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Abstract

Globular clusters have linear sizes (tidal radii) which are theoretically de-

termined by their mass and by the gravitational potential of their host galaxy.

However observationally, cluster sizes are simply a determination of where the

cluster’s surface brightness profile becomes zero. This distance is also known

as the limiting radius. While it is commonly assumed that the tidal radius

and the limiting radius of a globular cluster are the same thing, it has yet

to be validated. The purpose of this thesis is to explore the assumption that

cluster tidal radii and limiting radii are equal by comparing the tidal radii of

an observed and simulated globular cluster population.

An established link between cluster tidal radii and limiting radii will yield

new methods of utilizing globular clusters as tools for studying galaxies. If

cluster sizes are truly imposed by the tidal field of the host galaxy, then tidal

radii measurements can be used to trace the mass distribution within a galaxy,

including the dark matter halo. Additionally, as we will demonstrate in this

thesis, cluster sizes can also be used a tracer for the orbital anisotropy profile

of a galaxy.

To explore the assumption that tidal radii and limiting radii are equal,

we utilize the globular cluster population of the Virgo giant M87. Unusually

deep, high signal-to-noise images of M87 are used to determine the radius for

approximately 2000 globular clusters. To compare with these observations, we

simulate a globular cluster population that has the same characteristics to the

observed M87 cluster population. These characteristics include cluster radial

distribution, mass distribution, central concentration distribution and line of
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sight velocity dispersion. Placing these simulated clusters in the well-studied

tidal field of M87, the orbit of each cluster is solved and the theoretical tidal

radius of each cluster is determined. We compare the predicted relationship

between cluster size and projected galactocentric distance found in our sim-

ulation to observations in order to test whether a cluster’s tidal radius and

limiting radius are equal. We find that for an isotropic distribution of cluster

velocities, theoretical tidal radii are approximately equal to observed limiting

radii. The simulation predicts the observed increase in cluster size with galac-

tocentric distance, which is expected if tidal radii are dependent on the tidal

field. Additionally, simulated cluster sizes are of the same order of magnitude

as observed cluster sizes. However the simulation does underestimate cluster

sizes in the inner regions of M87. To minimize the discrepancy between theory

and observations, we further explore the effects of orbital anisotropy on cluster

sizes, and suggest a possible orbital anisotropy profile for M87 which yields the

best fit between theory and observations. Finally, we suggest multiple future

studies which will aid in our understanding of tidal theory and in establishing

a stronger link between tidal radii and limiting radii.
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Chapter 1

Introduction

1.1 Globular Clusters

Globular clusters are almost spherical, gravitationally bound collections of

104 to 107 old stars. Classic globular clusters do not contain any gas, dust,

dark matter, or young stars (Binney & Tremaine, 2008). They are believed

to be very old, forming around the same time as their host galaxy. Current

estimates of mean cluster age for old Milky Way globular clusters are on the

order of 13 Gyr (e.g. Maŕın-Franch et al., 2009; Dotter et al., 2010). Globular

clusters are found orbiting in all types of galaxies, ranging from the Milky

Way which contains approximately 150 globular clusters (Harris, 1996 (2010

Edition)) orbiting in the galactic halo to galaxies like M87 which contain about

13000 clusters (Tamura et al., 2006).

Observationally it is possible to determine many globular cluster parame-

ters, including galactocentric distance, magnitude (brightness), colour, metal-

licity (mass fraction of elements heavier than helium), and structural parame-

ters like cluster core radius (where the surface brightness falls to half its central
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value), effective radius (radius which contains half of the cluster’s luminosity),

and tidal radius. There exists a rich literature which explores the connections

among all of these parameters (e.g. Brodie & Strader, 2006; Djorgovski &

Meylan, 1994). For Milky Way globular clusters, these parameters and more

can be found in the recently updated catalog of Harris (1996) (2010 Edition).

Since globular clusters likely formed at the same time as the host galaxy or

through merger events, the properties of clusters contain information regard-

ing not only the formation and evolution of globular clusters themselves, but

of the host galaxy as well. More specifically, globular clusters can be used as

tracers for galaxy formation.

Not only can globular clusters be found in all types of galaxies, but they

tend to have many similar properties. In the Milky Way, we see that the

globular cluster luminosity function (Figure 1.1) can be approximated by a

Gaussian symmetric about a visual magnitude of -7.3, with a standard devi-

ation of 1.3 (e.g. Brodie & Strader, 2006). This observation is not only true

for the Milky Way, but for globular cluster populations in all other galaxies as

well.

Also consistent between different galaxies is the fact that globular clusters

all have a mean effective radius of approximately 2.5-3 pc (Binney & Tremaine,

2008). This is illustrated for the Milky Way globular cluster population in

Figure 1.2, with the vertical line marking the peak at 2.5 pc. Additionally,

cluster populations have metallicity distributions which are bimodal (Figure

1.3), indicating the presence of two distinct sub-populations. More specifically,

clusters appear to either have a low metallicity (blue) or a high metallicity (red)

2
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(Brodie & Strader, 2006). These similarities between populations indicate

that globular clusters in different galaxies may share a common formation

mechanism and have similar stages of evolution.

This study is aimed at investigating the characteristic scale sizes of indi-

vidual globular clusters, and what exactly governs the sizes clusters can reach.

Historically it has been assumed that the gravitational field of the host galaxy

regulates cluster sizes (e.g. von Hoerner, 1957; King, 1962; Innanen, Harris, &

Webbink, 1983; Binney & Tremaine, 2008; Bertin & Varri, 2008). Essentially

if a star is capable of reaching a distance far enough from the cluster center

such that it feels a stronger gravitational attraction towards the host galaxy,

it will be stripped from the cluster. If this assumption is true, one should be

able to predict the size of a globular cluster based on its location within the

gravitational field of a galaxy. Hence the sizes of globular clusters should have

an observable trend with galactocentric distance. This study will compare the

theoretically calculated and observationally determined sizes of globular clus-

ters to see whether the gravitational field of a galaxy is truly responsible for

limiting cluster sizes, or whether other factors play a role.

1.2 Globular Cluster Tidal Radii

The size of a globular cluster is more commonly referred to as the tidal

radius. The tidal radius has both a theoretical and observational definition.

Theoretically, the tidal radius is better known as the Jacobi radius. The

Jacobi radius of a globular cluster is the radius at which a star feels an acceler-

ation toward its host globular cluster that is equal in magnitude but opposite
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Figure 1.1: Globular cluster luminosity function for Milky Way globular clus-
ters. The solid line is a Gaussian centered at -7.3 with a standard deviation of
1.3 (Brodie & Strader, 2006). Data taken from Harris (1996) (2010 Edition).
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Figure 1.2: Effective radius distribution for Milky Way globular clusters. The
dotted line represents an effective radius of 2.5 pc. Data taken from Harris
(1996) (2010 Edition).
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Figure 1.3: Metallicity distribution for Milky Way globular clusters. Data
taken from Harris (1996) (2010 Edition).
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in direction to the acceleration felt towards the cluster’s host galaxy (von Ho-

erner, 1957). It marks the distance that past which, a star will no longer be

bound to the globular cluster and will escape to join the field stars of the

galaxy. Unfortunately there exist multiple mathematical definitions of where

exactly the Jacobi radius of a cluster is located, due to the fact that tidal

theory is not well understood and different definitions make different assump-

tions. However, these definitions all assume that the gravitational potential,

or tidal field, of the host galaxy is responsible for regulating cluster size. For

example, a cluster located near the center of a galaxy will be deep inside the

tidal field. Being subject to a strong tidal field, the cluster will be small in

size as the galaxy is able to strip stars that are only a small distance from

the cluster’s center. On the other hand, a cluster that is located far from the

galaxy center will be subject to a much weaker gravitational field. This allows

stars to travel far from the cluster center while still remaining bound to the

cluster. For clusters with elliptical orbits, it is assumed that the Jacobi radius

is imposed at the point of closest approach to the galaxy center, where the

tidal field is the strongest. This assumption is based on the fact that cluster

orbital periods are less than cluster internal relaxation times. The internal

relaxation time is the time it takes for the encounters between the stars in a

cluster to significantly change their velocities. If a cluster was able to relax

before completing a full orbit, it is possible that changes in stellar velocities

could result in bound stars orbiting at distances larger than the cluster’s tidal

radius, as calculated at perigalacticon. As long as a cluster returns to peri-

galacticon before it is able to relax, the assumption that cluster size is imposed

at perigalacticon is believed to be valid.
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An observer usually refers to the tidal radius of a cluster as the limiting

radius. The limiting radius of a globular cluster is “the outer limit of the

cluster where the density drops to zero” (Binney & Tremaine, 2008). For a

Milky Way globular cluster it may be possible to determine which stars are

members of the cluster and call the distance to the most remote one the tidal

radius. But for clusters in other galaxies, the only way of defining the exact

size of a cluster is to examine its density profile, or surface brightness profile. A

surface brightness profile is a projection of a cluster’s brightness as a function

of distance from its center. Projecting where the density profile or brightness

profile will reach zero is the only method of determining the tidal radius of

globular clusters in other galaxies. This is done by fitting observed profiles to

accepted models.

Based on the theoretical definition of cluster tidal radius, it is clear that

cluster sizes could be used as tracers of mass distribution within a galaxy. This

is especially useful for mapping the dark matter halo of a galaxy. Cluster sizes

have also been linked to the orbital anisotropy of the stars within the host

galaxy. Orbital anisotropy is a measure of what type of orbit is preferred in

a population. Since tidal radii are believed to be imposed at perigalacticon,

a cluster’s orbit will play an important role in governing cluster sizes. For

a tangentially anisotropic population, clusters will preferentially have more

nearly circular orbits. Hence their galactocentric distance will always be close

to perigalacticon. However for a radially anisotropic population, clusters will

have very eccentric orbits bringing them very close to the galaxy center when

at perigalacticon. Having travelled deep into the tidal field of the galaxy, we

expect radially anisotropic populations to have smaller tidal radii as opposed
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to tangentially anisotropic populations with clusters that remain more or less

at the same mean galactocentric distance.

However, before we can use observations of clusters to make conclusions

about the host galaxy’s mass distribution and anisotropy profile, it must first

be established that the observed tidal radius of a globular cluster is the same

as the theoretical tidal radius of a cluster, as imposed by a tidal field. While

it is generally assumed that these two radii are the same, recent studies are

finding that this assumption is not entirely true, and requires modification.

Brosche, Odenkirchen, & Geffert (1999) and Kupper et al. (2010) both found

that using a cluster’s perigalactic distance to calculate its tidal radius is likely

incorrect, and yields an underestimation of cluster size. Baumgardt et al.

(2010) found that some Milky Way clusters are tidally-underfilling, which sug-

gests some clusters will have observational and theoretical sizes that are not

in agreement. Through the use of N-body simulations, Gieles & Baumgardt

(2008) found that cluster internal relaxation can lead to clusters underfilling

their tidal radius, which would also yield a disagreement between theoreti-

cal and observational cluster sizes. We aim to explore this assumption that

theoretical and observational tidal radii are the same by directly comparing

the relationship between cluster size and galactocentric distance for both an

observed and simulated cluster population.

In order to study the relationship between the theoretical and observational

tidal radii, a cluster population is needed which must meet specific require-

ments. For theoretical tidal radii calculations, we require the globular cluster

population to reside in a galaxy with a well-defined mass distribution that
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is spherically symmetric. To determine observational tidal radii, well-resolved

globular clusters are necessary to accurately fit cluster observations with model

surface brightness profiles. It is also required that the population contain a

large number of globular clusters to make any findings statistically relevant.

The galaxy M87 meets all of these requirements.

1.3 The Giant Elliptical Galaxy M87

M87 is a giant elliptical galaxy located 17 Mpc from the Milky Way, at the

center of the Virgo galaxy cluster. Elliptical galaxies are classically smooth,

featureless systems with little to no evidence of cool gas, dust, or a stellar disk

(Binney & Tremaine, 2008). M87 is best known for the large jet of matter being

ejected from its central black hole. However, it is also an excellent candidate for

studying globular clusters. The primary reason is that M87 hosts the largest

population of globular clusters of any galaxy in the local universe, providing a

statistically significant number of clusters to any study. Hence any individual

clusters that may have a unique formation or evolution history will have a

minimal effect on any trends observed regarding the population as a whole.

Furthermore, globular clusters can be observed out to large galactocentric

distances because the foreground reddening and field contamination are low

(Tamura et al., 2006).

The large population of clusters in M87 has led to the cluster population

being heavily studied. With respect to cluster sizes, more recent studies in-

clude Kundu et al. (1999), who determined cluster size using WFPC2 images

of the inner region of M87 and Jordán et al. (2005), who made use of the ACS
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Virgo Cluster Survey to determine effective radii for thousands of globular

clusters within Virgo, including M87. The most recent work is that of Madrid

et al. (2009), who used HST observations to determine the effective radius of

approximately 2000 of M87’s globular clusters. All three of these studies find

that globular cluster size increases with galactocentric distance, as one might

expect if cluster size is dependent on tidal field.

For the purpose of determining observational and theoretical cluster tidal

radii, M87 is an excellent fit for multiple reasons. Observationally, there exist

Hubble Space Telescope (HST) images of M87 which are perhaps the best data

available for accurate measurements of the radius of globular clusters in other

galaxies. The unusually deep, high signal-to-noise images contain nearly 2000

of its globular clusters. From a theoretical point of view, the gravitational

field which is required for the calculation of a cluster’s tidal radius, is better

known for M87 then for any other giant elliptical galaxy (McLaughlin, 1999).

Essentially, M87 provides the best available test bed for comparing theoretical

and observational tidal radii.

1.4 Thesis Objectives

This thesis will test whether the theoretically determined Jacobi radius of

a cluster is equal to the observed limiting radius and will determine whether

the observational trend of cluster tidal radius versus projected galactocentric

distance matches the predicted trend from basic tidal theory. The giant ellipti-

cal galaxy M87 will be used as a test bed to perform this comparison between

theory and observations. In Chapter 2 we first explore the history of the
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theoretical calculation of a cluster’s tidal radius, and specifically derive the re-

lationship between a cluster’s tidal radius and the tidal field of its host galaxy

we will be using to calculate tidal radii. Second, we outline the models which

will be used to fit the surface brightness profiles of observed globular clusters

in M87. In Chapter 3 we will actually fit the observed surface brightness pro-

files of M87 globular clusters with each of the models, determine the tidal and

effective radii of each cluster, and establish the observed trend between cluster

size and galactocentric distance. If cluster sizes are truly dependent on the

tidal field of the galaxy, we will in general expect cluster sizes to increase with

galactocentric distance, as the tidal field of the galaxy gets weaker. While this

is known to be true, we must establish the trend for M87 to compare with

theory. In Chapter 4, we make use of observationally determined parameters

of the M87 cluster population including the line of sight velocity dispersion,

and mass and radial distributions to simulate a theoretical cluster population.

Using the gravitational field of M87, we can determine each cluster’s perigalac-

tic distance and calculate a theoretical relationship between cluster size and

galactocentric distance. Projecting the simulated clusters onto a two dimen-

sional plane, we will then have a theoretical relationship between cluster size

and projected galactocentric distance that is purely due to the tidal field of

the galaxy. The results of the simulation are then compared to the observa-

tional results of Chapter 3, which will indicate whether the assumption that

a clusters Jacobi radius is equal to its observed limiting radius is valid. We

will also explore the affects of varying orbital anisotropy on cluster size. In

Chapter 5 we apply this technique of comparing theoretical and observational

tidal radii to the cluster population of the Milky Way, as it is the only clus-
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ter population for which we have three-dimensional information regarding the

positions and orbits of individual clusters. Our conclusions and future work

are then discussed in Chapter 6.
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Jórdan, A., Côté, P., Blakeslee, J. P., Ferrarese, L., McLaughlin, D. E. , Mei,

S., Peng, E. W., Tonry, J. L., Merrit, D., Milosavljević, M., Sarazin, C. L.,
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Maŕın-Franch, A., Aparicio, A., Piotto, G., Rosenberg, A., Chaboyer, B.,

Sarajedini, A., Siegel, M., Anderson, J., Bedin, L. R., Dotter, A., Hempel,

M., King, I., Majewski, S., Milone, A. P., Paust, N., Reid, I. N. 2009, ApJ,

694, 1498

McLaughlin, D. E. 1999, ApJ, 512, L9

Tamura, N., Sharples, R. M., Arimoto, N., Onodera, M., Ohta, K., Yamada,

Y., 2006, MNRAS, 373, 601

von Hoerner, S. 1957, ApJ, 125, 451

15



M.Sc. Thesis –––– Jeremy J. Webb –––– McMaster University - Physics and Astronomy –––– 2011

Chapter 2

The Determination of Tidal Radii

Before we can begin comparing the theoretical and observational sizes of

globular clusters, we must first explore how cluster sizes are determined. The

possibility of a tidal cut-off was initially pointed out by von Hoerner (1957).

Since then, it has been a continuing problem in astronomy to properly de-

fine what the tidal radius of a globular cluster is, how it can be calculated

theoretically, and how it can be determined observationally.

2.1 History of the Theoretical Tidal Radius

The original derivation of a cluster’s tidal radius by von Hoerner (1957)

assumed that it is the tidal field of the host galaxy that is the primary source

in regulating the maximum size a globular cluster can reach. For a globular

cluster of mass M in an orbit around a galaxy of mass Mg at a distance

Rg, consider a star within the globular cluster located a distance r from the

cluster center, and is located directly between the cluster center and galaxy

center with r ≪ Rg. The star will be subject to acceleration toward both the

cluster and the galaxy. The acceleration at Rg toward Mg is equal to
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agc =
GMg

R2
g

(2.1)

The acceleration at the location of the star is then

as =
GMg

(Rg − r)2
(2.2)

with the difference being the net acceleration the star feels towards the

galaxy, written below as ag.

ag =
2GMgr

R3
g

(2.3)

The acceleration of the star towards the globular cluster is

ac =
GM

r2
(2.4)

The tidal radius is then defined as the distance where ag = ac, beyond

which a star will feel a stronger acceleration towards the galaxy and escape

the globular cluster. From the equations above, the tidal radius can be written

as

rt = Rg(
M

2Mg

)1/3 (2.5)

However, as von Hoerner (1957) and later King (1962) point out, Equation

2.5 actually yields the instantaneous tidal radius of a globular cluster. One

should actually use the perigalactic distance (Rp) of the cluster’s orbit as
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opposed to its present distance (Rg) to calculate the tidal radius as this is where

the tidal field of the galaxy is felt the strongest by the cluster. It is assumed

that internal relaxation is too slow to increase the size of the cluster between

perigalactic passages (King, 1962). A more detailed derivation by King (1962)

which takes this into account still follows the general trend rt α Rp(M/Mg)
1/3.

However, since the perigalactic distances of globular clusters outside of the

Milky Way are difficult to determine, the assumption must be made that

a cluster’s current distance is a small multiple of its perigalactic distance.

More specifically, the cluster is assumed to have a circular orbit. Despite this

assumption making tidal radii calculations less accurate, it is unavoidable.

The key disadvantage of the King (1962) and von Hoerner (1957) deriva-

tions is that the galaxy is assumed to be a point mass. Based on detailed

observations of galaxies, this assumption is known not to be true. This has led

to further derivations of cluster tidal radii which consider the mass distribution

of the host galaxy.

Innanen, Harris, & Webbink (1983) provide a much more rigorous and

thorough derivation of the tidal radius. An advantage of this derivation over

King’s is that it assumes M(Rg) = M0(Rg/R0)
n, where M(Rg) is the enclosed

mass of the galaxy at radius Rg and R0 is an unspecified reference radius. For

the n=0 case, they recover the solution presented by King (1962). Unfortu-

nately the final form of the tidal radius relation is in terms of n, perigalactic

distance of the cluster, and the galactocentric distance the globular cluster

would have assuming it has the same energy but with a circular orbit. The n

dependence can make it difficult for mass distributions which do not resemble
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a power law, and the latter point makes it difficult to use this equation with

observational data.

Binney & Tremaine (2008) determine their version of the tidal radius by

looking at the restricted three-body problem, “finding the trajectory of a mass-

less test particle that orbits in a combined gravitational field of two masses.”

A galaxy of mass M and a globular cluster of mass m on a circular orbit at

a distance Rg from the center of the galaxy will rotate around their common

center of mass with angular speed

Ω =

√

G(M +m)

R3
g

(2.6)

A star orbiting a distance x from the center of mass in the combined effec-

tive potential of the galaxy and cluster (Φeff ) will have an energy

EJ =
1

2
v2 + Φeff (x) (2.7)

where EJ is known as the Jacobi integral, which is a conserved quantity.

Since v2 ≥ 0, a star with EJ will never be able to pass into a region with

Φeff > EJ . This defines a zero-velocity surface for stars with EJ as a star must

have a velocity of zero to reach a distance x such that Φeff (x) = EJ . To better

quantify Φeff , a coordinate system is selected such that the center of mass of

the system is located at the origin, the galaxy is located at ~xM = [−mRg

M+m
, 0, 0]

and the cluster is located at ~xm = [ MRg

M+m
, 0, 0]. For a star bound to the globular

cluster and located a distance x from the center of mass, Φeff (~x) can be written

as
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Φeff (~x) = −G[
M

|~x− ~xM | +
m

|~x− ~xm|
+

1

2
|Ω × ~x|2] (2.8)

With Equation 2.8, we can draw contours of effective potential for the two

masses in a circular orbit which represent zero-velocity surfaces (Figure 2.1)

Examining the contour lines about the globular cluster (m), it can be seen

that the nearby zero-velocity surfaces surround only the globular cluster, but

farther out the surfaces surround both the cluster and the galaxy. Therefore

there exists a critical value of Φeff which corresponds to the last zero-velocity

surface that encloses just the globular cluster, which is drawn in red on Figure

2.1. The final closed surface is known as the tidal or Roche surface of the

cluster, and the distance to this surface is known as the Jacobi radius (rJ).

Noting that at the Jacobi radius the effective potential has a saddle point,

a condition arises such that

dΦeff

dx (xm−rJ ,0,0)
= 0 (2.9)

This ultimately results in the Jacobi radius being written as

rJ = (
m

3M
)
1

3Rg (2.10)

similar to the previous derivations of von Hoerner (1957), King (1962), and

Innanen, Harris, & Webbink (1983).

Unfortunately all these derivations are limited, as they do not match the

observations. Assuming a simple galaxy mass distribution M(Rg) ∝ Rg, Equa-
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Figure 2.1: Contours of equal effective potential Φeff defined by Equation 2.8
for a galaxy (M) and a globular cluster (m) in a circular orbit. The red line
marks the outermost contour which fully encloses the globular cluster. This
image was taken from Skelton & Smits (2008).
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tion 2.5 suggests that rt ∝ R
2

3

g . This result is also reached for King (1962),In-

nanen, Harris, & Webbink (1983), and Binney & Tremaine (2008) tidal radii.

Observationally, the tidal radii of globular clusters do not increase this rapidly,

suggesting that either the assumption that M(Rg) ∝ Rg is incorrect or further

work is required in theoretically explaining a globular cluster’s tidal radius.

However, given that in many galaxies, including the Milky Way (Binney &

Tremaine, 2008) it is observed that the circular speed as a function of radius is

constant at larger radii, the basic assumption that M(Rg) ∝ Rg is validated.

2.2 The Bertin and Varri (2008) Tidal Radius

Bertin & Varri (2008) consider the center of mass of a globular cluster

moving on a circular orbit of radius R0 and orbital frequency Ω, and focus

on the motion of stars inside the globular cluster. Under the assumption that

the cluster has a circular orbit, it will always be located at its perigalactic

distance. The galaxy is then modeled by means of a frozen gravitation field.

The important difference to note between the restricted three-body problem

and the Bertin & Varri (2008) derivation is that the secondary mass (globular

cluster) is not treated as a point mass but as a stellar system with a cluster

mean-field potential ΦC .

Assuming the galactic potential ΦG(R) is spherically symmetric, R is taken

to be
√
X2 + Y 2 + Z2 where X,Y, and Z are with respect to the center of

the galaxy. The orbital frequency Ω of the cluster is then taken from Ω2 =

(dΦG(R)/dR)R0
/R0. It is further assumed that the X-Y plane is the orbital

plane of the globular cluster.
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Bertin & Varri (2008) then introduce a local frame of reference which ro-

tates at the orbital frequency of the cluster (Ω), with the origin located at the

center of mass of the cluster. The x-axis is taken to point away from the center

of the galaxy, the y-axis follows the direction of cluster rotation around the

galaxy, and the z-axis is perpendicular to the orbital plane. The Lagrangian

which describes the motion of a star bound to the globular cluster is:

 L =
1

2
(ẋ2 + ẏ2 + ż2 + Ω2 [(R0 + x)2 + y3]

+ 2 Ω (R0 + x) ẏ − 2 Ω ẋ y)

− ΦG(R) − ΦC(x, y, z)

(2.11)

with R =
√

(R0 + x)2 + y2 + z2 and R0 being the previously defined cir-

cular orbit radius of the globular cluster.

The cluster’s equation of motion in an arbitrary direction q, can be deter-

mined from the Lagrangian via

d

dt
(
d L

dq̇
) =

d L

dq
(2.12)

The resulting equations of motion in the x, y, and z directions are

ẍ− 2 Ω ẏ − (4 Ω2 − κ2) x =
−dΦC

dx
(2.13)

ÿ + 2 Ω ẋ =
−dΦC

dy
(2.14)
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z̈ + Ω2 z =
−dΦC

dz
(2.15)

with κ2 = 3Ω2 + (d2ΦG/dR
2)R0

. κ is the epicyclic frequency at R0. Cluster

orbits are described by first setting the cluster to orbit around a small ellipse,

with angular frequency κ. The center of the small ellipse then orbits around the

center of the galaxy, with angular frequency Ω (Binney & Tremaine, 2008).

Hence the epicyclic frequency refers to the frequency κ of a cluster’s orbit

around the small ellipse.

From Binney & Tremaine (2008), the momentum is

p =
−d L

dẋ
(2.16)

and the Hamiltonian is defined as

H = pẋ− L

=
p2

2
+ Φ − ΩbL

(2.17)

where Ωb is the angular velocity the reference frame must rotate at such

that the potential is static. In the case of a cluster orbiting in the potential of

a galaxy, Ωb is the orbital frequency of the cluster (Ω).

The Jacobi integral (HJ) is then defined as

HJ = H − Ωb·L (2.18)
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Since the potential is constant in the rotating frame, HJ will have no time

dependence. Therefore, while neither H or L is conserved, the combination

HJ = H − Ωb·L is a conserved quantity (Binney & Tremaine, 2008).

From the equations of motion above, the Jacobi integral is determined to

be:

HJ =
1

2
(ẋ2 + ẏ2 + ż2) + ΦT + ΦC (2.19)

where the tidal potential ΦT = 1
2

Ω2 (z2−υ x2). The variable υ is a positive

dimensionless coefficient equal to 4 − κ2/Ω2.

Similar to the Binney & Tremaine (2008) derivation, the tidal radius is

the distance to the last closed zero-velocity surface surrounding the globular

cluster. Since the final closed surface passes through a minima of the combined

effective potential of the cluster and the galaxy, the distance to this surface

can be determined with the condition:

dΦ

dx
(rT , 0, 0) = 0 (2.20)

The next step is to assume a potential for the globular cluster. If we assume

that the potential of the cluster is Keplerian (ΦC = −GM/r), the combined

potential can be written as:

Φ(r) = ΦC(r) + ΦT (r)

= −GM/r +
1

2
Ω2 (z2 − υx2)

(2.21)
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The assumption that the cluster has a Keplerian potential is only valid

because we are concerned with the potential a star feels at the cluster’s tidal

radius. At the tidal radius, the enclosed mass will be the entire mass of the

cluster. From Newton’s second theorem (Binney & Tremaine, 2008) we know

that the gravitational force felt by a star at the tidal radius due to the mass of

the cluster is the same as if all the cluster’s mass was concentrated at a single

point located at the center of the cluster. Since a Keplerian potential is the

potential due to a point mass, the assumption is valid.

Utilizing Equation 2.20, the tidal radius is then determined to be:

rt = (
GM

Ω2υ
)1/3 (2.22)

Where Ω, κ and υ were previously defined as:

Ω2 = (dΦG(R)/dR)R0
/R0 (2.23)

κ2 = 3Ω2 + (d2ΦG(R)/dR2)R0
(2.24)

υ = 4 − κ2/Ω2 (2.25)

The relation is useful because it presents the tidal radius in terms of globu-

lar cluster mass and galactocentric distance, and does not make any unrealistic

assumptions. The only constraint placed on the gravitational potential field of

the host galaxy is that it must be spherically symmetric. For the case where

the cluster’s orbit is not circular, the perigalactic distance can be used in Equa-

tion 2.22 as opposed to R. If the perigalactic distance cannot be determined,

the present distance can be assumed to be a small multiple of the perigalactic
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distance. This will of course result in a less accurate tidal radius calculation.

Recent studies (e.g. Brosche, Odenkirchen, & Geffert, 1999; Kupper et al.,

2010) have found that using a cluster’s perigalactic distance to determine its

tidal radius is likely incorrect, and that instead some sort of orbit averaged

distance will result in a more accurate tidal radius. However, for the purposes

of this discussion we use the assumption that the tidal radius is imposed at

perigalacticon.

It can be shown that a cluster’s Jacobi radius as defined by Bertin &

Varri (2008) (Equation 2.10) is a form of Equation 2.22 if we assume the host

galaxy is a point source of mass Mg, and the galactic potential is Keplerian

(ΦG = −GMg

r
). For a globular cluster of mass M located a distance Rg from

the center of the galaxy, we find that

Ω2 =
GMg

R3
g

(2.26)

κ2 =
GMg

R3
g

(2.27)

υ = 3 (2.28)

Substituting Ω2, κ2, and υ into Equation 2.22, we find

rt = Rg(
M

3Mg
)1/3 (2.29)

which is equal to Equation 2.10.
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2.3 Measuring Tidal Radii

Equation 2.22 provides a method for calculating the tidal radius of a glob-

ular cluster based on its perigalactic distance, its mass, and the gravitational

potential field of the host galaxy. Observationally, this is not an ideal relation.

The gravitational field of a galaxy is a difficult function to determine, as it

requires the combination of many different types of observations out to large

galactocentric distances. Hence for a galaxy that is not the Milky Way, the

gravitational field is rarely known. Additionally, the perigalactic distance of

a globular cluster outside of the Milky Way is impossible to determine. Not

only is an observer forced to use a cluster’s present distance instead of its

perigalactic distance, but observations are subject to projection effects. Pro-

jecting a cluster’s three-dimensional location on to the two dimensional plane

of the sky further increases the amount of uncertainty in the cluster’s true

three dimensional position. For these reasons, observers do not use any of the

mathematical relations previously discussed to determine observational tidal

radii. Instead, observers turn to analytical models.

The most commonly used method of determining the tidal radius of a

globular cluster is through a King (1966) model (hereafter K66 model). A

K66 model is a dynamical model of a star cluster which is spatially limited,

corresponding to a tidal cutoff imposed by the host galaxy. The projected

density distribution of K66 models are similar to observed distributions in

open clusters, globular clusters, and elliptical galaxies. By matching a K66

model to the observed brightness distribution of a globular cluster, the tidal

radius can be determined. This thesis will also fit the brightness distributions
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of globular clusters to King (1962) models (hereafter K62 models), Wilson

(1975) models (hereafter W75 models), and Sérsic (1968) models (hereafter S68

models). Comparing the results of all four models will indicate the uncertainty

in each tidal radius measurement. When comparing observations to theory,

the assumption is made that the observed tidal radius deduced through model

fitting is equal to the theoretical radius derived by Bertin & Varri (2008).

A disadvantage of using models to determine tidal radii is that the majority

of observed stellar members of a globular cluster are in the inner regions of

the cluster. The same can be said for brightness profiles where measurements

near the center are far more accurate then measurements near the outskirts

of the cluster. Hence the tidal radius located at the outermost point of a

globular cluster is dependent on the distribution of stellar members within the

inner regions. Unfortunately no methods are available to bypass this problem

without having star counts out to a cluster’s tidal radius. For clusters in the

Milky Way, while using star counts to determine stellar distribution profiles is

possible, background galaxies, quasars, dust extinction, foreground stars, and

background stars all provide sources of uncertainty when determining cluster

membership (Jordi & Grebel, 2010). Unfortunately, it is currently not possible

to resolve individual stars within a cluster outside of the Local Group. Hence

star counts cannot be used to determine cluster size.

2.3.1 The King (1962) Model

K62 models were published first in a series of papers by Ivan King entitled

the Structure of Star Clusters (King, 1962). Stating that physically realistic
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models regarding cluster structure are too complex and results from simpler

models tend to reflect mathematical simplifications as opposed to physical

realities, King used observations of 15 globular clusters to establish a spatial

density law. This would in turn limit the range of possible dynamical models

and possibly lead to a physically realistic globular cluster model (See Section

2.3.2).

Star counts in multiple globular clusters led King to a spatial density profile

of the form

f = f1(
1

r
− 1

rt
)2 (2.30)

where f is the number of stars per square arcminute, f1 is a constant, and

rt is the value of r at which f reaches zero. Figures 2 and 3 in King (1962)

illustrate how well Equation 2.30 fits for globular clusters M 15, ω Cen, 47

Tuc, and M 13. However, the central parts of a cluster are not expected to

follow Equation 2.30 as it leads to infinite density at r=0.

In order to compensate for Equation 2.30 having f go to infinity as r goes

to 0, examination of the inner parts of concentrated clusters led to a spatial

density profile for the inner region of a cluster of the form

f =
f0

1 + ( r
rc

)2
(2.31)

where f0 is the central surface density and rc is a scale factor that King

denotes as the core radius. Combining Equations 2.30 and 2.31 leads to the

K62 spatial density profile for globular clusters (Equation 2.32)
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f = k(
1

[1 + ( r
rc

)2]
1

2

− 1

[1 + ( rt
rc

)2]
1

2

)2 (2.32)

where k is a scale factor. For smaller values of r/rc, Equation 2.32 can be

rewritten as

f0 = k(1 − 1

[1 + ( rt
rc

)2]
1

2

)2 (2.33)

such that it is similar to Equation 2.31. For r >> rc, Equation 2.32

becomes similar to Equation 2.30 in the form

f1 = kr2c (2.34)

While K62 models are simply mathematical fits to globular cluster obser-

vations, they are much easier to work with than other complicated dynamical

models, and often produce similar results.

2.3.2 The King (1966) Model

The King (1966) models were published as the third paper in King’s Struc-

ture of Star Clusters series.

The main difference between the K66 and the K62 models is that the

K66 models are dynamically motivated. As seen in Section 2.3.1, K62 models

simply attempt to fit the observed data points, and are independent of any

dynamical processes within a cluster. However, the generation of a density

profile in a K66 model is based on the dynamical properties of the stars within
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a globular cluster. Therefore once the appropriate K66 model has been fit to

a cluster, much more information than a cluster’s tidal radius can be taken

from the data.

A collection of stars can be described by a distribution function f(x, v, t),

such that f(x, v, t)dx3dv3 is the probability that at time t a randomly chosen

star will be in the phase space volume dx3dv3 (Binney & Tremaine, 2008).

Here, x,v, and t are position, velocity, and time. The distribution function

for a spherical isotropic distribution of stars in a static potential (no time

dependence) can be written as

f(x, v) = k exp(
−H(x, v)

σ2
) (2.35)

where k is a normalization constant, σ2 is a velocity scaling factor, and

H is the Hamiltonian. The velocity scaling factor σ can be thought of as the

radius of the sphere the stellar system occupies in velocity space. In a steady

state potential Ψ(x), the Hamiltonian is an integral of motion. That is to say

its absolute time derivative is zero. The Hamiltonian is of the form

H(x, v) = Ψ(x) − 1

2
v2 (2.36)

For some constant Ψ0, we can define a relative potential (ψ) and relative

energy (ǫ) to be

ψ = −Ψ + Ψ0 (2.37)
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ǫ = −H + Ψ0 = ψ − 1

2
v2 (2.38)

such that the distribution function can be written as

f(x, v) = k exp(
ǫ

σ2
) = k exp(ψ − 1

2
v2) (2.39)

In order to develop a distribution function for a globular cluster, we con-

sider how we need to modify the distribution function of an isothermal sphere.

At small radii, individual stars can have large values of the relative energy ǫ.

Since the cluster potential is much stronger at small radii, stars can have a

wide range of velocities and still remain bound. If we integrate the distribution

function for an isothermal sphere over all space, we find the resulting velocity

distribution to be Maxwellian (Equation 2.40) (Binney & Tremaine, 2008).

dn ∝ exp(−|v2|
2σ2

)d3v (2.40)

From Equation 2.40, we see that the probability of a star having a high

velocity is very low. More specifically, the probability of a star having the

extremely high velocity it would need to escape the inner regions of a globular

cluster is approximately zero. Therefore at small radii, a globular cluster can

be taken to be isothermal as stars can have a large range of velocities and

still remain bound to the cluster. However at larger radii, the cluster must

become less dense, such that it has a finite size and mass. At these larger

radii the potential is weaker, such that the relative energy ǫ becomes very

small. This in turn limits the range of velocities a bound star can reach. At
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the surface of the cluster, the potential and therefore the relative energy a

star can have will be zero. Hence we can obtain a distribution function for

a globular cluster by decreasing the distribution function of the isothermal

sphere until the surface of the cluster is reached. On the surface of the cluster

and beyond, the distribution function must equal zero.

By choosing Ψ0 such that the relative energy ǫ equals zero on the cluster’s

surface, the resulting stellar distribution function will be of the form

f(x, v) = k(exp(
ǫ

σ2
) − 1) (2.41)

where k is a constant (McLaughlin et al., 2008). Binney & Tremaine (2008)

write this equation as

fK(ǫ) =
ρ1

(2πσ2)
3

2

(exp(
ǫ

σ2
) − 1) E > 0

= 0 E ≤ 0

(2.42)

where ρ1 is a constant, and fK(x, v) defines the family of King models

(King, 1966).

Continuing with the derivation of a K66 model from Binney & Tremaine

(2008), the density distribution can be determined by integrating the distri-

bution function over the entire range of velocities. At a given distance from

the cluster’s center, stellar velocities can range from 0 to the escape velocity,

which is equivalent to
√

2ψ. Substituting ǫ = ψ − 1
2
v2 into Equation 2.42 and

integrating over all velocities, the density in the globular cluster at any given

radius is then
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ρK(ψ) =
4πρ1

(2πσ2)
3

2

∫

√
2ψ

0

dv v2[exp(
ψ − 1

2
v2

σ2
) − 1]

= ρ1[exp(
ψ

σ2
) erf(

√
ψ

σ
) −

√

4ψ

πσ2
(1 +

2ψ

3σ2
)]

(2.43)

where erf(x) is the error function. Poisson’s equation (▽2ψ = 4πGρ),

which relates cluster potential to cluster density, can be written as

d

dr
(r2

dψ

dr
) = − 4πGρ1r

2 [exp(
ψ

σ2
) erf(

√
ψ

σ
)

−
√

4ψ

πσ2
(1 +

2ψ

3σ2
)]

(2.44)

A K66 model is then generated by integrating Equation 2.44 outwards from

r=0, where dψ
dr

is set to zero. The first parameter which makes one K66 model

different from another is the value selected for the relative potential ψ at r=0

(ψ(0)). As r increases, ψ will decrease from ψ(0), and the range of speeds

that stars at a given radius can have will narrow as the escape velocity (
√

2ψ)

becomes smaller and smaller. At the tidal radius of the cluster, ψ and the

stellar density ρ will both equal zero. The potential at the tidal radius is then

Ψ(rt) = −GM(rt)

rt
(2.45)

where the total enclosed mass M(rt) = 4π
∫ rt
0
dr r2ρK . The central poten-

tial is then

Ψ(0) = Ψ(rt) − ψ(0) (2.46)
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From Equation 2.46, we see that the larger the value of ψ(0) that is selected

to begin the integration of Equation 2.44, the larger the tidal radius, total

enclosed mass, and central potential (Ψ(0)) of the cluster will be.

However while two clusters may be fit with K66 models which have the

exact same Ψ(0), they will not necessarily have the exact same density profile

and tidal radius. The decrease in cluster potential with radius must be properly

scaled as it goes from Ψ(0) to zero. Therefore the second parameter which

makes one K66 model different from another is known as the scaling radius or

King radius r0. The King radius is related to σ via

r0 =

√

9σ2

4πGρ0
(2.47)

where ρ0 is the central density of the cluster. The King radius ends up

being the radius at which the projected density of the globular cluster is ap-

proximately half (0.5013) of the central density (Binney & Tremaine, 2008).

This has led to the King radius being commonly referred to as the core radius,

which is the radius at which the projected density is exactly half of its cen-

tral value. Therefore, by finding which values of Ψ(0) and r0 produce a K66

model that best fits an observed globular cluster, we are finding the value of

the potential at the center of the cluster and the radius at which the surface

brightness falls to half its central value (core radius). The resulting density

profile can then be used to determine the tidal radius.

K66 models are often parameterized by r0 and the central potential param-

eter W0 = Ψ(0)
σ2

. However, observationally W0 is a less meaningful quantity, so

models can instead be parameterized by the more intuitive central concentra-
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tion parameter c. The central concentration of a globular cluster is related to

the core and tidal radii through Equation 2.48, and the correlation between

central concentration and the dimensionless central potential W0 is illustrated

in Figure 2.2 (King, 1966).

c = log(rt/rc) (2.48)

2.3.3 The Wilson (1975) Model

A W75 model, similar to K66 models, is a dynamically motivated attempt

to model the surface brightness distribution of a globular cluster. The mo-

tivation behind W75 models is that K66 models assume a spherically sym-

metrical mass distribution, while most elliptical galaxies and star clusters are

non-spherical. This led Wilson (1975) to derive a dynamical model for a rota-

tionally symmetrical but non-spherical stellar system.

Wilson (1975) begins with a potential that is time independent and rota-

tionally symmetrical, such that the two isolating integrals of motion are the

energy per unit mass (E) and the component of angular momentum per unit

mass parallel to the symmetry axis (J). In spherical coordinates, the integrals

of motion are

E =
1

2
(v2r + v2θ + v2φ) + U(r, θ) (2.49)

J = r(sinθ)vφ (2.50)

37



M.Sc. Thesis –––– Jeremy J. Webb –––– McMaster University - Physics and Astronomy –––– 2011

0 5 10 15 20
0

2

4

6

Figure 2.2: Relationship between cluster central concentration and the dimen-
sionless central potential W0. Data points taken from King (1966).
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where U is the gravitational potential. The next step is then to assume a

given distribution function F(E,J) and determine density via

ρ(rsinθ, U) =

∫ ∫ ∞

−∞

∫

F (E, J) dvr dvθ dvφ (2.51)

The self-consistent model is then constructed by solving Poisson’s equation

((▽2ψ = 4πGρ), as seen in Section 2.3.2. The key difference between K66 and

W75 models is the choice of distribution function. W75 chose a distribution

of the form

F (E, J) = (e−E − 1 + E) exp[(βJ − 1

2
ξ2J2) E ≤ 0

= 0 E > 0

(2.52)

where β is the angular velocity of the central region of the model and ξ

is included to introduce differential rotation in a manner that is independent

of the energy cutoff. For our purposes, we use W75 models in the case of a

non-rotating system, such that J=0. Therefore Equation 2.52 reduces to

F (E, 0) = (e−E − 1 + E) E ≤ 0

= 0 E > 0

(2.53)

The second order Taylor series expansion of e−E is 1 − E + 1
2
E2, which

allows us to rewrite the above equation as

F (E, 0) =
1

2
E2 E ≤ 0

= 0 E > 0

(2.54)
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The key difference between the W75 distribution function and the K66

distribution function is that the W75 function smoothly goes to zero. More

specifically, as E goes to zero in Equation 2.54, F(E,0) smoothly goes to zero.

The K66 distribution function has a sharp tidal cutoff at zero, which cor-

responds to the tidal radius of a cluster being marked as the point where

the density sharply turns to zero. Since the W75 distribution function goes

smoothly to zero, it suggests the tidal limit of a cluster is farther out than K66

models. Hence it is expected that the W75 tidal radius of a cluster will be

larger than the K66 radius of a cluster. This is clear in Figure 2.3, which is a

plot of luminosity surface density versus projected radius for K62, K66, W75,

and S68 models with equal central potentials. We see that K62 (black), K66

(blue) , and S68 (cyan) models are all similar in shape, and predict a sharp

decrease in luminosity surface density near the tidal radius. A W75 model on

the other hand smoothly goes to zero. This will be explored in further detail

when we fit models to observations in Chapter 3.

2.3.4 The Sérsic (1968) Model

A S68 model, perhaps better known as the Sérsic law, is an empirical

formula that is often used to fit the surface brightness profiles of elliptical

galaxies. Similar to K62 models, it has no dynamical motivations, and is

simply a mathematical fit to observations. It has the general from

In(R) = I(0)exp(−kR 1

n ) = Ieexp(−bn[(
R

Re
)

1

n − 1]) (2.55)
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King62

King66

Wilson 75

Sersic

Figure 2.3: K62, K66, W75, and S68 models of luminosity surface density
versus projected radius with equal central potentials.
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where I(R) is the surface brightness at radius R and Ie is the surface bright-

ness at the galaxy’s effective radius Re. The dimensionless parameter n is

known as the Sérsic index. The function bn must be determined numerically

by using the condition that Re is the radius which encloses half the light

of the galaxy, represented mathematically by the relation
∫ Re

0
RIn(R) dR =

1
2

∫∞
0
RIn(R) dR. However, the formula

bn = 2n− 0.324 (2.56)

is an acceptable approximation, with fractional error less than 0.001 for

1 < n < 10 (Binney & Tremaine, 2008).

It has been shown that the Sérsic index n is correlated with galaxy luminos-

ity. The most luminous elliptical galaxies have a value of n of approximately 6,

while fainter elliptical galaxies have values of n closer to 2 (Binney & Tremaine,

2008). The latter point suggests that the Sérsic law could be applied to globu-

lar clusters, with the expected best fit Sérsic index to be near the faint elliptical

galaxy value of 2. However, Equation 2.55 will not have a special value of ra-

dius R that results in I(R) = 0, which means it has no tidal limit. Hence

S68 cannot be used to determined globular cluster tidal radii to compare with

K62, K66, and W75. Since S68 can be used to determine the effective radii of

globular clusters, we will still fit S68 models to our observations, and compare

the fit effective radius with other models.
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2.4 The Effect of Globular Cluster Orbit on

Tidal Radius

As previously discussed in Sections 2.1 and 2.2, the value chosen for a

globular cluster’s galactocentric distance is very important when calculating

tidal radii. Theoretical derivations assume that a cluster has a circular orbit

around its host galaxy. This ensures that the cluster’s present galactocentric

distance is equal to its perigalactic distance at all times. However, we know

from the solved orbits of Milky Way globular clusters (Dinescu et al., 1999;

Casetti-Dinescu et al., 2007) that this is not the case. In fact, assuming a

circular orbit establishes the upper limit of a cluster’s tidal radius. This is best

illustrated in Figure 2.4. A globular cluster (small circle) is presently located

5 kpc from the center of a galaxy (large circle). If the cluster has a circular

orbit (red dotted line), then it will always have a galactocentric distance of

5 kpc, which will in turn determine the cluster’s tidal radius. However, if

the cluster instead has an eccentric orbit (blue dotted line), even though its

current galactocentric distance is 5 kpc, its orbit will take it deeper into the

tidal field of the galaxy. Therefore, the perigalactic distance will determine

the cluster’s tidal radius, which will be much smaller then if the cluster had

a circular orbit as it is subject to a much stronger tidal field. This scenario

indicates that the orbit of a cluster needs to solved before the tidal radius can

be determined.

For a population of globular clusters, a measurement of orbital anisotropy

(β) provides an indication of the distribution of cluster orbits. Orbital anisotropy

is related to the mean velocity (v̄) and velocity dispersion (σ) in the R, θ, and
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Figure 2.4: Globular cluster (small circle) orbiting around the center of a
galaxy (large circle) on either a circular orbit (red) or eccentric orbit (blue)
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φ directions as given in Equation ??. It is believed that β can be written in

terms of either the mean velocity or velocity dispersion of the population if

the system is taken to be an isothermal sphere.

β = 1 −
v̄2θ + v̄2φ

2v̄2R

= 1 −
σ2
θ + σ2

φ

2σ2
R

(2.57)

For a population of clusters with all circular orbits, we expect that the

mean radial velocity and the radial velocity dispersion will be zero. This

results in β → −∞, and corresponds to the largest the tidal radius of each

cluster can be. If we increase the value of β, we reach the isotropic case where

the velocity distribution in all three directions is equal at β = 0. Under this

condition, clusters will have a range of different orbits, with a mean eccentricity

of about 0.5 (Prieto & Gnedin, 2008). Finally, increasing β to a value of one

corresponds to purely radial orbits, where the cluster bounces back and forth

between its pericenter and apocenter, with no tangential motion. This marks

the lower limit of a cluster’s tidal radius, as a purely radial orbit results in

the smallest possible perigalactic distance. The local value of β must be taken

into consideration when calculating theoretical tidal radii, as it provides an

indication of whether a cluster’s current galactocentric distance is on average

close to its perigalactic distance (β < 0) or its galactocentric distance is on

average larger than its perigalactic distance (β > 0). This will be explored in

much more detail in Chapter 4.
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Chapter 3

M87

With a formal understanding of what a cluster’s tidal radius is, and how it

can be determined both observationally and theoretically, we turn to the giant

elliptical galaxy M87 to compare theory with observations. We begin our study

by using the unusually deep, high signal-to-noise images of M87, which contain

nearly 2000 globular clusters, to observationally determine cluster tidal radii.

3.1 Observational Data

The images we use in this study are taken with the HST Wide Field Chan-

nel of the Advanced Camera for Surveys (ACS/WFC), in the broadband filters

F606W (wide V ) and F814W (I). The raw images are drawn from the HST

Archive and are originally from program GO-10543 (PI Baltz). The 3.4′×3.4′

ACS/WFC field was centered on M87. The exposures were taken in 61 sep-

arate spacecraft visits over a 71-day period from 2005 Dec 24 to 2006 March

5: in F814W there are 205 images totalling 73800 seconds, while in F606W

there are 49 images totalling 24500 seconds. The co-added composite expo-

sures in each filter were combined as described in detail in Bird et al. (2010),
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through use of the APSIS software (Blakeslee et al., 2003), which performs ac-

curate image registration, cosmic-ray rejection, and distortion correction with

drizzle. Subpixel resampling was done during the drizzle step to yield final

combined science images with a scale 0.′′025 px−1 (half the native pixel size of

the camera). As will be seen below, the subsampling produced a noticeable

improvement in the effective spatial resolution of the data and thus the highest

possible quality of measurement for the cluster sizes. We are indebted to John

Blakeslee (HIA/NRC) for the generation of these composite images.

In order to remove the “brightness” of M87 to view globular clusters closer

to the center of the galaxy, the ELLIPSE and BMODEL functions within

STSDAS were used. The ELLIPSE function fits elliptical isophotes to the

brightness distribution of M87 in both the V and I images. BMODEL then

models the fitted elliptical isophotes into a separate image. By subtracting

this new image from the original to remove the brightness of the galaxy, it is

then possible to more easily detect objects that were previously hidden. The

sky levels in the corners of the original images are added as background to

both the F814W and F606W images, to remove negative pixel values created

by the subtraction process. The relevant parameters used for the ELLIPSE

and BMODEL functions are summarized in Table 3.1. The before and after

images of the F814W image are illustrated in Figure 3.1.

Once the smooth light profile of M87 has been removed from the F814W

and F606W images, it is then possible to identify globular cluster candidates

within M87. This was done with the DAOFIND function within IRAF/DIGIPHOT/DAOPHOT.

The first step was to determine the standard deviation of the background sky
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Table 3.1: ELLIPSE and BMODEL Galaxy Fitting Parameters

F814W (I) F606W (V)
center 4200, 4600 4200, 4600
sma0 50 50
minsma 0 0
maxsma 4000 4000
step 0.1 0.1
nclip 3 3
background 87 85

Figure 3.1: Image of F814W before the brightness of M87 has been removed
(Left) and after ELLIPSE/BMODEL fitting and image subtraction (Right).
The subtracted image (Right) unveils the famous M87 jet.
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pixel values (σ). We then searched for candidates brighter than a brightness

cut-off of nσ, where the integer n was increased until the remaining candi-

dates contained mostly spherical, globular cluster-like objects with minimal

point sources. It was important not to set the cut-off too high, such that true

globular clusters were eliminated. Therefore cut-offs were chosen so that there

were still non-globular cluster objects in the candidate list, which could be re-

moved later through further cuts. We found that accepting objects that were

9 σ and 10 σ brighter than the deviation of the background sky pixels, for

the F814W and F606W images respectively, resulted in 2052 globular cluster

candidates. For cut-offs less than 9 σ and 10 σ, the number of found objects

increased rapidly and included many non-globular cluster like objects. After

objects were matched based on their position on both images, we identified two

regions where candidates had to be manually removed. Any candidates found

near the center of M87 (Rgc < 0.2 kpc) and near the M87 jet were removed

as the background light intensity is much higher in these regions, making the

identification of globular clusters difficult. A final globular cluster candidate

list was produced with 1833 objects. The location of each globular cluster

candidate is shown in Figure 3.2.

To construct a color-magnitude diagram (CMD) for the candidates, the in-

strumental magnitude in V and I of each candidate as determined by DAOFIND

must be converted to a true magnitude scale. To do this, we compare our list

of candidates to the list of globular clusters in M87 found by Madrid et al.

(2009). Madrid et al. (2009) calibrated cluster magnitudes using the number

of counts within a circular aperture of 5 pixels, an aperture correction factor,

image exposure time, and photometric zero points obtained from the STScI
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Figure 3.2: The x,y position of each globular cluster candidate in kiloparsecs,
relative to the center of M87 (marked as a black square).
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website. For the candidates which were able to be matched based on position

to the Madrid et al. (2009) dataset, we plot their true magnitude (Madrid

et al., 2009) versus their instrumental magnitude in both V and I in Figure

3.3. Ignoring outliers, the linear relationships between true and instrumental

magnitude for both V and I were found to be

Vtrue = 0.96 × Vinstrumental + 24.01 (3.1)

Itrue = 1.00 × Iinstrumental + 25.37 (3.2)

These relationships are plotted in red on Figure 3.3, and were used to con-

vert the instrumental magnitudes of cluster candidates that were not matched

with a Madrid et al. (2009) globular cluster. The data points which are dis-

placed above the lines of best fit by approximately 0.5 are primarily stars.

Therefore, it was expected that these data points would be offset from the

median trend.

A CMD of the candidates using their true V and I magnitudes can be

seen in Figure 3.4. However, not all of these candidates are believed to be

globular clusters. More specifically, objects in Figure 3.4 which are located far

from the main candidate population or near the colour-magnitude limit of the

images (faint end of candidate population) are likely not globular clusters, and

are instead likely background galaxies, blended clusters, or foreground stars.

These objects will eventually be removed from the candidate list once their

surface brightness profiles are fit with models. Not only will the fits be poor,
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Figure 3.3: True magnitude (Madrid et al., 2009) versus instrumental magni-
tude for both V (upper) and I (lower) globular cluster candidates. The red
lines illustrate a linear fit to the data.
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but the model parameters fit to a background galaxy will differ greatly in the

V and I images since different broadband filters sample different populations

within a galaxy.

3.2 Model Fitting

With the final list of globular cluster candidates, the surface brightness dis-

tribution of each cluster is fit with each of the models described in Chapter 2.3

via a fitting program from Dean McLaughlin (McLaughlin et al., 2008) entitled

CLUSTERFIT. The STSDAS ELLIPSE function was once again employed to

determine the brightness profile of each individual cluster, as opposed to the

brightness distribution of the galaxy. This was accomplished via a PYRAF

routine which adjusted the center position of each isophote to match the po-

sition of each cluster candidate, and then ran ELLIPSE on each cluster. The

relevant ELLIPSE parameters are listed in Table 3.2. In order to be properly

used within CLUSTERFIT, the background intensity was subtracted from

each isophote. This was accomplished by taking the average intensity of the

final five data points and taking that value as the background intensity. The

final five data points were always beyond the radius of the cluster, as each

brightness profile was initially measured out to a distance of 100 pc. Any clus-

ters with fit tidal radii greater than 60 pc were then re-measured out to larger

radii to ensure the final five data points of the intensity profile are greater than

the size of the cluster.

For a typical globular cluster (GC20), the brightness profile in the I and

V images are illustrated in Figures 3.5 and 3.6. The error bars represent the
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Figure 3.4: Instrumental CMD of the globular cluster candidates in M87.

Table 3.2: ELLIPSE Globular Cluster Fitting Parameters

Value
sma0 5
minsma 0
maxsma 50
step 0.05
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error in surface brightness as determined by the ELLIPSE fitting routine. It

is important to note that the surface brightness profile does not explicitly go

to zero, but instead levels off to a background value.

As discussed in Chapter 2.3, we will be comparing our observations to

King (1962), King (1966), Wilson (1975), and Sérsic (1968) models. Based on

this comparison we will decide which results will be compared to the theory.

Before we can compare the models, each model is convolved with a point spread

function (PSF). The PSF is a representation of a point source of light as seen

through the optics of a telescope. A point source, or in this case a star, would

have an intensity profile equal to a delta function, however due to the optics of

the telescope the intensity profile as a function of position is Gaussian-like as

opposed to a delta function. The profile is essentially the diffraction pattern

of the optics that the light from a point source passes through before reaching

the camera. Using tools within IRAF/DIGIPHOT/DAOPHOT, a PSF was

built for both the V and I images by averaging the profiles of approximately 20

stars across the field of view, which has a scale of 0.′′025/pixel (Madrid et al.,

2009). Models must be convolved with the PSF of each image before fitting

can take place, such that the model is on the same scale is the images. With

a globular cluster brightness profile that has been background subtracted, the

program computes a dimensionless model profile Ĩmod = Imod/I0 where Imod is

the model intensity profile and I0 is the central intensity. The model profile is

then convolved with a point spread function from the observations via

Ĩ∗mod(R|r0) =

∫ ∫ ∞

−∞
Ĩmod(R

′/r0)Ĩpsf [(x− x′), (y − y′)] dx dy (3.3)
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Figure 3.5: Background subtracted brightness distribution as determined by
STSDAS ELLIPSE for a globular cluster in M87 in the I band.
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Figure 3.6: Background subtracted brightness distribution as determined by
STSDAS ELLIPSE for a globular cluster in M87 in the V band.
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where r0 is the model scale radius, R2 = x2 + y2, R′2 = x′2 + y′2, and Ĩpsf

is the PSF profile normalized to unit total luminosity.

For a given shape parameter (k for K62, W0 for K66 and W75, n for S68),

the program finds the scale radius which minimizes Equation 3.4, where σi is

the error in Iobs(Ri). A range of shape parameters is then tried until the lowest

possible χ2 value is found.

χ2 =
∑

i

[Iobs(Ri) − I0 Ĩ
∗
mod(Ri|r0)]2

σ2
i

(3.4)

The associated model is then said to be the best fit to the observed globular

cluster. The model then returns the central concentration, scale radius, core

radius, effective radius, and tidal radius of each cluster.

3.3 Model Fitting Results

3.3.1 King (1962) Results

Each globular cluster candidate was fit with a K62 model. For illustrative

purposes, Figures 3.7 and 3.8 demonstrate the K62 model fit (solid line) to

GC20 illustrated in Figure 3.5 and 3.6. Since the surface brightness profile

does not go explicitly to zero, the model fit takes into account that it instead

levels off to a background value.

The results of the K62 model fitting for GC20 are summarized in Table

3.3, where c is the central concentration, r0 is the model scale radius, rc is
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Figure 3.7: Background subtracted brightness distribution as determined by
STSDAS ELLIPSE for a globular cluster in M87 in the I band, fit with a K62
model (solid line).Open circles represent the PSF.
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Figure 3.8: Background subtracted brightness distribution as determined by
STSDAS ELLIPSE for a globular cluster in M87 in the V band, fit with a K62
model (solid line).Open circles represent the PSF.
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Table 3.3: King (1962) Model Fitting to GC20

F814W (I) F606W (V)
c 2.18 2.32
ro (pixels) 0.318 0.243
rc (pixels) 0.316 0.242
rh (pixels) 1.968 1.753
rt (pixels) 48.145 50.798

the core radius, rh is the effective (half light) radius, and rt is the tidal radius

(McLaughlin et al, 2008).

Averaging the two values and converting to parsecs, we get a half light

radius of 3.721 pc and a tidal radius of 98.943 pc. Since the effective radius

is more commonly used by observers and is more easily obtained, the remain-

der of this chapter will focus on the measured effective radii of each cluster.

Repeating the process for each observed cluster, we can determine the half

light radius and central concentration distribution for clusters in M87 in both

the I and V filters (Figures 3.9 to 3.12). Not all objects were successfully fit

with K62 Models. Upon visual inspection, these objects were either located

in crowded areas, near the edge of the image, or were clearly not globular

clusters based on their non-spherical shape. These objects were removed from

the dataset.

From Figures 3.9 and 3.11, we see that the peaks of the central concen-

tration distributions are at approximately 1.6 (I) and 1.8(V), which is similar

to Galactic globular clusters which peak at 1.5 (Harris, 1996 (2010 Edition)).

The distributions are also Gaussian, as expected, with the exception of a sig-

nificant number of clusters with central concentrations of about 3.5. Central
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Figure 3.9: K62 central concentration distribution of observed globular clusters
in the I-band.
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Figure 3.10: K62 effective radii distribution of observed globular clusters in
the I-band. The dotted line represents rh=2.5.
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Figure 3.11: K62 central concentration distribution of observed globular clus-
ters in the V-band.
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Figure 3.12: K62 effective radii distribution of observed globular clusters in
the V-band. The dotted line represents rh=2.5.
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concentrations this high are not observed in MIlky Way clusters, which indi-

cates that it is simply the result of the fitting routine not being able to fit a

model to a certain number of globular cluster candidates. In addition, very few

clusters are observed with central concentrations less than 0.5. Objects that

are poorly fit by the models can either be background (non-spherical) galax-

ies, substructure in the inner regions of M87, two or more globular clusters

which are crowded together, or clusters located near the edge of the image.

Therefore, clusters that were fit with central concentrations less than 0.5 and

greater than 3.0 were subsequently removed from the dataset.

The peak in the effective radius distributions (Figures 3.10 and 3.12) at 2.5

pc is comparable to the median value for the Milky Way of 3 pc (Harris, 1996

(2010 Edition)). This indicates both that the fitting code is properly fitting

the observed clusters, and that globular clusters in M87 do not represent a

unique population with respect to size and central concentration.

To examine how well a cluster has been fit by a K62 model, we examine

the relationship between χ2 and a cluster’s central concentration (Figure 3.13)

and effective radius (Figure 3.14). While both figures deal with parameters

computed with the I dataset, the process was again repeated for the V dataset.

While it is known a poor fit is indicated by a large χ2, we do not know

how high a χ2 is acceptable for this dataset. From Figure 3.13, we find that

while 96% of clusters have χ2 < 2 with a mean value of 0.46, there are still

a few objects lying above this threshold. Turning to Figure 3.14, we see that

all of the objects with χ2 > 10 have very small effective radii. This suggests

that the objects are either stars or background galaxies, as confirmed by visual
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Figure 3.13: K62 χ2 and central concentration of observed globular clusters in
the I-band.
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Figure 3.14: K62 χ2 and effective radius of observed globular clusters in the
I-band.
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inspection. Therefore in both the V and I datasets, objects with χ2 > 10 were

eliminated.

In order to get a sense of how accurate the central concentration and ef-

fective radii values from the K62 fitting are, we examine the value of each

parameter as measured with the V and I images for candidates which were not

removed from the list based on their position in M87 (see Section 3.1). More

specifically, we can see the random measurement uncertainty in an effective

radius measurement by comparing the K62 models fit to a given cluster in both

V and I. Ideally, the effective radius in the V band (rh(V )) should be the same

as the effective radius in the I band (rh(I)). Due to low foreground reddening

and field contamination (Tamura et al., 2006), observational effects will not

lead to clusters having different sizes as measured in different wavelengths.

Figures 3.15 and 3.16 compare the central concentrations and effective radii

of observed clusters respectively, as determined with the V and I images.

As seen in Figure 3.15, there is little agreement between the central con-

centration of a globular cluster as determined in the V and I. Figure 3.16 on

the other hand indicates that despite the poor correlation in central concen-

trations, the effective radius of a cluster as determined with both the V and I

image is quite similar. More specifically, despite clusters being fit with mod-

els with very different central concentrations, χ2 is still minimized by similar

values in effective radius. The mean difference between the V and I values of

central concentration and effective radius, the uncertainty in the mean, and

the root mean scatter about the V = I line are listed in Table 3.4, found in

Section 3.3.5, for all model fits.
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Figure 3.15: K62 central concentration of observed globular clusters as deter-
mined in both the V and I bands. The dotted line represents cV = cI .
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Figure 3.16: K62 effective radii of observed globular clusters as determined in
both the V and I bands. The dotted line represents rh(V ) = rh(I).
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To determine whether the central concentration has a strong influence on

effective radius, we compare the two parameters in both the V and I bands. As

seen in Figures 3.17 and 3.18, there is little correlation between the fit central

concentration and the fit effective radius. Therefore the strong agreement

between rh(V ) and rh(I) is used to both determine a final cut to the dataset,

and quantify the accuracy of the effective radius measurements. Despite a few

outliers, whose non-spherical shape indicates they are not globular clusters,

almost all clusters have |rh(V ) − rh(I)| < 2.0, and it is this criteria that sets

the final standard for whether an object is included in the final dataset. In

summary, objects were removed based on their χ2, central concentration, and

rh(V ) − rh(I). The K62 model fits to the final cluster dataset had a mean χ2

of 0.21.

The relationship that will eventually be compared to theory will be between

each cluster’s effective radius and its projected galactocentric distance (Figures

3.19 and 3.20).

3.3.2 King (1966) Results

In addition to K62 models, K66 models were also fit to each of the globular

cluster candidates. Once the appropriate cuts were made, it was found that

K66 model fits to the final cluster dataset had a mean χ2 of 0.28. This value

is larger than the mean χ2 of the K62 model fits, suggesting K62 models

are a better fit to the observations. Comparing the populations as a whole,

Figure 3.21 illustrates that the K66 model predicts significantly more clusters

with 1.7 < c < 2.0 than the K62 model for the I image. The distributions
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Figure 3.17: K62 central concentration and effective radius of each observed
cluster in the I band.
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Figure 3.18: K62 central concentration and effective radius of each observed
cluster in the V band.
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Figure 3.19: K62 effective radius vs. log projected distance for observed glob-
ular clusters in the I-band. The solid red line indicates the median effective
radius.
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Figure 3.20: K62 effective radius vs. log projected distance for observed glob-
ular clusters in the V-band. The solid red line indicates the median effective
radius.
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are similar for the V image as well. Comparing the central concentrations of

individual clusters (Figure 3.22) we see that for c < 1.7, both models are in

agreement. However as central concentrations increase beyond 1.7, the K62

and K66 model fits no longer agree. As previously mentioned, the K62 central

concentration distribution matches that of Galactic globular clusters. Hence

for c > 1.7, K66 central concentrations do not.

Comparing the effective radii distributions as determined by K62 and K66

models (Figure 3.23), the two models appear to be in agreement. Both distri-

butions peak at approximately the same effective radius (rh = 2.5), which is

comparable to the Milky Way (Harris, 1996 (2010 Edition)). Examining the

effective radius of each cluster individually (Figure 3.24) we see that while the

majority of clusters have the same effective radius as determined by both mod-

els, there is a significant population of clusters with K62 effective radii larger

than K66 effective radii. Further investigation made it clear that these were

the same clusters that are responsible for the central concentration discrepancy

between the two models. This discrepancy in both central concentration and

effective radius between the K62 and K66 models can be understood by con-

sidering Figure 3.25, which illustrates the relationship between the ratio of a

cluster’s effective radius to its tidal radius and cluster central concentration for

both K62 (black) and K66 (models). In the case of K62 model fit clusters, we

see a smooth monotonic relationship between rh/rt and central concentration.

Hence the smaller the ratio of rh/rt, the larger the central concentration. This

explains the Gaussian-like central concentration distribution observed in Fig-

ures 3.9 and 3.11. However for the K66 case, the relationship has a minimum

around a central concentration of 1.7 or 1.8. This results in any clusters with
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Figure 3.21: K62 (black) and K66 (red) central concentration distributions of
observed globular clusters in the I-band.
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Figure 3.22: K62 vs. K66 central concentrations of observed globular clusters
in the I-band.
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small ratios of rh/rt being forced to have a central concentration of around 1.7

or 1.8. This explains both the clumping of K66 clusters at c = 1.7 in Figure

3.21 and the split at c = 1.7 between K66 and K62 central concentrations. In

terms of effective radii, we see in Figure 3.25 that for clusters with c > 1.7,

K62 models allow smaller values for rh/rt than K66 models. Hence for a fixed

tidal radius, K62 effective radii will be smaller than K66 radii, as we observe

in Figure 3.23.

To further compare K62 and K66 models, we can consider Figure 3.30

located at the end of this chapter, which illustrates how all four models (K62,

K66, W75, and S68) are used to fit GC20. Comparing the K62 fit (black) and

K66 fit (blue), we see that the K66 model favours a sharp tidal cutoff that

results in a smaller tidal radius. The K62 model on the other hand favours a

more gradual tidal cutoff, and a larger tidal radius. This supports our findings

of certain globular clusters having K66 tidal radii less than K62 tidal radii.

Furthermore, the issue of having measurements in the inner region of a cluster

influence the outer tidal radius which was described in Chapter 2 is most

evident in Figure 3.30, where we see that while all models are in agreement for

the inner regions of the cluster, they all predict slightly different behaviours

in the outer region.

Ultimately this comparison suggests that either the K62 or K66 models

due not reflect the true brightness profiles of this sub-population of globular

clusters. We will turn to the results of W75 and S68 model fitting and un-

certainty calculations to identify which King model is best for comparison to
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theory. More specifically, we must answer the question of whether K62 or K66

models yield the better estimate of the effective radius of each cluster.

3.3.3 Wilson (1975) Results

For an additional comparison, W75 models were fit to each of the globular

cluster candidates. After the final cuts were made, the W75 model fits had

a mean χ2 of 0.29. This value is larger than the mean χ2 of both the K62

and K66 model fits, suggesting K62 models are still the best fit to the obser-

vations. Since the central concentration parameter in a W75 model is defined

differently than that of K62 and K66, a comparison of central concentrations

would be meaningless. Instead only the effective radius as determined via a

W75 model will be compared to the K62 results. Comparing the effective radii

distributions as determined by K62 and W75 models (Figure 3.26), the two

models appear to be in agreement. Both distributions peak at approximately

the same effective radius (rh = 2.5), which is comparable to the Milky Way

(Harris, 1996 (2010 Edition)). Examining the effective radius of each cluster

individually (Figure 3.27) we see that almost all of the clusters have similar

effective radii as determined by both models. In contrast to the K66 compar-

ison, there is no population of clusters that disagrees with the K62 effective

radii. While both K66 and W75 models are dynamically motivated, K66 mod-

els prefer a sharp decrease in surface brightness to mark the tidal radius of

a cluster. W75 models on the other hand prefer a more gradual decrease in

surface brightness (See Chapter 2). Examination of the surface brightness

profiles of the K66 clusters with effective radii smaller than K62 and W75
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Figure 3.23: K62 (red) and K66 (black) effective radii distributions of observed
globular clusters in the I-band.
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Figure 3.24: K62 vs. K66 effective radii of observed globular clusters in the
I-band.
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Figure 3.25: Ratio of effective radius to tidal radius vs. central concentration
for clusters fit with K62 (black) and K66 (red) models.
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(e.g Figure 3.30) shows that it is in fact clusters with gradual decreases in

surface brightness that resulted in the population of clusters that had a poor

agreement between K62 and K66 effective radii.

3.3.4 Sérsic (1968) Results

A final comparison was made between K62 and S68 models. As discussed in

Chapter 2, similar to K62 models, S68 models are not dynamically motivated.

Since S68 models are essentially power laws, it is impossible to predict a tidal

radius as surface brightness does not go to zero. Therefore, only the effec-

tive radii of clusters as determined by K62 and S68 models can be compared.

Furthermore, since the Sérsic index n is not comparable to cluster central con-

centration, there can be no central concentration comparison either. However,

it is important to note that the distribution of the model fit Sérsic index is

centered around 2, which from Chapter 2 is appropriate for globular clusters.

Once the final cuts were made, the S68 model fits had a mean χ2 of 0.30. S68

had the largest mean chi2 of all four models, hence K62 models remain the

best fit to the observations.

The effective radius distributions and individual effective radii are then

compared in Figures 3.28 and 3.29 using the I dataset.

Both Figures 3.28 and 3.29 indicate that there is no apparent population of

clusters with S68 effective radii larger than K62 effective radii, as seen in the

K66 fit. This conclusion is supported by Figure 3.30, which illustrates how

K62, W75, and S68 models predict similar cluster behaviour in their outer

regions.
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Figure 3.26: K62 (black) and W75 (red) effective radii distributions of observed
globular clusters in the I-band.
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Figure 3.27: W75 vs. K62 effective radii of observed globular clusters in the
I-band.
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Figure 3.28: K62 (red) and S68 (black) effective radii distributions of observed
globular clusters in the I-band.
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Figure 3.29: S68 vs. K62 effective radii of observed globular clusters in the
I-band.
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3.3.5 Uncertainty in Model Fits

Up until this point, we have been judging the results from K62, K66, W75,

and S68 by comparing the mean chi2 of each model fit, as well as the effec-

tive radii and central concentrations as determined by each model. What we

have yet to consider is the uncertainty in each parameter. After each model

was fit to the observations and objects were removed based on their χ2, cen-

tral concentration, and rh(V ) − rh(I), the mean and root mean square(RMS)

rh(V ) − rh(I) and cv − ci were determined. The results are summarized in

Table 3.4. It is important to note that since the W75 central concentration

and Sérsic index parameters are not the same as the K62 and K66 central

concentration parameter, their mean and root mean square difference are not

included in Table 3.4.

From the RMS of the K62 model fitting, we find that central concentrations

have uncertainties of +/- 0.50. With central concentrations ranging from 0.5 to

3.0, an uncertainty of 0.50 is rather significant (15− 90%). While K66 central

concentrations have slightly less uncertainty, the K66 central concentration

does not match either the K62 distribution or that of the Milky Way (Fig-

ure 3.21). This suggests that the central concentration values as determined

by both the K62 and K66 models are unreliable. Therefore no comparisons

between theoretical and observed central concentrations will be made.

Comparing the mean rh(V )−rh(I) of each model, we find that K62 models

have the smallest difference. Comparing the RMS rh(V )−rh(I) of each model,

we find that while the K62 and K66 models yield similar values, the W75 and
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Table 3.4: Variance between I-based and V-based model parameters

Value (pc)
K62
Mean rh(V ) − rh(I) 0.379
RMS rh(V ) − rh(I) 0.518
Error in Mean 0.014
Mean cV − cI 0.389
RMS cV − cI 0.501
Error in Mean 0.014

K66
Mean rh(V ) − rh(I) 0.390
RMS rh(V ) − rh(I) 0.509
Error in Mean 0.013
Mean cV − cI 0.307
RMS cV − cI 0.463
Error in Mean 0.012

W75
Mean rh(V ) − rh(I) 0.441
RMS rh(V ) − rh(I) 0.588
Error in Mean 0.015

S68
Mean rh(V ) − rh(I) 0.434
RMS rh(V ) − rh(I) 0.597
Error in Mean 0.016
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S68 models yield much larger RMS rh(V )−rh(I). This suggests that K62 and

K66 effective radii have the least amount of uncertainty.

Ultimately, the result from the W75 and S68 model fitting suggests that

the dynamically motivated K66 models are not the best method of determining

cluster radii. The W75 and S68 effective radii of individual clusters both agree

with K62 effective radii, disagreeing with K66 models which suggested a sub-

population of clusters with rh(K66) < rh(K62). As previously discussed, this

discrepancy can be attributed to clusters which have brightness profiles that

smoothly go to zero. Since K66 models prefer a sharp tidal cutoff, they do not

accurately fit some clusters. Since K62 models are simple analytic functions,

they better fit the brightness profile of each cluster as opposed to the more

complicated K66 models which have the potential to diverge. This is supported

by the fact that K62 model fits had the lowest mean chi2 of all four models.

Therefore the K62 results will be used when comparing theory to observations.

The average of the V-magnitude and I-magnitude effective radii from the K62

model fits will be taken as our final estimates.
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Figure 3.30: Background subtracted brightness distribution as determined by
STSDAS ELLIPSE for a globular cluster in M87 in the I band (squares), fit
with a K62 model (black), K66 model (blue), W75 model (red), and S68 model
(green).

95



M.Sc. Thesis –––– Jeremy J. Webb –––– McMaster University - Physics and Astronomy –––– 2011

Bibliography

Binney, J. & Tremaine, S. 2008, Galactic Dynamics, 2nd edition (Princeton,

NJ, Princeton University Press)

Bird, S., Harris, W. E., Blakeslee, J. P., Flynn, C. 2010, A&A, 524, id.A71

Blakeslee, J. P., Anderson, K. R., Meurer, G. R., Bentez, N., Magee, D. 2003,

ASPC, 295

Harris, W. E. 1996, AJ, 112, 1487, 2010 Edition

King, I. R. 1962, AJ, 67, 471

King, I. R. 1966, AJ, 71, 64

Madrid, J. P., Harris, W. E., Blakeslee, J. P., Gómez, M 2009, ApJ, 705, 237
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Chapter 4

Simulating M87

Now that we have determined the observational tidal radii of nearly 2000

globular clusters in M87, we wish to simulate a globular cluster population

orbiting within the galactic potential of M87, in order to calculate theoretical

tidal radii. A direct comparison between the observational and theoretical

distribution of globular cluster sizes with respect to projected galactocentric

distance will illustrate the accuracy of the assumption that a cluster’s observed

limiting radius is equal to its theoretical tidal radius.

4.1 The Gravitational Field of M87

As stated in Chapter 2, this study will use the theoretical definition for the

tidal radius of a globular cluster as derived by Bertin & Varri (2008). The first

step towards using this equation for the calculation of theoretical tidal radii is

to determine the gravitational field of M87.

McLaughlin (1999) has developed a mass model for the Virgo Cluster,

which can be described by Equations 4.2 - 4.4. Since it is assumed that the

Virgo Cluster is spherically symmetric and centered on M87, the mass model
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is applicable to M87 as well. This assumption also makes the mass profile

compatible with Equation 2.22, where ΨG is assumed to be spherically sym-

metric.

McLaughlin (1999) determined the stellar mass density profile of M87 from

B-band photometry of de Vaucouleurs & Nieto (1978), assuming the stellar

mass-to-light ratio of M87 is independent of radius. The mass profile extends

out to a distance of approximately 100 kpc. Equation 4.3 was then determined

by fitting the mass density profile with profiles of the type in Dehnen (1993)

and Tremaine et al. (1994), which are models for spherical stellar systems of

the form:

ρη(r) ∝
1

r3−η(1 + r)1+η
0 < η ≤ 3 (4.1)

As summarized in McLaughlin (1999), many additional sources were used

to compile a mass profile for Virgo beyond 100 kpc. These sources include

x-ray observations of the hot gas in the extended M87 halo, dwarf elliptical

galaxies, and early-type Virgo galaxies. Combining the data, a Navarro-Frenk-

White profile (Navarro,Frank & White, 1997) was used to fit the dark matter

halo (Equation 4.4).

These mass models are defined in Equations 4.2-4.4 and illustrated in Fig-

ure 4.1. Since we are only interested in the mass profile of M87 and not the

entire Virgo cluster, we focus on the inner 100 kpc of the mass profile as this

is the limit of the stellar observations made by de Vaucouleurs & Nieto (1978)

and our observed globular clusters only go out to 12 kpc.
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Mtotal(r) = Mstars(r) +Mdark(r) (4.2)

Mstars(r) = 8.10 × 1011 M⊙ [
(r/5.1kpc)

(1 + r/5.1kpc)
]1.67 (4.3)

Mdark(r) =7.06 × 1014 M⊙

× [ln(1 + r/560kpc) − (r/560kpc)

(1 + r/560kpc)
]

(4.4)

The mass distribution of M87 (Equation 4.2) can then be used to determine

the gravitational potential as a function of galactocentric distance. Newton’s

theorems regarding the gravitational potential of a spherically symmetric dis-

tribution of matter are (Binney & Tremaine, 2008):

1. A body that is inside a spherical shell of matter experiences no net

gravitational force from that shell.

2. The gravitational force on a body that lies outside a spherical shell of

matter is the same as it would be if all the shell’s matter were concen-

trated into a point at its center.

Considering a spherical shell of mass m located at a distance r from the

center of the sphere, Newton’s theorems suggest that acceleration interior to

the shell is zero, and acceleration outside of the shell is −Gm/r2. Hence the

potential for a spherically symmetric mass distribution can be taken to be:

ΦG(r) = −G
∫ ∞

r

M(r)/r2 dr

= G

∫ r

R0

M(r)/r2 dr

(4.5)
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Figure 4.1: Mass model for the central regions of the Virgo cluster showing
stellar mass (red), dark matter mass (black), and total mass (blue) distribu-
tions. Adopted from McLaughlin (1999).
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where R0 is a sufficient distance from the center of the distribution such

that Φ(R0) = 0 (Binney & Tremaine, 2008).

Utilizing Equations 4.2, 4.3, and 4.4 for M(r), the spherical potential of

M87 is derived to be:

ΦG = ΦGstars + ΦGdark (4.6)

ΦGstars =G 8.10 × 1011 M⊙

× ((
1

0.67
)(5.1kpc+ r)

( r
5.1kpc+r

)1.67

(r × 5.1kpc)

− (
1

0.67
)(5.1kpc+R0)

( R0

5.1kpc+R0

)1.67

(R0 × 5.1kpc)
)

(4.7)

ΦGdark = −G 7.06 × 1014 M⊙

× (
ln(1 + r

560kpc
)

r
−

ln(1 + R0

560kpc
)

R0
)

(4.8)

Since the tidal radius is only dependent on the spatial gradient and second

derivative of the potential and not the potential directly, we do not need to

determine a value for R0.

4.2 Input Parameters

With the gravitational potential of M87 in hand (Equations 4.7 and 4.8),

it is now possible to simulate a globular cluster population that would exist

within such a potential. When simulating such a population, the goal is to
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have the clusters in the simulation have the same characteristics as the ob-

served clusters in M87. This allows us to determine an expected observational

relationship between tidal radii and projected galactocentric distance.

Each globular cluster was given a position (R, θ, φ), velocity (vr, vθ, vφ),

mass and central concentration which were each drawn from an appropriate

distribution from observations of M87. The distribution parameters used in

the simulation are summarized in Table 4.1. The radial distribution was taken

from Harris (2009), who found that the projected radial profile of the blue

and red globular cluster subpopulations could be fit with a standard Hubble

profile (Equation 4.9) relating density (σcl) to projected distance (R). The

appropriate values for σ0, Ro, and a are listed in Table 4.1 for the blue and

red subsystems. The angular distribution was assumed to be spherically sym-

metric.

σcl(R) = σ0/(1 +
R

R0
)−a (4.9)

The mass distribution of globular clusters was taken from the near universal

luminosity function for globular clusters. The luminosity function is approxi-

mately Gaussian, symmetric about an absolute visual magnitude of -7.3, with

a standard deviation of 1.3 (e.g. Brodie & Strader (2006)). Assuming a mass-

to-light ratio of 2 (e.g. McLaughlin & van der Marel (2005)), this results in

a Gaussian mass distribution about a mean of 5.5 and a standard deviation

of 0.52 in log(M/M⊙). In assigning a central concentration parameter to each

globular cluster, the distribution of central concentrations in the Milky Way

(Harris, 1996 (2010 Edition)) was used to indicate the appropriate distribution
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(Figure 4.2). Ignoring clusters with c > 2.5 (believed to have undergone core

collapse), a Gaussian distribution with a mean of 1.5 and standard deviation

of 0.4 fits the data. This Gaussian distribution is plotted with the Milky Way

data as a solid line in Figure 4.2.

The velocity dispersion is taken from the observed line of sight velocity

dispersion of globular clusters in M87 (Côté et al., 2001). We have initially

assumed the distribution of orbits to be isotropic, such that the anisotropy

parameter discussed in Chapter 2 was zero. Hence the radial, theta, and phi

components of each globular cluster’s velocity all come from the same velocity

dispersion. This is a reasonable initial assumption as the solved orbits of Milky

Way globular clusters (Dinescu et al., 1999; Casetti-Dinescu et al., 2007) do

not indicate a preference towards circular orbits. While it is a logical first step

to assume the population is isotropic in velocity, Section 4.6 will explore how

varying the parameter β affects tidal radii.

Exactly 10000 globular clusters were simulated. Not only does this provide

a statistically significant amount of clusters, but is also an approximation

of the number of clusters within 100 kpc of M87 (Harris, 2009). Half were

designated as “red” clusters and had positions drawn from the red Hubble

profile from Harris (2009). The second half were designated as “blue” clusters

and were drawn from the appropriate Harris (2009) observed parameters. The

radial distribution (Figure 4.3), mass distribution (Figure 4.4), radial velocity

distribution (Figure 4.5), central concentration distribution (Figure 4.6) are

all illustrated. Additionally, converting each cluster’s position in spherical

coordinates to Cartesian coordinates, we can assume the x−y plane is the plane
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Figure 4.2: Distribution of globular cluster central concentrations in the Milky
Way (Histogram). The solid line represents a Gaussian fit with a mean of 1.5
and standard deviation of 0.4. Data taken from Harris (1996) (2010 Edition).
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Table 4.1: Simulated Globular Cluster Population Input Parameters

Parameter Value
Radial Distribution Hubble Profile
Blue Population
σ0 66 arcmin−2

R0 2.0’
a 1.8
Red Population
σ0 150 arcmin−2

R0 1.2’
a 2.1
Angular Distribution Spherically Symmetric
Mass-To-Light Ratio M/L = 2
Mass Distribution Gaussian
〈log(M/M0)〉 5.5
σlog(M/M0) 0.52
Velocity Dispersion Gaussian
〈v〉 -19 km/s
σv 401 km/s
β 0
Central Concentration Gaussian
〈c〉 1.5
σc 0.4
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of the sky. Figure 4.7 then illustrates the simulated population as projected

onto the plane of the sky.

4.3 Orbit Integration

As discussed in Chapter 2, it is incorrect to calculate the theoretical tidal

radius of each globular cluster based on its present galactocentric position.

Globular clusters will not necessarily have circular orbits, and more than likely

have elliptical orbits. In this case, the tidal radius will be dependent on the

globular cluster’s perigalactic distance, where the tidal field of the galaxy is

strongest.

To determine the perigalactic distance of each simulated globular cluster,

the globular cluster is assumed to be a point mass moving in an orbital plane in

the static spherical potential of M87. The derivation of perigalactic distance is

taken from Binney & Tremaine (2008), who derive the pericenter distance and

apocenter distance of a star orbiting in a centrally directed, static spherical

potential. The Lagrangian per unit mass of such a globular cluster is then:

 L =
1

2
[ṙ2 + (rϕ̇)2] − Ψ(r) (4.10)

where r is the globular cluster’s present distance from the center of the

galaxy and Ψ(r) is the gravitational potential of the galaxy. The equations of

motion are:

0 = r̈ − rϕ̇2 +
dΨ(r)

dr
(4.11)
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Figure 4.3: Radial distribution of simulated globular cluster population.
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Figure 4.4: Mass distribution of simulated globular cluster population.
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Figure 4.5: Radial velocity distribution of simulated globular cluster popula-
tion.
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Figure 4.6: Central concentration distribution of simulated globular cluster
population.
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Figure 4.7: Projected view of simulated globular cluster population.
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0 =
d (r2ϕ̇)

dt
(4.12)

Equation 4.12 implies that r2ϕ̇ is constant. This constant is actually the

angular momentum per unit mass (L) of the globular cluster. Rewriting this

relationship as:

d

dt
=
L

r2
d

dϕ
(4.13)

and substituting into Equation 4.11 we get:

L2

r2
d

dϕ
(

1

r2
dr

dϕ
) − L2

r3
= −dΨ

dr
(4.14)

For u = 1/r, we can put the above equation into the form:

d2u

dϕ2
+ u =

1

L2u2
dΨ

dr
(
1

u
) (4.15)

Equation 4.15 can then be used to determine the radial energy equation.

Multiplying Equation 4.15 by du/dϕ and integrating over ϕ results in:

(
du

dϕ
)2 +

2Ψ

L2
+ u2 = constant =

2E

L2
(4.16)

The radial energy equation can also be derived with Hamiltonians. With

Equation 4.10 to determine the momenta (pq = d L/dq̇), the Hamiltonian per

unit mass is then:
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H(r, pr, pϕ) = prṙ + pϕϕ̇−  L

=
1

2
(p2r + p2ϕ/r

2) + Ψ(r)

=
1

2
(
dr

dt
)2 +

1

2
(r

dϕ

dt
)2 + Ψ(r)

(4.17)

Comparing the Hamiltonian above to Equation 4.16, it is clear that the

constant E is the energy of the cluster’s orbit, which is essentially the numerical

value of the Hamiltonian. With a globular cluster’s current radius, radial

velocity and tangential velocity, the constants E and L in Equation 4.16 can

be found.

For a bound orbit, du/dϕ = 0. Under that assumption, Equation 4.16 then

becomes:

u2 +
2[Ψ( 1

u
) − E]

L2
= 0 (4.18)

The roots of Equation 4.18 represent the pericenter distance and apocenter

distance between which the cluster oscillates. Due to the complicated nature

of the gravitational potential of M87 (Equations 4.7 and 4.8), once E and L

for a simulated globular cluster are found, the roots of Equation 4.18 must be

found numerically.

This process can be illustrated with a sample globular cluster taken from

the simulation. The simulated parameters of the sample globular cluster are

listed in Table 4.2. This sample cluster will also be used for future examples.

Figure 4.8 illustrates Equation 4.18 for the sample globular cluster. The

roots of this function were numerically determined to be 13.00 kpc and 65.83
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Table 4.2: Simulated Parameters of a Sample Globular Cluster in M87

Parameter Value
Current Galactocentric Distance 18.63 kpc
Angular Position (θ,φ) −55.56o,53.35o

Mass (Log(M/M⊙)) 4.07
Radial Velocity -510.44 km/s

Tangential Velocity (
√

v2ϕ + v2θ) 626.62 km/s

Central Concentration 1.67

kpc, yielding the pericenter and apocenter distances respectively. The roots

also agree visually with Figure 4.8, as the dotted vertical lines represent the

roots and the dotted horizontal line shows y=0.

It is also of interest to determine a cluster’s radial velocity as a function of

distance and its radial period. Combining Equation 4.17 with the previously

established fact that L = r2ϕ̇, we find that:

(
dr

dt
)2 = 2(E − Ψ(r)) − (L/r)2 (4.19)

dr

dt
= ±

√

2(E − Ψ(r)) − (L/r)2 (4.20)

where dr/dt is the cluster’s radial velocity, and the ± is a result of the

fact that a cluster moves towards and away from the galaxy’s center during

different times of its orbit. Utilizing the simulated globular cluster from Table

4.2, the cluster’s radial velocity as a function of its galactocentric distance is

illustrated below in Figure 4.9.
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Figure 4.8: Plot of Equation 4.18 for a simulated globular cluster orbiting in
the potential of M87. The values on the y-axis are scaled up by 1010.
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Figure 4.9: Globular cluster’s radial velocity at all galactocentric distances of
its orbit.
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Rearranging Equation 4.20, we can now solve for the radial period of a

globular cluster.

Tr =

∫ Tr

0

dt

=

∫ rap

rp

1/
√

2(E − Ψ(r)) − (L/r)2 dr

(4.21)

Plotting the function inside the integral of Equation 4.21 in Figure 4.10,

the area underneath the plot represents the cluster’s radial period. The plot

behaves as expected, as there is more area underneath the curve at higher

galactocentric distances as the cluster spends a longer portion of its orbit

near apocenter. The equation can then be numerically integrated between the

cluster’s perigalactic and apocentric distances to determine its radial period.

The radial period for the simulated globular cluster was determined to be

1.65434 × 108 years.

Repeating this process for the entire simulated M87 globular cluster pop-

ulation, Figure 4.11 shows the present distance of a globular cluster (x-axis)

compared to its perigalactic distance (y-axis). As expected, a globular clus-

ter’s perigalactic distance is less than or equal to its present distance from the

center of the galaxy. Similarly, Figure 4.12 shows how apogalactic distance

compares with present distance. Not only is the apogalactic distance greater

then or equal to present distance, but the majority of clusters appear to be

very near their apocenter. This is also expected as orbiting bodies on non-

circular orbits spend a longer portion of their orbit closer to apocenter than

pericenter.
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Figure 4.10: Function inside integral of Equation 4.21.

118



M.Sc. Thesis –––– Jeremy J. Webb –––– McMaster University - Physics and Astronomy –––– 2011

The perigalactic and apogalactic distances can also be used to determine

the eccentricity of each cluster’s orbit, which is a measure of how circular or

elliptical the orbit of the cluster is. Equation 4.22 gives the mathematical

definition of eccentricity.

e =
rap − rp
rap + rp

(4.22)

Equation 4.22 can be applied to each simulated cluster, and the eccentricity

distribution of the simulated globular cluster population (Figure 4.13) can be

found. This distribution is roughly symmetric, and centered at an average ec-

centricity of 0.5. This is expected since globular cluster velocities were selected

assuming the velocity dispersion is isotropic. Finally, Figure 4.14 illustrates

the distribution of radial periods for the simulated globular clusters.

From Figure 4.14 we see that the majority of clusters have periods between

106 and 108.5 years, however there is a significant number of clusters with

smaller radial periods. As seen in Figure 4.15, these clusters with small radial

periods have very small perigalactic distances. It is possible that some of

these low period, low perigalactic distance clusters should be removed from

the simulation as they will have either been destroyed by dynamical friction

or possibly ejected from the galaxy. This is explored further in Section 4.5.

4.4 Tidal and Effective Radii Calculation

From the equation for the galactic potential of M87 (Equations 4.7 and

4.8) , it is possible to calculate all the elements of Equation 2.22 (Ω2, κ2, and
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Figure 4.11: Perigalactic distance of each simulated globular cluster compared
with its current galactocentric distance.
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Figure 4.12: Apogalactic distance of each simulated globular cluster compared
with its current galactocentric distance.
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Figure 4.13: Eccentricity distribution of the simulated globular cluster popu-
lation.
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Figure 4.14: Radial period distribution of the simulated globular cluster pop-
ulation.
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Figure 4.15: Radial period versus perigalactic distance of the simulated glob-
ular cluster population.
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υ). For a globular cluster located within M87, its tidal radius as a function of

its perigalactic distance (r) and mass (M) is then:

rt = (
GM

Ω2υ
)1/3 (4.23)

Where Ω, κ and υ are now specifically defined as:

Ω2 =
G M⊙

(r k)3

× [8.10 × 1011 [
r/5.1kpc

1 + r/5.1kpc
]1.67

+ 7.06 × 1014 [ln(1 + r/560kpc)

− (r/560kpc)

(1 + r/560kpc)
]]

(4.24)

κ2 =3Ω2 − 2 G M⊙

(r k)3

× [8.10 × 1011 [

r
5.1kpc

1 + r
5.1kpc

]1.67

+ 7.06 × 1014 [ln(1 +
r

560kpc
) −

r
560kpc

1 + r
560kpc

]]

+
G M⊙

(r k2)2
[8.1011 × 1.67 × (

r
5.1kpc

1.0 + r
5.1kpc

)0.67

× [
1

5.1 (1 + r
5.1kpc

)
− r

5.12 (1 + r
5.1kpc

)2
]

+ 7.06 × 1014 r

560 (1 + r
560

)2
]

(4.25)

υ = 4 − κ2/Ω2 (4.26)

where k = 3.08 × 1019 m
kpc

, r is in kiloparsecs, and M is in kilograms.
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For arbitrary globular clusters of mass 2 × 104 M⊙, 2 × 105 M⊙, and 2 ×

106 M⊙, Figure 4.16 illustrates how the tidal radius of the globular cluster

depends on its perigalactic distance. Figure 4.16 indicates that for a given

globular cluster mass, tidal radius increases with perigalactic distance. This

is in agreement with the derivations of cluster tidal radii discussed in Chapter

2. Essentially the tidal field of a galaxy is weaker as you move farther from

its center, allowing clusters to reach greater sizes. Additionally, it is obvious

that for a given perigalactic distance, globular clusters of higher mass will have

larger tidal radii. This is also in agreement with derivations from Chapter 2,

which predict rt α M
1/3 for a set distance.

Equation 4.23 is then applied to each member of the simulated globular

cluster population, with each cluster’s perigalactic distance calculated as de-

scribed in Section 4.3. The results are illustrated in plots of Tidal Radius vs.

Perigalactic Distance and Tidal Radius vs. Current Distance (Figure 4.17).

The general trend observed in Figure 4.17 is that the tidal radius of globular

clusters increases with distance. This is especially apparent in the upper panel

of Figure 4.17, where clusters with larger perigalactic distances tend have

larger tidal radii. The spread in tidal radius at a given perigalactic distance is

the result of having globular clusters of different masses. This is best illustrated

in the upper panel of Figure 4.18, where the y-axis in Figure 4.17 has been

normalized by cluster mass to the power of 1/3. From Equation 4.23 we see

that tidal radius depends on cluster mass to the power of 1/3, but has a much

more complex relationship with perigalactic distance as it involves the single

and double derivatives of the galactic potential. By dividing each cluster’s
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Figure 4.16: Relationship between tidal radius and galactocentric distance for
globular clusters of mass 2×104 M⊙, 2×105 M⊙, and 2×106 M⊙within M87.
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Figure 4.17: Tidal radius of each globular cluster vs. its perigalactic distance
(upper) and current galactocentric distance (lower).
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tidal radius by its mass to the power of 1/3, we have essentially eliminated

the spread due to cluster masses. This is why the upper panel of Figure 4.18

appears to be a smooth line. The scatter in the lower panel of Figure 4.18 is

then due to the difference between a cluster’s perigalactic distance and current

distance. Comparing the upper and lower panels of Figure 4.18, we see that

they behave as expected. Since a cluster’s current galactocentric distance will

always be equal to or larger than its perigalactic distance, all data points in

upper panel will be shifted away from the origin to larger distances by varying

amounts.

Unfortunately it is not possible to observe real globular clusters at their

three-dimensional distance from the galactic center. The three dimensional

globular cluster population of M87 is projected onto the two dimensional plane

of the sky when observations are made. It is therefore useful to observe the

relationship between simulated tidal radius and projected two dimensional

galactocentric distance. Observationally a globular cluster’s tidal radius will

not change, but it may be observed at a distance equal to or less then its

true distance from the center of the galaxy. Assuming the x − y plane of the

galaxy is parallel with the plane of the sky, projected distance is taken to

be
√

x2 + y2. Since M87 is spherically symmetric, any two-dimensional plane

can be taken to be the plane of the sky without influencing the results. The

upper plot in Figure 4.19 demonstrates the relationship between tidal radius

and projected galactocentric distance for the same simulated globular cluster

population in Figure 4.17. Normalizing the tidal radius by cluster mass, we

can compare the lower plot in Figure 4.19 to Figure 4.18 and see how going

from a cluster’s perigalactic distance, to current distance, to projected current
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Figure 4.18: The ratio of cluster tidal radius to (M/M⊙)
1

3 vs. its perigalactic
distance (upper) and current galactocentric distance (lower).
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distance increases the amount of scatter about the curve in the upper plot of

Figure 4.18.

When comparing the lower panels of Figure 4.17 and Figure 4.19, it is

clear that many of the globular clusters will have an observed two-dimensional

distance smaller than their true distance. A globular cluster in Figure 4.17

will be located in the same horizontal position in Figure 4.19 only if its orbital

plane is parallel with the plane of the sky. In terms of Cartesian coordinates,

if we assume the plane of the sky and the x− y plane of the simulated galaxy

are parallel, globular clusters with a z coordinate of zero are not subject to

projection effects. On the other hand, any globular cluster with a z coordinate

not equal to zero will be observed at a smaller galactocentric distance. Figure

4.19 confirms this as the majority of data points are shifted horizontally to-

wards the origin. However, since projection has no effect on the tidal radius

of a globular cluster, a data point’s vertical position in Figures 4.17 and 4.19

remains unchanged.

This point is extremely relevant to observations. When the tidal radius

of an observed globular cluster is measured, the observationally and theoret-

ically determined tidal radii will not agree if we assume its current distance

is its perigalactic distance. Since the perigalactic distance of an extragalactic

globular cluster cannot be determined, the theoretical tidal radius can only be

calculated with the cluster’s present projected distance. In the case where the

projected distance is greater than the perigalactic distance, an overestimation

of the actual tidal radius will occur. Hence it is expected that observationally

determined tidal radii will be less than or equal to its theoretically determined
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Figure 4.19: Cluster tidal radius (upper) and the ratio of cluster tidal radius

to (M/M⊙)
1

3 (lower) vs. its projected distance.
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counterpart. In the case where the cluster’s projected distance is smaller than

its perigalactic distance, the theoretical tidal radius will be underestimated.

However, instead of theoretically determining tidal radii of observed projected

globular clusters, the simulated distribution makes it possible to compare ob-

servationally determined tidal radii in M87 to simulated tidal radii. This will

act as a test to determine if observationally determined King tidal radii are

equivalent to the theoretical Jacobi radius of a cluster, as was assumed in

Chapter 2.

To better compare with observations, tidal radii are converted to effective

radii. Since we will be comparing our simulation to observed clusters fit with

K62 profiles, we convert theoretical tidal radii to effective radii assuming each

cluster can be represented by a K62 profile. Assuming all stars within the

cluster are identical and the cluster is spherically symmetric, Equation 2.32

can be integrated with respect to 2πrdr to determine the total number of

stars within a radius r. For x = (r/rc)
2 and xt = (rt/rc)

2, the number of stars

within a radius r is given by Equation 4.27. The total number of stars within

a cluster is given as n(xt) (Equation 4.28).

n(x) = πr2ck(ln(1 + x) − 4
(1 + x)

1

2 − 1

(1 + xt)
1

2

+
x

1 + xt
) (4.27)

n(xt) = πr2ck(ln(1 + xt) −
(3(1 + xt)

1

2 − 1) ∗ ((1 + xt)
1

2 − 1)

1 + xt
) (4.28)

The effective radius is then the radius at which the ratio n(x)/n(xt) is

1/2. Using this conversion method, we can plot the ratio of rh/rt versus
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central concentration and compare the results to the K62 portion of Figure

3.25. This comparison is made in Figure 4.20. The perfect agreement between

the simulated clusters (solid line) and observed clusters (points) illustrate that

our conversion method is appropriate for any cluster which can be represented

by K62 model. The results of this conversion versus projected cluster distance

is illustrated in Figure 4.21, with the median cluster effective radius shown in

red. The median effective radius at a given distance was found by dividing

clusters into bins based on their projected galactocentric distance. Each bin

was 0.03 kpc in width.

4.5 Analysis of Individual Simulated Globular

Clusters

4.5.1 In-spiral Time Due to Dynamical Friction

Before we compare the simulated population to observations, we must first

consider which simulated clusters are expected to survive to present day. More

specifically, clusters with small orbits and clusters with highly elliptical orbits

such that their perigalactic distance is very small may have been torn apart by

dynamical friction, the force exerted on a cluster due to the tidal field of the

galaxy which will decrease the cluster’s tangential velocity, causing its orbit to

decay (Chandrasekhar, 1943). Over time, the cluster’s orbit can decay until

the cluster reaches the center of the galaxy, and the stars can no longer remain

bound. It must be determined which of the simulated globular clusters should
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Figure 4.20: Ratio of effective radius to tidal radius vs. central concentration
for observed clusters fit with K62 models (black points) and theoretical clusters
with tidal radii converted to effective radii via K62 models (red line).
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Figure 4.21: Effective radius of each globular cluster compared with its pro-
jected distance. The red line illustrates the median effective radius.
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be removed from the dataset. The following derivation of in-spiral time is

taken from Binney & Tremaine (2008).

We can begin with Chandrasekhar’s dynamical friction formula (Equation

4.29), which determines the rate of change in the velocity (dvM
dt

) of a mass

M, orbiting in a field of stars of mass ma with a distribution f(~x, ~ma) (Chan-

drasekhar, 1943).

d~vM
dt

= −16π2G2Mma ln Λ[

∫ vM

0

v2af(va) dva]
~vM
v3M

(4.29)

where the Coulomb logarithm (ln Λ) is defined as

ln Λ = ln(
bmax

max(rh,
GM
v2typ

)
) (4.30)

where rh is the half-mass radius of the subject system, vtyp is the typical

relative velocity at a distance R (vtyp = GM

R
), M and R are the mass and radius

of the host galaxy, and bmax is the maximum impact parameter. The maximum

impact parameter can be assumed to be the orbiting radius R of the mass M.

However, it is important to note that this assumption is a local approximation,

and does not take into account very close or very distant encounters (Binney

& Tremaine, 2008).

It is then assumed that the distribution function f(~va) is Maxwellian with

dispersion σ, and Equation 4.29 can be rewritten as

d~vM
dt

= −4πG2Mnm ln Λ

v3M
[erfX − 2X√

π
e−X

2

]~vM (4.31)
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where n is the total number of field stars, X = ~vM√
2σ

, and erf is the error

function.

Taking nm to be the overall background density ρ, we assume the density

distribution of the host galaxy is that of an isothermal sphere (ρ(r) = v2c
4πGr2

)

where vc =
√

2σ is the constant circular speed at r. As summarized in Chura-

zov et al. (2010), this is an acceptable assumption for an elliptical galaxy like

M87. The frictional force F = M |d~vM
dt

| on the orbiting mass M is then

F = −4πG2M2ρ(r) ln Λ

v2c
[erf(X) − 2X√

π
e−X

2

]~vM

= 0.428 ln Λ
GM2

r2

(4.32)

and X = vc√
2σ

= 1.

This force is tangential and in the opposite direction to the velocity of the

orbiting mass M. This results in the mass M losing angular momentum L at a

rate of

dL

dt
= −Fr ≈ −0.428 ln Λ

GM2

r
(4.33)

Thus the orbiting mass M, which was initially assumed to have a circu-

lar orbit, will continue to spiral towards the center of the host galaxy while

remaining in an almost circular orbit. Since the circular-speed curve of the

singular isothermal sphere is flat, the orbiting mass will continue to orbit at

speed vc at a radius r with angular momentum L = Mrvc as it spirals inward.

Substituting dL
dt

= Mvc
dr
dt

into Equation 4.33, we obtain
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r
dr

dt
= −0.428 ln Λ

GM

vc

= −0.302 ln Λ
GM

σ

(4.34)

Returning to the fact that the host galaxy of mass M is assumed to be an

isothermal sphere, its velocity dispersion at a distance r is then

σM =

√

G M(r)

2 r
(4.35)

Assuming that the orbiting mass M is a globular cluster, which is also

isothermal, the mass of the globular cluster M can be set equal to

M =
2σ2

srt
G

(4.36)

where σs is the velocity dispersion of the cluster.

Substituting into Equation 4.34, we get the rate of orbital decay for the

globular cluster to be

dr

dt
= −0.428 ln Λ

σ3
s

σ2
M

(4.37)

Assuming there is no variation in ln Λ with radius, the in-spiral time from

a radius ri is found to be

Tdf =
2.7Gyr

ln Λ

ri
30kpc

(
σm

200 km/s
)2 (

100 km/s

σs
)3 (4.38)
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It is important to note that Equation 4.38 assumes the clusters have a

circular orbit. In calculating each cluster’s in-spiral time, we will incorrectly

assume each cluster has a circular orbit at its perigalactic distance. This results

in an underestimation of a cluster’s in-spiral time for more elliptical orbits, as

the cluster spends little time near perigalacticon. In essence we are calculating

a lower limit for each cluster’s in-spiral time. Additionally, we have assumed

that the host galaxy and globular cluster are both isothermal spheres, and

that the distribution function of field stars in the galaxy is Maxwellian. These

assumptions will be justified later.

We calculate the in-spiral time due to dynamical friction of each simulated

cluster with Equation 4.38 and the cluster’s perigalactic distance. Figure 4.22

illustrates the resulting distribution. While the distribution appears to be

relatively symmetric about a mean in-spiral time of approximately 1014 years,

there is a small percentage of clusters with very small in-spiral times less than

10 Gyr, which is an approximation of the age of M87.

If we consider the relationship between a cluster’s in-spiral time and its

perigalactic distance (Figure 4.23), we see that clusters with in-spiral times less

than 10 Gyr all have very small perigalactic distances. This is as expected, as

we observe in Equation 4.38 that Tdf α r. Other clusters with small perigalactic

distances but higher in-spiral times will be of lower mass and/or large tidal

radii such that their velocity dispersions (σgc) are small (Tdf ∝ (1/σgc)
1/3).

When we compare each cluster’s in-spiral time to its radial period (Figure

4.24), globular clusters with in-spiral times less then 10 Gyr have a range of

radial periods between 106.5 and 108.5 years. While the clusters with smaller
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Figure 4.22: Distribution of in-spiral times due to dynamical friction.
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Figure 4.23: Simulated globular cluster’s in-spiral time due to dynamical fric-
tion as a function of its perigalactic distance.
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radial periods will have mean distances near their perigalactic distance, clus-

ters with larger radial periods will have highly elliptical orbits, and spend

little time near perigalacticon. It will be these large period clusters whose

calculated in-spiral time will be a notable underestimation. However, since

the total amount of clusters with calculated in-spiral times less than 10 Gyr is

a mere 0.78% of the entire population, eliminating a few clusters which may

actually have acceptable orbits will not alter the findings of this simulation.

Hence the previously mentioned assumptions required to make this calcula-

tion are acceptable. The 78 globular clusters with in-spiral times less than the

approximate age of M87 (10 Gyr) were eliminated from the simulation.

4.5.2 Relaxation Time

By assuming that a cluster’s tidal radius is imposed at perigalacticon, we

have indirectly made a second assumption that each cluster does not change

in size over the course of its orbit, before it returns to perigalacticon. A

more precise way of making this statement is that we have assumed the radial

period of each cluster is less than its relaxation time, such that it returns

to perigalacticon before it is able to relax. A star orbiting within a globular

cluster will be subject to multiple two-body interactions between itself and

every other star in the cluster. This results in each star in the cluster modifying

each other’s velocity such that each star has a final orbit which is much different

than if it had been orbiting in a smooth gravitational field. The time it takes

for the cluster to undergo all these two-body encounters in order to significantly

change stellar velocities is known as the relaxation time (Binney & Tremaine,
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Figure 4.24: Simulated globular cluster’s in-spiral time due to dynamical fric-
tion vs. radial period.
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2008). If a cluster’s radial period is longer then its relaxation time, then it is

entirely possible that as the cluster relaxes, it may push stellar orbits beyond

the theoretical tidal limit imposed by its perigalactic distance. This results in

the cluster’s observational tidal radius being much larger than theory suggests.

Therefore we must test each simulated cluster to ensure that this is not the

case.

For each simulated cluster, we calculate the half-mass relaxation time,

which is the time it takes for the stars within a radius that contains half

of the cluster’s mass to relax. The relation is shown as Equation 4.39, taken

from Meylan et al. (2001).

trh = (8.92 × 105)
(M/M⊙)

1

2

(m̄/M⊙)

(rh/1pc)
3

2

log(0.4M/m̄)
(4.39)

where m̄ is the mean stellar mass of all the stars in the cluster (taken

to be 0.5 M⊙), M is the total mass of the cluster, and rh is the half-mass

radius. Figure 4.25 illustrates the half-mass relaxation time and radial period

of each simulated globular cluster. Only clusters below the dashed line have

relaxation times that are less than their radial period, such that they could

potentially grow larger than their perigalacticon induced tidal radius. These

clusters only constitute approximately 1% of the simulated cluster population.

Additionally, these clusters have relaxation times that are only marginally less

than their radial period, which suggests the cluster’s ability to grow to sizes

greater than its perigalacticon induced tidal radius is minimal.

We also calculated the core relaxation time of each cluster as given by

Djorgovski (1993). We found that while approximately 25% of the simulated
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clusters have core relaxation times less than their orbital period (Figure 4.26),

these clusters cover the full range of masses and concentrations in our cluster

sample. Hence their inclusion will not bias our results in any way. We con-

clude that based on the assumptions and calculations above, using a cluster’s

perigalactic distance to calculate tidal radii is acceptable, and that a cluster

will undergo minimal changes in size before it returns to perigalacticon.

4.6 Effects of Orbital Anisotropy

Up to this point, we have been operating under the assumption that the

velocity distribution of M87 is isotropic. That is the radial, θ, and φ velocity

distributions are all equal to the observed velocity distribution of M87. In

terms of the anisotropy parameter β, this is the β = 0 case. However, as

discussed in Chapter 2 it is not expected that β = 0 for every galaxy. In fact,

it is more likely that the value of β changes for different regions of a galaxy.

For M87, Côté et al. (2001) found that while the cluster population of M87

appears to be isotropic as a whole, it is possible that β could change as a

function of galactocentric distance. More specifically, the inner regions of M87

could possibly have a negative value for β such that orbits are preferentially

tangential, while the outer regions of M87 may contain clusters with more

radial orbits (β > 0). This forces us to consider the effects of changing the

value of β in our simulation to observe the effect this has on cluster tidal radii.

The simulation outlined in this chapter was repeated for different values of

β. For β greater than zero, the radial velocity dispersion was assumed to be

equal to the observed velocity dispersion, and the θ and φ distributions were
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Figure 4.25: Simulated globular cluster’s half-mass relaxation vs. radial pe-
riod. The dashed line represents half-mass relaxation time equalling radial
period.
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Figure 4.26: Simulated globular cluster’s core relaxation vs. radial period.
The dashed line represents core relaxation time equalling radial period.
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assumed to be equal and calculated via Equation 2.57. This ensures that each

cluster’s radial velocity will be larger than its tangential velocity, showing a

preference towards radial orbits. For β less than zero, the θ and φ velocity

distributions are assumed to be equal to the observed velocity distribution,

with the radial velocity distribution determined via Equation 2.57. This en-

sures that tangential velocities will be larger than radial velocities, showing a

preference towards circular orbits.

To illustrate the influence orbital anisotropy has on cluster sizes, we plot the

median effective radius of each simulated population versus projected galac-

tocentric distance. As seen in Figure 4.27, a cluster at a given galactocentric

distance has its largest possible size when β = −1 (magenta). As discussed

in Chapter 2, this is because the cluster’s orbit will be nearly circular, so it

is not brought much deeper into the tidal field of the galaxy then its present

galactocentric distance. Also in agreement with Chapter 2, as β increases,

orbits become more and more radial, such that clusters are brought deeper

and deeper into the tidal field of the galaxy to small perigalactic distances.

This in turn minimizes their tidal and effective radii.

We will leave it to Section 4.7 to compare Figure 4.27 with observations,

and determine how β should behave as a function of galactocentric distance

to best match theoretical tidal radii to observations.
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Figure 4.27: Effective radius of each globular cluster compared with its pro-
jected distance for different values of β.
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4.7 Matching Simulation to Observations

4.7.1 The Isotropic Case

Ultimately, comparisons between K62, K66, W75, and S68 models in Chap-

ter 3 suggested that K62 effective radii better represent the true effective radius

of each cluster. Comparisons with the more commonly used K66 models re-

sulted in the identification of a sub-set of clusters with K66 effective radii

much smaller then K62 effective radii. Since W75 and S68 effective radii were

in agreement with the K62 model, the decision was made to compare only the

results from K62 model fitting to theoretical tidal radii.

The first comparison that was made between observations and theory was

for the simulated isotropic case, with β = 0. The median effective radius

versus projected galactocentric distance is illustrated in Figure 4.28. The first

observation that can be made is that the simulation underestimates effective

radii in the inner regions of M87. Second, in the central and outer regions of

M87 the simulation appears to be in agreement with the observations, however

due to the limited field of view of the observations we cannot make comparisons

past approximately 9 kpc. It would be beneficial to have observations of M87

out to larger galactocentric distances, to see if the theoretical and observational

tidal radii remain in agreement.

Applying a χ2 test to the model and observations resulted in χ2 = 30.16.

While this result is clearly not a match, a perfect match was not anticipated.

As previously mentioned, Côté et al. (2001) suggested that it is possible that

β could be less than zero for the inner regions of M87 and greater than zero
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Figure 4.28: Effective radius of each globular cluster compared with its pro-
jected distance for observations and the β = 0 simulation.
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in the outer regions. This is not only possible for M87 (Côté et al., 2001),

but for other galaxies as well. Using cosmological N-body simulations, Pri-

eto & Gnedin (2008) calculate the orbits of model clusters in the tidal field

of the Milky Way and find that orbits are nearly isotropic (β = 0) for the

inner regions and radial (β > 0) in the outer regions of the galaxy. Theo-

retical work regarding dark matter halos with NFW profiles (similar to M87)

by Zait, Hoffman, & Shlosman (2008) also find that β increases from the

isotropic case in the inner regions of a galaxy to more radial orbits in the

outer regions. N-body simulations by Ludlow et al. (2010) investigating the

radial dependence of the density and velocity dispersion in cold dark matter

halos also support these findings. Both Prieto & Gnedin (2008) and Zait,

Hoffman, & Shlosman (2008) find evidence for β to be less than zero at small

galactocentric distances. Therefore, while the isotropic case was essentially a

reasonable first comparison to make between observations and theory, we ex-

pect a change in the anisotropy profile of our simulated population is necessary

to better match theory to observations. It is encouraging that by taking the

gravitational potential of M87 and the observed cluster radial, mass, central

concentration, and velocity distributions, it is possible to calculate simulated

effective radii that are comparable in size to the observations. Additionally,

the radial trend of cluster sizes increasing with galactocentric distance is also

observed in the simulation. This calculation required no free parameters or

assumptions beyond M87 being spherically symmetric. We will turn to Section

4.7.2 to illustrate how a better match between theory and observations can be

achieved by including an anisotropy profile in the simulation.
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Table 4.3: Results of χ2 Test Comparing Simulations with Different Values of
β to Observations

β χ2

-1 27.98
-0.5 28.57
0 30.16
0.2 36.24
0.5 56.39
0.8 112.08

4.7.2 Anisotropic Cases

After comparing the isotropic case to observations, the obvious next step

is to compare simulations with different values of β to observational effective

radii. Introducing anisotropy into the simulation is one possible way of ob-

taining a stronger agreement between theory and observations. With Côté

et al. (2001) finding evidence for −0.4 < β < 0.4, we decided to compare the

observational results to simulations with −1 < β < 1 such that the range

found by Côté et al. (2001) is sufficiently covered. Simulations with β = -1,

0, 0.5, and 0.8 are shown in Figure 4.29 with the median observational K62

effective radii in black. Simulations with β = -0.5, and 0.2 were also compared

to observations. The results of applying a χ2 for each case can be found in

Table 4.3.

The results of the χ2 testing suggest that the globular cluster population

of M87 is tangentially anisotropic, with β = −1 yielding the lowest χ2. This is

only due to the obvious discrepancy of the simulation predicting much smaller

effective radii than observed in the inner regions of M87. Since negative values
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Figure 4.29: Effective radius of each globular cluster compared with its pro-
jected distance for different values of β. The black line is the median effective
radius taken from K62 model fits to the observations
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Table 4.4: Results of χ2 Test Comparing Simulations with Different Values of
β to Observations at Different Galactocentric Distances

β 0 - 1 kpc 1 - 2 kpc 2 - 3 kpc 3 - 4 kpc 4 -5 kpc 5 - 6 kpc 6 - 7 kpc
-1 9.65 8.71 5.31 2.63 0.50 0.13 0.80
-0.5 9.71 8.93 5.57 2.80 0.58 0.14 0.62
0 10.05 9.44 6.09 3.12 0.74 0.19 0.37
0.2 10.74 11.03 7.78 4.55 1.47 0.60 0.04
0.5 12.87 14.87 11.67 8.39 4.28 2.86 1.20
0.8 18.52 23.50 20.36 17.28 11.99 10.70 7.88

of β produce larger cluster sizes, this result was not surprising. However, with

very little difference in χ2 for the β equals -1 and isotropic cases, the population

can still be taken to be isotropic. We can further test the findings of Côté

et al. (2001) that β may increases with galactocentric distance by finding χ2

in different radial bins. The results of these calculations are found in Table

4.4, with the lowest χ2’s highlighted in bold.

As we see in Figure 4.29 and Table 4.4, matching simulated and observed

effective radii suggests that M87 is tangentially anisotropic (β < 0) for Rgc < 5

kpc, approximately isotropic for 5 < Rgc < 6 kpc, and radially anisotropic

(β > 0) for Rgc > 6kpc.

We combine our findings to create an anisotropy profile of M87 such that

β = −1 for Rgc ≤ 5 kpc and β = 0.2 for Rgc ≥ 6 kpc. β can be set to increase

from -1 to 0.2 from 5 < Rgc < 6. We chose to simulate cluster populations

with β increasing linearly, through a 1/3 power law, and a 1/6 power law.

These β profiles are illustrated in Figure 4.30. Applying a χ2 test between

each simulation and the observations, the β profile that yielded the best fit
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was for β ∝ Rgc. However, not only were the χ2 values all very close, but

since the increase in β is only over 1 kpc, it only affects a minimal number

of simulated clusters, so the manner in which β increases is not important.

The effective radius distribution produced by the linear anisotropy profile is

plotted with observational effective radii in Figure 4.31.

Our findings that β increases with galactocentric distance are consistent

with those of Côté et al. (2001) for M87 and Weijmans et al. (2009) for NGC

3379 and NGC 821. However neither Côté et al. (2001) or Weijmans et al.

(2009) found such negative values of β at low galactocentric distances. Look-

ing at the value of χ2 in different galactocentric distance bins, we see that χ2 is

greater than 1 for Rgc < 3 kpc. Additionally, it is clear just by looking at Fig-

ure 4.31 that the simulation and observations disagree for small galactocentric

distances. While it is possible that the gravitational field of M87 is inaccurate

at small distances, it is more likely that our understanding of how the tidal

field of the galaxy limits cluster size, at least in the inner regions of a galaxy,

may be flawed. More specifically, we find that theoretical Jacobi radii do not

equal observed K62 tidal radii at small galactocentric distances. However, at

larger galactocentric distances, it appears that there is a strong agreement be-

tween observationally determined and theoretical calculated cluster sizes. This

indicates that to first order, the assumption that a cluster’s limiting radius is

equal to its Jacobi radius is valid.
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Figure 4.30: Anisotropy parameter (β) profiles of M87 used to simulate glob-
ular cluster populations
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Figure 4.31: Effective radius of each globular cluster compared with its pro-
jected distance for a radially dependent β(r). The black line is the median
effective radius taken from K62 model fits to the observations
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Chapter 5

Application to the Milky Way

With a framework in place for calculating theoretical tidal radii, it is only

a matter of changing the gravitational potential field to apply this method to

other galaxies besides M87. However, for any extragalactic globular cluster

population we will again be forced to compare a simulated globular cluster

population to observations as we did in Chapter 4. The Milky Way, on the

other hand, presents a unique cluster population which allows us to compare

theoretical and observational tidal radii on a cluster to cluster basis. More

specifically, the Milky Way clusters are the only population that can be mea-

sured in three dimensions. For example, when comparing theory and observa-

tions in Chapter 4, we are forced to compare the relationship between cluster

size and projected galactocentric distance, as observations of M87 project the

galaxies cluster population onto the two dimensional plane of the sky. How-

ever for the Milky Way globular cluster population, all cluster positions are

known in three dimensions. Furthermore, since integrating the orbits of ex-

tragalactic globular clusters is currently not possible, the Milky Way is again

unique in the sense that it is the only cluster population in which we can use

perigalactic distances as opposed to current galactocentric distances for calcu-
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lating tidal radii. This makes the Milky Way globular cluster population the

best possible testbed for exploring our assumption that the theoretical radius

of a cluster, defined in Chapter 2 as the Jacobi radius (rj), is the same as

the limiting radius (rk) of a cluster. A match between rj and rk will validate

our comparison between theory and observations in Chapter 4. A discrepancy

will suggest that other factors play a role in cluster size in addition to galactic

gravitational potential, cluster mass and perigalactic distance.

5.1 Theoretical Tidal Radii

When calculating the tidal radius of a globular cluster, we operate under

the assumption that cluster size is imposed at the perigalacticon of a cluster’s

orbit, as this is where the cluster reaches the deepest point in the gravitational

potential of the galaxy. Dinescu et al. (1999) have compiled a catalog of the

absolute proper motions of 38 globular clusters and integrated their orbits

using the Galactic potentials of Johnston et al. (1995) and Paczyński (1990).

In addition to the Dinescu et al. (1999) catalog, Casetti-Dinescu et al. (2007)

integrated the orbits of six more galactic globular clusters with the Galactic

potential of Johnston et al. (1995). Due to the use of only the Johnston et al.

(1995) Galactic potential in Casetti-Dinescu et al. (2007), it is what we will

use in our calculations of tidal radius. The Galactic potential is given as

Φbulge = −GMb

r + c
(5.1)
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Φdisk = − GMd
√

R2 + (ad +
√

z2 + b2d)
2

(5.2)

Φhalo = v20ln(1 +
r2

d2
) (5.3)

where r is the cluster’s perigalactic distance, R and z are the cluster’s peri-

galactic position in cylindrical coordinates, Mb = 3.4 × 1010M⊙, c = 0.7 kpc,

Md = 1011M⊙, bd = 0.26 kpc, v0 = 128 km s−1, and d = 12.0 kpc (Johnston

et al., 1995). The perigalactic distances determined by Dinescu et al. (1999)

and Casetti-Dinescu et al. (2007), along with their uncertainties are illustrated

in Figure 5.1 compared with their present galactocentric distance. The dotted

line represents Rp = Rgc. Since orbital parameters as determined by Dinescu

et al. (1999) and Casetti-Dinescu et al. (2007) are averages over a number of

cycles in a 10 Gyr integration time, all averaged orbital parameters (including

Rp as seen in Figure 5.1) will have uncertainties equal to the dispersions over

the number of cycles. The top plot in Figure 5.1 is of all the globular clusters,

while the bottom plot excludes Pal 3. As seen in the top plot, since Pal 3

has a large galactocentric distance (95.7 kpc), perigalactic distance (82.5 kpc)

and measured limiting radius (107.8 pc), including it in the diagram makes it

difficult to observe any trends in the data. For the same reason, Pal 3 is not

included in any remaining figures or discussion, however it was monitored to

ensure it did not present an outlying datapoint.

Using the Galactic gravitational potential of Johnston et al. (1995) (Equa-

tions 5.1-5.3), each cluster’s perigalactic distance (Figure 5.1) and mass (Har-

ris, 1996 (2010 Edition)), the theoretical tidal radius of 44 Galactic globular
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Figure 5.1: Perigalactic distance versus galactocentric distance for all Milky
Way globular clusters (Top) and excluding Pal 3 (Bottom). Data taken from
Dinescu et al. (1999) and Casetti-Dinescu et al. (2007).
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clusters was determined via Equation 2.22. It is important to note that the

Bertin & Varri (2008) definition for tidal radius requires that the gravitational

potential of the host galaxy be spherically symmetric. Due to the presence

of the galactic disk (Equation 5.2), the gravitational field of the Milky Way

is not spherically symmetric. This is evident in Equation 5.2, which requires

both a cluster’s distance from the center of the galaxy in the plane of the disk

(R) and its distance from the disk itself (z). In the next section, we will test

how the use of the non-spherically symmetric potential of the Milky Way in

Equation 2.22 could influence theoretical tidal radii calculations.

The theoretical tidal radius of each cluster with respect to its perigalactic

distance (Top) and present galactocentric distance (Bottom) is illustrated in

Figure 5.2. The uncertainty in tidal radius is due to uncertainty in perigalactic

distance. As expected from our simulation in Chapter 4, we see in Figure 5.2

an increase in cluster size with distance, and a spread in cluster sizes at a given

distance due to a spread in cluster mass.

5.2 Comparison with Observations

With the theoretical tidal radius calculated for each Galactic globular clus-

ter with a solved orbit, it is now possible to determine if theoretical tidal radii

(rj) are equal to the tidal radii measured by King (1966) model fitting (rk).

For each of the 44 globular clusters with solved orbits, their limiting radius as

determined by a K66 model was taken from the Harris (1996) (2010 Edition)

catalog. We assigned an uncertainty of 10% to each value. It is important

to note that while we used K62 models to determine cluster sizes in M87, we
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Figure 5.2: Measured tidal radius (limiting radius) versus perigalactic distance
(Top) and galactocentric distance (Bottom) for Milky Way globular clusters.

167



M.Sc. Thesis –––– Jeremy J. Webb –––– McMaster University - Physics and Astronomy –––– 2011

are now using K66 models to determine the sizes of globular clusters in the

Milky Way. However, since individual stars within Milky Way clusters can

be resolved, their brightness profiles can be accurately determined using star

counts. This results in very little difference between K62 and K66 model fits.

Unlike the cluster population of M87, the masses of the Milky Way globular

clusters are known. Therefore, similar to Figure 4.18 in Chapter 4, cluster sizes

can be normalized by a factor of 1/(M/M⊙)
1

3 to eliminate the spread in the

top plot of Figure 5.2. This is illustrated in Figure 5.3 for both observational

tidal radii (top) and theoretical tidal radii (bottom). While in Figure 4.18 this

normalization resulted in the complete elimination of scatter due to cluster

mass, scatter is still present in both the upper and lower plots of Figure 5.3.

This was not surprising, as two clusters with the exact same perigalactic dis-

tance and mass can still have different theoretical tidal radii as their distance

from the galactic disk at perigalacticon still plays a role in limiting cluster size.

The closer a cluster is to the galactic disk at perigalacticon, the stronger the

tidal field will be, which results in a smaller theoretical tidal radius. In the

case of the observational tidal radii (Figure 5.3 - Top), while the normalization

by cluster mass has minimized some of the scatter seen in Figure 5.2 (top),

it still does not perfectly reflect the normalized theoretical distribution. This

suggests that our theoretical calculation of Milky Way cluster tidal radii is in-

correct. A comparison on a cluster to cluster basis will provide further insight

into why the theoretical and observational tidal radii of Milky Way clusters

are not in agreement.
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Figure 5.3: Observational (Top) and theoretical (bottom) tidal radius divided

by (M/M⊙)
1

3 versus perigalactic distance for Milky Way globular clusters.
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To best compare theory and observations for individual clusters, we de-

termine the ratio of the difference between theoretical and observational tidal

radii (rj − rk) to the average of the two radii ((rj + rk)/2). If theory and

observations are in agreement, the ratio will be approximately zero. Clusters

which have a ratio greater than zero will be clusters which overfill their Roche

surface, while clusters with ratios less than zero will underfill their Roche sur-

face. If non-zero ratios turn out to be the norm, then our assumption that

rj = rk may be invalid. The comparison between theory and observations is

illustrated in Figure 5.4.

As seen in Figure 5.4, while some clusters seem to be very near the rj = rk

dashed line, the majority of clusters appear to overfill their Roche lobe, with

some underfilling their Roche surface. This suggests that our assumption that

rj = rk is incorrect. It then leads us to question whether our understanding

of how cluster tidal radii are related to the gravitational field is incorrect.

However, before we address this issue, we first consider the use of a non-

spherically symmetric gravitational field for calculating theoretical tidal radii.

To determine whether the disk of the Milky Way is the reason we do not find

rj = rk, we re-plot Figure 5.4, but with the x-axis changed to the inclination

of each cluster’s orbit (Figure 5.5). Each cluster has been colour coded based

on the ratio of the difference between observed and theoretical tidal radius to

average tidal radius.

From Figure 5.5 we see that all the red data points (except NGC 7089)

which mark clusters with ratios between 70 and 140 % all have low orbital in-

clinations. Hence their orbital plane is very close to the plane of the disk. This
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Figure 5.4: Ratio of difference between observed and theoretical tidal radius
to average tidal radius versus galactocentric distance for Milky Way globular
clusters.
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Figure 5.5: Ratio of difference between observed and theoretical tidal radius to
average tidal radius versus orbital inclination for Milky Way globular clusters.
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suggests that the disk has a strong influence on these clusters, and our calcula-

tion of rj is likely incorrect. However, the two black data points marking ratios

between 105-140 % with observed tidal radii greater than their theoretical tidal

radii and NGC 7089 are still left unexplained. We now plot each clusters peri-

galactic position in cylindrical coordinates (Rxy, z), with each cluster’s ratio in

Figure 5.5 identified by each data point’s colour. This is illustrated in Figure

5.6.

From Figure 5.6, we see that the two datapoints which have the greatest

deviation from rj (black) have perigalactic locations very close to the plane of

the disk. Since the disk plays an important role in restricting these cluster sizes

at perigalacticon, the calculation of their theoretical tidal radii is also likely

incorrect. Furthermore, of the two black data points, the cluster that is farthest

from the disk which has the largest ratio is Pal 5. This is important because

Pal 5 has well-documented tidal tails (Odenkirchen et al., 2003). Therefore it

is expected that fitting the brightness profile of Pal 5 with a King (1966) model

would yield an inaccurate tidal radius, as the presence of tidal tails makes it

difficult to determine where on the brightness profile the cluster ends and the

tails begin. We can also apply this argument to NGC 7089, the final red data

point that has been left unexplained, as Grillmair & Irwin (1999) documented

extended tidal tails in their observations of this cluster as well.

So while Figure 5.4 gave the initial impression that the assumption rj =

rk is incorrect, Figures 5.5 and 5.6 have shown that using a non-spherically

symmetric potential in Equation 2.22 is likely the cause for the most notable

discrepancies. However for clusters less affected by the galactic disk, it still
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Figure 5.6: Cylindrical coordinate of each cluster’s perigalactic location, with
clusters colour based on the ratio of the difference between observed and the-
oretical tidal radius to average tidal radius.
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appears the assumption that rj and rk are approximately equal is still valid.

Work regarding the derivation of a cluster’s tidal radius in a non-spherically

symmetric potential is needed before the Milky Way can be properly used

to compare theoretical and observational tidal radii. Looking forward, this

is something that could be done, perhaps numerically, and will improve the

comparison between rj and rk for Milky Way globular clusters. However for

galaxies without a disk, which likely have a spherically symmetric potential

(e.g. M87), we conclude the assumption that rj ∼ rt is both reasonable and

unavoidable when dealing with globular cluster populations in other galaxies.
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Chapter 6

Conclusions

We present the observed tidal and effective radii of approximately 2000

globular clusters within 10 kpc of the center of the giant elliptical galaxy

M87. Cluster sizes were determined by fitting the surface brightness profiles

of individual globular clusters with King (1962) models. A theoretical cluster

population was then simulated which has the same radial distribution, ve-

locity dispersion, and mass distribution as the observed cluster population of

M87. Placing the simulated population within the known tidal field of M87

(McLaughlin, 1999), the orbit of each simulated cluster was solved. Using the

formalism of Bertin & Varri (2008), the theoretical tidal and effective radius

of each simulated cluster was then determined based on each cluster’s mass,

and its perigalactic position within the tidal field of the galaxy.

The relationship between median cluster size and projected galactocentric

distance was used to compare theoretical and observational tidal radii. To first

order, it appears that the assumption that a cluster’s observed tidal radius is

equal to its theoretical radius. Both the theoretical and observational distri-

butions result in a general increase in cluster size with galactocentric distance.

This is expected, as the farther a cluster is from the galactic center, the weaker

177



M.Sc. Thesis –––– Jeremy J. Webb –––– McMaster University - Physics and Astronomy –––– 2011

is the tidal field to which the cluster is exposed. This results in larger tidal

radii at large galactocentric distances. However upon closer inspection, the

theoretical and observational distributions are not in complete agreement, as

tidal theory tends to underestimate cluster sizes in the inner regions of M87.

Unfortunately, for the outer regions of M87, we reach the radial limit of our

observations right where the comparison between theory and observations be-

comes interesting, and theoretical tidal radii may either be in agreement or

overestimate cluster sizes. An HST proposal has just recently been approved to

observe the outer regions of M87, and future work will involve the comparison

of theoretical and observational tidal radii at large galactocentric distances.

One possible explanation for the discrepancy between theory and observa-

tions within the inner regions of M87 which we explore is the effect of orbital

anisotropy on the simulated distribution of cluster sizes. The initial compari-

son between observations and theory assumed the simulated cluster population

had an isotropic velocity dispersion, such that the observed line of sight ve-

locity dispersion of the M87 cluster population was independent of direction.

By instead assuming that clusters in different regions of the galaxy may have

different velocity dispersions in different directions, we can compensate for the

discrepancy between theoretical and observational cluster sizes. For example,

by assuming that in the inner regions of M87 that cluster orbits are tangen-

tially anisotropic, cluster orbits will tend to be more circular. This in turn

keeps clusters at larger perigalactic distances, which results in larger cluster

sizes. At larger galactocentric distances, if we take the cluster population

to be radially anisotropic such that clusters have very eccentric orbits, clus-

ters will be brought close to the galactic center at perigalacticon, resulting in
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smaller cluster sizes. This sort of orbital anisotropy profile is consistent with

recent observations and simulations (e.g. Weijmans et al. (2009), Ludlow et al.

(2010)). We include a “best guess” anisotropy profile which yields a stronger

agreement between theoretical and observational tidal radii. Future work will

include the use of Monte Carlo Markov Chain formalism to explore a broad

range of anisotropy profiles to find the profile which best matches theoretical

cluster sizes to observations.

Since our comparison between theoretical and observational tidal radii of

clusters in M87 is limited to the projected distribution of cluster sizes, we also

use the cluster population of the Milky Way to compare theory to observations.

The Milky Way cluster population presents a unique dataset, in the sense that

it is the only cluster population in which the orbits of select clusters have been

solved. This allows for the comparison of theoretical and observational tidal

radii on a cluster-to-cluster basis. When this comparison was made, we found

that tidal theory does not provide an accurate estimate of observed cluster

sizes. However, this discrepancy can easily be explained by the presence of the

galactic disk. The calculation of a cluster’s tidal radius, as given by Bertin &

Varri (2008), assumes the tidal field of the host galaxy is spherically symmetric.

While this is likely the case for M87, it is most definitely not true for the Milky

Way. Therefore the discrepancy between theoretical and observational cluster

sizes for Milky Way globular clusters is not surprising. Future work will involve

the proper calculation of a cluster’s theoretical tidal radius in a non-spherically

symmetric galactic potential, such that the Milky Way cluster population can

be properly used to compare theoretical and observational cluster sizes.
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An additional explanation for the discrepancy between theoretical and ob-

servational tidal radii which we wish to explore is based on the assumption that

a cluster’s tidal radius is imposed at perigalacticon. As mentioned in Chap-

ter 2, recent studies are finding that an orbit averaged tidal radius is more

accurate than using a cluster’s perigalactic distance to calculate tidal radii

(e.g. Brosche, Odenkirchen, & Geffert (1999), Kupper et al. (2010)). Unfor-

tunately, there is no agreed-upon technique in place to calculate a cluster’s

orbit averaged tidal radius. We wish to explore, through the use of N-body

simulations, how a cluster’s tidal radius will change over the course of its or-

bit, and from these simulations develop a theoretical method of determining

an orbit-averaged tidal radius which is comparable to observations.

Combining the comparison of theoretical and observational tidal radii of

clusters in M87 in this study with our future work of observing the outer re-

gions of M87, studying the influence of anisotropy profiles on cluster sizes,

the calculation of tidal radii in non-spherically symmetric potentials, and the

calculation of orbit-averaged tidal radii will result in a more complete under-

standing of how the tidal field of a galaxy influences cluster size. We will

be able to say with certainty whether the tidal field of a galaxy is solely re-

sponsible for determining cluster size, or whether other contributing factors

exist. Furthermore, with an established link between theoretical and obser-

vation tidal radii, globular clusters can be exploited in new ways to extract

information from their host galaxy. This includes the use of globular clusters

to trace the mass distribution within a galaxy and its dark matter halo.
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