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ABSTRACT
In this thesié we extlnd Sabidussi's theoréms on

the automorphism g;oup of the wreath product of gfaphs

to a special kind of relational systems. That is, we

define directed hypergraphs and their wreath product

and prove‘thegrems giving necessary. and sufficient con-

ditions for the group of the product to be the wreath

product of the groups of the components.

This also extends our own results on the groups

of the wreath products of directed graphs and hypergraphs.

.
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CHAPTER T
INTRODUCTION
4

One of the sources of graph theory is organic
chemistry. BBumérating all possible distinct isomers
of Fhe‘saturated hydrocarbons CnH2n+2 with a given
number n' oq/;arbon atoms led Cayley [u], [5] to re-
search on trees. In such a project (enumeration) an
important parg is played by the éutomorphisms of objects
undeg consideration. With Pdlya's theorem [lu]xthe role
of the automorphism group became crucial (the theorem
permits counting the number of equivalence classes in-
duced by a permutation group).‘ It comes as no surprise
that the reiétionship between grabhs and groups has often
been considered aé a problem of independent interést.
Two obvious‘questions have been considered, reconsidered
and ramified: giQen‘a graph, what is its automdrp ism
group?; given a group, 1s there a graﬁh which has it for
its group of automorphisms? .The second quéstion was
answaééd in the affirmative for finite groups (Frucht
(7], [8]) and it is even known that requiring the graphs

to satisfy some specified‘properties (connectivity,

chromatic number, degree of regularity) does not decrease
: S

R
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the number of them with automorphism groups isomorphic

to a given one - it is infinite (Sabidussi [171).

Finding the group of a given graph can prove difficult.

A useful technique is to reduce the éraph in question to
simpler ones about thch more information is available.

This thesis is a contribution to such an approach albeit .
in a more general setting and generalizing an approach

taken for graphs by' Sabidussi. Let us now establish a
working language by beginning with ; few defiﬁitions.

“

s

If V is a set we denote by card its ijrdinal-

(2) .

ity, by V the set of two-element subsets of V, by

P(V) 1its power set. A graph G = (V,E) consists of a

set V' of points (vertices) and a set E'CS V(2)

(2), we consider a subset A

of edges.
If, in place of a subset of V
of V2\{(x,x)|x ¢V} the result is a directed graph
(digraph); we Qill denote it by D = (V,A). A hypergraph
H = (V,F) is obtained similarly - the edges making up F
are non-empty subsets of V. It shopld be noted thaté our
graphs and digraphs are sometimes known as simple ({31]),
they can be infinite (unlike those in [12]) and hypergraphs

need not satisfy U e = V- (the way those in [2] do).
eel '

Let us. - in this paragraph - call a g-structure

any of the three graphs just defined. Let Sl = (Vl’El)

i

/
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and 82 = (V2,E2) be two g-structures of the same kind

(both graphs or di - or hyper - graphs). An isomorphism

of S with §

1 9 is a bijection a : Vl >V, such that

ale) e E2 if and only if e ¢ El; write S.= S, and define.

1 2
{a(x)}x ¢ e} for graphs and hypergraphs and

o(e)

a(k,y) = (a(x),W(y)) for digraphs. An automorphism of

a g-structure S 1is an isomorphism of it with itself.

.

It is an elemenQ?ry exercise to show that the set of all
A .
\ +
automorphisms of S forms a group under composition.

It is called the autogorphism group of S and denoted Y

by ®(S).’

<

As is often the case whenvdealing with structures
(especially finite ones) it is useful and interesting to
explore operations which permit constructing new

structures from old. Hanani's proof of the existence of
[ K .
Steiner triple systems is a good example of the useful-
, \

ness of this approach. Thus, s¢veral operations were

3

defined - the union, the join, (the product, the composi-

tion gf two, usually disjoint, gxaphs. And, naturally,
the question of finding the (autom fphism) group of the
result in terms of the groups of the components was posed
in each case.- for the: first three o ration§ the answers
were fairly easy (see, for example 512; 1657166]), the
fourth problem was seftled only at the secoﬁd attempt

({133, [15]),  Since this thesis is concerned” with

N



extenagons of this result, let ugi?pnsider the theorenm
. \ '
obtained by Sabidussi in [15]. .To allow us to do this

a few more definitions are needed.

¢

The neighbourhocod N(x) f a point x ¢ V in

' w“
a graph 6 x (V,BEY is the set {y{{x,y} ¢ E}. The closed.

/ .
neigh up&yﬂé of x is N(x) = {x fﬁ N(x). A graph

/
is said to be connected if for every non-trivial partition

\\\‘
of 'V ’}pfg XuvuyYy t e is an {x,y} ¢ E with x € X,

-

y € Y~ The complement G is the graph G = (V,E)

2
( 14

where E = {{x,y} eV {x,&} ¢ E}. Given two graphs

G, = (V,,E;) ,and G

1 (VZ’Ez) with Vyon V2 =g,

) T

by V =V, x.V, and

E= {e e V(Z)[n 1> or ‘card m,(e) = 1 and m,(e)e EQ}.A

he ith projection of e (on Vi)'
J The following defin}tion will be needed throughout

the thesis. .

Deﬁ&n&tion ’

Let OL and 13 be permutation gfoups on disjoini'
sets X'”apd‘ Y, respectively. The composition of (91
and I3 FC'OL around B, the wreath product of & by B ),
Gﬂﬁ] acts. on X x f and consists\of pairs &a,{ijXéX),

with . a € 0Ot, and each By €B. The. action is:defined By
.. » » L4
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k .

r(a,{BX}Xéx)(x,y) = (a(x),ﬁx(y)). \lg

_.Note th39 (a,{B }xeX L {B 1( )}XEX) 4 r

and (o, {B_}, ) (a' ,{B 3 = (au'>{8ax(x)ﬁ }

xeX xeX

e will say of two permutation groups 1Q1.and B on
x N . [ e °
(not'necessarily disjoint) sets X and Y respectively j]
- :

that they are identiXal, Ol =B, if there is anygso—

morphism h : O0t+ B »ahd a bijection g : X + Y such
that gla(x)) = h(a)(g(x))

In this work we always hQVe X-ég

and Ol cB(see Lemma 1, p.23). This allows us to treat iden-"

;tity of the two groups as their equality, although we still

write OT1:=12.
Theorem 1 N —
: ¢
If Gy -= (Vl’E1> S 82 = (V2,E2) are graphs

-

on disjoint vertex sets and if v, is finite

then OUG,[6,1) sm(elna(cs?)d if and only if

N (1) if there are’ u # v in G,  with
. N;F) = N(v) then G, is connected. o
(2) If there are u # v "in G, high
\ N(u) = N(v) then ﬁ; is connected:

4

It is not'difficult to see the necessity of the conditions;

the sufficiency requires ‘'some work. .
Althodgb in practice most graphs considered are .

finite it is interesting to see what happens when the



vertex sets are infinite. The best result so far is
. also due to Sabidussi [16]1 ("SC" means "Sabidussi Con-

dition", see also Chapter II, page 17).

— A
Theorem 2
If Gl 2 (Vl,El) and 62 = (V2,E2) are dis-
joint  graphs and if G2 satisfies «
g
- - 8Cq : card(N(x) n N(y)) < card V, for all x #y
) in V2
then O«Gl[Gzl) z OKGI)[OUGZ)] if and only if
(1) and (2) of Theorem 1 hold.
3 ! J . .
The importance of the SC 1lies in the fact that
L
it allows the proof of the éuffiaﬁéﬁcy.
s
/ One could, as Foldes did in 1975 ({6]), ask about

~\Emalogous theorems for digraphs, hypergraphs and, more
generally, relational systems. This requires three
(things (a sequence well-known in mathemétics).
(1)- Appropriate definitions that reduce to
thoseﬁglready in exisﬁagss/f?r graphs,
(2) éorfé;t conditions which become those of
Theorems 1 and 2,

(3) a proof o6f the necessity and the sufficiency

of these conditions (should.this be the case).

g

P
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,Let us consider our work of [98] and [10]. The

“terminology is that .of [11] and this thesis and is

slightly different from that of [9] and [10].

Digraphs
Let D = (V,A) be a directed graph-and wfite, J
for simplicity, xy instead of (x,y) epV 2 put
N ) =

v e V]ww € A} Nk {u} u N (W)

N7(u) = {v e V]vu ¢ A} N (u) = {u} v N (u)

N(u)

H

(NT (W) ,N"(u)) NCab =« (N7 (u),N"(u))

NWAX = (N7 (W)AX LN XWX .

\ B

Say that u and v are equivalent®f N«{u) = N(v) and

that they are strongly equivalent if N(u) = N(v). We

call D connected if for each non-trivial partition of

V into X u Y there is an xy ¢ A with x e X, y e Y

or x € Y, y e X. The complement D of D is the

digraph (V,A) with A = {uv ¢ Vz\{(x,i)lx e Vi|uv ¢ A}.
A Z-chain C in D is a subgraph induced by a

sét of vertices indexed by the integers such that

C= (v',A"), and V' = {vi e V[ie 2}, A' = {vyvildi< )

and N(vi)\V' = N(vj)\V' for i,j € Z, ("induced" means

- 2 - -
A' = A n V! ). Let now Dl = (Vl,Al), D2 = (V2,A2)
and Vy nV, = B. Thedijoin (directed join) D, v D,



2

of D1 to D

D, is the digraph (V,A) obtained by
putting V =V, vV, and A = Aj U A, U {uvju e Vi,V € V2}."

A digraph D = (V,A) 1is a bijoin if there are non-trivial
partitions V = X u Y = X' v Y' such that

D = D<X> v D<Y> = D<X'> v D<Y¥'> and D<X> = D<Y'>,
D<X'> "~ D<Y>. We define D<U> = (U,A n U?k{(x,x)lx e UY)
as the ﬁubgraph of D induced by U £ V. |

With D and D2 as above we define the wreath

1 «
product D = D1[D2] = (V,A) of D, around D, by
V=V, xV,. and (u,x)(u',x") ¢ A if and only if

either uu' e’Al, or u = u' and xx' ¢ A2' The result

of [10] extending Theorem 1 is the following.

Theorem 3
If D1 and D2 are disjoint digraphs and if
v, is finite then OUD,[D,1) =OUDIOUD,IT -

if and only if
(1) if there are u # v 1in Dy which are
equivalent then D, 1is connected

(2) 4if there are u # v in_ D which are

2
strongly equivalent then D, is connected
(3) 4if there is a Z-chain in D, then D,

is not a bijoin.

This theorem implies the result of [1]. We did not



generalize Theorem 2 in [10]; it is, however, true that

the following holds.
=

Theorem 4

If D, and D2 are disjoint digraphs and if
D2 satisfies
SCy : card({z]xz ¢ A, or 2zx e A,)

n{zlyz ¢ A, or zy ¢ Ay}) < card V,
for any x ¥y iﬁ Vo,
then OKDIEDQJ) E(?KDI)DSUD2)] if and only if

(1), (2) and (3) of Theorem 3 hold.
This will be a corollary of the results of Chapter III.

<
Hypergnraphs

Let H = (V,F) be a hypergraph. We say that H
is connected if for every non-trivial partition of V into
X uY thereis an e ¢ F with e nX ¥ 8 # e n Y. One
would now expect a definition of a complement of. H and its
coﬁnectcdness; this 1s not what is needed. We say that H
is anti-connected if for every non-trivial partition of V
into X v Y either there are x € X, y ¢ Y with {x,y}¢F
or there'is an e ¢V, e h*i ¥ £ en¥Y, card e = 3. If
H 1s a graph then'it\is antlconnected exactly when its

comp lement is connected. We will use the symbol H to denote
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. r
something else for hypergraphs, namely a (possibly Sew)

hypergraph (V,F) obtained by defining

F=TFu {{u}fu ¢ V}.\

If

e ¢ F, u,v ¢ V then (v,ul %%s,the et

[ 4 A

e
u,v

obtained by replacing v by u and u by v in e.

We say that

7

u#v in V are equivalent in B~ I

”

e [v,u] ¢ F exactly when e ¢ F, e e P(¥), and no

u,v

edge contains {u,v}. They are strongly equivalent in

H if e v[v,u]’"e F if and only if//e e T, e ¢ PWV),
b

{ﬁ,v} ¢ F and no edge contains {u/A} properly. The
. . . *

points u,v e V are similar if there is an h e (UH)

such at

h(u) = v.

The wreath produwét qf two disjoint hypergraphs

Hl = (Vl,
‘H = Hl[HZJ
e ¢ P(V),

card ni(e)

Fy

{

) and H, = ﬁvz,xgi is the hypelrgraph
= (V,F) given by =V, ox V2 and, for
e ¢ F if and only if ﬂl(eO € Fl, or /

1 and w,(e) € F,. The theorem given iﬁ‘

n

L

(9] is this.

Theorem 5

If
if
if

A.

Hl and HQQare disjoint hypergraphs and

V, is finite then Ci(HlfHQJ) EG&Hl)RﬂiHZ)]
and only if 7

(1) If there are u # v in By which are

equivalent then H, 1s connected.

O

o —t
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(2) If there are: u # v in Hy which are
strongly equiva;gﬁt then H, is anti-
coﬁnected.

v (3) If there are u ¥ v equivalent in ﬁl
but not .in Hl and if H, is not
connec?ed with a partition Xv ¥s= V2
then there are ' "'x ¢ X, y € Y such
that {x},{y} ¢ F,.

" (4) If there are u # v strongly equivalent
in ﬁl but not in, H, and if H, 1is
not dnti-connected with a partition

V2 = X u Y then there arg' X € X,v

y €Y éuch that {x},{y} ¢ Fz.

B. If there is a wu ¢ Vy, with {u} e Fy then

(1) if there are X, vy in H2 which are
similar then {x} ¢ F,- if and only if
{yl} e F2.

(2) If there is a v in Vl; (v} ¢ Fy
and if u and v are similar then
there is an x e V, with {x} ¢ FZ'

As with digraphsnthis can be extended to generalize
Theorem 2. And, as with Theorem 4, the.result will be

a corollary of those in Chapter III.

.
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Theonrem é

’ 1f Hl and H2 are disjoint hypergraph; and
if H2 satisfies %
SCy = card({z]|{x,z} € e ¢ FZ}

e TP

n {z|{y,z} Se ¢ F,}) < card V,
for all x £y in Vs
then C%ﬁHl[HQJ) E(}dHf[U&HZ)] if and only if

A and B of Theorem 5 hold.

For relational systems the problem is more
complicated. To begin with, it is not clear what ap-
propriate (that is, reducible to the previous ones)
definitions should be in general. In fhe cases consider-
ed - graphs, diéraphs, hyperg?aphs - we had at most one
relation’of each size (cardinality) in éach of the g-

arve

structures Sl’ 82 and, consequently, could define a
unique relation in 81[82] for each size occurring in
either Si or 82. Should - for example - the edges of
graphs G;, 62 be coloured with at least two coloufs,
‘how would we -colour the edges of 61[GQJ? We could use a new
colour ¢, for each colour’ ¢ .used in Gi (i=1,2) ér use

the colours of the appropriate projections. But unless the

second scheme is used and some colour appears in both Gl

]

and G2 “we will have C%(GI[GQ]) z CﬂKGl)[CﬂﬁGQ)] since we

want "automorphisms to preserve colours. In any event the
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results thus obtained do not seem to be leading in the

right dﬂpection and will not be considered here. That is,

o

of course, not to say that the extension to relational
systems cannot be provided; we are merely reporting our

(present) inabjlity to do so.

o
It is with this in mind that we define directed

hypérgraphg - they are relational systems with the
property tﬂat for each ordinal u there is at most one
relation in V" (where V is the underlying set).

But - surprise (?) - even this restricted definition
Idoes not allow for a clear-cut extension of our (and
Sabidussi's) previous theorem$s. The problem comes from
constants (i.e. {x}" ¢ R for some R £ V¥) and al-
though we restrict somewhat the class féom which the
"outside" (i.e. Hl) hypergraph can be taken by
introducing a Technical Condition the best we can.do is
produce a set of necessary and a set of sufficient con-
ditions. These sets, in general, are not the same.
Nonetheless, they are sufficiently similar to coincide
in the éases of graphs, digraphs and hypergriaphs as well
as in some other special .cases. As the difficulties
will become apparent in the proofs there is no need-to

expand on the-matter now. Rather, we proceed with the

results.



CHAPTER II

DEFINITIONS

It may seem\pretentious to devote a who%e
chapter to definitions. The-hope is that it will make
the reading easier by providing a reference section.

Let us first settle on a hierarchy of set
operatio&s: x over u, n, \; \ over u, n. That
is, Ax Bu C= (Ax B)ucC; Ax B\C= (Ax Bp\C,
etc. Let us also agree to omit parentheses whose
absence will not create confusion: f((a,b)) = f(a,b).

Let A and B be disjoint Se;s and let I be
a set of ordinals not containing.zero. Put ~

Fa;1) = v Al

Hel
and

CAsI) = VY u {x)"
Hel xeA

. P
The size of f el$(A;L¥, denoted by |fl, is the ele-

£l

ment of I for which f ¢ A The underlying set of

f is the set [f] = {x ¢ A[f(i) = x for some i < [f1}.

d4f £ ¢ F(A x B;I) denote by nA(f) the projection of

f on A, similarly for Tg-

Let ee F(A;I), u# v e A. A function f e Alel

o
14~



1

could have, among others, the following properties.

(1) (1)

e(i) if e(i) ¢ {n,v}.

(2) f@i) ¢ {u,vy if e(i) ¢ {u,v}.

(3) If there are 1 < j < |e] with
£(i),f¢3) ¢ {u,v} then {u,v} < [{].

We define

/
/

eu,v) = {f e A'®M ¢ satisfies (1), (2) and (3))

e¥(u,v) = {f ¢ Alellf satisfies (1) and (2)}.
G

A directed hypergraph (diaper) H = (V,E;I)

consists of a set V. of'vertiQFs (points) and a set
E S F(V;I) of edges with I a set of ordinals notY con-

taining zero. Let A € I. We say that H 1s A-split

if there is a partition of V into X u Y such that

e ¢ £ ‘if énd only if le|l ¢ A fer any e ¢ FIV;I) with
el n X # 8 # [el n Y. For example, a digraph D = (V,E;{2))
is connected if’and only if it is not @-split.

Still with A ¢ I we define H = H(I),

HCA) = (V,E v F(V;A);1) and H(A) = (V,E u C(V;A);1).

For convenience we will denote E uv F(V;A) by E(A) and

E v C(V;A) by E(A), If X €V define E<X> = E n F(X;1)

and; with this, the. subdiaper induced by X,

THeX> = (X,E<X>; 1),
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For simplicity we will often abuse notation and
write {X}P for the (unique) Ffunction in {x}¥ and,
in particular, {x} for {X}l. Also, if —f ¢ v2 with
£(0) = x # y = £(1) we will write simply xy for f.

Let x e V. The neighbourhood of x in H is

the set N(x) = U [el\{x}. The setof constants of
eek
xelel

x is J(x) = {u e I|{x}Y € E}. A diaper H satisfies

"

the Technical Condition, TC, if J(x) ¢ {A,B} for all

Xx ¢ V and some A,B c I with A # B unless A = B = 0.

S
As for g-structures we define an isomorphism of

Hl = (Vl,Elgll) and H2 = (V2,B2;I2) as a bijection
a Vl > V, such that e ¢ Ey if and only, if afe) ¢ E,,
with a(e)(i) = afe(i)), i < l[el. For the purposes of

this thesis we need not distinguish between an isomorphism
- in case Il can differ from 12 - and a strong iso-
morphism requiring Il = 12. We write Hl ~ H2, as

usual. An automorphism of H 1is, naturally, an iso-

morphism of it with itself. The group fopmed by the

automorphisms of H will, again, be denoted by CL(H).
Let u ¥ v € V. Put

B(u,v) = {u ¢ I|led = {u,v} for some e ¢ v n E}.  We

will call u and v similar (via a), u ~.v, ip H

if a(u) = v for some a ¢ GUH). They will be called

equivalent, u Z v, in H if
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(1) e(u,v) ¢ E for each e ¢ E

(2) e“(u,v) ¢ E for each e ¢ E, [el # {u,v}.

A diaper H satisfies the Sabidussi Condf%ion,

SC, if for any pair of distinct points u and v in V
we have card(N(u) n N(v)) < card V. If, for u # v,
this does not hold we say tha% u and v have a large
neighbourhood intersection.

Llet Avu {2} 1, An {1,2) =90, B<cAu{1}.

Following convention denote b Z the set of integerS:

An (A,B)-Z-chain in H 1is th¢ subdiaper

V! such that

C= (V',E';A u {2}) induced b

VANERE GV
E' = {vivjli < J € Z}u CINGB) u F(V',ANNCV! ,A)
and such that ve Z vy ino. eyer 1 Z 3. We
define CHl] =(V,CElJ;I) by
CElJ = B {vyv Imin(i,3) £n <m =< max (i,3)}-

If B = § we talk about an A-Z-chain, if A = B = 0
¥

about a Z-chain.
Given two diapers Hl = (Vl,El;Il),
H2 = (V2, 2;12), V1 n V2 =

not containing 1 and 2 we define the A-dijoin of H1 to

E p, and a set A of ordinals

Hé, written H, v H, = (V,E;I), by’

1 A
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I = ;1 u 12 u Au {2}.

E=E vE vixylxe Visy e V2]LJF(V;A)\GKVI;A)lJF(V2;A)).

A diaper H (V,E;I) is called an A-bijoin if there are

non-trivial partitions V = X u Y = X' v Y' with

<

H = H<X> 3A H<Y> = H<X'> 3A HY'! >

and

H<X> ~ H<Y'>, H<X'> H<Y>.

"1

If A= 9, we omit e subscript, write Hl v H2 and

say "dijoin"; similap{y for "bijoin".

~

If H and H are as above define their wreath

1 2

(lexicographic) product or composition H = H1[H2] = (V,E;I)

as follows. .
V=V, xV
I=-I, UTI

E = {ef F(V;I)|ﬂl(e)e E), or ﬂl(e)e QQVI;I) and ﬂz(e)e EZ}

with ni(e) = Ty (e) for simplicity. In the sequel Hys
i .

HQ, H will be those just defined unless indicated other-

wise. TFurther, we will denote by(?ti and U the groups

GGHi) and O((H), respectively.

Let o €0, u e V;. Denote by I (u) the imag

‘

of u under a, that is, the set
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{vevilafu} x v,) n {v} x ¥, # B}. This set can be
partitioned into 0 (u) = {v ¢ Ia(u)[a-l({v} x V,) € {u)x V)
and Na(u) = Ia(u)\Oa(u); these are called "onto"™ and

"not-onto", respectively. We say that « preserves cCopies

if.. card la(u) = card 1T _l(u)‘= 1 for all u e vy

a
(i.e. Ia(u) = 0a(u) and card Ia(U) = 1). If every a
preserves copies then so does (L.

Ve are now ready for the important chapter.
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CHAPTER III

MAIN THEOREMNMS

As we already know, this chapter aims to provide
some necessary and some sufficient conditions for the
group of the composition of two diapers to be the composi-
tion of the groups of the components. . We also know we
should not expect the necessary conditions to be sufficient

and vice versa. With this in mind we state the conditions.

A. (1) If there are u # v in V& with
u I v in H; then H2(J(u)) is not
B(u,v)-split.
(2) If there are u ¥ v in Vi with wu Z.v
in Fl(J(u)AJ(v)) but J(u) # J(v) and

if HQ(J(u)) is B(u,v)-split by

V2 = X v Y then there are u,ve J(udad(v)
and ‘e ¢ X', f e YY with e,f ¢ EZ'
(3) If there are u # v in Hl with u = v

in ﬁl(J(u)AJ(v)) but J(u) ¢ J(v) and
if Hz(J(u)) 1s B(u,v)-split by
V2 = X v Y then for each p ¢ J(u)dJd(v)
there are e e Xu, f e Y" witnh

e,f ¢ E2.

~20-
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L with J(u) # 2 then

(1) CWH2U<un)go%.
(2) If there is a B eC%(ﬁl(Il))\Oﬁ t hen

there are u,v ¢ Vf}< similar via B, Q\\\\\\

and p e J(u)AJ(v), e ¢ Vg' such that

e £ EQ.

(3) If -there is'a B cOi(ﬁl(Il))\Oﬁ then
>

there are u,v «¢ Vl, similar via B,

and, for each U e Ju)AJ(v) there is

an e e¢ Vg such that e ¢ E2’

C. If there are u € V1 and A € I such that

HZ(J(U)) is an A-bijoin then u lies in no

(A,B)-C-chain in Hl‘

We propqgg\;he following theorems (and a host of corol-

laries\ aftwrward).

Theonem 7

Theonrem

If OL =00 0,1 “then A1), A(2), B(1), B(2)

and € hold.

§

If Hl satisfies tgp TC and H2 the SC

then 0Oz OﬁﬁO%J whenever A(l), A(3), B(1l), B(3)

and C hold.

’
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We will prove Theorem 7 directly and Theorem 8 with the

help of a series of lemmas.

Pnoog,og Theonem 7

By contradiction; assuming each of the condi-
|

(2).

!

““tions in turn to be false we construct mappings ' =~
@ : V >V such that a e(nV%lﬁ%zl.

A. (1) If there are u, v as described and

HQ(J(u)) is B(u,v)-split with a

[) partition V, = X uY we define o by
( alu,x) = (v,x)
if x ¢ X
alv,x) = (u,x) '
®

alw,z) = (w,2) otherwise.

(2) Let wu, v, be as described. If, for
each p e J(u)AJ(v) and all - without
loss of generality - e ¢ X“, we have
e ¢ Ez, define a as in (1).

B. (1)

If there is a g eO{(Hz(J(u))VXé

put alu,x) = (u,g(x)) and, for w ¥ u,
aw,x) = (w,x). /ﬁ\

If there is a B =Cm(§l(ll))Vﬁi and

if for all’ u, v similar via B8, all
B e JuAJ(v) and all e ¢ Vg we have

e ¢ E,, define o by alw,x) = (Bw),x).



~23-

C. If there are u

lies in an (A,B

Hl, define «

vV, = Y = X!

2
which HQ(J(G'D

X u

g : X +Y', h.

required by the

Put

"

a(vi,x)

alvs,y)

a(w,z)

and A as described and u

)-Z-chain on {v;|i ¢ 2} in
as follows. Let
u Y' Dbe the partitions with
is an A-bijoin and let

XY+ X' Dbe the isomorphisms

definition of an A-bijoin.

(v;,8(x)) if x € X
(vi+1,h(y)) if y e ¥
(w,2) otherwise.

To verify that « eOtVXlﬂle in each case is

routine.

We now begin the sequence of

Theorem 8.

Lemma 1
ot b, <ot
Proof
Let «a eOLl, Bx e 0L

(a’{Bx}XEVl) € {3(,.

D

lemmas needed to prove

for x ¢ Vl' Clearly

2

§¢

Var

W



-2 4=

Lemma 2
If Ol preserves copies and B(1l), B(3) hold

then Gt < 0(1[(512].

Paooﬁ

Let% e0t. Since it preserves coples we can

define oy Vl + vV and, for each u ¢ Vl,

1

a, Yz > V2 by

al(u) v if and only if Ia(u) = {v}

au(x) y -if and only if a(u,x) = (v,y).

We claim of course, that ) eC%l and o cOtz
for each .
(i) Let e ¢ E; and consider ale). If
// (el # {u} for any u eV, then
‘ a,(e) € Eg (since edges "between copies"
- in H can only come from edges in Hl).
If [el = {u} for some u ¢ V, then
u : a;(u)  in ﬁl(Il). If a; £0t; and
if J@) ¢ J(al(u)) then B(3) guarantee
that for each u e J(u)AJ(al(u)) there 1is
an f e Vg, f ¢ Ez. Now for each
woe J(Wad(ay(u)) we have (a (u)xV,)"¢E
since o 1s an automorphism. Therefore

J(u) = J(v). Thus al(e) € El.

(ii) Consider any a,- If J(u) = P there is
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nothing to prove. If J(u) # § then
o, eC%(HQ(J(u)) and, by B(1l), o, eCﬁé.
a
With the above lemmas in mind we can devote
the rest of this secgtion to proving that the SC on H2,

the TC on H; and A(l), A(3), B(3) and C imply that

Cﬁ,pPeServes copies. To simplify the proofs we make two

easy but important remarks.

(1) If e ¢ E, card[nl(e)] > 1 then 7w, (e) ¢ Ey.

(2) If e ¢ F(V;I), card[wl(e)] > 1 then
e ¢ E 1if and only if f ¢ E whenever

ﬂl(f) = ﬂl(e), f e F(V;I).

With these we can formulate an argument which
will appear, in different forms, many times. Let a €0,
u € Vm@ be épch that card Ia(u) > 1. Let
(w,2) € VNa({u} x Vz) and, for v ¢ Ia(u), let

(v,x, ) e a({u} x V2)' If e ¢ E 1is such that

Tel n a({u} x V2) # 0 and (w,z) ¢ [el then f ¢ E

for any £ ¢ VI® such that £(i) ¢ {(v,x v € (W)}

if (w,z) # e(i) €1 (u) x V, and f(i) = e(i) other-
o] 2 .

wise. To see gﬁis, let f be any such funection.

-

Consider first {éj obtained by putting e* = e if

card[ul(e)] =1 and, if card(n, (e} > I,Y by putting

A

V)
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e (i) = (V’Xv) whenever (w,z) # e(i) e {v} x V2
and .V € Ia(u), e (i) = e(i) otherwise. Since
a—l(e*) e E and card[ﬂl(anl(e*)j] > 1 we have

(@ te*)) « E,. But clearly (@ te*)) = nl(a-l(f))

T 1
and, hence . f ¢ E. ' ' .
This kind of argument can vary: we can begin with

an edge e ¢ E  before picking a "representative" e ¢ E;

(i.e. e € Vlel with ﬂl(e) = e); the "representative"

can be chosen with care ggjdo a particular job; th& argu-
g

ment can be used many times over; 1t can be augmented by

references to remarks (1) and (2) to conclude, for example,

that a particular e ¢ F(V;I) 1is an edge, etc. In each

case we will simply.refer to a ping-pdng argument. We

note that in some cases “the axiom of choice may be needed;

wé)will mention this again in the end of the thesis.

Lemma 3
Let a €O, weVy, card T (u) > 1. If H,
satisfies the SC then either Oa(u) = p or

E <Ia(u)>\F(Ia(u);{l}) = F(Ia(u);J(U)\{l}).

1

.Proog

The lemma says that if - for o and u given -

(0 ,(u) # p ‘then all edges in  H)<I (0> of size
‘ % )

N -
W

W

R

b~

B L SoF NPTV
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at least two have sizes from J(u) and, by
the remarks, all such edges are present. We

will, therefore, show that if Oa(u) £ O and

e ¢ El<1a(u)>, lel 2 2 then lel e J(u). The
rest is clear. ‘ N

It is evident that if V2 is finite then
Oa(u) = f. Suppose, then, that Vs, is infinite,

Oa(u) # D and let e ¢ El<1a(u)>, lel 2 2 and
lel ¢ J(u). We proceed in three steps.
(i) If there is a v e [el n Na(U) then we
can find an x, ¢ V, such that
(v,x,) ¢ a{u} x V,) and an f ¢ V

lel

such that f£(i) = (v,xv) for exactly one

0 <i < lel and f(i) e a({u} x V)
otherwise: (this may require the axiom of
choice). Let X = {x eV2|a(u,x) e {v} XV2},
Y = V2\X. B% ping-pong arguments it
follows that‘for any x € X, y € Y there

1s an exy € E2 such that

1
<

o X if e(i)
exy(l) =

y otherwise.

To see this, consider a~1(f). Since

e THEM)) e {u} x V, unless £(i) = (v,x,)

there is, for each y € Y, an f_ ¢ ylel

y
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such that £ (i) = o T(F(i)) if
£(i) = (v,x,) and fy(i) = (u,y) other-
wise. Now ﬂl(fy) = nl(a—l(f)) and .so

both fy and aﬁfy) are in E. Define

eXy by ‘ .
. alu,x) if e(i) = v
oz(eX (1)) =
y a(u,y) otherwise.

We have e- e E since ﬂl(exy) = ﬂl(d(fy)).

Xy

Putting e = wz(é y) and remembering
that lel ¢ J(u) we obtain the desired
edge. Hence card(N(x) nN(x')) 2 card ¥
and card(N(y) n N(y')) 2 card X for any
x,Xx' € X, y,y' € Y. Since either X or
Y has the cardinality of V,, either X
or Y consists of exactly one point (lest
SC Dbe violated).

Thus, if both 0a(u) and Na(u) are non-
empty, v as in (i) and w e-Oa(u) then
for some x ¢ VZ‘ wé have X = {a—l(v,x)}.

Consider now

H, = ({u}x Vz,{fc F({u}x V2;I)|n2(fﬁe Ez};I%

This diaper is isqpopphic to H, as is
\.6 .
H  defined simila#}f. Let
B : {u} x Vy > {w} x V, Dbe an isomorphism

of H, and H . The points a_l(v,x)

&
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and a'lBa(v,x) have a large neighbour-
hood intersection (and are distinct),
contraéictiné the SC.

(iii) If Na(u) = ¢ then [é] € Oa(u) and
picking any w « Oa(u) we can induce a
partition X u-Y of V, as in (i). As
there we deduce that one of X, Y has the
cardinality of V2 énd, that, therefore,

the SC cannot hold.

Lemma 4
If H2 satisfies the SC, a €0t, u € Vi
card Ia(u) >1 then v = v' 1in

ﬁl(J(v)AJ(v'))({Z}) for any v,v' € Ia(u).

Proog
() (0(v)ag(vt ) ({2}) = H' ({2}) with
H' ='ﬁl(J(v)AJ(v'))). Let v # v' ¢ I (u),
e ¢ E;(J(v)ATW'))({2}) = E]. If either
[e]l n {V,Q'} = P or. (el C'IOL(u),

fel € J(u) v {2} there is nothing to prove as
clearly e(v,v'? (= E; (or e*(v,v') E'E;, as
the case may be). If [e] ¢ I,(u) -then
e*(v,v') < E; since o e¢0t. For the rest -

lel =z 3, [e] ¢ Ia(u), (el n {ﬁ,v} 2D - we
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]

consider two cases, according to Lemma 3.

(i)

(ii)

Oa(u) £ 0. Then lel € J(u), a situation
already dealt with.

Oa(u) = p. Then each {w} x v, contains
a point (w,xw) £ a({u} x VZ)' For

woe Iw let (w,x") e al{u} x V,).
Suppose first that [el Z {v,v'}. Let

e ¢ E be given Dby

e(i)) if

(e(i),x e(i) e {v,v'}

e(i)=
(e(i),xe(i)) otherwise

(clearly nl(g) = e). It is then easy to
see that for any e e (v,v') there is an
e ¢ E with wl(a(;)) = e : Jjust put

T(i) = a"Yei),x Y) if e(i) £{v,v'} and

e(i)
e(i) a-l(g(i),xg(i)) otherwise and

observe that nl(a‘l(é)) = m,(8). Hence

e*(v,v')S‘EI. If [el] € {v,v'}, consider

goe E defined by

(8(0),Xe(0)) if i=20

A~

€o

1]

(1)

e(i)) if i > o.

(e(i),x
Looking at a~l(ed) we note that for any
€0
an go ¢ E such that

e e¥(v,v') with €,(0) = e(0) we have
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. <a‘l<éo>> = (8 = 1 (e THED)  and

1 1
that, therefore, EO € E;. But of course
there is nothing special about 1 = 0 in
the definition of éo for each u < el
we can define an gu by
A (e(u),xe(u)) if 1= u
eu(i) =
(e(i),xe(l)) otherwise.

If we now write e:(v,v') for the set of

Eﬁ € e*(v,v') with Eu(u) = e(y) we can

deduce that e*(v,v') < E; quite simply.

Let e « e*(v,v') and pick u < v < |el.

Let e, ¢ e:(v,v') be such that

Eu(i) = e(i) except possibly at 1 = y.

1f Eu(u) e(u) there is nothing more to

do. Otherwise consider Eu in place of e
. . . - * ' *
- this will yield (eu)v(v,v ) € Ej.

Clearly e ¢ (gu):(v,v') which completes

the proof.

Lemma 5
Let o, u, Ia(u) and H, be as in Lemma 4 and
suppose that H, satisfies the TC. If A(L)
and A(3) hold then Ia(u) = {v,v'} for some

v £ v' ¢ V1 and exactly one of wvv' and v'v
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1S 1n El.

Pmooﬁ

Let v # v' ¢ Ia(u){ ‘Consider the following

partitions of V2 into Xv U.Yv and SV U Tv’

X

v {x € Vzla(u,x) e {v} x VZ}’ Y = VZ\XV’

S
\Y

(x < v2|a‘1(v,x) e {u} x V,}, T = VS,
It is routine to verify that HZ(J(u)) is
B(v,v')-split by X v Y . We claim that
HQ(J(u)) is also B(v,v')-split. This is almost
trivial in case Oa(u) # § since then

B(v,v') = J(u)\{1} = J(v)\{1} and so
ﬁé({l})(J(u)) = ﬁQ({l])(J(v)) and theﬂpartition
X, ¢ Y, will work. If Oa(u) = # then use

v

Sv U Tv : let £ e F(V2,I2 u J{v)) Dbe such that

~

(£l ns,# 8 #[f] nT,  anddefine f Dby

(i) = (v,£f(1)).- Consider any f' satisfying

e TET () = o T EG)) if £ T,

aHET ) e otV Ix V) x (ud xv,  if £(D) €S,

Clearly nl(d—l(f)) = ﬂl(a—l(f')) and
[n (£37 = {v,v'}. Now, since card nl(a-l(g))> 1,
we have £ ¢ EZ(J(y)) if and only if fer
if and only if a—l(f') € E if and only if

f' ¢ E if and only if [f| = [£'] € B(v,v').



_33-

So, by A(l), v # v' in H, and, since

v = v!' in Hl(J(v)AJ(v‘))({Z}), either

J(v) # J(v') or wv' ¢ E; exactly when

v'v £:E,. If card Ia(u) 2z 3 then wz e Ej
for all w # z ¢ Ia(u) whenever wz ¢ Ey for
some W ¥ 2z € Ia(u), by ping-pong arguments.
Hence either card Ia(U) =2 or wze Ey

if and only if 2w ¢ E; for all w# z ¢ Ia(u).

2

But the latter implies that card Ia(U)

since the TC holds for Hl and, conseguently

Athere are at most two points yith distinct
sets of constants. So we have that

[ (u) = {v,v'} in any case and J(v) # J(v').
By the TC aéain, J(u) = J(v) (without loss
of generality). Hence H;(J(v)) is B(v,v')-

split by X v Y Also, HV,(J(V')) is

v*
B(v,v')-split by S _, v T, (analogous to

S, v Tv). By A(3) there are e e Ys, f e 85'

such that e,f ¢ E2 for all u e J(Vv)AJ(v').

Let e ¢ ({u} x vO¥ and £, e ({v'} x v ¥

be such that "Z(eq) = e and nz(fv,) = f.

Clearly ey £ E, and fv' e E 1f u e JW'I\J(v)

while eu'e E and f,, £E if u e JWINI(v').

But in the former case a(eu) e E and in the
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latter a—l(fv.) € E, neither of which is
possible.
We conclude that, without loss of .generality,

vvl ¢ El, vy ¢ El and v £ v' in

01 _ . . _
Hl = (Vl,El u {vlvo},Il), with vy = v,
vy = v!

Let G = (U,F3J) be a diaper satisfying the
SC and let U = Xu Y = X" v Y' be non-
trivial partitions. Let also

0 0 0 0

G” = G'<X> V G 0

<y> = 6%x'> ¥ ¢%vyrs, where G
is obtained from G by omitting all edges of
size three or more and all constant edges. Then
(1) If X #£ X' then U 1is finite.

(2). If card X = card X' then X = X'.

(3) 1f 6

is in fact a bijoin with these
partitions then it is isomorphic to :Zn[KJ
for some digraph X and some (positive)

integer n. Define

Z, = ({vilo <i <n},{vivjlo i <j<n};{2h.

AN

(1) If U is infinite and X # X' then,

since the SC holds, X (without loss of

N

Al
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(3)
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generality) contains exactly one point.

Also, one of X', ¥Y' is a one-element set,
say {y}. Clearly x # y (by assumption if
card X' = 1 and from the fact that G0 is

a dijoin with each of these partitions ‘other-
wise). But it is also clear, that

card(N(x) n N(y)) = card U,LVéontradicting
the SC.

If card X = card X' and X # X' then there
are x ¢ X\X' and y ¢ X'\X such that

Xy ,yx € I, contradicting the definition of
a.dijoin.

Suppose GO is a bijoin with the given
partitions. Then U is finite (by (1) if

X Z X' and by the SC if X = X'. since
that means card X = card Y = 1) and

cOx> ~ 6%y's and 6%y> = 6%x's. Without
loss of generality assume card X 2 card Y.
It is easy to see (argument of (2)) that

Y ¢ Y' and X' ¢ X. We will now ﬁroceed by
induction on card U. A bijoin must have at
least two points and the case card U = 2 is
trivial. Suppose the claim is true for all

bijoins on less than card U vertices and

consider two cases.
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(1) X nY' = f§. Then
card X = card Y = card X' = card Y' =
= 1/2 card U and,by (2), X = X',
Y = Y'. We can take n = 2 and

K ~ go%x>.

12

(11) X

]

Y' # §. Then X n Y' = X\X' = Y'\Y
and we have X = X' v (X n Y'),

Y'* = Yu (X nY¥Y"). In fact, we have
more : GO<X> is a bijoin since

6%x'> v 8%x n v% = 6%x> ~ g0y =

Ocx n vrs 3 6%ys. By induction

= G
hypothesis GO<X> ~ Zp[K] for some p
and K. To complete the proof we only
need to show that GU<X n Y'> = Z [X]

for .some m and the same K. But that

is clear from the recursive construc-

tion implicit in the argument.

b4
If H;/ satisfies the SC and H, the TC and
if A(1), A(3) and C hold then (U preserves

copies.

If not then there are a;, U, Ia(u) b {v,v'} as

in Lemmas 3-5. We have, without loss of generality,
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vv' € E and v'v £ E. Let us denote by H;
the subdiaper of H induced by {w} x Vo = Vo,

that 1is, isomorphic to HZ(J(w)). Let us also

put po = u, ro = v, r‘l = v and PO = {po},

R0 = {ro,rl}. We will
(1) for n < w construct sets Pn and Rn
of points in V; so that

P, = {pyl-nsisn}, R = {r;[-ns isn+l},
pipj eE and Pirj ¢eE 1if and only if i < j.

(ii) Put P= U P, R= U R_ and show
n
n<w n<w

that these are underlying sets for
(B(v,v'),J(u))~Z—chain§ in Hl, provided
that V., is infinite.

(i11) Show that H; is a B(v,v')-bijoin.

(iv) Conclude that o preserves copies.

This 1is how.

(i) Suppose we have P, and R_  such that
(a) PiPy € E; if and only if -n s? <jsn
(b) rirj € By if and only if -nsi< jsntl

(¢) each Vp and each V_ is partitioned

1 i
(non-trivially): Vri = XU T,
V. = X: u Y. sothat olX.,) = Y.,
I‘i 1 by s 1
1 .
a(Yi) = Xi+l’ -n i <n.

\o
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To construct Pn+l we must add p

P, preserving the above properties. This is

n+1°Ppa O

done as follows. Consider o ~(Y'. .). It

so far

\\—”muif be disjoint from each V
i

obtained. It follows from Lemmas 4 and 5

that there is a Po+y € Vl\Pn such that
-1, .
a “(Y ) v and p Zp in
nt1’ % Ph+1 ntl n
' I
HT4L%%g. We put X ., = o (¥ .40,
Yn+l =V \ Xn+1 and note that PiPr41 € El

pn+l

for all -n s 1 s n, by ping-pong arguments,

and - similarly - pn+1pi £ El. This 1s
easy to see: ©IiT ., ¢ Ey for -n <1 sn
by assumption and so (ri,xi)(rn+l,yn+l) eE

as wel1 as (ri,in(rn+l,yn+l) ¢ E for

!
X, € Xi, Y.

1 .
. -n. S S ntl.
i ; € Yl, ng 1 n+l Any of

these is carried to an edge by u-l which

in turn implies the claim. Consider now

a—l(Xln). This is disjoint from Vp. for
1

-n < 1 5,n ayd from Xn+1' Further,

e _ . .
o (X_n) n Yn+1 = Pp since otherwise )

~

Po+1P, ¢ Ey+ Hence a p_ ., can be found

in Vi\(P v {pn+1}) such that
- t
a l(X_n) > Vp . As before we conclude
-n-1

that p___y = p_, in Hl({Z}) and that
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P_h-1Pi ¢ El for -n < i < ntl while

P;P_,.1 £ E;- This gives P _,.. }\\\

Rn+l is constructed - mutatis mutandis -

analogously, giving r

-n-1° n+2?

' y' x' Y ith
-n-12? -n-1’ n+2? nt+?2 Wi

r-n—lri € El, rir_ 3 £ El,

€ El’ rn+2rj € Ey for ~n=<isnt2,

1ﬂjr‘n+2

-n-1 £ j £ n+tl. Also T -1 T Pp and

in Hl({2}).

ntl - Tn+2
If V

r
%

1 is infinite and no contradiction
has, therefore, appeared preventing the

construction, let P = VU P_, R= U R.
n<w O n<w

We have, by construction, P; z pj in
» . ¢ . ,
1] = i 1)
H1<P>Hl and r, = rj in _H1<R>H1 for

Aone

<P> and H,<R>

all i #&. So both H 1

1

are (B(v,v'),J(u))-Z-chains in H

Consider H = D (i.e. Hg less edges of . )
0 0 .

size three or more, as in Lemma 6). We have,

1°

by ping-pong arguments (since. ryry € El,

-
riry £ El), D = D<X0> v D<YO>. Put

- ‘I. - Sty P eyt
Hro = D'y then D' = D<X0> vD <YO>.‘
Clearly D =~ D', thus

6 _ .0 - 0 o w0y 2
H2 = H2<X> \ H2<Y? = H2<X > v H2

: - Y = . (- !
with X = "2(¥0)’ Y = WZ(YO), X' = n2(x0),

0<Y'>
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t - t 1 . .
YU = "2(Y0)' Now X # X' if V2 is

infinite.“ Hence, by Legma 6(1), v, is

finite in any case. This means that

card Xi = card Xj for all i and. j

-
and similarly for Yi and Yj, Xi -and

X;, Y; and YS. Thus, by construction,
0 ve o w0 ys 0 e n 10 s

H2<X> X2<Y > and H2<Y> H2 X and
0

H2 is a bijoin. But clearly, Hu is a

B(v,v')=-bijoin, from the preceding work
(or directly by ping-pong arguments).

This contradicts C. So o must preserve

copies. : .



" J(H

&

CHAPTER- IV

COROLLARIES AND COMMENTS

It is easy to see that the conditions A(2) and
A(3), B(2) and B(3) become the same if, for some €ﬂ11,

) = U J(x) € {y}. This leads to the following

1 XEvl

Conollany 1

If H, satisfies the SC and if card J(Hy) <1
then O zcnlﬂle if and only if A(l), A(2), B(1l),
B(2) and C hold.

Cornollany 2

If H2 satisfies the SC and J(Hl) = § then
' O(EO%IO%] if and onlyaif A(1l) and C hold.
\

\

\

There is a host of corollaries to be obtained with

the help of the following lemma.

Lemma §
A diaper (V,E3;I) satisfies the SC if one of
~the following holds

(L) Vv 1is finite,

41~
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(2) the set E(x) = {e :mE\C(V;I)lx e [el}
is finite,
(3) the number of vertices for which E(x)

is infinite is finite.

We will not 1list any of the corollaries available from
Lemma 8 but restrict ourselves to saying that the results
of [9], [10] and [15] (Theorems 1,3 and §) are among them.
It is clear that Theorem U4 is a consequence of Corollary 2
and, from this, that Theorem 2 follows from the results of
Chapter III. We will now point out how Theoyems 5 and 6
and, hence, Theorems 1 and ‘2 in another way, can be ob-
tained from the present work.

Let H = (V,F) be an (ordinary) hypergraph. For
each e ¢ F (that is P 7¥ e € V) let |£| be the least
ordinal that well-orders' e and let

ole) = {f « e|e||f is a bijectipn}. Put (E = U of(e)
X33

and define ﬁ = (V,LE;I) with I = {lel]e € F}, ‘ f

L4

Corollary lanW'applies to the composition ﬁl[ﬁ2] .of
diapers obtained from given disjoint hypergraphs Hl and’
Hz; all we need is a translation of the co ditions. This

is routine.

As we mentioned in Chapter III, the Axiom of

Choice appears - possibly - many times. Though it is not
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clear that a proof of Theorem 8 cannot be found that does
not make use of this axiom, we suspect that this may well
'be the case. At least it is far from obvious that the
translation from hypergraphs to diapers (using the Well
Ordering Aﬁ;pm) can be achieved without it. It is hoped

i
that further research will settle’this gquestion.

To conclude this chapter we provide an example
showing that there are diapers Hl’ H2 such that Hl
satisfies the TC, Hé? does not satisfy the SC, the
conditions of Theorem 8 hold and OU(H,[H,1) # OUH, I [OUH, D).
The example is a simple case of the construction in [16]
of léxicographically idempotent graphs. The fact that
GKHl[HZJ) 30((Hl)[OGH2)) was pointed out by Sabidussi in a

private conversation.

L

p
i

Let X be a ggf of cardinality at least three and
let Xg € X. Let Q denote the non-negative rationals.
Define a graph G = (V,E) by letting V be the subset of

XQ é‘ch that f(a) = x for all but finitely many a e Q

0
and by putting  {g,f} ¢ E if and only if exactly one of
gla), £f(a) is Xy with a Dbeing the least (in the natural
order of Q) such that f(a) ¥ g(a). Now G[G] ~ G: let

o« :Q~+[00,1)nQ ad B :Q~+[1l,») nQ be order-

isomorphisms and map (f,g) - h by

RN
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£la"t(a)) if  a e [0,1)

h(a) = ,
g(g Y (a)) if aell,®). e

Call this mapping y. Not only is this the required
isomorphism, it also allows for many automorphisms of
G[G] which are not in OUG)[OUG)]. In féct, for ;ny

0 # b e Q the mapping a, : 6 > G 1is in o) if
ab(f(a)) = f(aﬁ). Combining ay with vy we get

By = Y—labY, an automorphism of G[G]. If b e (0,1),

By £ OUG)OUG) ].

We end this thesis by mentioning thgt Sabidussi
conjgctures the following: <¢f 6 is a lexicographically
idempotent graph (i.e. GL[G] =~ G) then
'(?((G[G]) £ oUG)H[OUGH].
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