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ABSTRACT

//’l

/
In recent years, a number of chromatographic techniques have been

reported to measure the size of submicron particles. Little of the
puglished wbr% has\dealt with the quantitative estimation of particle
size, effor%g. largely, having been directed in demonsirating the
capability /go resolve colloid peaks. Abiliéy to make quantitative
measuremen?é is a prime requirement for any analytical tool'and this is
the prqblgA that is addressed in this work..

)Conuni,[)n to all the chromatographic techniques is the phenomenon of
axial dispersion which disperses a colloid over a finite interval
centered around its mean residence time o; retention volume. The
responge to a pulse of monodispersed coll&id is a bell shaped
chromaiogram. the shape of which along with the peak separation
capability of the instrument, determine for a given detector, the type
of analysis by which raw measured data have to be processed. The
analysis may be of two types. The first, applies correction factors to
mo:ment.s calculat.éd directly from the measured chromatogram to account
for axial dispersion, wﬁile, the second appréach allows a calculation of
the moments of the diameter distribution of particles which at any
iﬁstént occupy the detector cell. Besides developing the various
methods for treating chromatographie data in detail, the problem of
determining the response to a pulse‘of monodispersed colloid has been

attempted. Experimentally, such information cah be determined only with

some difficulty, owing to the unavailability of very narrow distribution

v
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standards.

Experiments were conducted .using a size exclusion chromatograph
equipped with a turbidity detector. The performanée of the turbidity
detector was critically evaluated. A column calibration procedure has
been attempted which minimises material loss, significantl} reduces the
extent of axial disper.sion ‘and improves peak separation. The
theo}etical analyses discussed earlier ;werg applied to experimental

chromatograms of polystyrene latices yith very encouraging results.

7



<. . -

ACKNOWLEDGEMENTS

The author wishes to thank:
O
Drs. A.E. Hamielec and J. Vlachopoulos for their supervision,
Dr. T.B. MacRury for making available some of his data,
My friend and colleagﬁe. Dr. L.H. Garcia for some useful discussions,
Mrs. Amy Stott for her care and pgtience in typing this thesis,
Family membefs for £heir affecfion and moral support,
My friends.tKalpana Raina "and Th;iq Rizvi for their invaluable help ‘in
p?bof-reading this manusqript, .
The Department of Chemical Engineering, McMaster University and the

Petroleum Research Fund for providing financial assistance,

My wife, for her patiénce and understanding.

X



ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

NOMENCLATURE

CHAPTER 1

CHAPTER 2

CHAPTER 3

INTRODUCTION TO THE CHROMATOGRAPHY OF PARTICLE
SUSPENSIONS

1.1 General Background
1.2 Peak Separation and Peak Broadening
1.3 Scope of Present Work

AN ANALYSIS OF FLOW SEPARATION IN CHROMATOGRAPHY
CF PARTICLE SUSPENSIONS

2.1 Introduction
2.2 Mechanism of Separation

2.2.1 The Hydrodynamic Effect

2.2.2 The Ionic Strength Effect

2.2.3 Van der Waals Effect

2.2.4 The Tubular Pinch Effect

2.2.5 The Effect of an Applied Force Field

2.3 Theory of Peak Separation In Hydrodynamic
Chromatography

2.4 Theory of Peak Separation in Size Exclusion

Chromatography

2.5 The Transport of Particles in Capillary
Chromatography

2.6 An Analysis of Separation in Field Flow
Fractionation

DETECTION OF COLLOIDAL PARTICLES

3.1 Introduction

PAGE

iii

vi

Coxiid

xvi

10
12
12
13
14
14
26
31
34
38

38



CHAPTER 4

CHAPTER 5

. 3.2 Extinction of Light by Colloi§a1~Particles

3.2.1 Absorbance and Turbidity of a Dispersed
System of Spheres

3.2.2 Theoretical Estimation of Scattering and
Absorption Coefficients

3.2.3 Particle Size Distribution by Turbidity

Spectra

Turbidimetric Detection in Chromatography

Sources of Erxror in Turbidity Measurements

ww
- -

3.3 Refraction of Light by Colloidal Particles

3.3.1 Mixture Rules for Index of Refraction
3.3.2 Differential Refractometry Detection
in Chromatography

CHROMATOGRAM INTERPRETATION-CALCULATION OF PARTICLE
SIZE DISTRIBUTION

1  Introductidn
2 Numerical Solution of the Axial Dispersion
Equation-Solving for the Distribution Function

4,3 Numerical Solution of the Axial Dispersion
Equation-Solving for the Spreading Function

4.4 Analytical Solution of the Axial Dispersion

Equation~Solving for the Moments of the Size

Distribution Function

y,
y,

4.4,1 Laplace Transform Method of Hamielec
and Singh -~ Method 1
. 4,2 A New Method for Calculating Moments
of the Size Distribution as a Function of
Retention Volume ~ Method 2
4,4,3 A New Generalized Method for Calculating
" Moments of the Size Distribution - Method 3

4,5 An Absolute Particle Size Detector Based on
Turbidity Spectra Analysis

PARTICLE SIZE ANALYSIS USING SIZE EXCLUSION
CHROMATOGRA PHY

5.1 Introduction -~ Review of Previous Investigations
on Size Exclusion Chromatography of Particles
5.2 Experimental

5.2.1 Equipment
5§.2.2 <Calibration of Columns
5.2.3 Calibration of Detector

-vii-

38

38
41
48
49
50
54
54

55

57
57
61

70

85

85

89

101

116

130

130
135

135
136
141



APPENDICES

REFERENCES

5.3

A
A

o> =

1
2

LS ) IS — R VA

5.2.4 Particle Standards~How Monodispersed
are They?

5.2.5 Measurement of Extinction Coefficients

5.2.6 Particle Recovery

5.2.7 Measurement of Particle Diameter

Averages

Conclusions and Recommendations for Further Study

Definitions of Important Diameter Averages
Calculation of Scattering Coefficient from Mie
Theory

Electron Microscopy Data of Dow Polystyrene
Latices

Chromatographic Data of Polystyrene Latices
Solution of Eqn.(4.88)

-viii-

141
147
164

166

188

194
194

195
196
196
203

207



FIGURE

1.1

1.2
2.1
2.2

2.3

2.5

2.6
2.7
2.8
2.9
3.1
3.2

3.3

3;“
4.2

4.3

LIST OF FIGURES

TITLE

Schematic diagram of chromatographic apparatus.,

Peak separation and peak broadening.

Schematic of a spherical solute particie immersed

in Poiseuille flow of aqueous carrier solution
through a long cylindrical capillary.

The dependence of'__RF on latex particle diameter and
packing diameter D.

The effect of the ionic strength of the eluant on Qhe
RF of polystyrene latices.

The data in Fig. 2.3 re-plotted as particle diameter
versus Av.

(a) Colloid concentration profile close to the interface.

(b) Colloid concentration profile far from the interface.

Ionic strength effects for a porous Fractosil system.

A bank model of a SEC column.

Calibration curve for a CPC column.

Separation of polystyrene latices by sedimentation FFF.
Oseillatory character of the extinction coefficient,
The extinetion coefficient,

HDC separation of a bimodal mixture of 88 nm and 176 nm
polystyrene latices. ) :

Sources of error in turbidity measurements.

Graphical illustration of the algorithm [eqn. (4.10)].

A comparison of the distribution calculated from

eqn. (4.12), (a=2.0) with the assumed distribution for a

bimodal mixture of particles.

The initial estimate for the spreading function.

1x

PAGE

w

11

16

17

18
24
24
27
29
32
37

4y

45

51
53
63

69
75



FIGURE

L
4.5
4,6
b7
4.8
4.9
4.10
4. 11

4,12

5.2

5.3

5.4

Compar ison
Comparison
Comparison
Comparison
Comparison
Comparison
Compar ison

Comparison

of

of

of

of

of

of

of

of

 TITLE

assumed
assumed
assumed
assumed
assumed
assumed
assumed

assumed

and
and
and
and
and
and
and

and

calculated

calculated

calculated

calculaﬁed‘

calculated
calculated
calculated

calculated

spreading
spreading
spreaQing
spreading
spreading
spreading
spreading

spreading

functions.
functions.
funct{ons.

functions.

functions.

functions.
functions.

functions.

Fit of extinction coefficient data for polystyrene
particles in water at a wavelength in vacuum of 254 nm.

Variation of particle diameter averages w1th retention

volume.

Dlustration of the numerical error in the application
of Method 2.

Computer flow-sheet for calculating particle diameter

averages using the absolute detector.

The absolute detector - size distribution calculated as
a function of retention volume.

The absolute detector - plot showing agreement of

calculated peak retention volumes with assumed
calibration curve,

The absolute detector -~ turbidity ratio data for
cases 1, 6 & T.

Chromatogram of 312 nm sample (a) before treatment and
(b) after treatment.

Particle diameter~retention volume calibration curves.

*‘b

Calibration curves of detector at wavelengths 254,
280 and 350 nm.

Scanning electron micrograph of 57 nm Polyseibnces
polystyrene latex.

PAGE

77
78
79
80
81
82
83
84

97

99

100

119

123

125°

128

138

139

142

143



FIGURE TITLE PAGE

5.5 . Scanning electron micrograph of 98 nm Polysciences
Polystyrene latex. : , 144
5.6. Scanning electron micrograph of 183 nm Polysciences
o Polystyrene latex. 145
5.7. . Scaﬁning electron micrograph of 275 nm Polysciences
) ) . - Polystyrene latex. . 146
[ /
5.8 Optical density versus weight percent of standar'd ,
latices at 254 nm. 150
5.9 Optical density versus weight percent of stand;rd
latices at 280 nm. 151
5.10 Optical density versus weight percent of standard
latices at 350 nm. i 152
5.11 Comparison of detector response of 85, 98

and 109 nm latices with that of sodium

dichromate. 153
5.12 Comparison of detector response of 176 nm latex

with that of sodium dichromate, 154
5.13 . Comparison of detector response of 183 nm latex

with that of sodium dichromate. ' 155
5.14 Comparison of detector response of 220 nm latex

with that of sodium dichromate. 156
5.15 SEC analysis of 312 nm Dow iatei‘sample: SE Dupont

silica columns (a) response at 254 nm wavelength

(full scale 0.5A)(b) response at 340 nm wavelength

(F\tnscale 0.024). , 160
5.16 SEC alysis of 220 nm Dow latex sample : E-linear

Waters'! silica columns. Response at 254 nm

wavelength (full scale 0.54). 161
5.17 SEC analysis of 98 nm Polysciences latex

sample: E-linear Water's silica columns.

Response at 254 nm wavelength (full ‘

" scale 0.5A). 162

xi



" FIGURE ' A TITLE : : PAGE

5.18 "SEC aﬁalysis of 183 nm Polysciences latex
sample: E-linear Water's silica columns.
Response at .254 nm wavelength (full <
scale 0.54). 163

5.19 Chromatograms of standard latices measured
at 254 nm wavelength (Data set 1). 168
. 5.20 Chromatograms of mixtures 1 and 2 measured )
at 254 nm wavelength (Data set 1). 169
5.21 ‘Chromatograms of standard latices measured
) at 254 hm wavelength (Data set 2). - 175
5.22 Estimation of the spreading function from
experimental chromatogram. . 180
5.23 + Estimation of the spreading function from
experimental chromatogram, 181
X
5.24 Estimation of the spreading function from .
experimental chromatogram. 182

5.25 (  Fit of the ‘estimated instrumental
spreading functionto Provder and Rosen's
_shape function. 183

xii



LIST OF TABLES

TABLE TITLE : PAGE

2.1 HDC Analyses Reported by Various Workers

Using the Capillary Model Compared to

Silebi's Treatment. 22
3.1 Percent Deviation, Au. 46
3.2 Approximate Expressions for the Specific

Turbidity, t/c. 47
3.3 Range of Validity of First Approximation

. in Table 3.2. y7

3.4 Mixture Rules for Index of Refraction. 56
4.1 nth Order Hermite Polynomials and Coefficients, An. 60
4.2 Numerical Recovery of W(y). ) 65
4.3 Numerical Recovery of W(y). - 66
b,y Numerical Recovery of W(y). ) 67
4.5 Numerical Recovery of W(y). 68
4.6 Axial Dispersion Correction Factors. 88
.7 Coefficients, Qn K in Egqn. (4.96). 105
4.8 Axial Dispersion Correction Factors for the

Turbidity Detector in the Mie Scattering Regime. 110
4.9 Evaluation of the Moment Equations [Eqns.(4.116) and

(4.117)] for the Type 2 Detector. 114
4,10 Evaluation of the Moment Equations [Eqns.(4.116) and

(4.117)] for the Type 2 Detector 115
4,11 A Comparison of the Analytical Methods for Solving

the Integral Equation. 116
4,12 * The Absolute Detector - Simulation Results for

Case 1 (Linear. Calibration Curve). 122
4,13 The Absolute Detector - Simulation Results for

Cases 2 & 3 (Linear Calibration Curve). 124

xiii



TABLE

4,14

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

TITLE

The Absolute Detector - Simulation Results
for Cases U & 5 (Non-linear Calibration Curve).

The Absolute Detegtor - Effect of Random Error in
Turbidity Data on calculated Diameter Averages.

Peak Broddening Data of Hamielec and Singh
for Polystyrene Latices.

Comparison of Measured and Calculated
Extinction Coefficients.

Calibration Data and Measured Variances -
(Data Set 1).

Diameter Averages of Latex Particles Measured
at 254 nm (Data Set 1).

Diameter Averages of Latex Particles Measured
at 280 nm (Data Set 1).

Diameter Averages of Latex Particles Measured
at 350 nm (Data Set 1).

Diameter Averages of Mixtures of Latex Particles
Based on Mixture Rule. (Data Set 1). '

Diameter Averages of Mixtures of Latex Particles
Calculated Using Mie Theory. (Data Set 1).

Calibration Data and Measured Variances
(Data Set 2).

Uncorrected Diameter Averages Calculated Using
Rayleigh and Mie Theories (Data Set 2).

Diameter Averages of Latex Particles Measured
at 254 nm (Data Set 2) - Application of Rayleigh
Correction Factors.

Parameters of the Statistical Shape Function
(Data Set 2). -

Fit of the Spreading Function Data by the Edgeworth

Series (Data Set 2).

Estimation of yz.

xiv

PAGE

126

127

131

157

167

170

171

172

173

174

176

176

178

179

184

185



TABLE

5. 15

5.16

5.17

5.18

A.2

A.3

A.4

A.S

e

*TITLE

Estimation of the Value of the Constant In
Eqn. (4.113).

Diameter Averages of Latex Particles Measured
at 254 nm (Data Set 2) - Application of Mie
Correction Factors.

Estimation of ¢ [Eqn.(5.12)1].
Diameter Averages of Latex Particles Measured

at 254 nm (Data Set 2) - Application of Mie
Correction Factors.

- Scattering Coefficient of Polystyrene Spheres

in Aqueous Media

Scattering Coefficient of a Sphere Suspended
in a Liquid Media

Electron Microscopy Data of Dow Polystyrene Latices

Chromatographic Data of Polystyrene Latices -~
Data Set #1

Chromatographic Data of Polystyrene Latices -
Data Set #2 )

Xv

PAGE

185

186

187

189

197

198

200
1201

204



NOMENCLATURE

a Radius of particle

A Area, Optical density /
e Concentration

C Concentration, Cross-section

d Diffusion coefficient

D Diameter of particle

D ' Diameter of packing particle 3

f Diameter frequency distribution

F Force, pfasured chromatogram

F Laplace transform of F, the measured chromatogram
G Instrumental Spreading function

G Laplace transform of G

I Intensity of lﬁght beam

K Extinction coefficient

Kabs Absorption coefficient

Ksca Scattering coefficient

[} Optical path length

L Length of capillary

Mk kth moment of the diameter frequency distribution
n Number of capillaries -

N Number concentration of particles

P Pressure

Q Flow-rate

xvi



Radial distance

Radius of caﬁillary
Separation factor

Mean residence time
Temperature

velocity, retention volume
average velocity °
Volume

width of channel

True chromatogram
Laplace transform of W
Mean retention volume

Axial distance - Jan S

Greek Letters

Subscrigts

o

f

Absorbance

Viscosity, ‘refractive index
Boltzmann's constant
Wavelength of light

Density

Turbidity

Interaction energy, volume fraction .

Correct
Fluid

xvii



ic

pe

3s

uce

\ | .

Capillaries représenting the interstitial volume

Medium
Numbef‘auef;;;\\\
Particle

Capillartéé representing the pore volume
System, surface average

Specific surface average -
Turbidity average

Uncorrect

| Volume average

Weight average

’ q“rn

R
.



CHAPTER 1

INTRODUCTION TO THE CHROMATOGRAPHY OF PARTICLE SUSPENSIONS

1.1 GENERAL BACKGROUND

The importance of an accurate measurement of particle size and
particle size distribution needs hardly be mentioned. The.contr-ol of
particle size by means of reproducible, accurate and fairly simple
analysis is of primary importance in far reaching technological areas.
Techniques such as electron microscoﬁy, light scattering, centrifugation
and small angle x-ray scattering have been used to determine particle
size distributions of colloidal dispersions but are time consuming and
unsuitable as online quality control methods. Different methods for
particle size measurement have been discussed in several sources
[Groves (1974),(1978),(1980); Groves et al (1968),(1972); Allen (1975)]
and will not be discussed here. The main concern here is to examine
various methods based on chromatographic principles, that have evolved
in recent years, for the size measurement of particle suspensions in the
submicron range.

Chrgmatography has until recently been concerned exclusively with
the separation of matter at the molecular level. One result of this
restrictisn to the molecular domain is that, from a practical point of
view, chromatographic methods inv.ariably deal with species in solution.
Recently , however, chromatographic separations have been reported where
the materials resolved are in suspension rather than in solutien. Four
major areas of particle chromatography have evolved; non-porous packed

-1=-
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systems - hydrodynamic chromatography (HDC), porous packed systems -
size exclufion_chromatogrphy (SEC), open capillary tubular systems -
capillary Q\hromatography (CPC),. and field-flow fractionation (FFF). The
first reported investigations on HDC, SEC and CPC appeared in the works
of Snall\(ig‘?ls). krebs and Wunderlich (1971), and Noel et al (1978)
respectively. Fg;{jhas been pioneered by Giddings who has published
extensively on the subject. Unlike in HDC and SEC, separation in CPC
and FFF occur in one phase instead of two. All these chromatographic
systems basically involve an assembly consisting of a mobile phase
reservoir, pump, pressure gauge, sample injection valve, column(s),
detector, flow-rate gauge and recorder (Fig. 1.1).

In HDC, particle separation arises predominantly from an
interaction between the finite  particle size and the mobile phase
interstitial velocity profile. This results in a size gradation such
that the larger particles elute ahead of the smaller particles followed
by the eluant. The eluant is generally ionic. At low ionic strength,
separation occurs solely according to size as described, while, at high
ionic strength, a reversal of flow separation may occur, with the
smaller particles eluting first and in addition, separation becomes
possible not only based on differences in size but also in composition,
The high ionic strength limit of HDC has been termed potential barrier
chromatography [Ruckenstein (1976)1].

The object of using porous_ packing, SEC, has been to improve

resolution over the non-porous HDC system by super-imposing a sterie

exclusion effect on the flow separation. Particles smaller than the
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Fig. 1.1 Schematic diagram of chromatographic apparatus.
A. Reservoir B. Pump C. Pressure gauge D. Sample
injection valve E. Detector F. Recorder G. Flow-
rate gauge. Column ] serves as a prefilter and to
dampen pressure pulses. Columms 2, 3, & 4 are the
separation columms.
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pore diameter can diffuse into the pores giving a second and more
efficient mechanism of retardation and size separation.

Particle separation by CPC is a promising method for
fractionation of particles, particularly for sizes‘ greater than 1 u.
Separation 1is achieved in narrow cylindrical «capillaries of
approximately 0.4 mm diameter, which is considerably larger than the
equivalent capillary diameter of the packed beds in HDC or SEC. As_with
the packed beds, larger particles travel through the capillary at a
faster rate; in contrast to HDC or S3SEC where the separation involves
Brownian motion of submicron particles, CPC shows increased resolution
for particles greater than 1 u due to non-Brownian effects,

As the name suggests, FFF uses the coupling of a body force field
with a flow profile to achieve differential migration. The carrier
velocity should be slow enough such that laminar flow is ensured and the
channel width 1is required to be small in order to give pronounced
velocity differences with small differences in distance from the wall.
The force field which can be electrical, magnetic, gravitational,
thermal etc. in nature, causes the sHplute molecules to accumulate in a
layer of unique thickness near one channel wall. The solute is then
transported by flow along the channel at a rate fixed by the mean
thickness of the 1layer. Smail particles migrate in advance of large
particles and emerge from the channel first, in contrast to the elution
behaviour in the other systems. As the field strength is increased, the
particles are pushed with increasing firmness against the wall., Steric

e 2

FFF is realized when the mean Brownian displacement from the wall



becomes 1less than the particle radius and larger particles begin to
elute first due to a purely hydrodynamic effect. Two sub-techniques,
sedimentation and flow FFF have shown the greatest promise for particle

separation and characterization.

1.2 PEAK SEPARATION AND PEAK BROADENING

The passage of an injected ‘sample through the columns and
detector generates an output trace on the recorder called a
chromatogram. For several reasons, to be outlined, a chromatogram can
never fully represent the distribution of colloid sizes in the injected
sample. Instrumental spreading or axial dispersion causes elution of a
single species to occur over a range of retention volumes. The
chromatogram of the sample is-tbe superpositi;n of thése distributions.
When the number of species. are few, one might obtain a chromatogram
involving many obvious but overlapping peaks. However, with a large
number of species, the peaks of individual species are not evident; one

-

usually obtains a unimodal chromatogram and sometimesra more complex
one, Interpretation oé a chromatogram must, therefore, account for this
superposition and involves an evaluation of instrumental spreading and
correction of the detector response to obtain the true concentrations of
the component species.

When the sample injected is monodispersed, peak broadening occurs
solely due to axial dispersion; for a polydispersed sample, add;tional

broadening results from the desirable process of size separation. The

chromatograms of monodispersed samples may be used to construet a



calibration curve relating the particle size with its peak retention
volume. As shown in Fig. 1.2, such a calibration curve will result in
superficially larger and smaller particle sizes corresponding to the
leading and traiiing edges of the chromatogram, respectively. Hence,
the need to correct the detector response.

Axial dispersion can conveniently be separatad into two
independent and additive contributions, namely, extra-column dispersion
and column dispersion 'which is dominant. Extra~column dispersion is
confined to dispersion stemming from a finite pulse input and occurring
in the injection value, ftubing and detector cell. For a column 'packed
with porous packing material, column dispersion results from
intherstitial dispersion, i.e., dispersion in the mobile phase and pore‘
. dispersion, i.e., dispersion arising from permeation of the colloids
into the pores. Obviously, for an }iDC column, pore dispersion does not
exist, For a CPC or FFF system, it is probably immaterial to
distinguish between- column and extra-colunin dispersion. It is
reasonable to expect that axial dispersion will be most pronounced in a
SEC column, lesser in a HDC column ‘gnd least in a CPC or FFF s_ystem‘.
The main sources of interstitial dispersion‘ in SEC of polymer molecules
are longitudinal diffusion, eddy diffusion and flow velocity variations
caused by non-uniform packing ([Friis and Hamielec (1975)]. It m;y be
ex.pected that these factors also operate when colloids are
chromatographed .

In Chapter 2, theories are develgped to predict the rate of

particle transport through a column, i.e., the calibration curve, So
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&
far no theory ‘has been reported to predict the effect q; axial
s (f»

dispersion on the shape of the chromatogram of a monodispers ‘ sample.

This information is necessary to correct the detector response. An
empirical approach to handle this problem will be developed in Chapter

¥

4,

1.3 SCOPE OF PRESENT WORK

Axial dispersion is a serious imperfection in the analysis of
particle sizes by chromatography. Without regard go axial dispersion,
measured particle sizes may be considerably underestimated. The main
emphasis of this work is to evaluate currentli\gzéilable methods and to
develop new methods of sufficient generality which allow the detector
response to be suipably corrected so that meaningful size information isf
obtained. Experimental work involved the use of a 8ize exclusion

chromatograph equipped with a turbidity detector.

@



CHAPTER 2

AN ANALYSIS OF FLOW SEPARATION IN THE CHROMATOGRAPHY
OF PARTICLE SUSPENSIONS

2.1 INTRODUCTION

Aside from the obvious importance in providing an insight into
the causes of resolution loss in chromatographic processes, the dynamics
of chromatographic separation are interesting and intriguing because of
the complex nature of the process. The natdre of column chromatography
brings together the mechanics of fluid flow, the thermodynamics of
solutions and transport through porous media, as in the case of size
exclusion chromatography. The partition characteristics, as well as the
transport properties of the different components of the colloid between
the stationary and mobile phases, result in different retention volumes
for each component in the column. The consequence of this phenomenon is
the separation of the components as individual peaks or as the envelop
chromatogram of the incompletely resolved peaks of the components of the
sample. Aside from its ability to separate a heterogeneous system into
its individual components, the column has qther characteristies which
tend to negate this“primary pur pose. As a consequence of_ axial
dispersion, Aseparated ‘peaks are axially dispersed resultiﬁg in peak
broadening. -

In the subsequent discussion in this Chapter, attention will be
focussed on various competing mechanisms for colloidal separation by

chromatographiec techniques. Theories are outlined which allow a

-9-
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prediction of the rate of particle transport, i.e., peak separation.
The complexity of peak broadening has to-date precluded a theoretical

analysis.

2.2 MECHANISM OF SEPARATION

In this section, the mechanics of fluid flow through narrow
cylindrical conduits are considered. The discussion is aimed to

elucidate the mechanisms by which a colloidal suspension undergoes size

separation as it flows through the c¢olumn. In any one type of
chromatography, particle transport may be governed by one or a
combination of these mechanisms. Thus for HDC and SEC, the
h&drodynamié. the ionic and van der Waals .effects are of considerable
importance, while in FFF, the hydrodynamic effect and the effect of the
applied force field, control the migration of colloid particles. The
tubular pinch effect is invoked to explain the colloidai Behaviour in

CPC. Let us now briefly consider each of these mechanisms.

2.2.1 The Hydrodynamic Effect [Small (1974); Small et al (1976)]
"

Consider a capillary tube gf radius R, as in Fig. 2.1, through
whie¢h a carrier solvent undergoes Poiseuille flow. A colloidal
particle, injected into such a channel, will by Brownian motion make
radial excursions normal to the direction of flow, sampling and adopting
velocities across the capillary and will thereby, display a mean
velocity similar to the fluid but with the important limitation that,

the size of the particle prevents it from adopting the slower velocities
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close to the interface. Furthermore, the larger the particle, the more
it is rejected from these sluggish regions and hence, the greater its
mean velocity. Consequently, the particle will move through the
capillary with a mean velocity which exceeds the mean velocity of the
fluid by a facior that increases with increasing ratio of particle to

capillary radius.

2.2.2 The Ionic Strength Effect [Small (1974); Small et al (1976)]

Consider the electrostatic interaction between the colloid and
the capillary wall both of which have associated electrical ‘double
layers. In the case of the latex particles, the double layer is
attributable to fixed anionic surface charges, as well as adsorbed
surfactant anions. If a glass capillary is considered, then it is known
to have a negative surface charge. The resulting electrostatiec
repulsion between the colloid and the capillary determines how closely
the former can approach the latter and in accordance with accepted
theories of double layer interaction, this distance at closest approach
should increase with decreasing ionic strength. Thus, at low ionic
strength, the colloid particle will be repelled from the wall and will
experience the faster moving core fluid with a resulting increase in its

velocity.

2.2.3 Van der Waals Effect [Small (1974); Small et al (1976)]

As the ionic concentration of the fluid is increased, double

layer repulsion diminishes and the colloid can approach the wall more
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closely. Van der Waals interaction between the particle and wall
becomes more important as the distance of closest approach decreases arid
has a retarding effect on the velocity of the particle. This effect
would be in opposition to the hydrodynamic and electrostatic effects.
Since van de; Waals interaction increases with increasing partiole size,
one would also expect the retardation to be greater for a larger

particle size.

2.2.4 The Tubular Pinch Effect

It has generally been observed that, when rigid spheres are
transported in a Poiseuille flow through a straight cylindriecal tube,
they undergo radial displacement and move along trajectories which
asymptotically approach straight lines, parallel to the tube axis, at a
fixed distance between the latter and the wall. Segre and Silberberg
(1962) proposed the term 'tubular pinch' to-describe this\focussing of
particles into an annular ring. They showed that a neutrally bouyant
sphere 1is subjeet to radial forces that carry it to an equilibrium
position at approximatdly a distance of six-tenths the tube radius from
the axis. The origin of the force causing this radial displacement or
focussing 1is in the inertia of the moving 1ligquid. The radial
equilibrium position is a function of the liquid velocity and the ratio
of particle to tube radius. Walz and Gr;n (1973) showed that when the

liquid velocity is increased in a tube, particles assume equilibrium

positions nearer to the tube wall.
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2.2.5 The Effect of An Applied Force Field [Giddings (1978)]

Con§ider a thin rectangular channel. As a dilute particle
suspension moves down the channel, an external gradient or forQe field
applied perpendicﬁiarly to the channel axis interacts with the
particles, forcing tﬁém into a characteristic equilibrium distribution
layer against one wall. This layer is of different thickness for each
distinct particulate species, depending ﬁ;Tathe physical basis of the
coupling between the field and the species and on the diffusion
coefficient of that species.

ﬁiow along the channel axis displaces the particles downstream.
Because the flow is parabolic, its velocity is greatest near the center
of the channel. Thus, particles with a thick layer extending into the
center will be swept out of the channel first, while, species forced
into a narrow layer in the relatively quiescent flow regions near the
channel wall will be significantly retained. This is the basis for
selective retention and produces, in generai, a retention spectrum in

which small particles are eluted first and large particles last.

2.3 THEORY OF PEAK SEPARATION IN HYDRODYNAMIC CHROMATOGRAPHY

The flow of colloidal particles through packed beds is affected
by such factors as the size of the colloid and packing and the flow-rate
and composition of the eluant. The rate of migration of the colloid
peak may be con%eniently expressed by a dimensionless quantity, the RF
number. R_ is simply the ratio of the rate of migration of the colloid

F
peak to the rate of eluant flow (or a marker species) in the void volume
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of the célumn. A summary of observations to-date on how RF depends on
column operating conditions is now given.

Fig. 2.2 shows Small's (1974) data on the rate of transport of
polystyrene latices through ion exchange beds of different diameter D.
The fact that RF clearly increases with increasing diameter of the latex
particles, D, provides the basis for a chromatographic size separation.
As the pa;ticle size of the packing is decreased, the potential for size
separation improves, as indicated by the increasing slope of the RF
versus D plots. Most significantly, RF is always greater than unity or
the latex particles.move more rapidly through the bed than the eluant.

The dependence of RFvon ionic strength of the eluant is shown in
Fig. 2.3. The ionic strength in the eluant was varied by the addition
of increasing amounts of electrolyte and in all cases RF was found to
increase with decreasing ionic strength. In curves A and B, the
dependence of RF on D is reduced and indeed in the highest ioniec
strength is actually reversed for the higher particle size latices. In
curve A, data for the two ;argest latices are not shown simply because
neither of these appeared in the effluent but were deposited in the
column.

The data in Fig. 2.3, when re-plotted [MchHugh et al (1976)] as
log D versus Av, the difference in retention volumes of the eluant and
latex, are shown in® Fig. 2.4. With the exception of cwrves A & B, a
series of parallel lines result, indicating that the resolution 1is

independent of ionic strength over this range. When the ionic strength

was varied by addition of ionie surfactant, similar results were
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The effect of the ionic strength of the eluant on the RE of
polystyrene latices. Eluant concentration moles per liter
of NaCl. A, 1.76 x 10-1; B, 9 x 10~2; ¢, 2.96 x 10~2;

D, 4.6 x 10-3; E, 1.7 x 103; F, 4.25 x 10=4.
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obtained.

Two approaches have been taken to model the role of the colloidal
forces in hydrodynamic chromatography. The c¢apillary model first
proposed by Small (1974) and developed in several sources since [McHugh
et al (1’976): Stoisits et al (1976)‘; Silebi and MeHugh (1978); Prieve
and Hoysan (1978)], considers the interstitial space as a system of
interconnecting parailel capillaries of equal size. In the second
approacfl. proposed by Buffham (1978), lthe speed of the chromatographic
transients are calculated from the behaviour of a colloidal suspension
in equilibrium in the vicinity of a plane interface. Expressed in this
form, the theory is independent of the geometry of the particulate
material that constitutes the HDC column. Both approaches are now.
outlined; the analysis in terms of a capillary model given by Silebi and
McHugh is develo'ped and is reinforced with t.he ideas- of Prieve and

Hoysan who presented a very similar treatment.

The Capillary Model

A solute particle does not spend the same fraction of its total
residence time at each radial position. If interactions between

particles are negligible, the residence time distribution for the

solute during a transient will be the same as in the case where the
solute 1is continuously injected. From an analysis of the particle

continuity equation in the presence of a radial force field, for the

case of continuous injection, it can be shown that the radial

concentration distribution is a Boltazmann.



=20~

C(r) « exp [~ ¢(r)/xT] (2.1)

where ¢(r), the particle-wall total interaction energy is given by the
superposition of the repulsive potentials arising from the double layer
and Born repulsive forces and van der Waals attractive potential.

a1

b = ¢ + & + ¢ (2.2)

The average particle velocity can be calculated by weighting the
local particle velocity vpz(r) at a given radial position by the

concentration at that position to give

R-a

! sz(r) expl-4(FY/xT] r dr
- _ 0
b TR-a (2.3)
I expl- ¢(r)/xT] r dr
0 X
¥

where the upper integration limit is due to the considération that the
particle cannot approach the capillary wall closer than its radius.
vpz(r), in general, 1is different from the undisturbed fluid
velocity, vfz(r), at the particle centre. This is due to the couple
arising from Ehe force imbalance on the particle, which experiences a
higher velocity on its side closest to the centre of the capillary

compared to its side closest to the wall. This wall effect results in a

modified form of the Poiseuille equation

v_(r) = 2801 - (r/RP - warm?) (2.14)
pz f

rz
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where vy is the wall effect parameter.

/S

For an ionic {/marker, ¢ and byy are negligible and its average

velocity is obtained by taking the limits of 4(r) and vpz(r) as a tends

to zero.
R _ 5 .
J 2vf [1 - (r/R)"] expl - ¢ (r)/xT] r dr
_ 0 a+0
= (2.5)
vm R
s expl - d)(vr')/ac,'l"]a"0 r dr
0 A

RF is then calculated from its definition

R. = Vv /v (2.6)

In Table 2.1, a. comparison is made l;etween the various analyses
r'eportmed using the cépillary model and the above analysis. = Eqns.
(2.1)=-(2.6) adequately prediet the data shown in Figs. 2.2 and 2.3.
Before attempting to discuss these data and other model predictions in
view of the various effects considered, the analysis presented by

Buffham (1978) will be presented.

The Equilibrium Theory of Buffham T .

Buffham assumes that the HDC column is in equilibrium internally
and with the feed stream in whichl the colloid is present at a low
" concentration, C. The’spe;ed \of the chromatographic transient is related
to‘.the equilibrium behaviour but it is not éssumed that the column is in
equilibrium during a transient.

Since the mobile phase is non-unifo;'m in the steady state because
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of hydrodynamic effects and colloidal forces, the average residence time

of the particle is given by v

tp = IV ¢ dv / QC 2.7
where the integral of the local concentration, ¢ is taken over the
S\,

Table 2.1 Analyses Reported By Various Workers Using the Capillary
Model Compared to Silebi's Treatment

Reference Comments
Stoisits et al Interaction energy term not considered, i.e.,
(1976) ¢(r)=0 Wall effect neglected, i.e., v=0. The ionic
strength effect on RF cannot be predicted
McHugh et al The thickness of the excluded region was considered
(1976) to exceed the particle radius due to double layer

repulsion. The ionic marker was also considered to
be excluded from a region very close to the wall.
The radial concentration profile was assumed
uniform 8o that the exponential terms in eqns.
(2.3) and (2.5) were set equal to unity.

Prieve and Hoysan As in McHugh's work, the effect of double layer
(1978) repulsion on the thickness of the excluded region
was accounted for, The marker was not considered

ionie, however.

k

volume, V of the mobile phase, For a perfect markeﬁ\\zhe interstitial

and feed concentrations are identical and therefore

\
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It follows, therefore, that

Rg = tm/tp = V/0Ufy e/C dvl] (2.9)
The colloid particles are distributed in the mobile phase at steady
state in accordance with the colloidal forces between the particles and
the packing.. Owing to the large R/a ratio, the packed bed is modelled
as a system of colloid particles immersed in a semi-infinite fluid and
bounded by a plane interface., Accordingly,

Re = V/[ A ‘fg (e/C) dh) (2.10)

where h is the distance from the interface and A, the surface area of
the packing. Equilibrium considerations in the presence of a force

field leads to a Boltzmann concentration distribution as before:

e/C = expl - ¢(h)/xT] (2.11)

»

-

Eqn. (2.11) predicts an infinite concentration at the interface (due to
van der 'Waalé forces), which rapidly falls to less than 10"'60 as h
increases from zero. As h 1is increased furtheri\NPhe concentration
increases, c¢/C eventually éxceedg unity, attains a maximum and then
decays to unity. Figs. 2.5(a) & (b5 illustrate the deep concentration
minimum ¢lose to the interface ana the p;ofile deeper into the liquid.
Eqns. (2.10) and (2.11) can be used to calculate R_. as a function

F
of particle diameter for varying concentrations of electrolyte and
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packing diameter. Model predictions compare favourably with Small's
data.

In the 1light of the capillary model for HDC, the various
experimental phenomena are now discussed: colloidal forces can either
enhance or hinder the average particle velocity depending on the ionic
strength. Deéreasing the ionic strength‘increases the exclusion volume;
the average velocity increases with particle radius in accordance with
the exclusion principle. n the other hand, at high ienjc strength, the
average velocity may decrease with particle radius in opposition to the
exclusion principle and may become less than the average fluid velocity.
This behaviowur at high ionic strength coincides with the appearance of a
deep secondary minimum in 4(r). As a result, particles tend to spend a
greater fraction of their time in this low energy, low velocity position
than at opher positions. Larger particles spend a greater fraction of
their time in this well than smaller particles, so that, the average
velocity of larger particles may be slower. The interesting dependence
of RF on packing diameter is purely a hydrodynamic effect.

The equilibrium theory explains the ionic effect by virtue of the
dependence of the concentration profile on the double layer repulsive
potential. The hydraulie radius, R(=V/A), accounts for the effect of
the packing diameter. Since, the integral in egn. (2.10) is independent
of R, the equation predicts an inerease in RF with increasing R or
packing diameter. This clearly is in opposition to the observed effect
and marks the éistinct failing of the equilibrium approach.

At low ionic strength, both theories predict the independence of
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RF from material parameters associated with the colloid and the packing
myaterial. thus, indicating the feasibility of universal calibration. At
higher ionic strength, one finds, owing to the reduced double layer
repulsion, a predominance of van der Waals attraction and thus, an
increasing sensitivity of the RF versus D\‘relationship to material
parameters. Thus at low ionic strength, HDC can be used as a particle
sizing technique, while, at higher ion:‘:c concentrations, it will

separate colloids of the same parti'cle size but different chemical

properties,

2.4 THEORY OF PEAK SEPARATION IN SIZE EXCLUSION CHROMATOGRAPHY

In addition to the factors governing the separation of colloids
in HDC, the use of porous packing introduces the possibility of size
separation due to steric exclusion from the pores. Due to the complex
flow patterns in porous packed beds, the attendaht difficulty in
predicting the migration of a c¢olloid peak 1is o})vious. Nagy (1979)
attempted to simplify this problem by using very I;ge pores relative to
the size of the colloids being separated. Their analysis, therefore,
assumes that all particles enter the pores and accordingly, describes
one extreme of SEC where permeation by all species occurs.

Fig. 2.6 shows Nagy's data (1979) obtained. using a porous column
with a mean pore size of 2.5 u (the latter is considerably gf‘eater than
the maxinﬁ:m particle siZe analysed). No electrolyte was used and the

ionic strength was varied by using surfactant alone, at concentrations

below and above the critical micelle concentration. The qualitative
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features of these data are similar to those observed in HDC, though, the
RF values are larger due to partial penetration of the pores by the
particles.

Nagy (1979) modelled his data using a flow-through bank model as
.shown in Fig. 2.7. The large tubes in a given bank represent the
totality of interstitial regions at the same level in the column, while,
the small tubes represent the totality of the pores within the packing
at the same level. The space between banks of zero volume serves as a
mixing region for altering particle trajectories. The probability of a
particle entering a tube at any bank is assumed equal to the ratio of
flow through all such tubes to the total flow rate through all tubes.

The principle result of their analysis predicts that

+ (vic/V)/RF.' (2.12)

1¢

VRF = (vpc/V)/RF,pc

where RF,ic and 'RF.pc' the separation f‘actors= corresponding to the
interstit:ial capAillary and pore respectively, are calculated as before.
vpc’ vic and V represent, respectively, the pore, interstitial and total
void volume.

It is now .shown that the result in éqn. (2.12) ca;x be obtained

using a simpler model which regards the tubes as being continuous. The

peak retention volume of the colloid peak, Vp is given' by

Vp = nchp‘c tpc + nieQic t’ic (2.13)

where n, Q and T are the tube number, flow rate, and the average

P
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[ capillary
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Fig. 2.7 A bank model of a SEC column.
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®

residence time, respectively. It follows, therefore,

1/RF = (n Q ¥ + n, Q T /v (2.14)
pe pc pc iec 'iec ic m

where Vm is the retention volume of the marker peak and is equal to V.
If the 1length of the column is L and cross-sectional area of a

capillary, A, then

1/RF = L/Vm [nchpc/(vp)pc + nichc/(vp)ic]

= LV L (¥ /%), 1

+ n, A,
) ieTie' 'm’ "piic

n_ A (Vv./¥V
pecpe m p’pe

= (npcAch/vm)/RF,pc + (nicAicL/vm)/RF,ic

= (vpc/V)(RF,pc + (vic/v>/RF,ic (2.15)

This result is the same as that derived by Nagy, eqn. (2.12) using the
more complic;ted bank model. The apparent equivalence of the two models
is intriguing; however, this is a direct consequence of assigning the
probability of a particle traveling through a tube as equal to the ratio
of flow through all such tubes to the total flow rate through all tubes.
It is not surprising that predictions based on eqn. (2.12) agree gather
poorly with the experimental data in Fig. 2.6, since, a pgrallel array
of large and small tubes which allows no fluid intermixing is hardly
representative of the flow process in a packed column.

Nagy cites several reasons, chief among which is the slow
diffusion coefficients of colloids, to justify the use of a flow model

as opposed to a diffusion model. As pointed out by Small (1977), if a



-31-

bank model is con'sidered, on physical érounds. separation by flow would
seem unlikely, since, very little fluid would flow through the extremely
fine pores of the packing when the much less restricted pathway around
the particles is available to it. It is beyond the scope of this work
to consider alternate models, It is, however, suggested that, since the
equilibrium theory proposed by Buffham (1978) for HDC is éssentially
independent of the complex flow geometry, it may be possible to extend
the treatment to predict SEC behaviour. Further work in this direction
would undoubtedly be facilitated by a critical review by Casassa (1971)
who has examined the various models proposed to explain peak migration

in SEC.

2.5 THE TRANSPORT OF PARTICLES IN CAPILLARY CHROMATOGRAPHY

Recently, Noel et al 61978) reported a liquid chromatographic
separation in a capillary tubing of particles ranging from O;5 to 30 u.
Retention volumes were inversely related to particle diameter for
‘materials of diverse composition, 'as shown in Fig. 2.8. The resolution
of particles was dependent on column diameter and length and both .the
velocity and viscosity of the mopile phase (methanol or dilute ethylene
glycol_}n water). A reduction in column diameter or length increased
resolution; the effect of increased length is attributed to increased
particle-wall interaction. A minimum flowrate was observed below which
particles did not focus and resolution decayed rapidly. Also the peak
width for particles exceeding 1u decreased with an increase in velocity

' eont{;ry to the behaviour for submicron particleé. An increased mobile
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Fig. 2.8 Calibration curve for a CPC column: length 500 fr. x
0.02 in. I.D.;mobile phase, 1% ethylene glycol in
water; flow-rate, 125 ml/h.
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phase viscosity caused a marked deterioration in resolution of particles
less than 1MW, whilef it had practically no éffect on large. diameter
particles,

The particles and tube radii used in the capillary flow
experiments are much smaller than those used in the studies undertaken
b@ Segr: andl Silberberg (1962). As a consequence, it cannot be assumed
that all of the data derived from their macrosystems apply to the
separation of microparticulates in capillariés. However, any particle
that is radially segregated in a capillary should have a retention
behaviour that is predict'ed by laminar flow equétions. Accordin%ly. if
the wall 'effect is neglected, the velocity of a radially segregated

particle will be the same as the liquid at that position, i.e.,

Vo) APRPL1 = (r/R)31/UnL ' (2.15)

Combining eqn. (2.15) with a linear particle diameter-retention time

l calibration curve, <

¢anD = D.t + D =

1 5 D (2.16)

D.L +°
1-‘-,-52) 2

are calibration constants, one obtains

where- D1 and D2

f/R = {1 - D, aL2/[aP R2(4nD -~ D)1} (2.17)

Eqn. (2.17) predicts that, small particles are located at a radial

position between sixth-tenths and’ seven-tenths of the tu'be. radius and

’
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th:;t, l/arge particles focus in an annulus near the tube axis, in
agreement with the observations of Segre and Silberberg (1962) and
Oliver (1962). Although, ther; is insufficient evidence to conclude
that particle resolution in capillary chromatography is the result of
the 'tubular pinch effect', the data of MNoel et al (1578). at least,
imply it. Brownian motion plays an increasingly important role for

particles less than 1 u and they are probably separated by a

hydrodypamic mechanism.

”

1

246 AN ANALYSIS OF SEPARATION IN FIELD FLOW FRACTIONATION

-

In the following analysis, an expression for R. is derived which

F
is generally valid for all FFF systems. The theoretical prediction of

RF has been found to be in reasonable agreement with experiments for the

various FFF systems. It is beyond the scope of this thesis to consider

L}

FFF in detail.

In the absence Qf flow, a force acting on a particle will induce

[l

an average drift velocity v, along axis x. At steady state, the flux of

particf[es normal to the field is zero and hence

de/dx = -ve/d (2.18)

[

where d is the diffusion coefficient of the partiecle. The solution—of

eqn. (2.18) leads to an exponential concentration distribqﬁion in the.

equilibrium layer

N

3



c/co = exp( - x/¢)
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(2.19).

where ¢, 'is the concentration';t the wall, x is the distance above the

0

wall and ¢ = d/v is a characteristic parameter called the mean 1layer

thickness. The laminar liquid velocity across the channel width, w is

giveﬁ by
Velx) = 69, [ x/w - (/W]
f - f
The averagé particle velocity is calbqlated as

- W W
vp = JO c(x) vf(x) dx / !O c(x)dx

LN “
It follows, therefore, that

r

pr

RF = V/V. = 6iafeoth (1/22) = 2] -

where,

Aoz 4w . s

Upder conditions of high retention, eqn. (2.22) reduces to

61

.~ Rp

'/

"

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

The parameter A is related to the underlying physical chemistry of the
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system through the relationship
. ‘ [ 3

A\ = d/%w = «T/Fw (2.25)

—

~

‘h‘rhere F is the effective force exerted on a single particle by the
field. F and hence, ) take different for dependfng upon the applied
field. Since, particies cannot app;'oach the wall of the channt;l' closer
than one particle radius, an approximate correction term is introduced

in eqn. (2.2{1) which t’hen becomes

i

R = 60 + 6 - (2.26)

where a is the ratio of particle radius to channel width w.

A controls selectivity and separation in normal FFF where RF is
less than 1.0. However, in the high field limit of normal FFF (steric
FFF), the mean Brownian displacement from the wall becomes less than the
particle radius. In this domain, particles extend out into the flow
stream primarily because of their own finite size. @« becomes
controlling and RF exceeds unity. The situation becomes akin to that in
HDC with one important qualification: in steric FFF, unlike in HDC, the
"particles are held close to i:he wall pesulting in higher selectivity.

Fig. 2.9 demonstrates thé ability of sedimentation FFF
(cen;rifﬁgal force applied) to séparate monodispersed s:;mples of
polystyrene latices over' a ten fold size range. The separation is

indeed bhencmenal .
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Fig. 2.9 Separation of polystyrene latices by
sedimentation FFF.
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CHAPTER 3

DETECTION OF COLLOIDAL PARTICLES

3.1 INTRODUCTION

A Y
~

-

One of the most widely used detectors in the chromatography of
colloidal particles has been the turbidity detector operating in the uv
range. Depending upon the choice of wavelength, the resulting signal is
due either to a combination of scattering and chemical absorption
effects or principally due to scaftering effects. The detector signal
is dependent on the particle size, concentration and extinection
Foefficient. leading in the worst situgtion to a sixth order dependence '
on particle diameter for very small particles. This is to be contrasted
to the case of differential refractometry where the detector:generates a
signal proportional to particle concentra;ion or the third power of the
diameter. In this chapter, the theoretical considerations governing the
gengrétion of the signai in both the turbidity and the refractive-~index
detectors are explored. Their optimum mode of operation is indicated as
are their relative merits and demerits,

3.2 EXTINCTION OF LIGHT BY COLLOIDAL PARTICLES

3.2.1 . Absorbance and Turbidity of a Dispe;éed System of Spheres

In the most general case, particles may absorb as well as scatter

light. In the Beer-Lambert equation, the intensity of the transmitted

-38-~
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light, It’ relative to the intensity of the incident light I0 is given

by

~ W (I 714) = exp(- ¢ %) (3.1

0“abs

3

where ¢ is the absorbance of the material and ¢, the path length. Eqn.
(3.1) deseribes the attenuation of a light beam due to absorption alone,

For nonabsorbing systems, the turbidity 1, is a concept analogous to the

absorbance, i.e.,

(It/IO)sca = exp(-t &) (3.2)

For a system which displays absorption and scattering simultaneously,'

the following combosite relationship applies

(It/Io) = expl{-(e+1)L] (3.3)
The experimental extinction in a system which exhibits these two effects
equals the sum of ¢ and . For a system of N dispersed particles per .

unit volume, ¢ and t are given by

"
]

2
N.’ D Kabslu (3.4)

2
NxD Ksca/u (3.5)

-
[{]
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where Kabs and Kséa are respectively, the coefficients for absorption
and scattering. The geometrical cross-section of the dispersed spheres,
uD2/u times the coefficient, defines a quantity known as the cross-

section, C

) CabS = x D Kabs/u (3.6)

The cross-~sections represent the blocking power of a particle as far as
_rransmission of incident light is concerned. Expressing eqns. (3.4) and
(3.5) in terms of the volume fraction, ¢ of the spheres one obtains

- 2 '
— e/6 = m DK, /AV (3.8)

</¢ = = D Ksca/uv " (3.9)
where 'V is the volume of one sphere. If the particle concentration is
expressed in terms of ¢, the total weight of the spheres in 100 g of

system, then the above equations take -the form .

(e/¢) 0.01 (oslop) (e/¢) ° (3.10)

(t/¢) 0.01 (os/pp) (r/ﬁ) ’ . (3.11)
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whgre pp and pg are respectively, the densities of particle and system.

The experimentally measured quantity is &n (IO/It)‘ It follows from the

above equations that,

zn(Io/It) = 0.01(ps/pp) (3/2D) (Kabs+ Ksca) [N (3.12)
Therefore, the slope of the experimentally determined Ln(IO/It) versus ¢
data yields information on the total extinction cdefficient. K (:Kabs+
Ksca): if particles are nonabsorbing, the:n Ksca alone is measured. The
coefficients are measured at sufficiently low concentfations where
complications déq to multiple scattering are non-existent and the

Ln(IO/It) versus ¢ data are linear through the origin.

3.2.2 Theoretical Estimation of Scattering and Absorption Coefficients

The magnitudes:of the scattering and absorption coefficients are
dependent on the wavelength of light, Eﬁéﬂéiz;,;f the particles and the
refractive index of both.partigle and medium. The light scétte;ing of
colloidal spheres can be treated on the basisvof two theories ~ Rayleigh
(1881) and Mie (1908). The results of such an analysis are generally

reported as.a function of a size parameter a and a refractive index

ratio m, where a and m are defined to be

Q
1]

¥ D/A ‘ (3.13)

m o= n/n - (3.14)
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X is the wavelength of light in the medium. and is related to the

wavelength in vacuum, Ao by
A = ).o/nm (3.18)

The Rayleigh theory yields accurate results for non-absorbing particles
at any practically conceivable m provided ¢ < 0.4. The most general
theory by Mie is free fE;m any restr}etion as to ¢ and m values. Unlike
. Rayleigh theory, it applies to absorbing particles; provision for,
absorption is introduced by defining the refractive index of an
absorbing material as a compléx number n,- in2 where i = /(-1). For

nonabsorbing materials, n. equals zero. Both 4 and n, are wavelength

2
dependent characteristics of the material; Ny obviously increases as the
wavelength of an ébsorption, peak is approached. The idea of
representing the refractive index of an absorbing material by a complex

number has been elegantly dealt with by Hiemenz (1977).

given by

Rayleigh thepry yields a simple expression for Ksca
) 2 2 2
\ Kéea z 8al(m- 1)/(m™+ 2)]°/3 - (3.16)
The coefficients derived from Mie theory ﬁave the form
2, °© 2 2
Ksea = (2/a )‘nfl (2n+1)(lan| + |bn] ) . (3.17)

K = Kot Kopg® (2/a°) 1 (2041) Ry (a4 b)) (3.18)

n=1
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where

v _(a) ¥ (em) - m¢Y_(am) ¢! (a) :
n n n n . (3.19)

3 = 7, (@) v (am) = @y (am) g (a)
m oy (a) ¥!(am) - wn(am‘) b!(a)
b0 * Ty, (a) v (am) = y_(am) T (a) (3.20)
zy(e) = v (a) + ix (a) (3.21)
wn(u)’= (a as2)V? Ja) . (3.22)
n+1/2
xy(@) = ~x a/2)"/2 Nea) , L 3.2
i n+1/2

J(a) and N(a) are half order\int':egral Bessel and Neuman functions.
n+1/2 n+1/2 )

: The oscillatory character of the scattering coefficient is shown
in Fig. 3.1. The coefficlent approaches the value of é.O at large a
values, indicating that the scattering cross-—se’ction. is then twice as
large as the geometrical cross-section. Fig. 3.2 shows the strong
effect of m on Ksca at small and intermediate a values. The numerical
value of Ksca at the first maxin}qm is larger and the maximum occurs at a
lower a val.lue. the larger. the value of m. These differences become
inc_reasingly smaller, until at a sufficiently large a, m has no longer
any effect on Ksca‘. An important conclusion reached by Heller and
Pangonis.>(1957) is that, the smaller the particle size, the larger the.
maximal specific scattering power (t/c) attainable with a given material

at a given wavelength, provided the relative refractive index is

increased to a correspondingly larger value. ﬁie theory calculaf;ions

FAl
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were done using a subroutine written by Dave (1968).

The range of rigorous vaiidity of Rayleigh theory is very small.
Heller (1965) assessed its more important range of practical validity
using Mie data as a reference. His results are shown in Table 3.1 where

Aa. the percent deviation, 1s defined as

Aa = 100 (aR - c:m)/cxR (3.24)
Table 3.1 Percent deviation A“
a=znD/)
m 0.2 0.4 0.6 0.8 1.0 1.2
1.00 -0.55 ~2.1 ~4.6 -8.0 -11.9 oo
1.05 -0.40 -1.8 4.1 -7.2 -10.9 . e
1.10 -0, 40 ~1.6 -3.6 -6.4 -9.9 e
1.15 -0.35 -1.3 -3.0 -5.6 -8.9 -13.0
1.20 -0.25 -1.1 -2.5 ~-4.9 -7.9 -12.0
1.25 -0.20 . =0.8 -2.0 -4.0 -6.9 -11.0
1.30 -0.15 ~0.6 -1.5 -3.2 -5.8 -10.0
1.33 -0.158 ~0.5 -1.4 ~2.85 -5.2 - 9.4

It is observed that Aa decreases with increasing m for all a.
Analytical expressions for tshe specific turbidity ([Heller (1957)1, </c,
which approfimate the Me functions are given in Table 3.2. Their range
of applicability are specified in Table 3. 3.

Fig. 3.2 indicates the considerable enhancement in the small
particle extinetion coefficient due to chemical absorption. This

feature is of great practical significance and will be discussed in the
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Table 3.2 Approximate Expressions for the Specific Turbidity,
t/c (A <5, nsﬁgpfassumed equal to unity)

1. First Approx. n[(t/¢)A] = A + B/a + (C + D/a)an(m-1)

a Range A § g 2

0.8 - 2.0 -0.3079 -1.060 2.084 ~0.0564
1.8 - 3.0 0.0021 -1.642 2.084 -0.0564
2.6 ->6.0 0.0021 ~1.642 1. 944 0.3643

2. Second Approx. &n{(v/¢c)A] = A + B/a + (C + D &n a)tn(m1)

a Range A B c D
1.2 - 1.8 -0.3079 -1.060 2.000 0. 1486
2.2 ~>6.0 0.0021 -1.642 2.125 ~0.1486

Table 3.3 Range of Validity of First Approximation in Table 3.2.

A. Limiting upper m value B. Limiting upper a value
if A 1is not to-exceed the if 4 1is not to exceed the
specgfied deviation spec%fied deviation

a 5% 108 m 5% 108

1.0 >1.30 >1.30 1.05 6.15 6.75

2.0 >1.30 >1.30 1. 10 5. 45 7.30

3.0 >1.30 >1.30 1.15 6.10 8.25

4,0 1.20 1.27 1.20 .00 5.05

5.0 1.16 1.20 1.25 3.50 .15

6.0 1.15 1.17 1.30 3.30 3. 80

7.0 1. 16 1.16

8.0 1.14 1.15

next section in context to its application to chromatography. Generally
speaking, the extinction coefficient is an oscillating function of aj -
for nonabsorbing particles, the amount of oscillation is more pronounced
the larger m is, while if the particles are light absorbers, the amount
of oscillation in the curves decreases with increasing value of the

imaginary component of the refractive index; the limiting value of the



~48-

extinction coefficient at large «, with or without absorption is 2.0.

3.2.3 Particle Size Distribution by Turbidity Spectra

It follows from eqn. (3.5), that the turbidity of a polydispersed

latex is given by

-]

c = NJ w/4 D° K(a,m)f(D) dD (3.25)
0 sca

where f(D) is the normalized particle size distribution function. The

latex concentration is given by

c = o N I /6 p3 £(D) dp (3.26)
0

From the above equations, it follows that

-]

+ D2 K(g.m)£(D) db

Te g e _43.27)
P, p3r(p)y 4D .
0
= 2
f D°K(a, .m,)Ff(D) dD
Tx1 0 sca1 !
- (3.28)
A2 ! DZK(az.ma)f(D) dD
0 sca

Note that egns. (3.27) and (3.28) are independent of N and can be used
te solve for f(D) if it has a known form. The lognormal distribution

occurs naturally in maﬁy latex systems: it is given by

£(D) = 1/(/2r & D) exp{~1/2 [(tnD - u)/51%) (3.29)
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Therefore, if specific turbidity data at least at two wavelengths or
turbidity data at ‘least at three wavelengths are measured, then in
principle u and o can both be solved for. Limitations exist for very
small particles where Rayleigh scattering occurs and for very large
particles Qhere Ksca tends to 2.0; in both extremeties eqns. (3.27) and
(3.28) become insensitive to f(D). Additionally, with one extra piece
of information, the refractive index of the latex may also be
calcuwlated; its value is not necessarily the same as the refractive
index of a f‘ilp» formed from the latex.

A review of various techniques for calculating f(D) by turbidity
spectra is found in the book by Kerker (1969). Recently, Zollars (1980)
established the uniqueness of the solution for (D) using turbidity
spectra and pointed out that multivalued solutions are artifacts of poor
numerical gearch techﬁiques. An application of turbidity spectra to
c;hi'omatography will be developed in Chapter 4. For absorbing systems,
.K in the above equations may simély be replaced by the total

sca

extinction coefficient, K.

3.2.4 Turbidimetric, Detection in Chromatography
r .

It follows from eqns. (3.5) and (3.15) that the turbidity for
veri small pa;ticles which behave as‘Rayleigh scatterers is proportional
to the sixth poéer of the particle diameter. For larger particles
obeying Mie scattering theory, thé cofregponding dependence 1is lower.
As a3 consequence of .the above, the small ‘particle signal 1is

comparitively weak, though it can be augmented by using shorter
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wavelengths. However, for obtaining particle size distributions, the
relative signal is of greater importance., Silebi's (1979) calculations
indicate that a change of wavelength or refractive index has a small
influence on the relative signal for nonabsorbing particles. The
relative signal is improved for absorbing particles due to a significant
enhantement of the extinction coefficient of the smaller particles.
These theoretical observations were confirmed by Nagy (1979) who
chromatographed mixtures of polystyrene latices at 220 and 254 nm
(controversy exists concerning whether particles absorb at 254 nm; at
220 nm, however, strong absorption occurs). e of Nagy's results,
shown in Fig. 3.3, dex_nonstrates the dramatic improvement in the 88 nm

peak measured at a wavelength of 220 nm compared to that at 254 nm.

3.2.5 Sources of Error in Turbidity Measurements [Heller and Tabibian

(195733

Appreciable error may result if instruments which are perfectly
suitable for ordinary absorption measurements are used for turbidity
measurements without proper modifications and precautions. There are
three principle sources of error in turbidity measurements: 1)
interference of laterally scattered 1light 2) the corona effect 3)
effect of the solid angle. These effects are now described. Consider
the schematic shown in Fig. 3.4.

Laterally scattered light.may leave the cell and may by diffuse
reflection from the inner walls of the cell housing, even though they

1 N
are blackened, reach the photomultiplier tube, (see .the schematic pencil
AN



retention vol.

Fig. 3.3 HDC separation of a bimodal mixture of
88 nm and 176 nm polystyrene latices.

A, response at 220 nm B. response at 254 nm

~51-
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of diffuse reflected light, ”d in Fig. 3.4) resulting in an apparent
turbidity smaller than the true one. In turbidity measurements it is,
therefore, advisable to use cells whose lateral walls have been
blackened. The intensity of the stray light, although, small compared
to that of the primary beam, is strong enough to falsify the
concentration dependence of the turbidity.

The secondary scattered light, 25, originates within those
portions of the c¢ell not traversed by the primary beanm, lp. M a
photographic plate, the secondary scattered light manifests itself as a
corona around the primary beam. The corona can easily be excluded by
placing at the exit end of the cell a diaphram with an opening only
slightly larger than the diameter of the beam. The luminosity of the
corona approaches zero at infinite dilution.

Primary scattered light, originating in the central cell/éection
traversed by the primary beam, also interferes .with turbidity
measurements. A central volume element Av', located near the exit end
of the cell, (not shown in figure) will emit a cone of scattered light
represented by w in Fig. 3.4, This angle and with it the amount of
scattered light entering the photocell 1is determined by both its
distance from the scattering volume element and the aperture of the
diaphram 2. Since the scattered light contains contributions of all the
elements in the cylindrical volume illuminated by the primary beam, the
integral effect is by no means negligible. This solid angle effect can
be minimized by reducir;g the aperture of the‘ photocell to slightly less

than the diameter of the mimary beam.
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Fig. 3.4 Sources of error in turbidity measurements.
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By far, the major portion of the 1light fiux reaching the
photocell is accounted for by the primary beam, zp. However, the stray
and scattered 1light intensities are strong enough to falsify the
concentration dependence of turbidity, if the relatively sinmple

L wr—
precautions outlined above are not adopted.

3.3 REFRACTION OF LIGHT BY COLLOIDAL PARTICLES

3.3.1 Mixture Rules for Index of Refraction

Table 3.4 scrutinizes the interrelations of some important
refractive index mixture rules used for determining the refractive index
of a solute. The mixture rules of widest applic¢ability are the
Lorentz-lLorenz and the Wiener equations [Heller (1965)%. These apply
only in the case of particles which are small compared to the wavelength
of incident 1light. Such a restriction, limits their application to a
small fraction of the colloidal range. Zimm and Dandliker (1954)

derived a more general refractive index expressioﬁ Bésed on the Mie

theory. Their expression for the dispersion refractive index, Ng is
given by

AT N 3 -
K 2. Rel 1 —22l— (a - b)) ) (3.30)
( 2a pp n=1 2n(n+1)

wiiere ¢ is the weight conecentration in g/cm3. Eqn. (3.30) ’does not

contain‘the restriction that a be small and allows calculation of the

effect bBf light scattering on the refractive index of a colloidal
.

dispersion. In the limit as «+0, eqn. (3.30) reduces to
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dn 3n m( m2-1 )

= (3.31)
2(m +1)pp

a result derivable from Heller's equation (1965).

Nakagaki and Heller (1956) confirmed the validity of eqn. (3.30)
for particle diameters as large as gbo nm. More recently, Silebi (1979)
obtained good agreement of measured data witb eq., (3.31) for particles
as large as 350 nm. Both measurements were made with polystyrene
latices at a wavelength of 546.1 nm. Subsequent data measured by Nagy
(1979) indicate that, dns/dc reverses in sign with 1increasing particle
size. Its implication is that, the signal has a zero value for some
intermediate particle size. Interpretation of Nagy's data 1is
complicated due to the use of a broad wavelength source. However, the
calculations of Zimm and Dandliker and those of Nakagaki and Heller

indicate that, depending on the value of m, the signal may either

increase with a or decrease and eventually change sign.

3.3.2 Differential Refractometry Detection in Chromatography

Diffeg;ntial refractometry shows a less dramatic dependence on
particle sfg; (third ordeq[ than turbidimetry of nonabsorbing particles.
The advantage of differential refractometry 1is Aegated by the
requirement of a higher sample concentration compared to the amount
necessary for a photometric detection due to the limited sensitivity of
available diffefeﬂtial q&fractOmeters. With the advent of more

sensitive detectors, this draw-back will likely be overcome.
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CHAPTER 4

CHROMATOGRAM INTERPRETATION - CALCULATION OF

PARTICLE SIZE DISTRIBUTION

4.1 INTRODUCTION

As discussed in Chapter 1, axial dispersion is a serious
imperfection in the analysis of particle sizes by chromatography. In
the absence of a suitable theory which can predict axial dispersion
effects, the only pf'actical alternative to correct./ chromatographice data
for axial dispersion is to use experimental calibration procedures. It
is necessary first to estabiish a qelationship between the experimental
chromatogram, F(v) and the function W(y) representing the chromatogram
that would be obtained in the absence of axial dispersion.

The chromatogram height F(v), for a single species can be

expressed as
F(v) = W G(v) 4.1

" where W is the area of the chromatg;:gram and G(v) is the normalized
instrumental spreading function of that .species. For a polydispersed
sample with n species, I;(v) ig given by a linear summation of the
.individual species contributions, i.e.,

~

n »
F(v) = T W Gi(v) {4.2)
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where wi and Gi(v) represent the area and normalized spreading function
for species i. When the number of species is very large, wi ¢can be
replaced by a continuous distribution function W(y), where y is the mean
retention volume. F(v) can be expressed as

-]

F(v) = / W(y)G(v,y)dy (4.3
0
where, G(v,y) is the normalized spreading function of a species with
mean retention volume, y. Ean. (4.3) is frequently referred to as
Tung's axial dispersion equation. Note thaht, the lower limit in the
above integral may have to be considered as -« in certain forms of its
solution.

The solution of egqn. (4.3) for W(y) requires an appropriate form
for the spreading function and a determination of the numerical values
of its parameters. Further, to convert W(y) into a size distribution
requires a relationship between the mean retention volume y and particle
diameter, D.

The function G(v,y) is frequently considered to be uniform, i.e.,

1

G(v,y) = G(v-y) (4.4

This considerably simplifies the mathematical treatment of eqn. (U4.3).

A commonly used form for G(v-y) is the Gaussian function given as
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G(v=y) = Gy(v-y) = /1/(216%) expl-(v-y)2/(20%)] (4.5)

The Gaussian function 1s inadequate, however, when single 3pecies
chromatograms are skewed, Provder and Rosen (1970) suggested using a
general statistical spreading function to account for skewed single
species chromatograms. It is given as

G(v-y) = Gy(v=y) [1 « A H (x)/nt] R (4.6)

3

it g

n

where
X = (v=-y)/o (4.7)
Hn(x) are. the Hermite polynomials and the coefficients, An' are
functions of the nth order moments, My o of G(v~-y) about y. A special

case of eqn. (4.6) is called the Edgeworth series and is obtained when

Aé = 10 A§ and An=0 for n>7. Hn(x) and An for n upto 6 are.given in
Table 4.1. The first two coefficients are of direct sfatistical

significance: A3 provides an absolute statistical measure of skewness
while Au is a measure of the flattening or kurtosis of the spreading
function.

The determination of parameter values of a spreading function is
treated in Chapter 5. Consider now, the relationship between D and vy,

the particle diameter-retention volume calibration cwve. Calibration

curves which are nonlinear in tn D over the retention volume range of
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TABLE 4.1 n°" Order Hermite Polynomials And Coefficients A,

n Hn(x) An

3 3/2
3 X~ - 3x u3/u2
y xu - 6x2 + 3 uu/ug -3

5 3 5/2 3/2
5 x” = 10 x” + 15 x ”5/“2 - 10 u3/u2

6 4 2 3 2
6 X - 15 %x + 45 x° - 15 u6/u2 - 15 uu/u2 + 30

interest, are generally expressed as
in D(y) = A - By + Cy° (4.8)

Frequently, C=0, resulting in a linear calibration curve which may

alternately be written as
. D(y) = D1 exp(—Dzy) (4.9)

where D1, D2 > 0 and D2= B.

Eqn, (4.3) may be solved numerically or analytically. The
numerical solution yields the distribution function W(y) or the diameter
frequency distribution, while an analytical solution allows only the

calculation of moments of the diameter frequency distribution. Both

forms of solution are now investigated.
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4.2 NUMERICAL SOLUTION OF THE AXIAL DISPERSION EQUATION-SOLVING FOR THE

DISTRIBUTION FUNCTION

Several numerical methods have been reported in the literature
for the solution of the integral equation. These have been reviewed by
Friis and Hamielec (1975) and more recently evaluated by Silebi and
McHugh (1979) for their application to particle chromatography.
Unfortunately the evaluation by Silebi and McHugh was made using
experimental chromatograms and in view of the uncertainty in their
measurement and the spreading functions being precisely not known, their
conclusions must be regarded with caution. However, common with
previous evaluations, they observed that a method, due to Ishige et al
(1971), performed better than other available methods. A principle
drawback of Ishige's method noted by these workers is its tendency to

"over-estimate the small particle size population relative to a large
particle size population when the two are present together; a
modification was suggested to overcome this drawback.

" In this section, Ishige's method (his method 2) is described.
Using synthesized chromatograms, the method and some of its variations
are critically evaluated.

Ishige's method uses the fact that any response F*(v) always has
a broader distribution than the input distribution, W(y). Hence, if a

distribution Fi(v) is broader than F%(v), the assumed wi(y) must be
sharpened to give a résponse closer to F®(v). Using F*(v) as the

initial guess for W(y), subsequent improved estimates were calculated by

-
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wi+1 = (F*/Fi)wi (4.10)

where Fi is the chromatogram calculated using wi. The procedure is
repeated until Fi satisfies a convergence criteria. The method is
illustrated in Fig. 4.1. Note that wi is always normalized before use.
Silebi et al argued that egqn. (4.10) consideres the contribution
at each retention volume as due only to particles at that volume and did

not include contributions from neighbouring sizes. Accordingly, they

suggested the algorithm

k=n'

W = (Fe, L sF. ) LKy (4.11)
e T 00 YTk Tiak i :
Kz=n
where the normalized weighting exponents, Yy v are taken from the

relative contributions of the sizes within a specified neighbourhood of
the retention volume under consideration.

A variation of eqn. (H4.10) which accelerates convergence is given

2 e —
.~

as

]

- % a
wi+1 = (F /Fi). wi (4.12)
where, a > 1. For the purpose of illustration, a values of 1.5, 2.0 and
Fi/!_’* are chosen; the ‘last choice\\applies a varying correction factor
across the chromatogram, the correction increasing in severity with
- fmer-eas%sg deviation between ¢t ‘ ed and calculated chromatograms.

I

The algoritmms, eqns. (4.10)+(4.12) were evaluated by comparing
!
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—RETENTION VOLUME

) W(y)
e

Arrows indicate
the direction

of correction

——RETENTION VOLUME

Fig. 4.1 Graphical illustration of the algorithm [eqa.(4.10)]
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the recovered W(y) for various synthesized chromatograms. For
convenience, examples from the litergture were used with one exception,
where mixtures of two narrow partievle size distribution samples were
considered. The results are shown in Tables 4.2-4.5 and Fig. 4.2. The
recovered W(y) for all cases using any of the above procedures were
comparable though, in some cases they deviated significantly from the
true W(y). In all cases, however, calculated diameter averages were in
good agreement with assumed values. It is obvious from the results
that: 1) the procedure suggested by Silebi and McHugh is computationally
very inefficient. It over-estimates the small particle population to
the same extent that Ishige's procedure or any of its other variations
do. 2) as expected, when a>1, convergence is accelerated, in some cases
com'putation \time being significantly 1lower. In some cases, where
oscillations occur in the recovered W(y), the problem may be overcome by
a suitable choice of «a. 3) Fig. 4.2 illustrates the fallacy of
numerically recovering W(y) when the true W(y) is a discrete rather than
a continuous distribution.

‘Even though diameter averages can be calculated with fairly good
aceuraey, in gener;al, the poor recovery of W(y) that are obtained from
any of the above methods and by extension the earlier reported methods
(since these were shown to pe infelrior to Ishige's method), detragets
'ﬁ~?m the use of numerical ‘procedures to estimate the size distribution
frequency. Calculation of diameter averages g_ar; be accomplished more

economically by analytical considerations of eqa (4.3). These are

developed in great detail in Section 4.4,
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4.3 NUMERICAL SOLUTION OF THE AXIAL DISPERSION EQUATION-SOLVING FOR THE

SPREADING FUNCTION

When W(y) is composed of essentially single sized species, then
the measured chromatogram is in fact the spreading function for that
species. The statistical properties of such a function are size or
retention :/olunie dependent and, hence, att‘empts to;estimate the
spreading function have involved the use of narrow distribution
standards. When the standards are ultra-narrow, then it is justified to
assume that the measured chromatogram reflects the spreading
characteristics of the chromatographic columns. Most available
standards are, however, not suft:icientlyn monodispersed and the
ident':ification of the spreac‘iiné/ﬁnction. in® general, requires a
knowledge of their size distribution. ne exception is the reverse flow

technique, proposed by Tung, Moore and Knight (1966); it allows an

estimate of the spreading function independent of tl;e\_s}«ze distribution

L4
L

function of the injected standards.

The reverse flow technique is based on the assumption that, when
the flow is reversed, the process of size separation is reversed alsox,
while, instrumental spreading ccr;tinues to broaden the peak. With this
technique, a standard sample is allowed to flow through half of the
col unn length; the direction of flow is then reversed. The resuli;ing
chromatogram reflects the spreading ghgx'aqtéristics\ of that .half of t:,he
colunn. The process is repeated .for the other half When a Gaussian
spreading function is assumed, its variance 02 is related to « 2 and

1
022, the varianc‘es/of the measured chromatograms, by the folléwing

I .
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relationship:
o = (o1 + 0, )/2 (4.13)

A less tedious procedure ([Tung and Runyon (1969)] involves

§
fitting the leading edge of the chromatogram with a .Gaussian function
with variance, 002. If 02 (as determined by the reverse flow technique)

and 02
) c

are equal within‘experimental error, then it is inferred that
the leading edge of the chromat;ogram is monodispersed. Gztherwise, the
assumption of a Gaussian W(y) together with the calibration curve
information, leads to an estimation of the size distribution of the
leading edge. Such information is then used for an unknown column to
estﬁnate its spreading characteristics. This procedure assumes that the
leading edge of the chromatogram is composed of similar sized species
irrespective of a column's resolution. This, clearly, canpot be
expected to hold in general.

A more adix'ect: approach and widely used, iri\}olves the use of“
‘mcment equations derivable from ea. '(14.3). The parameters of the
spreading function, either Gaussian or skewed, are calculated from a
knowledge of the averages of the size distribution, typically, the
number and the ‘weight average. The spreading function generated from
such estimates ma_;:.:xnot ‘nece,ss.arily represerit the aetual spreading
characteristic of tﬁe; hcolunn. and correlations of the spreading function
_parr;lmeters ‘with retention volume must be regafded with cautio;l.

. Recently, Bergér (‘3979) suggested a calculation procedure baséd

. ¢ :

N
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on the simultaneous solution of egqn. (4.3) and

Cn(v) = J {(W(y G(vn.y) Ay} G(v,y) dy (4.14)

-0

where Cnév) is the chromatogram of the re-injected fraction collected at
the retention volume, Voo No restriction was placed on the’fbrm of
G(v,y) except that it is uniform, ‘

In this section, a simple numerical procedure is presented for
estimating the spreading function from eqn. (4.3). It is assumed Fhat
W(y) is known. For a latex sample, such information can be obtained by
electron "microscopy. When a sampie has a narrow distributiqn,
parameters of the calculated G(v,y) may be related to the mean size.
However, when the sample is broad, the calculated G(v,y) is an effective
spreading function which may be used to calculate W(y) for an unknown
sample having a similar width.

The procedure used is similar to that of Ishige et al (1971) for
calculating W(y). It is assessed using synthesized chromatograms.

Application to experimental chromatograms of Dow polystyrene latices is

shown ~in Chapter 5. For a turbidity detector,

Wy) = N(y) K(y) DE(y) (4. 15)
where N and K are the number concentration and extinction coefficient
respectively of a particle of size D having a mean retention volume y.

For a linear calibration cé?ve,
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D(y)

D1 exp(—DZy) (5.9)

dD(y)

--D2 D(y) dy (4,16)

where D1 and D2 are the calibration constants. N(y) is related to the

particle size distribution, f(D), as follows:

£(D) dD = -;:§£12—92 (4.17)

J N(y) dy
0

where f(D) dD is the fraction of particles in the size range D to D +
dD. The negative sign in eaqn. (4.17) is due to the negative slope of

the calibration curve. It follows from the above equations that,

Wy) = £(D) K(y) D3(y) (4.18)
M

Substituting eqn. (4.18) in eaqn. (4.3) yields

e

<«

F(v) = £ f£(D) K(y) D3(¥) G(v,y) dy (4.19)
0

A discrete form of eqn. (4.19) is more suited when the funetion, f(D),

is discontinuous and 13 given as

F(v) = £ . (DY K(y) DAy G(v,y) (4.20)
: over all D

" Extensions of the ahove equations to a nonlinear calibratién curve are

;traight-fprward.
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Consiger the numerical solution of egqn. (8.3) or any of its
forms, eqnﬁ (4.19) or (4.20). It is assumed that the spreading\function
is uniform; it is, therefore, necessary to solve only for one
distribution function.
If one, initially, sets the spreading function (corresponding to

y = vp) equal to the measured chromatogram F(v), i.e.,
G1(v - vp) = F(v) (4.21)
then since the spreading function is assumed uniform, it follows that
G1(v -y) = F(vp + VvV =-y) (see Fig. 4.3) (4.22)

vp is the peak retention volume of the measured chromatogranm. Egns.
(4.21) and (4.22) provide an excellent initial guess for the spreading
function, since, the chromatogram of narrow standards largely reflect
the spreading characteristiecs of the instrument. Subsequent improved

estimates of the spreading function are obtained as follows:

G1+1 = (F/F'i)Gi (4.23)
The procedwe in eq. (4,23) 1is repeated until convergence
ocecurs. If

P o= £ | F(¥) = F (V) | dv (4. 24)
o .
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[y

is less than a given tolerance (a tolerance of 0.01 was set in the
calculations) or if the value of P for the ith iteration exceeds the
va].lge at the previous iteration, without the tolerance being satisfied,
then, the ca.!.culations are terminated. It i3 to be noi:ed. that, each
new eéstimate of the spreading function must be normalized.

The procedure stated in eqn. (4.23) was evaluated by synthesizing
F(v) using an assumed spreading function and zn assumed Wy). The
spreading function was either a Gaussian or a skewed function obtained
by setting all coefficients except A3 equal to zero in the statistical
shape f‘unction' proposed by Provder and Rosen (1970). To calculate W(y),
electron microscopy data of Dow polystyrene latices were used and the
extinction coefficients were calculated usihg either Rayleigh or Mie
" theory. The results are presented in Figs. lsf’h-u.ﬂlwhere the estimated
spreading function is compared with the actual function.

The values of the parameter 02 used in the computations span a
wide range with a value of 0.5 m12 being representative of columns used
in hydrodynamic chromatography, while, larger values are encountered in
size exclusion chromatography. Significant skewing is introduced by

setting A 1.0. It is evident from the results, that, the calculated

3 s
spreading functions compare very favourably with the assumed functions
over the entire range of retention volumes.

Also shown in the plots are the ratios of the chromatogram
heights calculated according to Mie theory to those calculated according

to Rayleigh theory. These indicate a rather low sensitivity of the
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85 nm sample
D(v) = 2684 exp(-.05968v)
02= 0.5, A3 = 1 (skewed)
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85 nm sample
D(v) = 268k exp(-.05968v)
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Fig. 4.6 Comparison of assumed and calculated spreading functions.
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109 nm sample
11 ' *D(v) = 2684 exp(-.05968v) \
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Fig. 4.8 Comparison of assumed and calculated spreading functions.
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calculated narrow distribution chromatograms to the 1light scattering
theory applied.

When applied to experimental chromatograms of narrow particle
standards, the calculated spreading function data allows an independent
assessment of the adequacy of functions (Gaussian or the statistical
shape function) assumed to describe them. The method suggested here can
form the basis for a systematic investigation of the variation of
spreading function parameters with retention volume over a wide range of
operating conditions. It should be stressed that parameters calculated
in this manner, represent their actual values, rather than manipulated
variables such as are obtaiﬁéEAﬁhen searching for their values with the

help of moment equations (Section 4.4).

4.4 ANALYTICAL SOLUTION OF THE AXIAL DISPERSION EQUATION-SOLVING FOR

THE MOMENTS OF THE‘SIZE DISTRIBUTION FUNCTION

In this section, three analytical methods of varying generality
for solving Tung's integral equation are presented. Method 1 was
developed by Hamielec and Singh (1979) while Methods 2 and 3 have been
developed during the course of this study. These methods, of which
Method 3 1is /most general, should find extensive application in the
analysis of chromatograms obtained by the various forms of particle

chromatography. Each of the methods is now discussed in detail.

4.4,1 Laplace Transform Method of Hamielec and Singh-~Method 1

Taking the Laplace transform of the convolution integral
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resulting from the substitution of egqn. (4.4) in eqm. (4.3), yields

F(s) = W(s) G(s) ' (4.25)

.

If all coefficients except A_ in egn. (4.6) are zero then, -

3

G(s) = exp(sSa2/2)(1 -0333A3/6) (4.26)

For a turbidity detector in the Rayleigh scattering regime,

=~

7
F(v) = N(v) D%(w) (u&e?ﬁ

where N{(v) is the number concentration of particles of diameter D(v) at
retention volume, v. The corresponding equation for a refractive index
detector is similar but with a third order diameter dependence. In

general, therefore, the detectbr signal is of the form:
F(v) = N(v) DY(v) (4.28)

The uncorrected frequency distribution is given by

[

f(D) dD = ~ N(v) dv 7/ f N(v) dv (4.29)
0

'

where the negative sign appears due to the inverse relationship of the

diameter with retention volume. In D(v) is wusually linearly related
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with retention volume and hence can be expressed as

D(v) = D1 exp(-Dzv) (4.9)
where D1 and D2 are constants, The various diameter averages (see

Appendix A.1 for their definitions) may be expressed in terms of Laplace

transforms, for e.g.,

Dn(uc) = D1 F[(I—y)Dzj / F(-yDZ) (4.30)
Dn(c) = D, W[(1-Y)D2] / W(-YQZ) (4.31)
Subseripts, uc and ¢, represent uncorrected and corrected diameter

<
averages. It follows from eqns. (%,30) and (4.31) that

D, (c) G~y D) R R R
D (uw) - = .. = = expf(y-1/2)D2 o ][————————g———SJ (4.32)
n G[ (1-y)D,] 1= (1=y)a D
2 2
where
a = 03A3/6 ,’ (4.33)

The right hand side of eqn. (4;32) represents a correction factor for
the number average diameter. ‘The correction factor is comprised of an
exponential term representing an axial dispersion correction for
Gaussian spreading and a second term representing a skewing correction.
Similar correction factors for the other diameter averages are given in
Table 4.6. Therefore, to ca1;ulate the corrected diameter averages, the

uncorrected diameter averages calculated directly from the chromatogram
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are multiplied by appropriate correctjon factors. It is clear that the

<79nrection factors are specific for each detector type.

B.4,2 A New Method for Calculating Moments of the Size Distribufion as

a Function of Retention Volume - Method 2

Since Rayleigh scattering theory applies only to particles at the
low end of the colloidal range, the previous formulae for the turbidity
detector are rather restrictive in their application. The following
analysis considers a turbidity detector in the Mie scattering regimg.
Moments of the frequency distribution an;‘;he number of particles in the
detector cell are evaluated as a function of retention volume. This
enables all relevant diameter averages for the sample to be calculated.
The development parallels that of Yau et al (1977) for molecular weight’
analysis by size exclusion chromatography.

Due to column dispersion, the contents of the detector cell at
any retention volume are polydispersed, and may be considered as made up
of all species at retention volume y which are dispersed to v.
Accordingly, for a turbidity detector, the following proportionality

-~

holds:

N

£
W(y) G(v,y) <« N(v,y) K(y) Dz(y) at retention volume v (4.34)

where K(y) and N(v,y) are respectively, the extinction coefficient and
number concentration of particles with mean retention volume, y at

retention volume, v.
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The corrected frequency distribution, f(v,D), at v may then be
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expressed as

f(v,D} aD = - —(V.y)dy (4.35)
of N(v.y)dy

From eqn. (4.34), it follows that,

W(y) 6(v,y) (K(y) D2(y)} 'dy
o WY Glv,y) (K(y) D2(y) 1 'dy

f(v,D) db = (4.36)

It follows from their definitions (Appendix A.1) that the average

diameters of the particles eluting at v may be expressed as

\\““/5;(v) = {OIwN(v.Y) D(y) dy; / {OJQN(v.y) dy} (4.37)
Dg(v) = {OImN(v,y) p2(y) dy}'’? {Ofwmv,y) a2 (u.3f3)
D (v) = {Offu<f,y> p3(y) ay1'’/3 {OIfN(v,y) ay1'’3 u.39)
"Dgg(W) = {Ojl’wN‘(V.Y) o3y ay) / {.Ofmu'(v,w 1;2(y) dy} (4. 140)
Dw.('v) = { J’wN(v.y) Du'(y“f‘;dy} /| fmu(v.y) p3(y) dy} (8.41)

0 . : 0
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Dt(V) = { S N(v,y) Dé(y) dy}1/3 /s {rf N(v:y) DS(Y) dy}
0 0 Y

1/3
(4.42)

In the above expressions, when N(v,y) is replaced by N(v) (the total
number of particles eluting at v), and D(y) in each equation is replaced

by the corresponding diameter average, diameter averages for the entire

sample are obtained. The 1integrals in the above expressions are all of

the form
I(v) = [ W(y) G(v.y) {K(y DZ(» 1} ' D'y dy (4.143)

0

so that
D(v) = I(1)/I(0) ‘ (4.44)
D(v) = (1) /1003172 (4.45)
D,(v) = {I(3)/1(0)}"3 (4. 16)
Dg(V) = I(/T() (B.47)
D, (V) = I(4)/I(3) ) (4.1u8)
D(v) = {I(6)/1(3)}'"3 (4.49)

e
In the following analysis, an analytical solution for eqn. (#,43)
is developed. The cases for a linear and a nonlinear calibration curve

are treated separately. Both yield solutions of similar form.

Linear Calibration Curve “p

For a linear particle diameter-retention volume calibration
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curve, D(y) may be expressed as

D(y) = D1 exp (-Dzy) (4.9)

while K—1(y) may be adequately fitted by an expression of the type

(y)

11
n M3

{Ai exp(Bi )} (4.50)
The product {K(y) DZ(}()}—f D'(y) is then equivalent to

n
Ky D2(» 1~ DV(y) = oz (C, exp(-E, y)) (4.51)
i=1

_ y-2 - -
where Ci = Ai D1 and Ei = {Bi + (2 Y)DZ} (4.52)

Nonlinear Calibration Curve

A nonlinear particle diameter-retentidn volume calibration curve

D(y), may be expressed as

P
D(y) = £ D (4.53)
where D = 01'1 exp(-Di'zy) (4.54)

It follows that, DT(y) is given by
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m y ! Y Y Y
Y 1 2 p
D'(y) = ¢ 7 7 Y D1 D oo Dp (4.55)

where the sum is taken over all non-negative integers Tyt Yoo eeeens yp

for which, Yyt Y, e +yp = yv. The number of terms in the summation is
2 -1
denoted by m. The product {K(y) D7 (y)} in egn. (4.43) may be
represented as i
2 1 n
{K(y) D7(¥)} = z {Ai exp(Bi ¥)} (4.56)

i=1

so that K~ (y) D'"%(y) is given by

X
Ky DY (y) = & C, exp(-E, V) (4.57)

where Ci and Ei are related to the coefficients in eqns. (4.55) and

(4.56). Eqn. (4.43) may, therefore, be written as

) .

I(y) = ¢ C; / W(y) G(v,y) exp(-Ei y)dy (4.58)
i 0

Assuming the spreading function to be uniform and Gaussian, one obtains

after’ some simplif{éation.
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o

I(y) = & [C exp(-Ev + (Eio)2/2} 7 W)
i 0 3
— Y2no
_ S expU(v - E, 09 - y}°/20%)ay] (4.59)
A
.

r
o

/- N

o

The integral in the above expression may be recognized as F(v - Eioz) by
comparison with eqns. (4.3)=(4.5). Therefore,

I = £ G, exp(-E v+ (E;0)°/2) F(v - Eioz) (4.60)
i

Eqn. (4.60) can, now, be used }o/?va—k\af:/thi various diameter averages
given by eaqns. (4.1411)-(14.119’5. !’I'o e uate the same for the total
sample, one needs to evaluate N(v). From egqn. (4.35), it follows that,

-]

NCY) =« £ W(Y) G(v.y) (K(y) DY Y ' dy = TI(0) (4.6%)
0

For a detector where,
W(y) G(v,y) = N(v,y) DY (y). at retentiy‘volune v (4,62)

the integrals involved in calculating the corrected diameter averages
are also of the form of eqn. (4.58) and may be similarly evaluated. For
a refractometer, y has a value equal to 3 while for the turbidity
detectqr in the Rayleigh' scattering regime, it is 6. Therefore, the
method outlined above is quite kgeneral and may be used to calculate

diameter averages, corrected for axial dispersion, for a general
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detector.

It is easy to show that egqn. (4.60) is valid not only for a

Gaussgan spreading function but for a whole family of functions of the

form

G(v,y) = GO(V—y) ¢ (y) (4.63)

where ¢(y) i3 any function of y. This may be viewed in two ways.
First, by lumping W(y) and ¢(y) together as an altered W(y), eqn. (4.60)
is consistent with the notion that moments of a distribution are not
unique. A second Giewpoint and a more practical one is that the
preceding analysis is not restricted to a Gaussian spreading function
but encompasses non-Gaussian functions of the form given above. This
conclusion should be applicable to the formalism developed by Hamielec
et al (1978) since, it can be shown that for a general detector
represented by eqgn. (4.62), the present analysis leads to similar
correction factors as given in Table 4.6. Consider, for example, the
nunber average diameter, calculated for a turbidity detector according

to Rayleigh theory.

Dn(uc) = s F(v) D-S(v) dv / £ F(v) D-6(v) dv (4.64)
Dn(c) = S N(w Dn(v) dv /S N(v) dv (4.65)

- -0
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Eqn. (4.65) 1is equivalent to
Dn(c) = [ I(1)dv / f I(0) dv (4.66)
It follows from eqn. (4.60) that,
I(1) « D> exp(5D.v + 25D20°/2) F(ve5D_0°) (4. 67)
1 2 > 2
I0) = D;é exp(6D,v + 36D§az/2) F(v+6D2a2) T (1.68)

Substituting eqns. (4.64),(4.67) and (U4.68) in egn. (4.66) and
simplifying, yields the desired result:

@

2

2
50 /2) Dn(uc) (4.69)

Dn(C) = exp(11 D
Note that the lower integration limit in egns. (4.64)-(U4.66) is
- rather than O, This is necessary to obtain the result in egn.
(4.69). Hence, the present analysis yields results consistent with the
theoretical treatment of Hamielec et al. Also, formulae derived for
Gaussian spreading functions, in general, are applicable to non-Gaussian
functions of the form given by eqn. (4.863).
For a linear calibration curve, Fig. 4.12 demonstrates the
excellent fit to the extinction coefficient data calculated from Mie
theory. K(y) can typically vary over 8ix decades across a broad

chromatogram. A nonlinear estimation routine is used to estimate the
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Fig. 4.12 Fic of extinction coefficient data for polystvrene particles

in water at a wavelength in vacuum of 254 nm (Particiles are
considered to be non-absorping; also wavelength dependence of

refractive index is not taken into account).
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parameters of the fit. Alternately, a multivariable search rou't;ine can
be used to minimise

$ K(Y) 7/ K(y) - 132 (4. 70)

over 8ll y

where lz(y) is an estimate of K(y).

A typical varilation of diameter averages with retention volume
for a unimodal size distribution is shown in Fig. 4.13. Axial
dispersion causes the diameter averages at low retention volumes to be
lower than the corresponding calibration dimeggrs; the reverse occwurs
at the high retention volume end. Consider the effect of truncating the
tails of a synthesized chromatogram. Curve ABCD in Fig. 4.14 represents
the path along which a diameter average varies, for a chromatogram
synthesized frem a unimodal W(y) and a given spreading function, with
the diameter averages based on the portion of the chromatogram between
retention volumes X and Y, chromatogram heights beyond X and Y being
considered nonzero, however. In an experimental chromatogram, the
latter would be indistinguishable from the baseline. Along ABCD, Dn <
Ds <D, <D

< Dw <D When chromatogram heights beyond X and Y are

ss t’
set equal to zero, the path becomes A'BCD'. Along A'B and CD', the
order of the diameter <averages are, generally, reversed. This anomaly
occurs due to the nature of the moment equation where, each term under
the summation is multiplied by the ordinate F{v-Eioz). At retention

volumes in the neighbourhood of Y, evaluation of smaller moments
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Fig. 4.14 Tllustration of the numerical error in the application
of Method 2.
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requires ordinates at retention velumes beyond this neighbourhood
(higher v), while in the vieinity of X, evaluation of higher moments
requires ordinates at retention volumes beyond the neighbourhood of X
(lower v). Departure from ABCD with opposite trends‘at the respective
ends are thus exhibited. The effects cancel each other to a certain
extent. The points B and C approach A and D respectively, as 02 is
decreased.

It is to be noted that, the equations developed in this section
are given in terms of a single adju;table par ameter, 02. In some
practical situations, the spreading funct;oﬁ may not be representable by
the form given by ean. (4.63); éQidence to such an effect may be
inferred from the difficulty of ostaining meaningful diameter averages
from chromatograms of narrow particle standards, using a single 02
value. In such a situation, it is advantageous to develop an analytical

solution using the more general shape function, egqn. (4.6). This is now

considered.

4.4.3 A New Generalized Method for Calculating Moments of the 3ize

Distribution - Method 3

Provder and Rosen's (1970) statistical shape function may be

rewritten in the form (truncated beyond n=6)

G(v-y) = Go(v-y) a0(1 + ]

6
L an(\'-y)n/on) (4.71)
=1
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where

a, = 1 + Au/8 - A6/US 4.72)
a, a; = -A3/2 + A5/8 (4.73)
ayag = A6416 - A4 (4.74)
azay; = A3/6 - A5/12 “(4.75)
ay 8y, = -A/H8 + A /20 (4.76)
ag 3, = A5/120 : (8.77)
ag a; = A /720 (4.78)

Analytical solutions of the moment equations are now developed. The
term a, is not carried through the analysis since it cancels out in the
moment expressions. The lower integrat;ion liﬁxit is set equal ‘to -w.

N

Two detector types are considered, namely,

Type 1 : F(v) = N(v) DY(v) (4.28)

Type 2 : F(v) = N(v) D2(v) K(v) (4.79)

As noted earlier, Type 1 represents both the refractive index de?ector
(y=3) and the turbidity detector scattefing according to Rayleigh t\l:{eory

(y=6). Type 2 includes the turbidity de ector*sc’éttéri\ng according to

Mie theory. It follows from eqns. (4.28) and (4.79) and the definition

X

of a moment

[--}

M =S p® £(D) db (4.80)

-
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that, ¢ ?
\v
' o k—Y © R
Type 1: Mk(ue) = f F(v) D(v) dv/sr F(v) D(v) dv L (4.81)
= Ke2 =1 » -2 =1
Type 2: Mk(uc) =S F(v) D(v) K(v) dv/r F(v)D(v)K(v)d (4,82)

el -0 *

Mk(c) are similarly defined by replacing F(v) by W(y). The edﬁations
are of the form:

M) = B/ ) ) (4.83)

If ¢k(v) is defined as

k-y
Type 1: ¢k(v) = D(v) ) (4.84)
=

k-2 =1 _
Type 2: ¢k(v) = D(v) K(v) . (4.85)

then, ;

O

H(ue) = 1 F(v)e (v) dv (4.86)

Figini (1979) recently proposed the solution of an equation similar to

eqn. (4.86). Rewriting it with the help of eqns. (4.3) and (4.4) yields ~



~104-

@

FOW(y) Ik(y) dy (4.87)

&

ﬁk(uc)

where,

-]

I @k(v) G(v-y) dv (4.88)

-0

Ik(y)

Consider a nonlineér particle diameter-retention volume calibration
curve given by
in D(v) = A!' — B'v + C'v (4.8)

(Previously used symbols D1 and D_ are respectively equal to exp A' and

2
B'). The fit of extinction coefficients K(v) calculated from Mie theory

is represented, similarly, by

2o K(v) = A" — By 4+ Cvy2 (4.89)

It follows from eqgqns. (4.84), (4.85), (4.8) and (4.89) that,

¢k(v) = exp(kA - kBv + ka2) (4.90)
where
Detector kA kB ' kC
Type 1 (k-y)A' . (k-y)B!' (k-y)C' (4.91)

Type 2 (k-2)A'-A" (k-2)B'-B" (k=2)C'-C" (4.92)
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&

Table 4.7 Coefficients Q_1 K in Eqn. (4.96)(subscript k on ¢ and P are omitted for convenience)

Coefficient Expression
N 3 a a 2
1 4 -4
QO K /P {1 P;— -~ P(:.v2 B QZP)-g - aP2(3oz + azP)—% + Pz[aeP (602-<22P) 30 ] -
* a N a o
3, 42 2.2 4 s 8 2, u2 2.2 u 6, 3%
-aP {a P ¢IOa.aP¢1‘Sa)—5-¢[Pc(a.P +1500P¢ﬂ50)«!5?3c]—5)
24 . g
a a a a
Q. /P (= 2P ~E 4 3pe® o o) =2 - waPP30? . ped
. 9 2 3 [
o 9 ]
2. 22 L 2% 3 4 22 4 2 %
+5P°(3 @ ¢6c<x?o-a?)—§—6u?(150 +10craPouP)—6—)
a ”
a a a a
Q /P(P-112 [ =2 _ 3aP =2 4+ 6P(02 + a®P)—2 - 10aP%(3 0% + Pal )2
2.K 2 3 4 B
7 ] ) a
2. 2 2 2 4 3¢
+ 15P°[a"P (6 & ouP)+3a]'—6}
¢
a a a 2
u
Q /P(P—1)3 (—i- UgP ~— + 10 P(oaoczP)—s'— 200?2(3 b'do chz)—é'}
3.k 3 a 5 [3
o a o o
a a F
4
S P TR R L R (CLINPLI R
* a g T
a a
5 5 6
% 4 /PP’ (=2 - 6 0P =F
q 0
a
Q sppe1)8 L
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Since, in the final moment equations, A, B and C do not appear except as
their preduct with k, the above equations are valid for all values of Ke,
including k=0. Let,

Pz (1 -2 kCaZ)'1 (4.93)
2
- o = kBo (4.94)
k
2 2
R =0 Pkt(kB) /2 = 2(kA)(kC)) (%.95)

then, the solution of egqn. (4.88) is given by

P, 6
Ik(y) = exp(Rk) ¢ (y) © Q
k n=0

nk Y (4.96)
where the coefficients Qn g are given in Table 4.7. The integrals
required to obtain the above solution are given in the Appendix. Note,

that when Pk=1. Qn,k(n=1"“6) vanish and Qo,k simplifies to
Q = 1z (-1" Pi (a /o) A /nt (4.97)
The upper limit in the summation may be higher if additional terms are

considered in the shape function. It follows from eqns. (4.83), (4.87)

and (ulgs) that,

6 = Py
nfo [Qn'k Iy Ay) e (y) dyl
Mk(uc) =z exp(Rk - Ro) € — B (4.98)
)

[Q, o/ " WY 6, () ay]
n=0 ' e

\\\\» Consider the simplifications of egn. (4.98) for each detector type



Type 1, Case A: kC=Q, i.e., linear calibration

curve, and
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generalized spreading function

Since,
kC = Q
therefore,
P = 1
QX,k = 0 n = 1, 2 «oe
Hence,
M (e)/M (ue) = exp[ozk (y = k/72) B'ZJQ /Q
k(M = Y 0,0" %,k
QO K is given according to eqn. (4.97). For a

(4.99)

(4.100)

(4.101)

(4.102)

Gaussian spreading

function, this equation yields the results derived by Hamielec et al

(1978} .

Type 1, Case B: kC¥0, i.e., nonlinear calibration curve

and Gaussian spreading function

When the spreading function is Gaussian,

Qv = "k

%k

]
o
3
n
-
n

Therefore

M(e)
[(k-Y)Fk + 1]

M(e) Mk(uc) = exP(RO'Rk) /(Po/Pk)

((1—PO)TJ

(4,103)

(4.104)

(4.105)
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It is obvious that a direct relationship between the kth corrected and

uncorrected moments is not obtained.

Type 1, Case C: kC#£0, i.e., nonlinear calibration curve, and

generalised spreading function

Let
n ® Pk e Pk
y - 1,
Y = iw y, W(y)e, “(y) dy / iw WCy) ¢ "(y) dy (4.106)
Then
M(c) 6 —
[(k—Y)Pk+ ¥] nfo Qn‘O yO
(o) M Cue) = exp(Ry-R) )—7 — (4.107)
n
[(1—?0)'{] nfo %.k vy

Since yz is defined in terms of the wunknown distribution W(y), the

practical use of eqn. (4.107) depends upon obtaining a suitable

approximation for yﬁ. This will be discussed later.

Type 2, Case A: kC=0, i.e., linear calibration curve, linear

extinction coefficient fit, and generalized spreading function

Eqna. (#4.99)-(4,101) are applicable and hence,

McCe) /M (ue) = explo2kB' (~kB'/2+2B'4B")1Q. /Q (4.108)

0, 0" %,k
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It is significant to note that, %é‘in the case of the other detectors, a
simple correction factor has beeé derived for’ the turbidity detector in
the Mie scattering regime. A lénear calibration curve is not uncommon
in chromatography. The condition of a linear extinection coefficient fit
is more difficult to satisfy; however, if the spreading function is not
excessively broad, this condition may be approached. Relationships for
some 1mportant diameter averages are given in Table 4.8. Note that,

when B"=4B' (Rayleigh scattering), the formulae for the diameter

averages reduce to those derived by Hamielec et al (1978).

Type 2, Case B: KkC#0 and Gaussian spreading function

Eqns. (4.103) and (4.104) are applicable and hence,

Mk(UC) = exp(Rk-Ro) /(Pk/PO)I W(y) ¢kk(y)dy/f W(y)¢oo(y)dy (4,109)

Let,
Pk = 1 % fk (8.110)
Therefore,
© Pk o fk
oWy 2" (y) dy = s Wy ¢k(Y) " (y) dy (4,111)
— -

f
If ¢kk(y) 18 approximated as

£, k-2 . £ k2 -8 f,
) (y) = [D(y) K" '(y)] ™ = constant [D(y) D(y)] (4.112)
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where the extinetion coefficient is assumed proportional to Ds(y). then

- p
. S OW(wy) ¢kk(y) dy = constant M(e¢) (4.113)
i (k-o-gk)
(\\ﬂ?ere,
’? gk = (k—Z-S)fk (4,.114)

If 8 in eqn. (4.112) is independent of k, eqn. (4.109) simplifies to

amr——

M (uc) = exp(R -R )P /Py ﬁii) )/ﬁ(c)
8 &
= exp(Rk—-RO)/Pk/PO M(c:( /M(e) (4.118)
€ &
or alternately,
M(e)
(k+gk)
M&c) Mk(uc) = exp(RO-Rk)/PO/Pk (4.116)
0

To apply this equation, k+gk is set successively equal to 0,1.2 ... and

solved for k. Using the corresponding uncorrected moments, the ratios

Mo(c)/Mgéc). M1(c)/Mgéc), Mz(c)/M%fc) etc. can be calculated and hence

M1(c), Mz(c) ete., since Mo(c) = 1.

This approximate method is apparently simpler than the treatment
outlined in Section 4¥.4.2, However, it lacks the attractive feature of
the previous method namely, a calculation of the size variation across

the chromatogram. When Rayleigh scattering theory is applicable, 8 1s
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identically equal to 4, B"=zu4B', f =0 and eqn. (4.116) yields the

k T Bk
formulae derived by Hamielec et al (1978). Note that, when Rayleigh
scattering theory is not applicable, 8 may still be approximated as &4;
however , now, BWLUB!', fkio, gkio.

Type 2, Case C: kC#0 and generalised spreading function

In accordance with the development for Case B, one obtains

M(e) & —
(k+g ) I y
K n:OQn'O 0
= exp(Ro-Rk) 4,117
M(¢) Mk(uc) 6 —
g I oQ i Yy
n=0

It is seen from the preceding analysis that, a direct

.

relationship exists between M (c) and M (uc) only when kC=0; otherwise,

e~
Mk(uc) is related to a ratio of true moments. In terms of applicatioen,

this presents, however, no difficulty.

]

Calculation of y, and choice of 8

n 3

7

When W(y) is narrow, it 1is reasonable to approximate yi by vl

p
where, vp is the peak retention volume. This is shown later for the
experimental chromatograms of narrow particle standards. It is

conceivable that when W(y) 1is broad and axial dispersion relatively

small, yn

K may be calculated by replacing W(y) in egn. (4.106) by the

actual chromatogram. Alternately, yz may be set equal to ;n where v is
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the mean retention volume based on the actual chromatogram.

If Rayleigh scattering theory is applicable, then, the value of 8
is identically equal to 4. Otherwise, it 1s less than 4 and varies with
the particle size range. A value in the range, 2<8<4 is proposed.

'

The above suggestions were evaluated using synthesized
chromatograms for a turbidity detector in the Mie scattering regime
{eans. (4.,116) and (4.117)7. It was more convenient to compare
uncorrected diameter averages with those calculated directly from F(v).
The results are shown in Tables 4.9 and 4.10. The calcul‘ations of the
diameter averages for a specific value of 8, with and without the
approximation E"' 'v'n. were almost identical and are not shown. It is
observed that, calculations based on the moment equation, for g=2, 3 and
4, do not differ significantly from each other and agree closely with
those calculated from F(v) directly. The assumption of Pk = 1 [egns.
(4,116) and (¥.117) reduce to egn. (4,108)] 1leads to significantly
erroneous results, even though, the actual value of Pk 13 only slightly
different from unity. In other case studies made, where a value of Pk
as higl;: as 1.2 was used, the above approximations were found to be
equally valid.

Application of some of the equations derived in this section is
demonstrated in Chapter 5. This section 1is concluded by briefly
comparing all the analytical methods discussed 30 far. The comparison
is given in Table 4.11. It is appropriate to mention here that, though,
the spreading function parameters are considered independent of

retention volume in deriving solutions to the integral equation, in
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practice, they are slowly varying functions. When applying these
equations to experimental chromatograms, however, error resulting from
use of constant average parameter values 1is not 1likely to be

significant.

Table 4.11 A Comparison of the Analytical Methods for Solving the
Integral Equation.

Attributes Method 1 Method 2 Method 3

Can handle nonlinear No Yes Yes
calibration curve

Can handle generalized Yes No Yes
spreading function

Can treat the turbidity No Yes Yes
detector using Mie theory

Possible to treat chemical No Yes - Yes
absorptiog/f]

Soclution obtdined as a No Yes No

function of retention volume

4.5 AN ABSOLUTE PARTICLE SIZE DETECTOR BASED ON TURBIDITY SPECTRA
ANALYSIS

In the chromatography of suspensions, axial dispersion phenomenon
is rather pronounced, chiefly, due to the small diffusion coefficients
of the particles. This requires significant axial dispersion
corrections to ob£ain absolute particle size distributions and particle
diameter averages; various correction procedurés develeped in previous

sections may be used in this regard. Alternately, as suggested Dby
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Hamieleé (1978), the coupling of a chromatograph, with an absolute
detector such as one based on turbidity-spectra analysis, can provide an
absolute measure of the size distribution of the detector cell contents
as a function of retentidn volume. It is then possible to obtain size
distribution information of the injected sample. The theoretical basis
for such a detector follows from eqn. (3.25), which is rewritten as .

-~

-4

F(v) « N(V) f K(v)DZ(v)f(v,D) dD (4.118)
O Y

In principle, the measurement of turbidity as a function of wavelength,
should permit one to solve eqn. (u.113; for N(v) and the .parameters of
the frequency distribution, f(v,D). Due to axial dispersion, the
contents of the detector cell will be a mixture of different sized
particles. It is reasonable to expect th;t, with adequate resolggion,
the distribution would be narrow, unimodal and representable by a lwo
par ameter distribution function, even thoughiihe size distribution of
the total sample may be complex. In some instances, it may be of
interest to measure the refractive indeg og the particles and relate
this to a material property. For example, the refractive index might be
used to give a measure of the copolymer composition of latex particles.
One could, therefore, treat the refractive index ratio, m as an unknown.

4
It follows from egqn. (4.118) that, the turbidity ratio at two

wavelengths, Fi(v)/Fi(v) is given by
i 1

77
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F (v)/F (v) = s K (v) D2(v) £(v,D)dD/sf K. (v) D>(v)f(v,D)dD (4.119)
Ay Ay 0 M 0 M

If further, f(v,D) is assumed to be lognormal with parameters u(v) and

32(v), then, .

<©

F (v) £ K (v) D(v) expi-[anD(v) - u(v)12/252(v)}dD
Ay o0 M
Rl - - 2, 2
1 J l&(V) D(v) exp{~[enD(v) = nu(v)1 /20 (v)}dD
0 M1
= £1(V) (4.120)

—2
The parameters, u(v) and o (v) may be obtained by minimizing the
criterion

I
Y = L

- ' »
. | FA(v)/Fl(1v) £1(v) | (4.121)

2 i

where, I is the total number of wavelengths scanned. Due to the inverse
particle diameter-retention volume relationship, the search 1is
constrained by the requirement that,

u(vi_”) < u(vi)‘ for Vi > vy (4.122)

Any suitable multivariable search method may be used. The search

proq’édure'used in this study was based on a Hook and Jeeves direct

A

search method. Without any loss of accuracy, it was possible to assume

in all cases that Ez(v) is .constant across the chromatogram. This

w

significaﬁtly reduces computational effort, requiring a two variable
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! B ASsume —- ‘
| 95:7,0%,0"8,D(9), M, (¥),4(v1),97(v1) | ;
l
’ tilculiate ]
fﬁ at ‘v(or Ay)inc:cments,wx(y),F(v),f'(v) j

T
[]

] Ovtional
;Add random arrors to £'{v)
Smoothen t'(v) dJdata

.

Ganerate
Ky at AD increments from DLow to DHigh

Limits correspond to retenticn volume limits of
synthesized clhiromarograms, vy and vp

J=0 —l
M = (VF - Vl\ ,/AV + ki
()
o =J+1]

[
g |

2 variable searcn * i ;l variable search *
Minimise ¥ ; Minimise ¥

i

Set interval estimates for u(vj+1)

| |
equal to u{v.) and u(vJ)—e [
|

3
! Return to 1 if J < M

|

Calculate
N(v), Dp(v), Du(v), Dg(v), Dy (v), Dy(v), D (V)

Overa;l D“, Dy, D§£ Dggs Dy, Dr

* When calculating the Integrals in eqn.(4.120) , the integration
is dane between avpropriate cut-off diameters corresponding to
current values of search variahbles.

Fig. 4.15 Computer flow~sheet for calculating particle diameter
averages using the absolute detector
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search only at the initial retention volume, followed by a single
variable search at all other retention volumes. The computational

scheme is given in Fig. 4.15.

A Simulation Study to Evaluate the Absolute Detector

So far it has tacib1§ been assumed that, the lognormal
distribution is the appropriate one to use,. This supposition can be
tested by comparing f(v,D) from egn. (4.118) with f(v,D) given by eqn.

i
(4,36Y, which is stated here again for convenience

W(y) G(v,y) {K(y) DzQx) }—sz

£(v,D)dD : (4.36)
£ WY v,y KDY 1y
i 0
Since,
Wiy) = N(y) K(y) D3(y) (4.123)
it follows that,
WX§Y) = Kkgy) wxgy)/Kxgy) (4.128)

- Therefore, if wx(y) is assumed, eqn.(4,124) allows W(y) at other wavele-
1
ngths to be estimated. Hence, if the spreading function is known, the

ratio FA(V)/FA(V) can be calculated.
i 1

Results

Without any loss of generality, the particles were assumed to be
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nonabsorbing in the wavelength range scanned, 25uo..usoo°A. A suspension

of polystyrene particles 1n aquecus media was considered. Up to ten
turbidity ratiocs were used in the minimization step. Both linear and
2

nonlinear calibration curves were treated. o ,the variance of the
Gaussian instrumental spreading function was varied across the
chromatograms . -

The results for Case 1 and all relevant simulation data are given
in Table 4,12, wx(y) 15 assumed to be Gaussian with mean, ¥ and

1

variance, o When a two variable search for u(v) and 52(\:) was

0"
per formed at each count across the chromatogram, JZ(V) was found to
oscillate about a mean value. Therefore, it was decided to treat 52(\')
as a constant across the chromatogram and its value was determined by a
two variable search at the starting count. As shown in Table 4.12 u(v)
consistently decreases from 7.74 at count 7 to 6.04 at cownt 16
corresponding to the negative slope of the calibration cuwve. The
results 1n Table 4.12 and Fig. 4.16 where the size distribution 1is
plotted, provide adequate justification for the assumption of a
lognormal distribution function.

It would seriously limit the applicability of this method if the
search procedure was overly sensitive to initial parameter estimates.
This fortunately is not the ¢ase. Poor estimates may, however, lead to
an erroneous solution.

Fig. 4.17 shows some calculated individual species chromatograms.

(Only portions of the chromatograms are drawn, sufficient to identify

the peak retention volume. Curves are not drawn %to scale). A point on

LN

~
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the chromatograms is calculated from the product f(v,D)xN(v) for a known
D. When the peak retention volumes are plotted against corresponding
diameters, the points lie close to the assumed calibration curve. This
procedure is suggested to ascertain the correctness of the solution.

Table 4.13 summarises the results for Cases 2 and 3. The se
differ from Case 1 in the magnitude of the particle diameters. The data

for Case 3 is typical of capillary chromatography, the retention volume

Table 4.13 The Absolute Detector-Simulation Results for Cases 2 & 3
(Linear Calibration Curve)

Case 2 cg = 1.25 countz, y = 11.5 count, q2 = 0.75 countz, 1 count=5my ,

D =8 x 10u exp(-0.295y). Bracketted numbers were obtained when
02 was varied linearly from 0.75 (v=7) to 1.25 (v=16).

Dn DS ] DV Dss Dw Dt CA)

Egqn. (4.36) 1814 1921 2037 2291 2587 2929
(1822) (1928) (2043) (2297) (2593) (2935)

Eqn. (4. 120) 1789 1911 2042 2332 2669 3053
(176Q) (1888) (2028) (2340) (2707) (3132)

% Deviation 1.4 0.5 0.2 1.8 3.2 y, 2
(3.4%) (2.1) (0.7 (1.9) (0.7) (6.7)

2

Case 3 oy = 1.25 secz. ¥ = 905 sec, 02 was varied linearly from 30
(t=855) to 45 (t=955)sec>, D = 2.56x10 Sexp(-0.0248 t)
&-
Dn g b, Dss D, D, (7A)

Eqn. (4.36) 3579 3728 3884 4216 4579 4975
Egn. (4.120) 3616 3769 3929 U271 4pus 5056
% Deviation 1.0 1.1 1.2 1.3 1.4 1.6
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axis being replaced by a time axis for convenience. It is_ interesting

2 has little

to note from the results of Case 2 that, a nonuniform ¢
effect on calculated diameter averages. Evident from Table 4.13 is the
excellent agreement between diameter averages computed from eqns. (4.36)
and (4.,120).

The results of cases 4 and 5, which involve a nonlinear
calibration curve, are given in Table 4,14, In Case 4, nonlinearity in

the calibration curve is restricted to the higher diameter- end, while it

Table 4.14 The Absoclute Detector-Simulation Results for Cases U4 & 5
{Nonlinear Calibration Curve)

2 2

Case U 02 = 1.25 count®, ¥ = 11.5 count, ¢ = 0.75 countg, 1 count=5my

0
D = 36584exp(-0.295y)+3x10izexp(—By)

Dh Ds Dv DSS Dw Dt (TA)

Eqn. (4.36) 767 812 860 966 1086 1223

Eqn. (4,120~ 763 814 869 991 1134 1295

% Deviation 0.5 0.3 1.0 2.6 4.4 5.9

2 2 - 2 2

Case § ao = 1.25 count ™, ¥ = 11.5 count, ¢~ = 0.75 count,1 count=5m

D = 1.75x106exp(~0.85u3y)+3.S1x103exp(—0;0531y)-1.521exp(0.u138y)
D D D D D D, (°an
n s v ss w t

Eqn. (4.36) 1537 1587 1629 1706 1773 1844
Eqn.. (4.120) 1357 1413 1473 1601 1743 1900
% Deviation 1.7 11.0 9.6 6.2 1.7 3.0
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oceurs at both ends in Case 5. Imperfect resolution may lead to a
bimodal distribution in the detector cell, even when the input sample is
unimeodal . This was observed at higher retention volumes for Case 5,
which explains the larger discrepancy between calculated 21, DS and D@
from egqns. (4.36) and (4.120).

To evaluate the robustness of the search procedure when the data
have experimental error, random errors (a mean of zero and standard
deviation, ce) were added to the turbidity ratio data of Case 1. The
data, subsequently smoothened, is shown in Fig. 4.18 for different
values of 9" Results in Table 4.15 indicate substantially the same

values of diameter averages as those calculated for Case 1.

Table 4.15 The Absolute Detector - Effect of Random Error in Turbidity
Data on Diameter Averages

Q
Dn DS Dv Dss Dw Dt ("A)
Case 1 (0e=0) 792 838 889 1001 1131 1275
Case 6 (s _=0.01) 791 “¥&3s5 883 988 1110 1250
case 7 (v_=0.02) 798 838 882 977 1088 1215

Discussion

In all the simulation cases, chromatograms at any one wavelength
were derived frem a Gaussian W(y) at A =2540 3. These chromatograms are
not Gaussian and those at higher wavelengths are skewed towards the low
diameter tail. Theré}ore. the validity of a lognormal representation of
the size distribution in the detector must not bde linked with any

{

E
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-

specific form of a chromatogram and appears to be general. (This was
additionaliy confirmed by simulating cases where W(y) at A =2540 i was
assumed lognormal). These comments apply to unimodal chromatograms when
the resoclution of the instrument is‘adequate. Caution must be
excercised when the calibration curve is nonlinear.

Results for the cases discussed earlier do not differ
significantly from those evaluated using a two variable search at each
retention volume. This is due to the relatively large magnitude of the
par ameter y(v) compared to ;z(v), so that a small discrepancy in the
value of 52(v) has little effect. This useful approximation results in
a considerable saving of computation time which were typically of the

order of 300-400 secs. (CDC 6400).



CHAPTER 5

PARTICLE SIZE ANALYSIS USING SIZE EXCLUSION CHROMATOGRAPHY

5.1 INTRODUCTION-REVIEW OF PREVIOUS INVESTIGATIONS ON SIZE EXLUSION

GHROMATOGRAPHY OF PARTICLES

Krebs &nd Wunderlich (1971) were the first to report a separation
of poly-methyl methacrylate and polystyrene latices using silica gel
having very large pores (500-50,000 oA). This was followed by the work
of Gaylor and James (1975), who fractionated polymeric latices add
inorganic colloidal gilica. using columns packed with porous glass and
water compatible polymeric porous gels. Their experimental work
included examination of various packing types as well as chromatogram
reproducibilify. Investigations into the use of a differential
refractometer showed the signal response to be highly dependent on both
chemical composition and particle size. Coll et al (1975) experimenting

with porous glass packing (CPG, 500-3000 °a pore size), found it

necessary to add electrolyte (potassium nitrate) as well as sur factant \

A

(Aerosol OT) to the aqueous eluant. In the absence of electrolyte latex

"~

particles could not sample the pore volume. Peak broadening was /
extensiveiand system resolution did not approach that normally observed
with SEC of polymer molecules. .
Hamielec and Singh (1978) presented the first comprehensive
theoretical and experimental investigation of SEC. Using the chrrier

solvent suggested by Coll et al and porous glass and silica paEFihg

~130-
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(100-30,000 °

A), they established the universality of the particle
diameter-retention volume calibration using latices of different
composition. The slope of the calibration curve was essentially
iﬁdependent of the mobile phase flowrate, however, it was dependent on
the packing size, the slope being smaller (corresponding to a better’
resolution{. for a reduced packing size. The effect on peak'variance of
the mobile phase flowrate and latex particle size is shown in Table 5.1.
Analytical expressions were derived for a general detector which
corrected the diameter averages calculated from the chromatogram for
imper fect resolution. Chelof the detectors considered was a turbidity
detector in the Rayleigh scattering regime. They had marginal success
in predicting particle diameter averages for injected latices, In a
sepa;ate publication [Singh and Hamielec (1978)] these authors reported
the use of SEC for monitoring the growth of particle size in emulsion

polymerization.

Table 5.1 Peak Broadening Data of Hamielec and Singh for Polystyrene

Latices
Mobile Phase o Chromatogram Variance (mizl o
Flowrate (mt/min) PS-1000"A PS-2340"A PS-3120°A
0.94 23.09 20.66 19.39
2.58 29.75 28.69 27.88
7.50 34.47 32.89 29.34 |

Nagy (1979) performed an extensive investigation of the
chromatography of polystyrene latices using porous glass packing

materials - CPG (500-10,000°A pore size) and Fractosil (25.000°A pore
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éize). The Fractosil system enabled a significant increase in pore
penetration by 2all particle diameters and represents, more
aﬁpropriately. permeation rather than exclusion chromatography. In a~
distinet departure from previous practice, only emulsifier (ionic) was
added to the aqueous eluant resultix;g in significantly reduced colloid
loss within the packed bed. Particle loss was attributed to entrapment
within the borous matrix, resulting in skewed chromatograms. Material
balance calculations reveal that gsmall particle sizes are completely
recover;ed while significant sample loss occurs for the larger particle
sizes. Ionic strength effects observed with the Fractosil system are
shown in Fig. 2.6. While these effects are similar to those in HDC and
may be explainéd analogously, RF féctors are higher ; when size exclusion
occirs as with the CPG columns, RF factors even larger were observed.
This is due to the fact that latices, to a varying extent depending upon
the pore size, experience a fraction of the total pore volume while the
entire pore volume 1s accessible to the marker species, Attempts to
model .the data in Fig. 2.6 were rather unsuccessful.

Johnston et al (197§) recently investigated the t‘easibiiity of
SEC for particle size measuremént} using CPG columns (1000 & SOQOOA
pores) and polystyrene latices. They observed a similar ionie strength
effect.as described by Nagy. A reduction in packing size caused a small
increase in R_. while significantly increasing sample 1loss. A linear

F

calibration curve was obtained in the size range 60-300 nm using a

single 3000°A pore column capable of resolving 1latices with mean

diageter ratios as low as 1:3. In general, peak variance increases with
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particle size, reaches a maximum and then starts to decrease, consistent
with the behaviour observed in SEC of polymer molecules. The data in
Table 5.1 shows only the decreasing trend. Using the analytical method
developed in Section 4.4.2, the measured weight average diameter was
found in good agreement with measurements based on light scattering.

So far, all the investigations have been largely concerned with
polymeric latices of diameters greater than 20 nm and packing sizes
greater than 40 u. Kirkland (1979) investigated the properties of s%all
porous silica mierospheres (less than 10 u particle siié‘and less than
75 nm pores) and superficially porous particle (solid ycore, porous
crust, particle size less than 25 u) for rizing inorganic silica
sols in the range 1-50 nm. The effeé;j::fzzzf;ased flowrate on peak
broadening as measured by the plate height and the ionic strength effect
were similar to those observed in earlier investigations. Columns using
both types of packing materials exhibited relatively high resolution
because of rapid equilibrium of slowly diffusing colloids with the
pores. Silica sols greater than 80 nm were retained within the pore
structures .into which@ they were able to permeate. However, 1larger
silica s0ls were unable to permeate the.pores and eluted normally. Of
course, if a colloid size approaches'the size of the interstitial pores,

gsult of simple filtration.

then, it is permanently retained as a r
. jva

The principle results of the above investigations are now
summarised.

Peak Separation

1. The particle diameter-retention volume calibration curve, in
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general, is composed of two linear segments - the segment at low
retention volumes, beyond the exclusion limit of the porous
packing, corresponds to HDC size separation, while the segment at
high retention volumes corresponds to SEC size separa?ﬁgp.

The calibration curve is insensitive to flowrate variations.
Increasing the ionic strength of the aqueous eluant causes a shift
in the calibration cwve to higher retention volumes due to
increased pore permeability. At low ionic strength, a universal
calibration is obtained.

A smaller packing size improves peak separation.

-

Broadening

Peak broadening, in general, increases with colloid size, reaches a
maximum and then starts to decrease as the exclusion limit of the
pores is approached.

Peak broadening increases with an increase in flowrate.

‘Increasing the ionic strength, increases dispersion due to

increased accessibility of the pores.

A well designed packing, such as one where the particle has a solid
core and a porous crust, can significantly reduce dispersion. For
CPG type of packing material, peak breadening can be excessive.

The chromatogram of narrow standards are generally skewed, the
extent of skeuing.increasing‘with particle size. Skewing possibly

results from the entrapment of particles within the porbus matrix.
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5.2 EXPERIMENTAL

5.2.1 Equipment

The apparatus employed for chromatographing particle suspensions
has been schematically represented in Chapter 1. The instrumentation
consists of 1) pump 2) sample injection valve 3) packed columns L)

detector 5) volume counter 6) strip chart recorder. Details follow.

>

Pump A positive displacement pump (Milton BRoy Mini Pump) with an
adjustable delivery volume was used. This pump was designed to handle
back pressures of up to 5000 psi. Pressure fluctuations were damped out

with an inline pulse damper.

Sample injection valve A conventional six port two way injection valve

manufactured by Disc Instruments Inc. was used. The volume of the
sample loop was 0.4 mt approximately.

Packed columns The columns used were dry packed using a packing

apparatus purchased from Mandle Scientific. The packing employed was

CPG of pore ;izes 1000, 2006 and 3000 {A and 200-400 mesh size.

Detector The detector was a Pharmacia UV spectrophotometer with a cell

of 1 &m path length and operating wavelengths of 254, 280 and 350 nm.

Volume counter A Water's liquid velume indicator with a imt siphon was

used to monitqa eluant volume. At the low flow rates used, the siphon
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dump volume required no correction.

Carrier fluid The carrier fluid was deionized water containing 1 gm/%

each of sodium nitrate and Aerosol O0T. Compared to the use of potassium
nitrate suggested by Coll et al (1975,&. the carrier ‘solvent used had

much better clarity and at room temperature, the electrolyte has no

tendency to precipitate the surfactant.

Particle standards Polyst?/rene latices with a narrow size distribution

were used. These were purchased from two sources -~ Dow and
Polysciences. The average diameter of the Dow latices were 85, 109,
176, 209, 220 and 312 nm while those of Polysciences were 57, 98, 183
and 275 nm. The frequency data of the Dow latices measured by electron

microscopy are given in Appendix A.3.

Sample injection procedure Sample preparations were made by dispersing

a few drops of standard latices in 100 m¢ of carrier fluid. An
ultrasonic bath was used as a dispersing aid. Solute charges were

typically less than 0.01 wt. %.

I 4

5.2.2 Calibration of Columns

Three columns of 3090 X pore size and one each of 2000 % and 1000
3 were packed. They were individually calibrated. All the three 3000 1
columns showed similar peak sepa;‘ation characteristics for particle

sizes between 312 nm and 57 nm. However, peak broadening was much
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larger for one of the 3000 % columns. This colu@guyas discarded. Of
the remaining two 3000 R columns, one was subjected to the following:

The column was disconnected from the chromatograph and mounted on
the packing apparatus which was then activated. This cause the packing
in the column to further settle, Additional packing material was then
added. The cclumn was once again calibrated. The improvement in the
calibration curve was not significant. A significant loss of the larger
particle size colloids occurred in the column following this additional
treatment. This is clearly shown in Fig, 5.1 for a 312 nm sample.
Note the shift in peak position probably caused by loss of pore volume
due to attrition between particles of the glass packing. This
additional treatment was subsequently abandoned,

The 1000 X column did not show any resolution between 312 nm and
57 nm particle sizes. The calibration curves for the 2000 R. 3000 R
columns and their combination are shown in Fig. 5.2. The 57 nm particle
standard appears to have been erroneously characterized by the supplier.
This was subsequently confirmed by electron microscopy. The 2000 &
column exhibited a sharp upturn in its calibration curve close to its
exclusion limit. It is to be noted that while data points corresponding
to 312 and 275 nm diameter particles appear on individual column
calibration curves, they are not indicated for the calibration cu;ve of
the combination. This is because these larger diameter particles were
completely retained in the packed columns, thus generating no detector
response. The percentage recoveries of these particles from individual

columns were considerably less than 100%, resulting in their complete
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Fig. 5.1 Chromatogram of 312 am sample (a) berore treatment
and (b) after treatment.
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RETENTION VOLUME

-

a5 a7 49 51 53 55 57 58
B COLUMN 1 & 2 - 3000 °A CPG
- COLUMN 3 - 2000 °A CPG
LENGTH OF COLUMN 2 ft.
B FLOW RATE 0.7 mi/min.
L [ 4
Q

COLUMN 2

gL COLUMNS 1,2, 3 ™~z
COLUMN 1
- \ Q~ -
- e
f A\ ~G v ®
— COLUMN 3
-
[~ o j=¥e] ®
B COLUMN CALIBRATION CURVE
1 2822 exp (-.1777v)
2 3365 exp {-.1815v)
B "3 670 exp (-.1183v) (LINEAR PART)
1,23 25684 exp (-.05868v)
13 14 15 16 17 18 19 20

RETEMTION VOLUME

~

Fig. 5.2 Particle diameter-retention volume calibration curves.
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loss when the columns were combined in series.

At this stage it is useful to make a comparison of the present
calibration procedure with that of previous workers. Coll et al (1975)
employed a set of 5 column { a total length of 6 m packed with CPG
3000, 2000, 2000, 1000 and 500 ' porous glass. Tney\ obtained a linear

-

calibration curve in the range 200 té) 25 nm. They did not calibrate
each column individually and it is very likely that the 1000 and 500 °a
colums contributed insignificantly to peak separation. Hamielec and
Singh (1978) investigated peak separation using several column
combinations. Like their predecessors, columns were not calibrated one
at a time. Their best calibration curve obtained using two 4 ft columns
packed with CPG 2500 and 1500 b porous glass, respectively, had a slope

1

of 0.0928 ml~'. Using 2 columns (CPG 1000 X and CPG 3000 °

A) of
unspecified length, Johnston et al (1979) measured a slope of 0.043§.
Their ionic strength was even lower than that of the earlier workers.
In the present work it has been able to obtain a slope of 0.05968 ml—1
with 6 ft of packed column. To discriminate between columns, the
appropriate criterion for comparison is the product (D20)2. While
identical conditions were not used, the peak variances of the
polystyrene 1latices measured in the present work were considerably
smaller than those reported earlier [Hamielec and Singh (1978)], leading
to lower (chr)2 values. The merit in individual column calibration is
the elimination of columns with poor resolution (high Dz) and large peak

broadening (high 02). Finally, Hamielec et al could detect particles up

to .500 nm while the upper limit in the present work is less than 275
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nm., This appears to be related to the packing density of the columns;

the denser a packed bed, lower the maximum particle size that can elute

from it.

5.2.3 Calibration of Detector

The detector was calibrated by pumping solutions of soéium
dichromate of known absorbance through the sample port of the detector.
The solutions were prepared in the carrier f{Eid which served as
reference. The jrecorder response was measured as the ultimate height
reached on the chart paper above the baseline, when the sample fluid was
switched to a sodium dichromate solution of known absorbance. The
calibration was insensitive to flowrate variations.

The data shown in Fig. 5.3 indicate a linear response at
wavelengths of 254 and 350 nm. However, at 280 nm a distinct departure
from linearity occurred at low sample absorbance. This nonlinearity has

implications in particle size measurement.

5.2.4 Particle Standards - How Monodispersed Are They?

The electron microscopy frequency data of Dow polystyrene latices
is given in the Appéndix A. 3. The micrographs of the Polysciences
latices are shown in Figs. 5.4.5.7. Contrary to the claims of the
suppliers, these latices are not truly monodispersed, the micrograph of

the 275 nm sample in fact revealing two distinct particle populations.
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Fig. 5.4 Scanning electron micrograph
of 57 nm Polysciences
polystyrene latex
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Fig. 5.5 Scanning electron micrograph
of 98 nm Polysciences
polystyrene latex
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Fig. 5.6 Scanning electron micrograph
of 183 nm Polysciences
polystyrene latex
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. Fig. 5.7 Scanning electron micrograph
of 275 nm Polysciences
polystyrene latex
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Calculation of the average diameters, 'Dn to Dt for the Dow

-

-latices indicate tl'uem to be virtually identical. This probably is also

true for the _Polysciences latices. Therefore, the fact that the latices
are not truly monodispérsed should apparently have no- bearing on the
diameter-reténtion volume calibration, However, as observed in the
syr;thesized chsoma’cograxixs. Figs. 4.4-4,11, the peak position that would
be measured in the event of true monodispersity of the latices can under
certain conditioﬁs be significantly different from the peak position of
the F(v) chromatogram.

Evident from Figs. 4.4-4.11, is the considerable difference
between the shaps of the spreading function and the F(v) chromatogram.
It indicates the falla;y of seeking a correlation between the mean
f'etention volume of the latices and the statistical properties of their

chromatograms, rather than those ‘of the spreading functions such as one

attempted by‘Johns’cén et al (1979).

- 5.2.5 Measurement of Extinction Coefficients

Heller and Tabibian (1975) noted’ that'errors, due to laterally
s;:attered }ight and the corona effect, as large as to cause a 30%
" reduction in measured turbidity, may result 'if instruments which are
perfectly suitable for ordinary absorption measurements are used for
turdbidity measurements without proper gnodifieations'. To evaluate the
per formance '6f‘ the turbidity detector used in the pr:e's‘éqt study,

. N ;
particle suspensions of various concentrations of several pélysgyrene

- e

VS ot \

latex standards wer§ prepared. Their extinction coefficients .were

_/‘_(
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measured using both a bench-top UV spectrophotometer (Beckman, Model 25)
and the online detector (Pharmacia). |

In the absenee of multjjple scattering, eq. (3.12) describes the
experimental extinétion of light by colloidal part;cles. It is

re-written here as

1 . <
Fnr) = 282N .05

where A is the optical density. A versus ¢ data collected from a
Beckm;n sqgctrophotometer then yields the value of K for a knqwn D at
any speci ‘wavelength.

To measure K using the online detector, the packed columns were
replaced by a sui;able length of 1/16 in 0.D. stainless steel tubing and
peéé areas corresponding to injections of various particle suspensions
and sodium dichromate solutions were recorded on chart paper. The
following analysis was then applied.

The recorder i*esponse F(v) is related to the optical density in

the detector cell, A'(v) by ' »
A )

F(v) = €& A'(v) (when response is linear) (5.2) °

Therefore,
<

~ . . Q N . -

J F(v) dv = & At(v) dv = £ A Vs (5.3)

o 0 -

o5

where A is the optical density of the injected sample and V_ is the

sample volume. " The product ;VS may be estimated from the slope of a
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peak area versus A plot for sodium dichromate.. For known weight
concentrations of particle suspensions injected, A is considered the
unknown; A versus ¢ data are then obtained from a measurement of their
peak areas and hence, K calcualted from egqn. (5.1). It should be noted
from egn. (5.3) that, in the absence ;f opéical effects noted earlier,
peak area versus optical density data for the various sized particles
and sodium dichromate solute must fall on the same straight line.

The data from the Beckman spectrophotometer measured at three
different wavelengths, 254, 280 and 350 nm are shown in Figs. 5.8-5.10.
Figs. 5.11-5.14 indicate the data measured using the online detector.
The ﬁeasured and calculated extinction coefficients are given in Table
5.2 (see Appendix A.2 for tables of scattering coefficients). The data
Shof? in Figs. 5.11-5.14 indicate that, -while, the smaller particles
(85," 98 and 109 nm) are indistinguishable from the dissolved solute
(sodium dichromate) in aé far as detector behaviour is concerned, the
detector response differs signifiéantly for the largeér diameter
particles. The reduced peak areas and hence turbidities measured for
the larger partiéles are consistent with the findings of Heller and
fabibian that, the .corona effect and the interference effect of
laterally seétgened light cause a reduction in measured turbidity,the
effects being more pronowmced for 1larger particles and causing a
deparéﬁre from the linear dependence of turbidiéy on concentration, at
concentr;tions lower thsa\tﬁose at which, it would occur in the absence

of such effects.
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Table 5.2 Comparison of Measured and Calculated Extinction

Coefficients -
Wave- Diameter (nm)
length
(nm) 85 98 109 176 183 220
Mie .
theory 0.1755 0.2530 0.3330 1.0686 1.1636 1.6600
Beckman 0.2372 0.3807 0.5260 1.5850 1.8330 2.4030
254
Online 0.2264 0. 3898 0.5054 1. 3280 1. 6640 2. 1460
detector (0.72%) (1.89%)
Me
theory”’ 0.1188 0.1755 0.2299 0.7831 0.8468 1.2518
280 )
Beckman 0.1121 0. 2008 0.2796 0. 9606 1.1710 1.5590
Mie .
theory 0.0472 0.0749 0.1030 0. 3639 0. 4056 0.6378
Beckman 0.0327 0.0654 0. 1000 0.3467 0.4830 0.6547
350 .
Online - - - 0.312 - 0.6295
detector

+Refractive index of polystyrene [Kerker(1969)]=1.5683+10.087*10 /)

Refractive index of water [Kerker (1969)]

where, 2

0

is the wavelength in vacuum (cm).

-11,, 2
-11, %

=1.3240+3.046°10 V4 P

®¥Measured from data of Silebi and McHugh (1979).

Q

Table 5.2 compares the measured values of extinction coefficients

with calculated values from theory at wavelengths of 254, 280 and 350

nm.

The loﬁer values of the extinction coefficients measured using the

online detector compared to those using the Beckman instrument, are due

to the optical effects discussed above.

The disagreement between the

extinetion coefficients caleg;ated from Mie theory (for nonabsorbing
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spheres) and the measured values using the Beckman instrument is very
significant, particularly at 254 and 280 nm.

— Silebi and McHugh (1979) concluded from the investigation of
their detector response that, instrument errors were not present and
"Mie theory for nonabsorbing particles was applicable in -evaluating the
turbidity signal. However , it appears that their measured vélues of
extinction cross-section are consisten}ly larger than calculated values,
despite a deceptively close agreement indicated on a log (extinction
cross-section) versus log (diameter) plot. Values of extinction
coefficient calculated from their data are ;lso shown in Table 5.2.

In an attempt to resolve the discrepancy between calculated and
measured extinction coefficients, one may consider the following
factors:

1. Polystyrene pacticles absorb light at 254 nm.

2. The particles éohtgin residual styrene monomer which sttgngly
absorbs lightq?t a wavelength of 254 and 280 nm. .

3. Additives in the latex formulations such as emulsifier ete. absorb
in the UV range.

y, The latex particles are not monodispersed.

Accordingly, SEC analysis of latex samples (dried and dissolved in

tetrghydrofuran) were carried out. The carrier solvent was

tetrahydrofuran and peaks were'monitored by a Waters' dual abgorbance

detector at wavelengths of 254 and 340 nm. The 1latter detection

-

.Fig. 5.15 shows the SEC traces for the 312 nm Dow latex sample.

‘(d‘

‘ wavelength was the closest to 350 nm available.
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Note the response at 340 nm is at twer;ty-f‘ive times the sensitivity of
the response at 254 nm and hence, considerably exaggerated‘v in
comparison. At 254 nm two peaks are clearly hoted. a polymer peak and a
secondgry peak whose retention volume corresponds to that of styrene
monomer . At 340 nm, since neither monomer nor polymer absorb, the
observed peak 1is attributable to the presence of additives such as
emulsifier.

For the other Dow samples (85, 109, 176 and 220 nm), the response
~ shown in Fig. 5.16 was typieal. Note the hump in the trailing end of
the SEC.tr'ace. At 340 nm, there was a 'distinct response though much
smallgr than that observed for the 312 mm sample.\

The SEC traces for the 98 and 183 nm Polysciences samples are
shown in Figs. 5.17 and 5.18. These are similar to the responses of the
312 nm particle though at 340 nm the effect was considerably smaller and
comparable to the other *‘Pow samples.

These observations were later confirmed by Shull (1979) according

to whom

<

-

1, Residual. styrene content in the particles is less than 1/2 wt %.

2. Tetrahydrof‘uran_jmayy cause the leaching of oligomers fram the latex
partic‘les.\ ‘lhis is evident‘in Fig. 5. 1? as the slight hump between
the tWwo peaks. ‘ |

3. The sur~factant used in pr%paring the iatices does not absorb in the
range 250-300 nm. S

On the basis of the above observations, i;; is' concluded that at 350 nm

the diécrepancy'bet;ween calculated and measured extinction coef‘t‘icie.ntsl

-~
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may be attributed to the presence of addit;ves in the latex formulations
and polydispersity of the latices. Whether or not, polystyrene latices
abéorb at 254 nm, can only be estéﬁlished once the contributions to the
extinetion coefficieﬁts from the additives, residual monomer and
oligomers if ani, are assessea. A combination of thé aforementioned are
probably respopsible for departure from theory at 254 and 280 nm.

-

5.2.6 Pérticle Recovery

From eqn. (5.3) it follows that the number of particles, Nout

which elute fram a column for a known injeéction, of . concentration co

(particles/cc), are given by

2.303r F(v) dv

N = 9 . (5. 1)

sz{;DZ

o

" The. number of particles injected is given by coVS. Therefore, the

number percent recovery R, 1s calculated as

12,3031 F(v) dv

0
R = 5 X 100 (5.5)

Aléernativgly, it follows from eqn. (5.4) that R may be evaluated as

(£ Fw avn, e
J . ,
R = < x 100 . (5.6)

(DI-Ffﬁ) dv) e



-165~

where the integrals in the numerator and denominator represent peak
areas for the same sample obtained with and without the columns,
respectively. A correction factor must be incorporated in eqn. (5.5) to
account for instrumental errors. Egn. (5.6) is valid in such an event,
however, as long as the chromatogram area versus optical density curve
is linear.

Particle recoveries calculated aécording to eqn. (5.6) indicated
essentially 100% recoveries for the 85, 98 and 109 nm samples. - va'levér,
the recovery for the 183 nm sample was only 41%.

When particle recovery is ver.y poor , successive injection§ of the
same sample in a normal run (with.columns) generate increasing peak
areas. Faor instance, the following peak areas were ‘measured -for a
:;ample: 44,6, 49.3, 49.6, 49.2 and 51.4. After a considerable time
elapse during which no sample was injected, peak areas measured s;lere
43.4, ..., 48.1, .... Apparently a ‘gradugl buildup of particles occurs

»
within the packed bed due to successive injéctions; this buildup #s
&

reduc

if sample injection is discontinued and when injection is
4 .

restarted, a peak area lower than the previous is measured, which once
again starts to inerease with additional injections. Therefore, in such
a situation, it is not possible to measure meaningfully the percent
recovery for a sample. Furthermore; if two samples of different
particle sizé are sutcessively injected, the peak area mea‘xsurﬂed for the
second sample may- partly bg the result of the previous injection of the

first sample.
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5.2.7 Measurement of Particle Diametfer Averages

In spite of the disagreement betweéen measured and calculated
extinction coeffiéients. it is of interest to examine thé diameter
averages obtained using Mie and Réyleigh theories. Two sets of data are
examined. The first set was treatéd assuming the spreading functions
were Gaussian or modified -Gaussian, eqn. (4.63).° Methods 1 and 2 were
applied and in accordance with Method 2, the extinction coefficients
calculated from Mie theory were fitted against retention volume by a sum
of exponentials. Excellent fit was ‘obtained. The second data set
could not adeéuately be treated assuming a Gaussian or a modified
Gaussian spreading function. Method 3 was applied to these data
assuming the truncated Provder and Rosen's shape functioa was an
adequate description~of'instrumental spreéding. Applicaéion of Method 3
requires the extinction coefficients calculated from Mie theory to be
fitted by the quédratic in retention volume, eqn. (4.89). An adgquate

fit was obtained.
« M \

N

Data Treatment of Set 1 ) TS

SN

Fig. 5.19 shows the chromatograms for the 85, 98, 109 and 183 nm‘
particles measured at a wavelength of 254 nm. While skewing exists in
all the chromatograms, .it is most pronounced for the largest particle
size. Chromatograms of mixtures of latices are shown in Fig. 5.20. The
caiibration datg and measured variances are shown in Table 5.3. It must
be‘noted éhat~whilb the calibration curve spans a reﬁeﬁtion volume range
of 13 ml, the chromatograms span about twice this volume. Tﬁe‘extension

'of the calibration curve beyond a retention volume -of 58 ml may

v
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overestimate barticle diameters if the }esolution of the high retention
volume end falls off rapidly, while its extension to retention volumes
of less than 45 ml may likewise underestimate particle‘diameters. if the
exclusion limit of the pores is approached. Further, the low retention
volume ends of the chromatograms may correspond to particles that are
larger than the maximum size that would eYute from the columns. The
latter consideration is, howeve}, of no consequence as long as the

extension of the linear calibration is safely done,

Table 5.3 Calibration Data and Measured Variances (Set_1)

Measured Variance (m12)

Sample Peak Retention ; E Wavelength (nm)

(nm) Volume (ml) 254 \280 350
85 58 12.42 12.97 12.66
98 55 12.56 : 13.58 13.58
109 ‘54 13.26 13.42 . 13.05
183 45 ' 14,15 - 13.96

Tables 5.4-5.6.contain the results of the particle size analysis
for data measured at the three different wavelengths. The value of 02
was set eqﬁal to the measured variance., It could ;ery well have been
obtained by solvipg_ the expression for an§ one diameter ;verage;
diffeyent vaiues would have been obtained depending on the theory used.
Here,ﬁné attempt is made to force fit the data. The. diameter averag?s,
Dn.to Dt are arranged in increasiﬁg order of magnitude which is also the
order of decréasing’imperfect resolutioh correction factors, Observe
the relatively small differences between uncorrgcted diameter averages

%

Ve

Al
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54 58

109 nm

45 85 nm

183 nm

: . ——=RETENTION VOLUME

Fig. 5.19 Chromatograms of. standard latices measured at 254 nm
‘wavelength (Data set 1).

AN
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Table 5.4. Diameter Average for Latex Particles Measured at
254 nm (Data Set 1)
For each sample,
Row 1. lncorrected diameter averages from Rayleigh theory (Appendix

A.1)

Row 2. lhcorrected diameter averages from Mie theory (Appendix A.1)

L g

Row 3. Diameter averages in row 1 corrected using Rayleigh correction
factors (Table 4.5) -
Row 4. Diameter averages in row 2 corrected using Rayleigh dorrection
factors (Table U4.5)

Row 5. Corrected diameter averages from Mie theory (Method 2, Section

4,4.2)
Variance ]

Sample oz(mla) Dn DS Dv ?fs Dw Dt)
63.1 68.7 66. 3 09.7 T73.2 76.7
65.6 67.3 69.1 72.7 T76.4 80.2.
85 12.423 80.5. 80.7 80.9 81.3  81.7 82.0
83.7 84.0 84.3 84.9 85.4 85.7
80.7 80.8 81.1 81.7 . 81.9 82.1
T4.8 . 76.6 78.5 82.5 86.8 91.0
. 78.4 80.5 82.6 87.0 91.6 96. 1
98 12.560  95.6 95.8 96.1 . 96.5 97.0 97.4
100.3 100.6 101.0 Y 101.8 102.4 102.7
95.8 96.0 96.3 96.9 97.4 97.7
76.2 78.7 81.2 86.4 91.6 96.6
81.1 83.8 86.5 92.1 97.6 102.8
109 13.258 9g.9 99.6 100.4  101.9 103.1 103.7
105.2 106.2 107.0 108.7 109.8 110.7
100.2 101.0 101.7 103.2 103.7 104.1
105.6 111.0 116.7 129.1 141.6 152.3
121.9 128.3 134.6 148.0 159.3 168.2
183 14.152  139.3 142.8 146.5 . 154.0 160.6 164.3
160.8 165.1 168.8 176.5 180.7 181.4

150.9 154.4  157.3 167.8

3163.6

169.9

caleulaﬁed from Rayleigh and Mie theories.

In view of the low value of

(Dza)z, the magnitude of the correction factors is fairly small. The

measured "diameter averages' for. all but the 183 nm sample are 1in
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excellent agreement with their reported values. They increase from Dn
to D in the order expected. For the 183 ni sample, though D _, D and
Dt are fairly close; %,' DS and Dv’ are rather low. This appears.to be
related to the pronounced skeying of the chromatogram.

In terms df the accuracy of measurement, it appears from
Tables 5.4-5.6 that detection of a narrow distribution particle mixture
at 350 or 280 nm is just as advantageous as detection at 254 nm.
However, for a -broad particle size distribution sample, detection at 254
nm ¢r lower, where particles absorb, provides a distinct improvemenﬁ in

small particle detectjon as discussed in Chapter 3.

7_,{:‘ Table 5.5 Diameter Averages for Latex Particles Measured at 280 nm

(Data Set 1)

For each sample,

Row 1. (lncorrected diameter averages from Mie theory (Appendix A.1)

Row 2. Diameter averages in row 1 corrected using Rayleigh correction
factors (Table 4.5)

Row 3. Corrected diameter averages from Mie theory (Method 2, Section

q,4,2)
Variance

* Sample 5 2 Dn Ds Dv Dss Dw Dt (nm)
o (ml”)

63.8 65.7 94.4 95.1 96.0 96.5
85 - 12.966 82.3 82.7 83.2 84.1 84.9 85.3
: 79.8 80.2 80.6 81.3 81.8 82.2

74.3 76.6 79.0 84.0 89.1 94,0
98 13.575 96.9 97.6 98.2 99.5 100.5 101. 1
94,2 94.2 94.4 . 95.1 96.0 96.5

81.1 83.7 86.4 91.9 97.3 102.6
109 13.421 105.5 106. 4 107. 1 108.6 109.7 110.2
101. 1 101.8  102.3 103. 3 104.1 104. 4
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Table 5.6 Diameter Averages for Latex Particles Measured at 350 nm

(Data Set 1)

For each sample,

Row 1. lncorrected diameter averages from Mie theory (Appendix A.1)
Fow 2. Diameter averages in row 1 corrected using Rayleigh correction
factors (Table 4.5)

Row 3. Corrected diameter averages from Mie theory (Method 2, Section
4.4.2)
Variance
Sample 5 s D, Ds Dv DSS D, Dt (nm)
¢ (ml™) . )
: 64.3 66.0 67.8 71.4 75.2 79.1
85 12.66 82.5 82.7 83.0 83.6 84.2 84.6
81.4 81.2 81.2 81.6 82.3 82.5
73.1 75.4 77.9 82.9 '88.0 93.0
98 13.580 95. 4 96.1 96.8 98.2 399.3 100.0
92.8 ¥ 93.4 93.8 94.9 96.0 96.3
81.0 83.3 85.7 90.6 95.7  100.8
109 - 13.050 104.6 105. 1 105.6 166.6 107.5 108.1
101.1 101.6 101.9 - 102.6 103.5 103.8
123.9 129.3 134.7 146.2 156.8 165.8
183 13.964 162.8 165.8 168.5 174.0 177.6 178.6
154.1 156.5 158.7 164.0 168.1 169.5
Now, consider the two binary mixtures shown in Fig. 5.20. Mixture

1 was é mixture of 183

and 85 nm particles in the weight ratio of

38. 73/61 27, while, mixture 2 was a mixture of 183 and 109 nm partiocles

in the weight ratio of 51. 05/&8 95.

The diameter averages calculated. from the mixture rule are given in

Table 5.7.

While the true values for each mixture appear'in the first

row, the values that would be obtained from the .analysis of the bimodal
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chromatograms should be compared with the third row entrieg\ since,
these account not only for(the less than satisfactory calculations for

the 183 nm sample chromatogram, but also for the incomplete recovery of

the 183 nm particles.

Table 5.7 Diameter Averages of Mixtures of Latex Particles.
‘ Based on Mixture Rule (Data Set 1)

-~

For each mixture, :

Row 1. Calculated assuming all diameter averages for each
latex are equal to the size reported by supplier.. For.
example, Dn z Ds = Dv = Dss = Dw = Dt = 85 for 85 nm
sample. )

Row 2. Calculated from diameter averages for each latex as given
by Mie Theory. For example, Dn = 80.7, Ds = 80.8, etec.
(Table 5.4) for 85 nm sample. _

~ Bow 3. Calculated as in row 2 but accounting for incomplete

recovery of 183 nm particles. . .
Mixture Dn Ds Dv _ Dﬂ$ Dw Dt
0.8 93.8 - 98.0  107.2  123.0  180.1
1 84.9 86.9 90.2 98.3 112.2 128.4

82.6 83.6 85.4 89.7 98.1 111.8

) 122.4 125.6 129.4 137.4 . 146.8 155.5
2. 109. 4 112.5 116.1 124.7 134.7 143.8
104.6 . 106.7 109.1 114.8 122.0 130.6

The diameter averages of the mixturés evaluated using Me 'H?eory‘
are presented in Table 5.8. For each mixture, they iare computed for 02
values corresponding to those of individual components and their mean'.
"Il_'xe averages fortunately are not very se}xsibive to thé value of 02.
"Computed values with mean 02 for each mi:'cture. compare very favourably

with corresponding third row entries in Table 5.7. ' Similar results were



obtaimed when Rayleigh\sc?/(e ing theory was considered.

{

Table 5.8 Diameter Averages of Mixtures of Latex Particles
Calculated Using Mie Theory (Data Set 1)

Variance .
Mixture 5 > Dn DS . Dv Dss Dw Dt’
¢ (ml™) >
12. 423 81.2  82.2 84.0  88.3 96.8 110.5
1 14, 152 83.6 84.6 © 86,0 89.8 98.7 113.4

13.288  82.2  83.2 85.0  89.3  97.7 111.8

13.258 107.4 109.1 f10.8 114.9 121.6 129.5
2 14. 152 108.8 110. 4 111.8 115.7 122.3 130.3
N 13.705 107.9 109.6 111.1 115.2 121.9 130.0

Considering the inapplicability of\either Rayleigh or Mie theory,*
it is indeed surprising that the calculated diameter averages - are in
such good agreement with expected values. Egn. (4.60) derived using Me
theory throws some light on this anomaly. Consider ;;at K"1(y) in
eqn.(4.50) is multiplied by § where § is a constant independent of y.
In a very approximate sense, this describes the variation of measured
extinction coefficient with y; its consequence 1is to 1Introduce a
constant multiplying factor & in eqn. (4.60). The latter, however, has

no effect on the evaluation of the diameter averages.

Data Treatment of Set 2

Fig. %.21 shows the chromatograms for the 85, 109, 176 and 220 nm
particles measured at a wavelength of 254 nm. The calibration data and

measured variances are shown in Table 5.9.

- e - - o - -

* When absorption is neglected.
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Table 5.9 Calibration Data and Measured Variances
(Data Set 2) :

Sample 85 109 176 220
Peak Retention Volume,(mt) 21.02 19.70 17,00 15.35
Measured Variance (mg") 5.15 5.59 5.37 3.58

The uncorrected diameter averages are given in Table 5.10. For the
sm;ller diameter latices, calculations based on Mie and Rayleigh
theories, particularly for the lower diameter averages, do not differ
considerably from each other. Observe.that inspite of the lower vaiues
of the measured variance compared to Data Set 1, the axial dispersion
correction would have to be significantly larger due to pronounced

skewing. The correction equations are now applied.
)3

—

Table 5.10. Uncorrected Diameter Averages Calculated Using Rayleigh
and Mie Theories (Data Set 2)

Row 1 calculated from Rayleigh theory, BRow 2 calculated frdm Mie theory

-

Sample Dn DS . Dv Dss Dw Dt
85 33.2 35.1 37.5 42.8 50.6 60.1
34.1 36.5 39.5 6.3 56.5 68.4

109 35.7 38.0 41.0 47.5% 57.6 70.2
37.3 40.3 4y, 3 53.6 67.8 83.8

176 46.4 49.8 54.5 65.2 83.0 104.0
51.2 57.1 65.0 84,1 111.4 135.0

220 89.3 94.1 100.0 112.8 130.3 149.9
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A. Application of Bayleigh Correction Factors
The relationship between the corrected and the uncorrected
mo&ent is given by , -
/
(e)/M (ue)- = explak(6 - k/2) B'®] Q. ./Q (4.102)
M (e)/M, = 0,0" 70,k )
where,
Q = 1+ £ (=" (ap/a)” A _/nt (4 9%)
0,k ~ k n® ‘
n=3 -
a, = (k=6) B' o° ' (5.91 & 4.94)
Considering only the coefffgzégts A3 and Au and setting
oo
e, = (B3 A6 5.7
1 3 :
y
€, = (Blg) Au/zu (5.8)
the followingﬁrelationships can be derived.
. 5 5 (1+216 £, 1296 62)
- [} .
Dn(C) = Dn(uc) exp(11 ¢~ B'/2) (T=135 T &35 Ez) (5.9)
[Dn(e)/bn(uc)]'0/11 14216c + 129&210/” 1468+ 256c, 1/2
—— = ( = ) ( ) (5.10)
Ds(c)/Ds(uc) }+125e1+ 6zsg2 1+21651+1296e2
wnce)/nn(uc)]g/” 14216e + 1296¢ 91T 1i2%e,+ 812, 1/3
B.{2) /D, (uc) = (1+1§‘5e1+ 825¢ ) (14-215514- 1296e; (5.11

If both A3 and Au are nonzero, then eqns. (5.10) and (5.11) are solved

[
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for e, and ez,and 02 is estimated from eqn. (5.9). If 4 is considered

zero, then only edns. (5.9) and .(5.10) are, solved. -Calculation results

are shown in Table 5.11. It is obvious from these results that the

parameter A3 and AH are significant; the significance of AS and A6 could

not be tested due to a difficulty in selving the additional equatioms.
However , the caleculated results with the two shape parameters are quite
éatisfactory. An alternate scheme to calculate a2 and An- from the
moment equations is developed later and does not have the present
difficulty.

N R

‘\ .
Table 5.11 Diameter Averages for Latex Particles Measured at 25inm
(Data Set 2) -~ Application of Rayleigh Correction Factors

Sample g A A, D b, b, Db D D,
g5 3.67 1.945 0. 85.2  88.7 83.9 82.3 79.1_ 77.1
109 4.51 1.919 O, 108.7 108.1 107.1 105.2 100.5 985.8
5.90 .1.896 -=1.975 108.7 109.7 110.3 111.7 109.3 101.8
176 5.75 1.603 O. 175.6 173.8 172.6 170.3 164.4 152.9
6.87 1.719.-1.467 175.6 175.2 175.9 177.2 175.5 160.6
220 3.13  3.629 0. 220.2 221.6 221.5 221.2 209.5 194.6
4.15  3.277 -3.429 220.2 223.2 225.3 229.5 222.3 203.4

B. Applicag;pn of Mie Correction Factors
1

The pertinent equation to be solved is
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M(e) N 6 _ .7:4
(k+gy) rQ 0¥,
n=0 !
,a,E’exP(Ro;Rk) . . 4.117)
- M (e) Mk(gg) . 6 N
%o o L@k Yy
n=0 ' ;
- .‘I,

where the various terms are as défined in Section 4.4.3. Consider now,
the solution of phe above equation. Two cases were treated: In the
first case, the parameters of the spreading function were obtained by
the numerical recovery of G(v-y) as describeq in Section 4.3. In the
second case, the parameters were‘considered variables and their values
were obtained by solving egn. (4.117).

The measured chromatoéﬁams and the correspondiLg spreading
functions are shown in Figs. 5.22-5.24. For the 220 nm samﬁle. the
estimated spreading funection did not differ markedly from the
experimental chromatogram and hence this result is not graphed. The
values of the parameters 02, A3. Au and A_ are given in Table 5.12.

5
Fig. 5.25 illustrates the fit obtaineq for the 85 nmAsample using the

s

Table 5.12 Parameters of the Statistjcal Shape Function
. (Data Set 2)

2
Sample o A3 ‘ Au AS
85 5.13 0.396 -0.0992 ~0.7733
109 5.62 0.509 -0.0137 ~-1.0376
176 . 5.34 0.%37 0.4830 -0.6978

220 . 3.58 0.716 0.0930 ~1.7240
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85 nm SAMPLE
D(v) = 3028.% exp(-0.1T07 v)

M
\ .
\ Estimated
\/ G( v-vp )

l .
1k 16 .18 20 22 2b 26 “év\
RETENTION VOLWME, v ')

Fig. 5.22 Estimation of the spreading function from experimental chromatogram.



-181-

109 nm SAMPLE
D = 3028.% exp(-~0.1707v)

|

\ " _Estimated

‘\cr”"’G(v-vp)

1 ]

14 16 18 20 22 24 26 28 30
RETENTION VOLUME, v

Fig. 5.23 Estimation of the spreading function from experimental chromatogram.
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176 nm sample
D = 3028.4 exp(~.1l707v)

Estimated

\
v&f”"G(v—vp)

12 T8 15 T8 =022 2N 20 58
"RETENTION VOLUME, v

Fig: 5.24 Estimation of the spreading function from experimental chromatogram.
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Y
‘Edgeworth series. The central portion is adequately represSented while

the low and high retention volume ends are respectively, underestimated
and overesti- mated. The fits for the 109, 176 and 220 nm samples were

" similar though, poorer. Table 5.13 summarises the results of the

fitting.

Table 5.13 Fit of the Spreading Function Data by the Edgeworth Series
(Data Set 2)

Span of the central

Span of the lower 'portion of the Span of the higher
Sample retention volume spreading function retention volume
end where where end where
GE/GF > 1.1 0.9 < GE/GF < 1.1 GE/GF < 0.9
(%) ‘ (%) (%)
85 4,1 79.6 16.3
109 6.2 73.0 21.8
176 12. 4 66.2 21.4
220 10. 3 70.0 19.7

GE/GF denotes the ratio of the estimated G(v-y) to the fitted G(v-y)

It was mentioned in Chapter 4 that when W(y) is narrow, yi may be

approximated by v:, where vp is the peak elution volume. Table 5. 14

e

compares yﬁ, calculated rigorously according to eqn. (h.106) and its
approximation. Excellent agreement is observed. Note that yz is

essentially indepen§ent of k.

~

As discussed in Chapter U4, the choice of £ must be made

contingent on the value. of the constant in

&

] P
I Wiy ¢kk(y) dy = constant M(c) (8.113)
— » (k+g, )

PRy
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being independent of k. Table 5.15 indicates that 8 values in the range
0.75-4.25 are adequate. The calculations were done using the electron

microscopy frequency data in Appendix A.3.

Table 5.14 Estimation of Yg (the range corresponds to k=0 to 24)

85 nm 109 nm 176 nm 220 nm
n=1 .
Eqn.(4.106) 20.9-20.6 19.5~19. 4 - 16.7-16.6 15.84-15,3
vg 21.0 19.7 17.0 15.4
n=6

——

Eqn.(4.106)  8.52-7.66x107  5.50-5.29x107 2.16-2.13x10' 1.32-1.28x10"

‘ v; 8.63x10" 5.85x10" 2.51x10" 1.31x107
Table 5.15 Estimation of the Value of the Constant in
Eqn. (4.113){(Range Corresponds to k=0 to 6)
85 nm ) 109 nm 176 nm 220 nm
g=0.75 2.83- 2.80 2.89- 2.88 2.27- 2.27 1.61- 1.61
g8=4,25 68.90-69.50 128,40-124,70 112.10-112.20 20.@0- 20.60
{

\

The Edgeworth series as seen in Table 5.13 provides among the

fouw samples, the best representation of the spreading function for the
85 and 109 nm samples. The results of applying eqn.’(4.117) to these
two samples are shown in Table 5.16. As expected, the calculations are

insensitive to the value of 8 chosen. For g8=2, the number average
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diéﬁgﬁé;i;br‘both samples are remarkably on target; however, the higher
diameter averages are slightly lower . Note that these calculations are
based on parameters which have been estimated independently of the

moment equations.

Table 5.16 Diameter Averages for Latex Particles Measured at
254 nm - Application of Mie Correction Factors

(Row 1, B=2; Row 2, B=3:; Row 3, B8=4)

Sample Dn DS Dv Dss Dw Dt
86.2 83.7 81.9 78. 4 77.2 77.0

.85 85-0 82‘7 81-1 78-0 77-0 * 76.9
83.8 81.8 80. 4 77.17 76.9 76.9

108.6 104.2 101.1 95.2 93.1 92.6
109 106.2 1102. 3 99.6 94.5 92.9 92.5
104.1 100.7 98.4 g4.0 92.7 92.4

‘TWO probable causes of error in the analysis are 1) the Edgeworth
series does not adequately describe the tail ends of the spreading
function. Consideration of additional coefficients 1h{ (n>6) when~kC£0
is impractical due to the complexity in deriving Qn.k‘ 2) Error results
from the use of +» and -~ integration limité in the analysis, when in
reality a species of mean retentién volume } is dispersed between finite
retention volume'limits. The eéfect of this was investigated on the
solution of ‘

s k-2
Ik(Y) = J D(v) K (v) G(v-y) dv (4.85&4. 88)

-
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® k=2 ° b k-2 .\ .
- e = I D(v) K™ (v) G(v=-y)dv/sf D(v) K (v)G(v=y)dv
.. — - ' a : (5012)

¥

i

where a and b are the actual retention volume limits. The results are
shown in Table 5.17. It is evident thiat significant error occurs for

“k=0 and 1 and that beyond k=6, the results beccme increasingly absurd.

Table 5.17 Estimation of ¢ {Egn. (5.12)]

85 nm sample 109 nm sample 176 nm sample 220 nm sample

k a=z15.8 b=30.0 ta=15.1 b=29.2 a=13.0 b=27.0 a=12.8 b=23.2
[ .oy=21.7 y:?O.? y=18.3 y=16.4
“Jo 0.69 0.54 . 0.51 0.83
1 0.85 0.75 0.71 0.92
2 0.94 0.89 0.88 0.97
3 0.98 0.97 0.96 0.99
4 0.99 0.99 0.99 1.00
5 1.00 1.00 1.00 1.01
6 1.00 1.00 1.00 - 1.02
10 0.45 0.47 0.06 0.25

15 57,107 4.7.107° 1.5.107° 5.6.107"

It is 1likely, that a good estimation of the 1lower diameter
averages, res&lps from the mutually compensating effects of errors 3 and
2. For the higher diameter averages, error 1 alone is the probable
cause.

Consider now, the second case where the parameters of <+the
spreading functions are calculated directly from the moment equations.

The summation terms in eqn. (u.117)‘are linear in the coefficients, An.
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If, therefore, a value of 02 is assumed, the term

M(ec) exp(R, -R.)
(krg)  F°

- Még) Mgg\;c)

RN e
J kY

/
can be evaluated and hence, An obtained by solving a set of simultaneous

linear equations. When the sum of squares of the deviations of the
calculated diameter averages (from their known true values), attains a

3 alone is considered, only one

equation is solved using a value of Kk corresponding to k+gk= 0.
N

minimum, convergence occurs. When A

Thereaftér. eac? additional ?EEEEEEE? S‘r'equir'es additional equations
corresponding teo k+gk = 1,2...etec. The d¢glculation results ar@;§hown in
Table 5.18 indicating excellent agreement with‘actual diameter averages
of the samples. Note that the calculated parameter values differ
significantly from the actual variance, skewness and kurtosis obtained

¥

by the numerical recovery of the spreading function.

5.3 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

The experimental investiga;ions discussii/karlier. lead to the

following conclusions.

1. It is advisable in choosing a train of columns, that each columnébe
independently calibrated. The advantage of such a procedure 1is
that it asseses each column independently, according to its
resolution capabiliﬁ?fénd the extent of sample loss that it will

cause.
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2. The response of the detector should be checked out to ensure
linearity over the complete range of operation. ¥

3. The avallable particle standards are not narrow enough, so W@gp/«
particle size analysis, hsing these as calibration standards, must
take their size distribution into account.

4, "~ Measured extincetion coefficients for polystyrene latices deviate
from theoretical calculations based on Me theory for nonabsorbing
spheres, due possibly to optical errors in the detector,
polydispersity of latices, presence of styrene and oligomers within
the particles and adsorbed emulsifier on the surface of the
particle. 3

5. Particle recovery may easily bejcalculated as, the ratio of peak
area measured during a normal chromatographic run to the peak area
measured, when the packed columns are not included in the flow
circuit. When .very significant material loss occurs in a column,
such a procedure may become invalid due to a time varying peak

area.

RN

In the péﬁricle size analysis presented earlier, extinction
csefficients based/ either on Rayleigh or Mie theory were used in lieu of
the actual coeﬂ!icients. The discrepancy between the measured
extinction coefficients and those based on theory will, therefore, be
reflected in the values of the spreading function parameters. It might
be tempting, therefore, to conclude that the simpler R;yleigh correction

factors, be always usSed in preference to the more complex Mie correction

factors. However, in a practical situation, the purpose of analysing
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narrow distribution standards is to yield spreading function parameters,
to be used as ca}ibration constants for the analysis of unknown
polydispersed sample%. The success of size measurement of the latter
will depend, in general, on whether or not thé theoretical values of the
extinction coefficients agree with the experimental values.

Table 3.1 indicates that when m . 1.26 (the value used at A = 254
nm), Rayleigh theory underestimates the particle diameter by more than
10% for a (=rD/2) equal to 1.2. This implies that for particles larger
than 80 nm, error in excess of 10% could be expected for a turbidity
measurement at 254 nm. However, comparison of the uncorrected diameter
averages in Tables 5.4 and 5. 10 indicate that, the upper - -diameter limit
corresponding to a greater than 10% error may be much higher, depending
upon the average diameter considered, the typé of chromatogram and the
calibration.curve. In any given situation, it would be extremely useful
to map out a region, well beyond the rigorous validity of Rayleigh
theory, where errors resulting from its application are acceptable.

In°gener§iij>;§ices are expected to be 'unclean' and also‘errors
in éﬁsbidity measureient may exist. If a large number of narrow
distributio; stanégzgg\gpa/g;ailable. then their extinction coefficients
may be measured to sSpan the complete range of diameters. However, in a
situation where the number of standards are limited, Mie theory may be
applied to search for an imaginary part of sthe complex refractive index
of the particle which best describes the measured data [Nagy (1979)].
This value is, then, used to calculate the extinction coefficients over

the desired diameter range.
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Whgn peak broadening is not excessive and the spreading function
is described by a single parameter 02,—;hen the analytical Method 2 is.
the preferred method for analysis since, the variation of diameter
averages across the chromatogram is also obtained. Otherwise Method 3
(Method 1 i3 a special case of Method 3) must be used. The parameters
of thé spreading function, in general, are retention volume dependeqt.
When they are slowly varyiné functions, it may be permissible to u;e
average parameter values in ghe analysis. An in§estigation of this
effect /is required.

When using packed columns, one will undoubiedlsr be confronted
with the problem of materigl loss. Rather than be restricted to the--
range of particle sizes wherein recovery is total, it is conceivable
that the chromatographice reépoﬁse of a broad polydispersed sample,
containing colloids that would be significantly retained in the columns,
can be suitably modified using a % recovery-particle size calibration
curve, to yield a response that would be measured in the absence of
particle loss.

Speci%ic recommendations for future work with SEC are now made:

1. An extensive evaluation of various packing materials with differing
pore geometry is ;équired. This is necessary to minimize
dispersion and particle loss in the columns. The optimum packing
particle is probably ome with a soldid core and superficial surface
pores. s

2. Factors affecting particle loss such as a) ioniec strength of

eluant, b) use of ionie surfactant alone as opposed to a mixture
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of surfactant and electrolyte,. ¢) effect of Tg (glass transition

temperature) of particles, d) effect of packing type, e} effect
of column temperature etc. need to be explore(’;.

Colloid detection in the infra-red (IR) region was theoretically
shown by Nagy (1,979) to have seme desirable features. An
experimental evaluation‘of an IR detector is yet to be attempted.
The numerical treatmen‘t of‘ chromatographic data hs been shown in
this work to be rather inadequate. It is desirable to develop new
improved methods for recovery of W(y). ) ]
It has been theoretically shown in this study, that, an absolute
‘par’ciclé size detec'tor based on turbidity spectra analysis has
reasonable promise as an analytical tool for particle size
measurement, requiring no prior calibration. An experimentagl
evaluation of such a device could not be attempted due to
unavailability of a detector capable of monitoring turbidity at

several wavelengths simultaneously. ' It is hoped that in future

this will become possible.



APPENDICES

A.1 DEFINITIONS OF IMPORTANT DIAMETER AVERAGES

The need for more than one definition for a diameter averagé\arises
from the factfthét; different experimental techniques applied to
polydispersed systems perceive thé/average prroperties of the population
differently. The definition of some of the widely encountered averages

"are given below.

Number“.Average Dn = S D f(D)dD : (A1)
0 -
Surface Average b, = {/ D° (D) ap}'’? (A.2)
0
Volume Average (.Dv = {s D3 £(P) dD}1/3 (A.3)
0
© 3 @ é
Specific Surface Average Dss = f D° £(D)dD/s D=f(D)dD (A.H4)
. 0 0
Weight Average D, = s p £(D)dD/s D3f(D)dD (A.5)
0 0 '
PP ®3 1/3
Turbidity Average Dt = {f D° f(D)dD/s D f(D)dD} (A.6)
- 0 0

<

~19U-
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In terms of the chromatographic response, these definitions become

L <©

D (ue) = s F(v) D7 (v) K™ (Wav/s FCnD2(v) K™ (vdv (A.T)
0 0

D (ue). = {f F(¥) k= V(v dv/s F(v) D 2(v) K1 (vydvy V72 (A.8)
0 0

D (ue) = {f F(v) D(v) K™ (w)dv/s F(v) D2(v) k' (wavi?’3 (a9
0 0

‘\

D (ue) = f F(v) D(v) K- (v)dv/f F(v) K™ (v)dv (A.10)

38 0 o

D (ue) = £ F(v) DP(v) K™\ (w)dw/s F(v) D(v) K™ (v)dv (A.11)
0 0

D.(D) = & F(v) D'(v) K™ (waws F(v) (v k- wavi’’3 (a.12)

0 (¢]

(ue) denotes the uncorrected diameter averages. When Rayleigh theory is

. applicable, K(v) in the above equations is replaced by Du(v). The

corrected diameter averages, denoted by the subscript (e¢), are obtained

by replacing F(v) by the true chromatogram W(y) and the variable v by vy.

A.2 CALCULATION OF SCATTERING COEFFICIENT FROM MIE THEORY
g ¥

The scattering coefficient was calculated from Mie theory using a
subroutine written by Dave (1968). The scattering coefficients for

polystyrene spheres in aqueous media at three different wavelengths are
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given in Table A.1. The refractive indices used in the computations are
as follows:
Refractive index of polystyrene: 1.7246 (254), 1.6970 (280),1.6506 (350)
Refractive index of water : 1.3712 (254), 1.3629 (280),1.3489 (350)
The scattering coefficient for various values of the refractive index

ratio, m, are given in Table A.2. ‘\\

A.3 ELECTRON MICROSCOPY DATA OF DOW POLYSTYRENE LATICES

> . b . -
The algetron Wicroscopy data for Dow polystyrene latices are given
- &
in Tabie A.3. . The samples 1 to 6 have designated sizes of 85, 109, 176,

«
220, 255 and+312 nm, respectively.

A.4 CHROMATOGRAPHIC DATA OF POLYSTYRENE LATICES

Two data sets were analysed. The second data set was supplied by

br. T.H. MacRury (Union Carbide Corporation, South Charleston, W.Va)

Data Set 1
Calibration Curve : D(v) = 2684 exp(-0.05968v).

Samples 1, 2 and 3 : 85 nm Dow latex measured at 254,
280 and 350 nm, respectively.

Samples 4, 5 and 6 : 98 nm Polysciences latex measured
at 254, 280 and 350 nm,
% respectively.

Samples 7,'8 and 9 : 109 nm Dow latex measured at 254,
& 280 and 350 nm, respectively.

Samples 10, 11 and 12 : 183 nm Polysciences latex
measured at 254, 280 and 350 nm,
respectively.
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Scattering Coefficient of Polystyrene Spheres In

Table A.1l

Agueous Media

A D]
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Table A.2 Scattering Coefficient of a Sphere Suspended in a Liquid Medja

SCATFERING COEFFICIUNT AT A RLFRACTIVE INOE X RATIO OF

1.150

ALPHA

1.225 1.254 1.275 14360

1.200

1.175
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Table A.2 (continued)

INCF X RAYIO OF
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SCATIERING COCFFICIENT AT A ReFPACTIV

1.1%0

ALPHA
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1.17%
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Table A.3 Electron Microscopy Data of Dow Polystyrene Latices.
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e Data Set 2

Calibration Curve : D(v) = 3028.4 exp(~0.1707v)

Samples 1 to 8 are 85 nm Dow, 98 nm Polysciences, 109 nm Dow, 176 nm
‘Dow. 209 nm Polysciences, 220 nm DPow, 255 nm Dow and 312 nm Dow latices,
- respectively. Samples 9 to 11 are mixtures of 109 and 312 nm latices in

the weight ratio 3:1, 1:1.and 1:3, respectively.

These data were measured at 254 nm. They are given 1in Tables A.4

and A.S5.

A.5 SOLUTION OF EQUATION (4.88)

Consider the solution of the integral

Ja =L exp(-p x2 + 29x) x2 dx {4.13)

X = .% + XZ (A.14)
VP

o«

2 a
CJ = SRR S ey d v L

- dy
Yp - ’p

exp( 2/ y ° 2 a
= ——3411:3- roexp(-y) 3 + 1:) dy +
Yp 0 : P YD

«© . 2 a
S oexp(-y)( ) dy (A.15)

9 _ Y.
0 P p



Table A.4 Chromatographic Data of Polystyrene Latices — Data Set #1

iy

SAA2LE

Ftv) v FLv) v F(v) Y Ftw) v FLv) v FLy)

v

=202~

8 OCLOCOLOOUOUOoOUroOOUrilCoaioouoooonCoo

Q0 IO TIC e T NN VIS WO e
et OO AN DS v vt v

DIV OODODVDEI I IO INI IO DI DDA DODD
2D AN 3O T I IO IO MDD DO D ORI I
L ] - o - Ll - L] - - - - > - - o - - - & L] . ® - & . - - @ e - - - L] -
MT QDN I ALNT T S MU DN Dl YN O e
halaaba el g o G - N, S, X SN S A TAE R LIS i STaRE N Te) 1 F2RVs XVaite IO INWRV oA Yo ¥y RNV Yo T

S IO DDOOSNOICIOQODUID LI ICD WO WO
AN TRt A D T OUMONODO TN NSO
SO NS e AN YO e

D3I DOCISDNIDROONODDONDHDODOO DTN DRI D
DI IO OO CITDOIODITOIIAITDOITOQISDIDIES
® ® ¢ & & & ¢ & & & O 9 @ % 4 4 O P 4 O P @ & & € ¢ B A g ¢ g 0 9 o=
N MNM TONONDO I UM TN ONCS O MIM T INCA D O v
MMMITITIIITIIITICONCDUDNE T O W O LW O NN

SOHCOQOOOCONE DN IOAQVOUCEDNODDIMO OV D OO0
T D Qe i AN T bl A T O AN
—_MONA T LI T~
f—

DO HOTIDWRMY IO MIIOODIDIDIOOQOC AL IO DD MMM
SOOI OCOOMIOOR 70 DOOQROUIDOD 2 IDADCOMIIIDIO
4 4 @ ® 9 @ ® o T ¢ & W O S 4 @9 © & b S g O 6 O 0 6 & & ¢ * »p v & o.0»
N CTAYMAUL)I TN C OO T (NOCAMN DD OANMNM 2O N 2 T D -
alank o B (G JIC. Q. OGN N L (B L A 1IN TaT Fabiol IR YT RUL UL T SR Vo RV e RVoT T Vo RUo LV eVo RN RV T ) o

OO0 TDODIOOCOOQODIODOMLOANUODEDOOO@IIOM 20D
SN NI TO = O DTN I A e
LR alsVh o Tio R ol alls TaVE VELTRC

QRO QAO T OIS RO OMMOOOOOD@DOIDDOQIQE I
QOO IVOOUMODOMOODIN SOV ODOIDIO IV IDD
. o - - - - * - - L] . - 4 * . - * - L ] * * - L] - L] L] - * [ 3 - - - . ] L]
NN ANMITUVLWHN T T RENMIE ONTC D LN TUONIL O«
MMM T ITITITITSTITILOL G LWL W Wi e aS W W W N

OOUUOUOOCOOOOUOUMOEOMOOOQWOOLIDDIDDEOIOD
HIO W CM O N W e E N DI N ™ O
OIMIIAA ST OO AN NI NN
— et

QUEOOC UINICIDIOEOIAIDORLD DI DD DL IOC I I3
QL DR AOLOLLOMIUIOUWUICROC PO R TRODIDT
e ® @ &8 @ & & ¢ & % 8 ¢ & 4 & & ¢ O ¢ € g % 4 ® ¢ & s O ¢ 4o v & ¢
MO OUMI WWNU AN T OMUM PN LSOOI WS C vt
ptagksp I g, K. 6. . g% DU . K, N STAY TaNFol STVoY FaRTo¥ ot Vol Vo FVaRVa AValVV Ve IV iV o IVATVERVOS N

QOCLOao@Dont oo JGC‘l.DOD(‘\QQCDO\U\DQI.‘_‘(Ju‘ o
L T OAT INNIWE N TV Pl e
N LM PP T SO e
ot ged = ot gt

OIS 2OCOCOCTOOUD O DEC OO OEDD I DDDC DD
DOLWURIMDLELELCROCOMNO OO IIB OO IO WO I OIS
. & - - - * o L ] - * - - - - w - * * . - L] - L] - . L L] - . » . - . - L]
[N Y o Yo R T N T W SVoRV of - olenl APy BT C I T WV L N ol aal e XT s W ol R T ST N e P N
MMM P S Tr NMAI DI AN QOO A O I



12
F(

v

11
FLv)

v

18
Fqy)

v F{v) v FLV) v F{v) v

AMPLE

\

"

.Table A.4 (continued)
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Table A.5 (continued)
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To solve eqn. (A.15), the following integral is required

I =1/
0

The splutions

xm exp(-b xz)dx =

i
F(E) =

1
r(m+§) ]

equation (A.15) for a=1 ...

"

L
./(p)

7
= /(50

= v ()

gl
p

x
/(p)

x
/(p)

x
= /(p)

4

1.3.5¢...(2m=1)

a

ri(m1)/2]
2b(m+1)/2

‘where, the gamma function in the numerator is defined as

/

—— "

Jx  m=1,2,3 ...
2m

6 are given by

.
2 3
exp(g )((%) + %-ﬂg ]
p
3 y 2
g a g 31
exp(p ){(p) + 3 p3 + 3 p2 ]
2 5 3
exp 3@ +598 L 123
P p y 4
P p
2 6 y 2
153 45 q -2
exp(3 IIED + 25 T 53]

T e—
—

-206-

(A.16)

(A 1)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
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