1.0, 1.25, 1.5 and 2.0.
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TABLE 4.5

SILTSTONE PROPERTIES USED IN THE ANALYSIS

Properties Value Comments

Modulus of Elasticity 210 MPa May be somewhat low since the
field moduli are typically 2 to
3 times those determined in the
laboratory.

Poisson's Ratio 0.4

Unit Weight 20 kN/m3 Assumed uniform with depth for

all strataz

Yield Stress a. 0.7 MPa Represents 90% of maximum lab-

oratory compressive strength.

b. 1.0 MPa Represents 90% of two times
average laboratory compressive
strength to allow for sample
disturbance.

Depth 87 m Maximum depth considered.

Initial Stress Field Kt = 0.75, Kt seems to be between 1.0 and

Ratio 1.25,1.5 1.5 for site.

and 2.0

Uniform Vertical 87 m Taken equal to the overburden

Pressure (Depth) depth.

Creep Properties A=0.1255x10"3 London clay parameters for
«=0.4815x10"3 Singh and Mitchell's creep re-
m=1.03 lationship:

(t in days, - _ aaD 1im
D in psf) e = Re”"(3)
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TABLE 4.6
TUNNEL SUPPORT PROPERTIES USED IN THE ANALYSIS

Properties

Structural Concrete

Modulus of Elasticity 21 x 102 MpPa Modulus of elasticity is
: relatively low, as 4] MPa

Poisson's Ratio 0.2 concrete may be used with
modulus of elasticity of
Compressive Strength 41 MPa 31 x 103 Mpa.

Joints and Notches in

the Liner
Modulus of Elasticity 210 MPa .- ~ Stiffness reduced to 1/100,
- but this probably does not
Poisson's Ratio 0.2 introduce much compressi-
bility.
Soft Backing
Modulus of Elasticity 1.0 MPa Obtained from the Ethafoam

compression properties.
Poisson's Ratio 0.45




ELASTIC INWARD DISPLACEMENTS AFTER EXCAVATION
FOR UNLINED AND LINED CASES WITH DIFFERENT
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TABLE 4.7

INITIAL STRESS CONDITIONS

Inward Displacements, mm

Location . .
Case Crown Spring Line Invert
Unlined K, = 0.75 6.41 4,83 6.62
Unlined K, = 1.0 6.38 6.49 6.59
:
Unlined Kk, = 1.25 6.34 8.15 6.55
Unlined K, = 1.50 6.30 9.81 6.51
7
Un11med Ky = 2.0 6.23 13.12 6.44
l

Lined,\45 mm
Soft Backing, 3.97 4.11 4,17
T

t -
Lined, 45 mm
Soft Backing 2.72 9.45 2.92
Ky = 2.0y
Lined, 20 mm _
Soft Backing, 2.62 2.69 2.75
Ky = 1.0
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2. Elastic, liner, Kt = 1.0, 2.0.

3. Elastic-plastic, no liner, 0.7 MPa yield stress, Kt = 1.0 and 2.0.

4. Elastic-plastic, no liner, 1.0 MPa yield stress, Kt‘= 1.0 and 2.0:
5. Elastic-plastic, liner, Kt = 1.0, 2.0. ‘
6. Elastic-creep, no liner, Ke = 1.0, 2.0.

7. Elastic-creep, liner, Kt = 1.0, 2.0.

8. Elastic-plastic, liner (backing reduced to 20 mm), K, = 1.0 and 2.0.

t
9. Elastic-creep, liner (backing reduced to 20 mm), Ki = 1.0.

A1l of the cases were based on the effective unit weights for an overbur-
den depth of 87 m at tﬁe outiet. For full water pressure acting at a depth
equal to the overburden depth, the final stresses can bé simply obtained

as the summation of the effective and hydrostatic stresses. The plastic
analyses are based on an elastic-perfectly plastic material behaviour
following the von Mises yield criterion with the 1oading due to excavation
applied incrementally. The major constraint in the analyses was of course
the selection of an appropriate creep relationship (i.e. Singh and

Mitchell creep relationship with London Clay parameters).

AN
AN

a. Elastic Analysis

Table 4.7 gives the elastic inward displacements after excavation
for the unlined and lined caseé Ffor various initial stress conditions.
For the unlined tunnel with a uniform in situ s?ress field (i.e. Kt = 1.0)
uniform inward displacements were found as anticipated, with an average
value of 6.5 mm. For Kt equal to 2.0, the horizontal inward displacement

of 13.13 mm was approximately twice the average vertical inward displacement
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of 6.35 mﬁ. For both Kt‘equal to 1.0 and 2.0, the elastic inward displace-
ments were quite small giving maximum elastic strains of 0.51% and 1.02%,
respectively. In the case of the lined tunnel, the precast concrete'
segmental liner reduced the inward disp]ace%ents somewhat as anticipated
since it was considered to be placed immediately following excavation.
Uniform‘ihward disp]écements were found for Kt eqﬁs1 to 1.0 witE an aver-
age value of 4,08 mm for the 45 mm soft backing and 2.69 mm for the 20 mm
soft backing. The horizontal inward d{sp1acement of 9.45 mm for the 44 mm
soft backing was more than three times the average vertical inward dis-

placement of 2.82 mm for the higher lateral stress ratio of Kt equal to

2.0.

The maximum elastic compressive stresses developed at three loca-
tions corresponding to the crown, spring iine and invert of the precast
concrete segmental liner are given in Table 4.8. A uniform stress dis-
tribution developed in the liner for Kt equal to 1.0, and the stress dis-
tribution was fairly uniform even for Kt equal to 2.0. This is due to
the soft backing and its effect in reducing any stress concentrations.
The liner‘is actingkfssentia11y as a compression member, even for Kt
equal to 2.0 where small tension zones developed with a maximum value of

190 kPa. The effect of reducing the thickness of the soft backing was a

corresponding increase in the liner stresses. - ”
b. Elastic-Plastic Analysis

To select a realistic number of increments of loading in the

elastic-plastic analyses, one, five and ten increments were considered.



125

TABLE 4.8

MAXIMUM COMPRESSIVE STRESSES DEVELOPED IN
THE PRECAST CONCRETE SEGMENTAL TUNNEL LINER

Maximum Compressive Stress, MPa

Location

- Crown Spring Line Invert

Case (Average)

Lined, 45 mm

Soft Backing, 2.52 2.62 2.56

Kt = 1.0

Lined, 45 mm

Soft Backing, 3.75 3.94 3.81

Kt = 2.0

Lined, 20 mm

Soft Backing, 4.00 4,18 4.14
: Kt=1.0

The results showed that there Qas no significant difference between five
and ten increments of loading, while there was a substantial difference
between one and ten increments of loading as shown in Table 4.9 for the
inward diSplacements. Therefore, most of the results given here are based
on one excavation step with ten increments of loading. Tables 4.9 and
4,10 give the total (elastic p1usvp1astic) inward displacements for un-
lined and lined tﬁnne] Cross éections, respectively. For the case of the
unlined tunnel, yield stresses of 0.7 MPa and 1.0 MPa were considered for
Kt values of 1.0 and 2.0. For Kt equal to 1.0 there was minimal plastic

yielding and the inward displacements were fairly uniform at 8.27 mm and
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6.84 mm for the lower and higher yield stresses, respectively. However,
for Kt equal to 2.0, the entire region surrounding the excavation yielded
for both yield stresses. It should be noted that the yield stresses

adopted are probably somewhat low for the formation involved.

For the lined tunnel analyses, the liner was constructed immedia-
tely following excavation and the one-step excavation loads were again
applied in 10 increments. The yield stress was assumed to be 1.0 MPa for
initial stress cond{tions of Kt equal to 1.0 and 2.0. (Compressible soft
backing thicknesses of 45 mm and 20 mm were considered to determine back-
ing influences.) The results for the various analyses are summarized in
Tables 4.9 and 4.10. For Kt equal to 1.0, there was no plastic yielding
and the inward displacements were fairly uniform at 4.11 mm and 2.68 mm
for the 45 mm and 20 mm soft backing thicknesses, respectively. Uniform
compressive stresses developed in the liner for both backings. For Kt
equal to 2.0, there was minimal plastic yielding in the crown and invert
zones as anticipated since the high lateral stresses tend to be redistri-
buted. The plastic zone developed is shown in Figure 4.4. The horizontal
inward movements were much greater than the vertjcal movements, and uniform
compressive stresses developed in the liner with 6n1y small tension zones
(150 kPa and 270 kPa for 45 mm and 20 mm backing, respectively). The liner
is acting essentially in the desired compressive mode throuchout. Comparing
the performance of the thin soft backing with the thick soft backing

(Table 4.11), the liner stresses increased by only about 60% for K, equal

t

to 1.0 and 50% for K, equal to 2.0, which indicates that the thicker back-

t
ing has distinct advantages in reducing the design stresses for the
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elastic-plastic response. It should be noted again that the effect of
the hydrostatic pressure at the site of 780 kPa would be added to the

computed liner stresses in each case to obtain the final design stresses.

¢. Elastic-Creep Analysis
N TN

I \\th1e an elastic-plastic-creep analysis would yield more complete
infgfﬁation, given the small amount of yielding, an elastic-creep analy-
sts was considered adequate for design purposes. (The elastic-plastic-
creep analysis with advancing face is applied in the next chapter.) After
excavation, creep analyses were carried out for both the unlined and ]ined
cases using the Singh and Mitchell creep relationship with Bishop and
Lovenbury's constants for London Clay. For the unlined tunnel there was
a noticeable stress redistribution around the opening with time. The
tangential, radial and equivalent stresses near the opening decreased with
time until they approached a steady state condition in about four davs as
shown jn Figure 4.5 for the Kt equal to 1.0 case. Four initial stress
conditions (Kt = 0.75, 1.0, 1.25 and 1.5) were considered to study this
influence on the tunnel inward displacements with time. After about seven
days, primary creep was completed and the secondary creep was showing up
for the initial stress conditions considered. The creep displacements
around the opening increased with increasing lateral stresses. In spite of
the nonuniform elastic displacements that occurred following excavation
for the nonuniform stress cases (Kt # 1.0), uniform displacements developed
with time due to creep stress redistribution. This stress redistribution
behaviour observed in creep simulations occurs along the lines suggested

by Peck in his state-of-the-art report to the ICSMFE in Mexico (1969) that
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forms the basis.for many empirical desigr procedures. The total inward
displacements at the crown, spring line and invert after two months creep
are given in Table 4.12. A comparison of these values with the displace-
ments after about 12 days in Figures 4.6 and 4.7, and field experience
with subway tunnels in London Clay (Ward, 1978), indicates that creep

should be minimal for design purposes after about one month.

TABLE 4.12

ELASTIC PLUS CREEP INWARD DISPLACEMENTS FOR
UNLINED TUNNEL AFTER 2 MONTHS CREEP,
SINGH AND MITCHELL CREEP RELATIONSHIP

Elastic Plus Creep Inward
Displacements, mm

Kt Value : :

Crown Spring Line Invert
0.75 30.91 30.24 31.09
1.00 37.54 38.08 38.35
1.25 44 .52 45.79 45.99

1.50 52.41 54.38 54.51

For the case of the unlined tunnel analyses, the support system
with 20 mm of Ethafoam backing was assumed to be constructed one hour
after excavation. This was based on a stand-up time estimate of one hour
for the site and conditions involved. The analysis used took into consid-
eration the initial state of stress in the rock mass (Kt = 1.0 assumed to
be appropriate), the displacements and stress redistribution occurring

during tunnel excavation, and the behaviour of the precast concrete segmental
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liner and deformable interface material following its installation in the
opening. The support system was assumed to have no time;dependent be~
haviour as this is a conservative assumption in terms of liner stress de-
velopment due to creep. However, the analysis can allow support creep if
desired. A summary of the key results from these analyses is given in
Table 4.13. The inward displacements increased from 6.49 mm to 13.44 mm
(i.e. more than 100%) in three days due to creep, but in the period between
three to eighteén days, the displacement increases occu}red at a decreas-
ing rate and would not get significantly larger. After three days, the
lTiner's maximum compressive stress was 2.71 MPa, but again the liner

stresses did not increase significantly after about eighteen days.

It is important to note the overall scope and limitations on the
design example described which was based on several simplifying assumptions:
plane strain; one step excavation (i.e. no advancing face excavation);
instantaneous or délayed support placement (i.e. no advancing liner place-
ment); and the assumed creep relationship and rock properties. In order
to consider fully any proposed support system and tunnel construction pro-
cedure, further analyses based on the more detailed advancing face and
liner p]acément simulation would be required. This full simulation is
described with examples in the next chapter. Also, testing to character-
ize the rock and determine the creep properties would be of considerable
value in improving the reliability of any simulation. Finally, cqnfirma-
tion of the tunnel and liner response predictions, and liner perfo;mance,
by monitoring durihg construction is considered essential. This monitoring

is in progress for the tunnel as its construction is now at an advanced
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stage. No problems have been encountered with the excavation and Tliner

design based on the planeé strain simulation and more detailed simulation

is given in the next chapter.



CHAPTER 5

THREE-DIMENSIONAL ANALYSIS OF TUNNEL EXCAVATIONS NEAR
THE ADVANCING FACE - RESULTS AND DISCUSSION

5.1 INTRODUCTION

The results given in Chapter 4 showed the capability of the finite
element method program developed for tunnel excavation and liner place-
ment simulation for Fhe plane strain assumption. In this chapter, the
program developed for the three-dimensional tunnel excavation and liner
placement simulation with both tunnel face and support advance (described
in Chapter 3) is applied to an actual tunnel design problem. The analyses
were completed to indicate the capabilities of the simulation method de-
veloped, and to show‘typica] results for an actual tunnel. In these
analyses, the effects of the longitudinal stress ratio K2 and transverse
stress ratio Kt on tunnel wall convergence are presented to show the in-
fluence of the pre-existing in situ stresses prior to excavation. The
effects of free advancement rate and time-delays (stationary time) on
tunnel walf convergence are also presented. Other typical results are
given for the elastic-plastic-creep response of both lined and unlined
tunnel sections. The tunnel wall convergence and the lining stresses are
presented for these cases as these displacements and stresses are import-

ant considerations during design.

The tunnel chosen for the three—dimensional analysis (axisymmetric
analysis) was the second example presented in the previous chapter, now

139
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under construction in a siltstone formation with high lateral stresses
and a tendency to squeeze. The site and formation properties given in
Table 4.5, and the'precast concrete segmental liner propérties given in
Table 4.6, were used iﬁ the analyses. The soft Ethafoam backing was not
considered in the axisymmetric analyses in order to obtain the maximum
stresses developed in the precast concrete segmental liner as a 11mitihg
condition. The properties and tunnel dimensions were kept constant in
order to allow comparisons with the results predicted from the previous

two-dimensional plane strain analyses (Chapter 4).

The finite element mesh idealization used in the axisymmetric
analysis to model the longitudinalnnel section was the same as that
given in Figure 3.10. The mesh (168 elements and 104 nodes) and input
data were prepared using the mesh generating program for a tunnel radius
R of 1.334 m. The boundary conditions are shown in Figure 3.10 along
with the selected excavation and face advance of one tunnel radius (1R)
per excavation step. A total excavation distance of 6R was used for both
the unlined and lined tunnel sections. This finite element mesh was used
in all of the axisymmetric excavation and liner placement simulations

summarized in this ¥hapter.

For the general case of nonaxisymmetric in situ stress fields,
Fourier series expansions have been used with a total of four harmonics
in the symmetric mode, i.e. 0, 2, 4 and 6. This number of harmonics is
considered a realistic and sufficient number from trial analyses to give

accurate results to approximate the in situ stress conditions.
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Throughout this chapter, strains rather ihan displacements are
employed to facilitate the comparison of deformations for tunnels of
different size. In this way, a better understanding may be gained of the
increasing in deformations with increasing tunnel size that are often ob-

served in the field.

5.2 EFFECT OF PRE-EXCAVATION-LONGITUDINAL STRESS COMPONENT ON
TUNNEL CONVERGENCE

In the design of an underground opening using the plane strain
analysis, the question of the effect of the pre-excavation longitudinal
(axial) stress component on tunnel convergence cannot be considered. It
is a particular advantage that the axisymmetric simulation can deal with
the actual field in situ stresses and consider the influences of the
axial component. To examine these influences, a total of five simulations
were completed in which the axial stress ratio was varied, i.e. KQ was

taken as 0.0, 0.5, 1.0, 1.5 and 2.0. A radially uniform in situ stress

equal to the vertical stress at the tunnel axis (i.e. Kt = 1.0) was assumed

for these five cases. An elastic analysis was adapted to simulate quick ‘
excavation of a tunnel length of 6R. These results are shown in Figure

5.1 where it is clear that the longitudinal stress ratio K2 has a signi-
ficant effect on the tunnel convergence, .and the convergence increases with
increasing KQ. However, to fully consider this influence, it is necessary

to vary the transverse (lateral) stress ratio Ky value for the same range

of K£ values.



142

zomhﬂ$<uxu mm..mum<uauzqu:|uuzuamu>ZGUJq<3
J11SYT3 WIAVY 13INNAL JHL NO °X OILWY SSIULS TYNIGALIONOT 3HL 40 133443 17§ JdN9ld

(Sn1avd I3NNNL = ¥) 33v4 TINNAL WOUd 3ONVISIA

49 . US uY dE 4z d 0 4- ¥e-
_ T _ 1 _ g—
- ﬂ
= . (OTYLIHWASIXY)
- A 0 = X3ONI DINOWYVH
- : . JINOWYYH L = N
Y ) ¥ -
— 50 = = po= o
T
~ —h— —h— ) " edW 012 = 3
: L 3 =
i 07g.= et = wopeeTL = ¥
t - i y i A ‘
B L= " TIEYINVA = - = A
‘ O
*o—e LAY A
. 0'z = 'y . BdW £°L = "0 = "0
] | | ] l | l l

Q.-

v 0
w.c
8°0
0°1L

¢l

9°1

Jusduad ‘NIWYLS TYIOVY



143

5.3 EFFECT OF PRE-EXCAVATION LATERAL STRESS COMPONENT ON TUNNEL
~ CONVERGENCE

Three cases were considered in which the lateral stress component
was varied to examine convergence influences. The transverse stress
ratio Kt y?s taken as 0.75, 1.0 and 1.25, with the longitudinal stress
ratio equal to the transverse stress ratio (i.e. Ky = Kt) for each case.
The radial convergence results for these cases are shown in Figures 5.2
and 5.3 for both the crown and spring line, respective]y.‘ As -expected,
for Kt less than 1.0, the sp%ing line convergence was less than the crown
convergence, while for Kt greater than 1.0, the spring line convergence
was higher than the crown convergence. It can also be seen in Figures
5.2 and 5.3 that the crown convergence changes aver a narrow range, while
the spring line convergence changes over a wider range for the Kt values

considered.

These three cases were then considered for lined tunnel sections.
The excavation was completed as an incremental operation with the tunnel
face advanced by one radius (R) for each step. A rigid concrete liner
installed at a distance one radius (R) back from the face at each step was
also simulated in the advancing face analyses. The face was advanced a
total distance of §R. The radial convergences for these advancing face
cases are also plotted in Figures 5.2 and 5.3. The results show that tﬁé
rigid liner is comp1éte1y capable of sustaining the elastic radial displace-
ments due to facé'édvancemgnt with maximum lining stresses of 4.5, 5.45
and 6.4 MPa at the crown, and 5.0, 5.45 and 6.0 MPa at the spring line, for

the three Kt values of 0.75, 1.0 and 1.25, respectively. These
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'conseryative' stresses are well within the allowable range for the 41 MPa
compressive strength precast concrete segmental liner involved. A compari-
son of these results with the results given in Table 4.8 obtained for the
plane strain analyses for sections with a soft backing, it can be concluded
that the soft backing both reduces the liner stresses and gives uniform

stresses.

5.4 EFFECT OF FACE ADVANCEMENT RATE ON TUNNEL CONVERGENCE

To demonstrate the effect of face advancement rate on tunnel
convergence, five cases were simulated in which the rate of advance was
varied. Since a reasonable advante rate for a medium size tunnel construc-
in squeezing ground might be one to two tunnel diameters (2 to 4R) per 8
hour shift, the rate was assumed to be 2R per 1,2,8 and 12 hours for each
excavation step. In these simulations, the face was advanced to represent
actual tunnel construction practice, i.e. advqncement in discrete rounds
during which the face is advanced very quickly during the shift and then
left stationary for a period of time during liner placement and shift
changes/maintenance. The advance rate is defined as the distance advanced
divided by the stationary time. A fifth case represenéing a continuous
excavation operation without stationary timés was also considered to give
the 1imiting advance rate case. The results from these analyses are given
in Figure 5.4. They show that decreasing the rate of advance in squeezing
ground leads to increased tunnel wall convergence by the end of excavation.
It can also be seen that the r§d1a1 strains for an advance rate of 2R per
2 hours are about twice those for the quick excavation operation for the

example problem considered. ) o
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To show the effect of the time-delay following excavation for
various advancement rates, creep analyses were completed for the previous
five cases. A total elapsed time of 3 days following the start of exca-
vation was aésumed. In af1 of these cases, the tunnel section was kept
completely unsupéorted. The resulting radial strains are shown in Figure
5.5 for the different excavation rates. The information summarized in
the figures indicates that the previous conclusion that a decrease in
advance rate 1ead; to an increase in the tunnel wall convergence is still
valid, even with such a time delay. But, it can also be seen that the
time delay reduces the wide range in convergence due to the face advance
rate, i.e. increasing the unsupported time delay following excavation

increases the convergence, and reduces the advantage of high advance rates

in reducing tunnel convergence.

5.5 GENERAL ELASTIC-PLASTIC-CREEP ANALYSIS CASES .

In ordér to demonstrate more fully the effect of the transverse
stress ratio, Kz,'bh the tunnel wall convergence and liner stresses, a
complete elastic-plastic- creeg ana]ys1s was performed using the axisymmetric .
approach for the same tunnel section prev1ous1y descrxbed Three cases
were con51¢ered with different initial stress cond1t1ons. The vertical
overburden stress was taken to be 1.70 MPa wifh transverse stress ratios
of 0.75, 1.0 and 1.25, and an axial stress ratio of 1.0, i.e. horizontal
principal stress components assumed to be equal for the three cases. In
these cases, the incremental excavation operation was simulated as shown
in Figure 3.10, with excavation steps of R. Following excavation of a 6R

tunnel section length, a stationary time of 3 hours was allowed in order
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to simulate a rate of face advancement and excavation of approximately
ong diameter per hour. Following this 3 hours, during which creep
occurred, liner installation for the total excavated 6R was simulated.
This Tiner was assumed to be a precast concrete segmental liner with no
soft backing in order to obtain the maximum stress developed in the liner.
The creep analysis was then continued for 10 hours to show the effect of
the time-delay on the liner stresses and on the inward displacements, and
to compare these results with those predicted for the unlined section.
These results are shown for both the tunnel wall convergence and lining

stresses in Figures 5.6, 5.7 and 5.8.

Figures 5.6 and 5.7 give the total elastic-plastic-creep radial
strains along the tunnel wall which were plotted for both the case of
support placement after 10 hours time delay, as well as for the unsuppor-
ted tunnel fo]]owiné*ggcavation completion. For the unsupported tunnel
section, yielding occurred at the wall-face corner at every excavation
step while the face was advancing. This indicates the position of high
stress concentrations anticipated during design. While yielding was minor
for Kt equal to 1, it was of larger extent for the case of Kt equal to 0.75
and 1.25. As previously mentioned, due to the creep response, there is a
continuous adjustment of the stresses around the opening as the stresses
move towards a uniform radial condition. For this reason, and since a timef
delay following each excavation stage was allowed, the stfesses in the few
yielding elements were reduced, and the yielding was eliminated. After
liner placement, and tunnel section support placement, the radial strains

stopped increasing as shown in Figures 5.6 and 5.7. The lining compressive
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stresses due to ground squeeze increased with time, but at a decreasing

rate that eventually stabilizes as shown in Figure 5.8.



CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR
FURTHER RESEARCH AND DEVELOPMENT

6.1 SUMMARY

.Empirical, analytical, and semi-rational design methods for analy-
zing the stability of underground openings and designing their s t
systems are not adequate to consider the majority of the reézq;;:p§::Ei1ity
and design parameters for tunnets constructed in squeezing gfoﬁnd conditions.
Semi-rational design methods, which are widely used in practice, do not
necessarily distinguish conservative work, or even perhaps unsatisfactory
pnéctice. They take .no account of the fact that the support system can be
both satisfactory and unsatisfactory in the same ground condition, depend-
ing on the construction pfocedures. For sqﬁeezing.gr0und conditions, the
support sxstem can be damaged if adequate design provisions suqh~as liner
placement delay or soft backings are not made. Several examples of .Such -

failures and damage are well known'in Southern Ontario.

4
A general procedure that takes into account most of the parameters

involved with the design of excavations in Squeezing ground, such as ground
condition and mechanical properties, primary state of stress and high
lateral stress conditions, excavation-support construction sequences and ‘:’
progressive interaction, construction procedures and new construction
methods, such as precast concrete segmental liners, three-dimensionaI \

effects near the advancing face; and the elastic-plastic-creep behaviour
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of the ground as excavation progresses, is not currently available.

.

The prime objective of this study was to develop a general method
of analysis to be used in practice as a design prosédure for underground
openings taking into account most of these design parameters. The finite
element method was adopted to develop the necessary excavation and liner
placement plane strain and axisymmetric simulations. The incremental
approach was also adopted to simulate the construction sequences of
excavation and support piacemenf. Incorporation of inelastic behaviour
for both ground yielding and time-dependent deformations was based on the
initial stress and initial strain methods, respectively. The general
three-dimensional stress analysis for anisotropic in situ stress field
conditions was also formulated using aﬁ axisymﬁetric approach aﬁd Fourier
series expansions. This axisymmetric approach was also extended to

include inelastic behaviour.

Typical problems were analyzed using both the two—d%mensional
(élane strain) and three-dimensional (axisymmetric) stress methods with
emphasis on the advantgges and limitations of each simualtion technique.
.The results were reported in a tabular and graphical format to be useful

for design purposes. Several parametric studies were also involved.

In order to improve the simulations and their applicability to
support system design, incorporation of creep properties based on testing
the actual material are considered essenfia]. Field stress and displace-
'mené monitoring during and aféer construction to confirm and 1mpro§e the

predicted values is also considered important. On the other hand, a ‘number
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of projects are currently in progress that provide an opportunity for back
analysis in order to assess the characteristics of the ground and in situ

stresses, and to check the validity of the simulation methods.

6.2 CONCLUSIONS

The availability of large computers allows numerical techniques,
such as the finite element method simulation of tunnelling developed in
this study, to be ;bplied to a wide‘range of geotehhnology problems in
order to determine displacements and stresses. for design purposes. The
methods developed can be generally applied to underground excavations to
simulate the major'steps in excavation and support system placement. Such
stress analyses can be regularly used to determine both ground and support
system displacements and stresses durihg and after excavdtion and support
construction sequences. This was done by simulation of excavation and
support placement in.stages, as well as ground yielding and time-dependent
behaviour. The groundqupport system interaction, which plays an import-
ant role in udnerground constructions, is simulated as closely as possip]e
to the actual conditions. In the study, these stress analyses can be
performed near the advancing face as well as at plane strain sections

(i.e. far from the tunnel face).

The two-dimensional plane strain and three-dimensional longitudinal
sections are 'two cases which have been presented for the analysis of
underground excavations.. For both of them, an attémpt was made to simulate
fhe mechanics of the interactive nature of the problem and emphasis was

[ 8
put on the development of methods that take into account the construction
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sequences influencing the progressive interaction between them. This re-
quired simulation of both time-independent ground yielding and time-
dependent creep behaviour. The techniques used were consistent with the

finite element formulation.

Since tunnelling through squeezing ground is one of.the most
troub]esome and Jeast hnderstood areas in underground construction, the
simulation methods presented were used to gain some informafion on in situ
stress influences to advance the design state-of-the-art for tunnelling
in squeezing ground. This information, while requiring extension, if
implemented should allow for more effective and economic design and

construction procedures.
On the basis of the study, the following poinfs can be summdrized:

1. Excellent agreement was found between the finite element results

and closed form solutions.

2. Results from the incremental simulation of single and multi-step
excavations for linear elastic materials were identical-as expected

for the same loading and boundary conditions.

3

3. The excavation and‘éupport placement simulations and the idea]izé-
tion of both ground yielding and creep behaviour adopted, are
suitable for predicting ground behaviour dur{ng all phases of ex-

cavations and support placements.

-

4. Since incremental technigues wer;f;hopted throughout, nonlinear

constitutive relationships for 96%h'yie1ding and creep analyses
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could be modelled using the initial stress and initial strain

methods, réspectively..

5. The simulation methods developed can be used in conjunction with
field monitoring to predict the actual initial insitu stress

conditions and creep properties of the materia1s'invo1ved.

6. There are many problems in geotechnology where the simulation
methods ‘can be applied. One appiication, for examp1é, is the
stabilization of underground openings by grouting. The finite
element method program developed for both plane strain and axi-
symmetric analyses can be used without any additional modifica-

“tions to study grout stabilized tunnels. Problems such as
groundwater inflow, loss of ground and surface settlements,
time-dependent creep response and reduced support thickness are
usually associated with tunnelling. Injection of stabilizers
is now used to minimize such problems for pervfous soil and
weathered rock. . Stress analyses can be completed to determine the
influence of different sizgs and strengths of grouted zongs‘on

surface settlements or tunnel convergence.

Based on the analyses and results presented throughout this study,
the following conclusions concerning tunnelling through squeezing ground

can be made:

1. There is stress relief due to tunnelling as an instantaneous res-
ponse. In squeézing ground, this stress relief will continuelfor

several months, or more, depending upon the strength and deformation
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.characteristics of the ground. Such stress relief can be monitored

+

during construction to check the simulation results.

In order to allow this stress relief to occur without damaging

any supbort system, some radial deformations must be allowed to

occur. Such radial deformations can be accommodated by a time-

delay before the support system is installed, and/or by a flexible

suppor€ system which allow for the rest of the required deformations,

but prevent loosening as much as possible. This normally can be
done in practice by leaving a suitable gap or installing a soft

» backing between the ground and support system, and/or by leaving

narrow longitudinal gaps or packing between the support system

segments.

The stresses developed in the suppbrt system, if installed as
suggested above, will build up gradually and be kept to a minimum.
Such suppbrt systehs will also tend to be more economic than mono-

Ti;hic systems.

If it is intended to only‘permit small deformations (i.e. not
sufficient time-delay, no soft backing, and/or no gap or packing)
the‘stresses in any éupport system will ingrease dramatically and
may result in rapid failure. On the other hand, sufficient

support must pe provided to avoid ground failure.

It was fodnd in three-dimensional (axisymmetric) simulations that
the pre-excavation longitudinal in situ'étress component has a

great effect.bn~the convergence values. It was shown that with
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increasing longitudinal stress ratio KZ,'the convergence increases.
It was also found that increasing face advancement rate for
. tunnels constructed in squeezing ground resulted in decreased

tunnel convergence by the end of the excavation period.

Finally, it would appear that the simulation methods are fully
suited for application to practical geotechnical design work where reliable
predictions of ground deformations and support stresses during excavation

and construction are required. It is also important to mention that the

'reliability of any deformation and stress predictions based on numerical

analyses is largely a function of the adequacy-of the input data (initial
state of stress and ground characteristics) and a realistic representation
of the excavation and construction procedures. The ‘computer has not
replaced the significant engineering judgement required at all stages of

tunnel design, as changed conditions are a]mbst_the rule during tunnelling.

6.3 FURTHER RESEARCH.AND DEVELOPMENT

Distinct possibilities for development, improvement and refinement

exist for continu%ng the study. Necessary further research and development

"includes:

1. Incorporation of orthotropic material properties into the analysis

to include bedding effects.

2. Incorporation of pore water préSéure effects into the analysis of

o~

- excavations. . !
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3. Incorporation of more realistic idealizations, such as improved

strain-hardening laws, for the material behaviour.

Also, there are potential improvements and refinements qf the

present simulation methods such as:

1. Adopting an implicit scheme for the nonlinear plastic and creep
analysis rather than the explicit scheme to give better efficiency

in the iterations.

2. Using a refined element such as an isoparametric element rather
than the constﬁnt strain element. This will reduce the number of
‘elements and computer capacity required to achieve the same

accuracy.

The éxisymmet}ic approach used for the advancing tunnel face simu-
lation is restricted to the simple geometry of éireu]ar openings and
. simulation of fu11-facg excavations. TFortunately, this is offéﬁ‘the case
in tunnelling. If a different case is requried, a full three-dimensicnal
stress analysis will be needed. This requires the development of an
efficient three-dimensional finite element method simulation to allow the
consideration of re#listic problems .with computers of the size generally

available to designers.

These areas, as well as several suggested throughout the study,-

appear to be logical extensions for future work.



BIBLIOGRAPHY

Afrouz, A. and Harvey, J.M., 1974, "Rheology of Rocks Within the Soft to
Medium Strength Range", Int. J. Rock Mech. Min. Sci., Vol. 11,
No. 7, pp. 281-290.

Bishop, A.W., and Lovenbury, H.T., 1969. "Creep Characteristics of Two
Undisturbed Clays", Proc. 7th Int. Conf. Soil Mech. Found. Eng.,
Vol. 1, pp. 29-37.

Boresi, A.P. and Deere, D.U., 1963. "Creep Closure of a Spherical Cavity
in an Infinite Medium, with Special Application to Project Dribble,
Tatum Salt Dome, Mississippi", for Holmes Marver Inc., Las Vegas
Division.

Brebbia, C.A. and Conner, J., 1974. Fundamental of Finite Element Tech-
niques for Structural Engineers, John Wiley and Sons Inc., New York.

Brown, E.T. and Hoek, E., 1978. "Trends in Relationships between Measured
In-Situ Stresses and Depth", Int. J. Rock Mech. Min. Sci. and Geo-
mech. Abstr., Vol. 15, No. 4, pp. 211-215.

Christian, J.T. and Wong, I.H., 1973. "Errors in Simulating Excavation
in Elastic Media by Finite Elements", Soils and Foundations, Vol.
13, Mo. 1, March, pp. 1-10.

Clough, G.W. and Duncan, J.M., 1969. "Finite Element Analyses of Port Allen
and 01d River Locks", Contract Report $-69-6, U.S. Army Engineer
Waterways Experiment Station, Corps of Engineers, Vicksburg,
Mississippi.

Clough, G.W. and Mana, A.I., 1976. "Lessons Learned in Finite Element
Analyses of Temporary Excavations in Soft Clay", Proc. 2nd Int.
Conf. on Numerical Methods in Geomechanics, Blacksburg, Virginia,
Vol. 1, pp. 596-510.

Conte, S.D. and Boor, C., 1972. E]ehentary Numerical Analysis, An Alogorith- *
mic Approach, McGraw Hill Company, Toronto.

Daemen, J.J., 1975.° "Tunnel Support Loading Caused by Rock Failure", Ph.D.
Thesis, University of Minesota.

Dahlquist, G. and Bjorck, A., 1974. Numerical Methods, Translated by
Anderson, N., Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Davis, E.H., 1968. "Theory of Plasticity and the Failure of Soil Masses",
S0il Mechanics: Selected Topics, Edited by I.L. Lee, pp. 341-380.

163



164

Deere, D.U., Peck, R.B., Monsees, J.E. and Schmidt, B., 1969. "Design of
Tunnel Liners and Support Systems". University of Illinois,
Report for Office of High Speed Ground Transportation, U.S. Depart-
ment of Transportation.

Desai, C.S. and Abel, J.F., 1972. Introduction to the Finite Element
s Method, Van Nostrand Reinhold Company, New York.
7
Descoeudres, F., 1974. "Three-Dimensional Analysis of Tunnel Stability
: Near the Face in an Elasto-Plastic Rock", Advances in Rock Mech-
antics, Proceedings of the Third Congress of the Int. Soci. Rock
Mech., Denver, Vol. II, pp. 1130-1135.

Donath, F.A., 1970. "Some Information Squeezed out of Rock", American
Sc1ent1st Vol. 58, No. 1, pp. 54-72.

Drucker, D.C. and Prager, W., 1952. "Soil Mechanics and Plastic Analysis
or Limit Design", Q.J. Appl. Math., Vol. 10, No. 2, pp. 157-165.

Egger, P., 1974. "Underground Openings - Principles 6f Des1gn", A Lecture
1n Rock Mechanics, Edited by M Miller, Springer-Verlag Wien, New
York, pp. 283-297.

Einstein, H.H. and Schwartz, C.W., 1978. "Improvement of Ground Support
Performance by Full Cons1derat1on of Ground Displacements", Draft
of Paper for Tunnelling and, Underground Structures Symposium,

TRB Meeting.

Eisenstein, Z. and Morrison, N.A., 1973. "Prediction of Foundation Defor-
mations in Edmonton Using an In Situ Pressure Probe", Canadian
Geotechnical Journal, Vol. 10, pp. 139-210.

Emery, J.J., 1971. "Finite Element Analysis of Creep Problems in Soil

Mechanics"”, Ph.D. Thesis, University of British Columbia. .

" Emery, J.J., 1978. "Simulation of Slope Creep", Rockslides and Avalanches,
Vol. 1, Natural Phenonema, Edited by B. Voight, pp. 669-691,

Developments in Geotechnical Engineering, 14A, Elsevier, Amsterdam.

Fairhurst, C., 1979. “Improved Tunnel Support Des1gn Possibilities Using
'Character1st1c Lines' Approach Discussed in AFTES Sympos ium
(Paris)", Underground Space, Vol. 3, No. 4, pp. 207-217.

Farmer, I.W., 1968. Engineering Properties of Rocks, Spon, London.

Florence, A.L. and Schwer, L.E.,.1978. "Axisymmetric €Compression of é
Mohr-Coulomb Medium Around a Circular Hole", Int. J. Numerical
and Analytical Methods in Geomechanics, Vol. 2, Mo. 4, pp. 367-379.

Franklin, J.A. and Hungr, 0., 1978. “Rock Stresses in Canada; Their Rele-
vance to Engineering Projects", Rock Mechanics, Suppl. 6, pp. 24-46,




165

Franklin-Trow Associates Ltd., Rock Engineering Consultants, 1978. “Sup-
plementary Study Easterly. Filtration Plant Intank Tunnel,
< Scarborough, Ontario", Personal Communication, Rexdale, Ontario.

Fung, Y.C., 1965. Foundations of Solid Mechanics, Prentice-Hall Inc., New
Jersey. : :

Goodman, R.E., Taylor, R.L. and Brekke, J.L., 1963. "A Model for the
Mechanics of Jointed Rock", J. Soil Mech. Found. Div., ASCE, Vol.
94, No. SM3, Proc. Paper 5937, May, pp. 637-659.

Greenbaum, G.A., 1966. "Créep Analysis of Axigymmetric Bodies", Ph.D.
Thesis, University of California, Los Angeles.

Hanafy, E.A., 1976, "Finite Element Simulation of Tunnel Excavations in
Creeping Rock", M. Eng. Thesis, McMaster University, Hamilton,
Ontario.

Herget, G., 1974. "Ground Stress Determination in Canada", Rock Mechanics,
Vol. 6, pp. 53-64.

Hill, R., 1950. The Mathematical Theory of Plasticity, Clarendon Press,
Oxford. '

Hirst, T.J. and Mitchell, J.K., 1968. "Compositional and Environmental
Influences on the Stress-Strain-Time Bshaviour of Soils", Report
No. TE-68-4, Department of Civil Eng., Institute of Transportation
and Traffic Eng., University of Californja, Berkeley,

Hobbs, D.W., 1970. "Stress-Strain-Time Behaviour of a MNumber of Coal
Measure Rocks", Int. J. Rock Mech. Min., Sci,, Vol. 7, pp. 149-170.

Hocking, G., 1976. "Three-Dimensional Elastic Stress Distribution Around
the Flat End of a Cylindrical Cavity", Int. J. Rock Mech. Min.
Sci., Vol. 13, No. 12, pp.<331-337. ’

Hocking, G., Brown, E.T. and Watson, J.0., 1976. "Three-Dimensional
~ Elastic Stress Analysis of Underground Openings by the Boundary
Integral Equation Method", Proc. 3rd Symp. Eng. Applications of
Solid Mechanics, University of Toronto, June, pp. 203-217.

Jaeger, J.C. and Cook, M.G.W., 1976. Fundamentals of Rock Mechénics, John
- Wiley and Sons Inc., New York.

Krenk, S., 1978. "Internally Pressurized Spherical-and Cylindrical Cavf—
ties in Rock Salt",-Iat. J. Rock Mech. Min. Sci. and Geomech.
"~ Abstr., Vol. 15, No. 5, pp. 219-224. .

_Kulhawy, F.H., 1974. "Finite Element Modelling Criteria for Underground
Openings in Rock", Int. J. Rock. Mech. Min. Sci., Vol. 11, No. 12,
pp. 465-472. .




et

»
-

166
" Ladanyi, B., 1976. ‘“Quasi-Static Expansion of a Cylindrical Cavity in
T ~ Rock", Proe. 3rd Symp. Eng. Applications of Solid Mechanics, Uni-

versity of Toronto, June, pp. 219-240.

Lane, K.S., 1975. "“Field Test Sections Save Cost-in Tunnel Sﬁpport", Re-
' port from Underground Construction Research Council, ASCE,
- October. )

Lee, €.F. and Lo, K.Y., ¥76. "Rock Squeeze Study of Two Deep Excavations
at Niagara Falls", Proc. Conf. Rock Engineering for Foundations
and Slopes, University of Co]orado August 16-18.

" Lo, K.Y. and Morton, J.D., 1976. "Tunne1s in Bedded Rock w1th High Hori-
zontal Stresses", Can. Geotechn. J., Vol. 13, No. 3, pp. 216-230.

Lombardi, G.A., 1973. "Dimensioning of Tunnel Lininéswith Regard to Con-
structional Procedure"”, Tunnels and Tunneling, Vol. 5, No. 4,
July, pp. 340-351.

Lombardi, G.A., 1974. "Tunnel Support", Advances in Rock Mechanics, Pro-
ceedings of the Third Congress 'of the Int. Soci. Rock Mech.,
_ Denver, Vol. I, pp. 1518-1529.

_Love, A.E.H., 1927. The Mathematical Theorx,of Elasticitv, University
Press Cambridge.

Ldbahn, J.D. and Fe1gar, R.P., 1961. Plasticity and Creep of Metals, John
Wiley and Sons Inc., New York. ' -

Marcal, P.V. and King, I.P., 1967. "Elastic-Plastic Analysis of Two
- Dimensional Stress System by the Finite Element Method", Int. J.
Mech. Sci., Vol. 9, pp. 143-155. .

Meek, J.L., T§73 "Excavation in Roek; An App]1cat10n of the Finite Ele- -
ment Method of Analysis", Proceedings of the Tokyo Seminar on
;1g1te E]ement Analys1s University of Tokyo Press, Tokyo, pp. 195~
1

| Meissner, H.E., "Laterally Loaded Pipe Pile in Cohesioniess Soil", in
Numer1ca] Methods in Geomechan1cs, Vol. 3, Edited by C.S. Desai,

-~ 1976, pp. 1353-1365.

-

Mendelson, A., 1970. Plasticity: Theory and Appjicétion, MacMitan
Company, New York.

Mroz, Z., 1963. “Non-Assoc1ated Flow Laws in P1astic1ty", J. de Mechan1que,
Vol. 2, No. 1, pp. 42-6(iD ]

Myer, L.R., Brekke, T.L., Korbin, G.E., Kavazan31an E. and Mitchell, J.K.,
1977. “Stand-up Time of Tunnels in Squeezing Ground - Part L
Physical Model Study", Report No. DOT-TST-77-59, Department of
Civil Eng., University of California, Berkeley, June. -




e b o ot A

167
Nair, G.P., 1975. "Response of Soil-Pile Systems to Seismic Waves", Ph.D.
Thes1s, McMaster University, Hamilton, Ontario.

Obert, L. and Duvall, W.I., 1967. .Rock Mechanics and the Design of Struc-
tures in Rocks, John Wiley and Sons Inc., New York.

Pariseau, W.G., 1972. "Discussion on Papers by Gates, Chang, et al., and
Lu and Scott", Proc. Applications of the Finite Element Method
in Geotech. Eng., U.S. Army Eng. Waterways Exp. Stat. Vicksburg,
Miss., Sept., pp. 1223-1224.

Pariseau, W.G., Voight, B. and Dahl, H.D., 1970. "Finite £1ement Analyses
of Elastic-Plastic Problems in the Mechanics of Geologic. Media:
An Overview", Proc. 2nd Int. Soc. Rock Mech., Beograd, Vol. 2,
pp. 311-323. ’

Peck, R.B., 1969. "Deep Excavations and Tunnelling in Soft Ground" Proc.
7th Int. Conf. Soil Mech. and Found. Eng., Mexico City, State -of-
the-Art Volume, pp 225-290. - .

Peck, R.B., Hendron, A.J. and Mohraz, B., 1972. "State of the ARt of
Soft Ground Tunnelling”, Proc. North America Rapid Excavation and
Tunnelling Conf., Chicago, P. 259. Published by AIME, Lane and
Garfield, Editors.

Prager, W. and Hodge, P.G., 1951. Theory of Perfectly P]ast1c So11ds,
John Wiley and Sons Inc., New York. _ i

Rabcewicz, L.V., 1964. "The New Austrian Tunnelling Method", Water Power,
Nov.é pp. 453-457, December, pp. 511-516, and Jan. ,1965, pp.
19-25.

Reyes, S.F. and Deere, D.U., 1966. "Elasto-Plastic Analysis of Underground
Opening by the Finite Element Method", Proc. 1st Int. Cong. Rock
Mech., Vol. 3, Lisbon. . :

Robertson,.E.C., 1963. “Wiscoelasticity of Rocks", Int. Conf. on the State

of Stress in the Earth S Crust Santa Monica, California, May,
pp. 181-220.

R.V. Anderson Associates Limited, Consulting Engineers and Planners, 1979.
Geotechnical and Pre-Cast Segmental Lining Design Data, Personal
Communications, January, Willowdale, Ontariy.

. Sakurai, S., 1978. "Approximate T1me-Dependeﬁt Analysis of Tunnel Supbort

Structure Considering Progress of Tunnel Face", Int. J. Numerical
and Analytical Methods in Geomechanics, Vol. 2, No. 2, pp. 159-175.

Samuelson, L.A., "Creep Buckling of A Cylindrical Shell Under Non-Uniform
Externa] Loads", Int. J. Solids Structures 1970, Vol. B, pp. 91-
116. .- N




168

Sbar, M.L. and Sykes, L.R., 1973. “Contemporary Compressive Stress and
Seismicity in Eastern North America, An Example of Intra-Plate
Tecton1cs" Bulletin of the Geo]og1ca1 Society of Amer1ca Vol. 84,

. 1861- 1882

Shieh, N.Y.J. and Sandhu, R.SL, 1970. “Application of Elastic-Plastic
Analysis in Earth Structures", Proc. Nat. Meeting on Water Re-
sources Eng., ASCE, Memphis, Tenn., January.

Singh, A. and Mitchell, J.K., 1968. "A General Stress-Stress-Time Function
for Soils", J. Soil Mech. Found. Div., ASCE, Vol. 94, No. SM1,
pp. 21-46.

Singh, A. and Mitchell, J.K., 1969. "“Creep and Long-Term Strength of Soils
Subjected to Variable Load", Proc. 7th Int. Conf. Soil Mech. and
Found. Eng., Mexico City, Vol. 1, pp. 423-43].

Szechy, K., 1973. The Art of Tunnelling, Akadémiai Kiadd, Budapest.

Terzaghi, K., 1946. -"Rock Defects and Loads on Tunnell Supports“, in
Rock Tunnelling with Steel Supports, by R.V. Proctor and T.L. White,.
the Commercial Shearing and Stamping Co., Yongstown, Ohio.

Tunne]]ingATechnologyﬁ 1976. An Appraisal of the State of the Art for
Application to Transit Systems, The Ontario Ministry of Transport-
ation and Communications, Ontario.

Ward, W.H., 1978. "Ground Supports for Tunnels in Weak Rocks", Geo-
technique, Vol. 28, No. 2, pp. 133-171.

wilson; E.L., 1965. *“Structural Ana]y51s of Axisymmetric Solids", AIAA
Journal, pp. 2269-2274.

Wittke, W. and Pierau, B., 1976. "3-D Stability Analysis of Tunnels in
Jointed Rock", The Second Int. Conf. Numerical Methods in Geo-
mechanlcs V1rg1n1a Vol. III, pp. 1401-1418.

Yamada, Y., Yoshimura, N. and Sakurai, T., 1968. "Plastic Stress-Strain
Matr1x and its Application for the Solution of Elastic-Plastic
Problems by the Finite Element Method", Int. J. Mech. Sci., Vol.
10, No. 5, pp. 343-354, .

Zienkiewicz, 0.C.;, 1968. "Continuum Mechanics as an Approach to Rock Mass
Problems", Chapter 8 in Rock Mechanics in Engineering Practice,
Edited by K.G. Stagg and 0.C. Zlenk1ew1cz John Wiley and Sons Inc.,
New York.

Zienkiewicz,.0.C., 1977.‘ The Finite Element Method, McGraW-Hil] Co., .London.

Zienkiewicz, 0.C. and Cormeau, I'C., 1974, "Visco-plasticity and Creep in
’ Elast1c So]xds ~--A Unified Numer1ca1 Solutiofi Approach", Int. J.
Numerical Methods in Enjineering, Vol. 8, No. 4, pp. 821 845.



[

o

-

APPENDIX-A -

ELASTICITY AND PLASTICITY MATRICES

fod

The general elasticity matrix, expréssing the stress-strain re-

Tationship in which the material is assumed to be linear, isotropic, and

‘elastic, is (Desai and Abel, 1972):

£ ‘ 1-v

£,
"] = (1+v) (1-2v)

where E is the modulus of elasticity and v is the Poisson's ratio.

0 0 0
0 0 0
0 0 0
1-2v

7 0 0
1-2v 0

7

1-2v|

2

The general plasticity matrix [DP] adopting the von Mises yield

criterion is (Desai and Abel, 1972):

e

, .
9Dx- %dx%y  °0x%z “Dxxy

ao—— [ 8

a’ O, Toy,
. [DP} Doe ] ; . Dz Dz xy.
% Symmetrical ‘Tiy&
a8 -

) B
Dy . %by°dz  “py’xy. -

“bxTyz
OpyTyz
“pz%yz
Txytyz -

2
TyZ‘

TyzTax

L

“oxTzx

%oy zx

%pz%zx

¥
T

<X o
Xy zx

-~

(a.2)
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26

in which: € = > o
£ 42

3 ge(] + 31')

where G is-the shear modulus, 9 are the deviatoric stress components and H'

i$ the slope of the equivalent stress-equivalent strain curve (equal to

zero for an elastic-perfectly plastic material). The term 'equivalent' is

used instead of 'effective' to prevent any misunderstanding since the term
'effective' has a different, general meaning (i.e. intergranular stress)
in geetechno]dgy. With the von Mises yield criterion, the equivalent stress
is:
s 1 g )2 -q )2 - )2
% 7 [(o-0,)% + (g,-0,)2% (0,-0)) ] ‘ (A.3)

and the equivalent strain is:

O N LR NG (.4)
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APPENDIX B
MATRICES AND INTEGRALS FOR ANALYSIS OF AXISYMMETRIC STRUCTURES

Some of the important matrices and axisymmetric integrals used in
the analysis of axiéymmetric structures under symmetric and nonsymmetric

initial in situ streéss conditions are given in this appendix.
' o

B-1 MATRICES RELATING DISPLACEMENTS, STRAINS AND STRESSES

The matrices [DE], [B1, [C-l]{ and ([E]TtDE][§]) used in the axi-

symmetric structure analysis are defined as follows:

[DE] is the elasticity matrix defined in Appendix A.

-zrjzk'rkzj) (rezg-rizg) - (rizj'rjzi{
O | n) L e ) | G
)l )

. )
where |A] = ~ri(zj-zk) + rj(zk-zi) + rk(zi—zj)
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1 z - n nz

_ ‘; 1 F 0 0 0 . Y-‘ . n -r-
(8] = (B.2)

0 0 1 0 1 0 0 0

n nz 1 4

v -n -y 0 0 0 “r 0 r

n nz
0 0 0 -; ~.n --F- 0 0 1

" where r and z are the nodal coordinates and n is the harmonic index.

NOTE: The matrix [ﬁ] given'ih Equation B.2 is applicable for symmetric -

. modes only.
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B~2 AXISYMMETRIC INTEGRALS

There are eight axisymmetric 1ntegrals A to x which are used in

th1s analysis of axisymmetric structures

grals which are evaluated using Green's Lemma are as follows:

. . a b
A] = JJ rdrdz= -§ rzdr = - [il(rg - r%) + 31{r§

b,
1(r2

- § zdr =‘-[a1(rj-r1.) (]

e
b
2 3,3 3
UL S UF I
2
ri) + az(rk-rj)

The expression for these inte-

Z(Y‘k-rJ)-!- -———(r ) .
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- [a11n(;%d+b](
' i

+ bz(rk-rj)+ ag

&
r.

rj-ri)+ a,1n( ;

).

r.
1n(Fi)+ b3(ri-rk)

al "5 b? 2 2
e l"gr’.” a3by (ry=ry )+ T(‘”j'ri)
2 2
a, r b
2 K } 2,2 2
*3 ]n(rj)+ a0,(ry rj)+ E_(rk.rj)
2 . 2
a r. b
3 i 3;.2 .2
Fg I aghslr et i)




2 fa a,b
- - rz . 1,2 .2 171,.3 3.
Ag = j[zrdrdz = - § 5 dr = - { r.-ri)+ —3——{r.-ri)

where z. -
- - i
3y =25 - byry by = £
A i
Z, - 2,
- - - _K J
az - Zj ber b2 rk -.r'
J
: Z. - 2
- 2 k
83 = Zp = bgry by =
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However, there are simplified expressions for these integrals which

are approximate in. the case of Ags Agr Ag and Ag to Appe These approximations’
are valid under the assumption that the dimension of the cross

section of the element is small-compared to its radius of revolution.

The simplified forms are: ' .

Mos AT
A, = A
Y Az
Y A4F N
\g = AZ/r
rg = 12 - [(Zi + Zj)2 +.(7_j + Zk)? + (zk + 21)2]
T %7 ;(rj +r )¢+ (r, + rk)2 +r *r )2}
Ag . = Azr
where
A = rs (zj - Zk) + rj(zk - Zi) + rk(zi - zj)
roo= 1 (r. +r, +r,)
and ’ k'
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APPENDIX C
USE OF SINGH AND MITCHELL'S EMPIRICAL CREEP LAW

Singh and Mitchell's Creep Law

Singh and Mitchell (1968, 1969) have developed a very useful

generalized stress-strain-time function for cohesive soils which is based

on the study of creep curves for many coehsive soils over a range of

sustained deviatoric stresses:

. t )
¢ = ae*l ()" ( (c.1).
L

The parameters in fquation C.1 are explained with 'the aid of Figure C.1.

INCREASING DEVIATORIC STRESS LEVEL

[

LOG STHAIN RATE, €~

LDG SETRAIN RATE ,

LOG TIME , - PRINCIPAL STRESS OIFFERENCE, D
a. Determining m . b. . Determining A and «
FIGURE C.1 STRAIN RATE EQUATION PARAMETERS '
(Singh and Mitchell, 1968)
where:
¢ is the strain rate at time t and is a function of the deviatoric
stress Dy N
is the projected value of strain rate at time t (t1 gsua11y'

.
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takes as unity) and D = 0, j.e. A = é(tx’ D % 0);

a is the slope of the mid-raﬁge Tinear portion ef the log strain

rate - deviatoric stress plot, all points corresponding to the |

same t, i.e. slope of log ¢ - D plot;
m is the slope of the straight lines on the log strain rate -

log time plot, i.e. slope of log ¢ -~ log t plot.

This simple three-parameter relationship (Equation C.1) appears
approximately valid irrespective of whether the clays are undisturbed or
remolded, wet or dry, normally consolidated or overconso1fda;ed, er
tested drained or undrained. The parameters A, o« and m can be }eadily de-
termined from creep tests on two identical samples subjected to different
deviatoric stresses. The 'fictitious' nature of the parameter A is
apparent in Figure C.1. However, Singh and Mitchell feel that parameterA
A is meaningful in that it 1ndicétes the order of magnitude of the creep
rate for the particular cohesive soil, and reflects fhe structure, compo-
sition and stress history. The parameter a indicafes the stress level
effect on creep rate and, from analogy with rate process iheory, it may
be hypothesized that « reflects the number of bonds per unit area resis-

"ting the creep movement. The parameter m provides a measure of the creep
potential: soils withm < 1 eventually fail in'creep rupture (strain
softening); soils with m = 1 seem to exhibit-the same strength before and
after creep; aqd soils with m > 1 exhibit cessation of creep wifh time
under constant load (strain hardening). It has‘been observed that m is
not -unique for a given cches1ve 501] and depends on the consolidat1on
history. Thus, it is cr1t1ca] that the A, o and m parameters for Equat1on

C.1 be developed for the appropriate soil « - - and

a
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anticipated in the field. On the basis of its simplicity and\adequacy in
descr1b1ng the creep deformations of a w1de range of so1]s Equat1on C.1

\

was adoptediaurlng the ana]ys1s of the tunnel in- s11tstone

The strain cam then be obtained for a given deviataric stiress level

' D. Intégrating Equation C.1 results in two solutions: -

a. Ifm#1l e Ae“D(t )m ( \}t1 ™ 4+ Constant + (C.2)

b. Ifm=1 e

Ae“D(tT)ln t '+ Constant (.3)

Considering the first solution case (m # 1) with t] = 1, and taking M'= T-m

M
= + -
£ C m e )

o m#rg =1 (C.4)

At t=1, ¢ = s? = strain at unit time t = 1,

therefore, C = & - %—s (C.5)

PR P g-e“D(tM -1 (C.6)

A Y

€1 is considered to be the 1ntt1a1 elastic strain', i.e. at time t = 1,
the initial elastic strain is known, assummg € =0 a’thLé 1 where the

subscript ¢ designates a creep strain or creep strain ra

Therefore, e = Bl N ()

giving the desired creep strain equafion, or substituting M =/j -m

S

c. A |
* € - ]_me (C-S)

Equation c.7 will be considered the basic form of the c:;;p law for the

. }
analysis:

A
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1
withizﬁe limitations m # 1 and where M = 1 - m, _If m>1; Mwill bg

s N -
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(C.9)

- - ve'and ¢° will be + ve with é decreasing. Ifm < 1; Mwill be + ve and

¢ will be + ve with & increasing.

< - \ ' \
Function TMI T

Determination of the first time increment in computer program

At1 is taken fromt = 1 for the first in;rement and ¢° = Eg-

™)

(where eE is the elastic strain), therefore
2t = BP0 At])M - 1] (C.10)
C w
(] + At-‘)M = MEuD + ]
Ae .
. Me© 1/M
1 + at = [ + 1]
1 . AeaD
Me© /M . .
At = [—=+ 1] -1 (C.11)
1 AeaD '

therefore the first time increment At1 can be computed basyd on

o

g€ =

~ofm
ol m

which is a limit to ensure solution stability (Emery, 1978).

Function TMCL

Determinations of the creep strain increments and the
fictitious time t. for furthér increments

e = Ll o \\\\ (c.12)

i)
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\ For the strain hardening cumulative creep rule (Emery, 1978):

— .

\—\: - - Ae” = a—eaD{[(tf“F Atjhi\.-‘1] :- [tg -1

o) - (t)™

c _A aD
Ae” = ﬂ-e:[(tf

Also, for t = te Equation C.12 is:

A oD M : -
- oefo= g et - 1] L (C.13)
and ‘ ‘\ te Efgéj - ljl/M .-
3
where ¢© is the previous tot§1 creep strain,

[}
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