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Abstract

Conventional multiple description coding (MDC) is a source coding technique which

provides resilience against packet loss. On the other hand, the correlation introduced

between descriptions can be used to combat bit errors as well. While the latter feature

of MDC has been attested and exploited in prior work, only few attempts have been

made to design MDC with higher bit error resilience ability.

This thesis makes some progress in the latter direction by addressing the problem

of robust (i.e., bit error resilient) index assignment (IA) design for two description

scalar quantizers. Our approach is to start from an initial IA which is known to be

good for the conventional two description problem, and then apply permutations to

indices in each description to increase a minimum Hamming distance-like performance

measure.

The criterion of increasing the minimum Hamming distance between valid index

pairs (dmin), has been considered in prior work, however an efficient IA construction

was presented only for the case of dmin = 2 and low redundancy.

The contribution of this thesis is the following. For the scenario when one descrip-

tion is known to be error free, a new measure for IA robustness is proposed, which is

termed minimum side Hamming distance (dside,min). This quantity is defined as the

minimum Hamming distance between valid indices of one description for fixed index
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of the other description. It is further shown that the problem of robust permutations

design under the new criterion is closely connected to the anti-bandwidth problem

in a certain graph derived from a hypercube. Leveraging this connection, permuta-

tions achieving dside,min = 2 are proposed for all redundancy levels. Furthermore, for

general values of dside,min, a simple construction of permutations achieving dside,min

is presented, based on channel codes of appropriate block length and rate, and with

minimum distance dside,min + 1, respectively, dside,min, for two types of initial IA (di-

agonal, respectively, square-based). The application of this result to achieve IA with

dside,min = 3 is further discussed for a wide range of redundancy levels.

Finally, for the scenario when both descriptions may carry bit errors, simple con-

structions of permutations achieving dmin = 3 are proposed for the high redundancy

case.
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Notations and Abbreviations

dH(·, ·) Hamming distance between two bit sequences

Hw(·) Hamming weight of a bit sequence

α(·) Index assignment mapping function

π Index permutation pair

⊕ Modulo 2 addition

⌈·⌉ Ceiling function

⌊·⌋ Floor function

ab(·) Anti-bandwidth function

≤H Hales order

AT Transpose of matrix A

MD Multiple Description

MDC Multiple Description Coding

MDSQ Multiple Description Scalar Quantizer

K−DSQ K-Descriptions MDSQ

MDVQ Multiple Description Vector Quantizer

IA Index Assignment

MAP Maximum A Posteriori

FEC Forward Error Correction

BER Bit Error Rate
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Chapter 1

Introduction

Multiple Description Coding (MDC) is to compress a source into multiple descrip-

tions such that each individual description should lead to the signal reconstruction

to some acceptable quality, while more descriptions, when collaboratively decoded,

improve the quality of the reconstruction, which is commensurate with the number

of decoded descriptions. As one technique for MDC, Multiple Description Scalar

Quantizer (MDSQ) is to generate descriptions by using scalar quantizers. A mecha-

nism which governs the trade-off between the quality of central and side descriptions

in MDSQ is the Index Assignment (IA). In conventional MDC redundancy is intro-

duced in order to combat only description loss. On the other hand, this redundancy

can also be exploited to correct other channel impairments, like bit-errors.

While the problem of MDC design to combat only description loss has been exten-

sively studied, the design of robust MDC, which additionally has increased bit error

detection/correction ability has received less attention. This thesis makes an advance

in the latter direction by addressing the problem of index assignment design for bit

error resilient MDSQ.
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In this thesis, we will use the attribute “conventional”for any MDC technique

which is concerned only with combating description loss, and the attribute “robust

”for any MDC techniques which is additionally concerned with alleviating the effect

of bit errors.

This chapter briefly describes applications and four approaches for conventional

MDC. Then we present the motivation for robust MDSQ and discuss previous work

on this topic. Finally we present the contribution and the organization of this thesis.

1.1 Applications for Conventional MDC

In a packet-switched network, all the transmitted data is allocated into suitable sized

packets, and the packets are sent over a shared network that routes each packet

independently from all others and assigns transmission resources as needed. Packets

may be lost in data networks for a variety of reasons. For instance, packets may be

dropped due to network congestion or a packet may be considered lost if it does not

reach the destination by some prescribed time limit due to routing delay. On the

other hand, if the transmission also incurs bit errors and the channel code used to

protect the data packet fails to correct all the errors, the packet is declared lost.

One method to recover from losses is packet retransmission. This technique is well

suited to many applications, but the delay in receiving a retransmitted packet may

be not affordable when it is much longer than the interval between received packets,

especially for real-time services. Therefore, MDC arose as an attractive alternative

to combat packet loss, where each packet can be considered as a separate description.

The use of MDC ensures that when some packets are lost, the received packets

can still be decoded to a certain reconstruction quality which degrades gracefully as

2
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the number of losses increases.

Another application of MDC is in diversity communication systems. In such a

system, there are several channels from a single sender to the destination. Each de-

scription is transmitted over a separate channel. If the same data were transmitted

over all the channels, there would not be any advantage in the case when all channels

transmit successfully comparing to the case only one description is successfully re-

ceived. With MDC, the separate descriptions are different but correlated. Thus MDC

guarantees that when only one channel works, a coarse version of the source signal

could be reconstructed, while when more channels work the descriptions received

refine each other to yield a reconstruction of higher fidelity.

1.2 Techniques for Conventional MDC

For independent identical distributed sources, some popular MDC techniques are

(Goyal (2001)): (1) progressive coding with unequal erasure protection; (2) MD quan-

tization; (3) MD correlated transforms; (4) MD coding with frames.

Progressive Coding with Unequal Erasure Protection is constructed based

on a progressive or successively refinable code stream, which is divided into consecu-

tive segments of non-decreasing length. Each segment is protected by a Reed-Solomon

channel code, all codewords having the same length. Thus, early segments, which also

have higher importance, are assigned higher protection levels comparing to segments

appearing later in the code stream. The descriptions are formed across channel code-

words, in other words, each description contains one symbol from each codeword.

Thus, when only k out of the total N descriptions are received, the decoder can re-

cover all segments of at most N−k symbols, based on the channel erasure protection.
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These segments form a prefix of the code stream, which is successfully decoded. The

rate-distortion optimal design of such MDC systems were addressed by Mohr et al.

(1999); Puri and Ramchandran (1999); Stankovic et al. (2004); Dumitrescu et al.

(2004).

In MD Quantization, MD quantizers are used to produce separate descriptions.

The MDSQ optimal design was first addressed by Vaishampayan (1993) for the case

with two balanced descriptions, i.e., where the two descriptions have the same rate

and achieve the same distortion when decoded individually. He also introduced the

notion of IA and proposed IA’s with good performance. Optimal MD scalar or vector

quantizers design was also addressed by Vaishampayan and Domaszewicz (1994);

Vaishampayan and Batllo (1998); Vaishampayan et al. (2001); Fleming et al. (2004);

Dumitrescu and Wu (2005, 2007, 2009); Gyorgy et al. (2008); Muresan and Effros

(2008). The problem of index assignment was further discussed by Balogh and Csirik

(2004) for two descriptions balanced scalar quantizers, by Berger-Wolf and Reingold

(2002) for general MDSQ and by Yahampath (1999), and by Gortz and Leelapornchai

(2003) for MD vector quantizers.

In MD Correlated Transforms, the basic idea is to introduce correlation be-

tween a pair of random variables with a linear transform (Goyal and Kovacevic (1998,

2001); Wang et al. (1997)). The statistic dependencies between transform coefficients

can be useful since the estimation of transform coefficients that are in a lost descrip-

tion is improved.

In MD Coding with Frames, the main idea is to left-multiply a source vector

with a rectangular matrix in order to produce transform coefficients (Goyal et al.

(1998, 1999)), which is further quantized and partitioned into descriptions. The
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source vector can be reconstructed by a least-square problem to find a possible vector

so as to minimize the square of the difference between quantized expansion coefficients

and the product.

1.3 Motivation and Literature Review

In MDC, separate descriptions should be different enough in order to refine each other.

On the other hand, if the separate descriptions are completely uncorrelated, then the

best reconstruction at the central decoder (where all descriptions are available) is

achieved, but the reconstruction at some side decoders (where only one description

is available) is very poor. Thus, to obtain good enough quality at all side decoders,

the descriptions have to be correlated. Therefore, redundancy is introduced in the

system. In conventional MDC this redundancy is used only for packet loss resilience.

But it is natural to think that this redundancy could be useful for robustness against

bit errors.

The idea of exploiting the redundancy left in the coded sequence in order to

increase bit error resilience was widely used in the literature during the past two

decades, in the case of single description coding (Sayood and Borkenhagen (1991);

Phamdo and Farvardin (1994); Park and Miller (1999); Bauer and Hagenauer (2000);

Hagenauer and Gortz (2003); Wu et al. (2004); Wang and Wu (2010)).

Then naturally this idea was extended to MDC. Decoding schemes were devel-

oped by Barros et al. (2002); Guionnet and Guillemot (2002); Zhou and Chan (2004);

Bahceci et al. (2006); Wu et al. (2009), which exploit the dependency between de-

scriptions to combat bit errors at the central decoder, with or without the aid of

channel coding. Barros et al. (2002); Guionnet and Guillemot (2002) considered a

5



M.A.Sc. Thesis - Yinghan Wan McMaster - Electrical Engineering

balanced MDSQ with two descriptions, while Wu et al. (2009) used a general MDQ

with general number of descriptions as the MD code.

Very recently, the problem of robust MDC design was also addressed by Ma and

Labeau (2008) and Zhou and Chan (2010). An MDVQ over space-time orthogonal

block coded slow Rayleigh fading channels is considered by Zhou and Chan (2010).

The problem of optimal robust IA design is formulated by modeling the concatena-

tion of the IA, modulators, space-time encoders, multiple-antenna channel, space-time

soft decoder, linear combiner and the maximum a posterior probability detector as an

equivalent discrete memoryless channel, and it is solved by using a heuristic algorithm,

while the robust IA design by Zhou and Chan (2010) depends on the channel param-

eters, Ma and Labeau (2008) take a different approach. They consider a balanced

MDSQ with two descriptions (2-DSQ) and identify as a measure for IA robustness

the minimum Hamming distance hmin of the set C of valid pairs of two descriptions

indices (i, j). Their procedure for robust IA design is split into two steps: (1) given

a value for hmin, find a set C ⊆ {0, · · · , 2R − 1} × {0, · · · , 2R − 1} of minimum Ham-

ming distance hmin where R is the number of bits used to represent an index of each

description; (2) assign indices l of the central partition to pairs (i, j) in C so as to

achieve balanced descriptions with as low side distortions as possible. The second

problem is solved heuristically via a genetic algorithm, while for the first problem no

systematic solution for the general case is presented other than exhaustive search,

which is practical only for small values of R. They propose an efficient solution for

the first problem only for the case of 1-bit redundancy, i.e., 2R − log2 |C| = 1, which

achieves hmin = 2. Furthermore, Ma and Labeau (2009) introduced a robust multiple

description scalar quantizer system with three state Markov chain as testbed, they
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also combined forward error correction (FEC) techniques and MDC to combat packet

loss and bit errors.

1.4 Contribution and Organization of Thesis

This thesis addresses the problem of designing robust IA for balanced 2-DSQ, which

does not depend on the channel parameters and thus is not prone to performance

degradation in case of mismatch. Our approach is to start from an initial IA which

is good for the conventional 2-DSQ problem, and apply a permutation to indices in

each description, i.e., permutation πt for description t, t = 1, 2.

Applying the permutation pair π = (π1, π2) does not change the performance of

the 2-DSQ in the conventional sense, i.e., when the descriptions are not corrupted by

bit errors, but has the potential of increasing the bit error resilience at the central

decoder. The following scenarios are considered at the central decoder: (1) when

one description is correct and the decoder knows which one, referred to as Scenario

II ; (2) when both descriptions may carry errors, referred to as Scenario III. The

performance measure for error resilience in Scenario III considered in this work is

the same as in the work of Ma and Labeau (2008), and we refer to it as the minimum

Hamming distance of the IA. For Scenario II, on the other hand, we identify a better

suited performance criterion, termed the minimum side Hamming distance of the IA,

which is defined as the minimum Hamming distance of the set of valid indices in one

description when the index in the other description is fixed.

As initial IA, we use the diagonal IA (where the valid pairs occupy consecutive

diagonals in the IA matrix) and the square IA (where the valid positions in the IA

matrix occupy equal size squares along the main diagonal). Then we propose efficient

7
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constructions of robust permutation pairs π as follows.

For the case of diagonal initial IA, we establish the equivalence between the prob-

lem of robust permutation design achieving minimum side Hamming distance dmin

and the anti-bandwidth problem in a certain graph derived from a hypercube. For

dmin = 2, the corresponding graph is exactly the hypercube, for which the anti-

bandwidth problem has been solved. Therefore, we apply these results to construct

permutations achieving minimum side Hamming distance equal to 2. Furthermore,

for both diagonal and square initial IA we present a general and simple construction

of permutations with minimum side Hamming distance dmin, based on linear channel

codes of minimum Hamming distance dmin + 1, respectively dmin, of appropriate rate

and block length. We further discuss the application of this result with shortened

Hamming codes of minimum Hamming distance 3 or 4, as well as simple channel

codes corresponding to the case of high redundancy. Finally, for Scenario III, we

propose permutations achieving minimum Hamming distance 3 for both the diagonal

and the square IA in the high redundancy case.

The rest of the thesis is structured as follows. Chapter 2 presents the notations

and background for MDSQ, discusses decoding schemes for different scenarios, and

introduces the notion of robust permutation along with the performance measures of

minimum side Hamming distance and minimum Hamming distance, for Scenario II

and Scenario III respectively. Moreover, the problem of robust IA is converted to

the problem of finding the permutation π which increases the robustness. In Chapter

3, we show the connection between robust IA problem for Scenario II and the anti-

bandwidth problem. Chapter 4 and Chapter 5 discuss robust IA design based on

linear permutations for Scenario II and Scenario III respectively. We present some

8
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experimental results in Chapter 6. Chapter 7 concludes this thesis and outlines some

future works.
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Chapter 2

Index Assignment for MDSQ

In this chapter, we introduce the background and notations for MDSQ, as well as the

index assignment, which influences the quantization performance. Since in conven-

tional MDSQ design, all channels are assumed as on/off or so-called erasure channels,

descriptions are received correctly or totally lost. However in practice channels are

usually noisy, which leads to bit errors during transmission so that MDSQ for noisy

channel is also discussed in this chapter. Finally, we use the last section to discuss

IA for robust MDSQ problem formulation.

2.1 Conventional MDSQ

2.1.1 Background and Notations

A K-DSQ consists of a set of K encoders and 2K − 1 decoders. Descriptions gener-

ated by K encoders are transmitted through K independent channels. The decoders

corresponding to the sets which have only one description are called side decoders,

10
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and the decoders with set of more than one descriptions are so-called joint decoders.

Among the 2K−1 decoders of K-DSQ, there are K side decoders and 2K−1−K joint

decoders. Note that there is a special case of joint decoders called central decoder,

which corresponds to all the K descriptions. This thesis considers only balanced 2-

DSQ, where there are 2 descriptions with the same rate and the same quality of the

reconstruction.

Let X be a continuous random variable with probability density function fX(x).

The encoder of a 2-DSQ operates as follows. The source sample x is encoded first

by a single description scalar quantizer q to an index k ∈ {0, · · · , N − 1}. q is

called the central quantizer and N is the total number of central cells. Every in-

dex k is further mapped to an index pair α(k) = (α1(k), α2(k)). This mapping is

called the index assignment. Each component of the pair is an index of one side

description. In all, the encoding scheme for conventional 2-DSQ can be described

as x
q−→ q(x)

α−→ (α1(q(x)), α2(q(x))). For convenience, the notation (i, j) is used

instead of (α1(q(x)), α2(q(x))). Index i takes values in the set {0, · · · , 2R1 − 1}, and

j takes values in {0, · · · , 2R2 − 1}, where Rt is the rate of description t, t = 1, 2.

Let b(i), b(j) denote the R1-bit and R2-bit binary representations of i, j respectively.

Furthermore, b(i) is sent over channel 1, and b(j) over channel 2.

In a conventional 2-DSQ system, it is assumed that each channel either transmits

correctly or it breaks down. Therefore, at the receiver end there are 2 decoders, one

for each non-empty subset of received descriptions: the central decoder g0 and the side

decoders g1, g2. The side decoders are two one-to-one mappings: g1 : {0, · · · , 2R1 −

1} → X̂1, g2 : {0, · · · , 2R2 − 1} → X̂2, where X̂1, X̂2 ∈ R are two sets of reproduction

values called codebooks. Denote x̂1
i = g1(i) and x̂2

j = g2(j). The central decoder is a

11
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Source
Central 
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Channel1

Channel2
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Figure 2.1: 2-DSQ system with two channels and three receivers

mapping g0 : C → X̂0, where C is the set of transmitted or valid pairs of indices (i, j),

in other words C = {(α1(q(x)), α2(q(x)))|x ∈ R}. Denote x̂0
(i,j) = g0(i, j) for (i, j) ∈ C.

Fig. 2.1 illustrates a 2-DSQ system. The performance of the 2-DSQ is measured by

the expected distortion between the source and its reconstruction at the receiver side.

In this work, we use the squared error i.e., d(x, y) = (x−y)2, as a distortion measure.

Without bit-errors, the expected distortion at each decoder is given by

D1 = E(d(X, X̂1)) =
∑
i

∫
A1

i

(x− x̂1
i )

2fX(x) dx,

where A1
i = {x|α1(g(x)) = i}. The sets A1

i form the partition of side description 1.

D2 = E(d(X, X̂2)) =
∑
j

∫
A2

j

(x− x̂2
j)

2fX(x) dx,

where A2
j = {x|α2(g(x)) = j}. The sets A2

j form the partition of side description 2.

D0 = E(d(X, X̂0)) =
N−1∑
k=0

∫
A0

k

(x− x̂0
(α1(k),α2(k))

)2fX(x) dx,

where A0
k = {x|q(x) = k}. The sets A0

k form the central partition.

Note that given fixed central quantizers, cells and IA, the optimized reconstruction

12
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values, i.e., which minimize the three distortions, must satisfy the centroid condition:

x̂1
i =

∫
A1

i
xfX(x) dx∫

A1
i
fX(x) dx

,

x̂2
j =

∫
A2

j
xfX(x) dx∫

A2
j
fX(x) dx

,

x̂0
(α1(k),α2(k))

=

∫
A0

k
xfX(x) dx∫

A0
k
fX(x) dx

.

We will assume throughout this work that the centroid condition is satisfied.

In a 2-DSQ system, there is a trade-off between the quality of the side and central

descriptions. In other words, the three descriptions cannot be very good simultane-

ously. A mechanism which controls this trade-off is the IA, which will be discussed

in more details shortly. In this work, we are concerned with balanced 2-DSQ, i.e.,

where R1 = R2 = R and D1 ≈ D2.

The optimization problem for a 2-DSQ can be formulated as the problem of mini-

mizing the central distortion subject to constraints on the side distortions. Vaisham-

payan (1993) attacked this problem by converting it to the minimization of a weighted

sum of the three distortions:

min D0 + λ(D1 +D2). (2.1)

Moreover, Vaishampayan showed that the optimal 2-DSQ which minimizes (2.1) must

have convex cells i.e., intervals in the central partition; in other words, the central
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Figure 2.2: Two MDSQ’s for a uniform distributed source

partition is characterized by a set of thresholds t0 < t1 < · · · < tN−2 and

A0
0 = (−∞, t0],

A0
k = (tk−1, tk], 1 ≤ k ≤ N − 2,

A0
N−1 = (tN−2, ∞).

2.1.2 Index Assignment

The design of a 2-DSQ usually consists of two components: the selection of IA and

optimizing the structure of the quantizer for the chosen IA. As a measure of the IA

quality, Vaishampayan (1993) introduced the notion of spread which is defined follows.

For every t = 1, 2 and k ∈ {0, 1, · · · , 2R − 1}, s(t)(k) is the number of central cells

spanned by index k of the t-th description, i.e., s(t)(k) = maxα−1
t (k)−minα−1

t (k)+1.

The reconstruction accuracy of index k at side decoder t increases, as the spread

s(t)(k) decreases. To maintain a uniform reconstruction quality, it is desirable to

have the spreads of all indices equal in each description. Moreover, for balanced

descriptions, we would like the spreads of all side cells to be approximately equal in

both descriptions. Define the maximum spread Smax(α) as the maximum value of the

spreads of all cells in both descriptions. Then given a fixed number of cells N in the

14
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central partition, a good IA α should minimize Smax(α).

Table 2.1: Reconstruction Level

x̂0
(0,0) x̂0

(0,1) x̂0
(1,0) x̂0

(1,1) x̂1
0 x̂1

1 x̂2
0 x̂2

1

(a) -0.75 -0.25 0.25 0.75 -0.5 0.5 -0.25 0.25

(b) -0.75 -0.25 0.75 0.25 -0.5 0.5 0 0

To illustrate the significance of the spread, let us consider a simple example in-

spired by Vaishampayan (1993). Fig. 2.2 shows two 2-DSQ’s with the same central

quantizer, but different index assignments. Notice that for IA in case (a) the max-

imum spread is Smax(α) = 3, while in case (b) it is Smax(α) = 4. Let X here be a

uniformly distributed random variable over the interval (-1,1), and the rate of each

side description be R = 1 bit per source sample. The corresponding reconstruction

codebook for each 2-DSQ is given in Table 2.1, while the expected distortions of cen-

tral or side quantizers are given in Table 2.2. Notice that for both index assignments,

the central distortion and the side distortion of description 1 are the same, while the

side distortion of the second description is smaller in case (a) than in case (b). Thus

this example validates the general principle that better performance is ensured with

smaller Smax(α).

Popularly, the IA is represented as a matrix (see examples in Fig. 2.3). Each cell

inside the matrix containing a number, represents a central partition cell, and the

number is its index. Then the indices of the cell’s row and column stand for the

indices for description 1 and description 2, respectively.

Vaishampayan proposed good IA’s for balanced 2-DSQ, where central quantization

cells correspond to matrix cells on m = 2k + 1 diagonals, the main diagonal and

k closest diagonals above and below main diagonal, respectively. Vaishampayan’s

15
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Table 2.2: Central and Side Distortion

D0 D1 D2

(a) 0.0208 0.0833 0.2708

(b) 0.0208 0.0833 0.3333
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(b) 2-by-2 square IA

Figure 2.3: Two examples of IA’s.

designs can be extended to the case of m = 2k by using the main diagonal and k,

respectively k− 1, closest diagonals above, respectively below the main diagonal. We

will refer to such IA’s using m diagonals, as m-diagonal IA’s. Fig. 2.3(a) illustrates

a 3-diagonal IA. Another type of IA that we will consider in this work is the 2l-by-2l

square IA, where the occupied matrix cells form 2R−l 2l-by-2l squares placed along

the main diagonal. Moreover, the indices of central quantizer cells corresponding to

the i-th square , 1 ≤ i ≤ 2R−l, are in the range {22l(i−1), 22l(i−1)+1, · · · , 22li−1}.

Fig. 2.3(b) shows a 2-by-2 square IA.

For the m-diagonal IA or the 2l-by-2l square IA, the parameter m, respectively l,

controls the trade-off between the quality of the central and side descriptions. This

is because as m, respectively l, increases, the number of central cells increases, thus

making the central distortion smaller, while the spread increases as well making the
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side distortions larger.

2.2 Decoder for 2-DSQ with Bit-Errors

In the case when one or both descriptions channels may incur bit errors, the redun-

dancy between descriptions can be used to improve the reconstructions at the central

decoder. From this point of view, it is relevant to distinguish between three scenarios

at the central decoder: (Scenario I ) neither description has errors; (Scenario II ) only

one channel incurs bit errors and the central decoder knows which one; (Scenario III )

both descriptions may incur bit errors. Scenario I corresponds to the conventional

2-DSQ and was discussed previously. Next we address the central decoder in Scenario

II and Scenario III.

2.2.1 Central Decoder in Scenario II

As shown in Lemma 1 of the work by Zeger and Gersho (1990), the average distortion

D of a noisy channel quantizer with the mean-square distortion function, that satisfies

the centroid condition, can be written as the sum of two parts, where one is produced

by the quantizer and denoted by DS, and the other is due to the channel noise and

denoted by DC . Therefore, D can be expressed as D = DS +DC . Thus, the expected

distortion at the central decoder can be decomposed as

D0 = D0,s +D0,c,
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where D0,s is given by

D0,s =
N−1∑
k=0

∫
A0

k

(x− x̂0
(α1(k),α2(k))

)2fX(x)dx

and D0,c will be discussed shortly. Without loss of generality, we assume description

1 is received correctly while description 2 might be with errors. Let (i, j′) denote

the index pair received at the central decoder, and let the central decoder be ḡ0 :

{0, · · · , 2R − 1}× {0, · · · , 2R − 1} → R. For each i ∈ {0, · · · , 2R − 1}, denote J (i) =

{j|(i, j) ∈ C} as the set of j’s such that (i, j)’s are valid index pairs. Then D0,c is

D0,c = E{d(x̂0
(i,j), ḡ0(i, j

′))}

=
2R−1∑
i=0

∑
j∈J (i)

2R−1∑
j′=0

P (i, j)Pe(j
′|j)d(x̂0

(i,j), ḡ0(i, j
′)) (2.2)

where i, j, j′ are random variables, representing the input to channel 1, input to

channel 2 and output of channel 2, respectively. Moreover, P (i, j) is the probability

that (i, j) is output by the 2-DSQ, Pe(j
′|j) is the conditional probability that j′ is

received conditioned on j being sent. Assume that all bit errors are independent

and identically distributed (i.i.d) with bit error rate (BER) ϵ, then Pe(j
′|j) can be

expressed as Pe(j
′|j) = ϵd(1− ϵ)R−d in which d is the Hamming distance between b(j)

and b(j′).

Notice that D0,s is not affected by the choice of the decoders. Thus, the optimal

decoder which minimizes the expected distortion D0 should minimize D0,c. Notice

that

D0,c =
2R−1∑
i=0

2R−1∑
j′=0

Dc(i, j
′),

18
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where

Dc(i, j
′) =

∑
j∈J (i)

P (i, j)Pe(j
′|j)d(x̂0

(i,j), ḡ0(i, j
′)).

Thus, for given pair i, j′, the optimal decoder ḡ0,opt(i, j
′) has to minimize Dc(i, j

′), in

other words

ḡ0,opt(i, j
′) = argminy∈R

∑
j∈J (i)

P (i, j)Pe(j
′|j)d(x̂0

(i,j), y),

and further

ḡ0,opt(i, j
′) =


x̂0
(i,j′) for j′ ∈ J (i)∑

j∈J (i)

P (i,j)Pe(j′|j)g0(i,j)∑
j∈J (i)

P (i,j)Pe(j′|j) for j′ /∈ J (i)
. (2.3)

Notice that the optimal decoder needs knowledge of the BER ϵ. Moreover, this

decoder can lead to performance degradation in case of mismatch, i.e., if ϵ is not esti-

mated correctly. Ma and Labeau (2008) presented another decoder, called suboptimal

decoder:

ḡ0,subopt(i, j
′) =


x̂0
(i,j′) , for j′ ∈ J (i)∑

j∈J (i)

x̂0
(i,j)

P (i,j)∑
j∈J (i)

P (i,j)
, for j′ /∈ J (i)

(2.4)

which does not depend on the channel statistics. Notice that ḡ0,subopt(i, j
′) = x̂1

i when

j′ /∈ J (i), thus this decoder actually discards the description with errors.

We propose a new decoder which does not need knowledge of ϵ, and is more

accurate than the sub-optimal decoder. For each i, j′ ∈ {0, · · · , 2R − 1} and d ∈

{0, · · · , R}, define Hi,d(j
′) = {j ∈ J (i)|dH(b(j), b(j′)) = d} as the set of j’s in J (i)

with Hamming distance to j′ equal to d. Notice that dH(u, v) denotes the Hamming

distance between u and v, i.e., the number of bits in which the two bit sequences
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differ. Let dmin(i, j
′) = min

Hi,d(j′) ̸=ϕ
d, be the minimum Hamming distance between the

received pairs and sent valid pairs. Furthermore, let Hi(j
′) = Hi,dmin(i,j′)(j

′), i.e.,

the set of valid j’s for given i closest in Hamming distance to j′. The proposed

decoder is motivated by the assumption that ϵ is very small (ϵ ≪ 0.5) and thus

ϵd(1 − ϵ)n−d ≫ ϵd+s(1− ϵ)n−d−s for 1 ≤ s ≤ R− d. Then the dominant terms in

Dc(i, j
′) are those corresponding to d = dmin(i, j

′):

Dc(i, j
′) =

∑
j∈J (i)

P (i, j)Pe(j
′|j)d(x̂0

(i,j), ḡ0(i, j
′))

=
∑

d≥dmin(i,j′)

∑
j∈J (i)

dH (b(j),b(j′))=d

P (i, j)d(x̂0
(i,j), ḡ0(i, j

′))ϵd(1− ϵ)R−d

≈
∑
j∈J (i)

dH (b(j),b(j′))=dmin(i,j′)

P (i, j)d(x̂0
(i,j), ḡ0(i, j

′))ϵdmin(i,j
′)(1− ϵ)R−dmin(i,j

′). (2.5)

The value of ḡ0(i, j
′) which minimizes the latter expression is given by

ḡ0(i, j
′) =

∑
j∈Hi(j′)

x̂0
(i,j)P (i, j)∑

j∈Hi(j′)

P (i, j)
(2.6)

Note that the proposed decoder is in essence a minimum Hamming distance decoder.

Precisely, the decoder looks in J (i) for the closest index j to j′. If only one such j is

found, then ḡ0(i, j
′) = g0(i, j), which actually means that j′ is decoded as j. If more

such j’s are found then ḡ0(i, j
′) is computed as in (2.6).
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Figure 2.4: MDSQ system with bit-errors for two channels and three receivers

2.2.2 Decoder for Scenario III

For Scenario III, we use a similar minimum Hamming distance decoder. Let (i′, j′)

be the received index pair. Define Hd(i
′, j′) = {(i, j) ∈ C|dH(b(i, j), b(i′, j′)) = d}

and d′min(i
′, j′) = min

Hd(i′,j′)̸=ϕ
d. Denote H(i′, j′) = Hd′min(i

′,j′)(i
′, j′), then the proposed

decoder is

g̃0(i
′, j′) =

∑
(i,j)∈H(i′,j′)

x̂0
(i,j)P (i, j)∑

(i,j)∈H(i′,j′)

P (i, j)
. (2.7)

2.3 Problem Formulation

In conventional 2-DSQ design, the 2-DSQ performance is optimized for on/off chan-

nels. Our goal is to increase the robustness when the channels may addtionally intro-

duce bit-errors, while maintaining the performance in the bit error-free case. For this,

we start from a 2-DSQ optimized in the traditional sense and further apply an index

permutation to the index output by each description. The index permutations do not

affect the performance in the bit error-free case, but have the potential to increase the

bit error resilience. Let π1 : {0, 1, · · · , 2R − 1} → {0, 1}R be the permutation applied

to indices in description 1 and π2 : {0, 1, · · · , 2R − 1} → {0, 1}R be the permutation

for description 2. We will use the notation π for the permutation pair (π1, π2). Thus,

a new IA is generated, denoted by π ◦ α, where π ◦ α(k) = (π1(α1(k)), π2(α2(k)))

for any k ∈ {0, 1, · · · , N}. Fig. 2.4 shows the 2-DSQ system with index assignment
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π ◦ α.

As discussed in the previous section, the distortion of a quantizer satisfying the

centroid condition over a noisy channel can be decomposed into two components:

quantization distortion DS and channel distortion DC . Applying the permutation πt

to indices of description t (t = 1, 2) result in a relabeling of the cells of side quantizer

t. This relabeling does not change the quantizers distortion Dt,s, but can change the

channel distortion Dt,c. In this work, we are interested only in reducing D0,c, i.e., the

channel distortion at the central decoder, and disregard D1,c and D2,c.

From the previous sections, it is clear that the error corrective capability of the IA

is related to the minimum Hamming distance. In order to formulate in more detail

a criteria for robust IA for Scenario III and Scenario II, let us first introduce some

notations.

For any set A ⊆ {0, 1}n for some n, define the minimum Hamming distance of A

as

dmin(A) = min
u,v∈A
u ̸=v

dH(u, v) (2.8)

For Scenario III, the decoder looks in the whole codebook C for the closest codeword

to the received pair. Therefore, the minimum Hamming distance of the whole set C

can be considered a measure for the robustness of the IA. The higher dmin(C), the

larger the number of detected and corrected errors. Specifically, the decoder can

detect all bit error patterns containing at most dmin(C)− 1 bit errors and can correct

all error pattern with at most
⌈
dmin(C)

2

⌉
− 1, where ⌈·⌉ denotes the ceiling function.

Define the minimum distance of an IA α, denoted by dmin(α), as the minimum
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Hamming distance of the set of valid codewords pairs

dmin(α) = dmin(C). (2.9)

Then the goal in designing a robust IA π◦α for Scenario III is to increase dmin(π◦α).

Notice that the criterion of large dmin(α) for the robustness of IA α, was discussed

first by Ma and Labeau (2008). However, they applied this criterion only for Scenario

II. We introduce next a better suited criterion for robustness of IA in Scenario II,

which is also easier to satisfy. Let us assume that description 1 is correct, while

description 2 may carry bit errors.

Define the minimum side 2 Hamming distance of IA α, denoted by d2,min(α), as

follows

d2,min(α) = min
i∈{0,1,··· ,2R−1}

dmin(J (i)). (2.10)

It can be easily seen that the decoder for Scenario II is able to detect all error pattern

with at most d2,min(α)− 1 bit errors, and is able to correct any error pattern with at

most
⌈
d2,min(α)

2

⌉
− 1 bit errors. Therefore, our criteria for robust IA in Scenario II is

to increase d2,min(π ◦ α). It is clear from the definition that for any IA α, we have

d2,min(α) ≥ dmin(α), (2.11)

and thus

d2,min(π ◦ α) ≥ dmin(π ◦ α), (2.12)

for any π. However, in many cases it is possible to design permutation pairs π such
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Figure 2.5: Robust IA example. (a) Original IA. (b) IA after permutation

that

d2,min(π ◦ α) > dmin(π ◦ α), (2.13)

Such an example is presented next. Fig. 2.5 gives two IA matrices with size 23 ×

Table 2.3: Permutation π

i/j 0 1 2 3 4 5 6 7

π1(i) 000 001 010 011 100 101 110 111

π2(j) 000 111 001 110 011 100 010 101

23, i.e., R = 3, and 15 occupied cells, i.e., N = 15. Fig. 2.5(b) is the IA matrix

after permutation pair π applied to the initial IA α shown in Fig. 2.5(a), where the

permutations of each side description are given in Table 2.3.

It is easy to see that d2,min(α) = dmin(α) = 1, while d2,min(α) = 2 > dmin(α) = 1.

If the pair (i, j) = (0, 0), i.e., [000,000], is transmitted

[000, 000]
trans−→ [000, 001]

decode−→ [000, 001] (2.14)

[000, 000]
trans−→ [000, 001]

decode−→ [000, 000] (2.15)

When there is one-bit error through transmission, [000,000] may become [000,001].
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According to the decoding strategy described before, two different decoding results

are obtained. As (2.15) shows, in the case of IA with robust permutation, the decoder

is able to correct the error, while in the case of (2.14), it is not.

In this work, we will design robust permutation pairs for the case when the initial

IA is diagonal or square based. Notice that when α is an m-diagonal IA, d2,min(α)

can be rewritten as

d2,min(π ◦ α) = min
j1,j2∈{0,1,··· ,2R−1}

1≤|j1−j2|≤m−1

dH(π2(j1), π2(j2)), (2.16)

while when α is a 2l-by-2l square IA, we have

d2,min(π ◦ α) = min
j1,j2∈{0,1,··· ,2R−1},j1 ̸=j2
b(j1)⊕b(j2)=0 · · · 0︸ ︷︷ ︸

R−l

u1···ul

u1,··· ,ul∈{0,1}

dH(π2(j1), π2(j2)) (2.17)

Finally, note that for the case when description 2 is correct and description 1 may

contain bit errors, the minimum side 1 Hamming distance, d1,min(α), can be defined

similarly to (2.10):

d1,min(α) = min
j∈{0,1,··· ,2R−1}

dmin({i : (i, j) ∈ C}).

Clearly, dt,min(π ◦α) depends only on πt, t = 1, 2. Furthermore, due to the symmetry

of the diagonal and square based IA, a permutation π2 achieving d2,min(π◦α) = d can

be used for description 1 as well (i.e., π1 = π2) to achieve d1,min(π◦α) = d. Therefore,

without loss of generality, we will address only d2,min(π ◦ α) in the rest of this thesis.
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Chapter 3

Connection with Anti-bandwidth

Problem

In this chapter, we show that the problem of designing a robust permutation for the

m-diagonal IA for Scenario II is closely related to the anti-bandwidth problem in a

certain graph derived from a hypercube. Firstly, we introduce the anti-bandwidth

problem. Then we describe the relation between anti-bandwidth and robust permu-

tation. Finally we draw a conclusion about the existence of a permutation achieving

d2,min equal to 2, and present its construction based on known results about the

anti-bandwidth of a hypercube.

3.1 Definition of Anti-bandwidth

Let G = (V, E) be an undirected graph, where V denotes the set of vertices or nodes,

and E denotes the set of edges which connect pairs of vertices. Let the size of V be n,

i.e., n = |V|. A labeling or numbering µ of the vertices of G is an one to one mapping

26



M.A.Sc. Thesis - Yinghan Wan McMaster - Electrical Engineering

001

101

111110

000

100

j=0 j=1 001

101

111110

000

100

j=0 j=2

j=1j=3

j=5 j=7

010j=6 011j=4011j=3010j=2

j=6 j=7

j=4 j=5

(a) (b)

Figure 3.1: Different numbering of a hypercube

µ: V → {0, 1, · · · , n− 1}. In other words, the labeling µ assigns to each vertex v in

V a unique number µ(v) in {0, 1, · · · , n − 1}. Note that any numbering µ defines a

total order ≤µ of the vertices in V as follows: for any u, v ∈ V , u ≤µ v if and only if

µ(u) ≤ µ(v).

Definition 3.1. For a positive integer n, define the n-dimensional hypercube Qn

as a graph with 2n vertices and 2n−1n edges, in which every vertex corresponds to

an n-bit sequence and any two vertices are connected by an edge if an only if their

corresponding bit sequences differ in only 1 bit.

Then clearly a numbering µ in an n-dimension hypercube is an injective mapping

from n-bit sequences to natural values from {0, 1, · · · , 2n − 1}. Fig. 3.1 shows two

labelings of a 3-dimensional hypercube.

The bandwidth of a numbering µ is denoted by bw(µ) and is defined as

bw(µ) = max
(v,u)∈E

|µ(v)− µ(u)|. (3.1)

The bandwidth of a graph G is the minimum bandwidth among all the numberings µ

bw(G) = min
µ

max
(v,u)∈E

|µ(v)− µ(u)|. (3.2)
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The term of anti-bandwidth was first introduced by Torok and Vrto (2009). The

anti-bandwidth problem can be regarded as the dual of the bandwidth problem. In

other words, finding the anti-bandwidth problem is equivalent to labeling vertices of

a graph such that the minimum absolute difference of labels of adjacent vertices to be

maximized. More precisely, the anti-bandwidth of a labeling µ, is denoted by ab(µ)

and is defined as

ab(µ) = min
(v,u)∈E

|µ(v)− µ(u)|. (3.3)

The anti-bandwidth of a graph G, denoted ab(G), is further defined as

ab(G) = max
µ

min
(v,u)∈E

|µ(v)− µ(u)|. (3.4)

It was proved that for general graphs the problem of determining if the anti-bandwidth

is larger than some given value is NP-complete (Leung et al. (1984)). The value of

the anti-bandwidth and the achieving labeling are known only for certain cases.

3.2 Connection between Robust Index Assignment

and Anti-bandwidth

Definition 3.2. For positive integers n and d with 2 ≤ d ≤ n, define Qn(d) as an

n-dimensional modified hypercube where all the vertices are n-bit sequences and all

edges are any two pairs of vertices (u, v) such that u ̸= v and dH(u, v) ≤ d− 1.

Next we show that the problem of robust permutation design for Scenario II

and m-diagonal initial index assignment is closely connected with the anti-bandwidth

problem for a certain modified hypercube. Note that the anti-bandwidth of Qn(d) is
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given by

ab(Qn(d)) = max
µ

min
u̸=v

dH (u,v)≤d−1

|µ(u)− µ(v)|. (3.5)

Theorem 3.1. Given an m-diagonal IA α with m ≥ 2 and a positive integer d ≥ 2,

there is a permutation π2 : {0, 1, · · · , 2R − 1} → {0, 1}R such that d2,min(π ◦α) ≥ d if

and only if ab(QR(d)) ≥ m.

Proof. The relation ab(QR(d)) ≥ m is equivalent to the fact that there exists a num-

bering µ : {0, 1}R → {0, 1, · · · , 2R − 1} such that

|µ(v)− µ(u)| ≥ m for all u, v ∈ {0, 1}R with u ̸= v and dH(u, v) ≤ d− 1. (3.6)

Let π2 = µ−1, i.e., π2 : {0, 1, · · · , 2R − 1} → {0, 1}R such that µ(π2(j)) = j for any

j ∈ {0, 1, · · · , 2R − 1} and π2(µ(u)) = u for any u ∈ {0, 1}R.

Let v = π2(j1) and u = π2(j2). Then |µ(π2(j2)) − µ(π2(j1))| = |j2 − j1|. Statement

(3.6) is equivalent to |j2 − j1| ≥ m for all j1, j2 ∈ {0, 1, · · · , 2R − 1} such that j1 ̸= j2

and dH(π2(j1), π2(j2)) ≤ d− 1, which is further equivalent to the statement: for

any j1, j2 ∈ {0, 1, · · · , 2R − 1} such that j1 ̸= j2 and |j2 − j1| ≤ m− 1 we have

dH(π(j1), π(j2)) ≥ d. Finally, by (2.16), the above statement is equivalent to

d2,min(π ◦ α) ≥ d.

If we knew the value of ab(QR(d)) for any d, then we could find the maximum d

for which ab(QR(d)) ≥ m. Unfortunately, the value of ab(QR(d)) is not known but

for d = 2, i.e., when QR(d) is the R-dimensional hypercube QR. The anti-bandwidth

achieving permutation for QR was found by Harper (1966). In order to describe the

permutation we need the following definition.

Definition 3.3. For a hypercube Qn with vertex set {0, 1}n, the Hales order ≤H on
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Table 3.1: Anti-bandwidth of QR(d) with Different R

R 2 3 4 5 6

ab(QR(2)) 1 2 4 9 19

V is defined by u ≤H v, if (1) Hw(u) < Hw(v), or (2) Hw(u) = Hw(v) and u is

greater than or equal to v in lexicographic order relative to the right to left order of

the coordinates. Note that Hw(u) is the Hamming weight of vertex u, in other words

the number of 1’s in u.

For example, if n = 4 then the Hales numbering of the 16 4-bit sequences is

0000 < 0001 < 0010 < 0100 < 1000 < 0011 < 0101 < 1001 < 0110 < 1010 < 1100 <

0111 < 1011 < 1101 < 1110 < 1111.

Lemma 3.1. (Harper (1966))The permutation achieving the anti-bandwidth of the

hypercube is obtained by numbering the vertices of the hypercube with even Hamming

weight first then those with odd Hamming weight, in increasing Hales order.

The value of the hypercube anti-bandwidth was given by Wang et al. (2009):

ab(QR(2)) = 2R−1 −
R−2∑
k=0

(
k⌊
k
2

⌋). (3.7)

Table 3.1 gives ab(QR(2)) for different values of R. Theorem 3.1, Lemma 3.1 and

relation (3.6) lead to the following result.

Proposition 3.1. Let α be an m-diagonal IA. Then there is a permutation π2 such

that d2,min(π ◦ α) ≥ 2 if and only if

m ≤ 2R−1 −
R−2∑
k=0

(
k⌊
k
2

⌋), (3.8)
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Furthermore, if the above relation holds, the permutation π2 can be constructed by

numbering the side 2 indices with increasing Hales order, the even Hamming weight

sequences first, followed by the odd Hamming weight sequences.
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Chapter 4

Robust IA Design for Scenario II

Based on Linear Permutation

As shown in the previous chapter, the problem of finding a robust permutation for the

diagonal IA in Scenario II is equivalent to the anti-bandwidth problem, which is NP-

complete. Therefore polynomial time algorithms to solve the problem are not known.

On the other hand, it is desirable to have simple constructions for the permutation

π2, thus we restrict our attention in the rest of the thesis to linear permutations, i.e.,

permutations which are linear mappings.

In this chapter, we propose simple constructions of robust linear permutations for

Scenario II, for both cases of diagonal and squared initial IA.

Definition 4.1. An one-to-one mapping π2 : {0, 1, · · · , 2R − 1} → {0, 1}R is called

linear permutation if there is an R × R matrix Gπ2 with elements in the binary field

GF(2) such that

π2(j) = b(j) ·Gπ2 ,
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where “·”denotes matrix multiplication and b(j) denotes the R-dimensional row vector

with elements in GF (2), which is the binary representation of j with the first compo-

nent being the most significant bit and the last component being the least significant

bit.

Notice that Gπ2 is a matrix of maximum rank. Moreover, any R×R dimensional

matrix G of full rank defines a permutation. Therefore, we will refer to any R × R

matrix G of full rank with elements in GF (2) as a permutation matrix.

For convenience, the following notations are useful in the rest of the thesis. For

any integer t ≥ 0, It denotes the identity matrix with dimension t× t, 1t denotes the

all 1’s t-dimensional row vector and 0t is the all 0’s t-dimensional row vector. For

any two row vectors u of dimension k1 and v of dimension k2, [u|v] is the (k1 + k2)-

dimensional row vector obtained by concatenating u and v. Moreover, for any matrix

A, AT denotes its transpose.

4.1 m-diagonal Initial IA

In this section, we first present a result which shows how an IA (π ◦ α) with side 2

minimum Hamming distance larger or equal than some d, can be constructed based

on a certain channel code with minimum Hamming distance d+1 of appropriate rate

and block length. Then we discuss the application of this result to several values of

m.
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4.1.1 Robust Linear Permutation for Diagonal IA Based on

Linear Channel Codes

Theorem 4.1. For some integer k with 1 ≤ k ≤ R− 1, let G2 be the generator matrix

of an (R, k) systematic linear block code, i.e., G2 = [Ik Pk×(R−k)]. Assume that the

minimum Hamming distance of the channel code is d + 1 with d ≥ 1. Consider now

the matrix G given by

G =



1 1 0 0 0 · · · 0

0 1 1 0 0 · · · 0

0 0 1 1 0 · · · 0

...
. . . . . . . . . . . .

...
...

0 0 · · · 0 1 1 0

0 0 · · · 0 0 1 1

0

0 0 · · · 0 0 0 1

G2





R− k

}
k︸ ︷︷ ︸

k

︸ ︷︷ ︸
R−k

(4.1)

Then G has full rank and the associated permutation π2 has the property that

dH(π2(a), π2(a+ τ)) ≥ d, (4.2)

for any a ∈ {0, 1, · · · , 2R − 2} and any τ ∈ {1, 2, · · · ,min (2k − 1, 2R − a− 1)}.

Proof. Let G1 denote the (R−k)×R dimensional matrix formed with the first R−k

rows in G. Recall that G2 = [Ik Pk×(R−k)]. Notice that by switching the positions

of G1 and G2, an upper triangle matrix is obtained with all elements on the main
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diagonal equal to 1, which therefore has full rank. Since elementary row operations

do not change the row space of a matrix, it follows that G has full rank as well.

Now fix arbitrary a ∈ {0, · · · , 2R − 2} and τ ∈ {1, 2, · · · ,min (2k − 1, 2R − a− 1)}.

Let b(a) = [u1 · · · uR] and b(a + τ) = [v1 · · · vR]. In general, for a binary sequence

[x1 · · · xn] for some integer n, we will use the notation xk
m for the sub-sequence

[xm · · · xk] where 1 ≤ m ≤ k ≤ n.

By the definition of π2, we have

π2(a) = b(a) ·G and π2(a+ τ) = b(a+ τ) ·G. (4.3)

Then

dH(π2(a), π2(a+ τ)) = dH(b(a) ·G, b(a+ τ) ·G) (4.4)

= Hw(b(a) ·G⊕ b(a+ τ) ·G)

= Hw((b(a)⊕ b(a+ τ)) ·G),

where Hw(·) denotes the Hamming weight function and ⊕ is the modulo 2 component

wise addition.

Then it remains to prove that

Hw((b(a)⊕ b(a+ τ)) ·G) ≥ d. (4.5)

Now consider the unique non-negative integers c and e such that a = c×2k+e, where

c ≥ 0 and 0 ≤ e ≤ 2k − 1. Then uR−k
1 is the (R − k)-bit representation of c while

uR
R−k+1 is the k-bit representation of e. Notice that a+ τ = c× 2k + e+ τ . Next we
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will consider two cases.

Case 1: e + τ ≤ 2k − 1. Then vR−k
1 is the (R − k)-bit representation of c, thus

vR−k
1 = uR−k

1 . On the other hand, vRR−k+1 is the k-bit representation of e + τ . Since

e + τ ≥ e+ 1, it follows that vRR−k+1 and uR
R−k+1 differ in at least one bit, thus

uR
R−k+1 ⊕ vRR−k+1 ̸= 0k. Then

Hw((b(a)⊕ b(a+ τ)) ·G) = Hw([0R−k|uR
R−k+1 ⊕ vRR−k+1] ·G) (4.6)

= Hw((u
R
R−k+1 ⊕ vRR−k+1) ·G2)

≥ d+ 1,

where the last inequality follows from the fact that the minimum Hamming distance

of the linear code generated by G2 is d+1. We have used the well-known fact that the

minimum Hamming distance of a linear block code equals to the minimum Hamming

weight of the non-zero vectors in the row space of the generator matrix.

Case 2: e + τ ≥ 2k. Then a + τ = (c + 1)2k + (e + τ − 2k), where 0 ≤

e+ τ − 2k ≤ e− 1. Clearly vRR−k+1 is the k-bit representation of e + τ − 2k, which

differs in at least one bit from uR
R−k+1. Then vRR−k+1 ⊕ uR

R−k+1 ̸= 0k, which implies

that

Hw((u
R
R−k+1 ⊕ vRR−k+1) ·G2) ≥ d+ 1. (4.7)

As for vR−k
1 , it is the (R− k)-bit binary representation of c+1. Further, let t denote

the position of the rightmost 0 in uR−k
1 , i.e., ut = 0 and uR−k

t+1 = 1R−k−t. Then

it is easy to see that vt−1
1 = ut−1

1 , vt = 1 and vR−k
t+1 = 0R−k−t, which implies that
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uR−k
1 ⊕ vR−k

1 = [0t−1|1R−k−t+1]. Then we have

Hw((u
R−k
1 ⊕ vR−1

1 )G1) = Hw([0t−1|1|0R−t]) = 1. (4.8)

Finally,

(b(a)⊕ b(a+ τ)) ·G = (uR−k
1 ⊕ vR−k

1 ) ·G1 ⊕ (uR
R−k+1 ⊕ vRR−k+1) ·G2. (4.9)

Moreover, since the Hamming distance is a metric function and thus satisfies the

triangle inequality (Lin and Costello (2004)), i.e., dH(u, v) ≥ |dH(u, 0R)− dH(v, 0R)|,

it follows that

Hw(u⊕ v) ≥ |Hw(u)−Hw(v)|, ∀u, v ∈ {0, 1}R. (4.10)

Finally combing (4.7), (4.8), (4.9) and (4.10), relation (4.5) follows. Thus, the proof

of Theorem 4.1 is completed.

The next result follows immediately from Theorem 4.1.

Corollary 4.1. For π2 defined in Theorem 4.1, the following inequality holds

d2,min(π ◦ α) ≥ d, (4.11)

for any m-diagonal IA satisfying m ≤ 2k.

Thus, Theorem 4.1 can be used to construct robust IA’s based on known channel

codes with large minimum Hamming distance. Next we discuss the application of

Theorem 4.1 for the cases k = 1 and k = 2, using channel codes with largest minimum
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Hamming distance and for more general k, using shortened (R, k) Hamming codes of

distance 3 or 4.

4.1.2 Application of Theorem 4.1 for k = 1 and k = 2

For k = 1, i.e., m = 2, the (R, 1) linear channel code of maximum minimum Hamming

distance is the repetition code. Applying Theorem 4.1 with G2 generator matrix of

repetition code, the permutation matrix is given by

G =



0 1 1 0 0 · · · 0 0

0 0 1 1 0 · · · 0 0

...
. . . . . . . . . . . . 0 · · · 0

0 · · · 0 1 1 0 0

0 · · · 0 1 1 0

0 · · · 0 1 1

0 · · · 0 1

1 · · · 1



. (4.12)

Since the minimum Hamming distance of the repetition code is R, we have the fol-

lowing result.

Proposition 4.1. For any initial 2-diagonal IA α, permutation π2 with the permu-

tation matrix shown as (4.12) achieves d2,min(π ◦ α) = R− 1.

For k = 2, i.e., m ∈ {2, 3, 4}, the (R, 2) linear channel code with the maximum
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minimum Hamming distance is generated by the following generator matrix

G2 =

⌊R+1
3 ⌋︷ ︸︸ ︷ R−2⌊R+1

3 ⌋︷ ︸︸ ︷ ⌊R+1
3 ⌋︷ ︸︸ ︷ 1 · · · 1 1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1 1 · · · 1

 ,
(4.13)

where ⌊·⌋ denotes the floor function. Accordingly, the minimum Hamming distance

of this channel code is
⌊
2R
3

⌋
. Thus the following proposition holds.

Proposition 4.2. For any initial m-diagonal IA α with m ∈ {2, 3, 4}, permutation

π2 with the permutation matrix shown as (4.13) achieves d2,min(π ◦ α) ≥
⌊
2R
3

⌋
− 1.

4.1.3 Application of Theorem 4.1 Using Hamming Codes

For any positive integer t ≥ 3, there exists a Hamming code with the following

parameters:

Code length: R = 2t − 1

Number of information symbols: k = 2t − t− 1

Minimum Hamming distance among codewords: dmin = 3

The parity check matrix of such a Hamming code can be arranged in the following

form:

H =

[
Qt×(2t−t−1) It

]
.

It is possible to delete any s columns from the parity check matrix of a Hamming code

to obtain a new parity check matrix for a shortened Hamming code with following
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parameters(Lin and Costello (2004)):

Code length: R = 2t − s− 1

Number of information symbols: k = 2t − t− s− 1

Minimum Hamming distance among codewords: dmin ≥ 3

The minimum Hamming distance of a shortened Hamming code is at least the same

as its original Hamming code. According to the shortened Hamming code, t = R− k

which is at least 3, and s = 2t − R − 1 which is no less than 1. Then relation

R− k ≥ log2(R + 2) holds and we get the following proposition.

Proposition 4.3. For any k and R ≥ 1 such that R−k ≥ 3 and R−k ≥ log2(R + 2)

and any m-diagonal IA α with m ≤ 2k, there is a linear permutation π2 such that

d2,min(π ◦ α) ≥ 2. (4.14)

If we delete from the sub-matrix Q all the columns of even weight, we obtain a

modified parity check matrix written as [Q′ Ik] where Q
′ consists of 2k−1− k columns

of odd weight, which means there are no three columns adding to zero. Whereas, for

any column in Q′ of Hamming weight 3, it is possible to find three columns in I such

that their logical summation is zero. Therefore, the minimum Hamming distance of

this Hamming code is exactly 4. The shortened Hamming code with this parity check

40



M.A.Sc. Thesis - Yinghan Wan McMaster - Electrical Engineering

matrix has the properties(Lin and Costello (2004))

Code length: R = 2t−1

Number of information symbols: k = 2t−1 − t

Minimum Hamming distance among codewords: dmin = 4

Then we have the following result.

Proposition 4.4. For any t ≥ 3, R = 2t−1 and k = 2t−1 − t and any m-diagonal IA

α with m ≤ 2k, there is a linear permutation π2 with

d2,min(π ◦ α) ≥ 3. (4.15)

4.2 2l-by-2l Square Initial IA

4.2.1 Robust Linear Permutation for Square IA Based on

Linear Block Codes

Theorem 4.2. For some integer l with 1 ≤ l ≤ R− 1, let G2 be the generator matrix

of an (R, l) systematic linear block code, i.e., G2 = [Il Pl×(R−l)]. Assume that the

minimum Hamming distance of the channel code is d for d ≥ 1. Consider now the
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matrix G given by

G =



1 1 0 0 0 · · · 0

0 1 1 0 0 · · · 0

0 0 1 1 0 · · · 0

...
. . . . . . . . . . . .

...
...

0 0 · · · 0 1 1 0

0 0 · · · 0 0 1 1

0

0 0 · · · 0 0 0 1

G2





R− l

}
l︸ ︷︷ ︸

l

︸ ︷︷ ︸
R−l

. (4.16)

Then G is full ranked and the associated permutation π2 satisfies

dH(π2(a1), π2(a2)) ≥ d, (4.17)

for all a1, a2 ∈ {0, 1, · · · , 2R − 1} such that a1 ̸= a2 and b(a1) ⊕ b(a2) has the R − l

most significant bits equal to 0.

Proof. The fact that G is full ranked follows from the proof of Theorem 4.1. Let

a1, a2 ∈ {0, 1, · · · , 2R − 1} such that b(a1)⊕ b(a2) = [0R−l|u1 · · ·ul] where ut ∈ {0, 1}

with t ∈ {1, 2, · · · , l} and [u1 · · ·ul] ̸= 0l. Then

dH(π2(a1), π2(a2)) = dH(b(a1) ·G, b(a2) ·G)

= Hw((b(a1)⊕ b(a2)) ·G) = Hw([u1 · · ·ul] ·G2) ≥ d.

This completes the proof of Theorem 4.2.
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For the cells in a 2l-by-2l square, their binary representations of side 2 indices

differ in the last l bits for a given side 1 index. In other words, j1, j2 ∈ J (i) if and

only if b(j1)⊕ b(j2) = [0R−l|u1 · · · ul] for some [u1 · · ·ul] ∈ {0, 1}l. Then we obtain the

following corollary.

Corollary 4.2. For π2 given by Theorem 4.2, the following inequality holds

d2,min(π ◦ α) ≥ d, (4.18)

for any 2l-by-2l IA.

4.2.2 Application of Theorem 4.2 for l = 1, l = 2 and l = R−1

Notice that the permutation matrix from Theorem 4.2 is the same as the permutation

matrix from Theorem 4.1 when l = k. Thus, for l = 1 and l = 2, the matrix is given

by (4.12) and (4.13) respectively.

Proposition 4.5. For any initial 2-by-2 square IA α, permutation π2 with the per-

mutation matrix given by (4.12) achieves d2,min(π ◦ α) = R.

Proposition 4.6. For R ≥ 3 and any initial 22-by-22 square IA α, permutation π2

with G2 in Theorem 4.2 given by (4.13) achieves d2,min(π ◦ α) ≥
⌊
2R
3

⌋
.

For l = R−1, the (R,R−1) linear block code which achieves maximum minimum

Hamming distance is the single parity check code . A single parity check code is with

a single parity check digit and whose generator matrix is given by(Lin and Costello

(2004))

G2 =

[
IR−1 1TR−1

]
. (4.19)
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Accordingly, the parity check matrix of (4.19) isH = 1R. And the minimum Hamming

distance of the single parity check code is d = 2. Then the following proposition holds.

Proposition 4.7. For any initial 2R−1-by-2R−1 square IA α, consider permutation

π2 with permutation matrix Gπ2 given by

Gπ2 =

 0R−1

IR−1

1TR

 . (4.20)

Then the following inequality holds.

d2,min(π ◦ α) ≥ 2. (4.21)

4.2.3 Application of Theorem 4.2 with Hamming Code

Using a shortened Hamming codes with following parameters:

Code length: R = 2t − s− 1

Number of information symbols: l = 2t − t− s− 1

Minimum Hamming distance among codewords: dmin ≥ 3

for any 1 ≤ s ≤ 2t − 1 and t ≥ 3, we get the following proposition.

Proposition 4.8. For any l, R ≥ 1 such that R− l ≥ 3 and R− l ≥ log2(R + 1) and

any 2l-by-2l square IA α, there is a linear permutation π2 such that

d2,min(π ◦ α) ≥ 3. (4.22)
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We properly design the parity check matrix of the shortened Hamming code shown

in Section 4.1.3 with the following parameters:

Code length: R = 2t−1

Number of information symbols: l = 2t−1 − t

Minimum Hamming distance among codewords: d = 4

The next proposition immediately follows.

Proposition 4.9. For any t ≥ 3, R = 2t−1 and l = 2t−1 − t and any 2l-by-2l IA α,

there is a linear permutation π2 with

d2,min(π ◦ α) ≥ 4. (4.23)
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Chapter 5

Robust IA Design for Scenario III

Based on Linear Permutations

The index assignment schemes for robust 2-DSQ with either description being error-

prone are presented in this chapter. Let i ∈ {0, 1, · · · , 2R − 1} and j ∈ {0, 1, · · · , 2R − 1}

denote the indices of description 1 and description 2, respectively. In the following

discussion, we propose the construction of robust linear permutations achieving min-

imum Hamming distance 3 for 2-diagonal initial IA and 2-by-2 square initial IA. The

general design procedure is still under study.

5.1 2-by-2 Square Initial IA

Consider first general 2l-by-2l square initial IA α. Let the binary representation of

indices i, respectively j, be b(i) = [i1i2 · · · iR] respectively b(j) = [j1j2 · · · jR]. For

all the cells in the same square, the codewords (b(i), b(j)) differ only in the bits

[iR−l+1 · · · iR] and [jR−l+1 · · · jR]. For example, the cells in the first square in the
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matrix shown in Fig. 2.3(b) which corresponds to R = 3 and l = 1, are [00|0, 00|0],

[00|0, 00|1], [00|1, 00|0] and [00|1, 00|1], thus the first two bits are the same for all the

cells. In general, a cell in a 2l-by-2l square IA can be represented by only R + l bits

instead of 2R bits, where the first R − l bits are the common bits for all cells in the

same square, while the remaining 2l bits are for telling the two descriptions apart.

Therefore, the initial codeword of one cell can be written as [u|v1|v2], where u =

[i1i2 · · · iR−l] = [j1j2 · · · jR−l], v1 = [iR−l+1 · · · iR] and v2 = [jR−l+1 · · · jR]. Consider

now applying a pair π = (π1, π2) of linear permutations to the initial IA, with

Gπ1 =

 A1

B1


}
R− l}
l

, Gπ2 =

 A2

B2


}
R− l}
l

. (5.1)

Then [π1(i)|π2(j)] = [uA1 ⊕ v1B1|uA2 ⊕ v2B2] = [u|v1|v2] ·Gπ where Gπ is the (R +

l)× (2R)-dimensional matrix

Gπ =


A1 A2

B1 0R

0R B2


}
R− l}
l}
l︸︷︷︸

R

︸︷︷︸
R

. (5.2)

Moreover, the set of all codeword pairs [π1(i)|π2(j)] coincides with the row space

of Gπ. Therefore, dmin(π ◦ α) coincides with the minimum Hamming weight of all

non-zero vectors in the row space of Gπ.
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Proposition 5.1. Let R ≥ 5, α be a 2-by-2 square IA and matrix G given by

G =


A1 A2

B1 0R

0R B2


}
R− 1}
1}
1︸︷︷︸

R

︸︷︷︸
R

, (5.3)

where B1 = B2 = [1|0R−4|101], A1 = [IR−1 0TR−1] and A2 is the (R − 1) × R matrix

defined as

A2(k1, k2) =


1, if k1 = k2 or k1 = k2 − 1

0, otherwise

.

Then G1 =

(
A1

B1

)
and G2 =

(
A2

B2

)
are full rank and the associated permutation pair

π has the property that

dmin(π ◦ α) ≥ 3. (5.4)

In order to prove the proposition, we need the following result from Lin and

Costello (2004).

Lemma 5.1. Let C be a linear code with parity check matrix H. The minimum

weight (or the minimum distance) of C is equal to the smallest number of columns of

H that sum to 0.

Then we give the proof of Proposition 5.1 as following.

Proof. Matrix G1 is lower triangle with all elements on the diagonal equal to 1. Thus,

clearly it has full rank. For G2, apply the following row operations. First add the

second last and the third last rows to the last row. Then switch the positions of A2
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and B2. The obtained matrix is upper triangle with all 1’s on the main diagonal.

Thus, G2 is full ranked as well.

Now we proceed to proving relation (5.4) It is known that elementary row oper-

ations, i.e., interchanging any tow rows or adding one row to another, on a matrix,

do not change its row space. Then add the last row to the first row and then add

the first row and the last fourth row to the last second row. The obtained G′ is in

systematic form, i.e., G′ = [IR+1 P], with P given by

P =


P1

P2 P4

P3

 ,

where P1 = [1|0R−5|10], P4 = [1|0R−3|111]T , P3 =
( 1 0R−4 1
0R−4 1 0

)
, and P2 is an (R −

2)× (R− 2) matrix defined as

P2(k1, k2) =


1, if k1 = k2 or k1 = k2 − 1

0, otherwise

.

In view of Lemma 5.1, we need only to prove that the smallest number of columns of

the parity check matrix H of G′ that sum to 0 is at least 3.

It is clear that H = [P T IR−1] derived from the systematic form of G′. Since all

columns of H are different, the conclusion follows (only two identical vectors can add

up to 0). Therefore, the minimum Hamming distance of C after applying permutation

pair π is at least 3, i.e., dmin(π ◦ α) ≥ 3.
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Proposition 5.2. Let matrix G be given by

G =


A′

1 A′
2

B′
1 07

07 B′
2


}
6}
1}
1︸︷︷︸

7
︸︷︷︸

7

, (5.5)

where A′
1 = [I6 0T6 ], B′

1 = [1100101], B′
2 = [1100101] and then A′

2 is the 6 × 7

dimensional matrix defined as

A′
2(k1, k2) =


1, if k1 = k2 or k1 = k2 − 1 or k1 = k2 − 2

0, otherwise

and A′
2(5, 1) = 1. Then G has full rank and the associated permutation pair π has

the property that

dmin(π ◦ α) ≥ 4. (5.6)

Proof. For G, apply the following row operations. Add the last row to the first row,

and then add the first, second and fifth row to the last second row. Now G is written

as its systematic format G′ = [I8 P8×6] so G is full rank.

Correspondingly, the parity check matrix of G can be written as H = [P T
6×8 I6] in

which the weights of all columns in P T
6×8 are 3. Therefore, it is impossible to choose

less than 3 columns from P T
6×8 sum to 0 and also no columns from I8 can be summed

to 0. In other words, we have to pick columns from both I8 and P T
6×8 so as to obtain 0

column. Since the minimum weight can be achieved from the logical sum of columns

from P T
6×8 is 2, at least 2 other columns need to be picked to offset this weight. That
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is, the smallest number of columns of parity check matrix summing to 0 is 4.

Therefore, the minimum Hamming distance of C with permutation π given by the

proposition above is at least 4, i.e., dmin(π ◦ α) ≥ 4.

5.2 2-Diagonal Initial IA

In this section,a permutation pair π is proposed achieving dmin(π ◦ α) = 3, for the

case of initial 2-diagonal IA.

Proposition 5.3. For some integer R ≥ 6, let two matrices Gπ1 and Gπ2 given by

Gπt =

 At
0 At

1

At
2

 (5.7)

where t = 1, 2. A1
0 = 0TR−1, A

2
0 is a (R− 2)× 2 dimensional matrix with all elements

zero, the matrix A1
2 = 1R, A

2
2 =

( 0 1 1 0R−6 1 1 0
1 1 0 0R−6 0 1 1

)
2×R

,

A1
1(k1, k2) =


1 if k1 = k2 or k1 = k2 − 1

0 otherwise

with dimension (R−1)× (R− 1) and A2
1 is the (R−2)× (R− 2) dimensional matrix

defined as

A2
1(k1, k2) =


1 if k1 = k2 or k1 = k2 − 1

0 otherwise

.

Then Gπ1 and Gπ2 are both full rank and the associated permutation pairs π = (π1, π2)
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has the property that

dmin(π ◦ α) = 3. (5.8)

Proof. Gπ1 has full rank by Theorem 4.1. For Gπ2 , first switch the positions of the

two rows in A2
2, and denote the obtained matrix by A

′2
2 . Then switch the positions

of A
′2
2 and (A2

0 A2
1). The new matrix is upper triangular with all 1’s on the main

diagonal. Therefore, Gπ2 is full rank as well.

Let the binary representations of two arbitrary distinct cells of the 2-diagonal IA

α, be [e1|e2] and [ē1|ē2], where e1, ē1 are for the first description in each cell, while e2, ē2

are for the second description. Thus, the Hamming distance between the codewords

of the two cells after permutation is given by

dH = Hw((e1 ⊕ ē1) ·Gπ1 + (e2 ⊕ ē2) ·Gπ2).

It is clear that the weight of any row in Gπ1 or Gπ2 is greater than or equal to 1,

therefore, Hw((e1 ⊕ ē1) · Gπ1) ≥ 1 if e1 ̸= ē1 and Hw((e2 ⊕ ē2) · Gπ2) ≥ 1 if e2 ̸= ē2.

For e1 = ē1, the two cells are on the same row of the IA matrix, i.e., e2 = ē2 + 1 or

ē2 = e2 + 1 where we use ′′+′′ as the addition of natural numbers, more precisely we

use e2+1 instead of b(b−1(e2)+1). For e2 = ē2, the two cells are on the same column,

i.e., e1 = ē1+1 or ē1 = e1+1. Thus, the Hamming distance between their codewords

for the two cases is at least 3 by Theorem 4.1. Therefore, in order to complete the

proof of (5.8), we only need to show that

if Hw((e1 ⊕ ē1) ·Gπ1) = 1 then Hw((e2 ⊕ ē2) ·Gπ2) ≥ 2
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or

if Hw((e2 ⊕ ē2) ·Gπ2) = 1 then Hw((e1 ⊕ ē1) ·Gπ1) ≥ 2.

Notice that for the 2-diagonal IA α, there are two relations between two side indices

of a cell, i.e., e2 = e1 or e2 = e1 + 1. Hence, there are four possible combinations of

two arbitrary cells: (1) [e1|e1], [ē1|ē1]; (2) [e1|e1 +1], [ē1|ē1]; (3) [e1|e1], [ē1|ē1 +1]; (4)

[e1|e1 + 1], [ē1|ē1 + 1]. Since dH = Hw((e1 ⊕ ē1) · Gπ1 + (e2 ⊕ ē2) · Gπ2), the second

combination and the third combination are equivalent from the point of view of dH .

Thus, only three cases have to be considered.

Now if remains to show that for each of the above three cases, if Hw((e1 ⊕ ē1) ·

Gπ1) = 1, then Hw((e2⊕ ē2) ·Gπ2) ̸= 1. The detailed proof can be found in Appendix.
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Chapter 6

Experiments and Discussions

The purpose of this chapter is to assess the performance in practice of the proposed

permuted IA in comparison with the original index assignment. Our tests are per-

formed on a zero mean, unit variance, memoryless Gaussian source. In each case,

the central quantizer of the 2-DSQ is optimized by using Vaishampayan’s algorithm

(Vaishampayan (1993)). In all cases, we consider transmission over independent chan-

nels with the same bit error probability ϵ ∈ (0.001, 0.3). The performance of each IA

is measured by the distortion portion due to the channel at the central decoder in

dB, i.e., 10 log10 D0,c.

We have performed tests for both Scenario II and Scenario III, in both cases

the separate bit errors are independent, identically distributed. In all figures in this

chapter, the curve corresponding to the expected central distortion D0,c calculated

with the IA before permutation is labeled Initial IA, while the label Robust IA is for

the curve corresponding to the robust IA obtained after applying the permutation

presented in chapter 4 or chapter 5. In both cases, the decoder is the minimum Ham-

ming distance decoder given by (2.6) for Scenario II, respectively (2.7) for Scenario
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III. For Fig. 6.1 and Fig. 6.2, which consider Scenario II, the labels Initial(suboptimal)

and Robust(suboptimal) indicate that the sub-optimal decoder proposed by Ma and

Labeau (2008) with the same IA’s as Initial IA and Robust IA, respectively. Recall

that the sub-optimal decoder discards the incorrect description, when the index pair

is not valid (see 2.4)

6.1 Experiments for Scenario II

Fig. 6.1, Fig. 6.2 and Fig. 6.3 plot the performance of index assignment for Scenario

II with and without index permutation designed by the method described in Chapter

4, versus BER. Each figure illustrates one of the following cases respectively: (1) 3-

diagonal initial IA with R = 6; (2) 2-by-2 square initial IA with R = 4; (3) 2-diagonal

IA with R = 3.

For Fig. 6.1 and Fig. 6.2, minimum side 2 Hamming distance of the codebook is 3,

which means that 1 bit error can be corrected. With minimum Hamming distance

decoder proposed in chapter 2, the expected distortion with IA after permutation is

much less than the one before permutation, specifically the maximum difference is

17.5 dB for both cases and it is achieved when ϵ = 0.001. Naturally, as the BER

increases, the gap between the performance of the robust IA and initial IA decreases

correspondingly. This is due to the fact that as BER increases, the probability of

the error patterns which can be corrected by the robust IA decreases. Regarding to

the performance of the sub-optimal decoder, notice that it is worse than minimum

Hamming distance decoder for small BER (ϵ ≤ 0.2). For Fig. 6.3, the minimum side

2 Hamming distance of robust IA is 2. As it can be seen, the robust IA is better than

initial IA. An interesting observation here is that the performance gap between the
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Figure 6.1: 3-diagonal IA with R = 6 for Scenario II

initial IA and the robust IA does not vary greatly with BER as in the other cases.

In summary, compared with the initial IA, the robust IA based on linear permu-

tation associated with minimum Hamming distance decoder can achieve significant

improvements against bit errors, especially when the bit error rate is small.

6.2 Experiments for Scenario III

Experimental results for robust 2-by-2 square IA and robust 2-diagonal IA based

on linear permutation presented by Chapter 5 are plotted in Fig. 6.4 and Fig. 6.5

respectively. For the purpose of examining the performance of index permutation in

details, zooming in figures for both IA schemes are also drawn.

For Fig. 6.4 R = 5 and for Fig. 6.5 R = 6, the minimum Hamming distance is 3
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Figure 6.2: 2-by-2 IA with R = 4 for Scenario II

for robust IA while for initial IA it is 1. As it can be seen, the robust IA outperforms

initial IA only when BER is very small, i.e., ϵ < 0.05 roughly. The fact that robust

IA is worse than the initial IA as BER increases, which is contrary to the intuition

that initial IA should be worse than robust IA (since the former has smaller dmin).

In an attempt to explain this, notice that D0,c =
∑2R

k=1 P (k)× ϵk × (1− ϵ)2R−k where

P (k) is the portion of the distortion when sent and decoded index pairs differ in k

bits. Actually, we have observed that P (1) is higher for initial IA than for robust IA,

while P (k) is much higher for robust IA than for the initial IA, in both square and

diagonal cases, which means the robust IA introduces higher distortion due to 2 bit

errors, and as ϵ increases, this term becomes dominant in D0,c.

To summarize, the robust IA with dmin = 3 based on linear permutation for initial

2-by-2 square IA with R = 5 and initial 2-diagonal IA with R = 6 of Scenario III
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Figure 6.3: 2-diagonal IA with R = 3 for Scenario II

outperforms the ones before permutation when bit error rate is less than 5%.
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Figure 6.4: 2-by-2 square IA with R = 5 for Scenario III
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Figure 6.5: 2-diagonal IA with R = 6 for Scenario III
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

For conventional two description scalar quantizer (2-DSQ), some techniques to de-

sign index assignment (IA) with good performance, i.e., small distortion, have been

presented in prior work. In this thesis, we proposed an approach based on applying

an index permutation to an initial IA (diagonal or square based) such as to increase

the minimum Hamming distance and thus to increase the robustness of the 2-DSQ’s

against bit errors.

For the scenario when only one description may incur bit errors and the decoder

knows which one, i.e., (Scenario II ), we introduced a new performance measure for IA

robustness, named minimum side Hamming distance dside,min, which is defined as the

minimum Hamming distance between valid index pairs for a fixed index of the error-

free description. Moreover, we established the connection between the anti-bandwidth

problem in a certain graph derived from a hypercube and the problem of designing a

robust permutation for the diagonal IA of Scenario II. Further, using known results
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related to the anti-bandwidth of a hypercube, we proposed permutations achieving

dside,min = 2. Then we introduced a simple construction for Scenario II achieving

a general minimum side Hamming distance dside,min using linear block codes with

minimum Hamming distance at least dside,min + 1 and dside,min for diagonal IA and

square IA, respectively.

For the case when both descriptions may incur bit errors, i.e.,(Scenario III ), we

described how to construct permutations achieving minimum Hamming distance 3

for diagonal and square-based initial IA’s, in the high redundancy case.

We also performed an experimental study of the proposed index permutation

techniques and compared them with the initial index assignment. We observed that

the IA after permutation for Scenario II works much better than initial IA in terms

of central channel distortion, at the same time it maintains the performance of the

source distortion. And for Scenario III, only when bit error rate (BER) is low, the

central channel distortion after permutation is less than the initial IA, while as the

BER increases the initial IA shows its advantage.

7.2 Future Work

As we have seen, the proposed robust index permutations for the diagonal and square

initial IA show good performance for small BER in both scenarios using minimum

Hamming distance decoder. However, some issues still remain unsolved:

1. The assumption of the whole thesis is based on 2 balanced descriptions scalar

quantizer, hence a natural question is how to construct robust index permuta-

tion for arbitrary number of descriptions and unbalanced case.
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2. We have considered only index permutations based on a given initial index

assignment and quantizer so far. The problem optimizing the quantizer, the

index assignment and the index permutation at the same time is still not solved.

In addition, besides m-diagonal IA and 2l-by-2l square IA, other IA matrices

are also interesting to be considered.

3. For Scenario III, current index permutations guarantee that only 1-bit error

can be corrected for two initial IA’s with specified m and l. However, general

constructions to combat larger number of bit errors for general value of m and

l are not known, and would be interesting to be investigated.
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Appendix A

Here we present the details of the proof of Proposition 5.3.

As explained in Section 5.2, to complete the proof that Gπ1 and Gπ2 are two valid

permutation matrices achieving minimum Hamming distance dmin = 3, it remains

to show that Hw((e2 ⊕ ē2) · Gπ2) = 1 and Hw((e1 ⊕ ē1) · Gπ1) = 1 can not hold

simultaneously. For this, define the sets

U = {u ∈ {0, 1}R|Hw(u ·Gπ1) = 1}, (A.1)

V = {v ∈ {0, 1}R|Hw(v ·Gπ2) = 1}. (A.2)

By solving the equations u ·Gπ1 = b and v ·Gπ2 = b for any b ∈ {0, 1}R of Hamming

weight 1, we obtain that

U = {[0R−t1−1|1t1 |0]|1 ≤ t1 ≤ R− 1} ∪


(10)k1, if R = 2k + 1

(10)k−111, if R = 2k

, (A.3)

V = {[0R−t2−2|1t2 |00]} ∪ {1R−500111} ∪ {1R−501110}, (A.4)
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where for any n-dimensional row vector e, ek denote the nk-dimensional row vector

obtained by repeating e k times.

Due to the 2-diagonal IA matrix, there are only three cases to be considered: (1)

e2 = e1, ē2 = ē1; (2) e2 = e1 +1, ē2 = ē1; (3) e2 = e1 +1, ē2 = ē1 +1. We will discuss

the three cases as follows.

Case 1. In this case, we have e2 ⊕ ē2 = e1 ⊕ ē1. According to (A.3) and (A.4), we

have U ̸= V , in other words, when e1⊕ ē1 ∈ U and e2⊕ ē2 ∈ V then e1⊕ ē1 ̸= e2 ⊕ ē2,

which contradicts the condition of this case.

Case 2. In this case we have e2⊕ē2 = (e1+1)⊕ē1. Write e1 = [b1 · · · bR−t−1|0|1t], (0 ≤

t ≤ R − 1), i.e., R − t is the position of the rightmost 0 in e1, then e2 = e1 + 1 =

[b1 · · · bR−t−1|1|0t]. Therefore, e1⊕ (e1 + 1) = [0R−t−1|1t+1], which further implies that

e2 ⊕ ē2 =(e1 + 1)⊕ ē1 (A.5)

=e1 ⊕ e1 ⊕ (e1 + 1)⊕ ē1

=e1 ⊕ ē1 ⊕ [0R−t−1|1t+1].

Based on the above relation, all possible values of e2 ⊕ ē2 corresponding to e1 ⊕ ē1 ∈

U , are presented in Table A.1. By inspecting the Table A.1, it is clear that when

e1 ⊕ ē1 ∈ U , we have e2 ⊕ ē2 /∈ V , which means that Hw((e2 ⊕ ē2) ·Gπ2) ≥ 2.

Case 3. In this case we have e2 ⊕ ē2 = (e1 + 1) ⊕ (ē1 + 1). Again, write e1 =

[b1 · · · bR−t−1|0|1t] for some 0 ≤ t ≤ R − 1 and ē1 = [b̄1 · · · b̄R−s−1|0|1s] for some

0 ≤ s ≤ R− 1. Without loss of generality, assume that t ≥ s.

When R = 2k + 1 and e1 ⊕ ē1 = [(10)k|1], the rightmost bit of ē1 must be 0, i.e.,

s = 0 < t. Then e1 + 1 = e1 ⊕ [0R−t−1|1t+1] and e2 + 1 = e1 ⊕ [0R−1|1], which imply
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Table A.1: Relation between e1 ⊕ ē1 and e2 ⊕ ē2 for e2 = e1 + 1, ē2 = ē1

e1 ⊕ ē1 e2 ⊕ ē2

case (a)
R = 2k + 1 (10)k1

(10)s0(10)k−s,∀s, 0 ≤ s ≤ k

(10)s1(10)k−s, ∀s, 1 ≤ s ≤ k − 1

R = 2k (10)k−111
(10)s0(10)k−s−10,∀s, 0 ≤ s ≤ k − 1

(10)s1(10)k−s−10,∀s, 0 ≤ s ≤ k − 1

case (b)
0R−t1−1|1t1 |0

∀t1, 1 ≤ t1 ≤ R− 1

1R−s|1s, ∀s, 1 ≤ s ≤ R

0R−1−s−t|1s|0t|1, ∀s, t ≥ 1, s+ t ≤ R

that

e2 ⊕ ē2 =e1 ⊕ ē1 ⊕ [0R−t−1|1t|0] (A.6)

=[(10)k|1]⊕ [0R−t−1|1t|0],

where 1 ≤ t ≤ R− 1. Clearly, e2 ⊕ ē2 /∈ V .

Assume now that R = 2k and e1 ⊕ ē1 = [(10)k|11]. Again, the last bit of the bit

sequence is 1, which implies that the rightmost bit of ē1 is 0, i.e., s = 0 < t. Thus,

e2 ⊕ ē2 = (e1 + 1)⊕ (ē1 + 1) has the two rightmost bits 01. Obviously, e2 ⊕ ē2 /∈ V .

Finally, assume that e1 ⊕ ē1 = [0R−t1−1|1t1 |0] for some 1 ≤ t1 ≤ R − 1. Because the

last bit of e1 ⊕ ē1 is 0, it follows that either s = t = 0 or s, t > 0. If s = t = 0, then

e2 ⊕ ē2 = e1 ⊕ ē1 /∈ V . Let us consider now the case when s, t > 0. Further, the fact
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that t ≥ s and that the last two bits of e1 ⊕ ē1 are 10, implies that s = 1 < t. Then

e2 ⊕ ē2 =e1 ⊕ ē1 ⊕ [0R−t−1|1t−1|00] (A.7)

=[0R−1−max {t1,t}|1|t1−t||0min {t1,t}|10]

=[0R−1−max {t1,t}|1|t1−t||0min {t1,t}|10],

which clearly is not in V .

With this the proof is completed.
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