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Abstract 

Musical evolution and human migration: Classification, quantification, and application 

Patrick E. Savage 

Master of Science 

Depratment of Psychology, Neuroscience and Behaviour 

McMaster University 

2011 

 

The cross-cultural study of music is important to our understanding of the evolution of 

human biological and cultural diversity. Early comparative musicologists failed to 

develop rigorous scientific methods for studying this, and the modern-day fields of music 

cognition and ethnomusicology still lack such methods. In this thesis, I describe our 

attempts to design new methods for classifying and quantifying cross-cultural musical 

diversity and to apply these methods to the study of musical evolution and migration. 

Using a new method of classifying songs, we analyzed 421 songs from 16 indigenous 

tribes in Taiwan and the Philippines. We found striking parallels between musical and 

genetic diversity, both in the degree of diversity found within each culture and in the 

patterns of similarities between cultures. These findings suggest that music may be 

subject to similar processes of evolution and migration as are genes. A new, 

multidisciplinary, and scientifically-grounded comparative musicology may thus provide 

a new line of evidence to complement and integrate existing research into the complex 

relationship between music, biology, and culture. 
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Chapter 1 

 

Introduction: Toward a new comparative 

musicology 

 
Patrick E. Savage  

 
It may seem strange to find a thesis focused on comparative analyses of 

Taiwanese aboriginal music coming out of the McMaster University Department of 

Psychology, Neuroscience & Behaviour. Stranger still, this thesis involves neither the 

perceptual experiments that are a hallmark of contemporary music cognition, nor the 

ethnographic fieldwork that is a hallmark of contemporary ethnomusicology. This might 

cause some to accuse this thesis of simply re-enacting the same mistakes found in the 

“armchair ethnomusicology” of early comparative musicologists, who often attempted to 

make conclusions about world musical diversity without first-hand experience of the 

cultural context in which their recordings were created. However, I believe that there is a 

need for a new, multidisciplinary, comparative musicology that bridges the divide 

between music cognition and ethnomusicology that has been the focus of recent debate 

(e.g., Becker, 2009a, 2009b, and responses). This thesis outlines some of the first steps 

towards this new comparative musicology. 

In some ways, this “new comparative musicology” is not really new, because it 

has essentially the same goals as outlined by Adler (1885), who first defined both 

comparative musicology and musicology in general. What makes it new is its 

methodologies. For one thing, this thesis highlights the methodological importance of 

collaboration with experts in other cultures and other fields (something rarely seen in 

both early comparative musicology and contemporary ethnomusicology) to increase 

breadth without greatly sacrificing depth.  

For another thing, this thesis highlights the importance of testing qualitative 

theories with rigorous quantitative methods. The chief criticism of early comparative 

musicologists was that their methodologies were premised on biased assumptions of 

European superiority that were widespread at the time (Rehding, 2000). Of course, we are 

all products of our times, and it is impossible to ever completely guard against biased 

interpretation. However, quantitative methods (particularly when accompanied by graphs 

and other visual aids) often make it easier to evaluate competing theories and harder for 

authors to get away with unsupported assertions. For example, in Ch. 3 our quantitative 

approach allows us to clearly reject Lomax‟s (1968) claim of “stylistic homogeneity” in 
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favour of the competing claim of high internal musical diversity within cultures (Henry, 

1976). 

There were four specific areas in which I felt that more rigorous methods were 

especially critical to a revival of comparative approaches. Methodological problems with 

these areas have long been debated by ethnomusicologists, and resurfaced recently in two 

special issues of The World of Music devoted to Grauer‟s (2006) claim that today‟s music 

contains “echoes of our forgotten ancestors” that can be traced back tens of thousands of 

years to the African origins of anatomically modern humans. These areas are also often 

cited as being impediments to a better cross-cultural understanding of music cognition: 

1) Universals (which, if any, musical features are shared by most cultures?) 

2) Classification (how can we describe musical similarities and differences in a 

cross-culturally appropriate way?) 

3) Quantification (how can we quantitatively compare these similarities and 

differences both between songs and between cultures?) 

4) Evolution/migration (how did contemporary musical diversity arise?) 

My supervisor, Steven Brown , has recently addressed the first area of universals 

(Brown & Jordania, in press), leaving the remaining three areas for my fellow graduate 

student, Tom Rzeszutek , and me to tackle for our theses. The meat of this thesis 

(Chapters 2-4) consists of three manuscripts addressing these areas that we are preparing 

to submit to academic journals. Classification is addressed in Chapter 2, which we plan 

to submit to Analytic Approaches to World Music. Hhere we outline our new cross-

cultural song classification scheme that seeks to improve the reliability of older schemes. 

Quantification is addressed in Chapter 3, which we plan to submit to Proceedings of the 

Royal Society B: Biological Sciences. Here we outline our new methods for quantifying 

musical diversity both within and between cultures. Evolution/migration is addressed in 

Chapter 4, where we apply the methods in Chapters 2 and 3 to examining correlations 

between musical and genetic diversity among the aboriginal tribes of Taiwan. Due to the 

curious discrepancies between parallel genetic samples described in that chapter, we are 

waiting until the new genetic data is published to do final revisions on that manuscript 

and decide on an appropriate journal for publication. Therefore, that chapter, like 

Chapters 1 and 5, is formatted in standard APA style, while Chapters 2 and 3 are 

formatted according to the journals‟ specifications. 
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Classification of organisms and languages has long provided the foundation for 

studying biological and cultural history, but there is still no accepted scheme for 

classifying songs cross-culturally. The best candidate, Lomax and Grauer’s 

“Cantometrics”, did not spawn a large following due, in part, to concerns about its 

reliability. We present here a new classification scheme, called “CantoCore”, that is 

inspired by Cantometrics but emphasizes its “core” structural characters rather 

than more subjective characters of performance style. Using both schemes to 

classify the 30 songs from the Cantometrics Consensus Tape, CantoCore appeared 

to be approximately 80% more reliable than Cantometrics. Nevertheless, 

Cantometrics still demonstrated significant reliability for all but its instrumental 

characters.  Future multidisciplinary applications of CantoCore and Cantometrics 

to the cross-cultural study of musical similarity, musical evolution, musical 

universals, and the relationship between music and culture will provide the true test 

of each scheme’s value.   
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INTRODUCTION  

Musical classification is a topic that has received scant attention since the heyday 

of comparative musicology during the first half of the 20
th
 century. Fields like biology 

and linguistics have long relied on classification as the starting point for developing 

broader theories, such as Darwin‟s (1859) theory of evolution and Jones‟ (1807) theory of 

prehistoric connections among speakers of Indo-European languages. Today, global 

linguistic classification databases such as the Ethnologue (Lewis 2009) and the World 

Atlas of Language Structures (Haspelmath et al. 2005) are fundamental to the study of 

language evolution, linguistic universals, and human history (Currie and Mace 2009; 

Dunn et al. 2011; Atkinson 2011). Musicology, in contrast, never entered into a 

comfortable relationship with cross-cultural classification, despite early attempts in that 

direction (Hornbostel and Sachs 1914; Lomax 1968). Even global music collections like 

the Garland Encyclopedia of World Music (Nettl et al. 1998) and Smithsonian Global 

Sound (http://glmu.alexanderstreet.com) that are organized according to geographic and 

ethnolinguistic classifications do not use an explicitly musical classificatory framework.  

A consideration of the historical roots of the field shows that classification was 

central to the first definition of comparative musicology: 

 ...comparative musicology has as its task the comparison of the musical works – 

especially the folksongs – of the various peoples of the earth for ethnographical 

purposes, and the classification of them according to their various forms. (Adler 

1885:14) 

Although classification, comparison, and ethnography were all equal parts of this original 

definition, the field later changed its name to “ethnomusicology” and developed a 

methodological emphasis on single-culture ethnography over cross-cultural classification 

and comparison. This was part of a broader trend in anthropology in the wake of World 

War II toward cultural relativism and away from universalism (Geertz 1973). One 

outcome of this shift was the recognition of a theoretical distinction between “etic” 

(objective, outsider) and “emic” (subjective, insider) theories of classification (Harris 

1976). This dichotomy nicely characterizes the paradigmatic difference between early 

comparative musicology and contemporary ethnomusicology. Ethnomusicologists have 

largely rejected etic, acoustic classification schemes, despite a plea for pluralism in 

approaches to world musics (Merriam 1982; Nettl 2005; Agawu 2010). Although the goal 

of classifying musics acoustically presents many challenges – for example, the need for 

classification schemes to be universally applicable – these challenges do not a priori 

invalidate cross-cultural classification (but see Hood 1971; Blacking 1973; McLeod 

1974).  

Along these lines, are two major methodological challenges to classifying music 

cross-culturally. One challenge is specific to instrumental music: how do we ensure that 

we are comparing like with like when different cultures use different instruments with 

differing acoustic features, production mechanisms, and tuning systems (Ellis 1885)? The 

second is specific to vocal music: how can we design a classification system that is broad 

enough to accommodate all musical cultures while maintaining a distinction between 

“song” and “speech”? While the instrumental classification scheme of Hornbostel and 

http://glmu.alexanderstreet.com/
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Sachs (1914) is still widely used today, there remains no widely accepted song-

classification scheme.  

 One solution to the problem of song classification is to see the relationship 

between music and language as a continuum – a “musilinguistic” spectrum (Brown 2000) 

– rather than as a contrast between two discrete domains. This acknowledges the general 

consensus in ethnomusicology, neuroscience, and evolutionary biology that music and 

language are deeply interconnected (Darwin 1871; Feld and Fox 1994; Wallin, Merker, 

and Brown 2000; Patel 2008). The implications for song classification are clear: a truly 

universal approach cannot exclude “non-musical” vocalizations but must accommodate 

any type of vocalization sitting along the musilinguistic spectrum of communicative 

forms from speech, to songs, to everything in between. While Sachs (1943) proposed 

such a spectrum in his distinction between “logogenic” (word-born) and “melogenic” 

(melody-born) songs, there is a need for a classification scheme that can accommodate 

the diversity of ways in which song-features can independently vary across multiple 

musilinguistic spectra. For example, some songs can have irregular “speech-like” 

(parlando) rhythms but use discrete “music-like” pitches, while others can have metric 

“music-like” rhythms but use indeterminate “speech-like” pitches. 

 Multi-dimensional, musilinguistic spectra are in fact a major design feature of the 

best-established song-classification scheme to date, “Cantometrics” (Lomax and Grauer 

1968; Lomax 1976). Cantometrics classifies songs according to 37 acoustic characters 

related to their structure, performance style, and instrumental accompaniment. Each 

character contains between 3 and 13 character-states, which are ordered along a social 

continuum from “individualized” to “groupy”. This continuum can be thought of equally 

well as a musilinguistic continuum, since speech tends to be more individual-oriented and 

song more group-oriented. 

 Applying this scheme to a global sample of thousands of songs from hundreds of 

cultures, Lomax found that global song diversity was organized into 10 major stylistic 

families that also correlated with extra-musical features of social structure and historical 

contact. Critics generally applauded this ground-breaking attempt to quantitatively 

address the relationship between music and culture and supported its broad findings, 

despite some concerns over methodological issues regarding sampling, treatment of intra-

cultural diversity, and the interpretation of correlations between music and social 

structure (Naroll 1969; Driver 1970; Downey 1970; Nettl 1970; Maranda 1970; Henry 

1976; Erickson 1976; Dowling and Harwood 1986; Grauer 2005; Leroi and Swire 2006). 

However, many critics were divided over Lomax‟s emphasis on performance style over 

song structure. Lomax‟s agenda in creating Cantometrics was to replace Western 

musicology‟s traditional emphasis on musical structure and notation – which he and 

many others saw as being Eurocentric and elitist (Lomax 1959; Feld and Fox 1994) – 

with a more performance-oriented system. While some critics supported the development 

of measurements of performance characters such as “nasality” and “rasp”, others were 

concerned that such characters were overly subjective and thus unreliable (Downey 1970; 

Maranda 1970).  

The principal objective of the current study is to present a detailed analysis of a 

new universal song-classification scheme. We call it “CantoCore” because of its 
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emphasis on the “core” structural characters of song. The scheme takes its lead from the 

updated 1976 version of Cantometrics but focuses only on characters of song-structure 

rather than performance-style or instrumentation (see Fig. 1), because of our prediction 

that structural characters should be more reliable. We have reorganized, supplemented, 

and attempted to more objectively operationalize these characters, building on the work 

of others when possible (Kolinski 1961, 1962, 1973; Plomp and Levelt 1965; Patel and 

Daniele 2003; Leroi and Swire 2006; Busby 2006). In addition, the scheme introduces 

several structural characters not present in Cantometrics, most notably those related to 

scales and rhythms. Finally, the scheme is designed to accommodate musical forms at all 

points along the musilinguistic spectrum, from a simple sentence to the most complexly-

textured responsorial polyphony. The current study also includes a test of the inter-rater 

reliability of song codings, comparing 1) CantoCore vs. Cantometrics, and 2) the 

structural characters of Cantometrics vs. its performance and instrumental characters. To 

accomplish this, we use the global set of 30 songs contained in the Cantometrics 

Consensus Tape (Lomax 1976) that Lomax selected to demonstrate the cross-cultural 

validity of the Cantometrics scheme.  

 

Fig. 1: A comparison of the types of musical characters classified by CantoCore vs. Cantometrics. Both classification 
schemes rely exclusively on acoustic information rather than on non-acoustic characters. But whereas Cantometrics 
(green box) focuses on both the performance and structural characters of songs as well as their instrumental 
accompaniment, CantoCore (red box) focuses exclusively on the structural characters of the vocal part, excluding both 
performance and instrumental characters.  

 

CLASSIFICATION SCHEME 
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Theoretical framework 

The musical hierarchy. Music is a hierarchical system made up of several levels 

of organization (Schenker 1979; Lerdahl and Jackendoff 1983; Krumhansl 1990; Anku 

2000; Tenzer 2006). Figure 2a presents a schematization of the musical hierarchy that we 

employ in organizing the characters of the CantoCore classification scheme, themselves 

listed in Figure 2b. A useful analogy for conceptualizing our classification scheme is to 

think of a song as a biological organism. In essence, songs are simply a complex 

combination of notes, just as organisms are a complex combination of cells. However, as 

with the cells in an organism, the notes in a song interact with each other and with their 

extra-musical environment at many different levels and in many different ways. These 

complex interactions can never be fully quantified but can still be usefully modeled.  

The most basic distinction is that between the note level – where the note is 

regarded as the basic building block of music – and the supra-note level. The note level 

consists of three characters: 1) rhythm (colored red in Figure 2a), reflecting the relative 

duration of a note; 2) pitch (blue), reflecting the acoustic frequency of a note; and 3) 

syllable (green), reflecting the articulatory configuration of a sung note (exemplified by 

“la” in the figure). The supra-note domain consists of interactions between notes, as 

organized into three broad hierarchical domains: 1) phrase, representing the between-

note level within individual vocal parts, 2) texture, representing the between-part level, in 

which simultaneous phrases in different vocal parts overlap in time, and 3) form, 

representing the between-phrase level, where successive phrases combine to form larger 

melodic units. Figure 2b lists the classification characters associated with each of these 

three supra-note domains. It also shows that the domain of “phrase” contains the three 

note-level characters of rhythm, pitch, and syllable (color coded the same as in Fig. 2a). 

CantoCore classifies 26 structural characters of songs (Fig. 2b), organized into categories 

associated with the note and supra-note domains listed above. Fifteen of these characters 

are refined versions of structural characters already contained in Cantometrics, while 11 

characters – mostly those related to rhythm and scale – are new, as indicated by asterisks 

in the detailed scheme below.  
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Fig. 2: a) The musical hierarchy is comprised of “note” and “supra-note” domains. The three main note domains are 
rhythm (red), pitch (blue), and syllable (green), as represented by the sung note “la”. Interactions between notes give 
rise to the supra-note domains of “phrase” (the between-note level), “texture” (the between-part level) and “form” (the 
between-phrase level). b) The 26 structural characters that comprise the CantoCore classification scheme are organized 
according to these note and supra-note domains.  

 

Quantitative vs. qualitative characters. A fundamental distinction in 

classification theory is that between quantitative (or continuous) characters and 

qualitative (or discrete) characters (Sneath and Sokal 1973). Quantitative traits can be 

classified with regard to their size. For example, melodic intervals (character 12 in the 

CantoCore scheme) vary in a continuous manner from very small intervals to very large, 

and everything in between. Another way to code characters quantitatively is with regard 
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to their frequency of occurrence in a song. In CantoCore, vocables (character 16) are 

coded with regard to their frequency of occurrence, ranging from being completely 

absent (low frequency) to being ubiquitous (high frequency). Qualitative traits, by 

contrast, cannot be placed onto a numerical spectrum of size or frequency, and are instead 

organized as a series of discrete states. For example, melodic contours (character 14) 

come in a variety of discrete types, such as descending contours, ascending contours, 

arched contours, and the like. Of the 26 CantoCore characters, 15 are quantitative traits 

and 11 are qualitative traits by the standards of classification theory.  

Ordering of character-states. Most of CantoCore‟s 26 characters are divided into 

3-4 character-states, resulting in a total of 97 character-states across the scheme. Of these, 

55 are new to the scheme, as indicated by asterisks in the detailed description below. 

Figure 3 represents our rationale for ordering the character-states within each character. 

Character-states are ordered in a consistent manner, spanning a musilinguistic spectrum 

from language-like (left side) to music-like (right side). However, the method for 

achieving this differs for quantitative and qualitative characters, as shown in Figure 3 

above and below the horizontal arrow. 

Fig. 3: The character-states within each character are organized according to a “musilinguistic” spectrum spanning 
from language-like to music-like (no value judgment is implied). Quantitative characters (top part of the figure) are 
ordered in terms of increasing size from small to large using lower-case roman numerals. Qualitative characters 
(bottom part of the figure) are ordered in terms of increasing “regularity” using lower-case letters from irregular (“A-”) 
to regular (“Iso-”), with semi-regular states between them having either multiple successive forms (“Hetero-”) or 
multiple simultaneous forms (“Poly-”). The geometric shapes are used for heuristic purposes only to demonstrate the 
various facets of regularity.  

 

For quantitative characters, character-states are listed in order of increasing size or 

frequency using lower-case roman numerals (i, ii, iii, etc). This allows for precise 

placement of states along a continuum spanning from small (speech-like) to large (song-

like). For qualitative characters, character-states are listed in order of increasing 

“regularity” using lower-case letters (a, b, c, etc.), spanning from irregular (speech-like) 

to regular (song-like). By regularity, we refer to the degree of repetitiveness of a 

character throughout a song, where redundancy is far more associated with music than 

speech (Lomax 1968). Because qualitative characters could not always be divided up 

consistently, we employed a series of prefixes to convey a spectrum of qualitative states 
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(see the geometric shapes at the bottom half of Fig. 3 as a guide): a) “A-“ implies that a 

feature is absent from a song; b) “Hetero-” implies that multiple but successive features 

occur; c) “Poly-” implies that multiple simultaneous features occur; and d) “Iso-” implies 

that a single feature occurs consistently throughout a song. Applying these concepts to 

meter, for example, we can see that irregular “a-metric” songs have no discernable meter; 

semi-regular “hetero-metric” or “poly-metric” songs have multiple meters that are present 

successively or simultaneously, respectively; and regular “iso-metric” songs have a single, 

constant meter throughout.  

 

Classification logistics 

Within-song heterogeneity. Reality is too complex to be fully captured in a single 

classification. Songs change over time and can contain multiple sections whose codings 

conflict with one another. Some important work has been done regarding quantifying this 

kind of dynamic heterogeneity with regards to specific characters such as interval size 

and note duration (Toiviainen and Eerola 2001; Huron 2006). However, there is also a 

need for broader classification schemes that provide simpler classifications but span a 

number of characters across multiple domains.  

Maximal values. Heterogeneity can be partially accommodated for quantitative 

characters by defining them with regard to summary statistics describing their size or 

frequency. Hence, a song that has multiple states for such characters could be coded with 

regard to things like their maximal value for that song, their mean value for the song, or 

their standard deviation. For consistency, and to make the scheme possible to use quickly 

by ear without resorting to laborious transcription and note-counting, quantitative 

characters have been defined in terms of maximal values and divided into the character-

states of “small”, “medium”, and “large” by imposing somewhat arbitrary thresholds. 

This is intended to reduce the amount of theoretical expertise and time required to code 

the songs. If one is working from notated scores or transcriptions, or if the coder has 

enough confidence in his/her ability to hear very fine distinctions, the raw numerical 

values may be used to increase precision (see Figure 4 below). However, this may give 

an appearance of precision that is unrealistic, as we found that making the scheme finer-

grained did not improve its reliability.  

Multi-coding. For qualitative characters, heterogeneity is more difficult to 

classify. In some cases, the heterogeneity of a song‟s characters can be accommodated by 

character-states that specify an intrinsic heterogeneity of features (e.g., “hetero-metric”, 

“poly-tonal”). However, in other cases, this can only be accomplished by “multi-coding”, 

in other words selecting multiple distinct character-states for the same song (e.g., both 

“descending” and “arched” contours if both types occur in a single song). As a general 

rule, multi-coding should be avoided if one character-state is clearly the most prominent 

in a song.  

Character dependence. Some characters are dependent on others. For example, 

“a-metric” songs that have no beat (character 1) cannot possibly have a sub-beat 

(character 3). For such characters, a “n/a” character-state is included to denote something 



 

 13 

that is unclassifiable. “?” may be used instead if recording quality or other factors make it 

impossible to code a given character, or if the musical characters are simply too complex 

to specify (following Busby 2006).  

Relationship to Cantometrics. For all characters that are derived from structural 

characters of Cantometrics, the original Cantometrics line number and corresponding 

character-states names from the updated version of Cantometrics (Lomax 1976) have 

been given. There are a few small differences between this and the version (Lomax and 

Grauer 1968) used to collect the original Cantometric data, but these can be easily inter-

converted. Therefore, it is basically possible to convert old Cantometric codings into 

CantoCore codings if desired, which may be useful in re-analyzing the original 

Cantometric data without having to re-code each of its thousands of songs.  

Instrumental application. Due to the complications listed in the introduction 

involved in classifying instrumental music cross-culturally, we have designed CantoCore 

exclusively for the purpose of classifying vocal music. Most of the classifications could 

also be useful for classifying instrumental music, but caution should be exercised in 

doing so, particularly regarding the additional constraints on sound production and 

intonation that are introduced by different instrument types. For example, although 

breathing can still be helpful in determining phrase boundaries for aerophones, it will be 

less useful when dealing with chordophones.  

How to code. We have attempted to define all of our terms as precisely as 

possible so that the coder can provide precise numeric values if they are working directly 

from a score or transcription, or if they have a high level of listening expertise. These 

definitions therefore require a modest background in music theory to code well. However, 

since much of the world‟s music is transmitted orally and is difficult and time-consuming 

to transcribe, we have also aimed to create our character-states such that they can be 

reliably identified by ear without detailed notation. Ultimately, the numeric values are 

simply guidelines to assist the coder in interpreting their holistic, subjective classification 

of the songs. Once the coder has practiced with a few dozen songs, he/she should be able 

to code a 3-minute song by ear in 15-20 minutes, which is comparable to the amount of 

time required to do so using Cantometrics (Lomax 1976). 

When coding, the coder should first listen to the song once through, jotting down 

important notes and trying to get a sense for the different phrases that make up the song: 

how many there are, in what order, how long each phrase is, what scale(s) or meter(s) (if 

any) underlie them, etc. The instrumental accompaniment can be used if it is helpful in 

interpreting the correct song classification, but if there is any conflict between the vocal 

and the instrumental components, the coder should focus only on the vocal component. 

After they have listened to the song once, they should go through and attempt to classify 

each character in order from 1 to 26. They should then listen to the entire song again, 

checking the initial codings and paying particular attention to complicated or ambiguous 

codings. The coder can also jump forwards or backwards within the song or repeat the 

song as many times as necessary to arrive at a set of codings they are confident in. Any 

particularly noteworthy features, such as ambiguities, striking characters not classifiable, 

etc., should be listed in a separate “comments” column. 
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This same format applies regardless of the length of the song or any extra-

acoustic information about the song. The definition of what constitutes a “song” varies, 

but in the absence of other information, it is reasonable to assume that different tracks on 

recordings correspond to different songs. Song classifications should be interpreted with 

the help of recording liner notes, music theory (both emic and etic), and all other 

available resources. However, the initial classification should be done blind to extra-

acoustic information as much as is practically possible (i.e., without knowing what 

culture the song is from or how the singer(s) classify their own music). CantoCore is 

fundamentally an etic, acoustic classification scheme, with all of the benefits and 

drawbacks that this entails (Harris 1976).  

Definitions. Our goal was to create a descriptive system that allows a common 

vocabulary for classification, not a prescriptive system that dictates how one should 

perceive music. Nevertheless, for such a system to be reliable, it is necessary to have 

standardized definitions. Since few, if any, musical terms have cross-culturally agreed-

upon definitions, we have offered our own definitions for each character, as well as for 

several key terms (see Box 1). Definitions about complex musical categories such as 

“tonality” and even seemingly simpler categories such as “interval size” have been, and 

will continue to be, debated. Our definitions are simply operational ones that can be 

usefully applied cross-culturally. Even when using these definitions, some level of 

disagreement and ambiguity is inevitable due to perceptual differences between 

individuals and between cultures. We discuss some observations on agreement in the 

“RELIABILITY” section. 
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Box 1: Glossary of key terms 

 Note: A continuous combination of one pitch and one syllable for a fixed duration. 
If the pitch or syllable changes or begins afresh, this constitutes a new note. 

 Vocal part: A series of notes sung by one voice, or by several voices in unison 
and/or in octaves. Slight variations between voices singing basically in unison are 
not counted as separate parts unless the offset between parts exceeds 0.1s in time 
or 50 cents in pitch (see characters 18 and 19 in the scheme).  

 Phrase: A self-contained series of notes in one or multiple vocal parts. Phrases are 
usually separated by breaths or long pauses, but can also be separated by more 
complex grouping principles. The coder should rely on their intuition in deciding 
what constitutes a new phrase, focusing on breaths in ambiguous cases.  

 Beat: Fixed time interval(s) at which notes regularly recur.  The beat is often sub-
divided into multiple sub-beats. In cases where the distinction between a “beat” 
and a “sub-beat” is ambiguous, the coder should designate the beat as the unit 
which feels the most natural to take steps to when dancing.     

 Tonic: The central tone(s) that seems to be the most stable in a scale. The tonic is 
usually either the most common note in a scale, the final note in a phrase, or both. 
In ambiguous cases, the coder should designate the tonic as the note that occurs 
most frequently as the final note in a phrase. If the tonic seems to consistently 
differ between phrases or between vocal parts, this should be classified as hetero- 
or poly-tonal, respectively (see character 8 in the scheme).  

 Scale degree: Notes that share the same pitch class (e.g., B, Db) regardless of their 
absolute pitch are considered as the same scale degree (i.e., assuming octave 
equivalence). Because the production of vocal pitches often fluctuates by up to 
100 cents from tonal targets during normal singing (Pfordresher et al. 2010), we 
have followed the compromise adopted by Kolinski (1961) and others of 
rounding pitches to the nearest 100 cents, for a maximum of 12 possible unique 
scale degrees. Unfortunately, as a result of this compromise, there may be some 
cases in which separate micro-tones are classified as a single scale degree, while 
in other cases normal variation of intonation may be classified as separate scale 
degrees.  

 

N.B. None of these terms have a well-agreed upon cross-cultural definition. We offer these 
definitions to assist in developing a shared classification vocabulary that can be reliably 
replicated by different coders. However, we recognize that many cultures have their own 
emic definitions that may differ from ours, and that there are many grey areas in which the 
perception and interpretation of these features may vary both within and between cultures. 
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THE “CANTOCORE” SONG CLASSIFICATION SCHEME 

NOTE: Characters and character-states marked with an asterisk are those that are new to 

this scheme and that are not taken from Cantometrics. 

I) “PHRASE” (between-note) 

A) Rhythm 

1) METER (Cantometrics Line 11)  

Cyclic groupings of strong and weak beats into bars 

(a) A-metric: No consistent beat (formerly “parlando rubato – free rhythm”) 

(b) Hetero-metric: There is a consistent beat, but strong and weak beats occur 

without a consistent pattern (formerly divided into “one-beat rhythm” and 

“irregular meter”) 

(c) Poly-metric*: Multiple cyclic patterns of strong and weak beats occur 

simultaneously (e.g., 6/8 against 3/4) (“simple” and “complex” poly-

meter from Cantometrics Line 12 have been combined and moved here) 

(d) Iso-metric: There is a single, consistent pattern of strong and weak beats 

(e.g., 3/4, 6/8, 5/4, 2+2+3/8) (formerly divided into “simple” and 

“complex”) 

N.B. See Box 1 for the definition of “beat”. Songs not classified as (d) (“iso-

metric”) must be coded (n/a) for characters (2-5). Songs that transition between 

metric types (e.g., an “a-metric” section giving way to an “iso-metric” section) 

should be multi-coded.  

Comments: The “poly-metric” character-state was moved here from Cantometrics 

Line 12. The new characters (2-4) were created to deal with various iso-metric 

sub-types unclassifiable using Cantometrics. For instance, Cantometrics did not 

create any distinctions between 3/4, 4/4, 9/8 and 12/8 meters, although there are 

important regional differences in the distribution of these metric types.  

2) NUMBER OF BEATS* 

The number of beats in a bar  

(a) Duple: The number of beats can be divided by 2 (e.g., 2/4, 4/4, 6/8, 12/8, 

2+3/8) 

(b) Triple: The number of beats can be divided by 3 but not by 2 (e.g., 3/4, 

9/8, 2+2+3/8)   

(c) Complex: The number of beats can only be divided by prime numbers 

greater than 3 (e.g., 7/4, 5/8, 2+2+3+2+3/8) 

 (n/a) A-/hetero-/poly-metric: See (1) 

Comments: Only the number of beats is coded here, regardless of the manner in 

which they are sub-divided into sub-beats, which is coded in (3). For example, a 

2+3/8 meter is composed of two beats, one of which is divided into two sub-beats 

and the other of which is divided into three sub-beats. 

3) BEAT SUB-DIVISION*  
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Division of beats into sub-beat-level metric groupings  

(a) A-divisive: Beats are not sub-divided (e.g., a 4/4 piece containing only  
and  notes) 

(b) Hetero-divisive: Beats are sub-divided, but the number of sub-beats per 

beat changes (e.g., 2+2+3/8) 

(c) Iso-divisive: Beats are sub-divided into a consistent number of sub-beats 

(e.g., 6/8, a 4/4 piece containing   notes) 

(n/a)  A-/hetero-/poly-metric: See (1) 

N.B. See Box 1 for the distinction between “beat” and “sub-beat”. Songs not 

classified as (c) (“iso-divisive”) must be coded (n/a) for character (4). 

Comments: This character was created to capture a crucial metric dimension not 

classified in Cantometrics. It is almost identical to (2), but captures a finer level of 

the metrical hierarchy, and does not have a “poly-divisive” character-state because 

this would be redundant with “poly-metric” (see 1).  

4) NUMBER OF SUB-BEATS* 

The number of sub-beats in a beat  

(a) Simple: The number of sub-beats can be divided by 2 (e.g.,  beat divided 

into  note sub-beats; includes 3/4, 4/4, etc.) 

(b) Compound: The number of sub-beats can be divided by 3 but not by 2 

(e.g.,  beat divided into  note sub-beats; includes 6/8, 9/8, “swing”, etc.)   

(c) Complex: The number of sub-beats can only be divided by prime numbers 

greater than 3 (e.g.,  beat divided into 5 sub-beats) 

 (n/a) A-/hetero-/poly-metric or a-/hetero-/poly-divisive: See (1/3) 

Comments: The “complex” character-state is included for completeness, but in 

practice most cultures break down groupings of five or more sub-beats into 

smaller groupings of twos and threes, so most songs that seem to be in 5/8, 7/8, 

etc. will actually turn out to be “hetero-divisive” songs (see 3) that are in 2+3/8, 

2+2+3/8, etc. 

5) SYNCOPATION*  
The percentage of notes that are stressed but in a metrically unaccented position 

(i)  Un-syncopated: <5% 

(ii)  Moderately syncopated: 5-20%    

(iii) Highly syncopated: >20%  
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(n/a)   A-/hetero-/poly-metric: See (1) 

Comments: The term “syncopated” is used instead of Kolinski‟s (1973) unwieldy 

term “contrametric”. We also attempt to define syncopation and recognize 

different degrees of syncopation, both of which Kolinski did not do. 

6) MOTIVIC REDUNDANCY*  
The percentage of all notes that are constructed from a single recurring rhythmic 

pattern 

(i)  Non-motivic: <20% 

(ii)  Moderately motivic: 20-50%  

(iii) Highly motivic: >50%  

N.B. If there are multiple motives, classify based on the frequency of the most 

common motif. 

Comments: To give an example, in Figure 4, 40 out of the 61 notes (66%) are 

constructed from the rhythmic pattern:        
7) DURATIONAL VARIABILITY*  

Maximum number of different types of duration values in a song 

(i)  Low durational variability: <3 duration values (e.g., only  and ) 
(ii)  Moderate durational variability: 3-4 duration values (e.g., ,  and )  
(iii) High durational variability: >4 duration values (e.g., , , ,  and ) 

N.B. Dotted notes are counted as separate duration values. 

Comments: This modifies Patel & Daniele‟s (2003) conception of rhythmic 

variability to focus on global variability across all notes in a song, rather than 

only variability between each successive pair of notes. 

B) Pitch 

8) TONALITY*  
Organization of discrete pitches around one or more tonic notes 

(a) Indeterminate a-tonal: No discrete pitches (e.g., exclamations, heightened 

speech) 

(b) Discrete a-tonal: Discrete pitches, but no tonic 

(c) Hetero-tonal: Tonic modulates/shifts between phrases 

(d) Poly-tonal: Multiple, simultaneous tonics in different vocal parts 

(e) Iso-tonal: Single tonic throughout 

N.B. See Box 1 for the definition of “tonic”. Songs not classified as (e) (“iso-

tonal”) must be coded (n/a) for characters (9-10). 
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Comment: This character was added to make Kolinski‟s (1961) scale-

classification scheme more universally applicable, as his scheme did not 

recognize the fact that some songs have no tonic or have multiple tonics.  

9) MODE*  

Presence of scale degrees at a minor 3
rd

 (250-350 cents) or major 3
rd

 (350-450 

cents) above the tonic 

(a) A-modal: No 3
rd

 present 

(b) Hetero-modal: Both major and minor 3
rd

 appear in separate phrases 

(c) Poly-modal: Both major and minor 3
rd

 appear in the same phrase 

(d) Minor iso-modal: Minor 3
rd

 only  

(e) Major iso-modal: Major 3
rd

 only 

(n/a)  A-/hetero-/poly-tonal: See (8) 

N.B. See Box 1 for the definition of a “scale degree”.  

Comments: Kolinski‟s (1961) concept of “mode” is a nested one that can only be 

applied within specific scales, not as an independent character. To make the 

concept more independent, we have restricted this character to the common 

distinction between modes with minor vs. major thirds. Characters dealing with 

other scale degrees besides the third or with micro-tonal intonations have been 

avoided due to a lack of consensus about how to classify these characters.   

10) NUMBER OF SCALE DEGREES*  
Number of scale degrees found in the scale 

(i)  Sparse scale: <4 scale degrees 

(ii)  Moderately dense scale: 4-5 scale degrees    

(iii) Dense scale: >5 scale degrees 

(n/a)   A-/hetero-/poly-tonal: See (8) 

N.B. See Box 1 for the definition of a “scale degree”.  

Comments: The more common term “scale degree” is used to refer to pitches that 

share the same note name regardless of octave, rather than Kolinski‟s (1961) term 

“tint” or the alternative term “pitch class”. 

11) HEMITONICITY*  

Percentage of melodic intervals that are semitones (50-150 cent intervals)  

(i)  Anhemitonic: <5% 

(ii)  Moderately hemitonic: 5-20%    

(iii) Highly hemitonic: >20%  

Comments: Scales are commonly described as being simply hemitonic 

(containing semitones) or anhemitonic (not containing semitones). However, this 
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dichotomy fails to recognize the importance of different gradations in the 

frequency with which semitones are used.  

12) MELODIC INTERVAL SIZE (Cantometrics Line 21)  

Maximum pitch distance between successive notes within any vocal part 

(i)  Small intervals: <350 cents (i.e., minor 3
rd

 or less; formerly divided into 

“monotone”, “narrow”, and “diatonic” intervals) 

(ii)  Medium intervals: 350-750 cents (i.e., major 3
rd

 – perfect 5
th
; formerly 

divided into “wide” and “very wide” intervals) 

(iii) Large intervals*: >750 cents (i.e., minor 6
th
 or greater) 

N.B. Intervals between the final note of a phrase and the first note of the next 

phrase are not coded. 

Comments: Vague definitions from Cantometrics combining interval frequency 

and size, such as “intervals of a half step or less are prominent (though not 

necessarily dominant)”, were redefined solely in terms of maximum size. A new 

character-state was created to recognize the importance of much larger intervals 

such as the octave.    

13) MELODIC RANGE (Cantometrics Line 20)  

Maximum pitch distance between the highest and lowest notes within any vocal 

part 

(i)  Small range: <750 cents (i.e., perfect 5
th
 or less) 

(ii)  Medium range: 750-1250 cents (i.e., perfect 5
th
 – octave) 

(iii) Large range: >1250 cents (i.e., more than an octave) 

Comments: This character is essentially unchanged from the 1976 version of 

Cantometrics. 

14) MELODIC CONTOUR (Cantometrics Line 15)  

Shape resulting from all changes in interval direction within a vocal part 

(a) Horizontal*: No ascending or descending intervals  

(b) Ascending*: Ascending intervals only  

(c) Descending: Descending intervals only (formerly divided into 

“descending” and “terraced” contours) 

(d) U-shaped*: First descending, then ascending intervals 

(e) Arched: First ascending, then descending intervals  

(f) Undulating: Multiple changes of interval direction 

N.B. Each phrase should be treated as having its own contour, except when there 

are clear “hyper-phrase” contours that connect multiple phrases. Cases where 

multiple contours appear in different phrases and/or different vocal parts should 

be multi-coded. Some discretion must be used in deciding what constitutes a 

change of interval direction. In general, temporary interval changes that do not 

affect the overall melodic shape should be ignored. Otherwise, almost all contours 
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will end up being classified as “undulating”, reducing the overall informativeness 

of the character.   

Comments: Although most music tends to be descending, three character-states 

needed to be added to allow for horizontal, ascending, or U-shaped contours not 

classifiable by Cantometrics. Cantometrics Line 19 (“Position of the final tone”) 

was removed because it was redundant with this character. 

C) Syllable 

15) MELISMA (Cantometrics Line 29)  

Maximum number of consecutive notes without articulating a new syllable 

(i)  Syllabic: 1-2 notes 

(ii)  Mildly melismatic: 3-5 notes 

(iii) Strongly melismatic: >5 notes 

Comment: While Cantometrics defined melisma in terms of the frequency of 

melisma, this character is defined in terms of maximum length to be more 

consistent with other quantitative characters. 

16) VOCABLES (Cantometrics Line 10)  

The percentage of syllables containing only vowels or semi-vowels (e.g., “y”, “h”, 

“w”) 

(i)  Few vocables: <20% (formerly “little or no repetition”) 

(ii)  Some vocables: 20-50% (formerly divided into “some repetition” and 

“half repetition”) 

(iii) Many vocables: >50% (formerly divided into “quite repetitious” and 

“extreme repetition”) 

Comment: Vocables (non-lexical “nonsense” syllables) are an important character 

of many musics cross-culturally, but are difficult to define for one who does not 

speak the language (Maranda 1970). This led Lomax to change the emphasis from 

vocables to textual repetition, but this change of emphasis becomes confounded 

with phrase repetition (21). This character instead uses words containing only 

vowels or semi-vowels as a proxy for vocables. 

II) “TEXTURE” (between-part) 

17) NUMBER OF VOCAL PARTS (Cantometrics Line 4) 

Maximum number of simultaneous vocal parts 

(i)  One-part: 1 (formerly divided into “solo” and “unison”) 

(ii)  Two-part*: 2 

(iii) Many-part*: >2  

N.B. See Box 1 for the definition of a “vocal part”. Songs classified as (i) (“one-

part”), including both unison and solo songs, must be coded (n/a) for characters 
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(18-20). “Many-part” songs may require multi-coding for characters (18-20) as 

may “two-part” songs that transition between different texture types.  

Comments: This character no longer distinguishes between the number of voices 

singing each part or their rhythmic relationship, which are now coded in (18) and 

(24), respectively. Further distinctions between the numbers of parts (e.g., 3-part, 

4-part, 5-part, etc.) were avoided because it proved difficult to reliably code 

beyond three parts. 

18) RHYTHMIC TEXTURE (Cantometrics Line 12) 

Temporal asynchrony in the relative onsets of different vocal parts (in seconds) 

(a) Hetero-rhythmic (heterophonic): 0.1–1s (formerly “rhythmic 

heterophony”) 

(b) Poly-rhythmic (polyphonic): >1s (formerly divided into “accompanying 

rhythm” and “rhythmic counterpoint”) 

(c) Iso-rhythmic (homophonic): <0.1s (formerly “rhythmic unison”)  

(n/a)  One-part (monophonic): See (17) 

N.B. Unison songs where multiple singers generally sing the same pitches with 

less than 0.1s offset are classified as “one-part”, not “iso-rhythmic” (see Box 1 

and 17). Songs with different rhythmic textures between different vocal parts or 

different phrases should be multi-coded. Songs not classified as “iso-rhythmic” 

must be coded “n/a” for character (19). 

Comments: The corresponding terms “poly-/hetero-/homo-/mono-phonic” have 

been included because they are commonly used to categorize texture as a whole, 

despite ambiguities about distinguishing between rhythmic texture, harmonic 

texture, and relative motion.  

This character concerns the rhythmic relationship between the notes of multiple 

parts, regardless of what meter those parts are in. Thus, “iso-metric” songs (see 1) 

with rhythmically independent parts can be “poly-rhythmic” despite not being 

“poly-metric”. The two types of poly-meter that were originally also classified in 

this character have been moved to (1).  

19) HARMONIC TEXTURE* 

Minimum harmonic interval (octave-equalized – see N.B. below) between 

simultaneous vocal parts that is sustained for at least 1 second  

(i)  Dissonant: 50-249 cents (includes 951-1150 cents) (e.g., 2nds/7ths)   

(ii)  Consonant: 250-600 cents (includes 600-950 cents) (e.g., 3rds-6ths) 

(n/a)  One-part (includes 0-49 and 11501-1200 cents), or poly-/hetero-

rhythmic: See Box 1 and (17/18) 

N.B. Harmonic intervals should be calculated after correcting for absolute 

differences in pitches by transposing them to the octave that minimizes the 

harmonic interval. For example, the top note in a harmonic interval of 1000 cents 

(minor 7
th
) can be transposed down one octave to create a harmonic interval of 
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200 cents (major 2
nd

). Therefore, the largest possible harmonic interval is 600 

cents (a tritone) before the octave-equalized interval size begins to decrease again. 

Comments: While most quantitative characters are defined in terms of maximum 

values, this character is defined in terms of minimum values because most songs 

with dissonant intervals also contain consonant intervals, but not the reverse. We 

do not include the standard distinctions between “consonant”, “perfect” and 

“tritone” intervals found in Western music theory because it is not yet established 

to what degree these categories are cross-culturally or experimentally valid. The 

validity of the consonant/dissonant distinction as a function of critical bandwidth, 

on the other hand, has been firmly established by Plomp and Levelt (1965). 

Calculating critical bandwidth is impractical to do by ear, but it neatly matches 

the traditional division in Western music theory between “consonant” thirds and 

“dissonant” seconds. These labels do not imply any aesthetic value judgment.  

20) RELATIVE MOTION (Cantometrics Line 22 ) 

Relationship of the melodic contours (see 13) of two simultaneous parts 

(a) Hetero-contour (drone): One part is horizontal, the other changes 

direction (formerly “drone polyphony”) 

(b) Poly-contour (independent motion): Both parts have different, non-

horizontal contours (formerly divided into “harmony” and “counterpoint”) 

(c) Iso-contour (parallel motion):  Both parts have the same contour 

(formerly divided into “isolated chords” and “parallel chords”)  

(n/a)  One-part: See (17) 

N.B. Songs with different types of relative motion between different vocal parts 

or different phrases should be multi-coded.  

Comments: Distinctions between different “poly-contour” and “iso-contour” sub-

types (including ostinato) were removed due to their vague definitions.   

III) “FORM” (between-phrase) 

21) PHRASE REPETITION (Cantometrics Line 16) 

Maximum number of successive phrases before a phrase is repeated 

(i)  Non-repetitive: >8 phrases, or no repeat at all (formerly “through-

composed”) 

(ii)  Moderately repetitive: 3-8 phrases (formerly “strophe”) 

(iii) Repetitive: 1-2 phrases (formerly “litany”) 

N.B. See Box 1 for the definition of a “phrase”. Phrases where everything but the 

text is repeated are counted as a repeat for this character.  

Comments:  Because of the way phrase repetition is operationalized, the 

character-states are listed in an order where the number of phrases decreases 

rather than increases, just as they were in Cantometrics. This character no longer 

distinguishes between simple and complex sub-types, or between different 
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degrees of variation in repeated phrases. (following Busby 2006). “Canonic/round 

form” and other overlapping relationships between parts are now coded in (26).  

22) PHRASE LENGTH (Cantometrics Line 17) 

Maximum phrase length, in seconds 

(i)  Short phrases: <5 s (formerly divided into “very short” and “short” 

phrases) 

(ii)  Medium-length phrases: 5-9 s  

(iii) Long phrases: >9 s (formerly divided into “long” and “very long” 

phrases)  

Comments: As stated previously, ambiguities about where a phrase ends should 

be resolved by relying on breathing points to define phrase boundaries. 

23) PHRASE SYMMETRY (Cantometrics Line 18) 

Ratio of the length of the longest phrase in a song relative to the shortest phrase 

(i)  Symmetric: <1.5 times the length of the shortest phrase 

(ii)  Mildly asymmetric*: 1.5-2.5 times the length of the shortest phrase  

(iii) Very asymmetric*: >2.5 times the length of the shortest phrase  

Comments: The original character did not define “symmetry”. Characters in the 

original character regarding the number of phrases were removed because they 

were redundant with phrase repetition (21). 

24) SOLO/GROUP ARRANGEMENT (reorganization of Cantometrics Line 1) 

Number of singers in each phrase 

(a) Solo: Only solo phrases throughout (formerly divided into “one solo 

singer” and “one solo singer after another”) 

(b) Mixed: Individual phrases contain both group and solo sub-sections 

(formerly “social unison with a dominant leader”) 

(c) Alternating: Alternation between distinct solo and group phrases (formerly 

divided into “simple alternation: leader-chorus”, “overlapping 

alternation: leader-chorus”, and “overlapping alternation: chorus-

leader”) 

(d) Group: Only group phrases throughout (formerly divided into “social 

unison with the group dominant”, “discoordinated”, “simple alternation: 

chorus-chorus”, “overlapping alternation: chorus-chorus”, and 

“interlock”) 

Comments: Cantometrics Line 1 originally contained 13 character-states that 

represented various complex combinations of multiple characters. Characters 

involving solo/group arrangement, responsorial arrangement, and phrase overlap 

have been moved to characters (24), (25), and (26), respectively, to isolate the 

common features in these underlying characters (following Busby 2006). 

25) RESPONSORIAL ARRANGEMENT (reorganization of Cantometrics Line 1) 
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Alternation of phrases between different vocal parts 

(a) A-responsorial: No alternation between parts (formerly divided into “one 

solo singer”, “social unison with the group dominant”, “discoordinated”, 

and “social unison with a dominant leader”) 

(b) Hetero-responsorial*: Irregular alternation between parts  

(c) Iso-responsorial: Consistent alternation between parts (formerly divided 

into “simple alternation: chorus-chorus”, “overlapping alternation: 

chorus-chorus”, “simple alternation: leader-chorus”, “overlapping 

alternation: chorus-leader”, “one solo singer after another”, and 

“interlock”) 

N.B. Songs classified as (a) (“a-responsorial”) must be coded (n/a) for character 

(26). 

Comments: See comments in (24). 

26) PHRASE OVERLAP (reorganization of Cantometrics Line 1) 

Maximum overlap between a “call” phrase and the “response” phrase that 

alternates with it (as the percentage of time in which the latter phrase 

overlaps with the former)  

(i) Non-overlapping: 0% (formerly divided into “simple alternation: chorus-

chorus”, “simple alternation: leader-chorus”, and “one solo singer after 

another”)  

(ii) Mildly overlapping: 1–25% (formerly divided into “overlapping 

alternation: chorus-chorus” and “overlapping alternation: chorus-

leader”) 

(iii) Highly overlapping: >25% (formerly classified as “interlock” and/or 

“canonic or round form” in Line 16) 

(n/a)  A-responsorial: See (25) 

Comments: See comments in (24). 

 

Sample classification 

To aid in understanding the practicalities involved in applying these idealized 

definitions to real songs, a sample transcription of the Shona song “Pi mcinanga” (track 

13 from Lomax‟s [1976] Cantometrics Consensus Tape) is provided along with a table 

showing how it would be classified (Fig. 4). CantoCore classifications for all 30 songs on 

the Cantometrics Consensus Tape are listed in Appendix A. 
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Character Quantitative value  Classification  

1) Meter  n/a  d) Iso-metric  

2) No. of beats  n/a  b) Triple  

3) Beat sub-division  n/a  c) Iso-divisive  

4) No. of sub-beats  n/a  a) Simple  

5) Syncopation  0%  i) Un-syncopated  

6) Motivic redundancy  

 
66% (40/61 notes derived from      )  iii) Highly motivic  

 

7) Durational variability  

 
3 unique duration values (,  , and  )  ii) Moderate durational 

variability  

8) Tonality  n/a  e) Iso-tonal  

9) Mode  n/a  d) Minor iso-modal  

10) No. of scale degrees  6 scale degrees (A,B,C,D,E ,G)  iii) Dense scale  

11) Hemitonicity  

 

7% (4/60 intervals are the semitone 

between C and B) 

ii) Moderately hemitonic 

  

12) Melodic interval size  800 cents max [C-E in bars 9-10]  iii) Large intervals  

13) Melodic range  1200 cents [E-E]  ii) Medium range  

14) Melodic contour  

 

 

 

n/a  

 

 

 

cef) Descending [phrases 

2, 4 & 5]; arched [phrases 

6 & 8]; undulating 

[phrases 1,3 & 7]  

15) Melisma  1 note max  i) Syllabic  

16) Vocables  11% [7/61 syllables]  i) Few vocables  

17) No. of vocal parts  1  i) One-part  

18) Rhythmic texture  n/a  n/a) One-part 

19) Harmonic texture  n/a  n/a) One-part 

20) Relative motion  n/a  n/a) One-part 

21) Phrase repetition  4 phrases max before a repeat  ii) Moderately repetitive 

22) Phrase length  2 seconds  i) Short phrases  

23) Phrase symmetry  1 (1:1 ratio of longest:shortest phrase)  i) Symmetric  

24) Solo/group arrangement  n/a  c) Alternating  

25) Responsorial 

arrangement  

n/a  

 

c) Iso-responsorial  

 

26) Phrase overlap  0%  i) Non-overlapping  
Fig. 4: Transcription of the Shona song “Pi mcinanga” (track 13 from the Cantometrics Consensus Tape; mp3 
available at http://greenstone.ilam.ru.ac.za/collect/ilam/index/assoc/D11847.dir/TR174-09.mp3) and its codings on the 
26 CantoCore characters. The actual pitches are 2 semitones lower than those shown in the transcription. For 
quantitative characters, both raw quantitative values and categorical classifications are shown. 
 

http://greenstone.ilam.ru.ac.za/collect/ilam/index/assoc/D11847.dir/TR174-09.mp3
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RELIABILITY 

To compare the reliability of Cantometrics and CantoCore, E.M. used both 

systems to classify the 30 songs from the Cantometrics Consensus Tape (Fig. 5) by ear 

after being trained in both systems with the aid of the Cantometrics Training Tapes 

(Lomax 1976), but before being informed of our hypotheses about reliability. We then 

compared her Cantometric codings with those of the creators of Cantometrics (Lomax 

1976:168-70) and her CantoCore codings with those of one of its creators (P.E.S.; his 

codings are shown in Appendix A). We calculated the agreement on each character 

separately (see Appendix B for detailed results), and then averaged across all characters 

to compare the mean agreement between the two classification systems. 

Fig. 5: Approximate geographic locations for the 30 songs from the Cantometrics Consensus Tape (Lomax 1976) used 
to test the reliability of Cantometrics and CantoCore. The map was generated using the World Atlas of Language 
Structures Online (http://wals.info). 

 

We calculated inter-rater reliability for each individual character in two ways. 

First, we used the simplest measure, that of percent agreement. However, this statistic 

does not account for the effects of chance agreement, partial agreement, and character 

redundancy. Therefore, we also calculated reliability a second way, this time correcting 

for these problems using the kappa-statistic (κ), after removing all redundant codings (i.e., 

all “n/a” codings in CantoCore and character-state “1” [“absence”] for Cantometrics lines 

2, 4-9, 12-14, 22, and 27). We used “weighted κ” (Cohen 1968) for quantitative 

characters and “unweighted κ” (Cohen 1960) for qualitative characters. For both percent 

agreement and κ, we used only the single coding indicated as most prominent in cases of 

multi-coding. The results for κ are shown in Figure 6.  

http://wals.info/
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Fig. 6: Mean reliability for all 37 classification characters in Cantometrics and all 26 characters in CantoCore. Error 
bars represent the standard error of the mean. CantoCore is significantly more reliable than Cantometrics (p=0.0001). 

 

As predicted, CantoCore appeared to be more reliable than Cantometrics. The 

mean percent agreement was 62% for CantoCore and 45% for Cantometrics. The results 

using the more precise κ statistic were highly significant statistically (p=0.0001), with the 

mean κ value of CantoCore (0.47) being approximately 80% higher than that of 

Cantometrics (0.26). According to Landis and Koch‟s (1977) criteria for interpreting κ, 

this translates to “moderate” reliability for CantoCore and “fair” reliability for 

Cantometrics, on a scale of “poor” (<0), “slight” (0-0.2), “fair” (0.21-0.4), “moderate” 

(0.41-0.6), “substantial” (0.61-0.8), and “almost perfect” (0.81-1). Both systems were 

significantly more reliable than chance (p<1x10
-11

), countering claims that Cantometrics 

is unreliable (Downey 1970; Maranda 1970; Nettl 1970).  

Contrary to our predictions, there was no significant difference in reliability 

between the structural and performance characters of Cantometrics (structure: mean κ = 

0.30, performance: mean κ = 0.29; p=0.81). Therefore, it may still be useful to 

supplement CantoCore‟s structural characters with the performance characters from 

Cantometrics. Cantometrics‟ instrumentation characters, however, were not significantly 

more reliable than chance (mean κ = 0.11, p=0.07), consistent with our prediction that 

songs are more amenable than instrumental music to reliable cross-cultural classification. 

All of the reliability values for both CantoCore and Cantometrics are substantially 

lower than the ones given by Lomax (1976:270) and by Lomax, Halifax and Markel 
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(1968). However, it is difficult to compare these datasets with our results, as they used 

different statistics, did not present complete data or methods, and did not use a consistent 

song sample. At the same time, our own data should be treated as provisional, as 

logistical constraints limited us to collecting reliability data from only a single coder. 

Victor Grauer (personal communication) has pointed out that our results may reflect more 

on our coder and/or our training methods than on the classification schemes themselves. 

We accept this possibility, but maintain that we have tried our best not to bias the test in 

favor of CantoCore. We therefore predict that the relative reliability values of the two 

schemes will probably remain similar even if the absolute reliability values for both 

schemes is higher or lower overall for different coders. Of course, as with all science, our 

claims should be tested by independent researchers with larger samples to see whether 

they are replicable and whether they can generalize to other situations and other cultures. 

 

APPLICATIONS 

Classification is a method of examining patterns of similarity and difference. It is 

a means, not an end. Thus, the true test of CantoCore will be whether it, like 

Cantometrics, can be used as a tool to explore relationships between songs, and between 

music and culture. Comparing the relative similarities and differences across all 

CantoCore classifications can allow us to quantify different degrees and types of musical 

similarity. This can be used to create global musical taxonomies, in the same way that 

Cantometrics permitted Lomax (1968) to propose 10 canonical singing styles throughout 

world cultures.  

The growth of the digital humanities has seen the birth of a new field of Music 

Information Retrieval (MIR) eager to take up the challenge of classifying music. While 

MIR has made great strides in adapting computational models to Western music, the lack 

of a theoretical framework for cross-cultural musical classification still hampers the 

development of “computational ethnomusicology” (Tzanetakis et al. 2007). Both 

CantoCore and Cantometrics provide such a framework, which computational 

ethnomusicologists can build on to design automated algorithms to allow for faster and 

more objective classification and acoustic feature-extraction. Our classification of the 30 

songs from the Cantometrics Consensus Tape can act as a “ground-truth” dataset for such 

attempts or for atheoretical classification approaches using statistically-based machine 

learning algorithms. Furthermore, our improved statistical techniques for examining song 

similarity (Rzeszutek, Savage and Brown submitted) provide new methods for 

computational ethnomusicologists to analyze similarity not only between individual 

songs but also between diverse repertoires of heterogeneous songs.   

 Classification is also a tool that can be used to provide insight into musical 

evolution and human history. While much of the study of musical evolution has focused 

on music‟s role in biological evolution (why did music evolve?) (Spencer 1857; Darwin 

1871; Pinker 1997; Wallin, Merker, and Brown 2000; Cross 2001), little attention has 

been given to the cultural evolution of music itself (how does music evolve?), including 

the forces of musical change and stasis both geographically and historically. When 

attempts have been made (Lomax 1968; Lomax and Berkowitz 1972; Grauer 2006; Jan 
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2007), critics have rightly pointed out difficulties in distinguishing “deep” (phylogenetic) 

evolutionary relationships from “surface” (phenetic) acoustic similarities (Blacking 1977; 

Stock 2006). However, similar issues also confront the study of biological evolution 

(Hennig 1965; Sneath and Sokal 1973; Doolittle 1999) and cultural evolution (Mace and 

Holden 2005; Currie, Greenhill, and Mace 2010). Importantly, classification tools like 

Cantometrics and CantoCore provide a typological view of music – breaking music down 

into the principal characters that make up these schemes – and this may be useful in 

understanding the evolution of individual musical characters as well as elucidating 

musical universals (Brown and Jordania in press).  

The time has come to return to Adler‟s (1885) original vision of a musicology that 

sees classification, comparison, and ethnography as equal partners in the quest to 

understand the world of music. This will require using all the tools that are available, 

musical and non-musical, humanistic and scientific, qualitative and quantitative, 

theoretical and empirical. It will also require collaborative approaches that integrate work 

ranging from “thick description” (Geertz 1973) of individual songs or societies to “mass 

comparison” (Greenberg 1957) of worldwide patterns of diversity. Anthropologists have 

historically been split between those in the humanities who emphasize the former and 

those in the sciences who emphasize the latter, but there has recently been a movement 

towards integrating both approaches (Kuper and Marks 2011; Smith, Gurven, and Mulder 

2011; Nekaris, Nijman, and Godfrey 2011). CantoCore provides a reliable method to 

assist in this multidisciplinary goal.  
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APPENDICES 

Appendix A: Sample CantoCore codings 

Table A1. CantoCore codings of all 30 songs from the Cantometrics Consensus Tape, as 

done by P.E.S. The 30 songs (see Lomax 1976:164-171 for details) are listed by row 

number, and the 26 CantoCore characters are listed by column number. In cases of multi-

coding, the most prominent coding is bolded. See text for a detailed description of the 

characters and character-states.  

  CantoCore character number 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

C
a
n

to
m

et
ri

cs
 C

o
n

se
n

su
s 

T
a

p
e 

tr
a

ck
 n

u
m

b
er

 

1 ad a c a ii iii iii e ce ii ii ii iii acef i ii iii bc ii abc ii ii iii b b i 

2 d a c a i iii ii e e ii i ii iii f i ii i n/a n/a n/a iii ii i a a n/a 

3 d a c a ii iii i e e ii ii ii ii ac i iii i n/a n/a n/a ii ii i d a n/a 

4 a n/a n/a n/a n/a ii iii e e iii ii ii iii f iii i i n/a n/a n/a i ii i a a n/a 

5 d a c a ii iii ii e e ii i iii iii cf i i i n/a n/a n/a ii i i a a n/a 

6 d a c a iii iii ii e e ii iii ii iii e iii i i n/a n/a n/a ii ii ii a a n/a 

7 a n/a n/a n/a n/a i iii e e ii ii ii i af iii i ii bc i a ii iii iii d a n/a 

8 b n/a n/a n/a i ii ii e e ii i iii ii ae iii iii i n/a n/a n/a ii ii ii d a n/a 

9 d a c b i iii ii e e iii ii iii iii ef i i i n/a n/a n/a iii ii i a c ii 

10 d c b n/a ii iii ii e d iii ii ii iii ce i i i n/a n/a n/a ii i i a a n/a 

11 b n/a n/a n/a i ii i e d ii ii ii ii f i iii ii c ii c iii ii i b b i 

12 b n/a n/a n/a iii ii i ae d ii i ii iii ac ii iii ii b n/a a ii ii iii b a n/a 

13 d b c a i iii ii e d iii ii iii ii cef i i i n/a n/a n/a ii i i c c i 

14 d a c a i iii ii ae d ii i ii iii ef ii i i n/a n/a n/a ii ii ii a a n/a 

15 d a c a ii iii ii e e iii ii ii iii c i i ii c ii c iii ii i c c i 

16 b n/a n/a n/a i ii ii e d ii ii ii iii c i ii i n/a n/a n/a iii ii ii d a n/a 

17 d a c a i iii ii e e i i iii iii f i i i n/a n/a n/a iii i i a a n/a 

18 a n/a n/a n/a n/a ii ii e a ii iii i i a iii i i n/a n/a n/a iii ii i d a n/a 

19 a n/a n/a n/a n/a iii ii e d i ii ii i e ii iii i n/a n/a n/a iii i i c c i 

20 d a c b i iii ii e e ii i ii iii f iii iii ii b n/a a iii ii i a a n/a 

21 b n/a n/a n/a i ii ii c a ii iii i i ac iii ii i n/a n/a n/a i ii ii a a n/a 

22 a n/a n/a n/a n/a ii iii e d ii ii ii iii af iii i i n/a n/a n/a i ii ii a a n/a 

23 d b c a ii iii ii e e iii ii ii ii def i i iii c ii abc ii ii i d a n/a 

24 d a c a ii iii ii e e ii i i i a i ii ii c i ac iii i i d a n/a 

25 b n/a n/a n/a i ii i e d iii ii i ii c i iii ii b n/a a iii ii i b b iii 

26 b n/a n/a n/a ii iii ii e d i ii ii ii ac iii iii i n/a n/a n/a iii ii iii d a n/a 

27 d a c b ii iii ii e a i i ii iii a i iii iii b n/a b iii i i d c iii 

28 d c b n/a i ii ii e e ii i ii ii cf i ii i n/a n/a n/a iii ii i d c i 

29 c n/a n/a n/a i iii iii e a ii i i i a iii iii iii c ii c iii i i d c ii 

30 b n/a n/a n/a ii iii iii e e iii ii ii ii ae i i ii c ii c ii ii ii d b ii 
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Appendix B: Inter-rater reliability 

Table B1. Inter-rater reliability values for song-structure characters from CantoCore and 

Cantometrics. See text for a description of κ as a measurement of reliability.  

Character Line number Reliability (κ) 

 CantoCore Cantometrics CantoCore Cantometrics 

Meter  
1 11 0.36 0.043 

Number of beats  2 n/a 0.60 n/a 

Beat sub-division 3 n/a 0.08 n/a 

Numbe of sub-beats  4 n/a undefined n/a 

Syncopation  5 n/a 0.35 n/a 

Motivic redundancy  6 n/a 0.22 n/a 

Durational variability  7 n/a 0.32 n/a 

Tonality  8 n/a undefined n/a 

Mode  9 n/a 0.25 n/a 

Number of scale degrees  10 n/a 0.38 n/a 

Hemitonicity  11 n/a 0.20 n/a 

Melodic interval size  12 21 0.48 0.36 

Melodic range  13 20 0.40 0.33 

Melodic contour  14 15 0.37 0.19 

Melisma  15 29 0.81 0.42 

Vocables  16 10 0.53 0.62 

Number of vocal parts  17 4 0.68 0.15 

Rhythmic texture  18 12 0.62 0.33 

Harmonic texture  19 n/a 1.00 n/a 

Relative motion  20 22 0.25 0.14 

Phrase repetition  21 16 0.70 0.23 

Phrase length  22 17 0.39 0.22 

Phrase symmetry  23 18 0.51 0.35 

Solo/group arrangement  24 1 0.62 0.48 

Responsorial arrangement  25 n/a 0.50 n/a 

Phrase overlap  26 n/a 0.64 n/a 

Position of the final tone n/a 19 n/a 0.36 
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Table B2. Inter-rater reliability values for performance-style characters (Cantometrics 

only). See text for a description of κ as a measurement of reliability.  

Character Line number Reliability (κ) 

Tonal blend  5 0.49 

Rhythmic blend  6 0.29 

Embellishment  23 0.19 

Tempo  24 0.14 

Volume  25 0.66 

Rubato  26 0.31 

Glissando  28 0.13 

Tremolo  30 0.46 

Glottal shake  31 0.20 

Register  32 0.25 

Vocal width  33 0.28 

Nasalization  34 0.15 

Raspiness  35 0.12 

Accent  36 0.24 

Enunciation  37 0.42 

 

Table B3. Inter-rater reliability values for instrumentation characters (Cantometrics 

only). See text for a description of κ as a measurement of reliability.  

Character Line number Reliability (κ) 

Relationship to voice  2 0.14 

Responsorial arrangement  3 0.22 

Number of instrumental parts  7 0.07 

Tonal blend  8 omitted (Lomax 1976) 

Rhythmic blend  9 -0.20 

Meter  13 0.34 

Rhythmic texture  14 0.16 

Rubato  27 0.04 
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3.1 Abstract 

Human cultural traits, such as languages, musics, rituals, and material objects, vary 

widely across cultures. However, the majority of comparative analyses of human 

cultural diversity focus on between-culture variation without consideration for 

within-culture variation. In contrast, biological approaches to genetic diversity, such 

as the Analysis of Molecular Variance (AMOVA) framework, partition genetic 

diversity into both within- and between-population components. We attempt here 

for the first time to quantify both components of cultural diversity by applying the 

AMOVA model to music. By applying this approach to 421 traditional songs from 

16 Austronesian-speaking populations, we show that the vast majority of musical 

variability is due to differences within populations rather than differences between. 

This demonstrates a striking parallel between the structures of cultural and genetic 

diversity in humans. A Neighbor-Net analysis of pairwise population musical 

divergence shows a large amount of reticulation, indicating the pervasive 

occurrence of borrowing and/or convergence of musical features across 

populations.  

 

3.2 Introduction 

Human cultural traits exhibit an astounding myriad of forms, perhaps best 

exemplified by the approximately 6900 known languages currently spoken across the 

world [1]. Any approach to characterising this cross-cultural diversity depends on the 

creation of a reliable classification of forms for a given domain of culture. There are 

many important examples of cultural classification, spanning from the seminal work of 

Murdock on the classification of over 100 categories of cultural behaviour across 1100 

world populations [2] to contemporary examples in linguistics such as the World Atlas of 
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Language Structures [3] and the Austronesian Basic Vocabulary Database [4]. The 

primary goal of these kinds of classification systems is the identification of salient 

differences between populations, as these differences can aid in reconstructing the history 

of human population movements and cultural interactions [5-7]. A major criticism of 

these approaches, though, is that they place an exclusive emphasis on the diversity 

between cultures, downplaying or ignoring the internal diversity present within each 

culture. Overall, there is a dichotomy between comparative approaches – whose goal is to 

characterize differences between cultures – and ethnographic approaches, whose goal is 

to rigorously catalogue the richness of forms that exist within single cultures. Here, we 

propose a compromise solution that allows for the simultaneous consideration of 

between-culture and within-culture facets of cultural diversity.   

The hierarchical structure of human cultural diversity is reminiscent of the 

structure of human genetic diversity in that diversity can be compartmentalized into 

within- and between-population components. Population geneticists, starting with 

Lewontin [8], have repeatedly observed that the vast majority of the genetic diversity in 

human populations is found within populations rather than between them [9]. Some 

cultural scholars have argued that human cultures exhibit a much lower level of internal 

diversity than that seen in the genetic domain due to processes such as conformity or 

frequency-dependent selection [10] that homogenize behaviours within populations and 

thereby push particular cultural variants to fixation [11]. While this is a plausible 

argument, no one, to the best of our knowledge, has done a rigorous quantification of the 

hierarchical structure of cultural diversity. Perhaps the closest is a study by Bell et al. 

[12] that used internal behavioural variation to calculate cultural variation among 

populations using a population genetic model, but this work did not explicitly quantify 

the degree of internal variation.  

One requirement in applying population genetic models to cultural forms is the 

necessity that there be quantifiable features, which vary among individuals or entities 

both within and between populations. For example, Bell et al. [12] used questions from 

the World Values Survey, administered to a sample of individuals from each focal 

culture. This is comparable to looking at variation among individuals at a particular 

genetic locus. Alternatively, if one wanted to investigate variation in some aspect of 

material culture, such as ceramics, one would need a number of exemplars from each 

culture, appropriate features to describe said exemplars, and a suitable quantitative 

measure of differences among entities. Clearly, there is a difference between studying 

variation among individuals in terms of behaviour and variation among entities of 

material culture. What is most important for the study of cultural diversity is that the unit 

of analysis and the means of measuring difference between cultural variants have 

domain-specific validity, and this must be worked out on a case-by-case basis for each 

domain of culture. 

Music seems to satisfy these important requirements and thereby affords a novel 

opportunity to study the structure of cultural diversity. Not only is music a human 

universal [13] but its form also varies quite prominently both between [14] and within 

[15] cultures. Musical features are also quite amenable to comparative analysis [14]. 

Most importantly for our purposes, the “song” provides a reliable unit for the cultural 
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analysis of music. Ethnographic analyses of human cultures have clearly shown that the 

song represents the fundamental unit of both structure and function [13]. In addition, the 

song was adopted as the unit of analysis in the most ambitious comparative attempt to 

classify the world‟s musics, namely Lomax‟s Cantometrics project of the 1960‟s [14], in 

which more than 4000 songs from over 200 cultures were analysed and compared. 

In order to make such a global project feasible, Lomax employed a small sample 

of only ten songs per culture, and these were averaged into a „modal profile‟ that 

represented the „typical‟ song-style for each culture [14]. While Lomax believed that his 

modal profiles were representative of the cultures he was sampling, ethnographers 

studying musics from those same cultures questioned Lomax‟s findings, because his 

approach strongly underestimated the degree of internal musical diversity in those 

cultures [15,16]. To date, there has been no quantitative method applied to music that 

retains the cross-cultural scope of Lomax‟s global framework while at the same time 

taking internal variation into account.  

Exactly such a method is used in the study of genetic diversity in population 

genetics, and this method provides a promising approach for thinking about the 

hierarchical structure of cultural diversity as well. The Analysis of Molecular Variance 

(AMOVA) is a method closely related to the Analysis of Variance (ANOVA) that allows 

the hierarchical partitioning of genetic variance into components [17]. These components 

generally include: variability within populations; variability between populations; and 

variability between regional groups. The population structure being tested is defined a 

priori by the researcher, and can include divisions based on geographic region or 

language [17]. In its original application, AMOVA was designed to investigate molecular 

diversity based on haplotype restriction polymorphism data, but the generalizability of 

the method was recognized early on [17] and has since been applied to many different 

kinds of genetic loci [18]. The flexibility of this method rests on the fact that variability is 

calculated as a measure of distance between haplotypes. The distance measure itself is 

defined by the user and can incorporate information about sequence evolution such as 

mutation rate [17]. Consequently, given an appropriate unit of analysis and distance 

measurement, this method can be extended to quantify the hierarchical structure of 

cultural diversity.  

We attempt here for the first time to quantify both the within- and between-

population components of cultural diversity by applying AMOVA to the analysis of 

musical diversity using the song as the unit of analysis. An important distinction here is 

that we are looking at populations of songs rather than populations of individuals. To this 

end, we focus on a rigorous sampling of tribal musics from Austronesian-speaking 

populations in Taiwan and the Philippines, itself part of a larger project devoted to 

prehistoric migrations in the region. To quantify musical variability, we calculate the 

distance between songs using a musical-classification system we developed that is 

inspired by Cantometrics. The AMOVA framework is then applied to this data in order to 

apportion musical variability into within- and between-population components. We also 

measure pairwise population musical divergence with ΦST and use it in a „Neighbor-Net‟ 

analysis [19] to explore the degree of reticulation in the data due to borrowing and/or 

convergence. Distances based on ΦST are also compared with the corresponding modal 
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profiles to test the accuracy of Lomax‟s modal-profile approach for distinguishing 

differences between populations. Our novel application of AMOVA to cultural forms 

provides a general means of performing population-level cultural analyses while 

simultaneously addressing the internal diversity of cultural forms. 

3.3 Materials and Methods 

a) Sample 

The musical sample consists of 421 traditional group (choral) songs from 16 

Austronesian-speaking aboriginal populations from Taiwan and the northern Philippines, 

including the Amis (30 songs), Atayal (10), Bunun (30), Paiwan (30), Puyuma (30), 

Rukai (30), Saisiyat (30), Tao (30), Tsou (22), Plains (Siraya) (24), Kavalan (18), Thao 

(30), Ibaloi (30), Ifugao (30), Kankanai (17), and Ayta (30). Songs were obtained from 

commercial ethnomusicology recordings as well as from the Taiwan National Music 

Archive in Taipei [20] and the Centre for Ethnomusicology at the University of the 

Philippines in Quezon City. 30 songs were randomly sampled from each population. For 

populations with less than 30 songs available, all recordings meeting our inclusion 

criteria were used. 

b) Classifying songs 

P.E.S. coded all the songs using the “CantoCore” song-classification scheme developed 

in our lab (Savage, Merritt, Rzeszutek and Brown, in preparation). This comprehensive 

scheme, modelled after Lomax and Grauer‟s (1968) original Cantometric scheme [14], 

codes 26 characters related to song structure, including rhythm, pitch, syllable, texture, 

and form (see electronic supplementary material, S1). 

c) Quantifying musical distance 

Either phylogenetic distances based on sequence evolution or phenetic distances based on 

sequence similarity can be used in genetic analyses [17]. Since we currently lack 

information about song evolution, we attempted to develop a simple phenetic measure of 

distance between songs, based on our coding, that is both musically and statist ically 

valid. Leroi and Swire [21] and Busby [22] identified a number of methodological 

solutions to issues related to converting Cantometric song-codings into distances, and 

these issues apply equally to CantoCore. These include: the presence of both ordinal and 

nominal characters; simultaneous coding of multiple states for a number of characters 

(multi-coding); the redundancy of some codings when certain states are absent; and equal 

weighting of all characters. We built on their work to program an algorithm that takes 

these issues into account while at the same time being flexible enough to handle a variety 

of coding schemes. The algorithm was programmed in R version 2.12.2  [23] by T.R. and 

is available upon request. Details of the algorithm are found in the electronic 

supplementary material (S2).  

d) Visualizing song relationships 

In order to visualize songs in two dimensions we performed nonmetric multidimensional 

scaling on the song-level distances obtained from our algorithm using isoMDS in R, with 
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50 iterations and metric scaling as an initial configuration. 

e) AMOVA analysis 

Distances were prepared for the AMOVA analysis by a Euclidean transform of the data 

using Lingoes‟ method [24], as implemented in the ade4 package for R [25]. The 

distances were then squared, as recommended by Excoffier et al. [17]. AMOVA was 

performed in Arlequin 3.11 using the prepared distance matrix and standard settings [26]. 

Musical variability was apportioned “between” and “within” ethno-linguistically defined 

populations of songs [1]. The parameter ΦST is the proportion of total variability due to 

differences between populations [17], and it was calculated pairwise as a measure of 

musical divergence between populations. To test the significance of the between-

population component of musical variance, songs were permuted randomly between 

populations, using 1000 permutations.  

f) Neighbor-Net analysis 

Pairwise ΦST, was used in a „Neighbor-Net‟ analysis [19] to determine the level of 

reticulation in the data due to borrowing and convergence. The analysis was performed in 

SplitsTree4 using standard settings [27]. All negative ΦST values were set to zero before 

performing the analysis [28]. 

g) Modal Profile Analysis 

In order to test the efficacy of Lomax‟s modal profile approach at distinguishing 

differences between populations, we created a modal song coding for each population, 

consisting of the most common coding in its musical repertoire for each of the 26 

“CantoCore” characters. This resulted in some combinations not present in any single 

song, but nonetheless best approximates Lomax‟s creation of „modal profiles‟. These 

modal profiles are available in the electronic supplementary material (S3). Distances 

between modal profiles were calculated using the same algorithm applied to the original 

song data, giving us a population-level distance devoid of any information about internal 

diversity. These modal distances were then compared to population pairwise ΦST using 

Spearman‟s rho and a Mantel test with 20000 permutations. 

3.4 Results 

a) Multidimensional Scaling 

Figure 1 shows a multidimensional scaling plot for the 421 songs used in our sample 

colour-coded for the 16 tribes. The high level of stress in this two-dimensional ordination 

indicates the complex multidimensional nature of the musical data. A scree plot did not 

reveal a clear elbow, and showed that instead our data would require more than 8 

dimensions to achieve an acceptable level of stress under 10. Despite this, the 

multidimensional scaling plot clearly demonstrates the high level of internal 

heterogeneity in each population‟s musical repertoire, and the high degree of overlap 

between populations. 
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 Figure 3.1 - Multidimensional scaling plot of distances between 421 songs from 

Austronesian-speaking populations. There is a large amount of overlap between populations 

and spread within populations. Each point represents a song and is coloured according to 

population of origin. 

Table 1.                                                              

Musical AMOVA Results 

Source of Variation Percentage of Variation Degrees of Freedom 

Between Populations 2.06 15 

Within Populations 97.94 405 

Total 100 420 

 

b) Song-level AMOVA analysis 

The AMOVA analysis confirms the multidimensional scaling result (table 1), with a 

majority of the variance in our sample (~98%) being accounted for by differences within 

Stress=34.3 



 

 45 

populations and a smaller portion (~2%) accounting for differences between populations. 

Despite accounting for a much smaller proportion of the variance, musical diversity 

between populations was statistically significant (ΦST=0.02057, p<0.001). 

c) Neighbor-Net analysis 

The Neighbor-Net analysis (figure 2) demonstrated that our musical data did not appear 

tree-like and instead contained a fair amount of reticulation. This reticulation is reflective 

of borrowing and/or convergence of musical features between populations. 

 

Figure 2. A Neighbor-Net plot of population-level musical divergence between 16 

Austronesian-speaking populations, based on pairwise ΦST from and AMOVA analysis of 

421 traditional group songs.  This plot shows a high degree reticulation in our dataset, 

indicating the presence of borrowing and/or convergence. 

d) Modal profile analysis 

The pairwise population-level distances based on the modal profiles (ignoring internal 

diversity) were highly correlated with pairwise ΦST distances (r
2
=0.533, p<0.001), which 

take into account the internal variation in musical repertoires. This indicates that, 

although it cannot capture information about internal diversity within cultures, the modal 

profile approach may still adequately approximate overall patterns of variation between 

populations (see electronic supplementary material, S4). 

3.5 Discussion 
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We have applied the Analysis-of-Molecular-Variance (AMOVA) framework to a 

cultural dataset, allowing us for the first time to quantify the hierarchical structure of 

cultural diversity. Our application of this approach to a sample of aboriginal Austronesian 

songs demonstrated that the vast majority of musical variation in this sample (~98%) was 

found within populations, while a far smaller proportion of this variation (~2%) occurred 

between populations. This validates and quantifies the critiques of ethnomusicologists 

that Cantometrics‟ cross-cultural approach underestimated the diversity of musical 

repertoires within each culture [15,16]. Next, a Neighbor-Net analysis of population 

pairwise ΦST distances showed that our musical data was not very tree-like, providing 

some preliminary insight into the evolution of musical repertoires and the presence of 

forces that diversify musics within cultures.  

a) How much diversity is sufficient? 

The high level of internal musical diversity found in this study parallels general 

findings on the structure of human genetic diversity, with some estimates of this diversity 

being as high as 93-95% [9]. However, as in genetic domain, this raises the important 

question of how much diversity is sufficient for describing differences between 

populations. This has been extensively addressed in population genetics. Lewontin‟s 

1972 analysis of human genetic variation led him to argue that the small proportion of 

variation found between populations in his study (14.6%) meant that differences between 

populations were not informative [8]. Some scholars [29,30], most prominently Edwards 

[31], have noted that this conclusion is statistically inaccurate, as it ignores information 

contained in the correlation of allele frequencies across many loci. Modern clustering 

approaches use the correlated nature of genetic data to distinguish between major human 

groups that coincide with their geographic distribution, despite the small amount of 

variation (3-5%) accounting for these differences [9].  

This situation is qualitatively the same in the study of musical diversity, since the 

correlation between different musical features in songs reveals much more about the 

unique musical repertoires of populations than the frequency of the features themselves. 

Therefore, our observation that between-population musical variance is a very small 

proportion of the total variance in no way precludes using this component for taxonomic 

and comparative analyses of world musics, as Lomax did [14].  This kind of comparative 

methodology should not be applied recklessly but in consultation with expert 

ethnomusicologists, who can vouch for the validity of the sample. The between-

population component should be sufficient to distinguish populations musically, and this 

is validated by our modal-profile analysis. That analysis demonstrated that a 

methodology that ignores internal diversity might still be successful at detecting the 

overall pattern of differences between populations, even though it might fail to detect 

more fine-grained population relationships.  

b) Cultural evolution of music 

The transmission of cultural traits is distinct from that of biological traits in that 

there are many more possible modes of transmission. Unlike in the human-genetic 

domain, where variants are passed vertically across generations, features of culture can 

also pass horizontally between members of the same cohort, as well as obliquely from 
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unrelated elder members of a focal individual‟s group [32]. The presence of alternative 

modes of transmission has been a central issue in the application of phylogenetic models 

to cultural traits [33]. Our preliminary attempts to apply such models to our song sample 

have supported Leroi and Swire‟s [21] claim that musical evolution is much less “tree-

like” than genetic evolution, with much independent invention (convergence), and 

borrowing (horizontal transmission) of individual musical features and even entire songs 

between populations. 

 This brings up the more general issue of the dynamics of musical evolutionary 

change. There are cultural forces that both diversify and homogenize musical repertoires, 

and some of them are conceptually analogous to forces that influence the dynamics of 

genetic change [34]. As with genes, cultural forms like songs can undergo random 

changes over time, a kind of musical “drift” [35]. Small population sizes may enhance the 

effects of genetic drift, although it is unclear as of yet how population sizes affect musical 

diversity and change over time. Another major force that can diversify repertoires is 

admixture through cultural contact, a kind of musical “flow”. Recent contact situations, 

such as between the Paiwan and Rukai of Taiwan in our sample [36], can lead to high 

levels of acculturation, despite the maintenance of distinct languages. This particular 

contact situation is well reflected musically, with Paiwan and Rukai producing the only 

negative pairwise ΦST value in our analysis. This is unsurprising as music actually 

provides an excellent model for “hybridization” in the cultural domain, since it is 

composed of a series of modular components (mainly pitch and rhythm) that can undergo 

“syncretisms” or blendings of features. A good example of this is found in African-

American music, which contains a novel fusion of European tonal features and African 

rhythmic features [37]. Other cultural forces that can affect the frequency of cultural 

variants within and between populations include convergence, borrowing, innovation, 

conformity, extinction, and replacement (through imposition, as in situations of conquest 

or economic globalization).  

 One means by which musical repertoires diversify internally is through a 

fissioning into an increasing numbers of genres or functional song-types, a universal 

feature of musical repertoires. A classic example of genre-based variation in song 

structure is found in Arom‟s work on the music of the Pygmies of the Central African 

Republic [38], which qualitatively describes systematic differences in the musical 

features of songs performed in different social contexts, comprising roughly two dozen 

distinct musical genres (e.g., music for the hunting of elephants, music for the birth of 

twins). This is likely to be the same case with our Austronesian musical sample. 

Unfortunately, the limited number of songs in the current study prevented us from doing 

any sort of meaningful genre-level analysis. It is plausible that some genres of song are 

less malleable or prone to borrowing, which could affect our results. Given a larger, more 

comprehensive dataset, the AMOVA approach could be used to explore how variability 

in genres is structured between and within populations.  

 Our work on the cultural evolution of music has important limitations, especially 

as related to our use of archival material. The reliance of our work on archival recordings 

highlights the difficulty in sampling the musical variation of indigenous populations in 

the modern world. One concern for the current work is that the kinds of songs represented 
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in the archives that we used did not cover all of the genres of a population‟s musical 

repertoire due to ascertainment bias. This, however, does not negate our major finding, as 

the inclusion of unrecorded music of other genres in our analyses would most likely have 

increased, not reduced, the internal diversity of the musical repertoires.  

 Archival recordings are essential in a world where globalization and the 

associated expansion of Western culture threaten to extinguish much of the rich cultural 

diversity seen in human populations across the globe [39]. This decline is reflected in the 

sheer proportion of living languages classified as vulnerable, endangered, or critical, 

which is at least 27%, according to a conservative recent analysis [40]. The dominant 

influence of western music has led to non-traditional (western) musical features being 

incorporated into indigenous musical repertoires through a kind of imposed 

hybridization. Archival recordings reduce the potential of encountering this form of 

unwanted admixture but are problematic in other ways.  

 In addition to the possible sampling bias discussed above, some recordings may 

be poorly documented, misclassified, non-traditional, or of poor recording quality. We 

were fortunate enough to work with a very well-documented archive and to have received 

advice from Ying-Fen Wang, an ethnomusicologist with expertise in the traditional 

musics of the Taiwan aborigines. This kind of work may be substantially more difficult in 

regions with less-organized archives and where ethnomusicological expertise on these 

traditional musics is lacking. Despite the inherent difficulty in doing this kind of work, 

the task of characterising and comparing worldwide musical diversity, as other scholars 

have done with languages [4], is an extremely important endeavour, not least considering 

the current rapid rate of cultural extinction [40].  

c) How generalizable are these results to other aspects of culture? 

Many useful parallels have been drawn between cultural and biological evolution 

[41] but the forces shaping cultural diversity can differ markedly from those that drive the 

structure of genetic diversity [42]. For example, some have argued that cultural variants 

will necessarily always display less intra-population variation than will genetic variants 

[11]. Language is one of the best-cited examples of a cultural trait that is mostly variable 

between speech communities (rather than within), due to strong constraints that ensure 

that members of a speech community can communicate with one another [10]. The 

relative strength of processes that reduce internal diversity and those that increase it is 

likely to differ across cultural domains. It is plausible that music, for example, may be 

subject to lesser constraints than a system like language, and that innovation in this 

domain may be more highly valued in some cultures. The current work only covers 

musical variation in a small number of populations within the same language family. 

Populations in other regions of the world may have much more homogeneous musical 

repertoires. However, our results demonstrate that a high degree of internal heterogeneity 

in a population‟s musical repertoire is the reality, in at least some cases. 

d) Conclusion 

While the present-day structure of human genetic diversity has been rigorously 

quantified, we lack the same kind of quantitative information for most aspects of culture. 
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The AMOVA framework provides cross-cultural researchers a means of quantifying 

variability for a number of cultural forms, and of exploring the forces responsible for 

balancing diversity and conformity. The current work is by no means meant as a 

comprehensive sampling of worldwide musical variability, and indeed the partitioning of 

musical variance may differ substantially in other regions of the world. We do, however, 

present a crucial tool that can be applied to many other aspects of culture, a tool that can 

be useful for the study of human migrations and associated histories of cultural contact.  
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3.6 Supplementary Material 

S1 – “CantoCore” Musical Classification Scheme 

I) “MELODY” (between-note) 

A) Rhythm 

 

1) METER   
Cyclic groupings of strong and weak beats into bars 

(a) A-metric: No consistent beat  

(b) Hetero-metric: There is a consistent beat, but strong and weak beats occur 

without a consistent pattern  

(c) Poly-metric*: Multiple cyclic patterns of strong and weak beats coexist 

simultaneously (e.g., 6/8 against 3/4)  

(d) Iso-metric: There is a single, consistent pattern of strong and weak beats 

(e.g., 3/4, 6/8, 5/4, 2+2+3/8) 

 

N.B. Songs not classified as “iso-metric” must be coded “?” for parameters (2-5).  

 

2) NUMBER OF BEATS 

The number of beats in a bar  

 (i)  Duple: Multiples of 2 (e.g., 4/4, 6/8, 2+3/8) 

(ii)  Triple: Multiples of 3 (e.g., 3/4, 9/8, 2+2+3/8)   

(iii) Complex: Multiples of prime numbers greater than 3 (e.g., 5/4, 5/8, 

2+2+3+2+3/8) 

(?)   A-/hetero-/poly-metric: See (1) 

 

3) BEAT SUB-DIVISION 

Division of beats into sub-beat-level metric groupings  

(a) A-divisive: Beats are not sub-divided (e.g., a 4/4 piece containing only  
and  notes) 

(b) Hetero-divisive: Beats are sub-divided, but the number of sub-beats per 

beat changes (e.g., 2+2+3/8) 

(c) Iso-divisive: Beats sub-divided into a consistent number of sub-beats (e.g., 

6/8, a 4/4 piece containing   notes) 

(?)   A-/hetero-/poly-metric: See (1) 

 

N.B. Songs not classified as “iso-divisive” must be coded “?” for parameter (4). 

 

4) NUMBER OF SUB-BEATS 

The number of sub-beats in a beat  
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(i)  Simple: Multiples of 2 (e.g.,  beat divided into  note sub-beats; includes 

3/4, 4/4, etc.) 

(ii)  Compound: Multiples of 3 (e.g.,  beat divided into  note sub-beats; 

includes 6/8, 9/8, “swing”, etc.)   

(iii) Complex: Multiples of prime numbers greater than 3 (e.g.,  beat divided 

into 5 sub-beats) 

(?)   A-/hetero-/poly-metric or a-/hetero-/poly-divisive: See (1/3) 

 

N.B. Songs not classified as “iso-divisive” must be coded “?” for parameter (4).  

 

5) SYNCOPATION  
The percentage of notes that are accented but in a metrically weak position 

(i)  Un-syncopated: <5% 

(ii)  Moderately syncopated: 5-20%    

(iii) Highly syncopated: >20%  

(?)   A-/hetero-/poly-metric: See (1) 

 

6) MOTIVIC REDUNDANCY  

The percentage of all notes that are constructed from a single recurring rhythmic 

pattern 

(i)  Non-motivic: <20% 

(ii)  Moderately motivic: 20-50%  

(iii) Highly motivic: >50%  

 

7) DURATIONAL VARIABILITY  
Maximum number of different types of duration values in a song 

(i)  Low durational variability: <3 duration values (e.g., only  and ) 
(ii)  Moderate durational variability: 3-4 duration values (e.g., ,  and )  
(iii) High durational variability: >4 duration values (e.g., , , ,  and ) 

 

B) Pitch 

 

8) TONALITY  

Organization of discrete pitches around one or more tonic notes 

(a) Indeterminate a-tonal: No discrete pitches (e.g., exclamations, heightened 

speech) 

(b) Discrete a-tonal: Discrete pitches, but no tonic 

(c) Hetero-tonal: Tonic modulates/shifts between phrases 

(d) Poly-tonal: Multiple, simultaneous tonics in different vocal parts 

(e) Iso-tonal: Single tonic throughout 
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N.B. Songs not classified as “iso-tonal” must be coded “?” for parameters (9-11). 

 

9) MODE  

Presence of scale degrees at a minor 3
rd

 (250-350 cents) or major 3
rd

 (350-450 

cents) above the tonic 

(a) A-modal: No 3
rd

 present 

(b) Hetero-modal: Both major and minor 3
rd

 appear in separate phrases 

(c) Poly-modal: Both major and minor 3
rd

 appear in the same phrase 

(d) Minor iso-modal: Minor 3
rd

 only  

(e) Major iso-modal: Major 3
rd

 only 

(?)  A-/hetero-/poly-tonal: See (8) 

 

10) NUMBER OF SCALE DEGREES 

Number of scale degrees found in the scale 

(i)  Sparse scale: <4 scale degrees 

(ii)  Moderately dense scale: 4-5 scale degrees    

(iii) Dense scale: >5 scale degrees 

(?)   A-/hetero-/poly-tonal: See (8) 

 

11) HEMITONICITY  
Frequency of melodic intervals that are semitones (50-150 cent intervals)  

(i)  Anhemitonic: <5% 

(ii)  Moderately hemitonic: 5-20%    

(iii) Highly hemitonic: >20% 

 

12) MELODIC INTERVAL SIZE  
Maximum pitch distance between successive notes within any vocal part 

(i)  Small intervals: <350 cents (i.e., minor 3
rd

 or less; formerly divided into 

“monotone”, “narrow”, and     “diatonic” intervals) 

(ii)  Medium intervals: 350-750 cents (i.e., major 3
rd 

- perfect 5
th
; formerly 

divided into “wide” and “very wide” intervals) 

(iii) Large intervals*: >750 cents (i.e., minor 6
th
 or greater) 

 

13) MELODIC RANGE   
Maximum pitch distance between the highest and lowest notes within any vocal 

part 

(i)  Small range: <750 cents (i.e., perfect 5
th
 or less) 

(ii)  Medium range: 750-1250 cents (i.e., perfect 5
th
 - octave) 

(iii) Large range: >1250 cents (i.e., more than an octave) 

 

14) MELODIC CONTOUR  

Shape resulting from all changes in interval direction within a vocal part 

(a) Horizontal*: No ascending or descending intervals  

(b) Ascending*: Ascending intervals only  

(c) Descending: Descending intervals only  
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(d) U-shaped*: First descending, then ascending intervals 

(e) Arched: First ascending, then descending intervals  

(f) Undulating: Multiple changes of interval direction 

C) Syllable 

 

15) MELISMA  

Maximum number of consecutive notes without articulating a new syllable 

(i)  Syllabic: 1-2 notes 

(ii)  Mildly melismatic: 3-5 notes 

(iii) Strongly melismatic: >5 notes 

 

16) VOCABLES  

The percentage of syllables containing only vowels or semi-vowels (e.g., “y”, “h”, 

“w”) 

(i)  Few vocables: <20%  

(ii)  Some vocables: 20-50% 

(iii) Many vocables: >50%  

 

II) “TEXTURE” (between-part) 

 

17) NUMBER OF VOCAL PARTS  
Maximum number of simultaneous vocal parts 

(i)  One-part: 1 (formerly divided into “solo” and “unison”) 

(ii)  Two-part*: 2 

(iii) Many-part*: >2  

 

N.B. Songs classified as “one-part” (including both unison and solo songs) must 

be coded “?” for parameters (18-20).  

 

18) RHYTHMIC TEXTURE (Cantometrics Line 12) 

Temporal asynchrony in the relative onsets of different vocal parts (in seconds) 

(a) Hetero-rhythmic (heterophonic): 0.1–1s  

(b) Poly-rhythmic (polyphonic): >1s  

(c) Iso-rhythmic (homophonic): <0.1s  

(?)  One-part (monophonic): See (17) 

 

N.B. Songs not classified as “iso-rhythmic” must be coded “?” for parameter (19). 

 

19) HARMONIC TEXTURE 

Minimum harmonic interval (octave-equalized) between simultaneous vocal parts 

that is sustained for at least 1 second  

 (i)  Dissonant: 50-250 cents (e.g., 2
nds

/7
ths

)   

(ii)  Consonant:>250 cents (e.g., 3
rds

-6
ths

) 

(?)  One-part, or poly-/hetero-rhythmic: See (17/18) 

 

20) RELATIVE MOTION  
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Relationship of the melodic contours (see 13) of two simultaneous parts 

(d) Hetero-contour (drone): One part is horizontal, the other changes 

direction  

(e) Poly-contour (independent motion): Both parts have different, non-

horizontal contours  

(f) Iso-contour (parallel motion):  Both parts have the same contour  

(?) One-part: See (17) 

 

III) “FORM” (between-phrase) 

 

21) PHRASE REPETITION 

Maximum number of successive phrases before a phrase is repeated 

(i)  Non-repetitive: >8 phrases, or no repeat at all  

(ii)  Moderately repetitive: 3-8 phrases  

(iii) Repetitive: 1-2 phrases  

 

22) PHRASE LENGTH  
Maximum phrase length, in seconds 

(i)  Short phrases: <5 s  

(ii)  Medium-length phrases: 5-9 s  

(iii) Long phrases: >9 s  

 

23) PHRASE SYMMETRY 

Ratio of the length of the longest phrase in a song relative to the shortest phrase 

(i)  Symmetric: <1.5 times the length of the shortest phrase 

(ii)  Mildly asymmetric*: 1.5-2.5 times the length of the shortest phrase  

(iii) Very asymmetric: >2.5 times the length of the shortest phrase  

 

24) SOLO/GROUP ARRANGEMENT  
Number of singers in each phrase 

(e) Solo: Only solo phrases throughout  

(f) Mixed: Individual phrases contain both group and solo sub-sections  

(g) Alternating: Alternation between distinct solo and group phrases  

(h) Group: Only group phrases throughout  

 

25) RESPONSORIAL ARRANGEMENT  

Alternation of phrases between different vocal parts 

(d) A-responsorial: No alternation between parts  

(e) Hetero-responsorial*: Irregular alternation between parts  

(f) Iso-responsorial: Consistent alternation between parts  

 

N.B. Songs classified as “a-responsorial” must be coded “?” for parameter (26). 

Comments: See comments in (24). 

 

26) PHRASE OVERLAP  

Maximum overlap between a “call” phrase and the “response” phrase that 
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alternates with it (as the percentage of time in which the latter phrase overlaps  

with the former)  

(i) Non-overlapping: 0%  

(ii) Mildly overlapping: 1–25% 

(iii) Highly overlapping: >25%  

 (?)  A-responsorial: See (25) 
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S2 – Song-to-song distance matrix algorithm description 

a) Preparation of data 

The non-independent nature of some of the characters in the CantoCore scheme results in 

the potential for redundancy to be introduced into the codings. For example, if the 

character “meter” is coded as “a-metric” (i.e., no recognisable beat), then the codings for 

the characters “number of beats”, “sub-beat division”, and “number of sub-beats” carry 

the same information, and this can overemphasise the importance of the absence of a beat. 

In order to reduce this potential redundancy, a “?” is put in place of redundant codings 

and is treated as missing data. Uncoded characters are also denoted with a “?”. 

b) Ordinal and nominal variables 

CantoCore contains both ordinal and nominal characters. The first part of the distance-

matrix algorithm separates ordinal and nominal variables, which are defined a priori by 

the user. Ordinal characters are coded using lower-case Roman numerals (i-iii in the case 

of CantoCore) and are never multi-coded. Nominal characters are coded using lower-case 

letters (a-f in the case of CantoCore), and can be multi-coded where appropriate.  

c) Ordinal characters 

Ordinal characters can have a number of possible character states, and this can vary 

across characters. In order to keep this consistent across ordinal characters, as well as for 

ordinal comparisons to be equivalent to nominal comparisons, the raw codings of the 

ordinal character states are converted to scaled values from 0 to 1 such that the minimum 

ordinal value is coded as 0 and the maximum ordinal value is coded as 1, with 

intermediate states taking intermediate values (see figure S1 a-b). In CantoCore, all 

ordinal characters have three possible states (i, ii, or iii). As a result, i becomes 0, ii 

becomes 0.5, and iii becomes 1. For a character with five states (i, ii, iii, iv, and v), the 

converted values would become 0, 0.25, 0.50, 0.75, and 1, respectively.  

 

The algorithm then creates a separate pairwise distance matrix for each ordinal character 

by taking the absolute difference between the scaled codings for each pair of songs 

(Figure S1 b-c): 

  

| Song X – SongY |  

 

The maximum possible difference is 1 (if the codings are maximally different) and the 

minimum value is 0 (if the codings are identical). For pairs of songs where one or both 

songs lack codings for that character (“?”), the distance is listed as NA (See Figure S1 c). 

The end result is a separate pairwise distance matrix for each ordinal character, from 1-j. 
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(a) 

(b) 

(c) 

Distance calculated as 

| Song X – Song Y | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. A sample calculation of pairwise distance across 4 songs (A-D) for a single 

ordinal variable (j). (a) The raw CantoCore codings.  (b) The same codings after they have 

been converted into a scale from 0 to 1. (c) A sample distance matrix based on the absolute 

difference of the scaled codings for each pair of songs. Any pairwise distance involving a 

redundant or uncoded character (?) is denoted as NA. This overall process is repeated for 

each ordinal character from 1-j, resulting in j distance matrices for the song set.  

 

d) Nominal characters 

In order to accommodate the potential for multi-coded characters, the matrix of raw 

codings (comprised of lower-case letters) is converted into a “presence-absence” matrix, 

as in Busby (2006), where Y denotes the presence of a character state, and N denotes its 

absence (see Figure S2 a-b). Character states coded as “?” (representing redundant or 

missing codings) are denoted as NA when they are converted into the presence-absence 

matrix and are thus treated as missing data.  

Song Ordinal variable j 

Song A iii 

Song B i 

Song C ? 

Song D ii 

Song Ordinal variable j 

Song A 1 

Song B 0 

Song C ? 

Song D 0.5 

j Song A Song B Song C Song D 

Song A 0 1 NA 0.5 

Song B 1 0 NA 0.5 

Song C NA NA NA NA 

Song D 0.5 0.5 NA 0 

Codings scaled 

from 0-1 

i = 0 

ii = 0.5 

iii = 1 

? = ? 
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(a) 

(b) 

(c) 

The conversion of scores in the presence-absence matrix into distances is based on 

pairwise matching of songs across all possible character states. For example, if one song 

contains an “a” coding (Y for character state a) and another song lacks it (N for character 

state a), then the program scores this as a 1, implying maximum distance between the two 

songs. If both songs contain a “b” coding (i.e., both are scored as Y for character state b), 

then the program scores this as a 0, implying minimum distance between them. 

 

Song Nominal variable k 

Song A ad 

Song B c 

Song C ? 

Song D d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. A sample calculation of mean distance for a nominal variable. Raw CantoCore 

codings (a) are first converted into a “presence-absence” matrix (b), where Y denotes the 

presence of a character state, N denotes its absence, and NA represents a redundant coding 

for each song. The mean pairwise distance is calculated by taking the pairwise distance 

between songs across all character states, except those involving mutual absence, which are 

ignored. This process is repeated for each nominal variable from 1-k. 

 Character states 

Var. k a b c d 

Song A Y N N Y 

Song B N N Y N 

Song C NA NA NA NA 

Song D N N N Y 

k Song A Song B Song C Song D 

Song A 0 (1+1+1)/3=1 NA (1+0)/2=0.5 

Song B (1+1+1)/3=1 0 NA (1+1)/2=1 

Song C NA NA NA NA 

Song D (1+0)/2=0.5 (1+1)/2=1 NA 0 

Y = Present 

N = Absent 

NA = ? 

If both Y, then = 0 

If one Y and other N = 1 

If both N, then don‟t include in mean 

If one or both NA, then denote NA 

Conversion of raw 

codings into a presence-

absence matrix 

Calculation of mean 

pairwise distance across all 

character states 
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If both songs lack a particular character state, for example c for Songs A and D (where 

both are scored as N), then this mutual absence is ignored and is not incorporated into the 

mean distance calculation. This is done because the mutual absence of a character state is 

uninformative.  

Finally, to calculate the mean pairwise distance for a particular character, we take the 

pairwise distances between songs across all character states for that character, except 

those involving mutual absence, which are ignored. The occurrence of mutual absence 

results in some distances (means) containing fewer comparisons than others. As a result, 

the denominator in the mean calculation is variable. For example, the AB distance 

contains three comparisons while the AD distance contains only two, since the latter pair 

has two mutual absences compared to only one for the former pair. As for the ordinal 

characters, 1 is the maximum possible mean distance, and 0 is the minimum. If one or 

both of the songs of a pair contain NA‟s anywhere in their fields (because the raw coding 

was a “?”, as with Song C), the pairwise distance is denoted as NA. A separate distance 

matrix is created this way for each nominal variable from 1-k. 

e) Combining ordinal and nominal characters into a final distance measure 

The final step of the algorithm combines information from the j ordinal variables with the 

k nominal variables to obtain an overall measure of distance between songs. For each pair 

of songs, the mean distance across all characters is taken, ignoring any distances denoted 

as NA. As a result, the final measure of distance incorporates information from each 

character equally, ignoring only redundant codings or uncoded characters.  
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S3 – Modal Profiles  

Population 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Amis d a c a 0.5 1 0 e d 0.5 0 0.5 1 f 0 1 0 b ? b 1 1 0.5 c c 0.5 

Atayal d a c a 0 1 0 e d 0.5 0 0.5 0.5 f 0 0 0 ? ? ? 0.5 0.5 0 d a ? 

Ayta a ? ? ? ? 0.5 0 e a 0.5 0 0.5 0.5 c 0 0.5 0 ? ? ? 1 0.5 0 c c 0.5 

Bunun a a ? ? 0 1 0.5 e e 0.5 0 0.5 1 a 0.5 0 1 c 0.5 ca 1 1 0 b a ? 

Ibaloi a ? ? ? ? 0.5 1 e e 0.5 1 0.5 0.5 fe 0.5 0.5 0 ? ? ? 1 1 1 c c 0 

Ifugao a ? ? ? ? 0.5 0.5 e ? ? 0 0.5 0 f 1 0.5 1 ac 0 cb 1 0.5 0.5 d a ? 

Kankanai d ? ? ? ? 1 0 e e 0.5 0 0.5 0.5 f 0 0 0 ? ? ? 1 0.5 0.5 d a ? 

Kavalan d a c a 0 1 0 e d 0.5 0 0.5 0.5 f 0 0 0 ? ? ? 0.5 0.5 0.5 d a ? 

Paiwan b ? ? ? ? 1 0 e e 0.5 0 0.5 0.5 f 0.5 0 0.5 c 0.5 a 1 1 0.5 c a ? 

Plains a ? ? ? ? 0.5 0.5 e d 0.5 0 0.5 1 f 0.5 0.5 0 ? ? ? 1 0.5 0 d a ? 

Puyuma d a c a 0 1 0 e d 0.5 0 0.5 1 f 0.5 1 0 ? ? ? 0.5 1 0.5 d a ? 

Rukai b ? ? ? ? 1 0.5 e e 0.5 1 0.5 0.5 fa 0.5 0 0 ? ? ? 1 1 0.5 cb a ? 

Saisiyat a ? ? ? ? 1 0 e d 0 0 0.5 0.5 f 0.5 0.5 0 ? ? ? 1 0.5 0 c a ? 

Tao a ? ? ? ? 0.5 1 e d 0 0 0.5 0 a 0 0 0 ? ? ? 1 1 0 d a ? 

Thao a ? ? ? ? 1 0 e d 0.5 0 0.5 1 f 0.5 0.5 0 ? ? ? 0.5 0.5 0 d a ? 

Tsou d ? ? ? ? 1 0 e e 0.5 0 0.5 1 f 0.5 0.5 0.5 c 0.5 c 1 1 0.5 c a ? 

We created modal profiles by taking the most commonly coded character state for every CantoCore character in each population‟s 

musical repertoire. Numbers across the top correspond to the 26 CantoCore categories found in S1. Nominal character states are coded 

as letters and multiple states are permitted. Ordinal characters are coded as numbers. “?” codings are treated as missing data, because 

their inclusion would carry information redundant with the coding of another character.



S4 – Neighbor-Net of modal profile distances  1 
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4.1 Abstract 23 

A recent claim that music can act as a marker of ancient population migrations 24 
has been criticized on the grounds that music’s time-depth seems too shallow 25 
(i.e., music changes too rapidly to preserve deep relationships). We predicted 26 
that, if any musical features were to have the necessary time-depth, they would 27 
be the structural features – rather than performance features – of group songs. 28 
To test this prediction, we used Cantometric classifications of 234 traditional 29 
group songs from 9 Taiwanese aboriginal tribes to create separate distance 30 
matrices for music based on either structural or performance features. Both 31 
distance matrices demonstrated a positive correlation with distances based on 32 
mitochondrial DNA, a migration marker with well-established time-depth. 33 
However, this correlation was only statistically significant for the distance 34 
matrix based on song structure, which accounted for more than twice as much 35 
variance in the genetic data as did performance style. These results, although 36 
preliminary, provide the first quantitative evidence suggesting that songs and 37 
genes may have followed parallel evolutionary trajectories on the order of 38 
several thousand years. Follow-up analyses using different coders, different 39 
classification schemes, and different genetic data-sets, while partially 40 
confirming these patterns, highlight substantial challenges in obtaining and 41 
interpreting reliable samples for both music and genes.  42 

 43 
 44 
 45 

46 
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4.2 Introduction 47 

The discovery that our genes can be used to trace the migration of all anatomically 48 
modern humans back to a single African “mitochondrial Eve” has had an enormous 49 
impact on our understanding of human pre-history (Cann, Stoneking, & Wilson, 1987). 50 
Recently, Grauer (2006) proposed that music, too, traces these same migrations back to 51 
Africa, but critics argued that music changes too rapidly to preserve ancient relationships 52 
(e.g., Stock, 2006). These opposing claims present an excellent opportunity to bring new 53 
quantitative techniques and data from genetic anthropology to old questions of how and 54 
why music varies cross-culturally.  55 

Grauer‟s claim drew on data from the landmark Cantometrics Project (Lomax, 1968), 56 
which remains the only global scientific study of human song. At the time, Lomax‟s 57 
causal interpretation of the correlation between culture and music – for example, male 58 
dominance causing nasal singing – was highly criticized even by other members of the 59 
Cantometrics Project  (e.g., Erickson, 1976). While Grauer‟s recent migratory 60 
interpretation avoids Lomax‟s pitfall, Stock‟s rebuttal still echoed many of the original 61 
criticisms of the Cantometrics Project (e.g., Blacking, 1977; Downey, 1970). Could the 62 
acoustic surface of music really reflect ancient connections between cultures? If so, are 63 
these reflected in performance features, or in the structural features traditionally 64 
emphasized in Western musicology? 65 

Lomax himself was highly critical of the use of Western musical notation in 66 
ethnomusicology, which he saw as emphasizing surface structural features at the expense 67 
of deeper performance features. He spent his life developing a performance-oriented 68 
approach that was concerned “not with songs abstracted from the stream of vocalizing we 69 
encountered on the tapes, but with the stream itself, with „singing‟” (Lomax, 1980). 70 
Nevertheless, the Cantometric classification scheme that Lomax and Grauer (1968) 71 
developed contained roughly equal numbers of features devoted to song structure and 72 
singing style (see Fig. 4.1). 73 

Our own view differs from both Lomax‟s and his critics‟ in that we propose that the 74 
structural features of song should have the greatest time-depth to track migrations, 75 
especially when applied to group songs. Our reasoning is that structural features such as 76 
melody, texture and form require greater consensus among singers than the more 77 
idiosyncratic variation that goes into performance, such as timbre or ornamentation. 78 
Hence, features like scales and rhythms should be more stable over time than features like 79 
nasality or rubato.  80 

These claims are testable. As a case-study to examine music‟s time-depth in the 81 
context of human migrations, we have examined the traditional group songs of the 82 
aboriginal tribes of Taiwan, who have been well-studied in terms of music, genetics, 83 
linguistics, and migration (Diamond, 2000; Kurosawa, 1973; Trejaut et al., 2005). Our 84 
primary aim, therefore, was to use existing information about the relative patterns of 85 
genetic and musical similarity among the Taiwanese aboriginal tribes to empirically test 86 
for the first time whether song structure or singing style has the time-depth required for 87 
studying human migrations. Our basic method was to compare music – a marker of 88 
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unknown time-depth – against the best available marker with a well-established time-89 
depth, namely mitochondrial DNA (mtDNA) (Oppenheimer, 2004). 90 

91 
Fig. 4.1: Organization of the 14 song-structure (red) and 15 singing-style (blue) Cantometric 92 
classification features used in this analysis. Note that our method focuses on the vocal 93 
component of the music and therefore ignores 8 classification features related to 94 
instruments.  95 

4.3 Methods 96 

Genetic sample: Genetic samples were obtained from JT and ML‟s previously published 97 
data (Trejaut et al., 2005). These samples consist of hypervariable segments 1 and 2 in 98 
the control region of the maternally inherited, haploid mitochondrial genome from 640 99 
individuals. After editing, a 717-base-pair (bp) nucleotide string was used in the current 100 
analysis, with the same sample sizes previously reported.  101 

Musical sample: Using the Taiwan National Music Archive
1
, we obtained 234 traditional 102 

group songs from all 9 of the tribes whose mtDNA data was published in Trejaut et al. 103 
(2005). For populations with 30 or fewer eligible songs, all eligible songs in the archive 104 
were used. For populations with over 30 eligible songs, we randomly sampled 30 songs 105 
per population. Sample sizes were: Amis=30, Atayal=8, Bunun=30, Paiwan=30, 106 
Puyuma=30, Rukai=30, Saisiyat=26, Tao (Yami)=29, Tsou=21.  107 

Distances between samples: Pairwise distances between individual genetic samples were 108 
calculated based on the number of pairwise differences between nucleotide sequences.  109 
This is the simplest possible measure of genetic distance, as it is based on phenetic 110 
(similarity) relationships rather than phylogenetic (evolutionary) relationships that require 111 
additional assumptions about how differences arose. Building on the work of Leroi and 112 

                                                        
1 http://music.ncfta.gov.tw (in Chinese) 

http://music.ncfta.gov.tw/
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Swire (2006) and Busby (2006), we developed a comparable phenetic distance measure 113 
for Cantometrics that accounts for various statistical complications inherent in converting 114 
musical classification schemes into quantitative distances (for details, see Rzeszutek, 115 
Savage and Brown, submitted; see Chapter 3 of this thesis). Cantometric classifications 116 
of the songs were coded by VG. Two separate musical distance-matrices were calculated: 117 
one using the 14 song-structure characters from Cantometrics, the other using the 15 118 
singing-style characters (see Fig. 4.1 for details about these features). Eight Cantometric 119 
characters related to instruments alone were excluded from this analysis.  120 

Distances between populations: For both the genetic and musical data, the 36 possible 121 
pairwise distances among the 9 tribes were calculated using the Analysis of Molecular 122 
Variance (AMOVA) framework (Excoffier, Smouse, & Quattro, 1992), as in Rzeszutek 123 
et al. (submitted; see Chapter 3 of this thesis). These distances were measured using a 124 
statistic called ϕST, which represents the proportion of variability among individual 125 
samples that is due to between-population differences. Thus, it explicitly incorporates 126 
within-population heterogeneity, avoiding the assumptions of within-population 127 
homogeneity that plagued Lomax‟s original statistical methodology (e.g., Henry, 1976; 128 
Leroi & Swire, 2006). 129 

Correlations: The statistical significance of the correlations between musical and genetic 130 
distances was tested using the permutation-based Mantel test using 20,000 permutations 131 
and Spearman‟s rho, with the threshold for significance set at p < 0.05 (one-tailed). This 132 
test controls for the fact that the 36 pairwise distances among the nine tribes are not 133 
independent of one another. We used a rank-order Spearman correlation due to the 134 
distance nature of our musical and genetic datasets.  135 

Follow-up analyses: In order to explore the effects of using different samples, different 136 
classification schemes, and different coders, we also applied the above methodology to 137 
the same set of songs coded by PES using an alternative classification scheme, 138 
CantoCore (Savage, Merritt, Rzeszutek, and Brown, submitted; see Chapter 2 of this 139 
thesis), which is based on Cantometrics, but only contains features related to song 140 
structure. Second, we compared both VG‟s and PES‟s codings with those of a third coder, 141 
Emily Merritt, who was blind to the tribal affiliations of the songs. Inter-rater reliability 142 
values were calculated using κ as in Savage et al. (submitted) for a pseudo-randomly 143 
selected subset of 45 songs (5 songs randomly selected per tribe). Finally, we obtained an 144 
unpublished high-resolution dataset from Albert Ko, Fred Delfin, and Mark Stoneking, 145 
containing whole-genome mtDNA samples from 407 individuals from the same nine 146 
Taiwanese populations and from 90 individuals from three aboriginal Philippines tribes 147 
(Ibaloi, Ifugao, and Kankanai) whose songs are analyzed in Rzeszutek et al. (submitted; 148 
see Chapter 3 of this thesis). We performed the same analyses as above with these new 149 
data, once using the same 717-bp sub-section of the mtDNA genome as we used for 150 
Trejaut et al.‟s data, and again using the whole 16,569-bp mtDNA genome.  151 

4.4 Results 152 



MSc. Thesis – Patrick Savage        McMaster - Psychology, Neuroscience and Behaviour 
 

 68 

The correlation between population-level musical distances based on VG‟s 153 
Cantometric codings and those based on Trejaut et al.‟s published genetic data was just 154 
beyond the threshold for significance (r

2
=0.09, p=0.07). In accordance with our 155 

predictions, this trend appeared to be driven by the songs‟ structural features, as the 156 
correlation based on separate distance matrices for structural vs. performance features 157 
became significant, but only for features of song structure, which accounted for more 158 
than twice as much variance in genetic distance as did features of singing style (structure: 159 
r

2
=0.12, p=0.03; performance: r

2
=0.05, p=0.14) (Figure 4.2). Further analysis using the 160 

CantoCore coding scheme, based exclusively on features of song structure that were 161 
coded by a different rater, was also significantly correlated with Trejaut‟s data (r

2
=0.10, 162 

p=0.045), replicating the above result with the structural features of Cantometrics. Both 163 
classification schemes demonstrated similar reliability (Cantometrics: mean κ = 0.28; 164 
CantoCore: mean κ = 0.30) that was significantly greater than chance (p<1x10

-5
) but not 165 

significantly different from one another (p=0.68). Cantometrics‟ reliability was similar to 166 

the previously reported value of κ = 0.26,  (Savage et al., submitted), while CantoCore 167 
was slightly lower than the previously reported value of κ = 0.47. This is probably an 168 
effect of the order of training, as EM first classified all Taiwanese songs using CantoCore, 169 
then classified them all again using Cantometrics, and then finally classified all of the 170 
songs reported in Savage et al. (submitted) using both classification systems at the same 171 
time. 172 

Fig. 4.2: Scatterplots of the 36 pairwise musical and genetic distances among 9 Taiwanese 173 
aboriginal tribes. Genetic distances (y-axis) are based on an Analysis of Molecular Variance 174 
(AMOVA) of 640 mitochondrial DNA haplotypes from Trejaut et al. (2005). Analogous 175 
musical distances (x-axis) were calculated from 234 traditional choral songs using 176 
Cantometric characters of either A) song structure or B) singing style (i.e., performance). 177 
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Statistical significance of distance-matrix correlations is based on a Mantel test and 178 
Spearman’s rho.  179 

Follow-up analyses using the new Taiwanese genetic data-sets were less conclusive. 180 
The comparison between VG‟s Cantometric codings and Ko et al.‟s alternative genetic 181 
sample gave almost identical r

2
 values, although slight changes in the p-values pushed the 182 

correlation with structural features just barely beyond the threshold for significance 183 
(structure: r

2
=0.12, p=0.051; performance: r

2
=0.03, p=0.22). Surprisingly, however, this 184 

replication only held for Ko et al.‟s data when we restricted the analysis to the same 717-185 
bp sub-section of the mtDNA genome as was published by Trejaut et al. (2005). When 186 
we reran the analysis of Ko et al.‟s data using the entire mtDNA genome, the correlations 187 
between musical and genetic similarities dropped dramatically (structure: r

2
=0.04, 188 

p=0.21; performance: r
2
=0.0001, p=0.53). Although the same pattern of structural 189 

features being more strongly correlated with performance features was maintained, both 190 
correlations were now nowhere near statistical significance. Also surprising, the 191 
correlation between PES‟s CantoCore codings and the new genetic data-set were 192 
substantially reduced when using the new partial-genome data as well as the whole-193 
genome data (partial: r

2
=0.05, p=0.16; full: r

2
=0.03, p=0.24).  194 

Finally, introducing the new data from the three Philippines groups seemed to 195 
completely remove any trace of a significant correlation. When these groups were added,  196 
all possible permutations of musical features, classification scheme, genetic sample and 197 
mtDNA section gave similar, non-significant results (r

2
<0.03, p>0.18). 198 

4.5 Discussion 199 

Our main finding was that musical similarities based on structural features among the 200 
9 Taiwanese aboriginal tribes were significantly correlated with genetic similarities. This 201 
provides the first empirical support for Grauer‟s (2006) claim that music may have the 202 
time-depth required for use as a marker in studying prehistoric human migrations. 203 
Consistent with our predictions, performance features did not reflect the genetic 204 
relationships between populations as strongly as structural features did. The simplest 205 
interpretation is that the way a song is performed may be a more rapidly changing or 206 
malleable that the underlying structure of the song, which may be relatively more 207 
constrained. Similar dissociations in evolutionary rates among different features is also 208 
found in linguistics and genetics, where some words are more resistant to borrowing than 209 
others (McMahon & McMahon, 2005) and mutation rates vary across the human genome 210 
(Nachman & Cromwell 2000).  211 

This does not mean that performance style is not important. The strongest correlations 212 
that Lomax originally found were between performance features and social structure 213 
(such as vocal tension correlating with sexual restrictiveness), leading him to conclude 214 
that structural features such as melody, meter and harmony “…are not connected to the 215 
prime characterizers of social and cultural structures” (Lomax, 1980:52). Lomax was 216 
fully aware of the complicated interrelationship between music, social structure, and 217 
migration, but was never able to resolve debates about the causality of these relationships. 218 
Perhaps the differential transmission of structural and performance features is such that 219 
song structure better reflects ancient population migrations, while singing style is a better 220 
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marker of social structure and/or more recent patterns of movement and cultural contact 221 
that occurred in the absence of substantial gene flow. Furthermore, performance features 222 
may act as a stronger marker of migration in other populations outside of Taiwan.  223 

Our follow-up analyses highlight many methodological challenges in quantifying and 224 
interpreting relationships between music and culture. Concerns about reliability, sampling, 225 
and the coarse nature of the classification scheme long dogged Cantometrics (Dowling & 226 
Harwood, 1986; Maranda, 1970; Nettl, 1970). Although our partial replications using a 227 
different classifying scheme, different coder and different genetic sample suggest that 228 
some of these effects on analyses are minor, the surprising dissociation between the 229 
correlations with the whole mtDNA genome and the partial mtDNA genome suggest that 230 
even in population genetics, a coarse analysis can substantially affect the data. 231 
Unfortunately, to our knowledge, there is currently no higher-resolution alternative to 232 
Cantometrics or CantoCore that is cross-culturally appropriate. This may change soon, 233 
however, if the new field of “computational ethnomusicology” (Tzanetakis, Kapur, 234 
Schloss & Wright, 2007) begins using these systems as a theoretical framework to build 235 
automated algorithms for cross-cultural classification and analysis. 236 

The complete disappearance of correlations when we included the Philippines samples 237 
is difficult to interpret. On the one hand, it may imply that music does not function as a 238 
marker of prehistoric population relationships in the Philippines, perhaps due to different 239 
colonial and political histories. However, it may also reflect differences in the musical 240 
samples themselves. We were fortunate to be able to collaborate with a Taiwanese 241 
ethnomusicologist (YW) with expertise in traditional aboriginal music using a well-242 
documented Taiwanese archive containing extensive liner notes, many of which were 243 
also published commercially. On the other hand, most of the recordings in the Philippines 244 
archive are unpublished field recordings containing long, continuous recordings of 245 
performances interspersed with talking, laughter, eating, etc. We had no ethnographic 246 
notes or ethnomusicological expertise to rely on regarding which songs were 247 
representative, which songs were repeat performances of the same song, etc., and thus 248 
had to simply use whatever recordings we could find. Our inability to interpret our 249 
Philippines data thus highlights the importance of musical sampling and the need for 250 
collaboration with expert ethnomusicologists.  251 

Further work is needed to determine the extent to which the genetic and musical 252 
connections between the tribes are due to recent admixture through “isolation by 253 
distance” (Wright, 1943) as opposed to parallel coevolutionary isolation and drift through 254 
“branching” (Cavalli-Sforza, 1997) after diverging from one or more founding 255 
populations. For example, while the Paiwan and Rukai languages are mutually 256 
unintelligible due to differences that have evolved in the ~6,000 years since their 257 
ancestral language, proto-Austronesian, first arrived on Taiwan (Gray, Drummond, & 258 
Greenhill, 2009), our analyses found that they are not significantly different from each 259 
other either musically or genetically. It appears that musical and genetic similarities 260 
between the two tribes are a recent development due to extensive intermarriage and 261 
musical exchange, with linguistic differences maintained through bilingualism (Huteson, 262 
2003). For example, the type of drone polyphony that is now so distinctive of both tribes 263 
was performed only by the Rukai before World War II (Kurosawa, 1973).  264 
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Regardless of how and when the similarities arose, however, our findings in Taiwan 265 
lend provisional support for the ability of musical structure to track population 266 
movements in the same manner as do genes. Whether the coevolution and co-migration 267 
of music and genes extends as far back as Grauer‟s Out-of-Africa claim, however, 268 
remains an open empirical question.   269 
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Chapter 5 338 

 339 

Conclusion: Prospects for the new 340 

comparative musicology 341 

 342 

Patrick E. Savage  343 

 344 

This thesis has attempted to solve a number of challenges in the cross-cultural 345 
study of musical diversity. I believe that the manuscripts that comprise Chapters 2-4 346 
complement one another in building a methodological framework that will be useful to 347 
future work integrating the qualitative research by ethnomusicologists and the 348 
quantitative research done by scientists in fields of music cognition, physical 349 
anthropology, and cultural evolution. 350 

In Chapter 2, we presented a new cross-cultural song classification scheme. We 351 
have put much effort into developing a more theoretically grounded, consistently 352 
organized, and reliable scheme than its predecessor, Cantometrics. Hopefully, this will 353 
lead to our scheme becoming the first cross-cultural song classification scheme that is 354 
generally accepted. This scheme, in addition to serving as the basis for the musical data in 355 
Chapters 3 and 4, will also be useful for collecting empirical data to test the theoretical 356 
claims of musical universals by Brown and Jordania (in press).  357 

In Chapter 3, we presented our new methods for quantifying musical similarity 358 
both within and between cultures. While criticisms of Cantometrics‟ reliability were 359 
addressed in Chapter 2, more numerous and stronger criticisms were directed at the 360 
statistical methods that were applied to the Cantometric data, particularly regarding 361 
ignorance of internal musical diversity. By adopting the Analysis of Molecular Variance 362 
(AMOVA) framework from population genetics, we not only resolve this criticism of 363 
Cantometrics, but also provide a new and important tool for people studying cultural 364 
evolution in other domains, such as language, to address the issue of intra-cultural 365 
diversity. The interesting parallel we found between musical and genetic diversity, in 366 
which the vast majority of diversity in both domains is found within cultures, also hints at 367 
the value of applying models of biological evolution to musical evolution.  368 

In Chapter 4, we applied our new methods from Chapters 2 and 3 to directly 369 
address the relationship between musical and genetic evolution. The significant 370 
correlations we found between musical and genetic similarities among the aboriginal 371 
tribes of Taiwan support the idea that music and genes may have been co-evolving and 372 
co-migrating with genes for thousands of years. This supports Grauer‟s (2006) claim that 373 
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music may be have the kind of deep time-depth required to study prehistoric migrations, 374 
suggesting that CantoCore, like Cantometrics, can be used to find important relationships 375 
between music and culture. However, the dissociations between correlations using 376 
structural vs. performance features and the dissociations between correlations using 377 
different sections of the mitochondrial DNA genome suggest that musical evolution, like 378 
other forms of evolution, is complex. Great care must therefore be taken in future work to 379 
account for these complexities, including finding appropriate musical samples, exploring 380 
appropriate models of musical evolution, and relating musical migration and evolution to 381 
dynamic changes in its present-day performance context.  382 

Taiwan was chosen as a starting point for this project because of its importance in 383 
the debate about the homeland of the migration of Austronesian-speaking cultures 384 
(Diamond, 2000; Gray, Drummond, & Greenhill, 2009; HUGO Pan-Asian SNP 385 
Consortium, 2009; Oppenheimer & Richards, 2001), and because of its well-studied 386 
musical traditions (Kurosawa, 1973). Unfortunately, logistical constraints prevented us 387 
from following through on our intentions to explore other areas important to this 388 
migration, such as South China, the Philippines, Indonesia, Papua New Guinea, and the 389 
Polynesian islands. In addition to time constraints due to the fact that TR and I were only 390 
here for two years as Masters students, further complications developed regarding 391 
obtaining appropriate musical samples and accompanying ethnographic meta-data.  392 

As a result, although I will be continuing this general line of work in my next 393 
graduate work at the Tokyo University of the Arts, I will be working with a slightly 394 
different focus using pre-existing databases such as the Garland Encyclopedia of World 395 
Music (Nettl, Stone, Porter, & Rice, 1998) and the Nihon min’yo taikan [Anthology of 396 
Japanese Folk Song] (NHK, 1944-1993). These will allow me to test both large-scale 397 
theories of global music evolution and musical diversity – such as Lomax‟s (1968) ideas 398 
about 10 global song-style regions evolving from 2 independent origins in Africa and 399 
Siberia – and perform my own ethnographic fieldwork to explore smaller-scale theories 400 
of musical micro-evolution and social change (Hughes, 2008). In the meantime, I will 401 
continue to explore more options for suitable musical and non-musical samples for 402 
continuing work on musical migrations in Austronesia and elsewhere. Hopefully, this 403 
work, along with the current thesis, will help stimulate a renaissance in comparative 404 
musicology that will provide fruitful material for those in ethnomusicology and music 405 
cognition that are interested in an integrated understanding of the relationship between 406 
music, biology, and culture.  407 
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