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ABSTRACT .

This thesis addresses itself té one of the most
general theoretical problems associated with the art of
engineering design. Viewed in its«enlizfty the proposed
approach integrates the relationufetween tﬂé design and pro-
duction engineers through the theory of nonlinear optimizatioﬁ.
The qoﬁVentiénal optimization problem is extended to include
the optimal allocgtion of the upper and lower limits of the
random variables of an engineergng system. The approach is
illustrated by an example using a sequence of increasingly
generalized formulations, while the general mathematical
theor} is also provided. The method appears to offer a practi-
cal technique provided a satisfactory cost function can be’
defined.

The thesis presents an analytical approach to full
acceptability design conditions as well as less than full
acceptability or scrap désign conditions. An important dis-
tinction between the design and the manufacturing scrap has
been introduced and illustrated through examples. .._,J

The space regionalization technique is utilized to
estimate the system design scrap. Optimization strategies
are introduced to the mathematically defined upper and lower
limits of the regiona%ézation region. This region is then

discretized into a number of cells depending upon the

probabilistic characteristic of the system random variables.
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The analytical approach exhibited does not rely
explicitly on evaluation of partial derivatives of either
the system cost objective or any of its constraints at any
point. Moréover, the technique could be abplied to engineer-
ing systems with either convex or nonconvex feasible regions.
It could also be exercised irrespective of the shape of
the probabilistic distributions that describe the random
variables variatioﬁ.‘

Industrially oriented design examﬁles are furnished
to justify the applicability of the theory in different

L

engineering disciplines.
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CHAPTER 1
INTRODUCTION

S o
1.1 Introduction

Tolerances are a recdgnitioh‘of the fact that per-

.
-

fecti?n cannot be achieved. They can be defined géﬂ;rally

as the limits impdsed on the variability of some design

variables or specifications, The purpose of this study is-
to examine how tolerances can be integrated into the over-

all optimization decision problem in an analytical way.
T

lf\ - t‘ . - - - - 2
‘Tolerandes are commonly, associated with machined dimensions

]

I~

Y
of design components.” They should be generalized, however;

as bounds on any quanxities. Examples are thé yield point
of a metal; the stiffness of a spring, and the horsepower

of an engine. Although, modern machine tools are capable

of machining to a high level of accuracy, their ability

to duplicate é ﬁpecific dimension, e.g., shaft size, on a
repetitive basis is limited because of'tool_wear, deflec-
ﬁion; and vibrations of _the machiné and the workpiece,
femperaturé changes, in addition to human errors. Similarly,

steel cannot be made with an exact yield pdint, or an engine

A

cannot -be built with an exact maximum horsepower. The user,

therefore, must accept some tolerance on the nominal values.

Although, he would usually pfefer tight tolerance, the

. | . H
tighter the tolerance the higher the cost.

\
In the design of a system the emphasis on its function,

- .
Q - > v me el L
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and the unawareness of the production difficulties, often
lead to the application of tight tolerances that are diffi-
cult to attain economically,; since their assignment has
traditionally been done whblly by judgement. With few

exceptions the usual-methods of selecting tolerances do not

optimize cost directly, since the designer's concern-is to

specify toleraﬁ:es so that the s;stem can first function
and then hopefully be the least expensive.

Iﬁ the conventional optimization design problem:
the problem of interest is findiﬂg one single point in the
feasible region which minimizes or ma?imizes the problem
objective(s)s [1,2]*. This optimum point is the vector of
the problem deterministic desigﬁ vayiables. Since many
other pointslcan also meet the required system specifications,
the designer can assign tolerances on the system ‘component
dimension values so a$ to minimize the total production cost.

The main concern ih this research, therefore, is the problem

of the best possible trade-off between tolerance and cost,

_which could be stated more generally.as one of choosing the

tolerances which maximize the overall value of the system [3].

a~
Q

1.2 Literature Review s v

v

roo- ”j :
.The tolerance problem’has attracted ‘deep interest among

designers in different disciplines, “The tolerance studies,

4

-

* Number between brackets designates references at the end
of the thesis. .
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however, were firsp introduced as applied on mechanical
systems where a large amount of literature is available
[4-35] in the areas of tolerance specifications and cost
analysis. Muskets built by E1i Whitney in 1812 are among

the earliest examples of mass-produced jtems with fully
interchangeable components. The most appropriate level of
interchangeability is not necessarily the highest. Under
many circumstances, complete universal interchangeability is
neither necessary nor economically justifiable. Standard-
ization and interchangeability are closely related. The
first standard tolerance limits system was established in.
1902 by Newall. This was-followed by a British Standard

No. 164 in 1906 which was superseded by the present standards
such as: ASA - American Standards Association, ASME - Ameri-
can Society of Mechanical Engineers, BS - British Standargs,
CSA - Canadian Standardg Association, ISA - International
Standards Association and ISO - International Organization

-

for Standardization. Even though in practice one usually

. *. 3
has to choose from a finite set of distrete standard toler-

ances which follows one of the previous systems. The

continuous tolerance solution, however, yields an absolute

minimum cost which is definitely of interest; since it can
serve as the basis for selection of discrete tolé@ance values.
The full acceptance, FA design principle - also known _
as infallible interchangeability - was obsgrved when assign-
ing tolerances to components and when considering the effect

of thggsw&olerances upon the assembly and the functioning of
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the finished products. Where safety is of paramount
impdrtance, e.g., missiles, nuclear equipments, and elevators;
it is understandable that designers should insist upon FA

no matter what the cost. However, there are many cases

where insistance “upon FA is not justified, and an occasional
failure to assemble or to function would not be serious,
particularly when judged in the light of the overall economic

gain in production. Statistical dimensioning analysis,
o —

'therefore, was proposed to guide the selection of the toler-

ances where the probabilistic distributions of the associated
processes are assumed known.

The dominant statistical approach suggested.in the
ligerature, [4-29], depends on the validity of some unreal-
istic assumptioﬁs. \They are:

i) Each machined dimension in an assembled component
should come from a proéess that follows a normal distribution,
ii) The size of any individual component is independent

of the size of any other component.

iii) The total tolerance spread on each part is equal to
a~predetermined multiple of the standard deviation of the
part normal distribution. -

iv) The meaﬂ values of the randomly distributeq dimensions
coincide with the corresponding mean of the production pro-
cess. |

V) The"percentage of assemblies permitted to include

any deviation in any of their parts from the blue-print

>
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tolerance zone sometimes has to be guessed or specified.
vi) The performance functioﬁ, F, which usually des-
cribes the relationship between different physical dim-
ensions in a design component, has to be in a simple iinear
form. It is a function of the random dimension variable;,
X. The variance of a sum or difference is proportional to
the sum of-the variances of individual items. Generally,

it could be expressed mathemétically as follows:

N
9 T ‘/ z (Efiél)z o’ (1.1)
i

=1 3 xi X

where, op is the standard deviation of the assembled dim-

ension, N is the total number of the random variables

1

2 . . . . . .
‘X, and o 1is the variancé of the random variable i which

should follow a symmetrical normal distribution.

The main objective of the research published in the
literature mentioned before could be categorized into two
broad sections. In the first category, the object is to
determine the tolerances of the individual dimensions in a
chain based on a specified tolerance of the sum dimension.
This has been done by adapting different assumptions such
as: equal tolerances, tolerances which are proportional to
their associated nominal dimensions, tolerances which are
proportional with process deviation or with process relative
cost. In the second cafegory, the object is to compute the

resulting tolerance for an assembly when the tolqyanées of

-

PES: SN



the components are given. The problem has been tackled for
both the full acceptanhe design and the stochastic conditions.

In spite of the large amount of literature available
in the area of tolerance specification as applied to
mechanical systems, many authors have considered the multiple
constraint system as a single constraint system - e.g.; the
performance function constraint F(X) - and have also dealt,
with nonlinear constraints as linear by utilizing a truncated
Taylor series expansion.

»  The primary objective of an engineering system

design and of the dimensional specifications for its com-
ponent parts is t; ensure that the system will give the service
desired. This could be mathematically expressed as a set
‘of governing inequality constraints. The secondary objective
is to facilitate the manufacture or the purchase of the
system component parts as cheaply as possible. This ,raises
the necessity of expressing the system cost objective as a
function of both the nominal variables and their tolerances.

The relationship ‘between tolerances and their |
associated cost is étrongly influenced by the manufacturing
methods and the lot size. Not only is the precision which
can be maintained iﬂ a given machine tool difficult to deter-
mine, but also, the relationship between precision and cost
is difficult to fit to analytical cost models with a reason-
able accuraéy. Depending upon the required precision,
different processes have to be selected. A chain of processes

may be rough turning, finish turning, grinding, etc.

S, A " ¥ ek TS e 2
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Tolerance cost models, therefore, have to cover the cost
characteristics for both individual processes as well as

a sequence of processes. Also, distinction between differ-

ent cost components should be clearly made; e.g., machining

cost, repairing cost, scraping cost, inspection cost,
vl b

assembly cost, etc. \

\

Some of the cost functions, U, mentioned in the

literature [5, 7, 28, 30-37] are:

N “ .
. U =‘§ (Cli/ti) (1.2.a)
i=1
N ) i
U,=_E ‘(cli/ti) : (L.Z.b)
i=1 .
N Co:
- 2,731
U -_E (c1i *Cyy (ti) ) . (1.2.c)
1=1
N CSi ti © ’
U =.E (cli *cyyoe ) ‘ (1.2.4)
1=1
N o .
U =1 (x:/t.) ~ (1.2.¢)
i=1 i’ "1 ,
N
U =.E Cli/l's (1.2.f)
i=1
N
U =3 t, /1-8 : (1.2.g)
i=1

where N is the number of the random design variables, and

o)

¥ and t.1 are the nominal and the associated absolute

symmetrical tolerance values, respectively. €110 S24 and CSi

are constants; S is the system scrap percentagé. The design

£ b i o A
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cost objectives (1.2.a-d) are inversely proportional to the
xg, and they are used generally to determine the optimum
symmetrical tolerance values for FA design conéitions or
for a specified maximum allowable scrap. The desing objective
(1.2.e), on the other hand, was aimed at optimizing both the
nominals and the tolerances of a system. The'design criterion
efpressed in Equation (1.2.f) minimizes the system scrap
percentage while Equation (1.2.g) maximizes the tolerances
as well. The optimum outcome wﬁi} be a trade-off between
the inflated system tolerances and the corresponding incrgase
in the scrap percenfage.

The validity of the simulation of a system is bounded
by the accuracy of the mathematical cost model as well as
the performance constraints formulation. Therefore, the
Closer the system cost model represents the manufactured

system design, machining, inspection, assembly, testing and

‘repairing conditions, the more accurate the optimum solution

will be. _ 4

Even though mechanical systems have a longer history

in tolerance specification, electrical systems are compara-

tively more advanced in tolgrance design. Emphasis will be
placed in this literature review on some of the more ingen-
ious analytical methods for statistical circuit analysis.

Generally, a sysiem scrap, S, could be mathematically
expressed as |

S =1 - Prob(X e R.) =ff...ff()£) ax . (1.3)
. R "

v

ety L
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X[e(X) >0} 5 X = [x5,%x,...%y]
X -is the system random design variables.
¢ (X) is theé system set of inequality constrainfz.
f(X) is the joint probability density function 9f the
random variables X. |

R. is the system feasible closed region.

~

Since R. is an implicit function of X, S cannot be evaluated
analytically and the usual method of evaluating it was by
using Monte Carlo analysis, [4, 31]. It is expensive,
however, to combine Monte Carlo techniques with optimization
to accurétely predict the:optimum sfstem scrap. This is
because of the large number of system simulations per
optimization iteration which may be required.

The simplical approach [38, 39] approximates the
boundary of the feasible region of an N-dimensional design
space with a polydrom of bounding (N-1) simplices. ;333
feasible region contains all the design outcomes that satisfy
the system yezformance constraints. A crude estimate of
the system scrap percentage - the complement of the system
level of acceptability or yield - is obtained by performing
Monte Carlo analysis directly in the variables space outside
the approximated feasible region which could be updated in
the mean time using the Monte Carlo résults.

If the system random variables are assumed to be
statistically independent and symmetrically distributed,

7

Karafin [40] proposed an analytical method which approximates
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the system scrap by computing its upper and lower bounds.
This has been done by applying truncated Taylor series
approximatioﬁs on the system constraints which have to be
normally distributed.

The space regionalization technique [41, 42]
divides the tolerance region into finite nuﬁber of non-
overlapping cells, each covering a sector of the joint
density space, and a weight is assigned to it accordingly.
The center of the cells located outside the full acceptance
region are checked against the system nonlinear constraints
to determine whéther the whole weight‘of the cell will
contribute to the system scrap or not. The method can handle
sets of dependent as well as independent variables.

:,

Elias [43] developed a program which minimizes the
4
system scrap when statistics for the random varialbes are

given. The program adjusts the variables' specifications

iteratively and the value of the system scrap is updated

by repeating the Monte Q&{}o analysis.

‘To reduce the number of Monte Carlo simulations
while keeping high confidence in the.scrap estimate, the
importance sampling [44] épproach was adapted. It con-
centrates the distribution of sample points at some critical
regions instead of spreading them evenly,

\The methods described above do not explicately optimize
either tﬂe system random variables' nominal values/or their

assigned tolerances. Pinal and Roberts [45] minimized a cost

function and approximated the system constraints by truncated
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Taylor series expansions. %hey considered the values of

the nominal variables fixed, while Bandler et al. [37, 46],
permitted the nominal point to move. An orthotope describ-
ing the tolerance region is to be inflated within the
feasible region and beyond it. The center of the orthotope
provides the nominal parameter values and the lengths

the orthotope edges are twice the absolute tolerances.
Abdel-Malek [36] used multidimensional linear cuts of the
tolerance orthotope to estimate the system scrap. While
using arbitrary statistical distributions for the random
variables, the tolerance orthotope is partitioned into a
collection of orthocells and a weight is assigned to each.
The accuracy of the system scrap estimated using this method
depends on the validity of the one-dimensional convexity
condition which should be preserved for all the system
inequality coﬁstraints. Also, the calculation procedures
rely heavily on the exact evaluation of the first derivative
of both the system\objecfive and constraints.

Throughout the work presented in this thesis, the
engineering system random variables are described in terms
of nominal values and tolerance distributions. The tolerance
Iimits are considered design variables and can be defined
in terms of the nominal value, x®, of the base variable.

The random variable, x, thus has a value in the region

x -t < x < x®+t” (1.4)

- + . . “
where t and t are the lower and upper tolerance deviations,
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respectively.

1.3 Original Contributions Claimed

Having briefly scanned the tolerance assignment
state of the art, various limitations and approximations
of each of the reported concepts have been pointed out.
this has led to the necessity of searching for a more
versag}le methodology that relies on optimization techniques
with as few assumptions as possible, and that describes
practical engineering systems with minimum diversity.

To provide insight into the tolerance assignment
problem, Chaptér 2 presents a simple design.problem of two
fitted cylinders that 1is ;olved in a step-by-step fashion
on seven stages. The mathematical définition of the tol-
eranced design problem with full acceptance is given, and
the level of ; design acceptability is defined.

The problem with less than full acceptance is con-
structed in Ch#pter 3, where a distinction between the
design and the manufacturing scrap is introduced. Chapter
3 also presents an analytical approach which not only provides
a system positive and negative tolerances for each random
design variable but also facilitates the evaluation of the
optimum scrap percentages of the system. This is made
pos%ible by utilizing the space regionalization technique.

The approach is general enough to be used in conjunction with

any statistical distribution. An emphasis however is placed
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on uniform and béeta distributions, and justifications for
this emphasis are given.

Chapter 4 introduces an algorithm to allocate the
upper bound of the regionalization region. Definitions
and concepts as well as geometric interpretations are given.
The procedure is simple and cheaply evaluated. It leads
to considerable computational savings while defining the
scrap optimum design,

The ideas presented in Chapter 4 are implemented
in the strategy given in Chapter 5 to overcome the convexity
assumption that had to/be fulfilled earlier. The possible

inaccuracy in the sysfem scrap estimates 1is discussed,

and a sensitivity apalysis of the estimated errors is also
done.

The last part of Chapter 5 is devoted to some
practical implementations of the approach and the algorithms
previously presented.

The mathematical proof for identifying the worst
condition constraints is given in Appendix A.

Original contributions claimed for this thesis are:

1. A formulation of the design problem in optimization
terms embodying nonsymmetrical tolerancing and
system scrap.

2. Proﬁgsal of a more realistic cost function.

3. The distinction between manufacturing and design

scrap.

L 4 -
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Incorporation of the space regionalization tech-
nique with optimization algorithms.
Partitioning the regionalization domain according
to tge random variabl;s' distributions.
Elimination from the regionalization region of all
the cells adjacent to the active corners of the
full acceptable region, in order to increase the
procedure efficiency.

Algorithms to mathematically define the acceptable

regionalization upper bound region.

v

A procedure to allocate the optimum acceptable lower

bound region for a system with non-convex feasible

region.
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TOLERANCEH ASSIGNMEN Tl ey
FULL ACCEPTANCE

2.1 Introduction

In general, from the manufacturing point of view,

catégorized into two broad

engineering problems ‘can b

sections, dependlng upon the number of components produced
and their functions. They a;e either mass produced c/m-
ponents or job produced components. Acceptabilj ceg be
defined as the fraction of components satisfying manu-
facturing specifications. A high acceptability level is
essential in job production, but in mass production low
prodﬁction cost is‘fhe more typical criterion. Batch
production will fall somewhere in between the two. In this
chépter only pfoduction with 100 percent acceptability

(sometimes known as worst case design) [47] will be con-

sidered. This might be applicable in either job or batch

- »

_production, where there is less likelihood ef scrapping

s

cbmpbnents which do not meet design specifications than in
mass production.

Pesigns in general are subjected to manufacturing
tolerances on the physic;l diﬁensdons or preperties of the
components; aﬁd élso.must meet perfermance réquirements.
In the presentatlon and- discussion which w111 follow, the

manufacturlng 11m1ts will be the only variable tolerances

]

&
S ¥
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to be determined optimally, even though a design might
aléo be subjected to uncertainties in its other specifica-
tions, or in its in-service or off-service environmental
conditions. At this'stage all of the design specifications
and parameters, except-tolerances, will be assumed deter-
minisfically known with no geviation. The '"full acceptability"
optihum desi%n with a deterministic treatﬁent could be
justified as:an end in itself, or it might be considered
as a preliminary exercise leading up to ''scrap optimum design',
where we have less than full manufacturing acceptability, and
quantities other than tolerances may also be treated as
random,

‘ The~éonventiona1 way of introducing a new idea or
theory iﬁ the engineering field is to state the theory and
its governing assumptions, verify it mathematically, and
then elaborate its application using examples and practical
pr&blems. We will, however, tackle the situation with an
opposite approach - solving a simple practical design
problem in a step-by-step fashion by releasing some assump-
tions in each design stage until the problem approaches a
real life practical case; then the optimum full acceptability

tolerance design procedure will be generalized and the theory

will be verified.
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2.2 The Problem

The basic problen, {P], will be a cylinder sub-

jected to internal pressure [2g], It is diagramatically

sketched in Figure 2.1, and consists of two cylinders shrunk

together. The strength requirement is therefore fulfilled

by utilizing the trapped prestress.

The

following deter-

ministic specifications are set for the design.

{
Applied internal pressure P, = 50x106 Pa L
Allowable yield strength S = 150x106 Pa
Nominal inner radius T, < 0.1 m b
Maximum outer radius - T = 0.2 m
max
o _ -4
-Maximum interference Dmax 10 m
Minimum cylinder thickness toin © 0.01 m
Modulus of elasticity E = 2x1011 Pa

)

2.2.1 The Deterministic Problem [P]q.

The problem design variables, [K?]P are

i Ty intermediate radius, m
[Ko] = r, | =|outer radius, m
1 .
Pe shrink fit pressure, Pa
£ 1

The optimization criterion, U

1’

is the minimization

of the overall material cost (i.e., the cylinder volume, -

or simply the outer radius squared because the inner

radius is fixed).

(2.1)
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Figure 2.1

I

Shrink fitted cylinders subjected to

internal pressure, p
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where;

i rg = minimum o (2.2)

Constraints, (2]

°1,1 71 T %o T thin 2 0
$2,1 T T2 T T tpyp 20
$31 % Tpax ~ T2 20 (2.3)
bg,0 T Pg 20
&
5,1 = Ppax = Dalrysry] 20
¢6,1 =S -2 rl[rl,rz] >0

S - 2 rz[rl,rz] >0

Da{rl,rz] = actual interference between the inner

and outer cylinders, m

3,2 2
2 Pg Ty(r5y-x0)

- (2.4)
Ty

a

= maximum shear stress in the inner

—A
—
—
-
Pk
o]
[ 38
Sd
1

cylinder, Pa

R
T,-T ry-Tr
0 1 ‘o
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Tz[rl,rZ] = maximum shear stress in theé outer

cylinder, Pa

2,.2,.2 2 )
v (r /r]) T
= 20 1 + 2
P \TT ) PP\ T2 (2.6)
T,-T T,-T
2 "o 2 1
Optimum Solution
*
U1 = 0.0225 (2.7)

*
(x°] = [rl,rz,pf]T = [0.123, 0.150, 5.074x10°] 7

The radial (dr), tangential (¢4) and shear ()
stress distributions inside the optimum prestressed cylinders

are shown in Figure 2.2. The objective function, U contour

1 ’
lines and some constraints are plotted in the two dimensional

1

domain Ty and T, in Figure 2.3, where the third variable is kept

*
constant at its optimum value . Point A designates the
P Pgy g

¥*
optimum vector (x°] The constraint ¢, and ¢, | are the

1
only active constraints for this particular set of specifica-
tions,.

2.2.2. Centering the Nominal Optimum Inside the

Feasible Region [P]2

The problem design variables are the same as [P]l.
In'this stage, however, the obtimization criterion differs.
It is the minimization of ihe absolute difference between
the maximum shear stresses in the.two cyliqders which in

turn will guarantee maximum utilization of the space available
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Figure 2.2 Radial (or)’ tangential (qe) and shear (t)
stresses of [P]l‘
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(rmax-ro) with tbe best sgress distribution.
(X°1, = [X°]; = [r),r,,pe)"
u, = Irl-12|= minimum (2.8)
(8], = (2],

Optimum Solution

*

U, = 28.8 (2.9)

[x°15 = (r}, 7,0l 7 = [0.126, 0.185, 5.725x10%)"
The radial, tangential and shear stresses for the

optimum desigri][P]2 are shown in Figure 2.4, The objective
function, U}” contour lines and the optimum vector [E?];,
designated as point B, are plotted in Figure 2.5, where
g is taken as p;Z.

~ Apart from the difference in [P]1 and [P]2 design
objectives, their optimum outcomes [EO]; and [i?]; are
significantly‘different. The optimum design point B is
centered inside éhe [P]2 feasible region while point A is
bounded by two constraints. This reduces the freedom of
point A to deviate from its optimum value without violating
the design specification. Point B, however, could possibly
deviate and still be feasible even though it wi11,increase

the level of the design objective.

B VT
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2.2.3. Fixed Nominal-Optimum Symmetrical Tolerance [P]3

At this stage we assume that the optimum nominal
* * ®
design variables, [{]1 or [5]2, are known and the question

is what are the maximum feasible symmetrical tolerances which
could be allocated to both rf and r§ without violating any of
the design constraints. That is.to say the Ty for instance,
could feasibly t.uke any value between (ri-ti) and (ri+t?),
wheare tf is the maximum associated tolerance to rf. The
problem objective, therefore, is to maximize ty and t, which

could be done using one of several different optimization

. . -1, -1 -1 -1
criterion, e.g., (t1 *t, ), - (t1+t2), (t1 tz) and (t1+t2) .
However, all will lead to the same optimum hence they have
the same objective of inflating a rectangle inside the
feasible region.

- T I
[X]S - [tl’ tz] 4
1 1o
U3 = EI + T minimum
- = X _ - -
[_@_]3 ¢1’3 (rl t].) TO tmin ks 0
= * . - * -
02,3 7 (rp-ty) - (r{*ty) - tpyn 2 0
= - x
¢3,3 Tnax (T2+t2) 20
(2.10)
= - * _ x. _
44,3 7 Dpax ~ Dalry-ty),(ri-ty)] 20
= - "k *
45 3 % Dpax - Dal(ri-ty), (r3+t,)] 2 0
= - % #
4’6,3 Dmax Da[(r1+t1)'(r2+t2)] 20
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= - % * .
¢7,3 Dmax Da[(r1+t1},(r2 tz)] L

u

S - Zrl[(r;~t1),(r§—t2)] >0

™

= - x . *
] ) ¢9'3 S Zrl[(r1 tl),(r2+t2) >0
= . %
‘910,3 S zrl[(r1+t1)r(r§+t2)] _>_. 0
(2,10
= - * * _
byy,3 =S - 2 llrjrey), (r3-ty)] 2 0
> 0

¢12’3 =S - Zrz[(r{'tl):(rg'tz)] 2.

=8 - Ir,((rf-ty), (rd+e,)] 2 0

v
Lo

= - X

S ~3r,[(rdvey), (15-t,)] 2 0

15,3 ©
e,3 T Y1 2
t17,5 72 20

where Da[rl,rzl, rl[rl,rz] and rz[rl,rzl are defined by
Equations (2.4), (2.5) and (2.0), respectively.

The first three constraints, ¢1,3, ¢y 3 and b3 3
are linear and are formulated on the basis of worst case

design. 4y 3 actually represents two extreme cases
*

v
o

(r*-tl) - Constant >

1 ()

and !

(r*+t,) - Constant > 0 ... (ii)
171 -~

The feasibility of (i) implies the satisfaction of (ii).
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Therefore, (i) is the worst ¢1’3. The same applies for the
other two linear ¢'s. The sign of the worst tolerance is
always the opposite of that of the associated nominal variable,
'(49], as will be proven in the Appendix. Beéause of the‘ngh-
linearity of ¢5,1, ¢6,1 ahd &7’1, the four combinations of the
two extreme values of Ty and r, are now checked. for each of
these constraints, as described by ¢4,3 through ¢15’3. Even
this simple but expensi&é method of checking a worst nonlinear
constraint is only applicable if the constraint is convex

for all the values of Ty and T, between their extremes, which
is the case for boith ¢5’1 and ¢7’1. The problem of convexity
will be discussed later; also mathematical verification and a
suggestion for a scheme to reduce the number of ¢'s will be
mentioned. This concept ofqihecking corners may be understood
by referring to Figure 2.6.

v

Optimum Solutions

b
1. When using [2(_]1 as the fixed optimum nominal design
*
6
U3,1 4x10
2.11)
. T -6 6T (
[X]5 1 = [ty,t,] = [0.5x107°, 0.4x107"]
*
2. When using [5]2 as the fixed optimum nominal design
* 2
U3,2 1.3x10

T T

®
'[5]3’2 = [tl,tz] = [0.016, 0.015] (2.12)

S e

ot
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The following remarks can be madé abédt [P]3
optimum solution.

(a) Due to truncation error, inefficiency of the opti-
mization strategy and its stopping criterion, and the limited
capacity of the computer word, U;,l did not reach to infinity
and [i]g’l did not become a true null vector, as it should
have because of the location of [&];. This also assumes that
[X]I is an exact optimLm, (i.e., ¢6,1 and ¢7’1 = 0.0), which
is not the case because of the same mentioned reasons.

(b) The optimum solution of [P]3 does mnot depend’on the

weighting factors in the objective function U3. Thus if

N W
Uz = El (;;)»
* * .
U, and [2(_]3 will be the same irrespective of the values of wi‘s.
(c) The rectangle a,b,c,d shown in Figure 2.6 describes the

optimum solution ‘of [P13|[X]* in which ry could take any value
‘ X1, | ‘ .

between 0.11 m and 0.142 m and r, could take any value between

0.17 m and 0.2 m. Figure 2.7 displays the shear stress distribu-

tion for the four extreme feasible design cases a,b,c and d. °

Any combination of T and Ty, however,’if chosen inside the

feasible rectangle could be considered as an optimum design

in a sense that it will Yithstand the applied internal pressure
and follow the other specifications and is still manufactured

with the maximum equally deviated tolerance.

(d) There are three main unrealistic approximations in [P]S.‘

They are:

— .
<
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Figure 2.7 [P]3 shear stresses distribution for the
" four worst designs a, b, ¢ and d.
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(i) the tolerances tl and t, are assumed to berequally
deviated from the mean values of Ty and Ty respectively,*
which is not necessarily true.

(1ii) the optimum mean values r{ and r? are as§umed fixed
and have no influence on thE'objective function.
(iii)" the objective function served its purpose of .
inflating the feasible tolerance rectangle, even .though it
did not include the increase in assembly_cost which is due

to the increase in the interference between the cylinders.

This, in turn, is due to the increase in Ty and r

N\

) , v,

.

2.2.4 Fixed Nominal-Optimum Non-Symmetrical Tolerance , [F],

‘%
The optimum nominal design variables [§°}2 are
assumed known and the problem objective is to allocate the
maximum feasible tolerance rectangle by maximizing both the

negative and the positive tolerances for each of the radii

* % '
T3 and r3. . ‘
s opet e ot T ‘
[5]4*" [tl’ tl’ t2’ tz]
U, = +1 — :l — = minimum
t1+t t2+t2
" (2.13) a
(2]

[e], = ¢18,4 =t 20
.k =
19‘4

+ - L+ -
where, [i(tl"tl’tzftz)]sl = (ﬁft

4
‘e
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= = (r*-t_ - * + -
-8 9y,4 T tp,31 T (TUmty) (PR - gy 2

Optimum Solution
4

* + - 4+  -.T
[X], = [ty,t],t;,t,]" = [0.028, 0.016, 0.015, 0.019]

The optimum tolerance rectangle js ABCD in Figure 2.6
and gives an increase of about 56% in the tolerance area,.
Figure 2.8 shows the shear stress distribution for the extreme
design cases.

The optimization method used in this work was based on
a. randonm adaptive search strategy followed by accelerated
pattern moves, ADRANS {56]. A constrained'optimizafion problem,
in general, consists of an objective function and a set of
equality and inequality constraints. It can be transformed,
using penalty or barrier functions, and expressed by an
artificiai unconstrained objective function. ADRANS falls
into the category of direct search methods, which do not
rely explicitly on evaluation or estimation of partial
derivatives of the artificial objective function at any point:
Therefore, it is not a prerequisite for the problem objective
function and the subjected éonstraint equ;tions to be
confinuous over the range of the design variables. Consequently,
the nqmber of inequality constraints in [g]4 could be
decreased from nineteen toiten by checking only the.worst

corner of the design rectanéle. For example,

* B
U, = 52.14 (2.14)
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= - % _ 4+ * _ -
93,4 = Dpax D [(r1-t1), (x3-t,), 2 0

Y _ ) - L+
¢4,4 = Dhax Da[(rf tl)’(r§+t2)]B 2.0
= . ket T %47
®5,4 = DpaxDalley*t ), (r3+ty)) 1> 0
+ =
and 6,4 = Dpax D lr+ey), (r3-t)) 0 > 0

could be replaced with

t

¢z 4 = Dmax-Max[Da(A,B,C&D)]i 0 (2.1%9)

’

'2:215. Optimum Nominal and Symmetrical Tolerance

Allocation, [P]S

Stage 5 design variab}es, [g]s, are the combination

of [Z(.o]1 and_[;)(_]3 where the nominal design variables,

[rl,rz,pf]T, are not fiXed but are allowed to adjust their

values to minimize the objective function, US’ which consists
of four parts to express the relationship between the

relative costs of product material, machining and assembly.

«

= o .0 T
[?_(_]5 = [rl’rzypf:tl:tz]

1
US = u15+u25+{u35+u35)+u43 = minimum

[elg =0y ¢ = (rf-tl)-ro-tmin > 0
by.5 = ﬁrg-tz)-(rg+t1)-tmin >0 (2.16)
¥3.5 ~ rmax-(rg+t2) >0
¢4,5 - Dmax'MaX[Da(ri’rZ)a’Da(rl’rz)b’Da(rl’rz)c,

Dalrysrylgl 20

T Rt WP A Gk ek S -
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¢’5’5 = 8§ - ZMax[Tl(rl7T2)a’Tl(r1’r2)b:T1(rlyrz)C,
\
1 (11575)ql 20
¢é’5 = § - ZMax[TZ(rl,rzja,rz(rl,rz)b,rz(rl,rz)c,
Ty (r,my)gl 20
v7,5 = Pg 20 g (2.16)

tg,5 = t; 20

>0

]

where, (rl’r2)a, [(rg-tl),(rg'tz)]

(ry,75)y = [(e]-ty), (x5+t))]

. (2.17)
- 0 o) ,
(rlyrz)c = [(T1+t1),(r2+t2)]
. - o 0.
(rlyrz)d - [(rl+t1)’(r2 tz)]
Ug = material cost “ .
- 0 2 2 : .
= cqyllrp¥ty) ey .
where €11 = 3219\' )
u = inner cylindrical surface machining cost
25 ‘
Ty . ) (2.18)
= c2162t1) . exp(c23.2tl)

where {C21’C22’C23] = [12.8,-0:458,-0‘0707]
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Uze = outer cylindrical surface machining cost
- 2~ €32 i’/\
= CSl( tl) . exp(css. tl)
. -8
where [c31,c32,c33] f{1.3,-0.63,-0.17x10 °)
. €32 .
Uze = c31(2t2) . exp(c33.2t2) (2.18)
Uy =\assembly cost
€43 .
= c41.{Max[Da(r1,r2)]j.c42} , j=i,ii,iii and iv
3
where [c41,c42,c43] [3.16,10 ,%.72]

The c's are the best fitted cost model coefficients
which were determined using a nonlinear least squares tech-
nique [51]. The tolerance cost ratio for the different machin-
ing conditions are éstimafed after Peat [52].

The cost represented by uzs'and Uz models include
the actual time taken to produce a completely acceptable
element. Gauges, tools and fixture costs, overhead cost,
inspection cost, etc. are also included in the cost models.
Figure 2.95howsths and Uqgc as a function of a product tolerance.
Tolefance cost models must cover the cost characterisfics for

individual protesses as well as for a sequence of processes.

(up5, Usg 45
it was assumed that the same process must be used independently

For all of the cost models discussed herein, and n

of the precision requirements. Also, 'scrapping cost', which

-
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consists either of the cost of repairing or the cost of the
whole part, if it has to be rejected, will not be taken into
account. Hence we are interested only in full acceptability,
and there is no part that will fall outside the specified

feasible tolerance.

Optimum Solution

*

U = 80.5 (2.19)

£ T _ 6
(X]¢ = [r;,1,,pp tyst,] = [0.1376,0.1876,2.534x10
0.0276,0501237] "

0.110 < r

< 1y < 0.165

[

0.175 0.200

| A
{A

T2

Figure 2.10 shows the shear stress distribution for
the corners of the optimﬁmAtolerance square. The [P} tol-
erance area (4tyt,) is less than that of [P]q or [P],.
However, if the [P]S optimization criterion, U@,'ls used
as a base of comparison, there will be an increase in its
value of 7.51 and 19.5%, when using [§]§ and [&]:, respectively,

as the design solutions.

2.2.6. Optimum Nominal and Non-Symmetrical Tolerance

Allocation, [P]6

[P]6 design variables are a combination of [X]1 and

FX]4, and its objective function, U6’ consists of the same
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four parts as that of US’ but taking the non-symmetrical
tolerance distribution into consideration. The problen,

therefore, could be restated as:
N o _0 + -+ - T
[_)_(_]6 - [rl’rZ’pf’tl’tl’tZ’tZ]

U6 =‘u16+u26+(u36+u36) * U™ minimum

0, _+.2 2
Uje = Cppliryrey) - vyl
‘ . S22 .
Uge = C21-(Ty*ty) . expl(ty*ty).cyq]
. . ©32 .
ugg = C3p-(t3*ty) exp(ty*ty).cy5]
C 3 .-
Uze = c31.(t2 tz) . exp[(t2+t2).c33]
€43
Uge = c41.[Max Da(rl,rz)j.c42]
[‘»]6 = ["]5
*10,5 = t] > 0
*11,5°7 T2 > 0

where  [8(t],-t],t5,t5)1¢ = [8(t),-t),t,,-1,) ]

-

(2.20)




Optimum Solution

*
[X]g = [0.135,0.182,1.3x10

0.110

A

0.170 <

There 1s an increase of

over that of [P]S‘

42

T 0.1

A

1
T, < 0.2

6

61
00

,0.026,0.025,0.018,0.012]"

(2.21)

12% in the tolerance area of [P]6

The following data gives the four worst _

cases and illustrates the range in values that are possible.

A
State 'y |/ T2 (107 %m u u
) (m) | (m) (10-4m) | (10-%4m)
I 0.11 0.17 0.0918 0,0725 0.0193
IT 0.11 0.20 0.0878 0.0725 010153
- III 0.16 0.20 0.0716 0.0204 0.0512
‘ v 0.16 | 0.17 0.1868 | 0.0204 0.1764 o
where ' = the manufactured outer radius of the inner
cylinder = ry + uy
r12 = the manufactured inner radius of the outer,
cylinder = Tyt Uy .
up o= the inner cylinder displacement due to Pg
r2+r2 .
=7 1 0. v /E
1 {777 Pe
T1 7T

s —

(2.22a)

(2.22b)

(2.22¢)

-
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u, = the outer cylinder displacement due 'to pii

2.2 . .
T+
- [_7__7 . v]pf/}s (2.224)
. Tro-T , .
271 ) .
4 = total interference between the inner and outer
cylinders = Uy " uZ‘ | . (2.22e)‘

y |

" The four distinct desigﬁ states shown in the previous table

[

are the,co;ners of the inflated optimum rectangle, and their
shear stress distributions are élotted in Fighrel 2.11.
Any assembled design, haviné dimen;ions between the
upper and lower limits, is an optimum feasible design.
‘This is only true, Howeverq for selectively asseﬁﬁleq
‘ ¢ylinders, where for.each feasible inner cxlindef a matched
feasible outer cylinder must be_chosen having just the
right amodﬁ?“o@%interferencg fit. Even though the selectively
.assémbledvcylingers may be considered as'a feasiﬁle solution
’ it is not practfﬂﬁl since an additional overhead?cost Has
to be added to tH@ flnlshed cost) whlch was negl%cted in the
) prevxous optlmlzaélon It will therefore be necessary to
¢ define a separate Ty for the two cylinders, and the iriterference

it

‘pressure, P, becomes a state varlable. |
. * , . i

, |
2.2.7. Micro Design Optimum Nominal and Non~sym%etrical

"

Tolerance Allocationm, TP]7 | : \

. The basic de51gn varlables in the previous 51x stages

of analy51s were rl,,r2 and pf. In the ensu}ng a\a1y51s,

-




N
'S
i

—-'15.- Ll ¥ el i (
W] : -
Q
©
. a p
) ’T - R .
"Q10- | -
P~
x - -
» |
o
. N
(2]
Y
I
fret
4p}
: 0. - - s b s @ s bt o o
( . »
é _5. - 3 { 4
j 0.1 ' 015 . - 02
- ‘ F,m.

v
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however, Ti10 T1g and Ty, shown in_Figure 2.12 and defined in
Equations (2.22), will be taken as the problem basic de§ign
Variableg. in all of the preceding analysis we were

concerned about determining the overall assembled strugture'
(system) design variables and their tolerances, and this-
analysis could be ciassified as '"Macro Design'. On the

other hand,-in this stage, [P]7, we are interesked in the

" unassembled components optimum design variables and their

associated positive and negative tolerances. Therefore, it

could be classified as '"Micro Design". Selective assembly

will not now be required.

The [P]. design variables vector could be expressed

7

as

i + + - +  -.T
]

S [, = e T Tt st ettt (2.23)

To satisff the stress constraints ghe maximum sﬁear stresses
in the inner, Tqyo and outer, Tos cylinders must be computed.
1
and not functions of either ryjq Or Tq,. We can obtain the
follow1ng expression by solv1ng Equations (4 22a,b,c and d).

( ) (1 v)r +(1+.\))r i 1" lzﬁr -T )
Ty o= f(rl) =Ty —[ - ]'[ 21 (2.24)
: (rl—ro) (1+u)r2+(1-v)r1

: \ ' Lo~ .
and a numerical analysis techniqueé can be used, ‘e.g., Newton

“Raphdop, to determine the five roots of T, The iterative

procedure, Howéver, is costly, and conversion is5 not
guaranteed, since it depends upon the iteration starting

To avoid thgs mathematlcal 1nadequacy .another

value of T .

and Tos however, are functions of Ty, among other variables,

T metide s o A e
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Figure 2.12

The inner and outer cylinders and

their dimensional. tolerance.-
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set of design variables is chosen, [§]7, in which rg and

o) .. o . .
r, are mean radii- and u1 is the mean interference.

where

— e,

X1, =

U

7=

[%b,rz,u

1° 1’t1’t11’ 11:t70t5 17

( , .
u17+u27+(u37+u37)+u47 = minipum

_ o, +t 2 2
U, = Cll[(T2+t2) -ro]

N et 41 1C22
Uy, c21(t12+t12) . exp[czs(t12+t 3)1/100.
ol )C32 Y ot.)/100
Uz, = cqo (t11%%11 - explegz(ty +ty1)/100.
Uzg 31
C
v v - L3y + -
U357 T C31 (T1p%typ) TT.explogg(ty,4t,)]1/100.
" C
43

_ o + o - .
Ya7 = Carlllryprty)-(ry,-t) bicy,)

Cll’CZI""C43 are defined in Equation (2.18).

N

= (+O 4y )
17 7 (Fppmtyg) g -t 20
- O_‘_O + _
27 = (rp=ty)-(ryp*ty,) <t . >0

-u‘ -. O + -
b37 = Tmax (r2+t2) >0

%47 = (rgl'gil) ) (rgz+FIZJ >0

#57 % Dgx = L0317 0= (151,01 > 0

Yo7 = S -7 Maxlry(ry,rp)y,m (1)),
STCHE S T rl(r;,rz)iv] >0

“b77.= S - 2 Max(iy(ry,rp) T, (ry,ry) s,

T2 aT) 4507201y 1 2 0
-

_. 7t —_ ' - ..A+. =t - ‘
877t12205 09771520, .=t >0, $117°ty220

!

(2.26)

1 F
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where,

up=uy Min{A(T 7005 55 4444w

+ o+ ! :
up=uy Max[A(ry,To)5 45 i44,iv

‘= O_ (8]
27T %

+ + 0
t ST q,-T

- - O _ -
12771277120 1277127712

(1+V)?§+(1-v)r%

(see Figure 2.12)

]

]

NG = |
(;1 rz)‘ [(1+v)r2+(1-v)r2
7o 1

1 ' ' ¢ 11(r1,r2) and rz(pl,ré) are defined in Equations

‘ . (2.5) and (2.6), respectively, where,

- : r1+ro
ul E/[rl.{~7——7 - V}]

T ~T
e 10

it

Pe

#

Tl(rl,rz)

P used in calculating the worst case of

(2.27)

et AT G P A A om0 T e e
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+ ri-’-r.g
Pgp = Uy E/ry{5—5 - vl
177

(2.28)

Pe used in calculating the worst case of

1o(ry,75), )

Optimum SoTution

In the following table three distinct optimum designs
are presented, which illustrate the sensitivity of the
solution to changes in the internal pressure, Po> and the

inner cylindrical surface machining cost, Usqe

Case 1 Case 2 Case 3
p x10°° Pa 5 5 6
t
Uyy = Uyg 10xu,, Uyy
L3
u, $ 43 144 47
+0:014 +0.0 +0.019
-0.012 -0.012 -0.006
ry; (mm) 137.747 164.632 - 147.945
+0.019 1 +0.054 +0.009
-0.023 -0.014 . -0.031
ry, (nm) 137.716 164,559 147.917 \
+0.023 +0.015 +0.039
A : -0.022 -0.018 -0.015.
1 o, (mm) 193.192 189.676 199.348
ty, (nm) 0.026 0.012 0.025
‘r . . ) T
: = _
ty, (mm) 0,042 0.068 - 70.040
+ -
(typ+ty,)
t, (mm) 0.045 “ 0,033 0.054
+ _- B v
(tp+t,)

T S
.

Rl O
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The shear stress distributions of the optimum

- ' *
nominal designs, [50 ]7,for each of the three cases are
2

plotted in Figure 2.13.

2.3 Mathematical Generalization

Y
.2.3.1 The Nominal Optimization Problem, [X° ]

The nominal optimization problem could be stated
as follows: Minimize a scalar objective function, U, of
n continuous independent design variables, &O, subjéct
to a set of m inequality constraints, ¢ (E?) > 0 where 0
is a zero vector. Therefore, the problem can be compac%ly

written as

minimizegU(Eo) o (2.29) ,z.
\
subject to i (50) >0
where - x° [x2,x° xo]T
- 1’72 ""n

[

Y

-

| &

X = (e (X%, 0, (X%), .. e, (X0

\

- T

o 0 =+0,0,...0] %
Con ¢ . e

The feasible region, RC, tonsists of -a set of feasible

(]

points 50 which satisfies the constraint vector, ¢. It

may be su?cinctly defined as
M .

RG = (X°le (x°) 2 0)

bl

- v . " . .
RC is assumed to be a closed region, 1.e., 1t COﬂé%lﬂS all

L e N i dp it W Yy
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Figure 2.13 [p]% shear stresses distribution for
case 1, 2 and 3 designs.
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its boundary points. Therefore, Rc could further be defined -
as.

_ 1y0 13 0 .
R. = (X7 leo;(X7) 20, i=1,2,...m ]} (2.30)

where m, is the number of active constraints defining the

closed ‘region.
Problem (2.25) could be solved by employing a multi-

dimensional optimization strategy. ’

2.3.2 The Toleranced Design d%timization Problem [L*]

The optimum toleranced problem-is the combination
of the nominal optimizati&%'design and the tolerance assign-
ment ﬁrobléms. The nominal base design point.[go] is allowed
to be allocated optimally as well as its associated tole;ances
so that the cost objective function, U(X), will be at its
min&pum. The problem sometimes is known as "Optimal Design

Centering' to distinguish it from the tolerance assignment

*
problem, [T ], in which the nominal base design point is

considered fixed at an arbitrary point. It is usually the

. &
problem nominal optimum, [&O ].

The toleranced design optimization problem could be

"mathematica}?}\represented as follows

‘i‘minimize U(X)

subject to _ 2 (X)

v
|

(2.31)

o + o+ - -
where, X =X + T o +

=3
ke
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+ + ] - [.- 7
_'_I'_ = t1 0 , _T_ = tl 0
t) t,
2 2 (2.32)
- s )
0 tn 0 tn
L . - o s
+ + o+ +.T - - - -.T
a = [alsazwt‘;an] s a = [leGZ’-~~an]
>

In this expression t; and t; are scalar vgriables which
represent the absolute or relative nominal positive and
negative toleranées associated with tg, respectively.
The quantities a; and a; are the normalized random positive
and negative tolerances and their probability density functions
are assumed to be truncated and vary between zero and one
and between negative one and zero, respectively. Positive
tolerance distribution might vary considerably from that of
%he negative tolerance' for the same nominal varjable, for
example, internal cylindrical turning, piercing and deep
drawing operations.

The level of a design acceptability, A, is defined

by

A = humber of designs which met specifications(constraints)
total number of designs

(2.33)

Ir this analysis we are only concerned with one hundred ‘percent

acceptability design, in which the tolerance region, R,, must

be completely within the constraint region, RC

R, C Re (2.34)

Bt e e e A
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and W

R.=(X[e(X)> 0}

We assume the RC is convex, where all the points
created by a linear interpolation between any two points
in the region lie inside the region as shown in Figure (2.14).
It is only sufficient, therefore, for the tolerance region,

R to satisfy

t? 1

Ry C R. (2.35)
where,

th={£|£=10+1+g++1-9_-,a;g{o’l}ﬁ G;E{'I,O} ,i=1,2...n}

~

The 2" distinct worst 8esigns of the tolerance region, th,

are taken as a unique-representative of the full-accept-

ability design domain because it is impractical and very

expensive to consider explicitly the infinite number of

designs contained in the tolerance region, Rt’ even if a

Monte Carlo technique is employed with a reasonable confidence.
It is a sufficient but not a necessary condition

for RC to be a strictly convex region so that Equation (2.35)

can be validly applied. It is evident that the feasible

region of the design problem [P]1 is not strictly convex,

even. though the th condition is still valid. It is only

r

[
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necessary and sufficient, therefore, for RC to be a
parallel convex region for th to be a subset R. domain.
K parallel convex region is a closed region where all the
points created by a linear interpolation between any two
points in the region, which form a line parallel to the

domain variables axis, lie inside the region as shown in

Figure 2.14.

v

2.4 Conclusions

Unlike a conventional optimization problen, [&o],
where a single point is of interest, the optimization scheme
introduced in this chapter creates a region of interest, [5]*.

If the constraints

egion satisfies the parallel convexity

3

assumption, t all points inside and on the boundaries

of the tolerable optimization region, R, _, will represent

tc
an optimum feasible design.

The optimum tolerance range, R increases signifi-

tc’

cantly when the design variables associated tolerances

are allowed to be unsymmetrically allocated, i.e., t;#t;,

as can be seen from Figure 6.2 any by comparing [P]; and [P]¢.
It is also evident .from comparing [P]3 and [P]S or

'

{P], and [P]), that by allowing the nominal base point, ro
4 6 , ! 1

_and rg, to move, a set of larger tolerances is not always

obtained. This is because the optimum tolerance area, At’

A
in the toleranced design optimization problem, [X] , mainly

depends on the optimization“criterion. On the other hand,
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Figure 2.14 a) Convex region

[nfensidle

b) Non-convex region

c) Parallel convex region.
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’ v i ‘t 3 : o‘ » ’ ’ & " .' -
< ' . the optihizatien criterion has no effect on At if X° is

o . fixed.” For example; if US was used. as the optimization
\ _ ; . ‘ \
criterion for [P]3 the same optimum tolerance would haye

been found.
[P]2 was mainly in%roduced tq deﬁ;nstrate a posgible
:. . practical sitqa;ibn where there is no meaningful objethYe
function, and the degigner is concerned with centering N
tﬁe de;ign so as to bé as remote,as possible fr;m all |
feasibility bounds. Thus qong‘of,@he problem constraints

(6. (X% #0, i=1,2,..m). ‘Unlike [P],, where \'

I;)

were actlven
/ ) two\gonstraLntsaapproach zero,t[P]Z, by having a centered |

. - * € «. .
fixeg\dptimum~design, [{0]2, helps in demonstrating the

VI e e
-

‘ " generation of the associated tolerance domain, Rieo

Lo . explained in [P]g and [P]4. A centered optimum solution |

as

could in a like mannér be achieved by minimizing the \ .

- ,
error$ created.by the problem constraints where.the opti-

-
A .
L

) .mizétion criterion might be expressed as ' . \
T Coa . . P, - ‘ . \
minimize U = : |?i(3?ﬂ : Pil (2.36) \

K . g
" . . . 1
- ! * \

n.m's
[

i where the problem constraints, g(&o), must be normalized
or weighted. ' In ‘general, however, the optimal. centering

process ‘is nbtwessentiai to reach an optimal tolerable

‘design similat to those-explained in [P]¢, [Pl and [P],

R L _aonce the optimizétion criterion is established

¥

|

‘*} ‘ A\j" The importance of havlng‘an accurate cost model is

<t R ydemonstrated in {P]7 by alterlng the cost level of one. of the
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14

objective components. _Dependiné upon the cost model,
however, a modest nuhber of statigiicélly désigned
experiments could lead to a good estimate of the chosen
modél céefficients and consequently a reasonably accurate
toleranceéd design.

In all of the abové.analysisvthe input specifications,’
S, e.g.,‘the cylinders material strength and the internal
applied pressure, were assumed deterministic quantities.

~

Their randomness could be expressed by

g0 T S ‘
S=S+b x , . ' (2.37)
where, ’
. M 3
]
- A - 61"‘
65 0 A
0 N . 6k - Lad

iyl is1,2,.0k

<

k is the number of the probrem'statistically'varied
input specifications.

'61 is a scalar variable which resembles the variation

of the specification s around its mean s9,
. S ! i’-

v; is a-random variable which follows the same
N . | .

1

symmetrical distribution as fhat"of S -

~

The‘problem of full acceptance toléranced optimum'design

' could be further extended to include the uncertainties in S *

P

|
i

o

. sy
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and mathematically stated as

minimize UQ(_,§_)o ‘ L K (2.38)

2(X,5)>0

The non-convexity of the constraint region could
be overcome by checking the linear boundaries of’RtC using
several equidistanced\stations, depending upon the level
of cohfiéence required in the solution. This should be “ %
carried out after a primary solution is reached. If any of
the checking stations for a spécifié linear boundary fails

-

to satisfy any of the ¢(X) constraints, R, _ will be reduced

tc .

by displacing the check line a small distance e towards the
nomipal optimum KZ. The checking procedure is only repeated
for those lines which were found to intersect with the non-
convex r§gion boundaries and it is guccessively rédpeated
until feasability is guaranteed forgthe th region. This
ﬁoing also will be discussed in.further'depth in Chapter

5.

The true optimum solutlon for either [P]l or [P]2
will not differ if-their de51gn varlables are taken to be’
{rl, T, pf] or [rl, T,, U ]. However, the choice of the
design varlables in the toleranced de51gn problem is more

critical since it affects the ﬁlnal solution. and the whole

problem obJectlve and 1mplementat10n

i

T Ay s e e et B
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CHAPTER 3

TOLERANGE ASSIGNMENT WITH LESS '
" THAN FULL ACCEPTANCE

3.1 Introduction

The«determination of the upper and lower limits
of design variables of an engineering system, ag discussed
in the brevious chapter, were based on the full acceptance
of the design outcomes. Any design that happens to'lie
between these limits would fulfill all ‘the system perform-
ance and geometrical constfaints.

The 1limits on the random design variablés, X, how-
ever, could be increased if Qe allowed a portion of ther
selected dgsign outcomes te violate the sysfem constraints.
The percentage of this portion of the violated designs to
the total acéepted<designs define§ the design scrap per-
centage, Sd‘ | |

Manufacturing scrap percentage, S on the other hand,

m’
may differ from the design.scrap depending upon the nature
of the mapufacturiﬂg procéss and the system function and
desigﬂ. The manufactufing scrap percentage is the portion
of the rejected manufactured components, which do not meet
any of the system design variables'upper and lower limits.

These limits, however, may include some designs which violate

the system constraints. .That is to say, the design scrap

pencentage may be greater than zero. The distinction between

60
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the design and the manufacturing scrap will be further

elaborated in the ensuing sections.

The optimum design scrap percentage, SE,

system may be estimated by utilizing any suitable uncon-

of a

strained optimization technidug. And consequently the

system optimum tolerance limits would be determinedygé well.

The design and the manufacturing scrap percentages should

be estimated statisticall& for every optimization iteration.
The regionalization technique, developed by Gopal({42) is modi-
fied and édapted in conjunction with an optimization strategy
to save some computational time in estimating the s&stem
design scrap.

The design example of the two fitted cylinders, ¢
previohsly illustrated, will be used to aid in elaborating

the various design objectives as well as various probabilistic

digtributions is studied, using a different hypothetical

manufacturing-to-design scrap relationship.:

-~

3.2 Manufacturing and Design Scrap

The probabilistic distribution, f(xi), of a certain

1

‘dimension, Xx., in a manufactured component at the time of

assembly, is not always equal to that given by the manu-
. ) - . :

facturing process because after production, the parts usually

~ have to be inspected, and a part will be rejected if any of

its specifications, say dimension X5, happens- to be outside
. /
the design tolerance region

-
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o - ; o +
.- . < X. < X; + . .
X5 tsi 2 i—-"1 si (3.1)
+ - s .
where, tsi and t y are the positive and negative tolerance

values as specified by the design engineer ng(the nominal
dimension’xg.“ However, depending upon the manufacturing
process the outcome machined dimension X; may vary between

X. . . X, 4+ .
xl t tmln hl Xl iAxl tmax ‘ (3 2)

where, §i is the process statistical mean which does not
have‘to coincide Qith xg, and toin and tohax 2re the process . -
lower ?nd upfer deviations. Using simple linear transforma-
tiqn, x-plane variables could be mapped to the tolerance
t-plane domain or(fo the unit z-plane éomain, as shown in
Figure 3.1.w Tﬁis mapping will make the’statistical recogni-
tion of the problem much easier. .- :
The distribution of the component dimension, 245
going to aséembly, will be the distribution given by the
process, f(zi), truncated at the optimum positive and

si
Figure 3.2, Manufacturing scrap percentage,.Sm, for a single

C . . + - .
negative design tolerance values, 2o and z _., as sh8Wrin

‘variable i, is the percentage of the shaded areas. to the

total area under the f(zi) distribution, and it could be

mathematically defined ag—follbws

N . 1 .
. S1
. e + *
0 , ‘ 2.3 . (3.3)
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The manufacturing scrap’might équal zero, hdwever, if the

process capability, t_. + t is less than or equal to

nin max’

. -t
the design tdlerance range, t_. +'t

3 . .
s g» as shown in Figure

N

3.3.
N . .
—hqésign scrap, Sd,\on the other hand, is the per-

centage of the assembled desiéﬁ components which fails to

fulfill the system constraints. “The assembled fifted two-

cylinders, for eiample ngght pass the 1nspect10ns of their

-:manufactured dimensions before~and after the assembly, but

2

still not satisfy one or more of the design constraings. The
‘ 2

design scrap percentage, for a singlée variable i, is the
- : ~ '
percentage of the hatched areas shown in Figure 3.4 to the

total area under the truncated f(zi) distribution, and it

could be mathematically expggs;ed as

s .
L
\

& si Zsi
s=f f(z)dz +f f(z)dz f £(z,) dz,
d » - o+
Zsi i

(3. 4)
The design scrap could be constrained to zero if the esign

tolerance range, t; + ‘will be within the full accepi%nce
' * +*

. X | - -
tolerance.range, t +t . .

H

3.3 ° Probability Dlstr1but10ns

. To determlne a system scrap peércentage the probab-
ilistic distributions of the system randgm design variables,

xi's, have to be known. The distribution f(xi)'depends on

w

bt A e 3 D3 e

prrre



-

0.

J— 1 i ry >
) zsi p‘ zsi Zl
!
— 1 £
- +
T - bk t




67

2,
“‘ﬁ
£

N, N
(3 c 4 i ) R |
— — i
T r 2 :
tmin tsi tl . v t\ . tsi tmax t.
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Figure 3.4 Single variable design scrap; Sd‘
° \
< %
)
3 '
:
|
1] li
!



A

- 68
/\.._/

the process used to manufacture the design component which
contains the-random variable, X, . Although the probabilistic
distributions of manufacturing process outcomes mgy be
identified by either conducting a set of experiments or
utilizing some historical production control data, these
distributions are not always known. Most processes, however,
give distributions varying between a normal to rectangular
distributions. A rectangular distribution is the worst
estimate of the probabilistic distribution given by a process,
and this makes scrap calculations possible even without
process distributions knowledge.

The central limit theory implies that the distribution
of the sum dimension is asymptotically normal, independent
of the distributions of the individual dimensions, ag long
as the number of the assembled dimensions is large enough
or if the individual dimensions distribufions are normal.
Neither condition, however, applied to the engineering systems.
First, variations of system random variables have finite '
range and they never vary between positive and negative
infinity. That is to say, all) the assumed normal distribu-
tions should be truncated, Secondly, the number of\ﬁhe

)
assembled random dimensions is not likely to be large enough

‘to allow the validity of the central limit\theory. Moreover,

the confidence i the estimation of_a.?ystem scrap is parti-
cularly influenced by the shapes of the tails of the random

vartebles' distributions.
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Figure 3.5 Unit beta distribution."
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The beta distribution, therefore is recommended~ -
and will be taken as the manufacturing processes stat-
istical model.” This distribution, besides being éﬁsy
to use,hhas a finite range from zero to one. It also
covers asymmetrical as well as symmetrical cases, and its
shape could vary from rectangular to normal, as shown in -
R e
Figure 3.5. The probability density functﬁon;of the unit'/

beta distribution in the interval [0,1] is

1 -
£(z) = 227} (1'—‘z)b°/! 2371 (1209071 g (3.5)

&

where, a and b are th¢ distribution parameters'and.they could
be expressed as a fu:SXion of the distribution mean 7 aﬁd
the standard aeviation o aslfollows
a = T{ZA-D/e%)-1] - | ~
and _ : y oo : (3.6)~
b= a(l-7)/z

-~

The statistical paraméters ; and b.could, thereforg, be
estimated for ; partiéu}ar manufacturing}processwif its
mean and deviation are known, -or by mapping a set of an
observed outcomes x into z and best fitting the z observa-

tions into £(z).

3.4 Space Regionalization

To estimate a system design scrap percentage the-

system random design variables have to be checked for feasibility

.

s s e Mo 0 s s szt
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/rih e&ery point on the fﬁnction surface. By utlllzlng a

reglonallzatlon technlque hoWever computatlonal sav1ngs
might be accomp11shed since the technique appfox1mates the
multl-dlmen51on31.301nt probablllty function, f(X), by a
finite number of discrete points. Each of these points is
centeted inside % distinct tell and represents all the peints
occﬁrring within the'eell boundarieé, as'illustratedAin ‘
Figure 3.6. While using the regionalization teehnique the
system random variables, e.g., . Ty and T,, are discretized
1nto R reglons over the varlables' tolerance 1nterva1 . .
-ti;to ti‘- Therefore o . .
o Neen 1R . (3.7)
-where,. N cell isfthe'total number of cells and,'N is the
total number of the random de51gn variables, of the system.
Thé Jo1nt probabtllty Pr assocxated w1th dlfferent cells I
can be evaluated as.follows |

Nt ‘ ' N = 'ha

Ppr= T P... . , o (3.8)
R TS I | |

. '~ e ! ?Eik:“
y‘qhere.l \‘ I, e. {1 K III;:elll N L L
i‘e_[l ,.,B ] C |

i
' +

and. 1’ p12’T"’p1N are the 1ndependent probabllltles

.

of occurrence for each of the random de51gn varlables between ¢

the boundarxes of the I cell,,as descrlbed xn Flgure 3.7
for a system of,two var1ables.:-The de51gn scfap percentage, '

therefore rcouid be D SR

. /

P U

[P o

L I
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cell
LoProp
'Sy =NI=1 . x 100% 4 (3.9).
. cell '
r p
=1 ! \
where ap = 0 if the representative central point of
the I cell proved to satisfy all the
system constraints, 9.
= 1 otherwise; infeasible cell - shown

shaded in Figure 3.6.

) Conqiderable computational savings, however, can be,
achieved in estimating Sd if the system full acceptance,
F.A., region is known. Since all the cells in the FA region

’

are feasible, their aI‘s equal zero and there is no need to

-check them. vFlgure 3.8 illustrates the-reduction in the

numbe} of gells. The system design scrap percentage,

therefore, could be computed as follows

T Nee1n Ncell ' B
I BptPpy) X 1008 (3100

4
i [N

where PEA is ;he‘probability 6f the full.acceptapcg region.
To determine the'tétal’npﬁbér;of cells, N oq

to esfimate S4 with a reasonable accuracy, the numbér of

cells R for each of the random_ Varlables must be. adJusted

flrst .depending upon the .range of each variable- and 1ts

i.probabllrty?ﬁlstrlbutlon . The number of cells per varlable

R .
.
. a .
Y
A t( v
.

1+ .needed

<
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may be divided into three sectors as shown

and expressed mathematically as follows

+
. .+ . + .
1 t1 le Rtl

+ ' . o
where R_. is the number of cells between

ti

%
)]

+ +% +%

Rmi.is the number of cells between

= Int [Aiz].+ 1

R;i is the number of cells between

)

_ ) - - % +% %
= Int [A.l3 (ti'ti )/(ti *ty )]

<

in Figufe 3.9

.(3.11)

+. +%
t. and t. ;

r 1

- % d + %
t; and ti ;

-% -
1 and tss

+ 1

Int [f] is the truncated integer vdlue of the real

: fupction f.

‘1o

Thé values of Aips 2 or Az for different random variables ,

occurrence for each sector per variable. For example, - ,

+
Z

1
“f £Gzy) 2
1w _ A

221

A

f f(zzj dz,
-~ YA 2 X ‘ 4

\;, and X, ; are scaling factors.

7
#

- should be proportional to the cofresﬁonding probability of*V

1
Y

(3.12a)
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and also for the same design variable and different sectors

+

“1 g
| L £(z,) dz;
ii; P! Z:r | ' o (3.12b)
| [ ‘ f(zl) dz1

51

The reference value okall sa&'and its relation to A\
depends upon the confidence required in estimatiqg Sd\as well
és the cbﬁplexity of the feasible region bound. |
‘Additional computational savings could be possible
if\the cells adjacent to the active corners of the full
acceptance region are qét checked against the system feas-
ibility, since they will always be infeasible. A corner
of the FA region ié conside}ed active  if one or more of the
sxsteﬁ design constraints equals zero, as showﬁ in Figure

3.9, where'chners a, b and ¢ are active and the ‘cancelled

cells identified by . heavy éhade;a Thi%\leads to a saving

of about 23% o'f the checking compdfational.%ime for this

_particular problem setting.
7 .

,Moréovefh if the remaiﬁing(ce11§ are ranked in al
descending ordqr &epending upbn tHeir ﬁ%obabilities, Pp» 85
shown in Figuyre %.10, thén, according to‘the desired accuracy
in estimating’sd, those cells haviné negligible prqbaBilitx ‘
can be ignored, . | . Ly . |

The system design sqrab percentage could‘fiﬁéily bé

o]

T e o kg YL A RN 7o s h S




P

AR = A

79

' ‘ . ' 4
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léxpréssed by

N I'N

E E3 ’ R

cell . cell » .

S, =l I Py @7 + P L Pr * Pea * P X 100%
d |11 I71 ac =1 1 ‘FA acj-

o

(3.13)

is the sum of the piéﬁabilities of the régions a

o

* where, Pac
adjacent to the active corners.

Néell is Fhe number of fhe'ranked cells to be checked.

Consequently, the system manufacturing scrap percentage is

expressed as follows

N* .
cell C
Sm =1 - Iil Py * Pppy * Pue| X 100%
Nt Zsi : T '
=1-| I fjr £(z,) dz, | x 10Q% . (3.14),
. ¢ cTd 1 '
i=1 / .
253
g o |
e The complexity of the system undey consideration

depends upon the number of toleranced variables Nt’ the
random variables probability density-function f£(x;), the
. total number of gellé Nee112.8nd also upon the adopteq'

oﬁtimization strategy, the objectiVe"functibn surface and

the feasible régibn‘boundariés. , , Vo
3.5  Examples o I o

o The'désign exaﬁp}e'bf~the ;do fitted cylinders

. HY
3 . , . N N <
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B :

introduced in the previo?é chapter is used to elaborate the
various concepts of less than fu11‘ZEEep§énce designs, The
regionalization‘technique is utilized to estimate both Sd
and S by discretizing the random variables domain into
NCell cells. The techniques suggested to gain more confid-
ence in the computed sysfem scrap, with minimum computational
. effort, aré also used. Two unique cases derived from
Equations (3.13) and (3.14) and matched with practical
production situations,';ill also be discussed. Tﬁey are:

i)  When the production volume is small, or when it is
required irrespective.of economical considerations that all
the manufactured components ﬁéve to meet the system @esign
constraints. The design scrap should equal zero; there
should be full acceptanée design; and manufacturing scrap

¢ 3

is’ to-have a minimum value,

.d

4 ¢

S, = 0%; S_> 0% v - (3.15a)

iij 'When the production’ volume is large, but the manu-
facturing processes capabilities are more tight than thig/

imposed by ﬁhe design.

) =t .
- fsd ; 0%; Sm = 0% _ - . (3.15b)
i.e. Ncell ‘ ‘ ),
) p; = 1.

i=1.

>
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A , F
3:5.1 Predetermined Design Scrap, Zero *
Manufacture Scrap, [P]S' '

The design optimum nominal vector [&?]; fs éssumed
known fromf[P]2 as well as the fully accepted non-
§ symmétricalitolerance boundaries [1*]2 and [I"]: are also
known from [P]4. Siﬁce the manufacture scrap equals zero,
. . © the system sérap equals the design sc;ap. The préblem
objective is to maximize the design tolerances allowing
\\ a maximum of a specified scrap percentage, S__%.

\ | °P

3.5.1.a Uniform distribution

Both ry and rzlare assumed to follow uniform dis-

tribution with £ 0% -t < oy ¢t £ d
' ribution with a range of r; 1s £ T T 1, for ry an
i . similarly for r1,.
<
_ + - + - 5T .o
[Xlg = [t15> tysotase tos! (3.16)
U8 = < 1 — + +1' — = minimum )
: t1s+tls t25+t2§
[tlg = ¢1 8 = Sgp - Sq
e ‘
. . ‘ o* _o* ’
€ where [rl , rZI] = [0.126, 0.185]
%gs The following table and Figure 3.11 summarize the optimum
A ' 7

results obtained for different Ssp%' And the percentage

;oierance area gained over that of the full acceptance

L4

solution is also tabulated.

b}

——
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SSp

+
T1s
rls
+
T2s
T2s

% Area
Gained

3.5.1b

10%

0.168

©0.220

0.200

0.156

71

£ &Y

Uniform Distribution

5%

0.159

0.110

0.200

0.156

43

Beta Distribution

15 °
0.158
0.110
0.200

0.161

- 24

Beta Dist.

1%

0.195
0.110
K 0.202
"0.144

230

The same problem was tackled assuming beta distribu-

I3

tion for both the system random®variables Ty and T,. The

‘distribution means are taken to be the fixed optimum nom-

. . . )
inals rg and rg, respectively. While their standard

deviations ar¢ considered to be one eighth of each distribu-

tion range. The optimum result found is tabulated above and

shown in Figure 3.12 for a specified design scrap of aone

percent.

The effect of varying the scrap levels as well as

the random variable distributions on the allocation of the

optimum tolerance domain was demonstrated above. It is

eviiZ?féthgt the tolerance domain is apt to cover the maximum .

possibl

same scrap level.

distribution gives the worst tolerance area compared with o

area in the feasible domain while maintainipes the

It is also evident that‘the uniform :

|
o
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Figure 3.12

Predetermined design scrap - Beta distribution.
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any other distribution.
\

.
-«

3.5.2 Optimum Design Scrap, Zero Manufacture
Scrap, [P]g. * . ’

Similar to [P]S’ the manufacture scrap’ is assumed
to equal zero which implies a hypotheticélwsituation where
a particular manufactureing process could be found to match
the final optimum machining capabilities and ta follow a
known probabilistic distribution. Also, the system nominals
rg* and rg* are assumed to be‘fixed and the randqm variables
z4 and z, féllow a uniform distribution. The only change
is that the system scrap percentage Sd will not have a
predetermined value an& it will bq optimally determined.
This can be done by allowing Sd té affect directly the
problem objective, since Sd is a function of the tolerance
design variables [I]s, which are greater or equal to the full
acceptance toleranges [E]*- The production cost decreases
and the system design scrap increases, if the tolerances [_T_]s
increase. However, the system cost increases if the design
scrap increases. Therefore, a break even.optimuﬁ value for
both ;d and‘[[]s could be found by selecting a ?uitable

design objective which minimizes the total system cost. The

unconstrained problem can be stated as follows

+ -

_ - + - T
[K]Q B [I]s - [tls’ t1sr togs tZS]

U9 = ug (1 + Sd/100.) f minimum (3.17)



- [

where ug = U6 . o

11
N

o _ _o*
Optimum Solution 7
.- - . ./I

0.110 < ry £ 0.154

0.161 < T, < 0.200

87

Sq4 = 0.001% (3.18)

!

The solution is illustrated in Figure 3.13.

3.5.3 Optimum Design and

Manufacture Scrap, [P},

. . o* * ,
.The design nominals Ty and rg are assumed known %

\

and fixed. Manufacturing processes to be used to produce

the design are chosen and their ﬁrobabilistic distributions

are determined, which do not depend on any of the optimiza-
. Pl

tion variables. The objective is to determine the optimum
. %

tolerance values of Ty and
of Sd and Sm. The problem

as fol}ows

T, that give the best combination

could be mathematically formulated

i3

. © _ + ;= + - 4T
(Xlyg-= [Tlg = {155 Ty a5 tyl
Upg = ug (1 + S;/100.) + uys. S /100. (3.19)

where Uiy (ug‘- u46)

[}

assembly cost, Equation (2.20).

= machining cost.

e P e s



Figure 3.13  Optimum design 'scrap.
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Both Ty and T, are assumed to follow a uniform distribu-
tion between the limits
0.108 < ry < 0.160 ’
0.150 < T, < 0.205
Optimum Solution
0.110 < r; < 0.156
0.161 < r, < 0.200
Area Gained = 20% ‘ (3.20)
, s; - 38%
Sd = 0.323%

The solution is illustrated in Figu}e 3.14.

It is evident from the previous optimum result
that the désign Variables [Ijs are allocated to give the
best trade-off between the manufacture scrap and the design
scrap. Since for an incremental increase in the'value§
of theée system tolerances, the estimated value of the system
design scrap increases while the computed vglue of the system
manﬁfacture sérap decreases. The pfoblem sﬁlution, howeyer,
dgpends mainly upon both the shape of .the cost objectiv:\\\///
and the distributions of the random variables. The assumed
uniform distributions represent the worst condition, and their
limit; do not coincide with reality, however, the problem
served‘its aim by exaggerating the effect of the manufacture

scrap on the design scrap value.
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3.6 Conclusions

Through the distinction between the design and the
manufacturing scrap a link was constructed between design-
ing a system to meet a set of specifications and manufact-
uring it. An engineering system in general could be
decomposed into a set of smaller sub-systems, [53, 54]. In
this event the tolerance assignment previously introdpced'
facilitates the choice of standard or purchased sub-systems
to match with the overall system performance, since the
tolerances associated with the sub-system's specifications
are widened as much as possible and as economically as possible.

The misuse of a normal distribution as applied to
engineering phenomena is also pointed out, and the adVantages
of emplo&ing probabilistic distributions with a finite range -
e.g., beta and uniform - are clearly elaborated.

The space regionalization technique originally
suggested by Scott et al. [41], and further improved by
Gopal [42] was used by the author in conjunction with opti-
mizaéion techniques to determine the system design and
manufacturing 6ptimum scrap percentages. Additional com-
putational savings were also achieved by detectﬁng the active
corners ;;H not analyzing their adjacent célls. Also a set
of mathematical expressions were introduced to compute the
relative number of cells needed for partitioning the region-
alization space for the system random variaples.

Four different cases wefe‘stugied for the same

example to draw the attention to various conclusions.
. N ‘L? .
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They are:

a) Comparing the tolerance percentage gained by allow-
"ing various amounts of system scrap. —

b) Displa?ing the effect of the random variable dis-
tributions in allocating the system optimum tolerances
and consequently -its scrap.

c) Elaborating the fact that a uniform distribution leads
to the worst estimates for the system optimum
variables.

d) Introducing a simple but practical way of combining
.the system scrap with the objective function.

e) Differentiating.fhe effect of the system design scrap
versus the manufacturing scrap on the optimization

outcomes.

e -
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CHAPTER 4
THE UPPER REGIONALIZATION BOUND

3

4.1 Introduction

The space regionalization technique described in
Chapter 3 was introduced to save some computational effort
in estimating the system design scrap. The full acceptance
solution FA, has been elaborated and discussed in Chapter 2.
It served as a lower bound within which the regionalization
technique does not have to be utilized. In this chapter,
on the other hand, the upper bound region, RU, will be

mathematically defined. An algorithm will be introduced

amd’illustrated by geometric interpretations, to define the

region in the system domain. The upper bound region contains
the tolerance 1limits beyond which there will be no need to
utilize the regionalization technique, thus reducing the
computational effort required. This upper bound region just
encloses the feasible region R, as illustrated in Figure

®
4.1.

4.2 Definitions / ,

a) The system feasible region, RC: It contains all the
design outcomes that satisfy the system nonlinear inequality
constraints. RC is illustrated in Figure 4.1, and it could

be defined as

- 93

-~

A wm memwn, P
R -



© o e o — P T o

- - -

A e

3
* 1]
R L
S NI & W
R N
o N e SO A AR
o S0 RS o 2
+D Rl ﬁ S
W S ':‘-:- _‘.::E: és: :s-:\\;?, -\ & E;:. % 0 53
R o "-!n‘.\?_t ::5:-.:55‘;:,‘ 3 ;\:::-.Q\;:- 3
- SRR

bi

= X bt
R
~ T
\.':%}. :-!-:é:".
Ny
RS
\_._\'D' A -
::E;\:. -u'.:?}:ﬂ'
S AR
SN Qo 20 -E}'glk%'i\.\
S
o RS X lﬂ.-i "E:"'\ (@]
SRR R A
Y A }E ) >

Figure 4.1

The lower and upper feasible bounds,
REGRU, versus the feasible region, RC.
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R, = X |2 (X) > 0} | (4.1)
\\X> b) The regionalization lower bound, RL: It consists of

| Zn orthogonai surfaces that form a polytope, as illustrated
in Figures 4:1 and 4.2. The lower bound lies fullf inside
the feasible region RC, and it depends upon the location of
the system nominals 5? and also on the shape of the closed
feasible rzgiop. The lower bound has 2" corners C, 2n norms
Sn’ and at least of its corners have to be on the feasible
region bound, whegre ¢; = 0. The lower bound has to contain
,the full acceptande region RFA’ however, the reverse is not
true, because Rea depends on the system objective. The lower

bound region could mathematically be expressed as follows:
(]

RE = (x e () 205 X%+ 1] < X < [X°-t[1)
-
c R, (4.2)
L
Rpat R

where E{ and gi are the maximum feasible values of the positive
and the negative tolerances associated with the gystem
nominals, respectively. \

c) The regionalization upper bound, RU: It contains both
the lower bound and the feasible regions, and it also consists
of 2n orthogoﬂal surfaces. The upper bound is shown in Figure

4.1, and it could mathematically be expressed asiyéiiiisg

g

~~a

B U
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Figure 4.2 Graphical representatio

three dimensional polyt

of one, two and
e and their
corresponding corners and\norms.
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+ - e
where ty and ty are the minimum values of the positive

and negative tolerances that guarantee full confinement

.

of the feasibie\region. - ~

d) The region lization region, RR:* It is the-n—dimén—
sional region that can be partitioned into cells while com-
buting the system design scrap. It is the net outcome
from' subtracting the upper bound region RU from the lower

bound region RL, as illus%rateﬁ in Figure 4.1.

R™ = {g |0 < &< gy

€
» =

RV ¢ R} , ' (4.4)

RL ¢ RR
where.gub is the upper limit of the regionalization region

defining variable. It is defined below. )

e) Regionalization region defining variable, €: It
: £

‘defines the region between the upper and the lower bounds

in the domain of the system random variables, as illustrated
in Figure 4.1. Since the nominal vector g? is assumed

fixed throughout the search for the tolerances that define
RU,'E :ﬁn be transformed into the ¢ domaiﬁ, where ¢ contains
the defining variables ¢ on the upper side and ¢ on the

. . . . + -
lower side, with corresponding maximum values &y and £y

~

Mt e, it
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Thus .we: have

e=tef, et
Tyt g | ’ (4.5)
ERER
g 7 Loy gyl '
e gy |

where EL and ty were defined previously in Equations (4.2)
and (4.3), respectively. .

£) The scrap slack value, a; (x;): It is a measure of
how close a given value of X4 is to the apparent &ertex
or the extreme boundary of thé feasible region. It is

graphically illustrated in Figure 4.3 for two random

variables, for which .

a; = £,/
& .
a, = f1/ty

However, for an n-dimensional system, it must be defined as

follows:

(4.6)
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where
io= 1,2, ..., n; j#i
+ -
t. = t, + t
J J J
4
fj = the feasible portion of tj on the positive

side of ti.

For the purpose for which it is defined, a3 is a function
only of X553 and n is the number of those variables having
tolerances.

Line regionalization technique, LR: It follows thé™
same\ concept as the conventional space regionalization
technidwe described in Chapter 3, where the domain under
study is partitioned into cells. The feasibility of each

of the cells is checked against the system constraints.

" Line regionalization technique is used in the ensuing

X)strategies to estimate the scrap slack value q - Line and

space regionalization techniques differ, however, in two
aspects. The first is that in LR the random variables ¢
are ass&med to follow a uniform distribution because the
probability of occurrence of events in a cell is not
important and does not affect the technique outcomes. In the
space regionalization, however, the random variables X may
follow any probabilistic distributions, which depend on the
corresponding mgnufacturing process. The §econd Variatién of LR
from the ce
represéﬁiii}ve i

as shown im Figumne 3.3, but in the center of the cell's nearest

egionalization technique is that a cell

not located in the center of the cell,
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!
édge to the lower bound region RL, as shown in Figure 4.4,
It is only necessary to check the boundaries of the regions '
closest to the RL region. Employing the LR technique

will reduce the number of feasible cells considered to be

infeasible.

4.3 Strategy

The basic concept of the method is to determine RU
by minimizing the scrap slack value q for each variable,
thus forcing the bounds defining RY to fall on the extreme
boundaries of the feasible region RC., The algorithm adopted
is divided into three strategies to be followed successively.
They are, the primary upper limit strategy, the upper limit
strategy with checking of sides, and a strategy to determine
the acceptable upper bound. The first strategy uses the RL
region tolerance bounds in estimating q for various iterations
of the strategy. The optimum outcome of the primary strategy
is then considered as a starting region for the strategy which
checks the sides. Here the tolerance bounds, that have to
_ be used in estimating q, are updated in each iteration of
the strategy. These bounds ought to be beyond the RL limits.
To insure that the upper bound region limits lie compietely
within the joint probability density function of the system,
a final check has to be made.

The primary and the checking of sides strategies\gall
into the categbry of direct search optimization téchniques.

They rely on the sequential examination of trial solutions in

-@‘F

7/
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L.R. Cell . Conventional Cell
Representative Representative

f
o & 8 o Rt s X /

L !
{ R .
infeasible H - : U
Cell : - : R
" Feasible ¥
Cell '

Figure 4.4 Line regionalization.
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which eachréolution is compared'witﬁ;the best obtained up
to that point. This is done withou%\evaluating either the
oﬁﬁective or the constraint's derivagzves.

Solutipn éf the following nonlinear qptimization

problem will determine the upper bound region.

2n
UUL = i ay (¢) = minimum . P
subject to
2n

‘p(E)UL = I q

where the scrap slack value q is minimized until it reaches
. 2

its zero limit. The constraint ¢ is defined in order to

bound the expansion of the upper 1imit region to the minimum.

4.3.1 Primary Upper Limit Strategy N

The RL fegion is assumed to be known, and consequently
the t; vector is defined. Thg strategy is schematically
illustrated in Figure 4.5, and proceeds as follows: .

Step 1 Set i = 1, where i is the number of the toler-
ance variables. It varies between one and 2n. |

N Step 2 Set j =1, where j is a counter of the number of
iterations for each variable. Compute Sj, the direction of in-

flating the upper bowmnd region away from rRE.

Step 3 Define the limits of the regionalization

.
LY -~
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Figure 4.5

Upper limit strategy.
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checking domain. They equal the correspond;né limits of
the RL region for the 2n tolerance variables of the system,
For j greater than one, the check?ng limit for the i vari-
able has to be updated with‘the_ei’j_1 value from the
previous iteration.

“ Step 4 Partition the checking domain into Rmi
cells defined in Equation (3.11).
3 'Step 5 Using the LR technique,. explained in sub-

(si).

secfion 4.2.g, estimate q

ij
Step 6 If qij equals zero, go to Step 9. Other-
wise, compute EEj’ the mid point of the feasible portibn of
the checking domain. W\» )
Step 7 Determine the optimum step sizg af.. Starting

ij

from the feasible point ET' and proceeding in the given

1)
direction §i until one of the system constraints approaches

zero, as explained in sub-section 4.3.2.

Step 8 Update €5

€.. = €. . + a,, S. (4.8)

*
Check the improvement in «.

ij by computing p

p = ) (4.9)

If p 1s greater than a predetermined improvement
)

factor,-ps,increase the counter j by one and go to Step 3.

Step 9 €5 T €53
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If i equals 2n, then stop, otherwise set i = i+1

and go to Step 2.

4.3.2 The One-dimensional Search Sprategy

Consider the m constraint functions

o' x°,t) >0 ; 2=1,2,...m (4.11)

of the n-variable vector E? and the Zn-variable vector t.
If &O is assumed fixed throughout the search, Equation (4.11)

could be transformed to the ¢ domain by using Equation (4.95).

‘Therefore, the system set of constraints could be expressed

as i

b, (e) 20 ;2 0=1,2,...m ‘ . (4.12)

of the 2n regionalization region defining variables vector

e. For any feasible point, Ew say, Equation (4.12) will

be satisfied. A point on the boundary of the feasible
4 . "

region RC is defined as a point for which

and - ‘ (4.13)

for some k e(1,m]. During the procedure of defining the

upper limit of the regionalization region RU; we wish to

find a poinf on the infeasible region starting from ﬁdﬁg\*

feasible point ¢™ and roceeding in a given direction S.
P € p g 2
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Step 2
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%
ally, we wish to determine the step size a

*

*+a §) =0 (4.14)
*

*a 5) 20

, -~

2,...,m ; 2 # k .

The one-dimehsional search procedure which
emented is based on the secant method and
ollows: @
Evaluate ¢y (ET), L =1,4,...,m.
Define. the initial values for both the
base and the lower limits of an auxiliary

variable h as follows

: 2 =1,2,...m. (4.15)

I T
hy = hy =4y .
and also g
W@ = ol =0

Set a to a predetermined initial value.

Evaluate ¢, (e + @ S). If all the m con-
straints are greater than zero double the
value of a and repeat, otherwise define the
updated and the up%er value of both a and h

as follows:

1 _ U
a = a0 = 0

and (4.16)
IR N S
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for all ¢2 < 0

Let

Step 3

Step 4

I

L = {2],(c"+a 9< 0 (4.17)
(IU'Q‘Q.
If —:-U-—“— > A €1, (4.18)

then proceed if not stop and take the
’ *
current value of a as a , where 4 €5 is

the ‘-minimum allowable change in € -

Choose the successive value of o by select-
ing the minimum out of L calculated values

as follows:

e S on el
" gel 1 0 (4.19)
hy - hy
If a < aL
then a = aE i (
NS
If a > aU
then a = aU
Set a? = ul
1
a” = a
o _ 1
h2 = h2 ;0 fel
1
hi = o, (e"+a's)

This step is essentially the secant method

for determining a.
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Step S If hi >0 rel
then set ’aL = ul (4.21)
L _ .1
hy = hy
and repeat from step 3. Otherwise
U 1
a = a
L= (2]o, (" + o' &)< 0 (4.22)
u_ .1
hz = h2 ;  fel

and repeat from step 3.
"
At every'step of the procedure there is an upper and lower
bound on the step size a, and when the interval [aL, aU] gets
small enough, the procedure terminates. Moreover, the
minimum valué of the constraints at any step 1s equivalent
to the value of the unconstrained objective function in the

conventional optimization.

4.3.3 Upper Limit Strategy With Checking of Sides

The primary upper limit strategy, described in sub-
section 4.3.1, utilized the lower bound region tolerance
limits, T in estimating the scrap slack value using a
line regionalization technique. The primary upper limit
strategy is a necessary but not a sufficient algorithm to

identify the rY region, since a part of the feasible region
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RC could still,be outside RU (primary), as indicated by
the example ,of Figure 4.6. To guarantee full enclosure of
the feasible region, a éomplementary checking strafegy is
necessary. It is illustrated in Figure 4.6 and proceeds as
follows:

Step 1 Execute the primary upper‘limit strategy
and define the RU (primary) region boundary
by € - The e subscript indicates the
number of the iteration.

Step 2 Check the 2™ corners of the RU (primary)
'region against the system constraints. If
all the corners are infeasible, stop

U

R RU (primary)

{ -
JL | (4.23)

-1 . %
otherwise, identify the feasible corners,

Cf, and proceed.

C.<C=2M (4.24)

f
Number of the side checking iterations equals
J=n. C; (4.25)

While the number of iteratioms I, for each
’ . of the J side checking iterations depends

: on the closed feasible region bounds.

je (1,31 5 ie (1, 1) ©(4.26)

Set’j =1 and i'= 1. ,
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Figure 4.6 Upper limit strategy with checking,
of sides.
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Step 3 Define the line regionalization checking

‘ domain. It covers the area between the
current uppe; limit corner for the i
iteration and the projected corresponding
cornér for the (i-1) iteration. This
defines the j checking side. Note that
for the starting condition, when (i-1) équals
zero, the corresponding 1ocation.of the
feasible cornér of the lower Bound region
is utilized to define the LR ddﬁain.

Step 4 Estimgte qij (¢), where §j is constant for
the I iterations. Follow the same;procedu;e'
as that explained in the primary strategy,
until no improvement is emirnent.

Step S If j = J stop, otherwise set

j=3+1

-

4.4  Acceptable Upper Bound

»

It was assumed throughout both the primary and the

checking sides strategies that the upper limit bound region

. is a sub-region or fully contained within the manufacturing

tolerance region for each random variable. That is to say,

I3
-

R™.C Rmtl

where,

mihn,i, ti+n _<.. tmaX,i ; 1 E[l,n]} . (4.

N

27)
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In other words, the manufacturing scrap percentage, esti-
mated s;parately for each of the n independent design
variables, is grea{;r than or just equal to zero.

This is a hypofhetical'assumption which in practice
is not usually fulfilled. Therefore, a sufficient check
has to be done after the one dimensional search is carried
out for both the primary and the checking of sides strategies.
If Equation (4.27) does not apply for any of the inter-
mediate bounds, the corresponding lower or upper manufactur-
ing tolerance limit should be considered as the acceptable

. :

upper limit bound, as illustrated in Figure 4.7.

Therefore,

(4.7%)
but R

or R_.¢ RV

4.5 Discussion and Conclusions

T

EN

Having descriged mathematically, and with the aid
of two dimensional graphical representatiops, a strategy to
define the upper regionalization bound, RU of a system,.it.
is important to classify some dependency relationships
‘ U

between various regions that have been defined earlier. R

does not depend on_RL and it is unique for edch system. On
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the other hand, RL depends upon the location of the nominal
optimum point 5?, however it does not depend on the shape
of the objective function as long as it maximizes the system
tolerances, as has been shown in Chapter 2. Therefore, it
may be necessary 'to define several RL regions during the
course of allocating the optimum performance condition of a
system. However, it is only necessary to define RU once.
The main advantage of transforming the t-domain into
e-domain, throughout the.previously illustrated strategy, 1is
to avoid specifying an additional set of inequality constraints
to guarantee that the optimum upper limit tolerances are
greater than or equal to their corresponding lower limit
tolerances. While using the e¢-domain, however, it is only
sufficient to use the absolute values of the defining
variables ¢, since this ensures that their values are always
positive irrespective of the optimization outcome.

The RV

region does not depend on the convexity
condition of Rc' However, if the estimate of a scrap slack
value q; was due to a non-continuous domain of fj’ then the
mid point vector 5? should be computed to center the largest
continuous feasible portion of the fj domain.

The strategv has been utilized in solving the examples
in Section 3.5, where a substantial computational savings up
to 30% was achieved. A primary check was carried out for

each random tolerance variable t. at the beginning of every

optimization iteration, to detect whether t, lies beyond the
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upper regionalization 1limit or not. Therefore, if it

happeris to be outside the RU region no cells will be generated
and no checking wili be carried out while the probability

of scrap of the de%eted infeasible portion of the inflated

tolerance region is calculated directly knowing the corres-

ponding distributions.
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CHAPTER 5

IMPLEMENTATIONS ‘

5.1 Introduction

The tolerance assignment problem for full and less
than full acceptance design conditions was introduced.
Strategies used to mathematically define the regionalization
region with its lower and‘upper limits were consequently

~rdescribed. It is important, before reaching research con-
clus%ons, to clarify the possible sources of errors in esti-
mating the optimum design variables and their corresponding
upper and lower tolerances. And also, to discuss some pro-
posed remedies to overcome them. The convexity assumption
of the feasible region will be discussed, including an
algorithm to detect the non-convexity, and to go around it
to validate' the allocation of the optimum regions. The ¢
limitations created due to the partitioning of the s&stem
domain using regionalization techniﬁues are discussed. A
sensitivity analysis of the errprs in estimating the system
scrap 1s also done.

Finally, several additional applications for the
proposed methodology are stated to show a sample of the many

design systems that could be investigated.

5.2 Convexitx

The exactness of RL or Ry, regions, defined in

117
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Equation (4.3), depends on the validity of the convexity

assumption)of the RC region, Equation (4.1). Therefore, it
o .

is necegsar) to verify the correctness of RL before going ’
any funther in either estimating the system scrap or defining

the RU'region.

The line regionalization technique, introduced in
Chapter 4, will be utilized in conjunction with the one
dimensionalisearch, described in Section 4.3.2, to define
the acceptable lower bound region, Rg. The correctness of

L

Ra does not depend upon the complexity or the convexity of

the constraints region, Rc’
The problem of defining Rg could be mathematically
formulated as a nonlinear optimization problem as follows,

in a manner similar to the formulation for obtaining RU.

Zn
subject to
Zn
¢(£)LL=2n' z aj (e")]> 0 s
1

where the scrap slack value aj defined in Equation (4.2),

is maximized till it reaches unity. This has to be guaranteed
for all of the 2n values of qj - The constrain ¢ is defined

in order to bound the contraction of the lower limit region to
the mimimum. The acceptable lower region defining variable,
g', is similar to ¢ defined in Equation (4.5). And it could

be mathematically expressed as follows:

N
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e = [£1+’ E1-]’1‘
14 + + )
2R T (5.2

4

where EL’ ELa are two vectors that contain the tolerances

L

between the system nominals and the R~ and Rk limits,

respectively.

5.2.1 Primary Acceptable Lower Limit Strategy

The primary acceptablé lower limit strategy is similar
to the primary upper 1imit\strateg§ introduced and explained
in sub-section 4.3.1 with one exception, that the one
dimensional search direction s: for any of the Zn variables
is in* the opposite direction of S defined in Equation (4.8).

The algorithm is échematicglly illustrated 1in ﬁigure

5.1, and the optimum primary acceptable lower region is defined

as Ri (primary).

5.2.2 Optimum Acceptable Lower Limit

The primary acceptable region confines only feasible
design outcomes within its boundaries, although it is not
necessarily the global optimum for Equation (5.1). Therefore,
it is mandatory to go a step further'and reoptimize the
allocation of the lower bound while taking into acecount the

Iy
¥
\

P —
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Figure 5.1 The acceptable lower bound region in
a non-convex feasible domain.

-~
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updated maximum feasible value for the system tolerances.

The problem could be mathematically expressed as follows:

* minimize U(X)
subject to 2(X) > 0 (5.3)

$,(1) >0

where U and ¢ are the original system objective and set of
constraints. While gais an additional set of linear
constraints tﬁa; confines the acceptablé lower bound in the
feasible regions by preventing its sides, tha§ have been
primarily contracted wusing the strategy introduced in sub-
section 5.2.1, from re-eXpandin;: It typically could be

expressed as follows:

O\
bax T traji "tz 20

& .G O
trali T OYLi T fLi (5.3)
where k=1, 2, ,K
i=1, 2, ,2n

K is the number of successful contractions performed on the
RL region. It could.equal zero, which proves that the system
feasible domain is at least one dimensional convex between
the bounds of the lower limit region. The optimum acceptable

limit region Rg is shown in Figure 5.1, where K equals two.



122

5.3 Limitations

The space regiormalization technique and the LR
technique defined a described in Chapters 3 and 4 rely
on dividing the regijnalization reéion RR, Equation (4.6),
into a finite number of nonoverlapping cells. Each of these
cells covers a sector of the joint density space of the system
random variables. Depending upon the size of the cell and
on its location in the density space, a weight is assigned
to it. Since each cell occupies a portion of the system space,
it consists of an infinite number of distinct designs. How-
ever, it is only represented by a single point, located in
the center of the cell n-dimensional space - in the space
regionalization technique - or in the center of the cell (n-1) -
dimensional spd%e and towards the RL region.

To estimate the system scrap almost every cell in the

L .
active corners - must

RR region - excluding those by the R
be tested against the system constraints. Since only the
cell representative point, C Figure 5.2, is checked for
feasibility, there is a probability of under or aver estimat-
ing the system scrap. As illustrated in Figure 5.2, a cell
might be considered feasible even if more than half of its
volume is actually infeasible - i.e., outside the RC region -
or vice versa. Similar errors might be encountered while
defining the RU region or checking the convexity within
either the RL or RFA regions. |

o

Two separate solutions could be adopted to increase

the confidence in the regionalization strategy outcomes.
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Infeasible

Feasible Cell

Infeasible Cell

o

Figure 5.2 False estimate of cell's feasibility.
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The first method would be to explore additional
points within a cell at the fipal iteration, to see if they
agree with the representative point C.

The second method yould be to increase the total
number of cells so that the éystem characteristics and

feasibility will have less change within any of the cells.

5.3 Sensitivity

The accuracy of the system scrap estimates, that
are derived by utilizing the space regionalization technique,
depends mainly upon the location of the cell's representative

points and on the total number of cells, N If a cell

cell”
center is taken as its representative, and the system feasible
domain as well as the system input specifications and objective
are assumed fixed, tﬂen the only variable which affects the
regionalization outcomes is Ncell' The absolute proportion-
ality of the number of cells for each of the system random
variables depends upon the range of each variable and 1its
probability distribution. Three scalling factors Xy, A, and
As have been defined in Equation (3.11). They describe the
various weights assigned for the various sectors of the
system random variables. The exact proportion between

A and .

i,) i+l,j* for ie[1,(n-1)] and je{1,2,3], could be

calculated as explained in Equation (3.12.a). Also the
relation between A and A 3 could be defined as explained
b » .

in Equation (3.12.b). Therefore, irrespective of the system

complexity, two reference values of Mo and M o2 have to be
b ?
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independently cﬁasen. In this section we will study the
effect of the choice of X's on the accuracy of the system
estimated'dgsign scrap, i.e., the sensitivity of Sd with
respect to the variation in the A's.

The feasible region RC and the lower regionalization
bound regign RL defined in problem [P]4 will be taken as a
base for the sensitivity analysis. The problem upper bound
region RU is defined as the upper value of the 'regionalization

3
region defining variable EP' Therefore,

Bl
EU = [£+U’ E'U]T
_ [ IU, E;;U, EiU’! E-U]T (5.4) )
T
= [0.035, 0., 0., 0.015]
L T
x“ = [0.1544, 0.20, .0.11, 0.1661]
XY = [0.1896, 0.20, 0.11, 0.1508]"

K

The problem random variables r, and r, are asSumed to

1
follow a uniform distribution that covers the upper limits.
The exact design scrap percentage Sde calculated by integration,

through the RV limit;‘equals

Syp = 34.87% (5.5)

'

Instead of choosing both xll and A2 the latter could

be chosen as a percentage of the former as follows:



P

) 1
” }\12 - f.All Z (5.5)'

where 0 < £ <1
»

When fkeguals one, both A's will be propotrtional
to'their corresponding prqbability of occurrence. Howq:er,
ifﬁf is chosen to be less than one, the iﬁtensity of the o
number of cells that partition the middle sector decreases
accordingly. By utilizing Equationé (3.11), (3.12),'an5 (5.5)
the varioqs number.of cells, for each of the three sectors |

that divides each of the system random variables, could be.

mathematically expressed as follows:

oF : +U,, +L -L
Ftl = Int [xll €y /(x1 - Xq )] + 1
i
H
g = Int [0.792 Ap;] + 1 - (5.6)
7le = Int [xlz] + 1

_ ’ +L__-Ly, +U

—ﬁnInt (f All (Xl Xl )/51 ] +1

= Int [1.263 £ All] + 1 .

- P
Rep = Rz = 0
L

Rm2 = Int'[xzz] + 1

Int [1.233 Alz] + 1 . : §

i = Int [1.557 £ All] f 1 ‘ §;
A
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=
]

-U f -
Int [Ayq €, /(x;L-sz)] v 1

1}

Int [0.4534 a,q] + 1

n

Int [0.320 kll] + 1

For this particular example where all the four
corners of the lower region are active, the total number of

cells needed to partititn the regionalization region equals

- +
NceIl - le x Rt2 ¥ Rm2 X Rtl . (5.7
h

The exponential ‘increase in the total number of cells due

to the 4se in either the value of Ayp OT f is shown in
Figur Figure 5.4 displays the convergeqée of the
estimated design scrap using thé regionalization technique
toward the exact design scrap(;s the value S¥\k11 increases.
‘Figure 5.5 magnifies the absolute difference between the

exact and the estimated design scrap.

Some important observations can be concluded from the

previous two figures. First, depending upon the value of f,
there is a transition region that lasts until a critical
value of A1q- Throughout this transition region a vast
fluctuation in'the value of the estimated Sd is experienced.
This is due to the cancellation of the over estimated cells
with the under esfimated ones as illustrated in Figure 5.6
for f equals one and Aj;equals two. The critical Ay could

be defined as.the minimum value of Ayq at which the relative

error in the estimated value of Sd will be less than the value

g
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Figure 5.6 A balance between the over estimated
and under estimated cells.
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of a predetermined maximum acceptable computational relative
error. Secondly, the absolute error of the estimated Sd'
never approaches zero due to the computational accummulated
truncated errors. Finally, for the same number of cells,
it has been observed that by using smaller f and higher All’
more accurate estimates ought to be acquired.

5.5 Additional Applications

Techniques and algorithms introduced in Chapters
Z, 3 and 4 could be applied to various realistic engineering
design systems., Throqéhout the thesis only the example of
the two shrink fitted cyiinders has been adapted to illustrate
the various concepts and algorithms. This example was cbbsen,
however, because of both its simplicity and its limited number
of variables. The following general step by step procedure
could be used as a guideline to determiné the optimum design
variables, and their associated tolerances as well as the
optimum scrap percentages of an engineering system.

1. Choose the system design variables. Formulate the
system inequality constrainfs; and determine the system
- specifications and the probabilistic distributions of the
random variables.

2. Construct the system objective function, e.g., cost
model. It is normally a function of both the system variables
and its scrap.

3. " Determine the system optimum nominal variables, X?*,

where the system scrap and tolerances are set to be zeros.

R T L U
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This is used as a starting value to the preceding steps.

4, Determine the system regionalization acceptable
lower and upper limit regions. This is utilized in the
saving of computational effort.

5. Determine the system optimum nominals and associated
tolerances.

The following is a sample of additional systems from
various engineering diséiplines, that fhe foregoing tolerance
assignment procedure could be applied to.

/Q

-

5.5.1 Mechanical Systems

Bennett [55], solved a car suspension design problem,
shown in Figure 5.7, using the classical optimization tech-
nique. Both handling and ride performance constraints as
well as a reasonable location of the car centre of gravity

are considered. The problem design variables are !

o _ T
K = [ar KFy KT’ KfS’ KTS] - (5°7)

where, a is'the longitudinal location of the car centre of
gravity from the fraont wheels, K# and Kr are the front and
rear suspension stiffness, and Kfs and Krs are the front

and rear stabilizer bar stiffness, respectively. All of the
five design variables should be considered random. And the
optimhm nominal Qariables with their'asspciated tolerances
could be taRen as an input specification in designing each of

the sub-systems, i.e., front suspension, rear suspension, front

" stabilizer and rear stabilizer, separately.
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Dhande et al. [6] analyzed a four-bar linkage
mechanism, shown in Figure 5.8, by allocating equally
spaced tolerances and clearance to the four members of the
linkage for a specified maximum allowable mechanical error.
It is the author's opinion that two main unrealistic assump-
tions have been adopted by Dhande ‘et al. The 1link lengths
are assumed to be normally distributed and nonlinear constraints
have been linearized using Taylor series up to the first order
terms. However, by using the general algorithm presented in
this thesis there will be no need to adapt the foregoing
assumptions and moreover the mechanism expected error could be
optimally identified instead of the assumed three sigmas band

of confidence level.

5.5.2 Chemical Systems

' The Williams-Otto process [57], shown in Figure 5.9,
represents a simple cﬁemical plant. The system could be
decomposed into six subsystems, each of which could be
optimized separately [53]. The system also might be simplified
and then optimized in total. The performance characteristics
of the various subsystems are either directly specified or
mathematically expressed as a function of the system variables.
Irrespective of the way of optimizing the system, the tolerance
assignment technique could be employed not only to allocate

the Qarious tolerances associated with the physical dimensions’

of the process component but also to determine the permissible
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Figure 5.8 Four-bar linkage mechanism.
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Figure 5.9 The Williams-Otto process.
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optimum upper and lower limits of the system environment
control variables, e.g., the reactants flow rates, the
reaction temperature, the wasted and the discarded product

specifications.

5.5.3 Civil Systems

Smith and Hinton [56] described a simple water supply
system, shown in Figure 5.10, where they chose the tank
storage vodume, V, and the water pump horsepower, HP, and water

head, hf, as the system variagbles. The in-flow discharge,

Q, and the pipeline inner diameter, D, were chosen to be the
system input specifications., The problem, however, could be
tackled from a different pro§pective using the tolerance .
assignment algorithm. The required pump head may be considered
as a state variable that is a function of the pipe's length,
diameter and surface characteristics. The problem objective
would be either to minimize the total cost or to maximize

the system value, where customers unsatisfaction due to some
shortage in the water supply could be directly expressed.

This shortage, however, is proportional to the system design
scrap percentage. The plant expected life span would either

be specified by the designer or treated as an additional

random variable.
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_ CHAPTER 6

CONCLUSIONS AND
RECOMMENDATIONS

6.1 Concluding Summary

The prediction of the behaviour of an engineering
sysgem under a variety of conditions is the central issue
in applied scien;e work. The basis of such predictions is a
model of the relevant phenoméﬁon under study. The more
realistic and complete the model, the more accurate is the
prediction. A major source of realism in engineering modéls
is the reéognitioq‘of'the random nature of some of their input
variables as well as the expected (predicted) outcomes ﬁgﬁ
the design variables. The general design objective, therefore,
is to create a system that not'only performs the desired func-

AN : .
tion bug\§%§o represents a solupion that is optimal with
respect to a desigh objective function. Tﬁe system objective
may feature compoﬁ ts such as: cost, reliabilipy, compat-
ibility with other §ystems, or in general system value.

In thls the51s, the problem of tolerance aSSIgnment
for both the full and less than full acceptance def\gn condi-
tlons has been con51dered The design scrap is the percentage
of those design outcomes that violate the system constraints.

The utilization of the space regionallzation technique permits

the estimation of the design scrap by calculating weighted

A,ihfeasible cells.
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The distinction between design and manufacturing
scrap has been thoroughly defined and elaborated. As far

as the author is aware, Chapter 3 provides the only available

‘algorithm which permits allocation of the optimum scrap

percentages of a system accurately and without relying on the
evaluation of the system partial derivatives., The method is
general enough to be applied with any statistical distribution
and nof'necessarily for mechanical systems.

‘An algorithm to define the acciptable uppér region-
alization bound has been ﬁreseqted. The alg?rith is divided
into three strategies to be followed successively. The
strafegies depend upon oﬁe dimensional search gnd line
regionalization techniques, which were designed to suit
the tolerance problem. The primary strategy defines a necessary
but not sd@ficient bound that should contain the feasibie 9 )
region of'the system. The upper limit strategy with checking
of sides, on the other hand, guarantees a sufficient but not
necessarily statistically acceptable bound. Finally, the
acceptable upper bound strategy adjusts the region limits to be
fully contained within the bounds of the system joint probability’
density function. jThe procedure is not only efficient but also
leads to a considefrable computational saving; and provides

a quick means of tecting the dolerance limits of a system

14

beyond which all fhe design outcomes will be totally scrapped. N
s

A}
The inacturacy in estimating the system scrap due to

‘the. violation of the one dimegsional convexity assumption has

——

been indicated. For a fixed nomipnal point, an efficient

Lt
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procedure is suggested for defining the acceptable lower
region that bounds within its orthogonal planes the
maximum feasible design outcomes irrespective of any non-

convexity in the feasible domain.

-

f

The precision of the regionalization procedure
mainly depends on the total number‘of cells to be checked
against the system feasibility. The regionalization domain
for each of the random design variables is divided into
three sectors. The number of cells in each sector depends
upon its length and.relative probability of occurrence. Two
scaling factors have to be chosen, depending on the required

accuracy in the estimated system scrap.

6.2. Recommendations for Further Research

Promising directions for further research have been
revéaled by this work. Some of these directions are proposed
below: |

1. The design outcomes that happen to fall outside the
optimum tolerance region are considered scrap. However, some
of these aesigns coulq be repaired to meet thg system per-
formance specifications.'ERépéir usually involves an additional
cost that must be included. A pertion of the scrap ;egion,
therefoie,\could-Qéfdefined as a repair'regioﬁ that contributes
to %ecreasiﬂg thé system scrap pércentage.

éﬁk\\ A user-oriented computer program package could be

developed to allocate the optimum tolerances associated with

_system variables. The package should have the capability of
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handling general engineering systems in conjunction with

a reliable optimization»package like OPTIVAR, [50]. It is
anticipated that direct search strategies will be most
successful.

3. An investigation is desirable to collect the
probability distributions of real random variables. Tech-
niques for determining apbropriate and precise cost functions
are also needed, in order to describe the relationship
between the system nominals, their associated tolerances,
and the gystem scrap. Using this information, the algorithms
developed in this thesis can be applied for effective
statistical optimum design. (

4. A method to estimate the criticél values of M1 and
f would be desirable. The method should guarantee the . +
minimum number of regionalization cells ana satisfy the require-
ment of a maximum permissible error in computihg the system(
scrap percentage.

5. There is a strong correlation between reliability
theory and the tolerance assignment problem with less than
full acceptance. ﬁurther study is needed to explore and
define this relation. Time dependent broblems could theﬂ

be used for a possible application.
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APPENDIX A
WORST CONDITION CONSTRAINTS

*

In the optimum toleranced design problem, [X ],

each nominal constraint, ¢(§?), would be replaced by 20
constraints, where n is the number of the independent

design variables which accept tolerances. However, a

'éystematic procedure could be followed to reduce the number

of the toIeranced‘constraintg and consequently the compufa—
tional time involved. Tromp [49] has derived a similar
formulation.

| The problem could be stated. as follows: Minimize
the toleranced probrlem conétfaints, #(X), with respect to n
the normalized positive and negative random tolerances,

+ - .
¢ and g , Tespectively.

® Minimize o[X]

e,
subject to gf € R: | (A.1)
a e R »
where, a=la’,a” 1 ., XX+TT T e

R::?}f] 0 <a;<1, i=1,2...n}

‘R ={a"|-1<a] <0, i=1,2...n}

EThe tolerance region, Rt,.howeVer, should completely lie

inside the feasible region, RC‘
: : R ] .
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Problem (A.1) could be discretized if we assume that RC

is convex as follows
... + -
Minimize #[X(a ,a )]

subject to 1-a;io

(A.3)
af>0
1——
l+a.>0
1_
'“;ZO ;i=1,2...n
. .. . +% % T
Assuming that a minimum exists at [a ya ] and

that ¢ is differentiable. The Kuhn-Tucker condition of

&Y

optimality could be applied on the constraint problem (3.A)

and the following six sets of equations would be obtained..

AL v (el
. - . +

A v a. +

n

z .
: -+

- 1 2i—a*7i

¥, 2[X(a)]=

N3

i= i

PAgily- (e ) (A.4)

—
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1-a*My=0
Ali( -a )= ‘ . (A.5)
+R )
App @y 0 (A.6)
E )
Agy (140 )=0 (A.7)
X
Mir Mair Az Ry 2 0 (A.9)
where, v =[—-,2. .. . -2_ 8 8 o A,T

+ o “ e
a aal 802 Bun Bal aaz aan

A,y Ay and A, are Kuhn-Tucker multipliers.

From Equation (A.4) we get

26, [X(a")]

- = ~Ali+kzi (A.10)
1
_ and
2 [X(a*)]
S A3 — (A.11)

3 a.
1

where, j=1,2,...m

Iy

Let X*e(X(a*) la] (0,1}, a] e(-1,0}, i=1,2,...n) (A.12)
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\

: . +*
Then, there are only two possible values for each @y

They are (0,1) and (-1,0), respeéti§ely.

from Equation (A.6)

A,:0

and from Equations (A.10) and (A.9)

3¢ [X(a*)]
__L:‘_a"__--A . <0

* - li~
i

b) a, =0

from Equation (A.5)

Ap3=0

and from Equations (A.10) and (A.9)

3¢, [X(a*))

Tz =
3 a+ 32110
i '
%
ay =-1

-from Equation (A.8)

A, =0

41

and from Equations (A.11) énd (A.9)

3¢ . [XCa®) ]
1= - X520 »

X

and Gi

h

(A.12)

(A.13)

T e e e V=

r
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from Equation (A.7)

Aq;=0

and from Equations (A.11) and (A.93

[ X (a*
a¢2[_(9_)] < a0 L

5 a.

(A.15)
i

The preceding four states could be summarized in the following

rule.
o -
* 34"[_)_(_(“*)] R
a; =] if -sgn J —1 >0
‘ 3 a.
i
=0 otherwise ) (A.16)
% - 3¢ [X(a*)]
a, =-1 if -sgn | —L"=" | <0
i o
L i
=0 . otherwise '
Special cases ‘
.1) LinearNConstraint:
AT
¢(X)=A"X+b>0 : (A.17)
\ ‘ v
=alx1+a2x2+... anxn+b10
+ +

=a; (x{*tiajvtial)va, (x3rtiay+tiaz)+..

+a (xn t a )+b>0

nn
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~
&
= Tals t+a++ at o ¢+
2 tyegtaytyeptei.gy
a1t1a1+a2t2a2+ .antnan bm>0
- o o 0
where, ;bm a1x1+af%+.“+%f%ﬂ>
therefore,
+% -1 ° :f . Ctiv
a5, = if a; is posigive
R f -
oy =-1 1f a . 1s negative
+% % A .
\\fi’ qiﬁ—o otherwise ‘
ii) Symmetrical Tolerance t;=t;=ti
) s o
X=X"+T 8 -1<g;<1 1—1”3...n
, . :
&*e{ﬁ(g)lsie{-l,l}; i=1,2...n}
therefére,
8* = -sgn v #[e(8)].
é! - N
o 3B 3 4T
where V = [ee—ye— cieeoxs]
| ST
For a linear constraint - )
- "*
B;= -sgn a;

e

g*= <sgn A

(A.18)

(A.20)

(A.21)
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Therefore the sign of the worst tolerance in a linear

)
constraint is always the opposite of that of the associated
nominal variable. . ’
a_,__.\ . N
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