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INTRODUCTION

The logic diagram was introduced in 1761% and was, from the

time of Hamilton to the pﬁblishing of the Principia Mathematica, a center

of controversy among logicians: Sonme of thé major logical problems of
.our time are crystallized and clarified, though not solved, in these
diagrams;2 More important, the history of nineteenth-century logic, with
the important exception of Boole; can be traced in the development of
these diagrams; Yet there has been little work done in our own time or
in the past on this fascinating branch of logice

Sir William Hamilton and John Venn both attempted to collect
what was known about diagrams in their own time but Hamilton's analysis is
prejudiced as we shall see, and Vemn's is sketchy; C:I: Lewis introduced
only geometric diagrams in A Survey of Symbolic Logic and used them with

presumptions which must be examined. Martin Gardner collected several

systems of logic diagrams in Logic Machines and Diagrams but treated them,

with the exception of Venn's, as interesting curiosities. Some work has

been done on the diagrams of individual ZLogicians3 but in the interest of

1For qualifications of this statement see chapter I section 1
and chapter II section 3 part (a) and chapter II section 4 parts (a) and
(b)s Hereafter cross-references to this thesis will be abbreviated. The
above reference would be written thus: I 1, II 3 (&) and 4 (&) and (b).

2117 4 (&) and (b).

3E.v'.‘D.D.‘ Robverts, The Existential Graphs of C;S. Peirce,

o

‘Urbana: University of Illinois, 1963, unpublished thesis.

1



completeness this needs the context of the complete development of logic
diagrams.

On the other hand, we need only pick up a textbook on elementary
logic, set theory, switching circuits or even arithmetic if it is the
new math' to be faced with a Qide variety of logic diagrams. Euler, Venn,
Marquand, Lambert and Carroll are all represented, sometimes in the same
book. That these systems are incompatiblel+ seems of little importance
to their users.

It would seem therefore, that there is a necessity for an examin-
ation of logic*diagrams, gua logic diagrams, which will endeavour to dis-
cover what they are and what characteristics they must possess if they
are to function as their users intend. Since the diagrams were first
introduced in logic, and since the mathematician and electrical engineér
can hardly be expected to perform such an analysis, and since, moreover,
Aristotelian and nineteenth-century symbolic logic would seem to be the
most adequate tools to.be used in such an analysis, we may drop this work
in the logicians' ‘- lap. The purposé of this paper is to lay the foundat=
ion for such an analysis. It will, of course, be impossible to exaﬁine
any single problem extensively but will be within our purpose to locate
those areas in which problems of a logical or ﬁhilosophical nature should
be raised. Our work will be divided into three- parts, the purposes of
which will be as follows:

I. to give a chronological résuﬁé of the history of the diagram

in logic from 1761 to 1910 wiﬁh emphésis on those logicians who contributed

hsee the comparative portions of Il.



to its development and their relevant Wfitings;

II. to establish‘a simple classification for such diagrams
and to describe and‘compare the various systéms of diagrams within this
classification.

III: in the‘lighf of the foregoing, to describe the uses and
assess the worth of the logic diagram in our own time and to indicate
some relevant problems raised by the diagrams.

If the diagrams are to be used they ought to be used welli
This can only be done if they are systematically examined;

All of the diagrams mentioned in this work will be found in

numerical order in the first appendix.



THE LIFE HISTORY OF THE LOGIC DEAGRAM (1763 - 1910)

1. Its Conception (prior to 1763)

The first diagrams used by logicians are in all probability now
»lost. We have, nevertheless, many early Mediaeval diagrams which represent
the individual valid arguments of Aristotelian logic. These are not
actual logic diagrams: ;hey illustrate the argument after it has been
solved and are not primarily intended as éids to reasoning as more recent
systems are. Hamilton, whose scholarship we shall have reason to question;,
traces these as far back as the fifth century A.D. Giordano Bruno incor-
porates three of these Mediaevai diagrams‘in one diagramE}(Diagram I);
Gardner 1s fascinated by the life and works of Raymon Lull.3
The Ars Magna was more mechanical than diagrammétic and more metaphysical

than logical. We may, therefore, safely and thankfully ignore Lull's

incredibly obscure system for our purposes in this chapter and turn to

lHamilton's scholarship will be found to be questionable in his.
discussions of all prior logicians, particularly Euler and Maass. II 2 (a)
and (b).

2Martin Gardner, Logic Machines and Diagrams, Toronto: McGraw-Hill,
1958, p. 30. I find these diagrams confusing and will not treat them in
this work. For more information see John Venn, Symbolic Logic, 2nd ed.,
London: Macmillan, 1894, pp. 504 ff.

3Gardner, op. cit., pp. 1 ff
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more modern sources.
Hamilton attributed the geometric diaéram to Christian Weise in

Nucleous Logicae Weisiania (1712).5 This was a mistake for, as Venn

pointed out, Weise did not write this book. The author was, in féctn
Joharm Christian Lange.6 Hamilton did not seem to recognize that Lange
used the diagram to represent propositions but not syllogisms for he
equates Lange’s diagrams with Euler's. Johann Christoph Strum in

Universalia Buclides (1661) and Leibniz both used circles to represent

7

propositions prior to Lange. This would seem to indicate further that
Hamilton's historical research was not as thorough as he thought.

In A Survey of Symbolic Logic, C. I. Lewis translates two brief

portions of Leibniz which indicate that Leibniz understood the principles
of the linear diagram8 almost a century before Lambert. These fragments

are taken from Gerhardt's text, Die Philosophischen Schriften von G. W.

Leibniz, Band VII, "Scientia Generalis. Characteristica,'" XIX and XX.9

Hamilton, with his usual historical scholarship, attributes the linear

diagram to J. H. Alsted in his Logic (1614). Venn pointed out that there

L

An example of Lull's system will be described in II & (b).

OThis book was not available to the author of this thesis.

6Venn, op. cit., p. 509.

vt ——

7See-Gardner, op. cit., p. 31, where he cites Church. The Strum
book was unavailable but we discuss Leibniz briefly, from what information
is available,in II 3 (a).

8See II 1 for a definition of "linear' and II 3 for descriptions
of linear systems.

9C. I. Lewis, A Survey of Symbolic¢ Logic, New York: Dover, 1960,
pp. 291 ff. ,




were no diagrams in the book.lo

Thus, although there were diagrams in logic prior to 1663 they
either represented propositions and gave little or no aid in drawing
conclusions or, in Lull's case, were so obscure as to be useless. The
exception to this is a few diagrams used by Leibniz which we shall compare
to J'..aufnbc—z:c"c's.j':L The actual birth of the logic diagram, its entrance into

logic as a major force, awaited the work of Leonard Eulerol2

2. Its Birth (1763 - 1807)

The modern logic diagram was born of Aristotelian logic in 1763.
Its father was unkmown but the midwife wpo brought it into the world was
Leonard Euler. Euler, like most of the great eighteenth century figures,
was a man of ﬁany talents. He is best remembered aé a mathematician and
logician but he was no mean philosopher and moralist and was known as a
political counsellor to most of the thrones of Europe. Because of his
great reputation for learning in the sciences Euler was commissioned by
Frederick II of Prussia as tutor to his neice, the Princess d'Anhalt

Dessau. His correspondence with the princess was published in 1772 as

Lettres a une Princess d'Allemagne. It was in this work that Euler

*

lOVenn, oE.-cit., Po SO?.

llWe'refer here to such authors as Reimarus and Vives whose works
are unavailable but who, as described by Venn, op. cit., p. 504 £f.,
seen to contribute nothing to the logic diagram. Although their systems
are different from either the mediseval or the modern systems, it is,
at best, difficult to understand what they mean and there seems to be
no reason why they should be accepted either on pragmatic or on iconic
principles. '

lZWith the exception of Leibniz.
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'introduced the logic diagram to the world.
Euler's diagrams were geometr:’u::a&l.wj'L‘L circular in fact, and were
intended to be an aid to the student in understanding the structure of
the wvarious s&llogisms in respect to the relationships between the three
terms involved.15 On the ground of Euler's diagrams much of the wofk of
Hamilton and almost all of the work.of Jevons, Venn and the later inventors
of geometrical logic diagrams was based. His influence is still felt as
many introductoryllogic texts, especially those written by scholastic

16

logicians, make extensive and exclusive use of Euler's system of diagrams.

In the year following‘the writing of Letters to a German Princess

Johann Heinrick Lambert published Neues Organon (1764) in which he
introduced a form of notation which was actually a form of linear diagram
performing ‘the same function as Kuler's geometric diagrams;17 He appar-
ently struck on this system'independently for it has obvious disadvantages'
which he would have attempted to correct had he been familiar with Euler's

system.

The final figure of this period was J.G.E. Maass. In his Grundriss

(

13tetters CIT to CVIII, dated February 14, 1761 to March 7, 1761
ppe 450 = 485 in the Hunter translation.

l“See II 1 for a definition and II 2 for a description of
geometric diagrams.

15See II 2 (a) for an exact description of Euler's intention and
his system.

16E.g. Celestine N. Bittle, The Science of Correét Thinking,
Milwaukee: The Bruce Publishing Company, 1950.

Y11 5 (b). Tnis book was unavailable.



der Logik (18C7) he substituted triangles for Euler's circles.18 This
might be considered important as it demonstrates that the shape of the
geometric patterns used is irrelevant to the validity of the diagram.

Mzass® system is an interesting early wvariatiorn which has particular

significance in the light of Hamilton's and Venn's comments.

3e Its Adolescence

George Boole was ignored in his own time. Yet his Laws of Thought

(1854) changed the direction of logic after Jevons. It was an attempt

at a coherent and comprehensive mathematical notation for logic. Boole
used no diagrams but his influence on those who did does not allow us to
ignore him. He broke radically with Aristotelian logic and paved the way
for modern mathematical and symboiic logic. All of the developments in
the logic diagram after Hamilton were instigated by a concern to apply
the diagrams to the "Boole-Schroeder! algebraol9

Although Boole's major work was published sixteen years before

Hamilton‘s, Boole was virtually unrecognized while Hamilton attained a

powerful reputation based on his lectures and papers. Long before the

publication of Lectures on Metaphysics and Logic (1860) Hamilton was
widely accepted as the outstanding logician of the English-speaking world.

It has been said that both Boole and de Morgan were deeply influenced by

l8J. G. E. Maass, Grundriss der Logik, Leipzig: Eduard Meissner,
1836. See II 2 (b) where the basic differences between Euler and Maass
will be discussed.

l9It is not within the scope of this work to give a description
of Boolean algebra although some acquaintance with it is presupposed on
the reader's part. A good introduction is Lewis's Survey.



Hamilton.zou Their reaction against Hamilton's systemn laid the basis for
a truly mathematical logics

Sir William Hamilton rejected traditional Aristotelian logic on
the grounds that it was too narrow. The solution to this narrowness, he
felt, was not to be found in a new system but in an expansion of tﬁe old.
This expansion was to be accomplished by the quantification of the
predicate.21 Such a move naturally made Euler's and Lambert's diagrammatic
schemes obsolete in their original forms. In his lectures Hamilton used
revised versions of both of these schemes but he also developed his own
”g“eometric"22 system. This is not a geometric system in our seﬁselof
the word Ygeometric'". It comsists of 1) ; chart which illustrates
Hamilton's concept of breadth and depth in reasoning, 2) a diagram,
consisting of four concentric triangles, offering a.condénsed view of
Hamilton's scheme of syllogistic notation and 3) a table of syllogistic
‘moods illustrating Hamilton's,wedges,Z3 Thus Hamilton makés use of three

2L

systems of logic diagrams: 1) circular, adapted from Euler, 2) linear,

25

adapted from Lambert®™ and 3) wedges, origina1°26 Hamilton mistook

O ewis, op. cite, p. 37.
2117 2 (a) and (¢), II 5 (a) and (b), especially II 5 (a).

22Quoted by Venn, op. cit., p. 521 but I have not been able to
find it in Hamilton. A :

2211 5 (a).
2k 2 (a).
2311 3 (b)

26See note 23 above.
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Maass“é triangular system, apparently because he judged the diagrams with-

out reading the text, for an attempt at an angular system and dismissed

it without further consideration.27
Augustus de Morgan fought a continuing battle with Hamilton for

credit as discoverer of the guantification of the predicate. His logic,

because he was a mathematician, took a mathematical point of view.

De Morgan read Boole, apparently with little enthusiasm, although they

have much in common.28 De Morgan was not, howe&er, the system-builder

that Boole was so that much of his work concerned fine points, He also

wrote many articles and wasted much time in his feud with Hamilﬁon;

29

De Morgan continued to write such articles long after Hamilton's death.

De Morgan's Syllabus for a Proposed System of Logic was published the same

vear as Hamilton's Lectures. In the Syllabus, de Morgan offers charts

Wwhich are similar to those of Hamilton. "

De Morgan mekes no claims about
logic diagrams. He does not seem to think of his chart as such but since
it is necessary to examine Hamilton's charts. it is waluable to look at

de Morgan's as well,

27Venﬁg op. cit., p. 516 and Sir William Hamilton, Lectures on
Logic, ed. Rev., Henry L. Mansel and John Veitch, New York: Sheldon and
Company, 1876, pp. 669 = 670,
28A basically mathematical approach was fheir greatest common
ground. ‘

29This is important because it forced de Morgan to develop a
mathematical system. See Lewis, op. cit., pp. 37ff. for a thorough
description of the relationship between de Morgan and Hamilton particularly
concerning de Morgan's attempt to mathematecize logic.

11 5 (v)
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4o Its Maturity (1870 - 1882) -

The contributions to the more espteric branches of the literature
of logic by W. Stanley Jevons included a paper "On the Mechanical

Performance of Logical Inferences' (1870) and Studies in Deductive Logic

(1830). Jevons seems to have been the first major logician to have real-

ized the importance of Boole's discoveries and made a strong case for

31

Boole as the discoverer of the quantification of the predicate.
He did not, despife a healthy respect for Hamilton's reputation, accept

Hamilton's complex diagrammatic system, but suggested that we can get

32

¢

along quite well with Euler's diagrams.
Jevons' importance for us rests in two instruments that he
developéd. In the 1870 articie he describes a machine, played rather like
a plano, which solves problems in ldgici.53 In his Studies he describes
a 'slate' which operates on the same principles. The logical structure of
these actually prefigures the diagrams of Venn. In some manner all
possible combinations of the positive terms and their negatives in a
sjllogism are represented. Through mechanical means those which are
inapplicable, because of the premises, are removed. From what remains we

34

read off all possible conclusions. All of the mechanics which appeared

to be so original in Venn are represented in Jevons® machines. What is

BlEven Jevons did not fully appreciate Boole's significance as
he applied Boole's system only to Aristotelian syllogisms.

>2por Jevons' interpretation of Euler see II 2 (a).
gee also Gardner, op. cit., pp. 91ff.

25T 2 () .
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original in Venn is the depth of interpretation of these mechanics.
Jevons' own interpretation included the idea-that every positive
term must be repreéented in what remained on the machine. That is, he
believed that we could not reach a negative existential conclusiono35
We will see in Venn that Jevons was wrong yet we mﬁst face this éerious
problem of the import of existéntial conclusions later.36
Meanwhile on the continent the network diagram was invented and
carried to virtual perfection by Gottlob Frege. His symbol of closure37

is still in use. This symbol was part of a very complex notation fully

described in Begriffsschrift, eine der arithmetischen nachgebildte Formel=-

sprache des reinen Denken (1879). This notation is criticized as unwieldy

by Venn who thought of it only as a notational system. Frege, of .course,
unlike Venn,; Euler, etc., did not haveva notational.system apart from his
diagrammatié system so that the criticism is partly valid but Frege's
notation is no more unwieldy th;n Venn's diagram5938 Aithough more
difficult for the beginner to master than most, Frege's system is compre-
hensive and consistent. It is a great improvement over Hamilton's and

de Morgan's systems with regard to simplicity and over Euler's and

Lambert's with regard to universality. We will find that network diagrams

35For any A such that a is its negative at least one A must exist.
Thus given AB=0 we must conclude that AbZO and aB#O. - This is in direct
opposition to Venn's position. See II 2 (&). '

30171 4 (b)
37

l—

38The whole question of the relatiénship between.diagrams and
notation is taken up by Peirce. See also Gardner's discussion of
Marquand in Gardner, op. cit., p. 43 and IIT 1.



13

might well be more valuable for recording switching.circuit539 than are
Venn's and that when Martin Gardner seeks a diagram which will be useful

ko We should,

for teaching elementary logic he de?ises a network diagram;
then, give serious attention tc this branch of logic diagrams despite the
fact that they are far less common than géometric'diagrams,#l

When logic diagrams are mentioned the Venn diagram542 immediately
come to mind., They are easy‘to‘use and for the Boole-Schroeder algebra,
at least, comprehensive; John Venn introduced these in 1880 in an article
- "Cn the Diagrammatié and Mechanical Reﬁresentation of Propositions and

Reasonings', and further developed his system and examined other systems

of diagrams in Symbolic Logic (1894). The latter work has much invaluable

material including a thorough (though occasionally inaccurate) biblio-
grephy. Venn examines the diagrams of Euler and Hamilton and discovers

in them two systems of logic‘(the "predication'" and the '"class inclusion:
and exclusion" views):43 He accepts a third‘system which combines a
icompartmental® view gnd an "existential" view;#h This is derived from
Boole but Venn uses inclusive disjunction prior even to Schroeder'’s use of

it, Vemnn also examines the nature of the logic diagram and tries to

3911 4 (e) and IIT 2 (c)o

W11 L (g);

4lIncluded in network diagrams are the squére of opposition,
II 4 (al, and the diagrams of Lull, II 4 (b}, as well as the more modern
systens.

%211 2 (o).
B311 2 ().

bt o (c):
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show what is essential to these diagrams; Hamilton's and Frege's dizgram-
matic systems he examines as types of no't::iri::‘LOJ:L.L*5 Frege's he finds

awkward and Hamilton's incomprehensible; In Symbolic Logic he even

introduced Marquand's diagram which he accepted for most purposes;#6 of
Venn's own system we shall see much. It is geomefric, usually circular
for three £erms with ramificafions as more terms are added; It gives one
compartment to every possible combination of positive terms and their
negatives and works through empty compariments being shaded and occupied
compértments being marked in some way. For most purposes where a network
diagram is not required we will find that Venn's diagrams, augmented by
Marquand's or Carroll's for a large number of terms, are as adequate and
practical as any we have.47 Two further points concerning Vemnn should be
noted. First; he rejected the complicéted machines invented by Jevons;
The feud between Jevons and Venn was second only to that betweén de Morgan -
and Hamilton. More important, although he explicitly introduced the
universe of ciiscoursel+8 and accepted its importance he did not indicate
this universe in any way‘in hié diagrams;“9 vCarroll makes much of this

50

in his own system.

45See note 33 above for references concerning the relationship
between diagrams and notation. ‘

¥yenn, op. cit., pp. 139-140, also II 2 (4) and I 5.

47E;g; teaching elementary logic, set theory, etc. (see III).
quverything under discussion ‘is designated the "universe of
discourse'l, ‘

. ,Q%Thq entire page outside the diagram stands for the sub-class
abc...n '

P17 2 (¢) and ().
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Charles Sanders Peirce's diagrammatic systems span the whole
period from Venn's first article to the publication of the Principia

Mathematica. He began exploring graphs in 1882. His systems are of

three types: 1) the first system, 2) entitative graphs and 3) existential

graphs.52

These are all network systems but thenlines of the network
indicate objects and the variables indicate relations; The first system
'is little more than a convenient, rather idiosyncraticlnotation; The
entitative‘graphs allow reasoning of a sort; We may reach positive
conciusions but negation is more complicated; The existential graphs are
much more subtle éllowing diagrams about logic as well as of ita. Perhaps
the most interesting facet of Peirce's work is the fact that working
independently with very different presuppositions Peirce arrived at a
system which fits so well into the traditiom of linear and network

diagrams which includes Lambert and Frege.

5: Its Senescence

Venn's diagrams popularized a subject which had formerly been
ignored by most non-logicians: Iﬁ the three decades following the
publication of Venn's article not only philosophers but:also physicists
and even art historians tried their hands at developing better diagrams
. for more terms; The logic diagram was stretched, reshaped and twisted

23

until at one time it resembled corrals, at another a patch from a

leetter to O.H. Mitchell, December 21, 1882. Unpublished,
mentioned by Roberts in a lecture.

2211 1 (a).

531n Allan Marquand, "'On a Logical Diagram for n Terms"
Phllosophlcal Maga21ne, XIT (1881), 266=270.
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quilt°54 The period was notable more for its.thoroughness than for its

originality.55
Allan Marquand was an art historian who developed an interest in
logic machines and diagrams and in 1883 published an article #0On Logical
Diagrams for n Terms" under the influence of Venn's system.  Marguand's
aiagram is geometric:56 a square divided and subdivided according to
simple rules. This typé of representation is suitable for arguments
employing a large number of terms. It is important that Marquand closed
his universe of discourse but that his various terms after two were
broken into nbn-contiguoﬁs parts.57
A professor of physics, Alexander Macfarlane, stretched Marquand's
grid into one 1oﬁg thin strip of rectangles which he called a "logical
spectrum”.58 ‘This is described in two cryptic artiéles; "The Logical i
Spectrum’ (1885) and "Application,of the Logical Spectrum to Boole's l
Problem™ (1890). His method is noteworthy for its exact conjunction with

Boolean symbolism,

Perhaps the most fascinating and frustrating figure in the history

54In Williem Ernest Hocking, "Two Extensions of the Use of Graphs
in Elementary Logic", University of California Publications, II (1909),
31 - LPLI-- .

55With the notable exception of Peirce.
%011 2 (a).
57Compa:r'e this to Hocking on the one extreme whose terms all occupy
unbroken topological areas and to Macfarlane on the other who breaks every

term from two upward into two or more individual areas.

58The term "spectrum'" is to be taken analogously as we have a
line of distinct sgquares not blending into one another. II 2 (e).
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of logic is tﬁe Reverend Charles Lutwidge Dodgson,59 known to the world
as Lewis Carroll. There is something heroic in Carroll's struggle against
"'the Establishment'" and something tragic in his failure. The reason for
this failure was not the strength of dying Victorianism but that Carroll,
the rebel, carriéd within himself the wvery seed of Victorianism. An
anti-Romantic he was totally committed to Romanticism.GO In logic he

was anti-tradition but totally submergedﬂin Aristotelianism. We have

only two of his books on logic, The Game of Logic (1887) and Symbolic

Logic (1896). The first of these uses two diagrams and coloured markers
to solve problems in Aristotelian logic. The second is the first volume
of a projected three volume survey of all logic. Carroll stated that

he had a quantity of manuscript for the second and third volumes; this
was apparently thrown out at his death61 so that it is very difficult
for us to make an accurate assessment of Carroll's position. Judging |
from what we have,‘he was superficial, Although he had read Venn he did

not seem to have comprehended Boole., Like Marquand he closed his universe

of discourse but he made a production of this, ignoring Venn's acknowledge—

ment of such closure. In 1906 in "A New Logic Diagram" W.J. Newlin

presented yet another geometric s‘ystem62 similar to those of.Marquand and

Carroll,

59ewis, op. cit., p. 312, lists him as "S.G. Hodgson'.

OCarrollts failure as a logician is best understood in the context
of his failures in other fields.

61See the introduction to The Diaries of Lewis Carroll, ed. Roger
Lancelyn Green, London: Cassell, I, 1953.

6

21T 2 (g).
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W, E, Hocking, in the first half of "Two Extensions of the Use

of Graphs in Elementary Logic" (1909) carried this type of graph to its
logical conclusion.63 Every term was represented by a contiguous’ geometric
area bounded by one line. Although this was the ideal toward which the
diagram had been moving it was so confusing as to be almost unreadable.64
The last part of the Hocking article presented a diagram65 to aid in the
immediate inferences of categorical propositions and is unlike anything
else with which we will be involved.66 To save confusion we will examine

both of Hocking's diagrammatic systems together despite their different

PUTPOSES.

6. Its Death (1910)

We can imagine what should have happened to the logic diagram. |
Further experiments and ramifications would have resulted in the acceptance ‘
of some one system, probably Marquand's or Macfarlane's., We would then
have continued using this to aid our thought. -This is what might have

happened but it did not. It did not because in 1910 the logic diagram

-was murdered67 by the publication of the Principia Mathematica, written

311 2 (n).

hHocking realized this and was attempting only to show the
theoretical infinite extensibility of diagrams.

65Also examined in II 2 (h).
66

Though similar to Lewis's diagrams for the same purpose, II 2 (i),

67It might be questioned whether the logic diagram was really
dead, There would seem to be some evidence, particularly in the cases
cf Roberts' work of expanding Peirce'ls system to include the functional
calculus, and Gardner's network system, that such diagrams are very much
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b§ Bertrand Russell and A. N. VWhitehead. @ecause of the complexity of this
work, diagrams, even if there were a way of adapting them to represent

this system, would lose their value as illustratibns of arguments. We
would find it harder to follow a diagram of the developm;nts of the
Principia than we do to follow them in their symbolic form. Thus the
‘diagram, except as a tool for the teaching of elementary logic, pz.ssed

out of the field of 1ogic.68

7. Post Mortem (1918 - 1958)

There have been brief revivals of interest in the logic diagram.

In 1918 in A Survey of Symbolic Logic, C.I. Lewis discussed geometric

diagrams as examples of the application of a logical system and presented

69

his own diagrams for immediate inference.

In 1937 in Qu'est-ce Que la Logique, F. Gonseth developed an

70

interesting though seriously inadequate system of geometric diagrams.

In 1958 Martin Gardner investigated them in Logic Machines and

Diagrams. Unfortunately he thoroughly investigates only Vemn's systemo7l

In some cases he does not give examples, and in others he merely mentions

alive, and that they had merely suffered a temporary setback. Further,
the use of such diagrems in so many fields outside logic (see IID would
indicate that they are, at least, as alive today as they were in 1910,

68

With exceptions to be noted in I 7,
911 2 (1).

011 2 (5.

7lGardner is not, of course, claiming to do any more than he
actually does nor can he be expected to within the context in which he

is working.



72

systems without describing them.

73

systei,

20

He also develops his own network

This historical résumé is necessarily brief. The many logicians

who have used the diagrams without changing them have been omitted.74

Wie have mentioned only those who have contributed something of lasting

interest to the logic diagram or those who have influenced such contribu-

75

tors.

72rypsis is particularly unfair to Hocking and to Peirce. It
also to be noted that Hocking's and Lewis's diagrams for immediate
inferences go unmentioned.

7311 4 (o).

7hSpecial note should be taken of Keynes whose improvements
Lambert will be noted in II 3 (b) and of Copi in whom I first found
logic diagram.

75The influences on Peirce, since they come from chemistry,
logic, must be discussed separately in II 4 (d). We might add that
Peirce would seem to have developed a system which is adequate even
contemporary logic although his system is the only one that is.

is

on
the

not

for
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THE CLASSIFICATION AND DESCRIPTION

OF" VARIOUS SYSTEMS OF LOGIC DIAGRAMS

1. The Scheme of Classification

The scheme of classification used in this chapter is not intended
to be either the only or the best system. Its sole purpése is to arrange
logic diagrams in a convenient form for aescription, analysis and com-
parison and someone with other aims might wish to classify the diagrams
differently.l We will place each system of diégrams in one of four
classes:. geometric diagrams, linear diagrams, network diagrams, and
unclassifiable diagrams.

3

Geometric diagrams” we will define as all logic diagrams which
use a closed curve to enclose a topologically distinct area for each

term and which are used as an aid in the logical analysis of arguments.

lOne might, for example, wish to classify diagrams according to
adequacy, use, or some other criterion. Although the adequacy and uses
of these diagrams are relevant to this chapter they are not, since we
are primarily concerned with description, the best criteria for our
classification.

2These diagrams are, of course, classifiable and, in fact, are
classified but this term is used to indicate that the charts of de Morgan
and Hamilton are radically outside the geometric framework within which
we are working. We might have used some such class as '"other" but this
does not sufficiently indicate how radically these charts fall outside
our scheme,

311 2.
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Linear diagramsh will be diagrams which employ lines which do not
enclose topologically distinct areas for the representation of terms.

5

Network diagrams will be diagrams in which the argument is

traced out on a topological network.
Unclassifiable diagram56 will be all logic diagrams which are not

geometric, linear or network diagrams.

2+ Geometric Diagrams

(2) Euler
7

Euler's system' is based on Arispotelian logic. In every
proposition there are two terms A and B. A affirms or denies a subject;
B is an attribﬁte,8 A general ”notion",9 elther subject or attribute,

contains an "infinite" number of individual objects.lo Euler seems to

mean "undefined" rather than "infinite". Otherwise he could not define

AII e

21T ks

6II 5e

7Euler seems to think of his system of logic as a science. It is
introduced within the context of his psychology.

8Leonard Euler, Letters to a German Princess, trans. Henry Hunter,
London: H. Murray, 1795, I, 452.

9This term is introduced in Letter C, p. 440. Euler defines it
on p. 442 as "an idea formed by abstraction'.

POrler, op. cite, p. 453
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individual propositions as universal,ll since an individual cannot
contain an "infinite'" number of individual objects. We may then consider
the general notion as a space (i.e. two dimensional surface with only
one boundary) in which all of these objects are contained. The purpose
of such a diagrammatic method is to facilitate a more distinct compre-
hension.12
. . _ 13 . 14 .
Euler has seven basic diagrams ™~ (Diagram II). The first

(1Iz a)15 represents A or the subject of the proposition; the second (II b)16

llEuler, 0P, cite, p. 480. '"The same rules which take place in
universal propositions apply, likewise, to singular propositions."

lZEuler, ODo Citey pPo 454. '"These circles, or rather these
spaces, for it is of no importance what figure they are of, are extremely
commodious for facilitating our reflections on this subject, and for
unfolding all the boasted mysteries of logic, which that art finds it so
difficult to explain; whereas, by means of these signs, the whole is
rendered sensible to the eye." n

13I—Iunter appends a note to the effect that Euler originally
presented four basic diagrams which were eliminated from the Paris
edition. These are repetitions of II c), d) (without bracket), e) and f)
and would seem to be superfluous. It is worth noting that these four
diagrams in Hunter's note (Duler, op. cit., p. 455) are drawn, for no
apparent reason, with dotted rather than solid boundaries.

lgEvery effort has been made to retain the original peculiarities
of drafting in all the diagrams in this work. Where we have been forced
to depart from the original, note will be made of the fact. Two exceptions
to this statement are size and position. Unless the size of a diagran
is relevant to its logical import it has been made whatever size is most
convenient; unless a diagram's position on the page is of logical signifi-
cance it has been positioned wherever is most convenient. Hereafter,
the word '"diagram' will be omitted and diagrams will be referred to by
number and letter. For example, (IIa) will refer to diagram II, sub-
section a),
) lsEuler, op. cit., Plate I, Second Series, facing page 460, Fig. l.
Other diagrams from this page will hereafter by referred to as Euler,
I, Fig. n, where n is the number of the figure.

16Eu1er, I, Fig. 2.



enclosing within its boundary that representing A4 ("All A is B")., The

2y

represents B or the attribute of the subject. The universal affirmative

17

proposition is represented by two circles (II c), that representing B
universal negative is represented by two mutually exclusive circles
joined by a bracket (II.d)l8 ("No A is B"). The particular affirmative
is represented by two intersecting circles (II.e)19 with the letter éZO
in the common portion and B in the non-A part of circle Q?l ("Some A is
Bf; M"Some B is A'; "Some B is not A"; '""Some A is not B")22. The parti-
cular negative is represented by similar circles (II f)23 with the letter
4 moved to the non-B portion of circle A ("Some A is not B"). There is
cbviously some confusion here with twe diagrams representing the same
type of proposition. We may improve Euler's_positionza by positing that
only that portion of the diagram for a pérticular proposition containing

the letter A is claimed to have members. This would make II e represent

17Euler, I, Fig. 3.
18

Zuler, I, Fig. 4.
19Euler, I, Fig. 5.

. 2OEuler does not point out the position of the letter A thus
leaving the door open for the confusion which arises between II.e and II f.

21Thls seems to indicate that there is some B apart from the A
portion if we are indicating the particular prop051t10n by the letter A
See the following discussion.

221f we ilgnore letter placement as an indication of the existence
of objects in a compartment we might read it any of these ways.

22mler, I, Fig. 6.

24We are here making explicit what Euler was actually doing but
he never states that he is using letter placement in this way.
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" "Some A is B'" and "Some B is A". The seventh diagram (I g)25 is a
special case of Il ¢ in which there are no A which are not also B ("a11
A are B'; "Some B is A'; "Some B is not A™). Our interpretation would
reduce the meanings of this diagram to "All A are B" and "Some B are A",

Notice ...wu.: be tals wuler's use, even in his basic diagrams,
of parenthesis to link circles which are terms of the same proposition
but are not otherwise linked in the diagram (II d).

Euler then goes on to attempt to give diagrams, by means of
various combinations of his basic diagrams, for all possible combinations
of two propositions to form syllogisms. In the first proposition in any
of these syllogisms A is always the subject and B the predicate. In the
second C always appears. The conclusion relates the term from the first
proposition which does not appear in the second to C. An example will

illustrate this:

Every A is B (II.¢)
No C is B or No B is ¢ (II.4) 26
JSNo Cis A (III a)

Sometimes it takes several diagrams viewed together to arrive at a
conclusion. This happens when the diagrams for the two premises may be

combined in more than one way:

No A is B (I 4)
Some C is B or Some B is C (Ii.e) s
/.Some C is not & - (IIT . b.c . d) 7

We may also show with these diagrams if no conclusion follows from the

25
26

Euler, I, Figo 70
Euler, I, Fig. 1l.

27Bqler, I, Fig. 21-23.
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given premises:

A1l A is B (IT ¢)

No C is A (II &) :

. : 28 . 829

', No conclusion® (IIT e. t. g)
A slight discrepancy, which does not affect the result, may be noticed in
the above situation. No diagram is given for the case in which C is
totally excluded from B. One case is not examined. We will examine
more serious difficulties in the examination of all cases along with
discrepancies in the placing of letters later in this section.

Before we turn to the other logicians' assessment of Euler we
must look briefly at his use of the asterisk.3o He does not introduce

this until he begins to apply his diagrams to actual arguments. A sample

syllogism will illustrate the use of the asterisk.

No A4 is B (iI.d)31
Some B (the* porgion) is ¢ (IV.a)” 33
.. No conclusioni“ (IV b.c &)

We should note that IV.c meant to represent the situation in which all

28..: . . .
Euler uses '"no conclusion'" to mean no valid conclusion. Euler,
OD. Cit., pp. 458 ff.

2JBuler, I, Fig. 12-1k.

3OEuler does not discuss or explain the asterisk. He simply intro-
duces it (p. 446) in a problem and uses it. He only uses it in cases of
actual arguments using words. We have reduced these arguments to syllogisms
with variables by replacing the words with symbols,

3:I'Euler, op. cite, Plate II, Second Series, facing page 468 (actually
facing page U465 although 468 is printed at the top of Plate II - perhaps
an error in binding), Fig. 15. Other diagrams from this page will here~
after be referred to as Euler, II, Fig. n, where n is the number of the
figure. . o :

32hler, II, Fig. 16-18.

33Actually we may reach the conclusion "Some C is not B" but
Euler does not mention this.
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C vhich is not B is included in A not only fails to do this but also

represents an impossible state of affairs according to the premise;.

The asterisk method may be used to show that a syllogism is invalid:
Some & (the * portion) is B (IV a)

No B is C (I1 q)
.. Some C are not A :

(Ive rf 8)34
This is obviously invalid in IV £,

There can be no question about the impact of Euler's system of
diagrams on logic. Venn found that the majority of logicians in the
early nineteenth century used some type of diagrams to illustrate reason-

35

ings: most of these simnly used Euler's diagrams, as tﬁey were, to
apply to Aristotelian logic.

It was not until the Lectures of Sir William Hamilton that Euler's
system found a ”broader”36 application., Hamilton interpreted Euler as
having four basic diagrams representing the four types of propositions

37

in Aristotelian logic. Modifications in the drafting”’ may be noticed in
the A proposition (A1l A is B") in which the inner circle is not concentric

to the outer (V a).38 This has no logical implications. More important

Pguler, II, Fig. 20-22.
35Venn < i
s OPo Cit., p. 110 footnote.

Z

)6Broader for Hamilton in the sense that he believed that his
system was broader. The claim that it is actually broader would seem
to be dubious.

37Non—essential modifications will be pointed out only in the case
of Euler. The reader will then be left to discover these for himself in
other logicians, but it is necessary to present some so that the reader
may know and form an opinion about those aspects of the diagram which
this writer feels to be unimportant. :

38Hami1ton, Opes cit., diagram V. a-d, found at p. 180.



28

is the fact that Hamilton ignores Euler's letter placement and seems to
substitute the placement of the circles themselves to indicate which
proposition a particular diagram indicates.39 The I proposition ("Some
A is B") is illustrated by two horizontally linked circles (V ¢) while the
O (“Some A is not B") is illustrated by two vertically linked circles
(v.a). Hamilton mekes no mention of the asterisk. It would seem that
Eulier's lettef placement or his asterisks is a simpler method of distin-
“guishing the I and O propositions than Hamilton's differences in linkage.
Only the E proposition ("No A is B") remains the same in Hamilton's
interpretation of Euler's system as in the original system (V b), 10

When we look at Ha@ilton’s application of Euler's system we find
that he did not, in fact, consistently maintain the two types of linking
as a method of distinguishing the I and O propositions. The I proposition
is represented four times by horizontal linking (VI.a.e.g h), three times
by vertical linking (VI b d ﬁ), and six times by diugonal linking (VI ¢ i
k1 m o). The O proposition is represented by two different types of
linking: once by horizeontal linking (VI f) and once by diagonal linking
(VI j). It is never, except in the introductory diagrams, represented
by vertical linking. An examination of the diagrams used to solve

syllogisms containing particular propositions (VI, e.g. g and j)ql shows

39”Seems” because this is never made explicit in Hamilton.

. :
‘oExcept that the bracket is not used by Hamilton but neither
is it consistently used by Euler.

qlDiagrams in VI are found in Hamilton, op. cit., pp. 290-301.
We have repeated all the relevant diagrams although some redundancy is
involved. , ‘
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that Bamilton did not diagrammatically distinguish between the I and O
propositions which leads to the conclusion that his interpretation of

Euler is inadequate.

42

Hamilton expanded Euler's diagrams to include sorites. Hamilton

recognized an amazing variety of structure within sorites, compared to
his predecessors, but all this could be reduced to three diagrammatic

representations. First there is the affirmative sorites in which the

concepts are cobxtensive (VII a):

A ds B
Bis C

¢ Cis D
Dis E
oA dis B

Secondly there is the affirmative progressive or regressive sorites (VII b):
All E is D '
A11 D is C
411 C is B
All B is A
J.A1L E is A

and A1l B is A
All C is B
Al1 D is C
All Edis D
, A1 E is A

And finally there is the negative sorites (VII ¢):

A is B

B is C

C is D-

D is E

No A is P
..No B is P

Hamilton believed that he had extended Euler's diagrams to cover

42Hamilton, ov. Cite, p. 261l.
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L3

more relations of concepts. Hamilton listed five such possible relations.
Exclusion was illustrated exactly like an E proposition (VIII a). Colxten-
sion used oune clrcle with one side slightly thickened and two letters
placed in it (VIII b) to indicate that one concept was the same as the
other. Hamilton's illustration of subordination is exactly like Euler's

diagram for the argument Barbara sans letters and is self-explanatory

(VIII.c). The fourth of these diagrams of the relations of concepts is
the most troubling. It has two circles joined by a curved line. One
circle is divided in half and the other has three independent circles
within it (VIII d4). Hamilton defines coBrdination, which this illustrates,
as follows:

Two or more concepts are coBrdinated, when each

excludes the other from its sphere, but when

both go immediately to make up the extension of

a third concept, to which both are cosubordinate.

(Lectures, p. 134)

From this it is obvious that the curved line joining the large circles
is meant to show that they are two distinct diagrams meant to illustrate
the same type of relation. The first diagram fits the definition well
but the second does not fit it at all. The three small circles do not
go to make up the large one; ﬁamilton ought to have cut the large circle,
like é pie, into three wedges. The final diagram (VIIi e), when the
circles are reduced to two which interséct, is simply Buler's diagram
for the I proposition and this seems to be what Hamilton intends partial

cofnclusion and partial colxclusion to be.

Hamilton extended Euler's diagrams, as we have seen, in many ways

QBHamiltqn, Ope_Cites Pe 133.
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but the most important; Hamilton felt, was the extension to cover the
quantification of the predicate. He believed that traditional Aristotelian
logic was too narrow to be of much use but that'if the predicates of
propositions were modified by "all" and "some' we would be able to construct
many more sylloglsms., This'modification gives us eight basic propositions.

bt The first proposit-

which may be illustrated by means of four diagrams.
ion ("A11 © is allT ") is really cobxtension (IX a). The choice of letters
here was dictated by their position in their respective alphabets. The
next two ("All C is some A" and "Some A is all C") may be illustrated

by a diagram similar to Euler's for the A proposition (IX b). FHamilton
should have added, for completeness, that "Some A is not all C" and "Some

A is not some C" but he wanted to reserve representation of these proposit-

45

ions for the fourth diagram. Tﬁe diagram for the fourth prbposition
("ny C is ﬁot any D) (IX c¢) might also be said to include "Any C is not
scme D'; "Some C is not an§‘D”iand "Some D is not any C", but again
Hamilton reserves these propositions for th§ final diagram. The final
diagram (IX d) supposedly represents four propositions ("Some C is some
B':; "Any C is not some B"; "Sorie B is not any C" and "'Some C is nat some
B")., That one diagram can represent so much is confusing; that individual

propositions can, contrary to Hamilton's belief, be represented in so

many ways is even more confusing. We will reserve further criticism of

QqHamiltonr op. cit., p. 529,

quenn points out these and the following weaknesses. Venn, op.
¢ite, p. 11. They are similar to those of which Carroll accuses Euler.
Lewis Carroll, Symbolic Logic, New York: Dover Publications, 1958, pp. 173=
174, See particularly II 5 (a). '




the doctrine of the guantification of the predicate untlil such time as
we have Hamilton's total position before us.q
Hamiltoﬁ stretched Eulerﬂs system to include sorites, the relation

of concepts and the quantification of the predicate. Most oéher philo-
sophers adhered fairly closély to Euler's original diagrams. Jevons felt
that Buler's diagrams were about as thorough as any could be. He did

find it necessary to improve the representatlon of the I and O propositions.
Jevons noticed and accepted Euler's letter placement. His criticism is
well founded. Suppose "§ome A is not B" (X a). It may or may not be the
case that "No A is B" but the diagram prejudices this. dJevons uses a
dotted line&7 to indicate the possibility that '"No A is B" (X .b). Thus
a compartment bounded by a dottéd line and having no letter in it may or
may not exist. A similar problem arises with the proposition "'"Some A

is B" (X c). Removing that portion of A which is excluded from B (X d)

or bounding it with a dotted line (X e).will prevent us from overlooking

48

the possibility that YAll A is BY, The dotted line would seem to be a
better method than the’erasure of compartments as such erasure (e.go-X,d)

prejudices the case in exactly the opposite way making it difficult to

Y11 5 () and ITT &4 (a).

M7William Thomson, Laws of Thought, London: Longmans, Green, 1869,
p. 190 also mekes use of dotted boundaries but he does not seem to realize
that he has changed Buler‘'s system. See p. 189 particularly. The first
conscious and consistent use of such boundaries may be credited to Jevons.

48W Stanley Jevons, Studies in Deductive Logic, London: Mzcmillan,
1880. For a criticism of Jevons' dotted boundaries see Venn, op. cit.,
Do 13. His criticism seems to presuppose that one is going to shade the
diagrams to indicate that their compartments are empty but I am not entirely
sure what Venn is saying. Note that (X.d) also prejudices the case.




realize that there may be some A which is not B. IEven the dotted line is
difficult to work with and was superseded by Venn's method of shading
compartments to show that they are empty and'marking them in some other
ménner to show that they have contents.

Venn suggests that there are four possible forms of logical

49 50

propositions ¥ which are not always compatible. At this point we must

examine the first two. The first is the prediéation51 vﬁew. It is
essential to this view that subject and predicate be distinguished in any
‘proposition. The predication view asserts that a subject possesses or
does not possess a certain attribute. The predicate is not gquantified
except in convertible propositions. The predication view yields four

possible propositions:

Universal affirmative: "A1l A is BY

Universal negative: MNo A is B"
Particular affirmative: '"'Some A is B"
Particular negative: "Sorie 4 is not B

There are no diagrams adequate to represent the predication or Aristotelian

52

view,

23

The class inclusion and exclusion view”” may be represented by

49See II 2 (c¢) for the two other views, the compartmental and
existential views.,

5OSee Venn, op. cit., chapter I.
51

i.e. Aristotelian.

52If Venn is correct in this it would seem that translation from
Aristotelian logic to the propositional calculus would be impossible as
diagrams can be drawn for the propositional calculus (e.g. Gardner).

Since such translation is possible it would seem that Venn is, to some
degree, in error. ,

53

i.e. Hamiltonian.



five diagramssg which are a modification of Euler's. The first of these
diagrams (XI a) illustrates the case in which one class is totally included
in the other and also wholly includes it ("All A is all B'"). The second
(XI b) and third (XI ¢) illustrate the cases in which one class is totally
inciuded within but does not include the other class completely (MAll A
is some B" (XI b), and "Some A is all B" (XI ¢)). The next diagram (XI d)
illustrates tﬁe case in which a portion of'each class is included within
the other (i.e. the classes have a common portion) ("Some A is some B").
The final diagram illustrates the case in which the classes are mutually
exclusive (XI e) ("Any A is not any B'"). Tn all these propositions
"some' signifies ''some not all'. It is doubtful whether Hamilton would
have admitted that some means some not 211 since he permits individual
indefinite propositions in which some must be equivalent to all (e.g. An
Inglishman generalized the law of gravitation). In the class inclusion
and exclusion view subject and1predicat¢ are acc¢ldental; the terms may
be taken in either order.

Venn then presents his interpretation of Hamilton's eight
propositions:

"A11 A is all B"

"A1l A is some BY

"Oome A is all B!

"Some A is some B"

"Any A is not any B"

"Any A is not some B"

"Some A is not any BT

Some A is not some B"

The first five of these are the propositions which the above restatement

5L*Venn, op. cit., P- 7 and p. 310.,



of Euler's logic diagrams illustrate. The last three are equivalent to
one or more of the first five and on this ground are rejected by Venn.55
Finally, before he proceeds to the other two views, Venn compares
the merits of the predication and class inclusion and exclusion views of
logic. The former is more capabie than the latter of expressing common
language but the second has the advantage of being diagrammatically
illustrableas6
Although negative terms had been introduced to logic through
Boolean algebra long Before this time, and although Venn and Jevons
used such terms, they made no attempt to apply Euler's diagrams to them.57
This was done by Lewis Carroll58 with incredible results. Carroll seemed
to believe that the digpgrams that he was using were Zuler's original
basic diagrams. They have, in fact, been radically interpreted. The
diagram in which y is totally included in x is found in Venn but is in
neither Euler nor Hamiltop‘s interpretation of him., The diagram illustrat-
ing the C proposition is droppéd on the grounds, apparently, that it is
the same as that for the I proposition. No account is taken of the
placement of letters or of the use of the asterisk. With the introduction

of negative terms Carroll's interpretation of the four diagrams is as

follows:

55Venn, op. cit., pp. 9 ff. See also II 5 (a),
56Venn, Op. Cite, DPo 16 ff.

57Unleso, of course, one thinks of the Venn dlagrama as Peirce
does, merely as an expansion of Euler's.

580arr&>11, op. cit., ppe 173-17kL.
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(XII a) "All x is y": "No x is not-y"; "Some x are y'; "Some y are not-x';
"Some not-y are not-x"; '"No not-y are x''; "'"Some y are x''; '"Some
not-x are y" and "Some not-x are not-y"

(XII b) "All y are x''; "No y are not-x''; "Some y are x'; "Some x are
not-y'"; "Some not-x are not-y''; "No not-x are y'; "Some x are
y''; "Some not-y are x" and "Some not-y are not-x'

(XIT. ¢) "All x are not-y''; "All y are not-x"; '"No x are y''; "Some x are
not-y'"; "Some y are not-x'"; '"Some not-x are not-y'"; "No y are x';
"Some not-y are x''; "Some not-x are y''; "Some not-y are not-x'

(XII @) "Some x are y"; "Some x are not-y'; "Some not-x are y'; "Some
not-x are not-y'"; "Some y are x''; '"Some not-y are x''; "Some y
are not-x" and "Some not-y are not-x'"

This system, according to Carroll, works out very well for universal

propositions but for any particular proposition at least three diagrams

are required to cover all cases. Lven worse, "Some not=x are not-y'" is
invariably true. "Apparently," says Carroll, 'it never occurred to him

[Buler] that it might sometimes fail to beAtrue!"59 As a matter of fact,

if Carroll had examined Euler's original work he would have realized

that, since negative terms were not in use in Euler's time, his criticism
is pointless. BEuler's diagrams were designed expressly for Aristotelian
logic which used no negative terms and if we eliminate the propositions
containing negative terms from Carroll's analysis of the diagrams we

find ourselves back with a set of propositions basically the same as

Fuler's.

Carroll further illustrates Euler's diagrams by applying them to

a syllogism. Since the syllogism contains hegative terms we may safely

59Carroll, op._cit., p. 174,
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ignore it.6o One can charge Carroll, like Hamilton, with careless
scholarship.

Peirce uses the term "Buler diagrams' to apply to all geometric
loéic diagrams and does not feel that Euleris diagrams are different in
kind from Venn's as Venn claims.62 This makes it rather difficult to
sevarate what he says about Venn's and Euler's diagrams. The two

63 which he discovers apply not to Euler but to Venn.

principles
Peirce, as an introduction to his existential graphs, gives a

list of all possible Euler diagrams with their rneau’x:'mgs.&+ It will be

6OCarroll, op. cit., 180-182. The argument requires eighteen

diagrams. It is:

No x are m

Some m are y'

S, Some y' are x!
Carroll says (p. 182) . . . he [Euler] seems to have assumed that a
Proposition of this form [Some y' are x'] is always true.' Since there
is no mention of negative terms in Euler and since only the areas inside
the circles are relevant in Kuler, the whole example becomes, at best,
irrelevant. Euler could not have considered either the second premise
or the conclusion in his -system, and Carroll's extension of the system to
include these 1s clumsy, especially since he does not seem to feel that
he has gone beyond Euler. x' is the negation of x.

61This charge in regard to Euler and Venn (See II 2 (¢)) does not
detract from Carroll's significance in other ways. His own diagrammatic
system (II 2 (£)) is particularly valuable.

62Collected Papers of Charles Sanders.Peirce, ed. Charles Hartshorne
and Paul Weiss, Cambridge: Harvard University Press, IV, 350 ff. The
final number in a reference to Peirce refers to a paragraph rather than
to a page. Hereafter such references will be made according to the convent-
ion adopted by Peirce scholars (e.g. Roberts, op. cit., p. 6) as Peirce
4,350, The number before the decimal refers to the volume number and that
following, to the paragraph number. The number above refers to Volume IV
of Peirce's collected papers, and to paragraph 350 in that volume.

peirce L.351.

64We have reserved Peirce's treatment of particular propositions
until II 2 (c) as they really are treated within the framework of Venn's
rather than Euler's system.
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goes beyond Aristotelian logic:
(XZIIT a) Entire ignorance

(XIIZ. b) Any P is S

(XIII ¢) No S is P

(XIIT d) There is no P

(XIIT e) Any S is P

(XIII f) S and P are identical

(XIIT g) There is no S

(XIIT h) “‘here is neither S nor P

Note that Peirce does not use letter placement to indicate class membership.
Similar possibilities which cannot be represented66 includes

Everything is either S or P
Everything is P

No 8 is P but everything but S is P
Everything is S and nothing is P
Everything is 8

Everything is both S and P

Nothing is S but everything is P
The universe is absurd and impossible

The failure of Zuler's diagrams to represent such propositions is their
major limitation. Other weaknesses include the inability of the system
to represent existence, to present alternative states, to express

67 Both Venn's

quantitative notions and to exhibit relational reasonings.
and Peirce's systems are attempts to overcome these limitations. It is
obvious that Peirce is not simply criticising Buler's diagrams as ﬁistor-
ically developed but that he has attempted to push them to the limit of
their representational ability for_universal»propositions. If we accept

this, we must point out that he might have overcome many of these weaknesses

65Peirce Le356.

Peirce is able to represent these by means of his existential
graphs (II 4 (d)). This list is also given at 4.356.

67Pe:i.r'ce L4356,



by proper letter placement or asterisks. To Peirce Euler's diagrams were

really nothing more than a prelude to his 'chef d'oeuvre"68 the existential

69

graphs.
C. I. Lewis presents Buler's four diagrams7o for the.A (XIV.a),

the E (XIV b), the I (XIV.c), and the O (XIV d) propositions much as

Fuler himself had except for the vlacing of the small circle in the first

71 Instead of

diagram and the use and placement of.lOWer case letters.
letter placement Lewis uses the asterisk in particular propositions.

Lewis points out that the represéntation in the diagrams goes
beyond the relation of élasses indicated by the proposition. For example,
from the iliustration of the A proposition (kIV" a) we would draw the
invalid conclusion that ""some B are not A". This and other similar
ambiguities result from the fact that there is no way of rendering any
compartment empty and the ensuing general assunption that no coﬁpaftment

72

is null, Venn's system is an attempt to rectify this.
Gardner mentions LZuler's sys‘l:em’?3 but dismisses it without exam-
ination to turn to Venn's more efficient method. We should realize before

dismissing Luler so quickly that his method was developed expressly for

68Pe_irce3 title page between L,346 and 4.347.

, .
09Note the position of the section on Euler diagrams immediately
prior to his exposition of his own existential graphs.

70Lewis, 0p. Citey, pPo 176, Fig. 1.
71These points are not logically relevant.

72Lewis, op. cit., p. 176.

77Gardner, op. tit.y, p. 3l.
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aristotelian logic while Venn's was developed to apply to Boolean algebra,

which includes & much wider variety of relations and allows negative terms,

n -

Even if we find that Euler's diagrams are insufficient for

75

ag well.
Aristotelian logic'” they retain their hiétgrical significance, and their
influence on later logicians should not be undereétimated.

We should now be able to pass judgement on Euler's diagrams.
Reference has already been made to their weaknesses when‘we try to go
beyond Aristotelian logic so we will concentrate onthose weaknesses
Whiéh make it difficult to apply the diagrams even as they were intended.

Euler was genefélly very careful about the placement of his
letters but he believed that the I proposition was counvertible. For
example he introduced the following valid syllogisms:76

No A is B

Some C is A or Some A is C

."» Some C is not B
and No & is B

Some C is B or Some B is C

.. Some’ C is not B
But Euler's placement of letters does not allow "Some A is C" (XV . a) to
equal "Some C is AM (XV b) diagrammatically. Since the conversion of
the I proposition'can be established by any of several methods we would
suspect that the placement of letters is incapable of dealing with I

77

propositions.”

n
7‘See II 2 (c).
75A discussion of this follows.

76Euler, op._cit., Letter CIII,
7

asterisk.

?Euler might have overcome this difficulty by the use of the
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Finally we must ask whether the diagrams work for Aristotelian
syllogisms. The critical case would be the situation in which two
'particular propositions are premises. Any conclusion based on these will
be invalid. Can this be shown diagrammatically? Suppose that '"Some A
is B" and "Some B is not C'"., \When we diagram this we arrive at seven
distinct diagrams (XV c.d.e f g h.i). From this confusing collection
it is hard to see whether there is a conclusion or not. Thus even in
Aristotelian logic, Zuler's diagrams fail to fulfill their purpose.78
Acknowledging Euler's importance as discoverer of the modern logic diagram
and his influénce on the history of logic, we must, when we wish a diagram
for practical purposés, turn to some other system. Such a comment as
this would seem to be unnecessary in the face of all that other logicians
have raised against Iuler's system yet his diagrams continue to be used
in elementary logic texts despite the advent of easier and more adequate

systems of diagrams. Such continued use can only be a puzzle for those

who study the history of the logic diagram.

(b) Maass
In Maass' system triangles are substituted for Euler's circles.
The perimeter of a triangle with the letter "a" in one angle‘represents
the boundary of the concept 379 (XVI.a). The area of the triangle thus

represents the extent of the concept. If two or more terms are placed

78See Venn's criticism on other grounds. Venn, op. cit., pp. 16ff.
79Maass, op. cit., facing page 290, Fig. I. Hereafter references

to the diagrams in Maass facing page 290 will be abbreviated to Maass,

Fig. n, where n is the number of the figure in Maass. Thus the above

would be written, Maass, Fig. I.
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in two'or more angles of the triangle the equivalence of the concepts is
represented (XVI b)°80 Maass introduces the dotted line to represent
possibility. Thus XVI 081 says that there is a concept a which includes
everything bounded by the triangle with side k but may also include every-
thing bounded by the triangle with side/M. This allows the possibility
that a concept includes more than is stated in.a proposition about that
concept. 4 diagram (XVI d)82 may be drawn in the same manner but which
allows the narrowing of}the concept rather than its broadening. A final
diagram (XVI e) illustrates fhe_point that everything outside the triangle
is a negative of the cohcept represented by the triangle. With these
basic diagrams in mind we may now draw diagrams for the four basic
Aristotelian propositions and for a fifth proposition introduced by Maass.
M411 a is b" (XVII,a?83 shows that a is included within b but that b may
or may not be broader than a. This would seem to be an improvement over
Zuler as in it Maass consciously attempts to avoid prejudicing the‘case

as to whether‘the compartment which is b but not a has contents. To
represent '"No a 1s b" we put 2 and b in the acute angles of a rhombus

and join the oblique angles with a straight line (XVII.b),,&+ This gives

80Maass,'Fig. Iv,
81Maass, Fig. II,
82Maass, Fig. III.

83Maass,vFig. XITI. Ve have made the lines of uniform thickness
and eliminated two letters which serve a purpose in Maass' description
but tend to lead to confusion in this context. In all of the following
diagrams we will make such changes when there is danger that the essential
point of the diagram will be lost if such changes are not made.

B}

84Maass, Fig. VII.
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us two triangles falling entirely outside each other, one representing a,
the other b. The representation of "Some a is b" is simply two triangles
overlapping to form a common triangle with the sides falling outside the
common triangie represented by dotted lines and the angles opposite the
dotted lines labeled a and E\(XVII.C>.85 The particular negative proposit_
ion is represented as a universal negative with dotted lines to indicate
the possibility that the predicate may be partially or completely

included within the subject ftaken in total (XViI\d).86 Maass also allows
the relation of subsumption in which one concept is actually broader than

another. # diagram for "a is subsumed under b" is the same as that for

?

87

an 4 proposition except that the dotted line is drawn as solid (XVII e).
Maass generally uses his diagrams in two ways. The first is to show the
relationship of two concepts given their relationships to another concept.
For example we are given that a is subsumed under ¢, and b is subsumed
under c. We may see from the diagram'(XVIII a)88 that there are three
possible relationships between a and b: "a is equivalent to b"; "a and b
~are mutually exclusive" and "All a is b but all b is not a or vice versa'.
Maass® diagrams are more adequate than Euler's for such situations but
they are still very complicated to read compared to Venn's. The second
use of Maass' diagrams, which is really a subclass of tﬂé first, is as a

method of illustration of the laws of logic. We might, for example, wish

85Maass, Figa XTII.
86Maass, Fig. XIV.
87Maass, Fig. V.

8Maass, Fig. X.
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to show that two universal negative propositions cannot give any conclusion.
Maass points out that if we have two universal negative premises we may
draw either of two (at least) diagrams (XVIII b and c).89 In the first,
all a is ¢ and in the second, ﬁo a is ¢c. Thus no conclusion may be drawn
as to the‘relatiénship of a and g.'

Hamiltongo believed that Maass' system was angular (i.e. that the
angles represented the‘scope of the conc?pts) and rejected it outright as
impossible. He also critici;ed Maass for not making his lines uniform
and for using letters from mdre,than one alphabet. These criticisms

o they had logical signifi-

arise because when Hémilton used these devices

cance but when Maass used them, with the exception of the dotted line,

they had only the psychological significance of making the diagrams more

easily read. But Hamiiton thought that these various lines and letters

were employed for some logical reason and found himself unable to read them.
Venn clarified the nature of Maass' diagrams by pointing out that

one could change the area of a concept by moving the line opposite the

92

angle marked for that concept, This is another way of describing the
use of the dotted line although Venn does not mention that particular
device. Venn does not, however, describe Maass' system with any degree

of thoroughness.

Although Maass' diagrams are an interesting variation they are

89 aass, Fig. XVII and XVIIL.
Pfamilton, op. cit., pp. 669-670.
91

E.g. his use of the comma, colon and lines of varying thickness.

7%Yenn, op. cit., pp. 515-516.
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not of great significance as they do not have the intuitive clarity of

Euler's and they are much less adequate than Venn's,

(¢) Venn
John Venn undoubtedly would have been shocked to find an exposition

95 yet such

of his syétem pfefaced by remarks on his arch-rival, Jevons;
remarks are necessary.> The method that Jevons applied to Boolean algebra
was to become the basis of the Venn diagrams. Let us take a simple

ok

problem. We are given the fdllgwing syllogism” ® and asked to verify it:

A=Ab (1)

C=alC (2)
.+ C=BC

95

fle write down all possible combinations of &, B, C, a, by, ¢’” and.strike
out those which the premises make impossible (XIX a)., "ABC" and "ABcY
are eliminaéed by premise 1, "A=Ab"., "ABCYand "AbC" are eliminated by
premise 2, "'C=aC". This 1eavesptwo combinations containing C, "aBC" and
"abC", Thus “C:BC+bC”96 and the conclusion is false,

Each of the positive terms, according ﬁo Jevons,.must have members

h {
or exist within ocur universe of discourse.97 Thus the elimination of

one positive term means that we have a contradiction among the premises.

93See Gardner, op. cit., pp. 104 ff. concerning this rivalry.
9uJevons, op. cit., p. 198. .
95"a” represents the negation of éf

,
6. - ) -
7 L1 represents either o o « Or o o W'fe

97This is not actually stated in wordslﬁy Jevons. but since he
practises it in his diagrams we may deduce that this is his position.
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A=AC‘ (1)

B=Bc (2)
B=AB (3)

When we diagram these premise598 (XIX b) we see that B has disappeared.
Therefore the premises are contradictory. We may also show how a conclusion
may be drawn as to existence within this system.

A=AB (1)
B=BC (2)

From the chart99 (XIX ¢) it will be seen that if "A" exists "ABC" must
also exist. Eut for Jevons every term must have existential import within
our universe of discourse. Thefefore, given these premises "ABCY is a
valid conclusion.

Jevons'! charts are not really diagramsloq but the method employed
is exactly the same as that in Venn's diagrams. Both attempt to represent
every possible "subdivision" of the classes or "compartments"lol involved.
For example, there are four possible subdivisions of the classes x and y:
Xy, XT4 Xy, E?.loa The general statement of the number of subdivisions

. . n s .
is "'n' terms gives 2 subdivisions.!" Thus for a diagram of an argument

9B revons, op. cite, p. 217
99Jevoris, 0D, Cit., pe. 216,

el s ey
1OOThis statement is true only if one makes the distinction between
calculus and diagrams. Peirce points out that such a distinction is, at
best, artificial and that all language is, in a sense, diagrammatic. See
II1. Gardner, however, makes this distinction and it would seem to be
convenient if not convincing.

101Venn writes of the 'compartmental! account of the import of
propositions. ' '

102 . - — s .
"al' is a positive term; "a'" is the negation of "a''; "ab"
represents ''the conjunction of a and b."
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involving 'n' terms there must be 20 compartments. For each term Venn
éonstructs a closed geometric figure which intersects each of the com-
vartments already produced doubling their number.lo3 Venn uses circles
for two and three terms giving the familiar Venn diagramsloq (XX a and
b). For four terms he must abandon circles and he turns to elipseslo5

(XX ¢). For five terms Venn is forced to abandon his geometrical plan

and resort to a doughnut-shaped figure106 (XX 4). He feels that for more

107

than five terms diagrams are of little value but proposes that for

six terms we might use two five term diagrams, one for the positive and

one for the negative.éspect of the sixth‘term108 (XX e). These five

diagrams are basic and what follows is a commentary and analysis of these,
Venn mekes a general statement of the method of drawing diagrams

109

for "'t terms without resort to figures of more than one topological

1030ne of the 2% subdivisions lies outside all the circles in
each of the following figures.

1
*OAVenn, 00e cit., p. 11lh4 and 115 respectively.
105Venn, 0p.Cite, p. 116.
106Venn9 op. _cit., p. 117. The hole in the doughnut is required
to bifurcate the compartment which is both y and w. Otherwise Venn would

have to use a horse-shoe shaped figure which would complicate the diagram
unnecessarilye.

% enn, op. cit., p. 117.

108This diagram is not drawn by Venn but it is described. Venn,
O0v. cit., p. 117, footnote.

lOgHenceforth the symbol "n" or !m™ will be used to represent any
posltive integer whatsoever.

C o
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110 .
class"ll If we have used circles to create a three term diagram we may

divide the compartments in such a fashion as to give a two-pronged
curvilinear figure (XXI.a). Dividing again in a similar manner gives

us a horseshoe-shaped figure (XXI b). This may be continued ad infinitumlll

with the addition of ever more éomplex figures of this sort, the problem

being, of course, that these figures will not be as clear as the ones

1
Venn uses.

113

Two general ''deductions" concerning the diagrams may be drawn:
Any two compartments which are adjacent differ by the
affirmation or denial of one symbol. When added we

drop the symbol.

That is to say, (abc)+(ab€)=(ab).llq

Any two compartments with two Dboundaries between must
differ in two such terms. The adding of four such
compartments allows the dropping of four terms.

That is (abed)+(abed)+(abed)+(abcd)=(ab). In both these deductions the

crossing of the same line twice is equivalent to not crossing it at alloll5

11OVenn does not give the diagrams in Symbolic Logic but he works
out the proof. Venn, op. cit., p. 118, footnote. The diagrams given here
are taken from an article by Vemnn "On the Diagrammatic and Mechanical
Representation of Propositions and Reasonings', Philosophical Magazine,
Series 5, X, July 1880. Further references to Venn will continue to
refer to Symbolic Logic despite the introduction of this article.

lllThe (4+x)th figure introduced into such a diagram has 2* prongse.
Venn, p. 119, footnote. :

112

The lack of clarity is attributable to the lack of regularity
in the diagrams.

113'\/‘enn, p. 119, EHe is not using the word in a rigorous sense but
seems to mean deductions based solely on the diagrams.
it

il#na+bv represents ''the alternation of a and be The Boolean formula,
by itself, can say nothing about adjacent areas. . = °

1 venn, p. 119.
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Venn's use of the inclusive '"+" should be noted. In Boole
(atb=l)=(abtab=0) but in Vemn (a+b=1)=(3b=0), that is (a+b)=(abrabrab). 10

To diagram any universal proposition ''p'' it is only necessary to
reduce it to the form £(n)=0''7 (where "n designates a combination of
classes derivable from ''p''), ana shade out all those compartments indicated
by £(n) to show that they are empty. '"All X is I" is translated into
Boolean algebra as "xy=0." Thus we diagram the universal affirmative by

shading out that compartment Gontaining both x and ¥ (xx11 a).ll8 Other

examples of the diagramming of propositions in various systems are given

by Venn:
x=y (0TI B2
K=y+7 (XxII )20
‘ 11

x(y+z)=1 (XXII Q)

116A third possibility was introduced by Jevons. Venn symbolizes
these possibilities as a(l-b)+b(1l-a), a+b(l-a) and a+b. ["1-a" is equiva-
lent in meaning to Z.] The first is Boole's, the second Venn's and the
third Jevons'. Jevons'! expands to ab+a(l-b)+b(l-a)+ab but since a+a=a
there would seen to be no essential difference between Jevons' version
of alternation and Venn's except that Venn's is more easily used. There
is, however, an essential difference between Boole's version and Venn's
in that Venn's includes ab while Boole's' does not.

ll?”f(x)” is "a perfectly general symbol for any class, group
or arrangement of classes that includes x in it." Venn, p. 263. "O"
is used tc mean that a class is empty. Thus "x=0" would be read ''there
are no x'".

118Venn, pe 122,

1 %enn, p. 122.

120Venn, p. 124,

lalVenn, p. 124, Venn ought to have shaded the Eiz compariment
but he does not mention this fact although he must have been aware of the
provlem as he points it out later in a similar case (enn, p. 342). '1¥
represents everything in the universe of, discourse.



50

Venn contrasts his system with Luler's by comparative diagrams.
The first in each case is Euler's:

No Y is 2
All X is ¥

.No X is Z ‘ (XXIII a)122

translates to:

yz:O
xy=0 -
< x2=0 ' (XXIIT b)+e?

and: All x is either y and 2 or not y
If any xy is z then it is w
No wx are yaz

b
This may be represented by XXIII“ch‘ but this is not obvious. Translated

to Venn's system it is easily diagrammed by XXIII.d:lz5

xL (yz)+yl=xyz=0

Xy zW=0

wxyz=0
The diagramming is obvious and the conclusion, xy=0, is clear from the
diagram. Buler would not have used four circles so that he probably would
not have known what Venn was saying. It still holds that Venn's diagrams
are more capable than Euler's of handling complex problems.

Venn suggests that the diagrams' main function is visual aid.
In two problems he points this out. Given:

x(y+z) =0

y(z+u)=0

z(W+y)=0
w(x+y)=0

‘] . e e
’22Venn, p. 125. ‘

lZBVenn, p. 126.
.
L2hyerm, . 127.

12 %emn, p. 127.
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What further condition is necessary to insure that xyw=0? The premises
may be reduced to: , |

Xﬁ:O
yzw=0 -
zWg=0
WXT::O

¥hich gives us diagram XXIV a.126 Of the surviving portion of xy only
one compartment is W (i.e. xyzW). We may destroy this by making xyzw=0.
The condition is, therefore, that xyzWw=0. Another example shows how

quickly we are able to see by this method that one class is null:

L (x2)+(2%)1=0
wxl (xz)+(X2)]1=0
xy(wWt+z)=0
“yz(X+w) =0

When we diagram this it is obvious that y=0 (XXIV,b).l27 These examples
certainly do demonstrate the greatest strength of the Venn diagrams.

In his early work Venn did.not.even mention particular propositions
but in Symbolic Logic he was forced to take them into account although he

128

still did not seem to think them particularly important. If we include

particular propositions in our system we must be able to indicate uncon-
ditional preservation of compartments (by some mark such as an 5)129 as
well as unconditional destruction (shading) and uncertainty. Particular

‘propositions are of the form abZ0. Thus there must be something which

is both a and b. To indicate this we place a number in all compartments

126Venn, p. 129.

2% enn, p. 129.

128Aﬁ least he devotes a relatively small amount of space to
particular propositions.

lz9Venn uses Arabic numerals rather than mere marks.
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containing both a and b, one number for each proposition. If any parti-

cular number appears only once we know that the compartment containing

it is occupied. Venn gives the following argument as an example (XXV a);lBO

G+L=1 .
(G+L) (EF)=0
(GL) (E+F)=0

GLEAO (1)
GLFZO - (2)
GEF#£O (%)
LEFAO ()

Must GLEF#0? TFrom the diagram it is seen that it is not necessary that
'GLEFZO because (1), (2), (3) and (L) may occupy the four compartments
with single numerals in them while GLEF is shaded.

From the above considerations we can see what Venn means when
he says that his system combines a compartmental with an existential view

131

of logic. Venn's diagrams are still the most commonly used and most
influential of all diagrammatic systems in the history of logic. UNo
geometric system has escaped the tﬁranny of Venn's diagrams.132 Ié is
in terms of the scope and adequacy and clarity of Vemn's system that all
that followed must be Judged.

Marquandl33 criticized Venn on three counts. First, he said that

Venn's diagrams, because of the variety of figures employed, became

130Venn, De 132.

lBLVenn, Pe 2a

13ZEven‘Pe.irce based his system on Vgnn‘s to a large degree
although he changed the terminology and expanded the system to include

much more.

133Marquand, op. cit., p. 226.
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unintelligible too quickly._ Marguand's own system is an attempt to
overcome this limitation. ﬁext he suggests that Venn's diagrams are not
infinitely extensible. Venn has, of course, shown that they are in theory
but not in practice.l35 Marguand is concerned to show that they are in
theory and in practice. Finally he points out that there is no compartment
indicating &, B,‘E, e o o Do Venn was aware of this and carried the
shading of the entire page outside the circles,in his head when necessary.136
VWhen constructing his "logic diagram machine' 137 Venn allowed a portion
to represent the case in which all terms are negative. Thus the edge is
taken from Marquand's criticism.

Macfarlane looks on Venn's diagrams as a modified use of Euler's

128

circles. Circles are only capable of méking general diagrams for three
terms. Although he does not specifically mention Venn it would seem that
this was an indirect criticism of him and a reason for developing his own

more adequate "logical spectrum'l.

13k

This common criticism has a large degree of truth in it. Cer-~
tainly Venn's diagrams would be of little use for the complex problems
that Marquand's and Macfarlane's diagrams have been used for,

135Venn does give a rule for extending such diagrams in the above
cited article, p. 8. ". . . for merely theoretical purposes the rule of
formation would be very simple. It would merely be to begin by drawing
any closed figure, and then proceed to draw others, subject to the one
condition that each is to intersect once and once only all the existing
subdivisions produced by those which had gone before.'" This is an
adequate statement of a factual possibility. Hocking produced a rigorous
proof that Vemn's method would work. See II 2 (h).

156Venn; P. k2.
lB?Venn, p. 136.

) 138Alexander Macfarlane, "The Loglcal Spectrum', Philosophical
Magazine, XIX, 1885, p. 286-287,
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139

Carroll misinterprets Venn almost as badly as he did Zuler.
He applies Venn's diagrams only to Aristotelian propositions.lho Even
then, since he has introduced negative terms, he rejects the O proposition

entirely. This leaves only the 4 (XXVI c), the E (XXVI b), and the I

(XXVI a) propositions.lql Venn interprets the A proposition as a(1-b)=0,142

This means that the proposition has no positive existential import.

Carroll, in his interpretation of Venn attributes to him the interpretation

153

of the A proposition, a(l-b)=0 and abZ0, (using Venn's language).
The existence which is marked in XXVI ¢ Venn would have rejected.

Carroll criticizes Venn because his diagrams fail to correspond

14l 145

to the universe of discourse and are not extended beyond six terms.

Both of these criticisms have been dealt with under Marquand.

146

Carroll's example of Venn's diagrams in use is more inform-—

ative with regard to Carroll's prejudices than with regard to Venn's

139Garr011, op. cit., pp. 174=176 and p. 182.

1403.g. See the bottom of p. 174, Carroll, op. cit.

141Carroll, 0p._cit.s p. 174, gives his own diagrams.

lb’zVenn, pp. 16L f£f.
1430arroll, ope_cit.y pe 174, third diagram.

1440arroll, 0. Cite, Pp. 174~175. "The class [aWb'] which,
unéer Mr. Venn's liberal sway, has been renging at will through Infinite
Space, is suddenly dismayed to find itself ‘cabin'd, cribb'd, confined',
in a limited cell like any other class." (p. 176). "a'" represents the
negation of a. ‘W' represents "both . + . and o o'

145If "peyond six letters Mr. Venn does not go," can be construed
as a criticism. Carroll, op. cit., p. 174.

146

Carroll, op. cit., p. 182.

sl ———
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system. The diagram handles the problem in Aristotelian logic well but
Venn's diagrams are at their most effective grappling with the comélexities
of Boolean algebra and Carroll seemed incapable of even mentioning that
field.l47
Peirce performed a thorough and complex analysis of the use of

148

Venn's diagrams. H¢ uses o instead of shading to indicate empty

céﬁpartments (XXVIIa.b c,d).lL}9

x may be used to mark the existence of
at least one occupant in a compartment (XXVIII a b 0)150 and the precise
denial of a proposition diagrammed with an X is produced by substituting
o for the x (XXVIII d e f).151 Two contradictory signs in one compartment
are absurd and render the premises impossible but if they are connected
'by being produced by the same premise they cancel each other out.152
4 cross on a boundary is equivalent to crosses in the compartments so
bounded joined by a line (a real improvement over Venn's figures).153
Finally Peirce considers the relations of the signs in the various com-

partments. Disconnected signs are to be taken conjunctively and connected

signs disjunctively.154 All of the above crystallizes into a set of rules

147

We' may well be doing Carroll a serious injustice. See II 2 (f).
W8oeirce, 4357 to L3571,
149Peirce, L.357.
15OPeirce, L.359,

, 151Peirce, L,%259, This rule receives further modifications when
-more than two terms are present.
lsZPeirce, L.359.

153Peirce, L.359. See diagrams XXIX to XXXI for examples.

154Peirce, L.360,



to be used in the manipulation of Venn diagrams.
g

Rule 1. Any entire assertion . . . can be erased.155 ,

Rule 2. ény sign of assertion can receive any accretion [XXIX a
and bl .15

Rule 3, Any assertion which could permissively be made if there
were no other assertion can be written at any time detachedlyu157
Rule 4o In the same compartment repetitions of the same sign,
whether mutually attached or detached, are equivalent to one
writing of it. Two different signs in the same compartment, if
attached to one another are equivalent to no sign at all, and

may be erased or inserted. But if they are detached from one
another they constitute an absurdity. All the foregoing supposes
the signs to be unconnected with any other compartments. If

two contrary signs are written in the same compartment, the one
being attached to certain others, P, and the other to certain
others, @, it is permitted to attach P and Q and to erase the

two contrary signs. [XXIX ¢ and 47

“ule 5. Any area-pboundary, representing a term, can be eragsed,
provided that, if, in so doing, two compartments are thrown
together containing independent zeros, these zeros be connected,
winile 1f there be a zero on one side of the boundary to be erased
which is thrown into a compartment containing no independent zero,
the zero and its whole comnex be erased [XXIX e and £].15

Rule 6., Any new term-boundary can be inserted; and if it cuts
every compartment already present, any interpretation desired

may be assigned to it. Only, where the new boundary passes
through a compartment containing a cross, the new boundary must
pass through the cross, or what is the same thing, a second
- cross connected with that already there must be drawn and the

nevw boundary must pass between them, regardless of what else

is connected to the cross. If the new boundary passes through

a compartment containing a zero, it will be permissible to

insert a detached duplicate of the whole connex of that zero

so that one zero shall be on one side and the other on the

other side of the new boundary [XXIX g and hl.159

155No example is given of this rule by Peirce. It simply means
that any unconnected cross, or zero, or entire comnex of crosses and/or
zeros may be erased.

156Accretion refers to disjunctive comnection only.

1571\70 example is given by Peirce.

158Peirde's example (XXIX e and f), wnfortunately, only illustrates
part of this rule. Two compartments containing independent zeros are not
thrown together in the example. '

159These rules have been quoted verbatum from Peirce, 4.362. The
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It would, perhaps, be suggestive of the depth of Peirce's insight into

the workings of the logic diagram to examine just one example of the

160

solution of a problem using Peirce's interpretation of Venn's diagrams:

Given: Some M is P (XXX a)
No S is M (XXX b)

We can deduce:

X¥X ¢ (by rule 6 from XXX a)

XXX 4 (by rule 6 from XXX b)

¥XX e (by rule 3% and 4 from XXX ¢ and d)
XXX £ (by rule 5 from XXX e) :

/. Some P is not S

This is the introduction to a discovery of Peirce's concerning particular
premises which is seen very clearly in the following diagrams:

Suppose: Some M is P (XXX a)
and Some S is not M (XXX g)
XXX ¢ (by rule 6 from XXX a)
XXX b (by rule 6 from XXX g)
XXX i (by rule 7 from XXX ¢ and h)
XxX j (by rule 6 using two undescribed terms from XXX i)
XXX k (by rule 5 from XXX j)

If it be objected that the step leading to XXX j is illegitimaterO

we may put the x's in XXVIII i on the boundary and work as follows:

XXX 1 (by putting x's on boundary from XXX 1)162
X¥X m (by rule 5 from XXX 1)
.~ Some 8 is not some P

This attempt to derive a valid syllogism with two particular premises is

significant for us only as a demonstration of Peirce's use of Venn's

diagrams are given by him there. The logical interpretations of these
diagrams given below them at XXIX is that supplied by Peirce's editors.
l60Peirce, L.363,

16.1'I'here is no rule in Peirce that would allow this step.

162Since a cross on a boundary is the same as a pair of crosses
joined by a line which is divided by that boundary.
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diagrams in a practical situation.

One of the major problems for any diagrammatic scheme is the
representation of.disjunctions of conjunctions.163 Peirce believes that
he has overcome this problem and givés two possible diagrams for "Either
some A is B while everything is either A or B, or else all A is B while

164

some B is not A" (XXXI a and b). The ocuter circles in the second
diagram represent the "Universe of Hypothesis' of the proposition; the
disjunction-is represented by the rectangular compartments.

Venn's diagrams with Peirce's interpretation are capable of
illuminating at least some quantitative notions. Peirce gives, as an
example, the method of illustrating minimal multitudes (XXXII a) axrd
their precise denial (XXXII b).165

Venn's diagrams, Peirce feelg, are no more capable than BEuler's

166

of illuminating abstract or relational reasoning.

P
103C—ardner suggests that this may be done by drawing Venn diagrams
of Venn diagrams. Gardner, op. cit., pp. 53-54. See Peirce, L4.365.

164The first of these diagrams is rather complex. It may be
worked out as follows:

Let some A is B=W

- everything is either A or B=X . ‘

all A is B=Y ‘

some A is not B=Z
In modern symbolism our proposition would then be:

W.Xvi.Z.
vhich may be transformed to:

(WvY) o (Wvz) o (XvY) . (XvZ)
Substituting the short porpositions for W, X, Y and Z we may draw the
diagram easily from the resulting proposition and we now have conjunctions
of disjunctions rather than disjunctions of conjunctions. '

165Peirce, 4,366, The small circles in these diagrams seem to be
being used merely to set off or separate individuals and without intro-
ducing other terms as we might expect.

166Peirce, Le367,
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Wthen Peirce sets up his own system of diagrams he incorporates the
insights and sometimes the structures of Venn's system into it. Vemn's
system, according to Peirce, is the best method of demonstrating simple
two value logic. It is, however, more iconic for basic operatioms and is
therefore of more interest to the philosophically oriented 1ogician than
to the mathematically oriented logician.l6?

Newlin, who had recognized the improvement of Venn's diagrams
over Euler's, nevertheless found Venn's to be confusing.l68

Hocking praised Venn's ingenuity but failed to realize that he
had produced a statement of‘the theoretical infinite extensibility of
graphs using only geometric figures of one boundary. The purpose of
Hocking's work was to rectify this alleged theoretical failure but, as
we have shown, Venn had already done this. Hocking believed that Venn's
diagrams were adequate in practice, since dieagrams going beyond five or

169

six terms are not much use.

170

Lewis describes the Venn diagrams at length. The basic diagram

for n terms may be briefly but completely defined by the following equation:

1=(a+3) (b+B) . + . (nm)*'*

l67Peirce3 4,368, ff. If a diagram is iconic the elements of the
diagram stand in a one to one correspondence to the elements that it
represents.

l68William J. Newlin, ™A New Logic Diagram", Journal of Philosophy,
Psychology, and Scientific Methods, III, 1906, p. 539.

169Hocking; 0T éit;glp. 31; IT 2 (h).
170Lewis, op. cit., p. 176 £f.
171Len;vis does not generalize but we have felt that from his part-

icular examples such a generalization is valid. We have substituted "a"
for Lewis"™ Y-a" since "+-" is rather awkward to read.
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The diagrams for two to four terms are exactly like those of Venn (XXXIII

byc and d)°l72 Lewis adds a diagram for one term (XXXIII a)173 and intro-

duces a perforated square rather than a doughnut to bring in the fifth

174

term (XXATIT e). Lewis closes the universe of discourse in the earlier

of these diagrams but soon accepts the convention of leaving it oven.

As long as we remember that the ab area is there we may represent it by

175

the area around the diagram.

To illustrate particular propositions Lewis suggests the use of

asterisks joined disjunctively by a broken line (XXXIV a and b).176

Shading, as in Venn, represents all other propositions. Lewis proceeds

to give several examples of the use of Venn diagrams in solving problems

in Boolean algebra.l77 These may be passed over here as they do not

contribute significantly to the history of the loglc diagram.
Gardner's introduction to the Venn diagrams gives a brief

account of exactly what we have described earlier including some of

172Lewis, 0D, Cite, pp. 177-178,
173Lewis9 op. _citey, p. 177.
17L%Lewis, 0p._cit.; p. 179.

1754¢ Jeayes it open for the first time in the diagram for four
terms, p. 178. He establishes the convention p. 177-178. 'It is not
really necessary to draw the square, 1, since the area given to the figure,
or the whole page, may as well be taken to represent the universe. But
when the square is omitted, it must be remembered that the unenclosed
area outside all the lines of the figure is a subdivision of the universe =——
the entity -a, or -a-b, or -a-b-c, etc., ‘according to the number of
elements involved.! "

178 uis, op. cit., p. 183.

L7 ewis, o0v. cite, pp. 18k, 201-207 and 211-216.
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178

Peirce's comments. He points out the possibility of using these
diagrams to represent disjuhctive relations such as "All X are either ¥
or Z'" taking "or" in the inclusive sense (XXXV a)l79 and in the exclusive
sense (XXXV b) .180

Gardener‘also adapts the Venn diagramS, by introducing‘rectangles,
to handle syllogisms in which terms are quantified by "most' or a number.

There are ten A's of which four are B's

Eight A's are C's 181

;. At least two B's are C's (XXVI a)

Perhaps' the most significant contribution of Gardner to the
examination of the nature of the.logic diagram is his discussion of the
relationship between a class calculus and the propositional calculus
from a disgrammatic point of view.182 Aﬁy formula in the one calculus
may be restated in terms of the other but sﬁch restatement is not necessary
in the application of the diagrams. TFor the class calculus, as we have
seeﬁ, we shade éreas of the diagram to show that a class is empty, For
the propositional calculus such shading is reinterpreted as an indication
of the falsity of a proposition or of a particular combination of proposit-

ions. Gardner next proceeds torgive diagrams for the simplest formulae

containing each of the logical constants of the propositional calculus.

178Gardner, op. cit., pp. 39 ff.

179Gardner, op. cite, pe 41, Figure 26.

180G-ardner9 op. _Cit., Ppe 41, Figure 27.

lslGardner, OR. ciﬁ., p. 42, Figure 29. This, to some degree,
overcomes Peirce's objection that Venn diagrams are not capable of being
used for quantitative notions except in the simplest cases.

182Gardner, ov. cit., p. 49.
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He uses a small circle to the lower right of the diagram to represent the
case in which all the terms are negated. The first diagram illustrates

simple assertion and the second simple negation.

83

A (i.e. 4 is trae) (OOVII a)'2g
)

~4 (i.e. A is false) (XXXVII b
The remaining diagramsiC? in XXXVII and XXXVIIT illustrate the binary
relations and their exact negations. Those diagrams in the' left columns
indicate the binary relations:

AoB (XXXVII ¢)

BoA (XXXVII e)

AvB (XXXVII g)

LER (XXXVIII a)

AlB (XXXVIIT ¢)

A=B (XXXVIII e)
AJB (XXXVIII g)

Those in the right column represent the exact negation of the diagram

directly to their left:

~(A2B)=(Ae~B) (XXXVII 4)
~(BoA)=(Ba~A) (XXXVII £)
~(AyB)=(~ha~B) (CXVII h)
~(AFBR)=(A=B) - (XXXVIIT b)
~(A1B)=(A4B) (XXXVIII @)
~(A=B)=(AEB) (XXXVIII f)
~(8aB)=(AIB) (XXXVIII h)

lSBGardner, 0p. cit., p. 50, Figure 38. "
184

Gardner, oOp. cit., D. 50, Figure 39.

185Gardner, ope. cit., p. 52, Figure 42. There is some unnecessary
repetition in this list. Gardner could have managed without '"=" and " "
but he wished to show how the commonly accepted binary operators were
used. '"ADB'" means "if A then B."  VAvB" means "A or B."  "AFEB" means
that "if A then not B and if B then not A.," - YA|B" means "not both A and
B,  "AZB" means "if A then B and if B then A," '"A.B" means 'both A
and B.Y : ) o
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The Venn diagrams render ''tautologous or equivalent statements”l86 obvious.

For example, independent diagrams for Av~B (XMXIX a) and BoA (XXXIX b)

prove to be identical.l87
Gardner gives a sample problem to demonstrate the use of Venn

diagrams in the Solution of problems in the propositional calculus:
ASB

BHC
AvC

.C?ﬁ.ch (XXXIX c)188

We may solve more complex problems, for example those involving
compountd statements,; by drawing Venn diagrams in which the circles .
represent simpler Venn diagrams. For example, if we are given (AvB)>(BvC)
we draw a diagram for (AvB), another for (BvC), and a third in which one
term is (AvB) and another (BvC) (xn a).lgg

Gardner has shown how these diagrams may be adapted to illustrate
in principle any‘type of logical statement, including statements which
combine class and propositional assertions. The only problem is the

increasing complexity of the diagram with the increase in the number of

propositions and this would appear to be a prbblem for any geometric

systen.

186Gardner, op. cit., p. 51.

187Gardner does not give these diagrams but he‘does suggest them
(p. 51).

188Gardner, Ope Citey P» 53°

l89Gardner, op. cit.e, p. 54. This is rather avkward although
workable with practise. Gardner's method of dealing with complex
expressions (II L (e)) and Peirce's system (II 4 (d)) are both better
eguipped to handle such expressions.
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Thus‘we have discovered in Venn's system a geometric diagram which
is suitable for any type of argument in any type of logic which had been
developed up to that time. Most of the attempts of the subsequent twenty
years to clarify and simplify what Venn had accomplished were, as we shall
see, either ill-founded or trivial, although almost all of them added
something of value to our understanding of these diagrams.

The major question we must ask about Venn diagrams i1s whether
they can, in fact, represent the Boole-Schroeder algebra adequately; their
further application rests on this primary one. Let us then look at the
diagrams for basic formulae using the various symbols of operation. Ve
have already looked at some of these but‘it would be well to review them,
There are, of course, four operations which must be diagrammed$ grouping (+),
exclusion (-), selection (X), and restriction (¢). For the sake of
convenience we will allow these operators to form binary relations giving
an empty class. The diagramming-of the first three is no problem; an

example of each will suffice:

A+B=0 - (XLI a)
A4=-B=0 (XTI b)
AB=0 (x1I ¢)

Restriction cannot be shown on Venn diagrams quite so directly.lgo It

®
is first necessary to convert the restriction to selection ard equivalence.

. A=B (XTI a)

19OVenn seems to arrive at restriction because of his use of
mathematical operators. Restriction camnot be rendered in ordinary
language as the other operators can. It is to be understood as a second-
ary operation which is derived from selection.
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', AB=C (XLI e)

The critical case is the type of restriction that occurs vwhen a térm is
0191 9
oN 0

value or the class membership of A is absolutely indeterminate. Such an

multiplied by A=n means that, whatever n is, the truth functional
equati&n cannot be shown by any.of'the normal technigues on Venn diagrams.
Cne possible solution would be to introduce scme mark, say "I", into the
diagram to indicate that a class is inﬁeterminate. Thus if n=f[4 #(B+C)]l92
diagram XXXIX f illustrates %A:n.

There is one type of formula within Venn's version of Boolean
algebra that Venn's diégrams cannot represent. Any formula of the type
A=f(B) expresses such a degree of uncertainty about the nature of the
relationship between A dnd B that it cannot be expressed by the techniques
used with compartmental geometric diagrams. It is possible to express
functions diagrammatically by lines linking separate areas or termsl93
(XLII a) but this carries us well beycnd Venn's diagrams. The inability
of Venn's diagrams to express functions would not seem to be a weakness
An their use because of the indeterminacy involved which could not be

illustrated on a geometric diagram without being made at least somewhat

more determinate and thus deceptive.

1919 is, as in mathematics, absolutely indeterminate. It may be
0 or 1 or aiything between.

192For Vemn £(x) always refers to a class determined by x. | Thus
(4+B) is a class determined by A or by B or by both.

lgBThis diagram is adaptéd from Seymour Lipschutz, Set Theory and
Related Topics, New York: Schaum Publishing Co., 196L, p. 77.
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It would seem, then, that the Venn diagrams are absolutely iconic
and that, for two to four or five possible terms, they are as capable as
any of thelr progeny of giving geometric demonstration of both two value
truth functional logic and class logic.

(4) Marquand

Marquénd‘s diagrams work on exactly the same principle as Venn's.
He begins with a square which is to.fepresent the universe of discourse.
He then drops a perpendicular from the center of the top line to the
bottom line, bisecting the square. The left compartment represents all
A and the right all a (XLII a).l95 To introduce a second term he bisects
the center line at right angles. The upper half of the diagram represents

196

B, the lower half b (XLIT b). A four term diagram requires two more

197 It is

@

horigontal and two more vertical dividing/lines (XLII ¢).
noticeable that Marguand is mofe concerned with regularity than with
retaining singly bounded geometrical areas for his terms. Thus C and D
are both divided into two areas.

Marquand gives a general formula for the number of dividing lines
required. If n is even and n>2 there will be 2+22+230 o o 2.IZI lines.

n on_
When n is odd diagrams for n-1 terms require 2422422, . . . 22-227% suen

l95For Marquand a is the negation‘of A. The diagram is found in
Marquand, op. cit., p. 267.

196Mafquand, op._cit., p. 267.

197Marqﬁand, op. cit., p. 267.

D s sr——————
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Marquand simplifies the labour of writing out the letters by

joining various squares with brackets (XLIV). The horizontal bracket

99

immediately to the left of a letter indicates that the argumentl

represented by that letter is true, as does the vertical bracket immed-

200

iately above a letter. Otherwise the argument is false. The star in

XLIV indicates the compartment adcdefgh, which, as Marquand points out,

does not exist in Venn's diagrams.201

We will now look at Marquand's only example of his diagrams in

usees

Thelre] are eight arguments, A, B, C, D, E, P, G, H,
thus related to each other: — When E is true, F is true;
and vhen F is true, either E is true or B and C are both
false. Vhen either G is true or E and F are both false,

. D is true. If B is false when either F or G (but not
both) are true, then H is true and either C is false or
D is true. It [D] is true only when an even number of

198These formulae are given by Marquand, p. 268, without further
comment. The formulae are valid, the first for an even number of terms,
the second for an odd number of terms. The reason for this validity
is a topological question which will not be examined here. Much more

- thorough work on the structure of the logic diagram is to be found in

Hocking, II 2 (h).

199Marquand uses the various terms to represent "arguments''.
It is difficult to see exactly what Marquand means by "argument'. He
would seem to mean something like premises or statements which are
interdependent with regard to their validity.

ooMarquand says only that the work of writing out the letters
may be decreased by the use of brackets. Our description is abstracted
from his dizgram on p. 269.

2OlWe have already discussed this problem and shown that Venn
was often misunderstood regarding his intentions in his diagrams. The
whole paper outside-the diagram was, in Venn, meant to represent the
compartment in which a1l the terms were negated. See II 2 (c).
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the remaining arguments are truej; it [D] is false only

when an odd number of the remaining arguments are false.
Supposing any combination not inconsistent with

the premises to exist, (1) What follows from A being true

either when B is true and P false or C false and F true?

and (2) From what combination of arguments may we con- 202

clude that A and H are both true when E and G are false?

‘The answer to (1) is represented by the combination of squares marked

1 - 8 in XLII a, The answer to (2) is represented by 8 - 10 in the same
203

diagran.

Venn, in the second edition of Symbolic Logic accepts Marquand's

204

diagrams for problems having a large number of terms. Gardner describes

Marquand's system and points out that it is less iconic than Venn's graphs
but it is more iconic than algebraic notation.zo5 Thus it seems to
occupy a medial position between notation and éraphs.

The only wajor problem with Marquand's systim is apparent in his
example above. The geometrical areas representing each letter are broken

up and there is an increase in confusion which is not proportionate to

the increase in the number of terms.

2OEMarquand, op. cit., p. 268, Note that, since we are interested

only in those cases in which A is true we may ignore that part of the

diagram in which A is false. The exact method by which these premises
are diagrammed will not be examined as it is the general principle in

wnich we are interested.

203Marquand, op._cit., p. 269. These answers are simply given,
vresumably read from the diagram.

2lyenn, p. 140.

2OsGardner, op. cit., pp. 43-4h. The diagram that Gardner gives
is taken from Venn with some changes in the lettering. It is especially
noticable because of the position of the letter "x" in Gardner's diagram
which is exactly the same as that in Venn's,
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(e) Macfarlane

Whereas everyone else used dlagrams as an aid in the solution

206

of problems, Macfarlane used them only as a method of verification.
The solution was accomplished by algebraic methods., Macfarlane, in

"The Logical Spectrum', presents and solves a problem, then verifies his

207

solution. We are given U ax+by=c and U dx-ey=f and asked to solve

for x and y. By the process of solution of simultaneous equations:zo

ce+bf an _cd-af
Tae+bd I etba

ce+bf raf 1 i 1 Y IRl atg!
ae+bd—Alabcaef+A2abcdef +A3dbcde f+Ahgbcde f' o o +A6la b'c'dlef

209

) Pt At At apt Thiatdtalf Thteatldtadt ot

Fhe R bletdtef +A63a blc'dle f+A64a b'c'dle’f

where the coefficients of Al’A2’A3’ o o1 e A64 are numerical., The
coefficient for any term is found by substituting 1 or O for each term

(depending on its assertion or negation) within U. The final numerical

2O6Macfarlane is careful to make this point in both the articles.

Macfarlane, op. cit., p. 287. "I shall apply this method to verify the
logical equations . . » " (Italics mine). Further evidence of this is the
fact that an algebraic solution is given before the diagrams are applied.

207”U“ is the symbol for everything ‘considered; it corresponds to
the strip of paper on which the spectrum is drawn. ‘

208e.g. ax+by=¢c and dx-ey=f

x+h*z=2 and x-21=£ ‘
a a d 4 -
- byeycif
a  dad
bdy+aey=cd=-af
y(bd+ae)=cd-af

_cd-af~
= ae+bd

209”x'” is used to mean the negation of "x", "A " means the
numerical value of the particular combination of terms that occurs in
the nth case, when numerical values are substituted for each of the terms.
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solution can be interpreted in only four wayszalo 1 means all, O means

none, % méans none or a portion or all,211 and every other coefficient

shows that the term is impossible.212

Macfarlane managed to cut out almost all of the above steps which
are found in Boole. He simply substituted the special values (i.e. 1 or

0) for a,b,c,d,e, and £ in the original equations and solved for x and Y.

For example let Uabcdef:U:213

X+y=1
x-y=1
S 2x=2

_' B X::lall}

1+y=l

‘_y=0215

Macfarlane was able to arrive at conclusions by this method that
. Boole missed. For example let Uabecd'e'f'=U. Substituting we get x+y=1

and 0=0. Thus x and y are indeterminate but complementary°216

210Macfarlane attributes this to Boole but does not give a

refercnce. Macfarlane, op. cit., p. 288,

211This is exactly the use Venn makes of %. See II 2 (c).

212E.g. solving for x in the above problem we would get:

1+l
Al 1+1 =1
10 1
271+172
etc.

213This, simply translated, means "let the universe consist of the
one case in. which abcdef=U",

214

In this case everything is Xe
215in this case nothing is y.

216From x+y=1l and O=0 we cannot derive anything but we Stlll know
that whatever x and y are together they make up everything.
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Macfarlane verifies his solutions by drawing a 'logical spectrum'.
A logical spectrum is a rectangular strip divided into two subdivisions
for every '‘mark" (term) employed.217 It is simply a Marquand square

stretched into one horizontal line. Macfarlane draws examples for one,

) 218

two, three, and four terms (XLV a,b,c and d In the logical spectrum

null terms are shaded;219 wholly included terms are white;aao totally

excluded terms are black;221 and indeterminate terms are half black and

half white., Complementary indeterminates have complementary parts

223

white;222 identical indeterminates have identical parts white.

Macfarlane diagrams his solutions for x and y in the above problem

on a pair of corresponding logical spectrums (XLVI).Zabr To verify the

217Actually each subdivision is so subdivided when a new term
is introduced.

218Macfar1ane, 0o, cit., p. 287,

219E.g. abcdef' in Ux (XLVI).

220% 5. abedef in Ux (XLVI).
22lp.g. abede' ! in Ux (XLVI).
222,

E.g. abcd'e'f!' in Ux and in Uy (XLVI).

; |
223%,g. a'b'c'def' in Ux and in Uy (XLVI).

ZzAMacfarlane, op. cit., p. 287. We might wish to illustrate
, the principles by which it was drawn.
Given U ax+by=c and U dx-ey=f
Cases 1 and 2: Let Uabedef=U
x+y=1 and x-y=1l
2x=2
JoX=L1 . .
Therefore the area representing abcedef in Ux will be left white,
and: y=0 )
Therefore the area representing abcdef in Uy will be black.

Case 3: Let Uabcdef'=U
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solution we simply see if the ax together with the by (both discovered

by inspection of the diagram) is identical with the ¢ and whether the dx

excepting the ey is identical with the £.225

) Macfarlane's second article is simply another example of the
application of the logical spectrum to a complex problem and does not

warrant examination here as it adds nothing new to his diagrammatic

system.2

Gardner describes the logical spectrum briefly but does not give

x+y=1 and x-y=0
2x=1
Xt
Therefore the area representing abedef' in Ux will be shaded.
Case L: See note 216 above where we found that in Uabed'e'f' x+y=l
(i.e. make up everything there is) but we know nothing else about them.
Therefore abcd'e'f' in Ux is divided into two portions, one white, the
other black, and abed’e'f' in Uy is divided into two portions with the
portion corresponding to the black in Ux left white and the portion
corresponding to the white, black.
Case 5: Let Uab'cde'f=U
S x=1 (from either equation)
We have no information about y, so y must be divided into two portions,
one black and the other white but it does not matter which is which.
Case 6: Let Ua'b'c'def'=U
x-y=0
. . =y
Therefore x and y are both indeterminate but are also equal. Thus the
portion of 'x which is black must correspond to the portion of y which is

black, and the white to the white.

225By yerify" Macfarlane means only that we may discover whether
we have made a mistake by finding out by inspection whether the diagram
corresponds to the premises. This is the same sort of verification that
is found in arithmetic. For example to verify a+b=c we subtract b from
¢ and if we gel a we have verified the original answer.

226Alexander Macfarlane, "Application of the Method of the
Logical Spectrum to Boole's Problem', (in Gardner cited as '"Adaption of
the method . . .'') Proceedings of the American Association for the
Advancement of Science, XXXIX, 1890, pp. 57-60.
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an example of its opefation.za? Such an example is necessary to display
its value as a method of verification. It follows an extremely regular
pattern of transformation as we read from left to right. This makes it
easier to read than Marquand's square when we are dealing with a large
‘number,of terms. It does, however, have two-disadvantages. The wvarious
areas representing terms are broken up into a great many topologically
distinct areas and this problem increases in geometric proportion to

the increase in terms; and one requires an extremely long strip of paper

if a large aumber of terms are used.

(f) Carroll
. . . 228
Carroll's "game of logic' is played on two diagrams (XLVII).
These consist of a small square bisected for two terms & la Marquand and
a large square similarly bisected with a smaller square in its center to
represent the middle term of our argument. Nine counters, five' grey
(shaded) and four red (black) are also required. At least one player

229

lg the final requirement. A1l one need do to represent any Aristotelian

230

syllegism, even those containing negative terms, is place counters

in the appropriate locations to show which compartments are occupied and

>
2“7Gardner, 0v. cit., pp. 44-45.

o
2"8Lewis Carroll, Symbolic Logic and The Game of Logic, (both
books bound as one),; The Game of Logic, (heregfter referred to as G. L.
in notes), facing full title page and inside back cover.

229 ese requirements are listed by Carroll (G. L.) in the preface.
The page is unnumbered.

230
to Carroll.

Aristotelian syllogisms containing negative terms are acceptable
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which are empty. The premises are worked out on the large diagram and
the conclusion transferred to the small one. An empty compartment
receives a grey counter; an occupied one, a red. Carroll supplies a
rhyme to help us remember this:
~See, the Sun is overhead,
Shining on us FULL and
REDS
Now tHe Sun is gone away.
And the EMPTY'fky is
GREY 125
Carroll's game is an interesting method of teaching young children the
basic principles of elementary Hamiltonian Logic but nothing more. Ve
need nct examine an example of this game in use as it corresponds exactly
232

to the system, using numbers, described in Symbolic Logic. Even in

The Game of Logic Carroll uses "1 to represent the red markers and "O"

233

to represent the grey on his diagrams.

Much of Symbolic Logic is taken up with a polemic against '"the

Logicians".z34 Carroll would seem to have been applying this '"inoffens-
ive”235 title to those who still pursued Aristotelian logic since he
236

never considers Boolean algebra. Carroll was familiar with Venn

whose work was based on Boole. - Why, then, did he never acknowledge any

23 tarroll, G. L., facing full title page.

>
‘BZAlso in Carroll, Symbolic Logic and The Game of Logic.

Symbolic Logic will hereafter be referred to as S. L.

232 Carroll, Ge L.,ppe 5 ffe

2hcarroll, S. i., pp. 165 £1..

235Carroll, S. L., p. 165.

230Carroll, S. L., pp. 174 ff.
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more complex logic than that discussed by Hamilton? We may be doing

Carroll an injustice in criticizing him on these grounds as we have

237

only the first part of his projected system. but, as it stands, Carroll

was fifty years out of date even in his own time. This makes it even more
'amazing,that he developed the most adequate set of diagrams for up to

238

four terms to be found prior to the turn of the century.

257The brief account that Carroll has left, S. L., p. 185 does
not indicate that these parts would have included Boolean algebra but
we cannot be sure, We guote the passage in full so that the reader may
exercise his own judgewent: '

In Part II, will be found some of the matters
mentioned in this Appendix, viz., the "Existential Import"
of Propositions, the use of the negative Copula, and the
theory that "two negative Premises prove nothing." I
ghall also extend the range of Syllogisms, by introducing
Propositions containing alternatives (such as "Not-all x
are y"), Propositions containing 3 or more Terms (such as
MALL ab are ¢, which taken along with "Some bc' are dY,
would p prove "Some 4 are l‘”) &c. I shall also discuss
Sorites containing BEntities, and the very puzzling sub-
jects of Hypotheticals and Dilemmas., I hope, in the
course of Part II., to go over all the ground usually
traversed in the text-books used in our Schools and
Universities, and to enable my Readers to solve Problems
of the same kind as,; and far harder than, those that are
at present set in their Examinations,

In Part ITI. I hope to deal with many curious and
out~of-the-way subjects, some of which are not even alluded
te in any of the treatises I have met with., In this Part
will be found matters as the Analysis of Propositions
into their Elements (let the Reader, who has never gone
into this branch cf the subject, try to make out for him-
self what addlitional Proposition would be needed to convert
"Some a are b'" into "Some a are bc”), the treatment of
Numerical and Geometrical Problems, the construction of
Problems, and the solution of Syllogisms and Sorites con=
taining Propositions more complex than any that I have
used in Part II,

238This is Lewis' opinion, Lewis, op. cit., p. 180, and would
seem to be true.
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Carroll allows only three figures of syllogisms, since he used
‘negative terms, and we may show his application of his diagrams by his
use of them for these figures. Given xmdrym6239 we may put O in
compartments xym and xy'm (from xmo) and xym' and x'ym' (from ymé).
From the diagram (XLVIII a) we see that both xym' and xym are empty.
Therefﬁre we may put a '"O" in xy in the smaller diagram in XLVIII a.
That is:

Figo I sanghymy 1P xy >0
There are several variations of this figure possible by substituting
My Xy, etc, for m, x, etc., in the first term of each premise but the

ekl These

final term in each proposition must be quantified by '0',
variations are easily worked out and need not concern us here. Figures
two and three are similarly diagrammed:

Fig. II. xmgrym [P x'y,  (XLVIII p)2h2

) 2
Fig. III. smgrymgtm P x'y; (XLVIIT ¢)22

2 .

39”P‘TP9" means ''the premises Py and P, taken together" where
Py and Py are two premises. 'aby'' means ''there are no a's which are also
bTs." M"a'" is the negation of 'a", "aji' means "there are a's'.

Zqo”PﬁPCm" means "Cp is the conclusion of the premise(s) Pp"
where Py is a set of premises and Cp is a conclusion validly drawn from
then.

“MEg. mxpymliPy,

xmg ey Py,

myxgtmyolP =ty

etc. Carroll, S. L., p. 75.
2L2

Carroll, S. L., p. 76.

o
243 0arroll, S. L., pe 77
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When Carroll is uncertain which of two compartments should contain a "1M

24L

he simply places it on the line between the compartments in question.
' r 1 21‘*5
xmé?m‘yéfxmlfymiﬁx'yl (XLVIII &)
In case the reader has not noticed, it may be pointed out that

Carroll is rather careless in his interpretation of the A proposition.

26

In some cases he interprets it as xm in others as xmérx1247 and in

yet others as xméTxml.2h8 It is true that the latter two are logically

equivalent but they make it necessary to accept the existential import of
219

the A proposition. Carroll seems to believe that the existential import

of the E and I propositions is a matter of convention. It is logically
possible to say that éhe A and E propositions assert existence while the
I does not. This is, however, in opposition to common usage.25o It is‘
logically impossible to hold any other view of the existential import of

propositions according to Carroll.251 ,

244Carroll, S. L., pe L3,

245Carroll, S. L., peo 141,

246E.g. Fig., I above.

247This might also be written as xlmé. An example of the version
in the text is Fig. III above. _ :
248E.g. final example above (i.e. xmé?m'yéfxmifymﬂfx’yi).

249Carroll., S. L., pp. 165 ff.

550We do not normally think that "no a is b" asserts that there
are a's while "some a is b" does not. Theére is, according to Carroll,
no logical reason why this should not be the case,

251There are eight possible views of existential import as far
as Carroll is concerned:
(1) the A asserts, the E asserts and the I asserts,
(2) the A asserts, the & asserts and the I does not assert,
(3) the A asserts, the E does not assert and the I asserts,
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Carroll's diagrams have, thus far, been limited to three terms
but he gives further diagrams in the appendix which he plans to discuss
in the second volume. For four terms we replace the small center square

with two intersecting rectangles (XLIX a);252 for five terms we divide

253

‘each area diagonally (XLIX b); for six tefms we replace the diasgonal

25k

stroke with a cross (XLIX ¢); for seven terms we place a three term

},255

diagram in each of the compartments of a four term diagram (XLIX &

and for an eight term diagram we place a four term diagram in each of

the compartments of another, larger, four term diagram (XL1x e).256

For nine terms we place two eight term diagrams side by side and for ten

terms we place two more elght term diagrams ‘below.as’7
C. I. Lewis finds Carroll's modifications of the square diagram

258

to be the "most convenient'. He uses a small key diagram to one side

to aid in the interpretation of the larger diagram much as we shall find

(4) the A asserts, the £ does not assert and the I does not assert,

(5) the 4 does not assert, the E asserts and the I asserts,

(6) the A does not assert, the E asserts and the I does not assert,

(7) the & does not assert, the L does not assert and the I asserts,

(8) the A does not assert, the E does not assert, and the I does not assert.
Only (2) and (3) are logically possible according to Carroll.

2220arroll, S. L., pe 177.

222Carroll, S. L., . 177.

L
- 2MCarroll, S. L., p. 177.

222Carroll, S. L., pe 178.

256

n

Carroll, S. L., p. 179.

257We do not include examples of these last two cases nor does
Carroll although he mentions them (8. L., pp. 178-179).

et ——

258Lewis, 0p. cit., p. 180,
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in Newlin., 229 Gardner shows Carroll diagrams for three terms but does
. NP . 260
mention that they are 1nf1n1tely extensible,
As we have said before, one of Carroll's major claims is to the
closure of the diagrammatic universe of discourse.261 That he did do

this is true, but he ignored Venn's acknowledgement that we are, indeed,

working within such a universe and that the paper outside the diagram

rmust be taken as representing 5, b, C; « « o« Ne Carroll does not seem
to have read Marquand or Macfarlane both of whom had created systems
with closed universes of discourse prior to him,

How then are we to evalugte Carroll's diagrams? For up to four
terms they are able to keep topologically distinct and undivided areas
and, since they illustrate the closed universe of discourse, Carroll's
system would seem to be the most ade@uate of the geometric systems yet
examined,262 For arguments involving four or more terms it loses the
simplicity of Mécfarlane's and, Marquand's systens.,

One further problem is the existential import of the A proposition.
Carroll represents the A proposition as positing existence but Venn,

Marquand, etc. do not. Since the universal affirmative proposition can

259Lewis, op. cit., pp. 180-181.

260Gardner, op. cit., pp. 45 ff.

2618ee above, p. 54, fn. 144 for Carroll's statement of this.

262Thio is a personal evaluation which méy be questioned. It
is also necessary to take into consideration the purposes for which
the diagrams are belng used.
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1

263

usually be translated into & hypothetical profosition it would seen

that Carroll was wrong.

(g) Newlin
Newlin points out that the logic diagram is not essential to

264

logics its main purpose is illustrative and educational. This should
be kept in mind when choosing a diagrammatic system. The above qualific-
ation leads to three reguirements of a good logic diagram.265 First,
there must be one to one correspondence between the elements of the
diagram and the elements of the logical universe of discourse. Second,
the diagram must be simple in construction and appearance, free from
sources of confusion, quick, reliable, and modifiable. Finally, any
system of logic diagrams which is definitive must be "simply—extensible".266

Newlin coins this word to apply to diagrams which may be extended to be

applicable in cases of any number of terms and in which this extension

263,

This is a matter of controversy. If the universal affirmative
is equivalent to a hypothetical, Carroll was most certainly wrong. This
problem is taken up from a different angle in the third chapter. In that
chapter the meaning of the term "exist' is considered as that term is
used in logic and the conclusions reached indicate that neither Carroll's
position nor that which opposed it is entirely correct. It should be
pointed out that Venn, although he did not accept the existential import
of the A proposition, did believe that something must exist in any
universe of discourse. This 1s approximately the position that will be
adopted in the third chapter. -

L
2Bl ewlin, op. cit., p. 535
5 : :
205These "few but vital" demands of a satisfactory diagram are
given at length by Newlin, op. cit., p. 540. -
266

Newlin, op. cit., p. 540.
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is carried on by simple and invariable rules. Ve may see the faults of
other diagrammatic systems in the light of these rules. Zuler's diagrams
are limited to.the representation of three classes; Venn's for four and
five classes'are confusing; Marguand's are simply-extensible but even in
simple cases elements of single classes are d:'Lscrete‘,“ZG7
With these requirements in mind Newlin proposes his diagrammatic
system. We begin with a primsry square which is our universe of discourse.
This square is divided into sixteen smaller squares by means of three
perpendiculars dropped from the top to the.base and three perpendiculars
running from one gide to the other. The diagram may be thought of as
having four horizontal and four vertical strips. The first and second
vertical strips at the left will represent a; the second and third, b.
The first and second horizontal strips beginning at the top will represent

) 268

c; the second and third, g‘(L a). The square abcd, marked in the

diagram, is located by finding the square where the ab and cd strips
meet0269
To construct a diagram for three terms we make c¢=0 by erasing

the top two rows of squares; for two terms we make d=0 by erasing the

third row as well,

267Newlin considers only the three systems mentioned.. Newlin,
OVe Cit-g Po SLI-OO !

268Newlin, op. cit., p. 54l.

269Although Newlin's diagram for four terms looks like Marguand's
it has the advantage of representing each of these terms by a distinct
singly bounded area. - Note also that if the rectangles in the Carroll
diagram for four terms are extended to the border of the universe we
have a Newlin diagram for four terms.
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Now we must extend the diagram. First we draw in all the diagonals
of the secondary squares, in a four class diagram, which run in one
direction. If we think of these diagonals as borders-of diagonal strips
we may use alternate diagonal strips to represent our fifth term e.
Similarly, inserting the diagonals in the other direction, we are able
to represent a sixth term f£. Finally we divide the secondary squares
vertically and horizontally through the point where the diagonals meet
making eight triangles in each secondary square (L b).27o In the diagram
the triangle marked X represents abcdefg and is located by first locating
ab, and within this &d, then e, then f, and finally Z. Upper or left
triangles represent the seventh term.

To go beyond seven classes we substitute a four class diagpam in
the secondary squares of a 1argef]four class diagram (LI a).27l The
small squares resulting are called tertiary squares. The class marked
X is defined by eight terms égéagféi and may be located in four steps.
First we locate ab and then within it ca, then ef and finally EE. Diagrams
for nine, ten and eleven terms may be drawn by treating the secondary
square as a primary square (LI a). For example the class y is defined
by ten terms EEEdéféhi§° To go beyond eleven terms we simply substitute
another four class diagram in the tertiary squares. |

5272

The use of a key (LI b will prevent the confusion arising

270Newlin, op._cit., p; 542;'

271Newlin, op. cite, p. Shk.

>
27“Newlin, OP. Cite, Do Shlte
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when all the letters needed are put on one:diagram and will allow us to
carry out the more complex construction only on those portions of the
diagram with which we are working. The key is simply a diagram which
shows how ?he various classes beyond the first fouf are distributed in
the diagram which has been subgtitueed in the secondary square.

Newlin felt that his system had two advantages over the others
which had been developed: there is a "perfect correspondence for any

H273

number of classes and it never becomes more complex than the seven

274

class diagram.
The choice between Newlin's diag;ams and those of Marquand,
Macfarlane and Carroli would seem to be a matter of personal preference.
After four terms Newlin is unable to keep the various classes within
singly bounded topological areas so his advantage extends only two terms
beyond Marquand's diagrams and, except for simplicity of comstruction,
there is no advantage over Carroll's four term diagram. Further, the
use of diagonal strips and discrete triangles is quite confusing when
compared to the regularity of Macfarlane's spectrum. Newlin'®s major
. contribution to the logic diagram would seem to rest not so much in his
diagrammatic system as in his methodical description of such diagrams

275

and his ennumeration of their requirements.

273Newlin, op. cite., p. S545.

274y

275Even in this area it should be noted that Hocking is much
more thorough. II 2 (h).

ewlin, op. cit., p. 5hLb.

[hut oS A sy
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(h) FHocking

Hocking's analysis of the logic diagram is even more profound
" then Newlin's and his final system is even more obscure, but he himself
realizes this. He is not attempting to develop a workable diagram but
to extend the diagram to cover the theoretical necessity of drawing
diagrams for n terms.276

The logic diagram represents the class calculus. The major
considerations of a good representation is that it be "rich" enough to
imply all the relationships which are to be found in that which is
represented, while it.remains "poor' enough that it does not imply any
factors that are not present in the original. That the spatial figure of
the geometric diegram is this rich cannot bg doubted. It does, however,
convey the impression that any class is bounded by logically "next"
neighbours and that a universe of discourse may be ''carved out" around
a class without regard to those classes which determine such a universe.
These ''superstitions' are, however, due more to our ignorance of class
277

logic than to the suggestiveness of the graph.

As well as the necessary correspondence of the parts in the original

276”. . » and indeed there is little practical need to devise graphs
for more than five classes at a time. But it would be a serious failure
in the principle of the class-graph if there were a theoretical limit to
the number of classes which can be drawn within a given universe; . . . I
wish to propose here a simple generalization of the graphic process which
is demonstrably extensible to n classes without sacrifice of unity or
- continuity in the class boundary." Hocking, op. cit., p. 3l.

;7?This paragraph is a paraphrase of Hocking, op. cit., p. 32.
It is meant to be a description of an adequate.diagram with its limitations
indicated.
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and in the diagram it is also possible to introduce ''proportion'". That
is, it is desirable that the relations of these parts and the relations
cf these relations, etc., should also correspond.278
There are particulars in which spatial figures must fail to
correspond exactly to the logical relations. For example, the various
classes introduced are cBordinate, eguivalent.in logical denotation, etc.,
but it is only possible to maintain the geometric symmetry and indifference
necessary to connote this in graphs of three or four terms. Geometric
impartiality is virtually impossible for the various sub-classes even
at three or four terms.279
Hocking feels that any tabular arrangement is a primitive diagram.
The first stage in such a diagram would be to order sub-classes according
to their 'connotative rank', This might be defined as the breadth of
connotation of the sub-class. If we adopt the convention of using the
number 'M1" when the universe is cénnoted, we may list the sub—claéses
according to rank from O upward with O representing the broadest connotat-

ion. # table for two classes would be as follows;280

278Hocking, Op. Cit., PP, 32—33. The remainder of the first part
of Hocking's article is an attempt to show to what degree this may be

done in an ideal geometric diagram.

279For example the sizes of the various components of the Venn
diagram vary with regard to size whereas there is no logical reason for
this variation.

280 . . . . .
Hocking does nmot give this table. He does, however, give a
similar table from which this was drawn but he does not include rank.
The table, Hocking, op. cit., p. 33 is:




Rank Sub-classes Connotations
0 ab 1
1 ab, ab a, b
2 . ab ab

Similar tables for three and four classes may aid the reader's understand-

ing of ceonnotative rank:

It will be seen that in a

Rank Sub-classes ' Connotations
0 abc _ 1
1 abc, abc, abc a, b, ¢
2 abc, abc, abe ab, ac, bc

.3 abce abe
0 abed _ . ___ 1
1 abcd, abed, abcd, abed _ _ _ a, by ¢y, d
2 abcd, abed, abed, abed, abed, abed ab, ac, ad, bc, bd, cd
3 abed, abcd, abcd, abed abc, abd, acd, bcd
L abcd abced

universe of n classes there will be one sub-

class of rank n and one sub-class of rank 0, n sub-classes of rank 1 and
n sub-classes of rank n-l, and the distribution of the remainder of the

sub-classes among the ranks will be according to the law of Pascal's

triangle.281
Sub-classes Connotations
ab ab ,
ﬂ.g a
b b ;o
ab 1

Ncte that Hocking does not include the possibility of negative connctations.

281“This is a triangle of numbers which is formed in such a way
that the numbers in any row, after the first two, are obtained from
those in the preceeding row by copying down the terminal 1's, and adding
together the successive palrs of numbers from left to right to give a
new row. Thus, any number is the sum of those two numbers immediately
zbove it." C., C. T. Baker, Dictionary of Mathematics, London: George
Newnes Limited, 1961, p. 228. The particular Pascal triangle about which
Hocking is writing is as follows:




37

Any satisfactory graph must so group the ranks that those sub-
classes having the same rank will be at the same approximate distance
from the center and periphery and that the rahks are ordered either
inward or outward (i.e. O and n will be at the two extremes in tue order-
ing of the ranks)°282

The second method of classification of the sub-classes is by
connoctative kinship.ZSB' Kinship is measured by the simplicity of trans-
ition from one sub—clasg to anothér. For example, 1 may pass into a or
b by a single change; & may also pass into ab or-ac by a single change
but it takes two changes for it to pass into b or ¢. In general, it may
be stated that the sub-classes of a given rank are related to each other
more remotely than to the sub-classes of the adjacent ranks. Ve may, in
our diagrams, allow the number of boundaries which must be crossed in
moving ffom one sub-class to another to represent the degree of kinship
with one boundary representing one change, two boundaries two, etc.

In order to list sub-classes according to both rank and kinship
it is necessary to'abandonfthe linear form and substitute a cyclical

L
order. The diagram for three classes is the Venn diagram (LII a)28‘

1
1 1
1 2 1
1 3 3 1
1 L 6 L 1
1 5 10 10 5 1

282Hocking, op. cit;, pe 34. PFurther reference will be made to
this rule in II 3 (¢) as well as to kinship.

283Hoéking discusses kinship op. cit., p. 34=36.

284Hocking, op. cit., p. 36, Fig. 2.
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which perfectly orders the sub-classes according to both rank and kinship.
For four classes it would require three diﬁenSions to make a

representation which would perfectly accommodate both rank and kinship.

In general, a representation of n classes would require a space of n-1

dimensions.285 Thus we must modify our origianl plan. We will hereafter

reguire only that any set of four sub~classes about an intersection shall

be related with regard to kinship as in the above scheme and that all

sub-classes containing, in common, any connotative factor shall be

placed together. A table for fouf terms which complies with these

) 286

When the redundancies are removed

c)9288

regulations may be drawn (LII b

we are left with diagrams similar to Ma;quand287 (LII Carroll

289 290

(LII &), and Venn and Newlin (LII e). Thus we see why all of these

systems have'proven relatively adequate. The choice among these diagrams
will be determined by such factors as ''the simple and fluent outlines of
the classes, their equivalence in area, approximate eguivalence in area

of the sub-classes; symmetry and openness of the whele graph, etc.”zgl

285
286

Hocking simply states this without making any attempt to prove it.

Hocking, op. cite., p. 37, Fig. 3.

287Hocking does not point out the equivalence of this and the
following diagrams to earlier ones but the relationships are so obvious
that it seems clear that he had these other systems in mind.

. ‘
280Hocking, op._cit., p. 37, Fig. L.

289Hocking, 0T. Cite, Po 37, Fig. S
290 '

Hocking, op. cit., p. 37, Fig. 6.

291Hocking, op. cit., p. 38.
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Hocking now attempts to prove that it is possible to draw a graph
for p terms that will satisfy all three primery conditions: "(1) that
each class be represented as a closed figure within a single boundary;
and (2) that the sub-classes be arranged in order of connotative rank,
and (3) of connotative kinship within the limits above defined.”292

If, in a universe of n-1 classes, a closed figure can be drawn
that passes dnce and only once through each compartment we have the re-
quisite for a graph of n classes.293 As the new boundary passes through
any compartment it will divide the compartment into two parts: one,
destined to be within the new figure, is raised omne rank; the other,
remaining without, retains its previous rank. If rank and kinship are
observed in the original diagram they will be observed in the new one.
This is evident in the transition of any typical part of the graph as in
the transition of LIII a29ﬁ to LIII b,295 Now we can be certain that if
such a plosed curve can be dfawn we will have fulfilled the other
requirements.. We can prove as follows that if such outlines can be drawn
for the (n-1l)th class they can be drawn for n classes. By hypothesis
the outline of the (n~-l)th class passes through all previous sub-classes
arranging all of the sub-classes along its boundary. Now all the sub-

classes are related to that boundary as m and n are related to the line

292 0cking, op. cit., p. 38.

293’I’he following proof is carried out by Hocking, op. cit., pp. 28-39,
294Hocking, or. cit., pe 38, Fig. 7. o

ool ——

295Hocking, op. cit., p. 38, Fig. 8.
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296

xy in LIIT c. Therefore a new boundary can follow pg and, since there
will always be an even number of turns, the end of the line will pe able
to join the beginning. Therefore, if we can draw such a diagram for

n~l classes we can draw such a diagram for n classes. But we can draw
2?7 T

such figures for a number of classes. herefore, we must be able to

draw them for n classes.
Finally locking draws a set of figures up to and including seven

classes (LIV a—f).298

Hocking did not mean these figures to be of
vractical use in logic but of value only in demonstrating the theoretical
extensibility of the diagram.

In the second part of his article Hocking develops a graphic
method of dealing with immediate inferences., He first attempts to show
that the eight variants of immediate inference are functions of two

fundamental processes: conversion and obversion. Let the direct inference

be represented by L and let C. O. be read '"the converse of the obverse' etc.

Direct = 1l =SP= 0. C. 0. C, 0. C. 0, C,
Cbhverse = 0. =SP= C. 0. C. O, C. 0. C,
Contraverse = : C. 0, =P8= 0. C. 0. C. O. C.
Contra-positive = 0., C. 0. =FS= C. 0. C. 0. C.
Oppositive = C. 0. C. 0., =5P= 0. C. 0. C.
Inverse = 0. C. 0. C. 0, =5P= C. 0. C.
Contra~inverse = C. 0. C. 0. C. 0., =PS= 0. C.
Converse = 0. C. 0. C. 0. C. O, =PS= C.
Direct = C. 0. C. 0. C. 0O, C. 0O, =8P= 1

PHocking, op. cit., p. 39, Fig. 9.

297We can, for example, draw such a diagram for 1, 2, 3, and 4
classes as was pointed out earlier (e.g. LII a, etc.).

298Hocking, op. cite., p. 39, Fig. 10 and 11; p. 40, Fig. 12, 14,
16 and 17. Note that Hocking does not give a diagram for three terms
but such a diagram could easily be drawn by eliminating one of the ovals
in the four term diagram although Hocking would have been satisfied with
the Venn circle diagram for three terms.
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This may be demonstrated by a graphic method which Focking also believes
to be of assistance in solving any logical problem involving immediate
inference, We draw a universe of discourse containing S, P and their

negatives (LV 2).%%? We will adopt the convention that the letter in
300

the lower left corner will always be the subject of a proposition
and that in the lower right corner will be the predicate.

The graph will be thought of as having two axes: the axis of
conversion is a line perpendicular to the base through the meeting-point
of the diagonals (LV b)BOl and tﬁe axis of obversion is the diagonal
running from the lower left to the upper right corner of the graph (LV d).302
To convert a proposition we simply rotate the graph on the axis of con=-
version 180 degrees and read off the resulting proposition (LV c);305
tq obvert a proposition we do the same using the axis of obversion (LV e).sobr

We may, if we wish, go further and prove all of the immediate
inferences to be functions of conversion and obversion simply by following
the procedures listed in each case.

Hocking gives us an example of this graph in use. Let us assume

that every categorical proposition implies the existence of both P and 8

299

Pl St

Hocking, op. cit., p. 42, Fig. 18.

3OOWhat proposition will depend on the narkings on the particular
card (See LVI). :

3OlHécking, ov. Ccit., p. 43, Fig. 19.
3OEHocking, ov. cit., p. 43, Fig. 19.
3OBHocking, op. cit., . 43, Fig, 19,

0L . . e
Hocking, op. cit., p. 43, Fig. 19.
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and that an affirmative propogition implies the existence of members in
the class SP. We indicate existepce with a checkmark and non-existence
with shading. The A, E, I and O propositions give us four distinct
diagrams (LvI a—d).305

It is easily seen, using these diagrams and applying the above
methods, that the obverse of an A proposition is an E proposition, that
the converse 6f both the E and I propositions remain E and I propositions
because they are symmetrical about the vertical axis, that the O propos-
ition cannot be converted to any of the forms we have mentioned and that
the converted A proposition will be partly covered (i.e. by limitation)
by the I proposition.

A1l of this is very interesting but one is tempted to ask, 'So
what?" Immediate inferences are reasonablj simple and require the
memorizing of only eight forms. Hockiné, himself, has shown the dependence
of all immediate inferences én conversion and obversion. Why then do we

need the diagrams? One should add, in fairness, that this subject had

been very complicated prior to Hocking's time. It may be that it only

7

306

appears trivial to us in the light of C, I. Lewis' brilliant analysis,
and perhaps the highest tribute we could pay to Hbcking is to point out
that his analysis, though less profound, parallels Lewis' almost point

for point.

3O5Hocking, op. cit., p. 44, Fig. 20, Note that Hocking makes
these existential assumptions arbitrarily and would have to be willing
to allow other assumptions. Thus his examples are only examples. They
might be quite different in their conclusions given different assumptions.

3O6See II 2 (4).



(i) Lewis

C. I, Lewis has also produced a, diagrammatic method of discovering

307 308

Since we have already discussed Hocking's

309

immediate inferences,
method, and éince Lewis makes use of Venn circles, we shall consider
this method here although the diagrams are not strictly geometric in the
sense in which we have defined that term. Lewis' aim is to show how

Boolean algebra has "done a real service' in "the clearing of certain

difficulties!" concerning immediate inferences. He gives the following

. - . .. 10
series of inferences which would be accepted by '"some! loglclans:3
"No a is bY gives "No b is a"
"No b is af gives "All b is not-all

A1l b is not-a'" gives "Some b is not-a'
"Some b is not-a' gives "Some not-a is bY

Trhis series of inferences would lead to such conclusions as: if no
mathematicians have squared the circle, some non-mathematicians have

, . 311 . . . X .
saquared the circle. Something is obviously wrong. The problem lies
in the inference of the particular premise from the general. Given ba=0

we must also have bZ0 before we can infer b-aZ0.

307Lewis,, on. cit., pp. 191=195,

30817 5 (n).

09. - . : : .
3 9Lew1s uses only two such circles but each stands for a term.
He does, howeven use other, non-geometric symbols (viz. arrows).

BlOLewis, op. cit., p. 190.

311One of Lewis' examples. The other is: "'No cows are inflexed
gastropods' implies 'Some non-cows are inflexed gastropods.'" Ve have
eliminated the letters "a" and "b" from these examples. See Lewis,
op. cit., p. 190. o . -



b:b[a+(-—a)]
=ab+(-"l>b
if b=0
ab+(-a)b=0
the inference (-a)bZ0 is not possible.
but if b0
and ab=0
. (=a) b0

That is to say, there is a suppressed premise in the conversion of an A

proposition to an O proposition: that one of the classes involved has

membersojl2 :

The inferences that will be possible are eight in number and
are indicated on our diagrams by the arrows (Lviz a).313 One simply
follows the arrows to read off the subject and predicate in their correct
order. The actual inferences are dependent on our given information.
Null classes are shaded on the diagram; classes known to have members are
marked with an asterisk. Lewis gives two typical examples: given SP=0,
S£0, and PAO (LVJIb)Bll‘L we may read along the arrows to get:

1) No 8 is P and some S is not-P

2) All S is not-P and some S is not-P

%) All P is not-S and some P is not-S

L) No p is S and some P is not-S

5) VWanting

6) Some not-S is P

7) Some not-P is S

o]

(@]

)  Wanting

given §-P=0, S#0 and PZ£0 (LVII 0)315 we may read along the arrows to get:

312Lewis tréats ﬁhese’matters‘op. cit;,'pp. 190-191.

3lBLewis, op. cit., p. 191, Fig;aiB. This is the diagram when we

are in entire ignorance as to the existence of S and P.

ra
)1hLewis, on. cit,, p. 192, Pig. 1l4.

LAt TR oo ey

oLewis, op. cit., p. 193, Fig. 15.
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1) All S is P and some S is P

2) No S is not-P

3) Wanting .

L) Some P is S

5) Some not-S is not-P

6) Wanting

7) No not-P is §

8) All not-P is not=-S and some not-P is not=-S

The great value of Lewis' analysis of this subject is that it
shows in final and simple diagrammatic form the absolute limits of
izhmediate‘inferenceo Boolean algebra showed its power in defining this
field that had plagued logicians using Aristotelian methods. It is
significant that both Hocking and Lewis found it expedient to use diagrams
when working in this field and their ultimate conclusions show that
diagrammatic representation can be a significant tool on the path toward

the drawing of conclusions from symbolic representation.

(j) Gonseth
316

Gonseth's diagrams were given only for two terms and were

exactly like those of Marquand except that instead of shading out the

appropriate areas he eliminated them entirely from the diagram. Thus

one may represent AvB as in Diagram LVIII a,317 A&B as in Diagram LVIII b,318

319 ’

A-B as in Diagram LVIII c, etco

Gonseth's departure from the methods of his predecessors is so

316?: Gonseth, Qu'est-ce Que La Logigue, Paris: Hermaan & Cle,
1937, section 53, pp. 76-7C. :

317,

onseth, og.vcit.; p. 77

318 nseth, op. Cites Po 77 VAYB" means "A.B',

319Gonseth, OP-. cit;, p; 77. "A=-B" means "A:B";



insignificant that it would not merit mention except for Bochefski's

-

interpretation of it.)Zo Bochefiski also begins with a two term primary
square but he shades the areas which the proposition does not negate.
For example pvq demands the shading of the p area and of the g area
(LVIII d)}le Similarly p.q demands the shading of that area which is
both p and g (LVIII e) and p>q, the shading of all but the area which is
p and not-g (LVIII f). |

There are several problems with Bochefiski's interpretation of

322

Gonseth's system. VWhen, in Marquand's system, an area proves to be
empty it is shaded out and as more propositions are added more areas are
shaded. In Bochefiski's diagrams all but the areas that prove to be empty

are shaded and the addition of more propositioné would necessitate the
erasure of shading. This is impractical. It is also difficult and
confusing to mark a shaded compartment for existential propositions.

Since this final geometric system is riddled with difficulties we shall

‘

leave it and turn to the linear systems.

z5 .
j"OJ‘, M. Bochefski, A Precis of Symbolic Logic, Translated by
Otto Bird, Dordrecht: D. Reidel Publishing Company, 1959, pp. 13-1i.

321

All of these diagrams are found in Bochefiski, 6E.=cit.,Apo ik,

32211 2 (d) above,
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3. Linear Diagrams

(a) Leibniz

In any English work on the logic diagram Leibniz is certain
to receive unfair treatment. His papers in this field have not been
published in German let alone translated. That he did use both geo=-
metric and network diagrams is evident from the page of manuscript
reproduced by Bochéﬁski323 but no material is available on this except
for that one nearly illegible page; Thus we are left with the brief
fragments translated by Lewis;324
One example of Leibniz's diagrams will show us how primitive,
and yet how effective, they were. In the second fragment, proposition 9,
Leibniz wishes to prove ‘that if A=B, then A@C-—:BGBC}.3 25 As part of the
proof he draws & line of which the various segments represent the various
parts of the proposition LIX).” 26
Let RS represent A
A=B .
.. RS may also represent B
Let SX represent C
RSOSX=RY
".RX represents AeC

but A=B
.“RX represents BeC . -

3231, M. Bochehski, A History of Formal Logic, trans. and ed.
Ivo Thomas, Notre Dame: University Press, 1961, facing page 260,
Bochefiski also gives examples of Venn diagrams, p. 261,

324 : ‘
G. W, Leibniz, Die Philosophischen Schriften von G. W. Leibniz,
Band VII, 'Scientia Generalis. Characteristica,® XIX and XX, published
as "Two Fragments from Leibniz', in Lewils, op. cit., pp. 291-305.°

325"A9>B”, though not defined by Leibniz in these fragments,
seems to mean A and B taken together or the sum of A and B.

326Leibniz, op. cit., p. 298.
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The further extension of this system will be obvious to the reader
without further examples.

One might represent almost any proposition by means of such
a line; the problem with Leibnids system is that such diagrams would
soon become so confusing as to be of no aid at all in reasoning. It
should, nonetheless; be poihted out that Leibniz's diagrams,>the first
of the linear systems, were much more effective than those that were

329 | v

produced later.

(b) Lambert
Accurate information on Lambert's system of linear diagrams is
difficult to find. Because of its weaknesses it has generally been

ignored. However, piecing together the information found in Venn328

329

and Hamilton, we are able to get an approximate picture of Lambert's
system., Each term is represented by one horizontal line. The relation
of these lines to one another represents the relationship of the terms;
If the line A is shorter than tﬁe line B and would be between perpendice
ulars dropped from the ends of B we read "all A is B" (LX a). Similar
diagrams for the other Aristotelian propositions are obviou; (LX b=d),
If we interpret “some" as "some or all" we may use a dotted line to
indicate that portion concerniﬁg which we are in ignorance (LX e and f):
Tre system has obvious weaknesses. It cannot represent disjunctions;

30 1t is

Euler's system is much more flexible and'Venn's even more so.

327
328

With the possible exception of Keynes.
Venn, op;‘cit., PP. 517-520;

329 amilton, op. cit., 180, 214=217, 133, 261, 584586, 595-597,
642-645, and especially 667-669. )

3320

This is the obvious criticism. Venn goes further to criticize
the system as actually employed by Lambert. Vemnn, op. cit., pp. 518-519,
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not surprising, then, .that Lambert's diagrams have virtually fallen
out of use.

331

Hamilton disagrees with almost everything that Lambert does.
He calls the dotted line, Lambert's finest insight, "a line different
by an accidental quality, not by an essential relation";332 It is clear
that Hamilton did not grasp the significance of the dotted line; There
would be little point in itemizing Hamilton's scathing attack on Lambert.
Much of the criticism is directed against Lambert's inability to cope
with forms that were not even discovered in his time. It will be more
useful to turn to Hamilton's attempt to improve Lambert's diagrams; We
will then see that Lambert's diagrams have a natural simplicity, an
obviousness, that makes them preferabie to Hamilton's.
We can do no better in describing Hamilton's system of linear

diagrams than to quote directly from his own description:

Herein, four common lines are all the requisites:

three (horizontal) to denote the terms; one (two?-

perpendicular), or the want of it, at the commencement

of comparison, to express the guality of affirmation

or of negation; whilst quantity is marked by the relative

length of a terminal line within, and its indefinite

excurrence before, the limit of comparison. This nota=

tion can represent equally total and ultra-total dis-

tribution, in simple Syllogisms and in Sorites; it shows

at a glance the competence or incompetence of any con=- '

clusions; and every one may easily evolve it,

Of these, the former, [LXI al] with its converse,
includes Darii, Dabitis, Datisi, Disamis, Dimaris, etc.;

331
", . . and although I thlnk linear diagrams do afford the
best geometrical illustration of logical forms, I have found it necessary
to adopt a method oppesite to Lambert's, in all that is peculiazr to him.
I have been unable to adopt, unable to improve, anythlng " Hamilton,

op._cit., p. 667.
332Hamilton, OpP. cit., p; 663.
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whilst the latter, [LXI b] with its converse, includes
Celarent, Cesare, Celanes, ‘Camestres Cameles, etc. But
of these;, those which are represented by the same
diagram are, though in different figures, formally the
same mood, For in this scheme, moods of the thirty-six
each has its peculiar diagram; whereas, in all the other
geometrical schemes hitherto proposed (whether by lines,
angles, triangles, squares, parallelograms, or circles),
the same (complex) diagram is necessarily employed to
represent an indefinite plurality of moods., These
schemes thus tend rather to complicate than to explicate, =
rather to darken than to clear up.333

From this we are able to see the weakness of Hamilton's system clearly,
Euler, Lambert, Venn, and in fact everyone involved in the development

of logic diagrams, was seeking a diagram to which various propositions
might be applied and in which the logical conclusions of such proposi-
tions would be made obvious. In other words, most logicians were seeking
2 diagram whiéh would be universally valid. Hamilton, on the other hand,
was seeking particular diagrams for particular situations. This would
give us a large number of distinct diagrams each representing a certain
situation; Our basic aim in lbgic ié the solution of problems. Hamilton
is concerned with illustrating pgrticular‘arguments; everyone else is
concerned with solving them: For such solutions a universal diagram is
required; In any practical problem Hamilton's linear diagrams would be
of little use,oo

Hamilton applied linear as well as circular diagrams to the

relations of concepts; The faults which we have already pointed out

333Hamilton, op. cit., 670-671.

531“Hauxzil’con, himself, describes his linear system as 'easy, =~
simple, — compendious, = all=-sufficient, —— consistent, — manifest, ==
precise, = complete." Hamilton, op. cit., p. 672.

\ \BRARY.
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in his circular ‘diagrams are aggravated by the use of linear ones
(LXI c-g).335

There is nothing surprising in Hamilton's application of linear
diagrams to sorites (LXII a and b) which is exact;y analogous to his
use of circular diagrams;336

When we turn to Hamilton's application of his diagrams in tradi=
tional logic it is with a shock that we recognize that he has abandoned
‘his own diagrams in favour of Lambert's; The first of these diagrams
(all without any perpendicular lines) shows extensive affirmation

(LXIII &)y 227 the second, (LXIII b)>>0 intensive affirmation. The

we read the right side

e

third diagram (LXIII c)339 applies to either
for extensive and the left side for intensive affirmation. The fourth
(LXIIT a)°"*° is capable of a similar dual reading for extensive and
intensive hegation: Hamilton's linear system is at best confusing and
not as adequate as Lambert's;:

341

Keynes;, on the other hand, made a serious attempt to develop
a more adequate system which would remain true to the principles of

Lambert. There are only seven relationships which a predicate may bear

335
Hamilton, op. cit., p. 133.

’B'Hamilton. op._cit., p. 261
3 amilton, op. cit., p. 21k
338 amilton, op. cit., p. 2lh.

33%Hamilton, op. cit., p. 2Lb.

3L*C)Hamil'tong op. _cit.; p. 215.

3L}:LJohn Neville Keynes, Studies and Exercises in Formal Logic,
London: Macmillan, 1928, Although earlier editions of this book dis=-
cussed Lambert's system it was in this edition that Keynes introduced

- his own. A similar system was developed by J. Welton in A Manual of Logic,
Volume I, London: University Tutorial Press, 1922, pp. 223=224,
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to a subject;- These relationships are all represented in a condensed
diagram (LXIV.a);' Each line represents the entire universe of discourse;
The first line bisects the universe between S and S'; Each of the other
seven lines represents one of the possible ways in which that same unie
verse may be divided between P and P'; This is the most thorough
example of linear diagrams that we have.'342

Keynes goes on to use these diagrams to represent propositions
(LXIV b).2%> Dotted lines represent a;eas the constitution of which is
uncertain., Because of this‘uncertainty Keynes points out that we must
be careful noﬁ to represent any of the middle term in a syllogism by
dotted lines as premises s0 represented cannot lead to a valid con-
clusion.zgk

The diagrams of Keynes are particularly appealing because of
their value in reading off immediate inferences. Given SaP it is at
~ once apparent from the diagram PiS;, P'aS' and S'iP'.345

Keynes would seem to have pushed the linear diagram to the limit
of its representational ability. He has made it adequate for Aristotelian
logic but its weakness in more modern logic remains;

This weakness of all linear systems is obvious, Any system, such
as the Lambert-Hamilton system, simple enough to be meaningful, is not
capable of application to complex relations; any system capable of cover=-

ing the complex subtleties found in the geometric systems would be so

complicated as to be of no help{

342Keynes, 22;_313., pp; 174176,
3¢eynes, Ops_clt., p..176.
Shby oynes, op. cite, Do Bk
3% eynes, SE;_EEE;; p. 176.
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4. Network Diagrams

(a) Squares of Opposition
Thergquare of opposition first made its appearance in Apuleius
(LXV a)346 and a somewhat simplified form (LXV b)347 has been in common
use for qenturies{ The square of opposition is a network made up of
the four sides and two diagonals of a square (or rectangle). The corners
represent the A, E, I and O propositions., The lines represent the
relationships between them; There are, in all, four relations: con=
trariety, subcontrariety, contradictipn and subalternation{ The A and E
are contraries: éhey may both be false but they cannot both be true.
The I and O may both be true'but cannot both be false and are, therefore,
called subcontraries. The A and O are called contradictories because
either the one or.the other, but not both, must be true: The E and the
I are a second pair of cbntradictories. If the A is true the I is true
but if the I is true the A may or may not be true; this relationship is
called subalternation, the I is called the subaltern of the A and the A
is called the superaltern of the I. Similarily the O is the subaltern
of the E and the E is the superaltern of the 0. It is to be noted that
all of these réléfionships pfesuppoée that the subject of the propositions
has existential import;
Boolean algebra allows the possibility that $=0 and P=0., This
introduces serious problems into»thg square of opposition‘(LXVI ale
Lgt 5=0
. 8P=0
and SP=0
", SP£0 is not the subaltern of SP=0
and SP=0 is not the contrary of SP=0
and SP=0 is not the subaltern of SP=0
356 ‘

I. M. Bochefiski, A History of Formal Logic, Pp. 1li4l.

31"711'.-v1ng Lopi,, Introduction to Logics New York. MacMillan, 1961,
pp. 142-149 and p. 161. .



104

and SPZ0 and SPZ0 cannot be subcontraries.
J. all the relationships on the sides of the square break
down when S=0

The Boolean square of opposition is left with a cross made up of the
diagonals;

A similar‘square of opposition (LXVI b)3u8 may be produced for
a propesitional calculus using quantifiers: If there is at least one x
the various relationships between (x)Q x, (x)~px, (Ix)¢x and (3Ix)~Px
are the same as those in the traditional square of opposition; In other
case:sﬂ*9 the relaticnships are the same as those in the Boolean squaros

Finally we turn to the square of opposition for particular
formulae in the propositional'calculusj This square shows the relation-
ship of four basic propositions: (p.q)s (~p;Fq), (pvg) and (~pv~q):
For'conveniénce in diagramming we may translate to the Lukasiewicz's
notation: If EdpgEpNgq and<EquNqu350 we may relate the four proposi-
tions within six tautologies and diégfam the entire system with the
verticesvrepreoenting the propositions and the lines representing their
tautologous relationships (IXVI cl?sl The tautologies are::

DKpgKNpNg |

AApaANENg

CKpahpa -

CKNquANqu

JKpgANpNg |

JKNpNgApgq

BL}'SCOPig OEa Citog Pa-.31li
349

350

Definitions of D and J

ie. cases where there is not one Xx.

35lBocheﬁski, A Precis of Mathematical Logics p; Tl
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The square of opposition has proven itself to be a convenient
device for showing relationships; It is not & true logic diagram in
the sense thét it is not generally capable of solving problems: It is,
nonetheless; a very convenient instrument when carrying ouft some of the

basic mechanical steps necessary to logical solutions.

i

(b) The Pons Assinorum and the Ars Magna

In the Mediaeval pons assinorum there was a serious attempt to

- show all the possible relationships between the terms in the various
categorical propositions and especially to reduce to a simple formula
the position and.relationship of the middle term of a syllogism: Two
such diagrams are reproduced here (LXVII a and b).352 It will be seen
that they conveniently give all possible combinations of the premises

but that they are no aid in reaching the conclusion; The followihg

<

chart of definitions will assist in reading our examples of the pons
assinorum:

- the proposition contains P

= the middle term follows the predicate

- the middle term is antecedent to the predicate
- the position of the middle term is extraneous

the proposition contains S

- the middle term follows the subject

~ the middle term is antecedent to the subject |,
- the position of the middle term is extraneous.

DO GQW =
i

Lull also produced diagrams in his ars magna meant to aid in
combinations but he was interested in combining terms, not premises.
Our brief account of one such diagram follows Gardner who devotes an

entire chapter to Lull:353 The diagram we are using for illustration

¥

352Bochensk1, A History of Formal Loglc, pp. 1l43-14L4 and especially
219~221 and diagram facing p. 220.

353Gardner, op. cit;,.pp; 1~25; Bochefiski also discusses Lull
in A History of Formal Logic, pp. 272-273 and gives one diagram facing
Po 274, .




106

(LXVIII)354 contains, around its border, a list of sixteen attributes
of God. BEach attribute is represented by a letter in the second circle.
We know theée sixteen facts about God.‘ To gain further knowledge we
simply choose one attribute and follow 6ne of the lines leading from it.

355

t may pass through A, which represents Godg we continue on the other
side until we arrive at another attribute. Thus we may, for example,
reach the conclusion BC ("God's goodness‘is great'), BD ("God's goodness
is eternal™) #nd CD (“God's greatness ié eternal")@ etc. To simplify
matters we may rotate the inmer circle on the outer bringing together
the vérious attributes in the respective circies.” This frees us from

3% such a

the maze of lines but accomplishes exactly the same task.
device is able to'give the operator access to all possiblé combinations
of terms. It is not actuélly able to assist in finding the solution of

problems; Thus we are justified in turning to the more sophisticated

network systems which can, indeed, make such solutions more apparent.

(¢) Frege
It is necessary to defend the examination of Frege's notation.
It is, after all, simply another form of notation for mathematicai logic
sgmewhat different from Russell's. Why'then should we be studying it as
a type of légic diagram2 Although a full defense must wait until we have

examined his notation in some detail, it may be said here that the

structure of Frege's system seems to have diagrammatic as well as algebraic

35L}’Gardner, oE; cit;, figure 4, p,‘ll, described pp. 10 and 12,

355Ii‘ it does not pass through A we do exactly the same thing:
The introduction of the "A' in the diagram has no effect on its use.

?Sslt is obvious from this that Lull's diagrams are on the border-
line between diagrams and machines.
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import. We shsall conclude this section with a comparison of Frege's
notation and the diagrams used for switching circuits to prove this
point;

The basic unit of Frege's system is the proposition,' Simple
propositions are of two sorts: Judgments and thoughts; A thought is

represented by a horizontal stroke (in the Grundgesetze) or a '"content!

stroke (in the Begriffsschrift) followed by a name (IXIX a).°2! A judg-

ment is an asserted thought."The vertical judgment-stroke to the left
agserts that the content of the proposition is ‘true (LXIX b)}58 Judgments
always assert. It is necessary to indicate negation by means of a short
vertical stroke below the horizontal (LXIX c) 327 1t we are given two or
more horizontals, one or less of which has a negation stroke, they may
be amalgamated into one horizontal (LXIX d-g) and the process may be
reversed (LXIX h-k):36o

Now we must choose a basic unit of combination, a binary relation

in terms of which our system may be developed: Frege, although conscious

357(‘:0'1:1:101) Frege, Begriffsschrift und Andere Aufsatze, Hildesheim:
Georg Olms Verlagsbuchlandlung, 1964, p. 1 (Hereafter called Begrlffsschrlft)a
Also Gottlob Frege, The Basic Laws of Arithmetic. Trans., and ed. Montgomery
Furth, Berkeley and Los Angeles: University of California Press, 1964,
p. 38 (Hereafter called Grundgesetze).

358Frege, Begriffsschrift, p;42 and Grundgesetze, P. 38;

359The negétion is then a part of the thought and not a part of
the judgment. Frege, Begriffsschrift, p. 10 and Grundgesetze, p. 3%

‘360Frege, Grundgesetze; pp. 39=40,
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that he might have chosen differently, chooses that state of affairs

in which A cannot be true while T is false. This state of affairs is
indicated by inserting the conditional stroke, a vertical line perpendic-
ular to the 5orizontal of T and intercepting the left tip of the hori-
zontal of A (LxX a):Bél The negation of this entire statement requires
a negation stroke immediately before the conditional stroke (IXX b):362

& ﬁegatioﬁ stroke after the conditional stroke negates only the particular
proposition invélved (Ixx c--e)..ss3 This may be further expanded by the
addition of another term; A new term implying the first proposition is
simplyiattached to the horizontal by means of a new conditional stroke
(IxXX f)364'and oﬁe implying only one of the secondary terms is attached

365

to the horizontal of that ferm in the same manner (1XX g).
Frege introduces Gothic letters to limit the scope of arguments.
A generality366 is preceded by a Gothic letter which appears in the

argument. This letter is put over an identation in the horizontal

361Frege, Begriffsschrift, p.v5 and Grundgesetze, p.'51;

362Frege, Grundgesetze,‘p.‘5l;

363Erege, Begriffsschrift, p.'ll; Disgram LXX e is not actually
given there.

. s hi L
36L}Frege, Begriffsschrift, p. 6 and Grundgesetze, P. 52.
365Frege, Begriffsschrift, p; 7;
366Perhaps "universal géneralization" would be better than

Furth's word "generality" but we have retained it for simplicity of
reference. The term is introduced on p. 40 of Grundgesetze,
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(LXXI a)3367 The Gothic letter is placed before the negation stroke
to expréss the generality of a negation (LXXI b)368 and after to express
the negation of a generality (LXXi c).369 Particularity may be thus
expressed by negating the generality of a negation. Such an expressiﬁn
(LxXXI d)570 is read "There is at least one . . " If the Gothic letter
appears to the right of the conditional stroke (LXXI e)37l it applies
only to that argument or those arguments traced out to its right; If
it appears to the left of all the conditional strokes it applies to all
the arguments in the propogition (LXXT £).002

'-Frege recognizes two methods of interchangeability: Two sub-
components of a proposition may be interchanged: Diagram LXXII a can
become diagram LXXII’b.B?3 The second ﬁethod of interchangeability is
called contraposition and is thus described by Frege:

4 subconmponent may be inter;hanged with the main

'component if the truth-~value of each is simultaneously
reversed [LXXII c=£].07%

367Frege, Begriffsschrift, p. 19 and Grundgesetze;, p. Al;
368

. . . .
Frege, Begriffsschrift, p. 23 and Grundgesetze, p. 4l.

389 rege, Beriffsschrift, p. 22 and Grundgesetze, p. Llo

37017‘:r'ege,, Begriffsschrifi, p; 23 and Grundgesetze, p. 42.

3?lFrege,, Begriffsschrift, p. 21.

372Frege, Begriffsschrift, p. 24 and Grundgesetze, p; 55:

373Frege, Grundgesetze, p: 53. His treatment of interchangeability
in the Begriffsschrift deals with specific cases.

37#Frege, Grundgesetze, p: 60, italicized in the original: In
the Begriffsschrift he treats contraposition as he did interchangeability
proving its validity in each particular case.
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Frege introduces three methods of inference: The first is
stated as follows:
~ If a subcomponent of a proposition differs from a
second proposition only in lacking the judgment-stroke,
then a proposition may be inferred that results from_ the
first proposition by suppressing that subcomponent.
To simplify matters each of the original propositions is given an “index"

376

by means of the Greek letters "«', "', etc. If the proposition with
the lower index is written in full in the argument the second proposi-
tion is indicated by means of its indei and a double colon before a
single long solid stroke betweenfthe initial proposition and the con-
clusion (LXXIII a): If the second proposition is used & single colon
is placed after the index of the first proposition but the remainder of
the solution is the same (LXXIII b): The long single line before the
conclusion is to be taken as the mark of the first method of inference;
The nuﬁbér of times this line appears indicates the number of times the
method must be applied to reach the conclusion.

The second method of inference «is marked by a broken instead of
a solid line and may be described as follows::
| If the same combination 6f signs occurs in one

proposition as main component and in another as sub-

component, a proposition may be inferred in which the

main component of the second is mwain component, and all

subcomponents of either, save the one mentioned, are

subcomponents. But subcomponents occurrlng 1n both
need be written only once [LXXIV a and bl.2

= 4 . 5
379Frege,~Grundgesetze9 Po 58, italicized in the original.
Diagrams were on p. 57. , This is the sole method of inference in the
Begriffgschrift p. 7 ff,

376

Frege, Grundgesetze, p:.57:

37?Frege,'Grundgesetze, po 63, italicized in the original; The
diagrams are oun p. 59
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The third method of inference differs in symbolism in its use
of a line broken into dots and dashes. Frege states the rule for the
third method thus:

I1f two propositions agree in their main components,
while a subcomponent of one differs from a subcomponent
of the other only in a negation-stroke's being prefixed,
then a proposition may be inferred in which the common
main component is main component, and all subcomponents
of either, save the two mentioned, are subcomponents.37

Frege's examplel(LXXV a) is not the simplest case and we have added a
diagram for that case in which only one subcomponent is present in each

proposition (LXXV b)379 to cover the simplest possible situation.
380

The following comparative table, using Copi, shows how Frege's

methods of inference are related to those in a standard textbook of con-
temporary symbolic logic:.

Frege ‘ Copi

commutation of conjunction plus .
material equivalente (LXXII a and b)
a) transposition (LXXII ¢ and d) or
b) commutation of disjunction
(LXXII e) or
¢) commutation of negated conjunction
(LXXII £)
3. First method of inference - = Modus Ponens (LXXIII)
4, Second method of inference = Hypothetical Syllogism (LXXIV)
5. Third method of inference = elimination of tautologous alternatives
(not in Copi) (LXXV)

1. First type of interchangeability

2. Second type of interchangeability

378Frege, Grundgesetze; Pe 65, italicized in the original;
Diagram LXXV a is on pp. 6L4=65.

379,

is diagram does not appear in Frege;

38OCopi, op. cit., These rules are given on pp. 277 and 283,
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We have generally followed the symbolism of the Grundgesetze

which is much more condensed than that in the Begriffsschrift but the

basic principles of symbolism are similar in both:

There are, of course, weaknesses in Frege's system examined
as either symbolism or diagramsa‘ This symbolism is cumbersome and at
times difficult to read. Nonetheless, it is significant for its attempt
at universality and especially for the introduction of Gothic letters to
indicate quantification for the first time in the modern sense.

As diagrams Frege's branching figures have severxal faults; The

most important is their failure to universalize. It is possible to draw

almost any proposition or set of pr@pos;tions using them but there is no
general diagram such as.we find in Venn, Marquand, etc: This means that
we must begin anew to draw the diagram for each new proposition. It is
true that there is a general structure of the diagrams but there is no
single universal diagram which incorpofates all the alternatives.

We must, finally, ask whéether we should have examined Frege's
branching structures as diagrams or whether we shquld have relegated
them to the realms of symbolism and ignored them: In order to defend
our examination of Frege it is necessary to look briefly at the diagrams
used in electricél engineering to map éwitching circuits in computers:
There are threg basic switching circuits: the AND circuit (LXXVI a),

the OR circuit (LXXVI b) and the inverter circuit (LXXVI c).381 Usually

Venn or Marquand diagrams are used to illustrate these if diagrams are

381Allan Lytel, abc's of Boolean Algebra, New York: The Bobbs-

Merrill Company, 1965, p. 15. Montgomery Philster Jr., Logical Design
of Digital Computers, New York: John Wiley, 1963, pp. 30 ff.
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d382 and e).383 It is easily seen (LXXVI f and g)

used at all Ce.é;'LXXVI
that Ffege's diagrams do not fit the switching circuits well but, with a
small adaptation we can make them far more adequate than the Venn diagrams;
e simply let the basic Frege structure represent A ; B instead of B =2 A,
Now it will be seen that Frege diagrams represent switching circuits with
a one to one correspondence (E;gf LXXVI h, i and j) while the Venn dia-
grams, far from clarifyihg the situation, add considerable confusion by
attempting to iilustrate a network by means of a geometric area; Thus
Frege's diagrams, despite their weakness as logic diagrams, would seem

to be very valuable for illustrating tge logical structure of neﬁworks:

In fact, it is the fact that they strip away that part of the logical
universe vhich is irrelevant to the proposition that makes them useful

in illustrating networks and deceptive in illustrating logic. Thus

whether they were originally meant to be diagrams or not there are cases

in which they function extremely well as logic diagrams.

(a) Pei:t'ces&+

When we come to Beirce's diagrams we find ourselves with an

embarrassment of riches. Peirce's final system is the most complete

22,061, op. cites Do 26. See also Philster, Op. Cit.s Pp. 3h=35.

38 3Lytel's gquared diagram given here is a negative of a Marquand .
diagram for 3 terms.. Lytel, op. 01t., Po 81. See also Philster, op. cit.,
pp. 48-49.

3SLPThe pivotal works by Peirce on diagrams are Peirce 4. 347-L4.584
but other significant insights are scattered throughout Peirce’s work. In
an unpublished lecture of D. D. Roberts, Toronto, Dec. 1965 it was pointed
out that many of the significant papers on diagrams by Peirce have not
beer published.
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system of logic diagrams yet developed.' In addition to this; Robert3385
has added to this system to make it adequate for almost any purpose.
To examine Peirce'’s diagrams thoroughly would require much more time
and space than aré available here; yet we profess to examine all of the
logical systems; What then are we to do? Our plan for this section
will be as follows: (1) we shall describe the essential symbols of
Peirce's various systems; we shall not go on to explain the ruleé of
operation etc:, but anyone wishing a thorough analysis will be directed
to the relevant portions of Roberts® thesis, (2) we shall describe
briefly Roberts' interpretation of Peirce's system with emphasis on his
improvements of that systém rendering it operative for functional cal-
culus, and (3) we shall discuss evaluations, especially Peirce's own
evaluation, Gardner's unfavburable evaluation and Roberts' favourable
evaluation:386
Before we present the systems it might be well to mention the
influences which were most important in their development; During his
period of teaching at Johns Hopkins University, Peirce associated with,

and was influenced by Willjam. Clifford. Clifford, with Jaméé.J; .

385Rober%s, The Existential Graphs of C: S; Peirce.

386I‘cis, of course, recognized that this gives us a very
superficial picture of Peirce's system. The justification for this
superficiality rests in the fact that we have Roberts' analysis of
Peirce while we have little on the other systems discussed.
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Sylvester, developed a method of writi%g algebraic formulae using
chemical diagrams;387 These diagrams suggested to Peirce that logical
variables might be thought of as having valences and might be represented
in diagrams similar in structure to chemical diagrams; A; B. Kempe's

"A Memoir on the Theory of Mathematical Form“,388 in which valence dia-
grams of unordered pairs were used as a basis for mathematics, further
suggested thét there was something basic about such diagrams, that they
well might be the bésis for all human thought; This concept of valency
will appear especially in the gamma part of existential graphs but
appears,; at least to some degree, even in Peirce's very early diagrams
which were de&eloped prior to the Kempe article:389

Peirce's first system of diagrams appeared in a letter to his

student O, H; Mitchell:39o In these diagrams, as in all Peirce diagrams,

the lines represent individuals and the variables relationshipsngl Each

387J. J. Sylvester, "On an Application of the New Atomic Theory
to the Graphical Representation of the Invariants and Covariants of
Binary Quantics, «— With Three Appendices'; American Journal of Mathematics
Pure and Applied, Vol. I, 1878, pp. 64~125. W. K. Clifford,; ''Remarks on
the Chemico- Algebraical Theory", (Extract from a letter to Mr. Sylvester
from Prof. Clifford of University College, London), American Journal of
Mathematics Pure and Applied, Vol. I, 1878 pp. 126-128. Peirce and
Clifford were both regular contributors to this Journal of which Sylvester
was editor-in-chief.

388Ao B. Kempe, "A Memoir on the Theory of Mathematical Form',
Philosophical Transactions of the Royal Society of London, Vol. 177, 1886,

pp. 1=70.

3891t was prior also to the Clifford and Sylvester articles but
not prior to Peirce's assoclation with Clifford.

390, s. Peirce, "Letter to O, H. Mitchell", Dec. 21, 1882, Unpuh~
lished.. This system was described by Roberts in his lecture cited above.
See fn. 383. See also Roberts, The Existential Graphs, pp. 34-38.

591This dramaﬁic difference in representation would seem to stem
from Peirce's metaphysics. For Peirce relationships would seem to be the
bagic category and individuals are functions of relationships.



116

line can, then, be read as ”something”éor "there exists an": Thﬁs
Diagram LXXVII a392 may be read.E}x Z yoxy ny)>0,393 or '"there exists
an individual x and there exists an individual y, such that x is a b of
y and x is an L of y;" One may express a thing's relationship to itself
as in Diagram LXXVII b, <x Lxx>’OQ’

To express 'everything' one draws a perpendicular line through
the line representing the individual as in Diagram ILXXVII ¢, 77 x Lxx > O
and Diagram LXXVII d, TTx 7Ty(lxy bxy)> 0.

Peirce attempted to distinguish between alternation and conjunction
by using straighter and shorter lines to represent bands which are attached
later. Thus Diagram LXXVII e represents = y7Tx(LxyY bxy)> O 39k while
Diagram LXXVII f represents T7x Ely(nybxy))»O;

| This primitive system contains much.that will appear in the later
systems but lacks a notation for negation and Peirce's own estimate of it

Ad

was much lower than that of his later work.

395

Peirce's second system makes more use still of valency396

392A11 of the diagrams in LXXVII are from Roberts® lecture.

393Peirce has a great many symbolic systems., In this one '¥'' is
the existential quantifier. x and y are objects and b and L are relations
tetween objects. The ">'" is “read "is greater than" and is equlvalent
to VA" in Boolean algebra.

39k : s o
"y is the symbol for alternation.
39%"Entitative graphs": Most of Peirce's work in this area is
found in 30 1-{'56"30 552¢

3%Of course any network system of diagrams will entail vdlency
as far as variables are related to a finite number of other variables,
What makes Peirce so significant is his awareness of this and his
deliberate attempt to construct his system with it in mind.
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Compare Peirce's diagram of "John gives John to John'" (LXXVII a) to
397

the chemical formula diagram for ammonia (LXXVII b). As we are about

to see; however, this particular type of dizgram is in contradiction to
the conventions of entitative graphs and particularly to the use of the
Mout! for negation, Peirce's aims in using such diagrams are, neverthe=-
less, obvious from the above example and improvements on the valency

diagram will be seen in the gamma part of existential graphs;

398

The conventions of entitative graphs are as follows::

(1) To write a proposition is to assert it. Thus Diagram LXXVII ¢
“Pﬂ 0‘399 .

asserts

(2) To write two proposifions is to assert their alternation: Thus

Diagram LXXVII 4 asserts P or Q":4oo

K
(3) To encircle a proposition is to negate it. Thus Diagram LXXVIII e

asserts '"not P":MOl

(4) To write a conditional proposition we encircle the antecedent.

Thus Diagram LXXVIII f asserts "if P then Q"oh02

397,

is comparison is made by Peirce; 3.469.

398We are following Roberts’ description of "Entitative Graphs".
To do a thorough analysis of Peirce's paper would entail another paper
as long as the present. It should be pointed out that Roberts' des-
cription is a condensed view abstracted from Peirce who deals with
particular cases. It is not immediately evident that they are actually
doing the same thing but it will be revealed by a careful comparison.

399Roberts, OP. cit;, p; L6, Fig. 7; We have used variables in
place of the propositions used by Roberts <in all of these diagrams. Our
reasons will become evident below.

400
40

Roberts, op. cit., p. 46, Fig. 8.
lRoberts, 0p. cit., p; L6, Fig; 9;

4O?Roberts, 0ps Cit.s, p; 47, Fig. 10: This could be derived
from Diagram LXXVIIT d and e. - ' -
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(5) To assert a conjunction we negate both propositions and then en-

circle the entire graph. Thus Diagram LXXVIII g asserts ''botkh P and Q":AOB

1Ok

(6) A line or dash represents an individual object. Two corollaries

follow from (6):405

(6a) A line whose least enclosed extremity is unencircled or is encircled

IIL"6

an even number of times is read "all' or "every'.

(6b) A line whose outermost extremity is encircled an odd number of times

3

is read ‘"'‘some'!,

LO7

Thus "everything P is Q' would be represented by Diagram LXXVIII n and

"Something‘P is not Q" by Diagram IXXVIII i408 etc:
The weaknesses of this systen are obvious; Why is it to assert
P to write ity yet, to assert "P” of "Q" to write both P and Q? Such
a decision seems purely arbitrary and makes the system unnecessarily
complex; Peirce rectified this in the alpha part of existential graphs:
The conventions of the alpha part of existentizal graphs are few
409

and simple. For the alpha part we may ignore valency and individuals

40 3Roberts, ogo 01t., p. L7, Flg. 110 This could be derived from
Diagram LXXVIII 4 and e.

qqﬁRoberts, op._cite, ps 47. Thus P and Q are not really pro-
positions. They might be said to be propositions about particular
individuals but what they represent is . the various situations or relation-
ships into which individuals may enter.

40mpese really follow, of course, from (6) in conjunction with
the foregoing conventions, These two rules are given at Peirces 30479.

LO6We always begin reading with the least enclosed extremlty.
Peirceg 3- 1{'79.

“07oberts, op. cite, p.' 48, Fig. 12.’

O8Roberts, op, cit.s p. 48, Flg. 13.

%0 9Pe1rce, e 39k=La 402, Yo 4lbmbie K15, L 424=L0 437, 4-#85—4-498
Roberts, op. cit., pp. 60-8kL.
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and limit ourselves to two symbols: the variable and the cut. To

410

write or ''scribe" a proposition is to assert it.

411

Thus Diagram

412

LXXIX 2 asserts '"P", and Diagram LXXIX b asserts "P and Q”.L+ To

negate a proposition we enclose it within a cut because any proposition
written on the sheet of assertion is asserted. The cut is, then, an

113

area separated off as apart from the sheet, Thus Diagram LXXIX ¢

!
represents "not P”.41+ We express a conditional by enclosing the

#lOPeirce, 4.397. Roberts, op., cit., p. 61. It may be noted
here that Peirce's use of technical terms makes his work difficult but
he believed that they were essential to his intention and we will find
ourselves resorting to them. In another context Peirce defended the use
of such terms: ' .

For philosophical conceptions which vary by a hair's breadth
from those for which suitable terms exist, to invent terms

with a due regard for the usages of philosophical terminclogy

" and those of the Inglish language but yet with a distinctly
technical appearance. Before proposing a term, notation, or
other symbol, to consider maturely whether it perfectly suits
‘the conception and will lend itself to every occasion, whether
it interferes with any existing term, and whether it may not
create an inconvenience by interfering with the expression of
some conception that may hereafter be introduced into philosophy.
Having once introduced a symbol, to consider myself almost as
mich bound by it as if it had been introduced by somebody else;
and after others have accepted it, to consider myself more bound
to it than anybody else., (Peirce, 2.226)

Peirce seems to have followed this program rigorously with regard to
his existential graphs.

411Roberts, ops_cit.s P 1. We shall use Roberts' diagrams
since they are given systematically. The same diagrams will be found
scattered through Peirce. | Again we have substituted variables for pro-
positions where necessary. Note: Roberts, pp. 60-79, diagrams are
unnumbered. :

- MR verts, op. cit.s pe 63.

qlBPeirceg Lo4ll, ™A cut drawn upon the sheet of assertion
severs the surface it encloses, called the area of the cut, from the
sheet of assertion; so that the area of a cut is no part of the sheet
of assertion.™ :

bk Robverts, OE: cit.; p.'?l, Fig: 3
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antecedent in the "outer close' and the consequent in the "inner close"
of a "scroll". A scroll is simply a double cut or a cut within a cut

(IXXIX d),415 Finally the empty cut (LXXIX e) represents or expresses

any absurditﬁ and is called by Peirce the “pseudograph":416

L17

of existential graphs includes everything from

418

The beta part

or the dash (LXXX b),m‘9

the alpha part and introduces the dot (LXXX a)
Qalled the line of identity, to represent the individual; Either Diagram
IXXX a or IXXX b would, thus, be read "something exists": The second beta
convention.allows suchva line to join two propositions or variables., When
this is done the resulting proposition is read as "somethihg is both P

and Q" (LXXX c):420 Peirce applies thé term ligature to the point where

a line of identity branches; A Vbranching line of identity expresses the

identity of the n individuals at its n extremities., Thus Diagram LXXX d

is read ”somethlng is P and @ and RY, 2l When a line of identity is en=
tirely enclosed by a cut (ILXXX e)422 the resulting graph is read "it is
“Lopoberts, op. cit., p. 66
416

Roberts, oE, Cites p; 69;

Ml peirce, I h0%-bo 408y b hl6eliull7y Loli38el 462, L. L75-k. 18k,
4.499-4.5095 Roberts, op. cit., pp. 87-121.

. Al 8Roberts, op. cit., p. 88 Roberts! diagrams are unnumbered pPp.
87-91.

419Roberts, op. Cites p. 88.

haoRoberts, op. cit., p: 89.

AZlRoberts, OP. cit.; Po 91:

3 bl 7 . ]
422Roberts, op, cit.y p. 92, Fig. 2o
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false that something is P' or ‘mothing is P": Iif a\line crosses & cut
(LXXX f)QZB it may more easily be read if it is broken at the ligature
(i.e. where it crosses the cut); IWe then have examples of Diagrams
IXXX b and e. Thus Diagram LXXX f is read '"something exists and it is
false that this is P" or more simply "spmething is not P, If the line
of identity passes through an empty cut it asserts the existence of the
two individuals at its extremities and renders their identity absurd;

24

is read "P and Q are not the same individual®.

yk25

Thus Diagram LXXX g

As we have seen, a ligature (e;é; IXXX n asserts the identity of

21l individuals with lines of identity opening on the ligature.) Peirce

introduces the ''bridge' which allows lines of identity to cross without

):426

forming a ligature (LXXX i This is merely a convenient and some-

times necessary notation.

The gamma part of existential g}aphs'may be divided into three

427 . 428

parts, the first dealing with metagraphs, ‘the second with abstraction

423Roberts, OEp‘Cita; p,i93, Fig; 3:

424Roberts, op. ¢it.; p. 99, Fig. 15:

425Roberts, op. cit., p.lel, Fig: 2
420 sberts, op. cites p. 101, Fig. be

427The metagraph is a graph of a graph. This is one form of
Mabstraction' in Peirce's sense of the word. Abstraction is to treat a
symbol as an ens rationis. On the other hand there seems to be a distinct
difference in dealing with graphs in this manner (what we have termed
"metagraphing'') and in doing the same thing in treating qualities,
relations and particular objects (for which we have retained the term .
"abstraction®). Peirce, 4o 409-4o 413, L.528-4.529, Roberts, op. cit., pp. .
124~130, ‘'"Metagraphing' is really a particular application of 'abstraction.

b2 i rcey bahOGmbs kLB, bulibB=bul7ly b 52l4=h 527, Roberts, op. cit.s
123-124, 130-136. '
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and the third with modality;ng When Peirce develops. the system of
graphs to be used in diagramming his gééphs he introduces a great many
symbols all of which are stfuctured according to the same principle:

a variable is identified with some aspect of the graph to be represented: ‘
We will give five of these and use them in examples so that the reader

may see Peirce's aims in this section: Anyone wishing a more detailed
analysis or a more complete list of symbols is referred to Roberts or

430

to Peirce's original work. Let us then draw diagrams to express
x is the sheet of assertion' (LXXXI a), 431 "x is a graph precisely
expressing "P'" (ILXXXI b), "x is scribed om y" (LXXXI ¢), "x is the
area of y" (LXXXI d) and "x is a cut" (LXXXI e). Any graph may be
precisely defined in graphical terms: For example the graph for "PY
(LXXXI £) may be graphically defined by (IXXXI g)*>2 which is read "a
graph precisely éxpressing 'PY is scribed onlthe sheet of assertion'.
A more complex example is the graphical statement of the graph for

"not P" (LXXXI h): This graph may be precisely described by Diagram

LXXXT 1433 which is read 'a graph precisely expressing 'P' is scribed

429p¢irce, L4.510-4.525. Roberts, op. cites pp. 136-140..
430See fn. 426 above.

431Diagra,ms LXXXI a-e are given by Roberts, op; cit.; p; 125
and by Peirce, b4.528-4.529.

432Roberts, op: cit:, p; 127, Fig: b

Ll-BBRoberts, OEO Cit.‘, p.' 128, Fig: 6:
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on the area of a cut which is itself scribed on the sheet of assertion'l.

These examples should be sufficient to give the reader the general idea.'
A second similar set of symbols represent abstraction;qau In ;

this section Peirce distinguishes between monadic, dyadic and triadic

relations; All greater relations may be worked out from these three.

A dyadic relation may be expressed, for example, as in Diagram LXXXII a

which is read "y is in relation x to z”;435 An example of such relations

436

in use is Diagram LXXXIT b which is read "Cyrano loves Roxanne but
Roxanne does mot love Cyrano' or in its expanded form '"there are two
individuals - Cyrano and Roxanne — and a dyadic relation "loves' such
that Cyrano loves Roxanne but Roxanne does not love Cyrano”Q' Now the
line of identity indicating the relation "loves'" is somewhat suspect
for such lines are supposed to indicate individuals. Peirce therefore

Y437

proposed that we enclose such a line with dots (LXXXII ¢ or replace 5

it with "R" at its termini (LXXXII d)438 to indicate that a relation is

represented and not an individual. Again the reader is referred to

Roberts for a more detailed exposition than can be given here:

ABASince these work on the same basic principle as those used
for metagraphing we have not given them. The interested reader will
find them in Peirce, L.524 or in Robertss op., cit., p. 130.

430R0berts, op. cit., p. 130
436 . : . T a0

Roberts, OE. Clto’ Po 131’ Flgo 130
4578 0berts, op. cite, p. 132, Figs Lhe

438 oberts, ope cit., p. 132, Fig. 15.
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b

Finally we mention Peirce's attempt to deal with modality (i:e.

to express.possibility and impossibility, necessity and contingency);
To do this we introduce the broken cut. The broken cut expresses the

fact that the entire graph on its area is contingent; Thus Diagram

o, 439

LXXXTII a means "Y"it is possible that 'P' is fals To express the

fact that P cannot be false we need only enclose Diagram LXXXIIT a in

a closed cut (LXXXIII b) and this’may be read "it is false that 'P' is
L0

possibly false" or "'P' is necessarily true'. To express the possi~

bility that P is true we need only enclose not P in a broken cut: Thus
Diagram LXXXIII ¢ reads '"it is possible that it is false that ‘P! is

L1

false'. If we wish to express the falsity of this we simply enclose
Diagram LXXXIII ¢ in a solid cut (ILXXXIII d) and read the result as "it

is not true that it is possible that 'P' is true" or simply "'P'! is

impossibl!.e“.'l'}l+2 Concentric broken cuts (LXXXIII e) may be read "it is
possible that 'P! is necessa—:.ry“'@w+3 This system is much more adequate

than one would expect of an attempt to produce diagrams for modality,
but Peirce wanted to improve on it in sifuations where various cases of

contingency were encountered. For this purpose he introduced the

Ly

tinctures.. One imagines cuts actually cutting through the surface

459Roberts, op. cit., p. 138, Fig. ke
hhoRoberts, op. cit;, p; 138, Fig. 5.

441Roberts, OE: Cite, p. 138, Fig, 8.
Hh2p berts, op. cites p. 139, Fig. 9.
443Roberts, °E: cit., p: 139, Fig; 12:

444Peirce, L,552-4.572., Much of this is a repetition of the
alpha and beta conventions but 4,553 ff. introduce the tinctures, See
~also Roberts, op. cit.s pp. 140-1L2. A similar attempt was made by
Peirce using the 'verso" of the sheet of assertion (4.573-4.584) but
this is equally obscure,



125

of the sheet of assertion and exposing various layers which are

differentiated by having various emblems representing twelve tinctures

which are grouped in three groups of four according to modality; Peirce

himself soon realized that this system was unworkable445 but the remainder

of his work was just as relevant when the tinctures were discarded.
Roberts, who is very sympathetic toward Peirce’s system, made

an attempt to improve the beta part of existential graphs in such a way

that these graphs would -be an adequate substitute for the functional

calculus; The beta graphs lack a sjmbol for quantification. Thus

Diagram LXXXIV a expresses FXDGX; What is needed is the possibility

. of expressing (Vx)(FxDGx);446 Roberts proposes that the quantifier be

placed next to the line of identity; Since the existential quantifier

may be derived from the universal quantifier we need only consider the

latter:447 Thus (Vx)(Fx=Gx) may be expressed as in Diagram LXXXIV b;448

This forces Roberi:s to add @& graphical equivalent to the rule of universal

generalization; It is simply that giveh A (LXXXIV ¢) we may always infer

that it is not true that far any x whatsoever not A (ILXXXIV d.).m+9 These

are the major changes that Roberts made in Peirce's system.

M5g e Roberts, op. cite.s p. 1Lk2 for an account of thise

446The problem, of course, is not so much the expression of (Fx).
(Fx=>Gx): Diagram LXXXIV a could be taken by convention to express this.
Rather it is the need to express (Vx)(Fx=Gx) in such a way that it may be
distinguished from (Vy)(Fy=Gy) or any other expression of the same form.

BT (ax) (ax) )=~ (W)~ (4x))W

448Roberts, og; cit;, p; 212:

4#9Roberts, op; cit:g p: 212,
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With the amcunt of information given here we could not reach
an adequate evaluation of Peirce's system; we therefore presuppose
Roberts' more thorough analysis in meking our comments.

The consensus of logicians has been against Peirce's diagrams.
Most logicians simply ignored them and turned to what they considered
to be Peirce's significant contributions to symbolic logic. Those who
treated them at all were generallj‘unsympathetic: Gardner, whose work
on Venn and Carroll was very astute and whose own system is exciting,
was unimpressed by Peirée“s diagrams; Since we will be arguing against
the critics and on the side of Roberts, we héd, perhaps, best let Gardner

speak for himself so that there will be less danger of our distorting

his position.

His [Peirce's] several papers on the topic (reprinted in
Vol. 4 of his Collected Papers) are written in such an
ellipticy, involuted style that one is led to wonder if
Peirce harbored unconscious compulsions toward cloudy
writing that would enable him to complain later of his
critics® inability to understand him. Add to this opaque
style his use of scores of strange terms invented by him-
self and altered from time to time, and the lack of suffi-
cient drawings to illustrate the meaning of these terms,
and the task of comprehending his system becomes formidable
indeed, 45

These noniconic aspects of Peirce's system give it an air
of arbitrariness and disjointedness. The parts do not
seem to hang together. One has the feeling that, if twelve
competent modern logicians were to set themselves the task
of constructing similar graphs that would encompass the
whole of logic,. each would come up with a different system,
and each as good if not better than Peirce's. At any rate,
there is no question that Peirce, like Ramon Lull (whom
Peirce in an unguarded moment called an "acute logician'),
held a greatly exaggerated notion of the wvalue of his
diagrans.

“Oaraner, op. cit., pp. 55-56.
%51Gardner, og.‘cit.; p: 58,
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This is the case for the opposition. It ought to be pointed out here
that Gardner praises Peirce for the attempt and says that his work may

452

suggest future lines of thought: On the whole, however, there was
no sympathetic examination of Peirce's diagrams until Roberts'.

We will confine our evaluation of Peirce's system to the exist-~
ential graphs since the early graphs are very similar to the beta part
of existential graphs and the alpha part is entitative graphs '"turned
inside out”.2+53 This evaluation will consider three functions of the
graphs: (1) +the value of thelgraphs for logical experimentation,

(2) the value of the graphs as a calculus, and (3) the value of the
graphs for iogical analysis.' Again our comments are necessarily brief
and the interested reader is referred to Roberts:

That the diagrams do, in fact, encourage experimentation454
there can be no doubt: With the logical relations spread over two
dimensions, as opposed to one in algebraic notation, one is, so to

L55

speak, invited to insert double cuts, iterate and deiterate and carry
out the various other possible transformations which become more clear
and obvious for being vizualized.' This experimentation may, and accord=-

ing to Peirce and Roberts does, lead to the discovery of logical truths

which may not be obvious or may, in fact, be very obscure in algebraic

452Gardner, op._cit., p: 58; Even in this passage, however,

Gardner mentions Peirce's ‘'eccentricity" as well as his industry and
brilliance.

4‘53IR<>':)er'ts, OE; Citey p: 49,
4olpoberts, ops cites p. 195-197.

455Scribe and erase - these represent the basic methods by which
thought is carried on. See III 1.(a) and Roberts, op. cit., p. 268.
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456

fermulation. This same sort of experimentation also makes it much
ecasier to discover the relationship between various propositions, thus
making complex problem solving a matter of insight and controlled ex~
periment rather than chance.

Roberts has shown that the alpha part of existential graphs as a
calculus is adequate to carry out all the operations of a propositional
calculus and the steps in develoﬁing the graphical calculus are easier,
clearer and fewer than those in developing a propositional calculus.457
The beta part, witﬁ Roberts! improvements, is capable of substituting
for the functiomal calculus and it too requires generally fewer steps, and

458

those clearer, than the corresponding algebra; Further there would
seem to be no reason why a graphical calculus should not be extended to
include abstraction, metagraphs, and perhaps modality, since nothing new
is introduced in the graphs of these, at least of the first two, except a
shorthand which represeants graphs; Thus Peirce's system with few changes
would seem not only an adequate but also a superior calculus; This is
particularly interesting since Peirce, himself, thought of his system,
not as a calculus, but as an instrument of logical analysis;

The value of Peirce's diagrams as an instrument of logical analy-
sis rests in Peirce's ‘concept of the nature of reasoning;459 Peirce be-

lieved that all reasoning proceeded, at its most basic level, via erasure

and insertion. That is, when A and B are related and E and C are related

)

456Compare one diagram (Roberts, op. cits, 291) with its algebraic
formula (p. 293) for a clear example of the relative simplicity of the
diagrams in certain cases.
L57- X . ' _ ' .
Roberts, op. cit.; pp. 150-200., . ‘

. 45830berts, op. cit., pp. 207-25L.

4598 berts, op. cit., pp. 258-300. See also III 1 (a).



etc., I see A and I think of AB, then ABC, then BC,

he believed that all reasoning was essentially diagrammatic;

129

=

then C, etc.
L60

Further

Thus

diagrams closely represent thought, and the operations on the diagranms,

all of which operations are reducible to erasure and insertion,

clesely

represent reasoning. It is much easier to see this nature of reasoning,

to reduce complex propositions to thelr simple elements, and to grasp

the essential structure of thought in diagrams than in any other formula-

tion, and especially are diagrams superior to algebraic formulae, - Such

was Peirce's estimate of the real importance of the diagrams: Although

- we may wish to disagree with Peirce with regard to the nature of thought

and the operations of reasoning, or perbaps we merely wish to remain

agnostic on these subjects, there can be no doubt that the diagrams can

be used

to reduce logical arguments into

than algebra can without achieving such

a much simpler series of steps

complexity as to be useless and

‘quoting

460
A pagsage cited by Roberts (p
in full @

Looking out of the window
we generally drink, There are c

, 268) in this regard is worth

T see the cow whose milk
ertain difficulties which

have occasioned a good deal of thought, so that I imagine I

see a boy sitting by the cow milking her.,

stool, and the pail are added to
the boy carrying .the pail to the
have dropped out. The straining
to my imagination. A bowl is th
standing by; but I lose sight of
the train diagrammatically, that
history.

As I followed that series
did; for I do not take make~beli

"always something identical being
going up to the house with the pail, was thought as that

- the old ones were allowed to drop.

same boy, the pail that same pail,

same occasion that I had just be
new ideas must, therefore,

The boy,; and the

my idea., Thence, I imagine
house, The cow and the stool
of the milk presents itself
cre and the milk., The boy is
him, I am following along
isy following the interesting

of events in my mind (as I
sve observations), there was
carried along. The boy

and the occasiocn that

fore been thinking of. The

have always been taken in before

By the time the milk was




130

that the diagrams can render preopositions more obviously and reduce
them to simple elements more clearly apd easily than can algebra;qél
Examples of these various uses of the diagrams would take more space
than we have but the reader is again referred to Roberts:h62
Thus Peirce's diagrams would seem to be valuable as experimental

models, as a logical calculus, and as instruments of logical analysis.

(e) Gardner
Martin Gardner was dissatisfied with the diagrams using geo-
netric figures because, when appiied to the propositional calculus;
%hey seemed to lack the icohicity that they displayed when applied to
class loglic.'463 In 1951 he developed a network system which would give

161

a more exact correspondence. To achieve such correspondence we begin
by allowing two parallel vertical lines to represent tﬁe truth and
falsity of each proposition (LXXXV a);465 By convention the left line
represents truth; Horizontal shuttles betﬁeen these lines will represent

£

the truth value of the terms. There are four such ghutiles for two terms

straining in my imagination I had already begun to think
that it would be good for my w1fe, who is threatened with
nervous prostration.

To one skeleton-set another is added to form a
compound set. Then, the first, perhaps, is dropped and
the ideas which remain are viewed in a new light. (Pierce

79 428-70 430)

461y ain the reader is referred to the diagram and formula

cited by Roberts. See fn. 455.

A62Part1cularly to his last chapter. Roberts, OE' c1t.,
pp. 258-300.

4630ardner, oE. 01t., p. 60. Gardner also criticizes the .

difficulty of separatlng the various premises in one diagram (p. 61).

464Cardnerg op. Cite; PD. 60-79.

L65

Gardner, op. cit., p. 62, Fig. 45,
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{(LXXXV b allows one and only one shuttle

L67

If any proposition P

466
)" l

to run from a particular line Ll to some other line L2 we may move

from Ll along the shuttle to its termination on L2: If there is more : |

than one shuttle from Ll in some proposiftion no move may be made from

1468

that line on the shuttles representing that proposition.
The basic proposition A is marked by placing a cross on A's

line representing the truth of A (LXXXVI a) and falsity is represented
469 o

in an analogous mannér (LXXXVI b). understand the Gardner dia-

grams for binary propositions it is necessary that we look briefly at

70 If A is true and B is true we may say that A;h is

truth tables:h
true. If A is false or B is false or both we may say that A.B is false.
This may be illustrated by a truth table which shows all possible com=

binations of the truth and falsity of A and B in relation to some binary

operator., Such a table for A,B would bes:

A.B

A B

T T T :
T F F

F T F

F F F

Now to apply Gardner's diagrams all that one need do is draw shuttles

to represent 2ll the lines in the truth table in which the proposition

466Gardner, og; Cite, pe 62, Fig; 47, .

467

468Gardner does not give this rule; it is, however, implied in
his use of the system.

] 469These two diagrams are given by Gardner, op. cit., p. 62,
Fig. 46, as one.
%70Anx standard'text will discuss truth tables. We have used
Copi, op. cit.s Pp. 237-268. Since there is almost universal agreement
. on this subject, at least on the elements of it presented here, we have
not given specific references.

Gardner uses the term "ride", op. cit., Po 63
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formed by the terms joined by the binary operator is true. Thus to
represent A;E we draw one line joining the truth line of A4 and the
truth line of B (LXXXVI 0)0471 In a similar manner we may disgram any

472

case of conjunction (LXXXVI d*'% and ¢).*’? Further truth tables will

illustrate this:

A B ASB  A®B AvB AlB  ASB  BoA
T T 7 F T F T T
T F F T T T F T
F T F T T T T F
F F T F F T T T

These cases are shown in (LXXX&I f—k)ju?q If we are given that such a
proposition is true we may place crosses on its termini, otherwise not
(LEXXVI e)o
The application of these diagrams to the propositional calculus
is extremely simple, as will be seen in the following examples:
Given: A=B
BEC

AvC
B

475 476

Ve may diagram these premises as in Diagram LXXXVII a.. We may
start on line B since there is & cross on it and we may move along that
line seeking a shuttle terminating on it: Two such shuttles occur in
the first proposition eliminating the possibility of théir use. Only

one such shuttle, however, occurs in the second., We may place a cross

471Gardner, 0. Cit;g p. 62, Fig. 48, top half.
47%Garaner, op. cit., p. 62, Fig. 48, bottom half,

Y7 33araner, op. cites p. 62, Fig. 49,

k7L

. * “ v L
Gardner, op. ¢it.s, pp. 63-64; Fig. 50 - 54 taken in order.

475The problem appears in Gardner, Op. cit., p.‘66;

1+,7 6C - ., B §
Jardner, Op. Ccit.s p. 67, Fig. 55.
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at the point where the shuttle meets the line since we know that B is

-

true. Henceforth we will be able to place a cross anywhere on our path
since if B is true we will be led only to true statements. Should
crosses appear on both the true and false lines of a term we should be
forced to the realization that our premises were self-contradictory:

We movey then, acrosé the shuttle to find ourselves on C's false line
where we place another cross: Moving downn C's false line we come to a

single shuttle in the third proposition which carries us across to A's

A

true line. We'again place crosses at both ends of the shuttle; Finally
we cross and mark the single shuttle leading from A's true line to B's

true line in the first proposition; We have now marked both A and ~C

o

T . N - A
as true., Thus we may arrive at the conclusion A.B.~C or:

ASB

BEC

AvC
B,
.. A.B."C

The finished diagram will be LXXXVII b+’

Sometimes we lack an existential or individual proposition9h78
waich lack complicates our work:
Given: AFC
BlC
AvB

We may draw Diagram LXXXVII 0.479 We may begin anywhere as we have no

crosses. Let us begin by supposing A to be true: We may cross via the

477,
478

ardner, oE.'cit., p. 67, Fig. 56.
This problem appears in Gardner, OE; cite, Do 67

479Gardner, ogg cit.s po 67, Fig: 57.
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top shuttle to ~C but we can get no further. Therefore we know that
Ao~C, Now let us begin at ~A; We may move via the second shuttle in
the top proposition to C and thence by the second shuttle in the second

proposition to ~B and finally across the second shuttle in the final

proposition to A. Thus wé have moved from ~A to C to ~B to A: We have

480

proven that ~A=A and thus 4.~A. Since this is a contradiction we must

LY

discard the possibility that ~A is true. Thus A is true. But if 4 is

.

true ~C is also true. We next test B and ~B for such contradictions and

find that either B or ~B is possible. Thus our conclusion is A:LC.(Bv~B)

or simply:

AEC
BiC
AvB |
v A,~C

Thus far we have considered only cpmpound propositions with one
connective. Gardner provides two methods'of dealing with compound state-

481

ments "involving parentheses': horizontal truth-value lines and

”chains“:482
If we are given a compound statement, for example (AvB)=(CvD),

we may diagram it by drawing dotted or broken shuttles for the subordinate

parts of the proposition (AvB) and (CvD). Each of these subordinate parts

48QA symbolic proof of this is very simple:
~A
~4o4 (derived from first 3 premises + ~A)
SA
~42A (reductio ad absurdum proof)
JAL~A '
481 . o ' *
Considered by Gardner, op. cit., pp. 69 and 72.

482Gardner, OE: cit.; PP- 69-71:
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is then represented by a pair of horizontal truth-value lines and the
relationship between these parts is represented by vertical shuttles.
By convention in drawing these trﬁth—value lines we give the page.a
quarter turn clockwise: Since these final relations are not tentative
they are represented by solid shuttles{ By convention we make the lower
line of a pair of horizontal lines representing the truth-value of a
term or complex of terms true: Thus (AvB)>(CvD) may be represented by
Diagram LXXXVIII a;485 In some cases it is necessary to allow one pair
cf horizontal truth-value lines to represent a single term. Thus in
Diagram LXXXVIII b the lower pair of lines is used for,é;Aaq

Suppose that we have a proposition of the form A.?;b;. This may
be represented most simply as a shuttle intersecting more than two truth-
value 1ines: We know, of course, that the two ends of a shutfle intersect
truth-value lines, but Gardner allows tie shuttle to intersect more than
two lines by marking such intersections with small circles. Thus A:~B;b
may be repfesented by Diagram LXXXIX a.485 Other chains may be represented
in a similar menner after thé proposition is reduced to disjunctive normal
form. For example a chain of equivalénces A=E=C may be reduced to (A:B;C)v

486

(~A.~B.~C) and may be diagrammed as in LXXXIX b: Some complex state—

ments are capable of similar representation; AD(B:C) méy be reduced to

&83Gardner, OE; cit;,<pp; 69=71.

484Gardner,'03; Cites Pe 70, Fig. 59,

taraner, ops cite, p. 70, Fig. 60.

486Gardner, op. cit;, p; 71, Fig; 61.

‘
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(A.B.C) v (~A.B.C) v (~A.B.~C) v (~A.~B.C) ¥ (~A.~B.~C) and may be
| 187

represented as in Diagram LXXXIX c.
Gardner presents one example of the reduction of a proposition
to its simplest form by the use of diagrams: We are given (A.~B)v(~A.~B)
and asked to represent it: It may be drawn using horizontal truth-value
lines as above but since we are dealing with only two terms and since

shuttles belonging to the same binary ocperation represent disjunétive

@

possibilities it is possible to represent it by two horizontal shuttles

488

as in Diagram XC a. This is still not the simplest diagram as it is

apparent Ifrom Diagram XC a that the truth-value of A is irrelevant to

the truth-value of 5: ~B 1s always true. Thus a cross on B's false

line (XC b)L}S9 represents this proposition precisely; Gardner feels

that the network diagram is a visual aid in such reductions which are
an impertant aspect of propositional calculus:

This system allows the representation of propositions of any
complexity by the use of altermating vertical and horizontal truth-value

490

lines (XC c). A1l of the shuttles, of course, must be dotted except

those between the last set of truth-value lines which are always solid.
Gardner does not attempt to give a complete description of the rules for

solving complex problems but he does give the four most important rules

"

and solves a problem by way of illustration. The rules are as follows:.

1, If the truth values of all individual terms within a

parenthetical statement are known, and they conform to one
of the dotted shuttles for that statement, then the entire
statement is known 0o be true. :

Q87Gardner, OPe cit:, P. 7L, Fig: 62,
488

489Gardner, Op._Cit.s p: 72, Fig. 6h.

hgoGardner, OB; Cites p; 72; Fig. 65:

491 sy T
Gardner, op. cite.s pe 72

Gardner, oE,lcit., p.'72, Fig. 63:
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2; If the terms are known to have a combination of truth

values not indicated by a shuttle, the entire
known to be false.

relation is

3, Whenever a parenthetical statement is known to be true,
either because of knowledge of its terms or because it is
found to be true in the process of exploring the entire
structure, its shuttles are changed to solid lines or its
half crosses [introduced to allow for the representation of
possible existence (e.g. in (AvB)oC, € will be marked with

a half cross until we know the value of AvB)]

) to crosses.

The truth of the entire statement is then indicated by a
cross mark on the T line in the pair of truth-value 11nes494
(to the rlght or below) that correspond to the statement.

Qol Whenever a parenthetical statement is known to be false,

in either of the two ways mentioned above, we

add the missing

shuttle or shuttles [i.e. those not represented in dotted
lines] in solid lines. The falsity of the entire relation is
then indicated by a cross mark.on the F line in the pair of
truth-value lines that correspond to the stauement.q

To illustrate this Gardner proves that (ADB) > (BoA) is not a valid

496

theoren.

Y97 for

of A and E,’ We draw the .complex diagram XCI a
Qur testing procedure would show that‘if A is true or
both, the proposition is valid. The critical case is
is false and B is true: Therefore we make a cross on

and another on B's true 1ine.1 Since this combination

by a shuttle in the lower part of the diagram we know

If it were a valid theorem it must be true for all values

(42B) > (B24).
if B is false orv
that in which A
A's false line
is represented

that the lower

4920 raner, Op. Cites De 73.

L:97(“':a.x"d.nezc' does not give an account or an example of the use of
the half cross and it would not- seem to be essential to the operation

of the system,

hghGardner, og: cit., p-,73;

495Gardner,‘og. Cites Do 73
496Gardner, OE; cit., Dp. 73—74;

) f . ¥
l+97Gardner, Op. cit.s P. 7k Fige. 66.
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proposition is true. We may then draw the dotted shuttles as solid

lines and place a cross on the true line of ADB: Since there is only

one shuttle attached to this line we may move up that shuttle to the

true line of.BDA; Thus BoA is also true and we may place a cross on

that line and change its dotted shuttles to solid ones. The graph at
this point is represented by Diagram XCI bﬁ98 We are now caught in a
contradiction. If we move up A's false line from our cross we encounter
a shuttle leading to B's false line. Thus, since A's false line is
affirmed, B's false line must also be affirmed which means that B is both
true and false. Thus (ASB) > (BoA) camnot be a logical theorem.

Gardner suggests that these diaérams, combined with Venn diagrams,
might be capable of extension to include systems combining class-inclusion
and truth-value statements but he does not give any examples of this;h99

Ggrdner does, however, attempt to apply network diagrams to three-
value 1ogic.500 Let us call the third value ”?": We must now include
three truth-value lines for each term. So far there have been only two
kinds of shuttles, those that were drawn and those that were not: Since
we have introduced a third value besides truth and‘falsity it becomes
necessary to introduce a third type of shuttle to represent the 2 re-
lationship between the truth-value lines of any pair of terms; Gardner

chooses to use a wavy line for this purpose. In a three-value logic

there are many possible interpretations of any particular binary relation.

498Gardner, 0Ds Cites p; 74, Fig. 67.

499Gardner, og; cites DPe 75

5OOGardner, OE; citey pp: 75—78. An excellent brief introduction
to this subject is J. Barkley Rosser, "'On the Many-Valued ILogics",
American Journal of Physics, Vol. 9, Aug., 1941, pp. 207 ff.
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Clearly A;B réquires that a shuttle be drawn from A's true line to B's
true line, but what shuttles should be drawn which will terminate on
A;S 2 1ine and B's ? line? Gardner draws two of the many possible A.B's |
(XCII 2?%t ana ©)7%% The first is that preferred by Lukasiewiczs Post
and Rosser; the second by Bochvar.so3 He further illustrates the use of
these diagrams for three-value logic by drawing the diagram for
Lukasiewicz's and Tarski's three-value interpretation of A=B (XCII c).sobr
Finally Gardner suggests that C;rroll's method of placing counters
cn a diagram may be adapted fo a network system; He illustrates this with
a diagram for (4=B) v (B=C) (XCIII a)aso5 The major value of such a method
would be the elimination of the need for erasing and drawing; White counters
indicate uncertain or parenthetical relations while coloured indicate cer;
tain relations. Since the method works exactly like Gardner's network
diagrams a detailed discussion will not be necessary:
In his footnotes Gardner suggests that we might be able to replace

>506

the shuttles with vectors and gives a vector diagram (XCIII b for A=B.

The point of this diagram is that there is no necessity for the rule that
if two shuttles terminate on the same truth-value line in the same pro-

L]

position one nay not move across’ those shuttles from that line., Instead

5OlGardner, op. Cites Do 76, Fig. 69.

502Gardner, og; cit;, Po 775 Fig: 70.

5OBGardner does not give, references for his sources for particular .
logicians although he mentions general works on three-value loglc, Op. Citey
e 79y fn. 2.

5OL"Gardner9 op. cit., D 775 Fig: 71:
5OSGardner, op. _cit., D. 78,

5OGéardner, op: cit.y Pe 79, fn. 1, unnumbered diagram.
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the rule is substituted that one may move only in the direction of the

507

vector. Experiments with vectors in simple logic have produced

several advantages that Gardner did not point out: The most significant
of these is the pbssibility of eliminating truth-value lines in favour
of truth-value points: Diagrams using points eliminate the pause in
movement from one truth—ﬁalue to another meking operation quicker and
nore certain and also representing in a wvery iconic manner alternation,
equivalence and implication. As it is not our aim to produce a new
system we will not go into detail.here regarding this use of vectgrs

but we should suggest that such diagrams would be very useful in

representing such things as current flow and programming which may be

N '

diagrammed according to logic. Further, the rules, because motion is
possible only with the vectors, are very much simplified over any other
thorough system of logic diagrams;

Gardner's system would seem to be the most thorough, except for
Peirce's, of any that we have examined. It is simple to operate and
cértain; ‘We should, however, point out that its greatest strength lies
in its possibilities for expansion beyond the propositional calculus
into three-vaiue logic, etc; és other systems (e.é; Venn, Marquand, etc:)
are capable of doing almost anything that Gardner's can do in the pro-
positional calculus and are somewhat more familiar and thus easier to
use; It is the great versatility of Gardner's diagrams that gives them

3

their value as much as their iconicity.

507By the author of this paper who, at the time, had intended to
develop his own system as part of this paper.
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5. Unclassified Diagrams

(a) Hamilton

In this section of Chapter II we will discuss the systems of
Hamilton and de Morgan. The shift from the frame of mind of Frege,
Peirce and Gardner to that of Hamilton is not an easy one and the
systems which Hamilton and de Morgan developed now seem trivial to us.
It should, However9 be remembered that these were the first seriocus
attempts to break away from the narrow bounds of Aristotelian logic by
means of symbolism. It is in this light that they should be read.

Although his work was not published until after his‘death9
Hamilton's system was developed'pricr to de Morgan's and we will, there-~
fore, treat.it first. It will not, indeed could not, be our aim to
present Hamilton's entire system. Nor will we recapitulate Hamilton's

508 509

We will simply examine

510

reinterpretation of Euler and Lambertg
the finished system as preéénted at the end of his lectures.
In order to understand anything of what Hamilton is trying to do
we must keep certain definitioms in mindo The definitions of "gquantity”,
"internal" and "external' (or “intensive" and "extensive') are now glven;
In relation to their objects, [things] = they [concepts]are
considered as inclusive of a greater or smaller number of

attributes, that is; as applicable to a greater or smaller 511
number of objects; this is technically styled their Quantity.

50811 2 (a).
99111 3 ().

510,

510 The scheme of the two quantities is given on p. 108. Both of
the other diagrams are at the end of the appendix, p. 674 and p. 678-679.
Hamilton, op. cite.

511Hum11ton9 op. cit., p. 100.

B e
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This quantity is thus of two kinds; as it is either an
Intensive or an Lxtensive. The Internal or Intensive
Quantity of a concept is determined by the greater or
smaller number of constituent characters contained in it.
The External or Extensive Quantity of a concept is deter-
mined by the greater or swmaller number of classified con-
cepts or realities contained under it.

° 513

The intensive quantity is also called depth; the extensive, breadth.

51k In the

Now we may see what Diagram-XCIV attempts to illustrate.
diagram vowels are reserved for classes, consonants for individuals.
The earlier a vowel comes in the alphabet the broader the concept it
represents. Lvery higher class is divided by a lower class and its

515 A vertical

(the lower class's) contradictory, into two parts.
stroke (]) followed by an italicized cépital represents the first term
in the negative series. The figures to the left of the chart represent
the position of the concept directly in a horizontal line with them in
breadth and depth respectively. The arrow of affirmation indicates
that affirmation moves from the particular to the general., The object
z is affirmed to be classified under the concept ¥Y; the concept Y is
affirmed to be classified under the concept_i.l_9 etc. Exactly what the
second arrow means I am not sure. It cannot mean negation in the tradi-
tional sense és "no A is B" is supposed to be equivalent to 'no B is A",
We are now ready to reason either in breadth or in depth. In

the first case we begin with the concept of greatest breadth and work

downward. "Some A is all B, some E is all I, some I is all O, some O

512Hamilton9 Op._cit., p.. 100.

2 3Hanilton, op. cit., p. 100
S amilton, op. cit., p. 108.

515This is the import of the dark vertical lines though Hamilton
does not mention this fact.
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is a1l U, some U is all ¥, some Y is #. Therefore some A is z.," If
we reason in depth we begin with the individual and work from concepts
of greater depth to those of lesser. 'z is some Y, all Y is some U,
all U is some O, 811 O is some I, all I is some E, all E is some A.
Therefore z is some A."516 All concepts are ideal; only individuals

517

are real, The ground of reality is, for this reason, at the bottom
of the chart with particular objects.
With these distinctions in mind we may turn to Hamilton®s most

518

diagrammatic” = diagram (XCV).519 A few definitions are again needed to
make the diagram readable. An zZnalytic syllogism is a syllogism beginning
with a conclusion and deducing premises; a synthetic syllogism is one

520

deducing a conclusion from premises. All the concentric triangular
figures are presumed to have at .their upper vertices, @ at their

lower left vertices and (D at their lower right vertices. The lines

(:)(:) and,(:)C:) represent the premises and the line (:)Qfﬁrepresents

516At this stage Hamilton has not allowed for propositions stating
equivalence. This pessibility was, however, introduced in his Euler dia-
grams, II 2 (a).

517Hamiltonv ope_cite, p. 110, This is a metaphysical,; not a
logical, statement.,

518

The others are more charts than diagrams.

'519Hamilton, op. cit., p. 674, description pp. 673-676.
520Hamilton, op. _cit., p. 673. Just how the analytic Syllogism
is supposed to work I am uncertain. It would seem to be impossible to
deduce the premises from the conclusion as Hamilton suggests.
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the conclusion. The triangles represent, moving inward, the unfigured
syllogism, the first figure, the seconé figure and, finally, the third
figure. The direction of the wedge indicates that we are moving from
cne concept to another in order of depth. The order of breadth is the
- opposite to the direction of the wedge. If the line is not a wedge we
may assume that we may coasider it eiéher in order of breadth‘or in
order of depth or in neither, whichever is convenient. A brcken or
dotted line or wedge indicates a weakened conclusion.,

This condensed view may be expanded into the complete table

(xcvx)521

which represents Hamilton's final scheme of notation. Although
Hamilton did leave a record of this scheme of notatioﬁ he did rot leave
directions for reading it. Thus all of the information for reading the
symbols is given to us by Hamilton's editorso522 All of the above defini-
tions from Diagram XCV apply equally to Diagfam XCVI but certain new ones
need to be. introduced. The quantification of the predicate was felt by
Hamilton to be his most significant,contribution to logic. This was
accomplished by modifying the predicate as well as the subject of a pro-
position by "any™ or "all" for definite quantity and by "some'" for in-
definite quantity. Definite qﬁantity is indicated by a colon (:5 before
or after the appropriate term depending on its place in the proposition;
indefinite quantity is represented by a comma or reversed comma ( in this

diagram we have used only the comma (,) for typographical reasons) placed

in the same manner. An affirmative proposition is represeanted by two

SZlHamilton, op. cit., pp. 678-679.

522Hamilton, OV Cito’ PP 676'677.

IR PHu e O S RS
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terms quantified, and joined by a tapering horizontal line ( prmme-op ~cﬂﬂﬁ):
To negate a proposition one gimply draws a vertical stroke through this
line (EZ$R=); The symbolt—~_ shows that when the premises are converted
the syllog,ism. remains the same. The symbol < shows that the two
moods between which it stands are convertible into each other by the
conversion of their premisesosa3 The moods are either YA" balanced oxr
npH unbalanced; For a mood to be balanced both the terms and the pro-
positidns'must ve balanced (i.e; the major and minor terms must be quant-
ified in the same way and the middle term must be quantified by the same
quantifiers in the same positions). If these two statements are hot
both true the syllogism is ugbalanced; There are only two cases of
balanced syllogisms; In the others either the terms are unbalanced
as in iiil and iv (i.e; the major and minor terms are quantified differ-
ently or the middle term is quantified differently in the two premises
or both) or both the terms and the propositions are unbalanced as in v
to xii (the propositions also contain at least one case in which the
quantifier is different in the same position in one premise from that
in the other): With these definitions Diagram XCVI should be clear.

Ve éhall now attempt to translate this symbolism into ordinary
language; In chart XCVI we have seen that every term is modified by
Uyt or MM depending on its quantity; If we use A to indicate the sub-

ject of a proposition and B to indicate the predicate and Hamilton's

52330th symbols are defined on p. 676, Hamilton, op. cit.
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wedges to rebresent the relationship between the subject and predicate
wve may write only the following sixteen propositions:

1.
20 s T
So AT 1 B
i, -

5
6.
7o
89 g
90 s
10. Ay memmmd
1l. Av:
120 B et g
13,
14,
15,
16.

W W W

Now agreeing'that A and B are variables and that in any of these pro-
positions A may be substituted for B and vice versa, this list may be
reduced to eight propositions (the so-called Hamiltonian system dis=-

cussed by Venn).524‘

1. As B (from 1 and 2 above) |
2e A: :B  (from 3 and 4 above)

3. A: B (from 5 and 10 above)

L, A %,8 (from 7 and 12 above)

5 A, #:tB  (from 6 and 9 above)

6. A :B (from 8 and 11 above)

7 Ay<=m3, B (from 13 and 14 above)

8. A = ,B (from 15 and 16 above)

Hamilton uses the words "any" and "all" synoﬁymously.' Our practice will
be to use only "all" because 'any" sometimes leads to ambiguity. We
shall translate the wedge as "included within" beginning to read at the
narrower end. This, it is hoped, will eliminate the ambiguity of the
Qord "is" as a translation of the wedge. When so read the above ?ro—

positions render the following sentences:

524Venn9 op. cite, PP. 8=9. See alsc II 2 (a).
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1. 411 A is included within all B.

2. All A is not included within alil B.

3. All A is included within some B.

L. A1l A is not included within some B.

5. Some A is included within all B.

6. Some A is not included within all B.

7. BSome A is included within some B.

8. Some A is not included within some B.

Finally we must evaluate Hamilton's diagrams as diagrams. The
first chart (XCIV) does not warrant much comment. The ontological pre=-
suppositions might be pointed out, and the lack of recognition of the
possibility of overlapping classes. The second diagram (Xcv), after
cne'’'s initial confusion, is recognizable as a condensed version of the
third (XCVI). The third is a thorough rendering of all the three term
syllogisms which may be written in Hamilton's symbolism. Thus the
second diagram'’s value rests on the third. The only aspect of the
third diagram which might be called diagrammatic is the use of " exxzzzj™
to mean "included in", but this is, surely, a symbol like "< " in 1< 2
and not a diagram. Thus when we think of Hamilton's system as diagram-
matic it fails to be so but falls back into symbolism. It would seem
that on this point Venn's estimate was certainly correct.

To my thinking it does not deserve to rank as a diagrammatic

scheme at all, though he does class it5§%th the others as

"geometric'; but is purely symbolical.

(b) De Morgan

Finally we come to the last system: that of de Morgan. It
should be pointed out at the outset that de Morgan's system is no more
. diegrammatic than Hamilton's and that it is being examined here only

because Hamilton's was. It is valuable in judging Hamilton's work to

be able to compare it to de Morgan's.

525Venng op. _cite, pPe 521,
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Again we should begin with some definitions. Any term "X" taken

526

in total may be called ") or "(X" whichever is more convenient.

Any term taken in part is ")XY or ”X("0527 A proposition is negated by

the placing of a dot between the pair of spiculate (parenthesis) modi~

fying the terms (e.g. («()»528

¢

The affirmation of a proposition uses

529 14

two dots or none (usually none) in a similar manner. may be added,

although no use will be made of the fact in this paper, that de Morgan

introduced negative terms using "x" to mean the negative of‘xasjo

We are now ready to read charts JCVII and XCVIII. For any two
terms X and ¥ there are eight propositions:

Y.

XL (Y

X(Y

x((¥

x(. (¥

X()Y

(¥

Y
These eight propositions are listed to the left in chart XCVII531 and the
similar propositions, substituting X and Y appropriately, which affirm

them, contradict them, are consistent with them, etc., are arranged in a

convenient chart forme.

526Augustus de Morgan, Syllabus of‘a Proposed System of Logic,
London: Walton and Maberly, 1860, p. lb.

527pe

528

Morgan, op. cit.; p. 1k

De Morgan, ope Cit., pe lhe
529De

53ODe

531

Morgan, ops. cit., ps 1l
Morgan, op. cit., p. 13.

De Morgan, op. cit., p. 16s
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The next table (XCVIII)532 goes on to show the syllogisms
possible using these same formal methods., In the middle column stands
the universal, horizontally between thé two particulars into which it
may be weakened by weakening one of the comcluding terms..s33 Bach
strengthened particular stands vertically between the two particulars
from which it may be formed by altering the quality of the middle term
in the particular premise onlyosy+

Another interesting arfangement of syllogisms is the '"logical
zodiac’ (IC)&.555 In this case the universal and particular syllogisms
are grouped in threes, each of any three having the other two for its
cpponents. If A and B are two propositions leading to conclusion C then
Ac gives b and Bc gives 2. 2 and b are called the opponents of 9,536

Other interesting formations occur in the logical zodiac. For example

the universal propositiocms at the four cardinal points are so placed

532De Morgan, op. cit., p. 20.

533‘I‘ha’c is to say any of the three two term arguments in a hori-
zontal line will lead to the same conclusions due to this relationship
described. For example the first row reads from left to right: "Some
A are some B, All B are some C," and YAll A are some B, All B are some
C," and "All A are Some B, All B are All C," All three lead to the con-
cluswon "Some A are some Co"

}
53+The same sort of a relationship exists between the argument
in the "strengthened particular® column. This seems very puzzling,
especially since de Morgan introduces premises such as "(.)(.)" which
cannot possibly lead to any conclusion. On the whole I am inclined to
think that the diagram, as a whole, is indeciferable without more informa-
tion than de Morgan gives.

535De Morgan, op. cit., p. 2l.

536"0pponerts" is a very difficult term. See de Morgan, oOp. cit.,
p. 20 for a more thorough deflnltlong
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that any two contiguous, whether read forwards or backwards, give the
premises, of a valid universal syllogism°537

We will cut our description of de Morgan's system short at this
point since, as is obvious by now, these charts, interesting and’
suggestive as they are, are ﬁot diagraﬁso

Obviously de Morgan@s system is superior to Hamiltonfso The
most important difference is the introduction of negative terms. On
the other hand Hamilton's use of " w=3'' as an operator gives him a

logically powerful system and some such operator would seem to be nec-

essary for any adequate system of symbolism.

6. Conclusion

To summarize such a chapter as this is almost impossible. Ve
might point out that there has been evclution within the field of logic
diagrams, that some diagrammatic systems are more adequate than others,
that some systems are more capable of performing sﬁme functions than
others, All of this is obvious'or where it is not it will be discussed
in the last chapter. We are left with the simple descriptions; these,
then, were the diagrammatic systems which contributed not only to the
growth in adequacy of the logic diagram but also to the development of
logics A brief summary of the development of the logic diagram might
be given by means of a graph (C). The horizontal axis represents the

years in which the various contributions to the logic diagram were

537It is difficult to see what de Morgan means by "funiversal
proposition”. "(.)" seems to be particular. Further "A(.)B" and "B).(C",
if they can be said to lead to any conclusion lead to "B()C" which is a
particular, not a uaniversal proposition.
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written; the vertical axis represents the value, in this author's
estimate, of the contributions. A diagram which would be completely
adequate for all logic would be ciassed at 100; one which would bé
totally inadequate at O=538
From this chart certain conclusions may be drawn. (1) most
of the activity in this field occurred getween 1850 and 19259. (2) There
was a sharp rise in the adeéuacy of the diagrams 1850-1880 followed by a
more gradual rise in the value of the better systems. (3) Inadequate
systems continued to be produced and inadequate interpretations of systems
continued long after the more adequate systems were developed. (4) Two
séctions qf the chart (really within one time periocd) show an exceptional
amount of activity. These ére the sections containing diagrams of value
20 to 35 between 1855 and 1890 and of value 55 to 90 between 1875 and
1920, These are reproduced in enlargment with a key to allow the reader
to form an estimate of the author's judgment of the value of these
systems and to éive an overall view of the major period of development
for the diagrams (CI) and (CII). The reader may disagree with the posi-
tion of'some of these developments with regard to the vertical axis but
the main purpose of the chart is to indicate the sort of growth that
occurred and to show periods of greatest activity., ZIven allowing for

disagreement these charts should be adequate for this purpose.

538

A very subjective standard meant only to be taken as a guide.
The reader is invited to disagree, forming his own evaluation.
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THE LOGIC DIAGRAM TODAY

1. VWhat is the Logic Diagram?

(a) Peirce's Concept of Language

Peirce, as we ha&e noted, believed that all human thought
proceeded diagrammaticallyél This is not say that we proceed to form
a visual picture of the objects of which we are thinking but rather that
our thoughts are a simple pattern, a map, of the objects of our thoughts
in the;r'relationshipso Peircé gives several examples of this process.
The one cited below will démonstrate his position clearly:

Consider any argument concerning the validity of which a
person might conceivably entertain for a moment some doubt.
For instance, let the premise be that from either of two
provinces of a certain kingdom it is possible to proceed

to any province by floating down the only river the kingdom
contains, combined with a land-journey within the boundaries
of one province; and let the concluslon be that the river,
after touching every province in the kingdom, must again

meet the one which it first left. Now, in order to show

that this inference is (or that it is not) absolutely necess-
ary, it is requisite to have something analocgous to a diagram
with different series of parts, the parts of each series being
evidently related -as those provinces are said to be, while in
the different series something .corresponding to the course of
the river has all the essential variations possible; and this
diagram must be so contrived that it is easy to examine it
and find out whether the course of the river is in Eruth in
every case such as is here proposed to be inferred.

.
“See IT 4 (4).

2Peirce, 3,418,

152
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This position would be very controversial if we were to take Peirce's
word ""diagram" too literally; but the passage continues in a way that
prevents this. Peirce shows that he is concerned with the one to one
correspondence of the "diagram" to the original, and not with the geo~-
metrical properties of it. Thus the concept of "diagram' is broadened
to.include all language and all types of symbolism insofar as these
may be meaningful. |

Such a diagram has got to be either auditory or visual, the
parts being separated in the one case in time, in the other

in space. But in order completely to exhibit the analogue

of the conditions of the argument under examination, it will
be necessary to use signs or symbols repeated in different
places and in different Jjuxtapositions; these signs being
subject to certain '"rules', that is, certain general relations
associated with them by the mind. Such a method of forming

& diagram is called algebra. All speech is but such an
algebra, the repeated signs being the words, which have
relations by virtue of the meanings associated with them.

What is commonly called logical algebra differs from other
formal logic only in using the same formal method with

greater freedom. I may mention that unpublished studies

have shown me that a far more powerful method of disgrammatis-
ation than algebra is possible, being an extension at once of
algebra and of Clifford's method of graphs; but I am_not in

a situation to draw up a statement of my researches.”

4 diagram, a sentence and a logical formula are all of the same
characters .Each is an iconic representation of the object of thought.
The diagram differs from the other two in that its parts are spatially,
rather than temporally, ordered. Next the question arises of what,
exactly, the diagram, the language and the algebra represent. Peirce
points out that no matter how complex our-diagram beccmes, no matter

how carefully we expand it,; the diagram can never show to what it is

intended to be applied. Since a diagram cannot, algebra cannot for

“Peirce, 3.418.
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algebra is a sort of diagram; since aigebra cannot, a language cannot
for language is a sort of algebra. Thus the referent of a logic is an
extralogical matter and the referent of a language is an extralinguistic
matter, Reference must be given before the diagram, algebra or language
can‘have meaning other than as a closed analytic system. In language
this step may be taken in any of several ways. The most common is the
use of demonstratives which are, so to speak, fixed points in our lang-
uage relating it to the world or to whatever world we are discussing.
Nouns (Peirce calls them 'prodemonstratives™) may then be substituted
fcr, or attached to, demonstratives and our correspondence is set up.‘
The situation with diagrams is exactly analogous.
| If upon a diagram we mark two or more points to be identified

at some future time with objects in nature,; so as to give the

diagram at that future time its meaning; « . o the professedly

incomplete representation resulting may be termed a relative
Thus & diagram, or for that matter a language, receives its meaning
within a context. If there is no context, no world or worlds to which
the diagram applies; there is no meaning. Further it is to be noted
that this meaning can only be givén by demonstratives. Thus, eveﬁ
though the relationships are drawn in the diagram, it receives meaning
only when it is applied tc something.

Peirce's pésition is, then, th;t a logic diagram is a language
(or better that a'language is a logic diagram) and it is, when demon-

stratives are substituted for its marks, a representation of reality

4

All of this is said by Peircé in more technical language, 3.419.

5Peirce9 3.420.
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or whatever world we are discussing. This description gives the logic
" diagram a very high position of priority among the things philosophers
ought to be studying in order tc understand reality. We might wish to
call this position the strong statement of the value of the logic dia-

gralfie

(b) The Weak Statement of the Value of the Logic Diagram

Many logicians would wish to reject'the idea that we think dia-
grammatically and that language and calculus are types of diagrems, yet
would wish to retain the logic diagram as a useful device. The starting
point of such a position would be a statement of the relationship between
the logical language or algebra and the diagrams. Hocking states this
relationship in terms of representation.

It is possible to represent anything by anything else,

provided the system of such parts in the gilven object

as are significant for the purpose in hand can figd

corresponding parts in the representative object.
There is no reason why a diagram would be superior to any other type of

7

representationg The diagram is chosen for other reasons. There is no
ontological or epistemclogical ground common to the diagram and the
logic. Parts happen to correspond (or are so drawn that they correspond)
s0 the diagram may be useﬁ in this way.

Gardner puts'this in another way in his discussion of Venn
diagrams.

What we have been doing, in a sense, is to translate the
verbal symbols of a syllogism into a problem of topology.

6Hocking, op. cit., pp. 31-32.

7 Hocking speaks of "other possible ways of making sensible,
these ideal relations"” but does not tell us what ways he means. Hocking,
op. Citey pe 32
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Bach circle is a closed curve, and according to the "Jordan
theorem” of topology a closed curve must divide all points
on the plane into those which are inside and those which
are outside the curve. The points inside each circle con-
stitute a distinct "set" or '"class" of points. We thus
have a simple geometrical model by means of which we can
show exactly which points lie within or without a given
set. The question now arises, do the topological laws
involved here underlie the logic of class inclusion, or

do the laws of class inclusion underlie the topological
laws? It is clearly a verbal question. Neither underlies
the other. We have in the Venn circles and in the syntax
of a syllogism two different ways of symbolizing the same
structure — one grammatical, the other geometrical.
Neither, as Pe%rce expresses it, is ''the cause or principle
of the other'. ' :

The basic difference between Peirce and Gardner on this point is that
for Peirce the underlying structure symbolized is, itself, "diagrammatic"
in that it represents something. For Gardner and Hocking no such des-
cription is,; or could be, made.
Logic diagrams stand in the same relation to logical algebras
as the graphs of curves stand in relation to their algebraic
formulas; they are simply other ways of symbolizing the same
basic structure,
Clearly, the parabola and its formula are simply two differ-
ent ways of asserting the same thing., The parabola is a
spatial way of representing an gguaiaon; the equation is an
algebraic expression of a parabola.
Clearly, for Gardner and most other modern logicians, diagrams and
algebras are simply two languages expressing a basic structure. Neither

comes nearer to expréssing that structure; they are of equivalent value

in such expression and are to be judged by other standards.

8Gardner, ops_cit., p. 41.

9Gardner9 op. cite., p. 28.

lOGardner, op._cit., p. 28,
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(¢) Summary

A third case might be made: for the uselessness of diagrams
in the representation of logic. A defense of such a position would
attempt to point to structures within logic which are not, in fact,
repréesented by‘thé diagrams or, better yet, to show that some logical
structures are, in principle, unrépresentable by any diagramall 'We
would reject such a position and point to the work of Venn, Peirce and
Roberts as a sufficient refutation of it. We have attempted to show
fthat Venn's diagrams are adequate for tﬁe Boole-Schroeder algebra12 and
Roberts has pointed out that Peirce is, or may be made, adequate for the

13

proposition calculus and the functional calculus. We have also men-

tioned attempts to develop diagrams for multi-valued logics,l4 for mod=~
ality,l5 and for meta—logicol6 Thus we would wish to hold that it is
(at least on the(present‘evidence)g in principle, possible to develop
adequate logic diagrams for any system of logice

Since we accept this, there can be no doubt that we must hold,
at least, to the weak statement of the value of the logic diagram.
There is one to one correspondence between certain features of the

structure of logic and the structure of the diagrams. Otherwise the

diagrams would not be adequate to represent the logical system.

1 .

*lOne might wish, for example, to single ocut some aspect of a
logical system and to prove that there is no way in which diagrams could
be used to represent that aspect.

211 2 (o)

D11 4 (e
4T & (o).
o1 4 (a).

1611 4 (a).
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[

Finally we must ask about Peirce's sfrong statement. Is lang-
uage an algebra and algebra a diagram and all thinking diagrammatic?
A thorough examination of languages, algebras and diagrams in general,
and of the relationships of these with universes, real or ideal, and
of 211 this with experience would be necessary before this question
could be answeredol7

We are able, at least, to accept the weak statement of the
value of the logic diagram. Gardner has stated this position thus:

A iogic diagram is a two-dimensional geocmetric figure

with spatial relations that are isgmorphic with the
structure of -a logical statement.t

2, The Uses of the Logic Diagram
| (a) In Logic

The logic diagram is used within logic primarily for two related
purposes: the teaching of elémentary logic and the illustration of some
aspecté of logic.

At the present time the Venn diagrams are the most ﬁopular set
of diagrams used in the teaching of logic. Copi, for example, uses them
to great advantage. He introduces them to illustrate categorical pro-

19

pdsitions but goes on to use them as a simple method of solving cate-

gorical syllogismsoao

17Peirce saw the importance of such an investigation and began
it 3.418-3.420, but little further work has been done in this area from
this point of views

18Gardner, op. cit., p. 28

19Copi,J op. cit., pp. 161-166.

Zocopi, OEQ Citcg ppo 1?6"1860
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The Venn Diagrams constitute an jiconic representation of the
standard~form, categorical propositions, in which spatial
inclusions and exclusions correspond to the nonspatial in-
clusions and exclusions of classes. They not only provide
an exceptionally clear method of notation but also are the
basis for the simplest and most direct method of testing
. the validity of categorical syllogisms, . » .21
We have already explained this use of the Venn diagram. Occasionally
an author, such as Bittle, still uses the Euler diagrams for this pur-
22 |
pose, 4 .
Diagrams are also used to illustrate many different aspects of
~ logic. For example, in the Precis, Bochefiski makes use of the following
diagrams:
(1) Gonseth's graphical representation is used to illustrate a truth
functional calculusoz3
(2) A square of opposition is used to illustrate the relationships
between the operators of the same truth functional calculus.24
(3) A negative version of squared Venn diagrams is used to illustrate
class relatianazs
(4) A diagram of functions is used to illustrate individual, plural and

. — 2
bi-plural descriptions.

(5) A directed network is used to illustrate isomorphic relationsgz?

21
Copi, ops cite., p. 166.

5 .
Z“Bittle, ope cit., pp. 187 £f.

2JBochez"ns]»:i,, A Precis of Mathematical Logic, pp. 13-1k.

2L"Boclfuaflslcig op. cite, p. 14

szocheﬁski, oD Citoy DPe 56=57.

26Bocheﬁski, ops _cit., pp. 63-69.

27Bocheﬁski, Ops_Citey Do 75



The question that one must élways raise with regard to the use

of diagramé in logic, or anywhere else for that matter, is whether a
better diagram may not be available. Gardner, for example, does not
feel that the geometric areas of the Venn diagrams adequately represent
the truth values of propositions, and therefore suggests a network
system028 One might wish to question Bochefiski's use of Gonseth dia-
grams on similar grounds. One might also question the value of his
diagrams used for the’representation of classes on the grounds that they
reverse the accepted conventions of such diagrams.

: If diagrams are being used to help students beginning to work in
logic it would seem to be important that they should be useful in as many
situations as possible, that they should be simple to use, and that they
should distort the relations between terms as little as'possible. This
would make it important for the teacher to use the diagrams which he con-
sidered best after careful examination of various systems with the limita-
tions of the students in mind. One can only suggest that caution should
be exercised in the use of diagrams. An adequate diagram, well explained,
can be an invaluable aid; a poor one, or one given without sufficient
information, will simply add to the confusion.

| Other possible uses of logic diagrams within logic have been
mentioned from timg to time. Note particularly Roberts' suggestion of
the use of existential graphs as a calculus..29 We will not discuss

these uses in this chépter as we are concerned only with the ways in

which the diagrams are actually used at the present time and not with

28Gardner, op. cit., p. 60.

29Roberts, op. cite, pp. 150-256.
Sp. cit
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ways in which they might be used.

(b) In Mathematics

Diagramé or graphs with the characteristics of logic diagrams
are found throughout mathematics. The two areas in which such diagrams
are used most frequently are theory of graphs and set theory.

The first paper on theory of grapﬁs vas written by the famous
Swiss mathematician Euler and appeared in 1836.30 It is interesting
that Euler, the midwife of the logic diagram, should c¢crop up as well as
the father‘of the mathematical graph. The linear graph has exactly the
appearance of an irregﬁlar network logic diagram., Various points called
vertices are joined by lines palled edges. These may be used to diagram
various situations. One may then develop an algebra for describing
these graphs. The kinship of the graphs and the diagrams is particularly
clear when we turn to directed graphs. Graphs are directed when we may
move only in a prescribed direction along the edges either by the use of
vectors or Sy some other rule. Despite superficial differences Gardner's
diagrams are exactly defined as mixed (i.e. directed and non-directed)

31

graphs. Peirce's valency disgrams also behave exactly like linear

non-directed gzr-aphsop2 The field of graph theory then is going to be
" very significant for at least some systems of logic diagrams. We have

already mentioned the Jordan theorem and its importance in understanding

the basic nature of geometric diagrams. This theorem is a topological

" 3oThis9 of course, was the paper proving that the "seven bridges
of Konigsberg'" puzzle was inscluble.

it 4 (o).

3211 4 (q).
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theorem and is developed via theory of graphs. Various other theorems
may be devéloped concerning the nature of both network and geometric
logic diagrams by means of theory of graphs. Thus theory of graphs is
a valuable instrument for the exact understanding of logic diagrams
and for systematizing them. From a mathematical point of view, at
least, théory of graphs would appear to be preliminary to the study

of the topological characteristics of logic diagrams and most sorts of
logic diagrams would 5e thought of as examples or illustrations of the
theory of graphs or objects fﬁr analysis of the theory of graphs.33
. In set theory the Venn-Euler diagrams are a very valuable in-

34

strument. If one is attempting to teach the operations involved in
set theory one may begin with concrete geometric examples. Imagine
that a set A is the class of all objects having characteristic A. This
class is represented by a circle or other geometric figure which is
thought of as containing all the objects having the characteristic.

Now one may represent the various coperations of set theory by means of

the diagrams. Thus the diagram for AUB is the same as that for A+B=1

in Boolean algebra;35 that for ANB the same as that for AB=1936 etce

3j‘I‘here are relatively few works in this field, especially for
the general reader, Oystein Ore, Graphs and Their Uses, Toronto: Random
House, 1963 is useful. In a more popular style is Stephen Barr, Experi-
ments in Topoclogy, New York: Thomas Y. Crowell, 1964 (especially the
first chapter). : :

_’,l
““Almost every standard work on set theory uses some diagrams.
We have used Lipschutz, ope cit., because of the author 's limited know-
ledge of mathematics,

ipschutz, op, cit.,; pes 17

36Lipschutz, op. cite, po 18.
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Since set theory is now being taught in public school, Venn diagrams have
found their way into texts for the teaching of elementary arithmetic°37
This leads us to emphasize again the importance of a thorough analysis of

logic diagrams and of theilr use in extralogical fields in order that they

may be used to the gréatest advéntage and with the utmost accuracy.

(¢} In the Sciences
Logic‘diagrams are to be found scattered through many science
books in widely diversified areas. We have chosen three fields to illus-
trate this: geography, psychology, and electrical engineering.

¢

Peter Haggatt, in Locational Analysis of Human Geography, makes

use of Venn diagrams to show the relationship between geography and other

38 39

areas of study” and to illustrate regional geography. These diagraus
would seem to be ideally suited to the latter use since Haggatt is able
to abstract the topological characteristics of regional geography and to
represent them with the topological features of Venn diagrams.

Kurt Leﬁin attempted to make psychology an exact science and as
part of this process he used topological models of human behaviour.
These diagrams included Venn-Euler diagrams, sometimes combined with

Peirce-like directed graphs, and various other topological structures

resembling, in varying degrees, logic diagrams.4o Many, if not all of

37See for example E. P. Rosenbaum, "The Teaching of Elementary
Mathematics™. Scientific American, Vol. 198, Number 5, May 1958,

ppe 62-73.

38Peter Haggatt, Locational Analysis in Human Geography, London:
Edward Arnold Publishers Ltd., 1965, pp. 14=-15.

39

quurt Lewin, A Dynamic Theory of Personality, trans. Donald XK.
Acams and Karl Zener, New York: MNcCGraw Hill, 1835, Kurt lewin, Field

Peter Haggatt, op. cit., pp. 243-245.
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them, might be represented by logical formulae although Lewin did not
do this. The use of diagrams of this sort has spread well beyond Lewin's

immediate followers and seems now to be generally accepted in psychology.

In Psychology: An Introduction to a Behavioral Sciencegul for example,
valency graphs like those of Peirce are used to represent the relation-
ships of patients on wards and to illustrate the principles of group
dynamicso,

In the practical sciences logic diagrams find many uses. For
example, the printed electric circgit is patterned exéctly like a net-
work diagram and the logic diagrams are used to illustrate switching
circuits in computers. It is significant that both Lytel43 and Phils’cerM\L
use Venn and Marquand diagrams for this purpose. This msy be evaluated
in either qf two ways depending on what we consider their purpose to be.
A geometrical logical diégram may be thought of as being so remote topo-

logically from an electrical network as to be of very little value as

illustration; on the other hand, the geometric area may be a visualization

Theory in Social Sciences, ed. Dorwin Cartwright, New York: Harper &
Brothers, 1951. Kurt Lewin, Principles of Topological Psychology, trans.
Frith and Grace M. Heider, New York: McGraw Hill, 1936. Kurt Lewin,
Resolving Social Conflicts, ed. Gertrud Weiss Lewin, New York: Harper &
Brothers, 1948, There is no point in citing page numbers as Lewin's
diagrams are so integral a part of his system that they appear in every
chapter and are implied in everything he says.

41

A standard text selected only because it was close at hand.

4ZHem‘y Clay Lindreu, Donn Byrne and Lewis Petrinovich, Psychology:
An Introduction to & Behavioral Science, New York: Jochn Wiley & Sons,
1966, ppe 313, 319 and 413. Venn-like diagrams are presented on ppe. 277
and 445, ,

43Allan Lytel, op. cit., pp. 24-27, 66-69 and 80-82, although he
uses network diagrams as well, pp. 101-102,

44Philster, ops cit., pp. 48-49.
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of something which in itself is difficult to understand. Thus, properly
used, such diagrams may help elucidate the subject matter of electrical
engineering, but badly uséd they will add confusion to it.

Again it should be pointgd out that the use of graphs in science
can be deceptive if they are not accompanied by careful ccmmenta;y. It
might also be suggested that scilentists should be familiar with various
sorts of graphs so that they may use those which are clearest, simplest,

and most adequate for their purpose.

{d) In Business

Logic diagrams can bey, and ﬂave been, used outside the academic
world. One outstanding example of the use of the logic diagram in bus-
iness occurs in an article by Edmund C. Berkeley called ''Boolean’ Algebra
(The Technique for Manipulating ‘*And', *Or', 'Not', and Conditions) and
Applicatioﬁs to .'[1'1sm:u=,z:nce”.l‘L5 Although Berkeley is using Venn diagrams
he expands them to incorporate.six terms all represented by topological
areas bounded bj only one line by using complicated horseshoe-shaped
areasW46 which terd at times to be very confusing. He also makes ‘use
of irregularily shaped areas to represent x.mknowns."+7 Td make it clear
just how powerful these diagrams are in practical situations within bus-
iness, we will simply'give@ without working out, two of the problems to

which Berkeley applies them:

45Edmund C. Berkeley, "Boolean Algebra (The Technique for Mani-
pulating *And', 'Or?, 'Not’, and Conditions) And Applications to Insurance',
The Record of the American Institute of Actuaries, Vol. 28, Number 3,
October, 1937, pp. 373-%lh.

46

Berkeley, op. cit., p. 39%. , ‘
47Berkeley,'ogo-cito, pe 400.
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Problem l1: An employer has a contributory group insurance
contract. On any given date, what are the possible statuses
of those of his employees who are not insured with reference
to: being eligible for insurance; having turned in an applica-
tion for insurance; having the application for insurance
approved; requiring 2 medical examination for insurance?
Assume:

1. Any employee, to be insured, must be eligible for
insurance, must make application for insurance, aand must have
such application for insurance approved.

2, Only eligible employees may apply for insurance.

3. The application of any person eligible without medical
examination is automatically approved.

L, (Naturally) an application can only be approved if the
application is made.

5. {(Naturally) a medical examination wiél not be required
from any person not eligible for insurance.’

Problem 3:; (Joint Associateship Examination, 1935, Part 5,
question 9b): Certain data obtained from a study of a group
of 1,000 employees in a cctton mill as to their race, sex, and
marital state were unofficially reported as follows:

525 colored lives; 312 male lives; 470 married lives;

42 colored males; 147 married colored; 86 married males;

25 married colored males. Test this classification to deter-
mine whetheE the numbers reported in the various groups are
consistent.

These are no remote arguments that the diagrams are being used tontest
but the sort of problems that an insurance company might meet in the
field, This would suggest that the Venn diagram, and perhaps some of
the other diagrams, might well be studied by business and industry as a

problem solving methode.

3

(e) Summary
Anything that may be treated by means of logical symbols is
amenable to some type of logic diagram. This means that the diagrams

will be useful in the examination of anry type of argumentative or

QSBerkeleyg op. Cits, p. H03-40OL,

49perkeley, op. cit., pe 409.
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deductive thinking. The various diagrams are not of equal use in
treating such deductions, Some arguments are more clearly understood
with symbolic notation but the diagrams are very useful in a surprising
number of cases. We have mentioned a broad cross-section of such cases
in this section and suggested that there are many other areas in which
the diagrams might find use. We add again, however, that the user of

the diagrams must exercise caution. We now turn to methods of evaluating
the diagrams, which methods will give the users of these diagrams in-

struments for checking the adequacy of their diagrams,

3. The Evaluation of the Logic Diagram
50

(a) Iconicity

There must be.a one to‘one correspondence of the structure to be
represenfeq and the structure representing. This is intuitively obvious
but might easily be proven. Let us use a Venn51 diagram to represent a

aumber of classes and let the classes to be reprgsented be a; D; Cs o o
‘ n, and the elements (e.g. the geometric areas) of the diagram which are
to represent these classes a';, b'y, ¢*, « - o« nf-l. where n is the same

numerically as n'.  The number of elements in the diagram is clearly

PnIcon® is Peirce's term and is defined at 2.247,

An Icon is a sign which refers to the Object that
it denotes merely by virtue of characters of its own, and
which it possesses, just the same, whether any such object
actually exists or not. It is true that unless there
really is such an Object the Icon does not act as a sign;
but this has nothing to do with its character as a sign.
Anything whatever, be it quality, existent individual, or
law, is an Icon of anything, in so far as it is like that
thing and used as a sign of it.

51This section deals particularly with the Venn diagram., Similar

proofs might be given for other systems. We are also assuming in this
case that the terms stand for classes. If the terms stand for something
other than classes similar proofs may be constructed.
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less than the number of classes to be represented. Now we must be able
to represent any subclass made up of any combination of classes isea
(abc o o o)y {abc o o o M) o o o (@bc o o o 1), (8DC ¢ « o n) as well
as subclasses composed of combinétions excluding some of the possible
classes between a and n. There are only three sorts of propositions
that may be made about the subclasses containing n terms: 1)(abc . . . n)=0,
2) (abc o o o n)=1 aﬁd, 3) (abc « » o n)£0. In the first case we must shade
out the compartment representing (abc o » ; n); in the second we must shade
out everything but this compartment; in the third we nmust make a park of
some sort in the compartment. Now we may pair off the elements of the
diegram with the classes, a' with a, b' with b, ¢’ with Cy o o o n'-1l with
n-l, We are left with the unrepresented class n. Thus there can be no
compartment representiné the subclass (abc « « o n). Therefore to be ade-
quate the diagram must contain at least as meny eiements és there are
classes or terms to be represented.

Further, the diagram must represent the classes. That is, it must
be understood that the element a' represents the class g, the element b’
represents the class b, etc. This qualification is trivial but it is also
significant. If is trivial in that &l11 it means is that a diagram, the
eiements of which do not represent anything, is useless. A diagram must
be attached by means of what Peirce calls ''fixed points" to the universe
which the diagram represen‘ts,52 Thus the various subdivisions of the

dizgram are iconic in that they stand for scmething extradiagrammatic.

Iconicity in this sense is the primery requirement of the logic

52See particularly Peirce, 3,419 in this regard.
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diagram. Without it the diagram is irrelevant; with it even an inade-
quate diagram may have some value. There must be a correspondence of
the diagram with the elements to be represented and the representation

must take place.

" (b) Abstraction

What if there are a greater number of elements in the diagram
than there are elements to be represented? Does this shatter the dia-
grams iconicity? It does not. Suppese that the elements a, b, ¢4 » «
o are to be represented by a diagram having the elements a', b', ¢’y « - .
n', n'+l, We must be able to represent the subclasses derived in the
last section when they are equal to 1 or to O or when they are not equal
to O. Let the subclass (abc « « o n)=0. This includea two compartments
which must in conjunction equal O: a’, b', ¢', o« « » n'y(n*'+l) and a’, b',
¢'y o « o n'y(n'+l). Thus:

(abc « o o n[n+ll) + (abc . - n[nal) =0

([n+l] +[n+l] ) (@b c e o o n) =0

But x+X¥ = 1

(abc o « o n) =0

Thus the introduction into the diagram of an element, n'+l, which is not
needed to represent the classes does not affect the iconicity of the dia-
gram, as ité effect cancels itself out, It does however violate the
principle of abstraction.

The principle of abstraction as given by Hocking attempts to
include iconicity. It is evident, however, that Hocking's major concern
"is the reduction of the elements of the diagram to the bare essentials:

seoif & representation is to be of any value, it must have

the force of an abstractiocn. That is to say, while it must

be rich enough in prominent features to correspond to the
entire system which our purpose defines, it must be poor
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enough to distract us as little as possible with other

features. The primary recommendation of the graph in

logic, in contrast to other possible ways of making

sensible these ideal relations, is that it is almost

poor enough to tell nothing but the truth. . . . We do

not need to exert a great additional heave of abstraction

from the graph in order that it may aid in digcrimimating

the logic of a situation from its psychologys >

Abstraction is the complement to iconicity. Iconicity gives the
lower limit of the elements of the diagram; abstraction gives their upper
limit. If a diagram violates the principle of iconicity it is inadequate
because it canrnot deal with all the elements that it must représent; if
it viclates the principle of abstraction it becomes unnecessarily con-

fusing. Thus iconicity and abstraction together define the diagram with

regard to its elements.

(¢) Proportion
Hocking lists proportion as a secondary value of diagrammatic

5k

representation in logic. Once the correspondence is established be-
tween the elements of the diagram and the elements represented, it may
be desirable to establish a correspondence between the relationships of
the elements of the diagram and the relaticnships of the elements re-
presented, and between second degree relationships, etce The two most
important logical relations (i.e. relationships between terms or classes)
that may be illustrated by means of diagrams are connotative rank and

connotative kinship. These have already been discussed and the limits

of the diagrams' representational ability established with regard to

53Hocking, 0P Citey Po 32
54

See II 2 (h). Hocking's major aim was to show to what degree
propurvion was possible in a geometric diagram.
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rank and kinship for the geometric diagram. The more nearly that a
diagram is able to approximate representation of connotative rank and
Xinship in the relationships of its parts while remaining iconic and

abstract the more adequate the diagram will be.

(d) Simplicity
It is obvious that the rules of operation applying to the diagram
should be as simple as possible and that the diagram itself should be
uncluttered and should use as few basic devices as possible. A Venn
diagram for three terms can give the solution of an Aristotelian syllo-
ism much more easily than the clumsy devices of nineteenth-century

=

logice 4 Peirce diagram, as Roberts has shown, is easily used as a

calculus, in many cases more easily than the complicated apparatus of

56

formal symbolic logic. When diagrams. lose simplicity, as Hocking's
é057 for example, they lose their value és logic diagrams for we then
see things not about logic but about diagrams. It is to be noted that
Peirce requires simple diagrams for logical analysis in order to arrive

58

at the most basic relations. Thus an adequate logic diagram (i.e. one
which has iconicity, abstraction and proportion) which is simple is to be
preferred to one that is complex whether the diagram is to be used as an

example, a calculus or an instrument of logical analysis.

(e) Purpose
One very important element in the evaluation of logic diagrams

that is easily overloocked is the purpose for which those diagrams were

2211 2 (c).
5611 L (a).

57Hocking was of course aware of this. He did not mean to have
his diagrams used in practical problems, II 2 {(h).

5811 & (a).
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intended. The simplest and most iconic diagram, if it serves the purpose
for which it was intended, is to be more highly evaluated than one that
does not serve its purpose. Thus an enginegr attempting to approximate
an electrical network on paper would be better advised to use a Gardner
‘network than a Venn diagram. On the other hand, a‘teacher attempting to
commuricate the nature of the networks in computers might wish to give a
two~dimensional model in order to give a fresh point of view of the
relationships involved and would then be better off to use a Venn diagram
than a Gardner network. A logician teaching elementary logic would find
Venn's diagrams much more useful than Peirce's (at least in this author's
opinion) but if the same logician were developing a diagrammatic calculus
he would find Peirce convenient and Venn confusing. This standard of

evaluation is, to some degree, subjective but it is important and valid.

(£) Summary

The methods of evaluating any particu;ar system of logic diagrams
may be reduced to a number of rules:
Ruie 1: Any logic diagram must be iconic.
Rule 2: Any logic diagram must be useful for the purpose to which it is
being turned.
These are the primary requirements of the logic diagram and if either or
both of these rules is broken the diagram may be Judged to be inadequate.
RulefB:Any logic diagram must accommodate the least necessary number of
terms.
This is the rule of abstraction.

Rule &4: Any logic diagram should display proportion whenever possibles
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Rule .5: Any logic diagram shculd be as simple as possible in appearance
and operation.

These rules form a hierarchy. The first two are absolutely
essential for adequate diagrams. The third is logically possible when-—
ever the first applies and should thus always be carried out. The last
two are not essential to a diagram’s being useful but the nearer that
the diagram approaches the achievement of these ideals the more adequate
it becomes. It may, at times, be necessary to sacrifice rule four for
the sake of rule five or wvice versa. These theﬁ are the five basic
points on which the logic diagram cught to be evaluated and these should

be taken into consideration whenever diagrams are to be used.

L, The Central Issues Raised by this Paper

(a) Quantification of the Predicate
In the time of Boole, de Morgan, and Hamilton the question of
whether the predicates of proposifions were to be quantified became a
central issue for everyone interested in the use of logic diagrams. In

Euler959

of course, predicates were not quantified as he used only the
basic Aristotelian propositions in his syllogisms:

All A are B

No A are B

Some A are B

Some A are not B

Hamilton6o attempted to extend the capacity of logic to represent

arguments by developing these four basic propositions into eight:

2911 2 (a).

017 2 (a) and II 5 (a).
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£11 A is 211 B

All A is some B

Some B is all A

Any A is not any B
Some A is some B

Any A is not scme B
Some B is not any A
Some A is not some B

We have attempted to show that this group of propositions is neither
as comprehensive nor as simple as possible from Venn'®s point of viewaOl
One major reason for this problem is the failure of Veunn to come to
grips with the representation of particular propositions.62 This makes
it impossibie to manipulate his diagrams in order to solve problems.

Even while Hamilton was attempting, unsuccessfully, to quantify
the predicate, a new approach was being developed by Boole. Boole
applied mathematical techniques to logic. Although Boole is beyond the
scope of this paper de Morgan and Venn represent two distinct mathe-
matical systems of logic based more or less on Boole and are within our
Jurisdiction.

De Morgang63 too, derives eight propositions from all possible
combinations of the brackets and dots in his system:

oY

X). (Y

x(Y

(¥

X(.(¥

XQx

- 9104

X)oY

Obviously all "predicates" are quantified. In fact there is no subject

61
62

position.

II 2;(a)§

II 2 (c)s A more impdrtant reason is the weakness of Hamilton's

311 5 (b).
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or predicate but simply two terms which may be reversed: X))Y is
equivalent to Y({X. Of these eight propositions X(.(Y has no equivalent
in Hamilton's system and X).)Y is'equivalent to both "All X is noé some
¥Y* and "Some Y is not any X'". De Morgan's system secems to solve the
problem of the quantification of the predicate by eliminating'the predi-
cate entirely., There are two problems Qith this view. De Morgan's dots
and brackets constitute a private language understandable only after con-
siderable study and practice - and Boole had already discovered a simpler
calculus. Further, de Morgan's system is a closed system drastically
limiting the number of propositions that can be expressed. In Boole's
system the number of possible propositions expressible is unlimited.
Boole used the symbols of elementary algebra for his calculus
and Venn followed his example. In Venn96@ as in de Morgan, the problem
of the quantification of the predicate is solved by the elimination of
the predicate as an element of the logic system. For Venn, however,
there are no general basic propositions. One could not say that x=1
was more basic than (x+&)=l. They are both simply propositions. Thus,
in Boclean algebra, the problem wvanishes. The problem is basically one
which arises when one attempts to develop a ''class inclusion and ex~-
clusion" system of logic but does so retaining the language of traditional
"predicative® logic.65 When one develops such a view from scratchy as in
de Morgan, or when one begins with a "compartmental" or "existential®
view,66 the problem of whether or not to quantify the predicate and how

to do so disappearse

6411 2 (e)e

65These are Venn's terms, discussed in II 2 (a).

66

These are also Venn's terms and are discussed in II 2 (c¢).
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(b) Existence

Several other related problems have been raised in this paper:
the question of the existential import of the A prOposition,67 the
question of the implications of specific propositions with regard to
existence568 the question of the relationship of logic to reality,69
etc. These problems are all bound u? in one difficult question that
transcends logic but is sfill a most important question for it: what
exists? This problem might be briefly ;tated as fcllows: what sort
of proposition must we be given before we can derive the existence of
something from that proposition? We have seen a variety of views in
this paper.

Thelfirst such view is that supported by the Iuler diagramso7o
If these diagrams are valid representatiomns of Aristotelian logic the
moment»that we are given a particular proposition we know that the
subject, at least, exists. This is true for any particular proposition.
Thus QSome unicorns have one horn" means ''there is at least one unicorn
having one horn". This view is strengthened when x's are used as in
Venn, to indicate O and I propositions. If this view is rigorously
meintained logic is separated from reality and becomes a game played
with concepts, or the term "reality” is broaéened to allow talk about

unicorns or anything else that we wish to say exists.

. . . 1
The second view concerning existence is that of Jevons.7 For

67Particularly in II 2 (a) and II 2 (£).
68

69Although this was mentioned often specific attention was drawn
to the problem in II 4 (d) and III 1 (a).

II 2 (a), II 2 (e), II 2 (£), II 3 (b), II 5 (a).

115 (a).
111 2 (o).
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Jevons every term must have existential import. Thus A=Ab tells us

not only .that there are A's and that these A's are not B's but also
that there are B's and, obviocusly, that these B's are not A°$. This
would seem to mean that the moment a term is introduced into a pro-
position we are committed to the existence of the things represented
by that term. It is intereéting that this is not so for the negative
of such terms. Thus from 4=AB, B=BC and C=Ca.we may derive ABC but not
abc. It makes no difference to Jevonswhat we are talking about: it
existse.

A third view, in many ways the most moderate of those presented,
is that of Venna72 For Venn the universe of discourse, everything there
is, is represented by the number 1. In other words, (x+X)(y+¥y) o « o
(n+n)=l. If this is so something must exist. Thus, although we are
uncertain wﬁether x=0 or x=0 these cannot both be true. This is simply
the law of exc}uded middle and it would seem to be an absolute for all
gecmetric diagrammatic systems. - If the law of excluded middle does not
apply in any system of‘logic the diagrams of.Euler9 Venn, Marquand,
Macfarlane, etc. are useless, If, then, we are given the proposition
A1l unicorns are white' there must be either unicorns or things which
are not unicorns. For Venn particular propositions have the same
implications that they did for Euler. This is, perhaps why Venn tends '
to shun particular propositioné and the problems they present.

Another complication is added to this problem by the view of

Lewls Carrolla'?J For Carrocll the A proposition implies the existence

724160 I 2 (o).

311 2 (9).
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of its subject. This view is in direct opposition to both Aristotelian
logic and Boolean algebra. If we accept Carroli, Aristotelians are
mistaken with even such a simple argument as Barbara: As well as "all
A are B and all B are C . all A are C" we are able to write "all A are
B and all B are C ., some A are C". This would put us in the position
of affirming the existence of the subject of every proposition except
the universal negative and thus ofnaffirming the existence of some par-
ticular thing in every argument.,

The one thing which is common to all of these views is the fact
that gomething must exist. So far as Euler, Jevons, Venn and Carroll
are concerned if nothing exists we are caught in a contradiction. For
example ((AvB).(~A),(~B)) does not give the conclusion "there is nothing"
but rather "there is a contradiction in the premises". At first this may
not be apparent from the diagrams: given ((AvB).(~A).(~B)) we ought to
be able to shade out first (~A.~B) then (A.~B).(A.B) and finally (~A.B).
This gives us a diagram with no contents. But it is not so gimple. A
diagram shaded out is precisely equivalent, according to Peirce, to no
diagram at alle. This diagram, a blank page, represents Peirce's absurd
universe and is read "nothing exists'". But all absurd universes are

74

equivalent; thus the introduction of terms is impossible. This means
that a diagram consisting of compartments completely shaded out cannot
represent the absurd universe, but it cannot represent anything else.
This leads to the inevitable conclusion that such a diagram does, in

fact, mean that there is a contradiction in the premises and that either

a correction of the premises is in order or we must erase the entire

71 4 (4) and IT 2 (a) and (c).
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diagram. Thus we must say that something exists whenever we have at
least one premise and no contradictions.

The disagreements among the various logicians discussed above
are as to what exists and we have already mentioned the various alterna-
tives suggested by them.

Logic applies, presumably, to all language, not just to language
about the real world of existent things whatever that may be. But as we
have said, for logiciamns using diagrams, something exists the moment a
proposition is produced. All of this discussion of existence in logic
serves the purpose of showing that those logicians who rely on diagrams
seem to have a different meaning for the word "existence' than that which
we normally use. For these logicians existence represents a certain
logical state of affairs and not necessarily a fact of experience.

All of this presupposes the validity of the logic diagram, and
even more specifically the geometric diagram, as an instrument for re-
presenting the propositions of logic. The position is not universally
accepted but it is incumbent on its critics to shoﬁ either the invalidity
of the diagrams in logic or the invalidity of logic as an abstraction
from language. Peirce believed, as we have shown, that neither of these
could be demonstrated and that language was actually diagrammatic.75
If he was correct I can see no conclusion other than that above dis-~
tinguishing two distinct uses of the word "exist": one referring to

logical "existence", one to factual existence.

5. Conclusion

There are many other problems in the field of the logic diagram:

75111 1 (a).
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the relationship of geometric, linear and network diagrams topologically,
the relationship of diagrams to contemporary logic, and especially the
relationship between diagrams, logic and language. Although these
questions are beyond the scope of this paper it is hoped that their
significance was demonstrated.

It has been the author's hope at least to raise the issues
surrounding the logic diagram and thus to open up a fascinating and
much neglected field for the reader. It has, further, been his hope
that in the logic diagram the reader will discover a powerful tool for
manipulating ideas and discovering inconsistencies in arguments., These
are, however, lofty aims and the writer will be satisfied if some future
researcher finds it useful to have all of the various systems of logic

diagrams collected and described in one paper.
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Diagram I  Pre-Bulerian Diagrams

Cdﬂ(/us ,‘o;‘

Cano‘wwn

a), b) and ¢) Mediaeval diagrams of categorical syllogisms

d) Bruno's diagram containing a), b) and c) above and encircling them.



a)
o)
c)
da)
e)

f)

g)

Diagram I1  Buler's System -~ Basic Diagrams

a’ b)

A
B

All A is B
No A is B

Some A is By Some B is Aj; Some B is not A; Some A is not B
Some A is not B

All A is B; Some B is A; Some B is not A



Diagram III  Euler's System -~ Use of Diagrams

dl | - el T

po oy

B
a) All A is B b), ¢) and d) No A is B
No C is B Some C is B
..No A is C .. Some C is not A

e), f) and g) All A is B
No C is A
.".No conclusion



Diagram IV  Euler's System -~ The Use of the Asterisk

bl or

a

. '

or

gD

or 'F) o

b

L«
s

S
%

XY

O]

a) Some B is € b), ¢) and d) No A is B

Some B are C
e), f) and g) test of: ..No conclusion
Some A is B
No B is C

.".Some C are not A
Conc¢lusion is invalid in f)



Diagram V  Hamilton's Interpretation of Euler's Basic Terms

a) All B is A b) No A is B

¢) Some A is B d) Some A is not B



Diagram VI  Hamilton's Representation of Particular Propositions
Using Euler's Diagrams

a), b), ¢), d), e) Some S are M f) Some S are not M
g), h) Some M are P " i), k), 1), n), o) Some M are §

j) Some M are not P m) Some P are M



a)

c)

Diagram VII Hamilton's Extension of Euler's Diagrams to Sorites

All A is the same as B
All B is the same as C
A1l C is the same as D
All D is the same as B
S ALL A is the same as E |

E is the same as D
D is the same as C
C is the same as B
B is the same as A
No A is P

., .No B is P

b)

All E is D
A1l D is C
All C is B
All B is A
VA1l E is A



Diagram VIII Hamilton's Extension of Euler's Diagrams
to Include the Relations of Concepts

a)

-
'
a) Exclusion b) Colxtension
¢) Subordination - d) CoBrdination

e) Intersection, or partial cofnclusion and partial co¥xclusion



Diagram IX Hamilton's Extension of Euler's Diagrams
to Include the Quantification of the Predicate

a)
) d)
a) All C is allT b) All C is some A
‘ Some A is all C
¢) Any C is not any D d) Some C is some B

Any C is not Some B
Some B is not any C
Some C is not some B

[y



Diagram X Jevons' Improvement of Buler's Diagrams
for the I and O Propositions

a) Some A are not B (BEuler) b) Some A are not B (Jevons)

¢) Some A are B (Buler) " d) e) Some A are B (Jevons)



Diagram XI  Venn's Restatement of Euler's Basic Diagrams

a) : b)
||||||||||| |

a) All A is all B b) All A is some B

é¢) Some A is all B d) Some A is some B

e) Any A is not any B



c)

a)

b)

¢)

d)

Diagram XII  Carroll's Interpretation of Euler's Basic Diagrams

b)

All x are y; No x are not-~y; Some x are y; Some y are not-x;
Some not-y are not-x; No not-~y are x; Some y are x; Some not-x
are y; Some not-x are not-y

All y are x3; No y are not-xj; Some y are xj; Some x are not-y;
Some not-x are not-y; No not-x are y; Some x are y; Some not-y
are x; Some not-y are not-x

All x are not-y; No x are y; Some x are not;y; Some y are not=x;
Some not-x are not-y; No y are x; All Y are not-x; Some not-y
are x; Some not-y are not-x

Some x are y; Some x are not-y; Some not-x are y; Some not-x
are not~y; Some y are x; Some not-y are x; Some y are not-x;
Some not-y are not-x



a)
c)
e)

g)

Diagram XIII
S

Peirce's Interpretation of Euler's System

Entire ignorance
No S is P
Any S is P

There is no S

b)
)
" f)

h)

b

Any P is S
There is no P
S and P are identical

There is neither S nor P



Diagram XIV  Lewis' Restatement of Euler's Basic Diagrams

a) All ais b b) No a is b

c) Some a is b .d) Some a is not b



Diagram XV  Euler's System - Inadequacies

o0
d) ' I e)

Q)@ -

D
b A l
&

a) Some A is C c) to i) Some A is B
. ‘ S Some B is not C
b) Some C is A ."No conclusion




Diagram XVI Maass' Basic Diagrams

a) a . ‘ b) a=b=c
¢) a includes K but may also d) & includes A but may only
include y : include /q‘

e) na represents not a



Diagram XVII Propositions in Maass' System

¢)

Aq

[P N e L R T ey A T

. o it o e sk e i i o a0 o

a) All a is ¥ ‘ b) Noais b
¢) Some a ie b d) Some a is not ¥

e) a is subsumed under b



Diagram XVIII Maass' Diagrams in Use

b b
a) & is subsumed under ¢ B) Noais b
b is subsumed under ¢ No b is ¢

c) Same as W above



Diagram XIX

a) ARG
)] —ppe—1 )

.———-—-——A-be—-
Abe
aBC
aBc
abC
abe
c) ABC
: ABc—
L [:::jZE: (2)
aBC
—aBe——
abC
abe
a) A=Ab (1)
C=aC (2)
.. C=BC{bC
¢) A=AB (1)
B=BC (2)

..ABC exists

Jevons' Method of Verification

b)

b)

A=Ab (1)
B=Bc (2)
B=AB (3)
-.B does not exist
.".the premises are

(2)

contradictory












y i b)  yz=0

X Xy :
0 X o X2=0

x an ) x[mj
sny xy

wigyz wxyz=0
o X ) e












a)

o)

Diagram XXVII  Peirce's Modification of Venn's Diagrams -
. Non-existential Propositions »

I

All M are P b) No M are P
All S are M - All S are M
All M are P d) No M are P

All ~S are M , All ~S are M



a)
b)
c)
d)
e)

f)

Diagram XXVIII Peirce's Modificatione of Venn's Diagrams -
Existential Propositions

Some S is not P

Some S is P

There is s&mething besides S and P

No S is not P (the precise denial of a)
No S is P (the precise denial of b)

There is nothing besides S and P (the precise denial of c¢)



a)

c)

e)

g)

Diagram XXIX . Peirce's Modification of Venn's Diagrams
-~ Rules of Operation

a S J4

and b) "All S }s P and Some P is S" can be tfansformed to "Either All
S is P or Some S is P and Some S is P or All S is P"

and d) "Either Some SP is M or All M is SvP_and Some MP is S or All P
is MvS" is transformable into "Either Some SP is M or All P is MvS"

and f) "Either All S is PvM or Some PM is 5, and Some SM is P and All
M is SvP" is transformable into '"Some S is P!

and h) "Either All S is P or Some P is S and either No S is P_or No
S is P" is transformable into "MSP=0 or MSP=0; and 11$/=0 or MSP=03
and MSP=0 or MSP—O and MSP=0 or MSP—O' snd MSP—O or Some SM is P or

Some SM is P; and MSP-O, or Some SM is P or Some SM is P"



Diagram XXX  Peirce's Modification of Venn's Diagrams - Use

a) to m) Peirce's proof that a conclusion may be reached with two
particular premises.



a)

b)

Diagram XXXI  Peirce's Modification of Venn's Diagrams -
Disjunction of Conjunctiomns

Either some A is B while everything is either A or B, or else all

A is B while some B is not A,

Same as a) with the inclusion of a "Universe of Hypothesis" in

. the diagram.



Diagram XXXII Peirce's Modification of Venn's Diagrams -
Minimal Multitudes

a) There are at least four A's.

b) There are not as many as four A'x.



¢)

a)
b)
c)
a)

e).

Diagram XXXIII Lewis' Reiteration of Venn's Diagrams

5

-

Ha

One term
Two terms
Three terms
Four terms

Five terms

™~




Diagram XXXIV  Lewis' Method of Diagramming Particular Propositions

a) abf0

b) abf0



Diagram XXXV  Gardner's Application of Venn's Circles to Disjunction

a) All X are either Y or 2 (inclusive 'or'")

b) All X are either Y or Z (exclusive "or")



Diagram XXXVI  Gardner's Adaption of Venn's Diagrams
to Numerical Syllogisms

There are at least ten A's of which four are B's
Eight A's are C's '
. At least two B's are C's






Diagram XXXVIII Gardner's Adaptation of Venn's Circles
to the Propositional Calculus II

a) AFB b) .AE-"B

c) AIB | a) AB
e) A=B ' - f f) A$B

€) AeB S x) AlB












Diagram XLII

Diagram Representing Functions

f(A)=B [where A=(a,b,c,d) ang B=(x,y,2)]



Diagram XLIII Marquand's Basic Diagrems

‘4) y ,

2) One term diagram

b) Two term diagram

] .
c) Four term diagram



Dingram XLIV  Marquand's Example

1A LT

= Lo

1 T
=1 T ‘lDI y T 1D ) D r 4 10,——-—1 T

) 1B

o
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7/

7
-
%l%z%/%
3
L{-

%%:%

NN
N\

NN
&
\\ \\W

.

o
.

o

it

7/,/%;
7 &

7

@“@QQ\

0
)
o

n

N &\\\\\

&®®§

%/4%%:
////////4% '

ELxample of Marquand's diagrams in use



Diagram XLV Macfarlane's Logical Spectrum

a)
v | s
b
-Q:QQ:Q
S| S |9 | ©
¢
YO SR VI VI B R R A
TS| (N[N
A \ L\ g S N 3 \g
~ ~ -~ - -~ -~ “ -
~ | N S SN (||| XINISNIS|>
v N} v L IR IO T R Y 9 9 A\ BN A R I RN
R RN N N N R RS RN S RS RS
S S S |06 9 N S S 5 3 \ S s |~ S ¥
b)| Two terms

a) One term

¢) Three terms

a)

Four terms




Dingram XLVI

7

e

il #1e

F g
elelole e

'

!
e
£lf

/|

e
fif

f

(lelelflerdlerelee

Macfarlana's Use of Diagrem:

d

NN

U ax+by=c¢
U dx ~ey = f

solving for x and y




Diagram XLVII  Carroll's Game of Logic

Diagrams and counters for the game of logic



Diagram XLVIII Carroll's Dimgrams in Use
q)

0
0 0
0
0
b)
0 0
I
]
c)
.0 0
o |1
]
d)
0 0
] | '
a) xm ym‘olr Xy, 3 b) xmo'r' yo, I® x'yy

c) xmo’f‘ymo’f' ml/f x'y'y a) xm'o'T' m'y'o’T'xml'f‘ m'lh’ x'y,



Diagram XLIX  Carroll's Basic Dimgrams

e) -

).

NN
NANANAN

NN
NAAHN

)

.3

A

L.l_l

E

Mm
|

rh
Lf
h

—f |-

i

-
'—E%}J;
—
L.I.J
H7
LI.J

u:

a) Four terms
¢) 8ix terms

e) Eight terms

b) Five terms

d) Seven terms -




Diagram L  Newlin's Primary Square Subdivided
for Four and Seven Classes

a - b

Qd
Qo

b)

/ ANZANVANNY

NS N

a) Four class diagram

e

b) Six class diagram subdivided at abcd to allow for a seventh class



Diapram TI  Newlin's Extended Diagram with its Key

) ab a’b , E’b q ;~

\‘\\ '

A
BN

b) o o stéd

3 ha N
qh
17 Y
‘ .-g—l' \ ‘ v

a) - Newlin diagram extended to eight classes at abcd and to ten classes
at abed

b) Key for secondary squares of ten term diagram



Diagram LII  Hocking's Theory of Graphs

—

.- ~

a) Three class diagram b) TFour class diagram

c) to e) Four class diagram modified to remove redundancies



Diagram LIII  Hocking's Proof of the Infinite Extensibility
of the Logic Diagram

a) Portion of graph
b) Same portion of graph after introduction of another term

¢) Proof of infinite extensibility of the logic diagram



Diagram LIV

a
a
a
¢)
b c
q d
Gbcd
e)

a) One term
¢) TFour terms

e) B8ix terms

Hocking's Extended Diagrams

b

19

q b
d)
f)

b) Two terms
d) TFive terms

f) Seven terms




Diagram‘Lv Hocking's Method of Immediate Inference

a)
b) : c)
s
B
i
A
@
5 !
Si
3
i
%
\H
i
d) N e)
' 1
Lo b
)
,]‘
o\'
AX
i-.‘,
y" »

a) Basic diagram for immediate inference

b) Axis of Conversion ¢) PS (converse of ©P)

d) Axis of Obversion e) Sﬁ-(obverse o1 SP)



b)

c)

d)

Diagrom LVI

The
The
The

The

A proposition
E proposition
I proposition

0 proposition

(A1l S is P)
(No S is P)
(Some $ is P) .

(Some S is not P)

Mocking's System of Immediste Inference in Use

d)




Lewis' Diagrams for Immediate Inferences

v
N
v
by
Y
0

Diagram LVII

a) Basic diagram for immediate inferences

b) sP=0,s/O,P;{0 'c)s-rsg,s/o,p/(o



//4

7

%




Dia;-grafn LIX Example of Leibniz's System

A @ C

R —
~-

-

A
Va - - -
L7 v /!
Seo _"' C /
S . - 0
\ ~—-- ¢
\ B !
. ’
\\“.
N
. \.\

If A=B
then A®C=B@C



c)

e)A

a)
c)
e)

Diagram LX  Lambert's Linear Notation

»,

I¥

. — 'HA :

\1L A is B

n

tome (not all) A is B

some (all or some) A is B

b) No A is B

d) Some (not all) A is not B

f) Some (2ll or some) A is not B



Diagram LXI

ﬂ)c

Hamilton's Improved Linear Notation

Q%o

4)

e

£

a) and b) Basic diagrams (actually not describable in logical symbolism)

¢) Exclusion
d) ColHxtension
e) Subordination

f) CoBrdination

g) Intersection or partial cofnclusion and partial codxclusion

I~



LI

B U Qo

TEHY QD

=

All B is
All C is
Al1 D is
All E is
All F is

BHUOQWE»

A1l F is A



Diagram LXTII

Hamilton's Use of Linear Diagrams

a) P
,1
s
5 5
M
p B
¢)
$
M
p 5
d) p
M M
P $
a) ALl M are P b) A1l M are S
A1l S are M All P are M
"¢) left side right side
A1l M are S All M are P
All P are M All S are M
da) left side right side
No S are M No P are M
All P are M All S are M



Diagram LXIV Keynes' Improvement on Lambert's Linear System

4) 5 | s/
!
:'.
P ! i
' 1§
i ! 7
? | x
p ’ P’
P ; E L
’ ) T
4 ' L P .7
7’ | 7
i
2 s 5!
/4 P A e e o e
. s .f/
£ P! r -
$ L s’
I P J ‘ e e e )
s L s’
O 7’ P e

a) Diagram of all possible relations of S and P

b) Diagrams for the four Aristotelian propositibns



Diapram LXV  Traditional Squares of Opposition

%)

Contrarie vel /| hcongrvae
Universal af‘f’frm&ffl/c Universal ﬁe]q/'/'(/& -
: ‘ <
.a” leqsvre IS joﬂ‘f o leas vre I's eod | &
he p J
L7 - [7 N
; e o+ =
Y X X -+
N O M) L)
v _‘.‘, ~<
X >
~ ov "‘? o
¥ \k @
\‘2 50Me ﬂ‘,e'} vre I,’ ]d‘d “ Sone /’/e‘f?’d 1's }'ify"ﬂd'.
W .
Par Freular a Flirmelive Partrevie  pegetrve
Svbconfrarvie el

;_«é/lqre;

(Al S is P)

A(.._.—cohf‘raries—————a{%( Sff/D).
T\ L./ s

|
L/ N\
L

€-""-SVb caufral‘les-—-——————vo (Sam, SI} nof'/p)

(Some SisP)

a) After Apuleius

b) Traditional square of opposition

L



2 4/7

Diagram LXVI  Modern Squares of Opposition

At [Cagrt sre X

E.' 5/:0 (X}¢X contoarrres 1 & Fheve /3 ()()~¢)(

[:Sp#0 L osER0

(3,,} ¢l Svbheontravies i1 Phere ;’t(31)4,¢’l

at (east eone x

?/T/Krﬂ/&
A

&
Arg <

a) Boolean square of opposition

b) Square of opposition with quantifiers

c)  Square of opposition for propositionsl calculus



Diagram LXVII  The Pons Assinorum

(A117ish) 4 - FE (AlSist
4
(/\/4/’!'}”),40 ' HE C/\/; 5,-;/1) :

a) After Albert the Great b) After Peter Tarteret -



Diagram LXVIII  The Ars Magna

P*"f"”' Bonirgs
R 2N
00',\\ 4,’,_&
. A 8 0
X ) \
S l R N Ty
& %
‘ '0 i1 AN
Ky > .
~ P2 o
A <
d - %
: -~
tg 2 =l 177 N
A
: \s ~ n| <
<, -~
- -
° N
-4 . LY,
A 2 RS
. 2 : ~
\? NV
ko
-"_, ,y \A ‘wo
> .
"Y:d ] l\“‘
l Y, )
! k]
b”"’/ﬂ 5?*‘| YLT))

After Lull's circle for discovefing new truths about the attributes of God



Dingram LXIX  Frege's'Basic Diagrams

b)

7 v ¥

d) : A
| A becemes I ] A

e)
A becfmc; | ‘ A

£)

i A becomes ' I

2 A becomes

l A beéamc} . T

P ?.D >

| A becomes » T

J) T A becomc:l ' I A

A ‘b'ecomes ‘ A

a) The thought¥ . ‘ b) ¥

¢) The thought ~F d) to g) Amalgamation of horizontals

h) to k) Inverse of d) to g)



Diagram LXX. Frege's Binary Relations

a )
) r :
A .
c) I T'* ‘ a’)
A a
¢ r _I f)
i ,
9) @
' A
A
A A T B AT
¢) ~(AT) A Av7T
e) o> A | £) A =(4-0)

g) (A=2A)»®



Diagram LXXI TFrege's Expression of Generality

4 ——d—— s
'1’) » C/am CDC’B
9 I @ (pa
A T P
é) XJ, QDq
£) 4 ' QPa
~aq
a) () (§e) | b) (o) ~(@ )
¢) ~(x) (dx) a) (I«) (p«)

e) (Z)a(«) (¢ ) £) (¢) ([E=<I=[de])



Diagram LXXII  Frege's Inte'rchangeability and Contraposition

a)” — —® Y ®
L___/\ VAN
J d) S
| 7 e A
A L7
X X,
T A
) | £
| . — T I : T
e A A

e
>

a) and b) Interchangeability ¢) to £) Contraposition

8) and b) (A =128]) = (A=A =2@]) .

c) (A=T) = (o) ) (T = (AT

e) (AT = ('vA) £) LA & ([7T.AD



-

Diagram LXXIII  Frege's First Method of Inference

G.‘n{«;; 4 .
| r g
—_—A " ()
(a) 'r ' r,
LA
(R)::
T_'
(1)
| A
(=)

Given: A = T and A

a)A:D—}—" v) /A
. ADT“
A | T

ST

v3)



Diagram LXXIV  Frege's Second Method of Inference

; A
®  (13)
a)
| T
A
(A - -
; T
®
b
) A
@
2
! T
®

Given: /N =77 and @DA

a) A>F b) @
(O A>T
Seor "® a1



Diagram LXXV  Frege's Third Method of Inference

—_
>

ﬁ A
I
A
pa
)
i A — A
—A (= o A ()
H A
— A
A ——
| A
a) & o(~ITa[A>A1) b)

As(= o[~@>A1)
U T o(A a[~004 1)

4

S ar
>uu
>>



a)
c)
e)

e)

i)

Diagram LXXVI Application of Frege's

Diagrams to Switching Circuits

b
Aﬂ) ' A) <)
AB At A— ) A
| AND 5 , O
ef 4B _4 3 £ Frege
0{) Veylh 4, b Mq»’uu(o 0 ' '
v : o1 ' = “
’I l %V/ T - g
1 4
j) 5;41 faA[nJ ci;f(,uffs
Ab ;—A |
. L
h)
Ab — + ' A
' 1, = —
At — 4 ‘ i i ' A
¢ = :
s L
A = . A
A4 = -
AND circuit b) “OR circuit
Inverter d) A:ﬁ in Venn
A.B in Marquand f)’ A.B'in Frege

A.B in switching circuits h)

OR circuit similarly represented j)

AND circuit represented in
adapted Frege diagrams

Inversion similarly represcnted



Din;ram LXXVIT  Peirce's First Diagrammatic System

q) b — 'L) L

c) L 0”{ >
. ' L

) L
| { >
a) . xZfy bxylxy>0 : b) Tx Lxx>0
¢) TTx Lxx>O d) TTxTTy (Lxy¥bxy)>0

e) TylTx (LxyYbxy)>0 | f) TTx=y (Lxy bxy) O



a)
c)
e)
g)

i)

Dingram LXXVIII Peirce's Entitative Graphs

.. B c)
R R .
/D

Ga—»  H TN ——#

9 o o K (P)
| - G

John gives John to John b) Chemical graph of ammonia
P ‘ | d) PorQ

not P . £f) If P then Q

P and Q ' p) Everything that is P is Q

Something is P and not Q



Diagram LXXIX The Alpha Part of Existential Graphs

PG

€
a) P b) P and Q
c) not P d) If P then ¢

e) The empty cut



Diagram LXXX  The Beta Part of Existential Graphs

a) b | ' " 'lc)

d o | f)

9) ) | L}

a) and b) Something exists c) Something is both P and

d) Something is P, Q and R e) Nothing is P

f) Something is not P g) P.aga Q are not the same
individual

h) Something is P and ¢ and R i) Something is P and R and something

and S is {§ and S



a)

a)

c)
e)

g)

4)

. Diagram LXXXI The Gamma Part of Existential Graphs
- Metagraphs '

A VR

e) £)

KeDP

X £ y X

xlis the sheet of assertion b) x is a graph precisely express-
: ing "'pM

x is scribed on y d) x is the area of y

x is a cut £) P

A graph precisely expressing h) Not P

"P'* is scribed on the sheet

of assertion

4 graph precisely expressing Hp i scribed on the area of a cut
which is itself scribed on the sheet of assertion



Y]

Diagram LXXXII The Gamma Part of Existential Graphs
~ Abstraction ‘
l ' ' .
) /, b)
\Z

i$ C}/rnno

s Roxanne

1§ Rox_a,me\ is Cyr‘ﬂn'a'

S

a) y is in relation x to z b) Cyréno loves Roxanhe but
Roxanne does not love Cyrano

¢) Same as b) d) Same as b) und ¢)



Diagram LXXXIII  The Gamma Part of Existential Graphs
~ Modality

b)

a) It is possible that P is false b) P is necessarily true
c) It is possible that P is true d) P is necessarily false

e) It is possible that P is necessary



Diagram LXXXIV  Robert's Reinterpretation of the Beta Part
of Existential Graphs

b)

c) | | 4}

a) Fx=0x b) (¥x) (Fx:va)’

c)A a) ~(¥x)~(Ax)



Diagram LXXXV ~ Gardner's Basic Diagrams

a)

b)

TT
TF
Fr

FF

a) TFive term diagram

b) Diagram representing two term truth table



a)
a)
)

3)

Diagram LXXXVI

9 A b) 5
X A
. 8
el A
A B
)
A B
k)
A
A~B
LB
ADB

Gardner's Diagrams of Basic Propositions
£
1

c)

9

b)
e)
h)

k)

A

“‘A."B

AvB

BoA

. .4
" .
» ;
9)

. A '3
J

c) A.*B
f) A=B

i) AIB



a)

c)

Dispgram LXXXVIT
with Gardner's Network
A .

A 8

c

AnB

BEC

AvC

B

Initial diagram

AHC

BIC
AvB

Solution of Simple Problems

5 [

4

b) Same as a) depicting solution



Diagram LXXXVIII Gardner's Diagrams for Compound Statements
Using Horizontal Tyuth-value Lines

a)

o -

U

b = —-— e -

v o o -

b)

T e e e hedade

a) (AvB)>(CvD) : b) Av(B.'C)



Diagram LXXXIX Gardner's Diagrams for Compound Statements
Using Chains

A - B c
? | 1
A g c
b)
A B ¢
c)
&
Tes!
&

5) du~B.D b)  ASREC ¢) A>(B.C)



a)

c)

Diagram XC

A .8

(A, ~B)y(~A.~B)

Method of extensibility

Gardner's Method of Minimizing
and Demonstration of Extensibility

)

A 8

b) ~B [i.e. a) reduced]



Diagram XCI  Gardner's Solution of Complex Problems

.................... = o o

oo™ .

T L L T R

............. Lmmm e
(V)
FaN
K K
,
N
N\

a) (Ao1)>(BoA)

b) Proof that a) is not a valid theorem



Diagaam XCiI Gardner'ab Use of Networks gor Three-valusd Iﬁaogic

Yy 1 F T 7 F o2 £ roo?
4) ’ 4
AV VD204V, RV VaAVAYIYA
2P aVavd AV AVALY/
SV aVAVES AV /\/\NUV\
v avavalavidy
| Yavavaviavl
A s
C)T 7 F T 7 F

a) A.'B in Lukasiewicz, Post and Rosser
b) A.B in Bochvar

c) ASB in Lukasiewicz and Tarski




Diagram XCIII  Further Expansions of Gardner's System

A : b

O 1O
O

O
1O 1O

1O

b)

a) (A=B)v(B=C) using counters b) A>B using vectors



Diagram XCIV Hamilton's Schemé of the Two Quantities

) .
n
= P >
I\\'
< ———{
= { 72 p° |
C A ‘,aé’
<l
— , .
N —
N
i < Ly r———agl
< o = O 2!
(oY
< n, — O D
v N
— N

Q|- N 3w e
— ~ = -
m > > . - V- - -

Table of the scheme of the two quantities

Keall'f)’

P

G')'a uud



Diagram XCV  Condensed View of Hamilton's Notation

A
A
Y wH
£ E
2f %,
v ’ f
* —
< =
@
TP LTy yrey—
Frovred S . e\
T o ey \L/
U n 'F rglre 6{ 5
O rder 17 '('
Dep th

Brad+k
‘ =

et
Y

Condensation of Hamilton's Scheme of Notation




Diagram XCVI Hamilton's Scheme of Notation .
' '« the Figured Syllogism '
Table of Sy/’oj,',.-f'/'z Moad‘

A‘F-F/'rpuf']ya. Moods Negative Meods

Frq.I Fig. I Frg IO Frs.L .
1 C:J;M;—-;r ! - C:—I-:":”.'-——.f'q .
A T —— C:--.:m:'—-.'r C,‘ — M——.F
T U—— | , Ci—ri M i [}
o By ol ey Ml /j ;
e e [] e ... ) e 2 ] et
l-W"" ) 2 Y — .
[um—— " o C =i [~

C,—M—1  C—M=—

c’ — — I ——————— C"‘-:M) ——;}_‘4
( v "ol Con—=r =me=r "—‘*—'-}
e ;

.I:‘; C,-—:ﬂ)—&//
.- M.—/"a
. c R M:_— r :__-———-——— C)-+-) i~
v J-—-—.—' ’ C :”: ;[_ C ) mns M e ’ v
) :M :f C,—)ﬂ-“)/— b

i o C: v M, Cimme o [ '
e HYE ::>%<:: , ’//K<:: Coitli =Y
vii C'—-:M:-—-.‘/ C)._._.’M:.__,.-/" T vii
)

B N .
o G T Eom—T oy e,
’ I Gl M [

N -_) : ) M ..' 5
C—fi— C= M=/

. . , 'c:_+.:ﬂ)__/"'4
X ?-—[\Lr C:—:M’"“')/— Cim—ill,~=(" ———,_-‘__ X
5 ) Cime ,—}.,/ ,
> L= >
o C; — /\7"——.; ? :- J il o )“,',
Xl ) C)____ —/— C)’— ~__/
: = o
-——7—-—-

Hamilton's Final System




Diagram XCVII

de Morgan's Chart of the Relationships of Propositions

) )(
» (€

(-
X

Ag F21v3g 4ok pomdidy 1t 7/

D,
)
)1¢
(-C

hb\va prr’

)
()

(¢
)¢
)
))

‘:Qtu{ \ “AayptaN

)«

(> )(
X Aw
¢C ))

> (D
« »
)y«
(-) )+(

yiim St w.;.aaUE\ 5/

$42ipvAivo vl

(C
)
()
D,

5 PP Lo

> ()
) (
(¢ J)
() 2«

Aq
V] avwed it v\ M~

() C
¢ )
) CC
o O
sa iy LY

)(
)
0

))

)-(
«

A chart of the relationships holding among propositions
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Diagram IC

)
’\“
o
)
~
.

The logical zodiac

)

)

P
2 (

de Morgan's Logical Zodiac

<



Chart of Significant Events in the History
of the Logic Diagram Since 1675

Y]

90

14

10

7]

Xo

Yo

30

Lo

/615

Diagram C
Y
R2

1750

1775

{geo

! Bzs

! gso

1878

/f00

/78

/750



Diagram CI

Chart of Significant Events in the History
of the Logic Diagram Classed as of Low Value 1859-1887

3¢
37
3¢
35
¢
33
31
31
30
29
1
AR N
24
25
24
23
2 )

®

1)

50

B

1951
/géo
(eé1

X422

Key

1.. De Morgan
2., Hamilton

%. Jevons 1870
L., Jevons 1870
Y. leirce 1882

-

6. Curroll 1885

(€63
1644

1265

18¢¢

1651

714
186 %

/1970

1871

181+

lr73

JETY
/815

1974

817
If 444

197%

1586

1987
/891

/575

188

1985
/%%



Diagram CIT

Chart of Significant Events in the History

of the Logic Diagram Classed as of High Value 1877-1919

?
R

e

t®

Ly

fo

bl
31!
Ll
214/
Sl41
Ayl
£/bf
216/
e
9141
doyl
8041
2ob!
w6l
S$o0b 1
hosl
041

104/
iob)
0041
b3
344!
(b3
254/
548/
hi 8
s68!
1431
1bh
0431
¥

Kéy
l.. Frege

2.. Marquand
3., Mrcfarlane

A3s)
L88)
1481

L.

5-
6.

7

8..
9..

10.

Venn 1894
Carroll 1895
Feirce 1897
Yeirce 1900
Newlin
Hocking
Lewis

@
™

LY

s 831
w38/
ISEN
245/
{48/
9481
$13)
s141

60

£
rL
3
(45

¢/
fo

79

7Y
77
76
75

14
13|

12

!

70
£
of

[7¥7}



APPENDIX II

INDEX*

Alsted, J.H., 5

Apulejus, 103

Baker, C.C.T., 86

Barr, Stephen, 162
Berkeley, Edmund C., 165-6

Bittle, Celestine N., 7, 159

Bochefiski, JeMs, 96~7,7103-5, ,

159-60
Bochvar, 139

Boole, George, 1, 8, 10-11, 13,
16-7, 49, 70, 72, 74y 173=5

Bruno, Giordano, 4

Byrne, Donn, 164

Carroll, Lewis (see also C.L.
Dodgson and S.G. Hodgson), 2,
:Uh l?v 3]4 35"'79 5‘-&"5' 73‘81’
83, 88, 139, 177-8

Church, Alonzo, 5

Clifford, James J., 114-5, 153

Copi, Irving, 20, 103-4, 111,
131, 158=-9

De Morgan, Augustus, 8, 10, 12,
1y, 141, 147-50, 173=5

Dessau, the Princess d'Anhalt, 6

Dodgson,. C.L. (see also Lewis Carroll
and S.G. Hodgson), 17

Eu.ler’ Leonard’ 2-3' 5"9’ 11"13' 22=
L1, 43, 45, 50, 59, 81, 98, 100,
141, 159, 161, 173, 176-8

Frederick II of Prussia, 6

Frege, Gottlob, 12, 14, 15, 106-13

Gardner, Martin, 1, 4, 5, 11-3, 18-9,
33, 39, 45, 58, 60-3, 68, 72-3, 79,

105, 106, 11k, 126-7, 130-40, 155=
'6, 158, 160, 172

' Gonseth, Fa" 19’ 95-6’ 159-60

Haggatt, Peter, 163

Hamilton, Sir William, 1, 4 S, 8-1k,
27-33, 35, Lhy 98-101, 1L41-7, 150,
173=5

Hocking, W.E., 16, 18, 20, 59, 8393,
95, 155-6, 169-71 %

Hodgson, S.G. (see also Lewis Carroll
and C.L. Dodgson), 17

. Jevons, W.S., 7-8, 11-2, 1k, 32, 35,

45-6, 176-8
Kempe, A.B., 115
Keynes, J.N., 20, 98, 101-2

Lambert, Joﬁo; 2, 3 5-7, 9, 12, 98~
101, 141

*This index of persons mentioned in the text or footnotes

excludegs editors and translators.

28k



Lange, Johann Christian, 5

Leibniz, G.W., 5, 6, 97-8

Lewin, Kurt, 1634

Lewis, CoI., 1, 5, 8, 10, 17-20,
39, 59-60, 75, 78-9, 92, 93~
5y 97

Lindreu, Henry Clay, 164

Lipschutz, Seymour, 65, 162

Lukasiewicz, 104, 139

Lull, Raymon, 4-6, 13, 105-6,
126

Lytel, Allan, 112-3, 164
]MG.&SSQ J.G. E.p 7"8’ 109 41-5

Macfarlane, Alexander, 16, 18,
53o 69‘730 799 839 177

Mar'quand. Allan’ 2, 12g 1‘{—-18’
52‘4, 66‘81 710 73’ 791 81’
83, 88, 96, 112, 139, 164,
177

t .
Mitchell, O.H., 15, 115

NOWlin, w‘Jo’ 17, 59, 79| 80-
3 88

Ore, Oystein, 162

Peirce, C.s.’ 1’ 12' 151 18’ 209
35, 37-9, 55-9, 61, 63, 113-
30, 139, 152-8, 161, 167—8
171-2, 178-9

Petrinovich, Lewis, 164

Philster, Montgomery, Jr., ll2-
2, 164 '

Post, 139

Reimarus, H., 6

285

RObertsg D..Do‘g l' 18' 37’ 113"30, 1579
160, 171

Rosser, Jo Barkle&, 138-9

Russell, Bertrand, 19, 106

Schroeder, E:, 13

Strum, JohannvChristoph, 5

Sylvester, J.J., 115

Tarski, 139

Thomson, William, 32
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