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Abstract

Rising post-glacial sea levels since the last glacial maximum have dramatically
changed the configuration of coastal areas worldwide. On the western Anatolian coast of
Turkey, rising Holocene sea levels and tectonic subsidence have drowned large areas of
coastal and terrestrial landscapes that were once occupied by Neolithic peoples. These
submerged landscapes have high potential for well-preserved Neolithic sites, but to date
few systematic attempts have been made to investigate the prehistoric underwater
archaeology. Further exploration for these sites is dependent on an improved
understanding of the coastal paleogeography, sea level history and shoreline positions
during prehistory.

In this study, detailed coastal geoarchaeological investigations were con-ducted at
Liman Tepe/Klazomenai, a long-occupied (Chalcolithic-Roman Age) coastal settlement
near [zmir, Turkey, to reconstruct changes in the prehistoric coastal environments and to
document coastal impacts associated with the construction of a Hellenistic causeway
structure. Detailed sedimentological (lithofacies, grain size, magnetic susceptibility, loss
on ignition), geochemical (trace metals) and micropaleontological analysis was
conducted on five cores extracted from the Bay of [zmir. Core data were integrated with
the results of a detailed marine geophysical survey (bathymetry, side-scan sonar, chirp
seismic profiling) to reconstruct the shoreline positions from the Late Neolithic (ca. 4000
BC) to the present.

The core results identified five distinct lithostratigraphic units (Units A-E),

recording the development of transgressive barrier-lagoonal system prior to ca. 3800 BC
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and progradation of the coast during a subsequent high-stand phase after ca. 2800 BC.
The transgressive barrier-lagoonal system is represented by a fining-upwards sequence of
pebbly foreshore deposits (Unit E) overlain by laminated, organic-rich muds deposited in
shallow wetland and lagoonal environments (Units C,D). The transition from beach to
lagoonal sediments is represented in seismic profiles by a basin-wide, high-amplitude
seismic reflector. Mapping of the reflector surface identifies the beach deposits as a
linear, northeast-trending beach barrier ridge. '*C dating of organics from Unit E yielded
a Late Neolithic Age (3860 +/- 120 cal BC) for the beach deposits.

At the top of the lagoonal sequence a sharp transition to muddy silt lithofacies
(Unit B) with abundant Posidonia Oceanica tragments records sediment accumulation
with a sheltered embayment formed by construction of a causeway commissioned by
Alexander the Great (334 BC). The onset of causeway construction (Phase 3) is indicated
by a shift to coarser mean grain size, the appearance of pottery and masonry and
abundant olive pits which yielded a '*C date of 450 + 70 cal BC, confirming the early
Hellenistic age for the causeway. The causeway construction dramatically altered the
coastal sediment budget, contributing to accelerated sedimentation and rapid progradation
of the coastline. An increase in the abundances of Bolivinid and Rodalinid genera below
the causeway construction horizon indicates increasing eutrophication of coastal waters
as Archaic populations increased at Klazomenai. The detailed record of changing coastal
environments and shoreline configurations obtained through this study provide important
baseline data for future underwater archaeological exploration at Liman

Tepe/Klazomenai.
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Chapter 1: Introduction

1.1 Background and Rationale

Since the end of the last glacial maximum (LGM), approximately 20,000 years
ago, sea levels have risen approximately 120-130 m to modern-day levels (Lambeck and
Chappell, 2001). Sea levels rose slowly (ca. 6 m per 1000 years) during the early post-
glacial, speeding up ~15,000 years ago (ca. 10 m per 1000 years) and finally decelerating
during the mid-Holocene as ice sheets disappeared entirely (ca. 7000 years ago)
(Fleming, 1998). At 7,000 years before present, sea levels began to reach modern levels,
adding an average of 3-5 m total since then (Fleming, 1998). These post-glacial changes
in sea level dramatically altered the configuration of coastlines worldwide and inundated
many coastal landscapes that were once occupied by prehistoric peoples.

In the last three decades there has been a growing recognition of the tremendous
archaeological potential of submerged prehistoric landscapes and the importance of
coastal paleoenvironmental change (Fleming et al., 1998; Bergman et al., 2003;
Flemming, 2004; Flatman et al., 2005;). The first systematic investigations of the
prehistoric underwater archaeological sites were conducted in northwestern Europe and
the Mediterranean since the 1970°s (Flatman et al., 1998). Much early work, particularly
in Denmark and the United Kingdom, was conducted in connection with economic
exploration of the seabed (i.e. for petroleum resources, fisheries) and led to rapid
expansion of underwater archaeology as a discipline. Later in the 1990’s, the systematic
swath mapping of the European shelf and Baltic Sea with multi-beam sonar led to

discovery of new prehistoric sites, many with well-preserved cultural materials (Firth,
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2004; Gron and Skaarup, 2004; Flemming, 2004;: Momber, 2004). Many sites were found
in close proximity to drowned Pleistocene shorelines and other relict coastal landforms
(e.g. estuaries). Similar approaches, employing geophysical remote sensing and
paleogeographic mapping, have led to the discovery of submerged Paleoindian and
Archaic sites in North America (Fedje and Christiansen, 1999; Faught, 2002; Bell and
Renouf, 2003). These studies account for only a fraction of the vast, prehistoric shelf
areas that were flooded by post-glacial sea level rise and much remains to be explored.
Archaeologists have long recognized the importance of landscapes and
environmental change but it is only recently that geological studies have become an
important component of archaeological site investigations. Pioneering work by Kraft
(1975; 1980; 1977) demonstrated that the coastal configuration and geomorphology of
many long-occupied sites in the Aegean have changed dramatically during the Holocene.
At ancient Ephesus, for example, rapid alluvial sedimentation in the Kucuk Menderes
valley in-filled the city’s harbour basin, moving the shoreline over 10 km west since
Classical times. Relative sea level rise had a similar impact at Troy, causing rapid
aggradation of the Scamander floodplain and infilling of Troia Bay. During the past 5500
years, the shoreline has prograded 5 km to the north of the ancient city, explaining the
large discrepancy between ancient descriptions of Troy and its modern setting (Kraft,
1975; 1980; 2003). These results, while not surprising to geologists, demonstrated to the
archaeological community the rapid rate at which geological processes can re-shape

coastlines and the importance of understanding paleogeography.
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In the following decades, geoarchaeology emerged as a distinct sub-discipline,
encompassing the study archaeological sites and materials using a broad range of
geoscience techniques. Recent work in coastal geoarchaeology has focused on the
reconstruction of sea levels and coastal environments using the sediment record from
ancient harbour basins (Stiros et al., 1996, 1998; Marriner et al., 2006; Stanley et al.,
2006; Goodman, 2006; Reinhardt and Raban, 2008). Ancient harbours can provide an
important archive of coastal environmental changes as they often contain long,
continuous sediment records and architectural features that can be used as sea-level
reference markers (i.e. paved surfaces). Recent geoarchaeological investigations in Tyre’s
ancient harbour on the Lebanese coast, for example, have documented impacts of human
engineering interventions on the coastline and have allowed the paleogeography of the
ancient harbour to be reconstructed (Marriner et al., 2005; Marriner et al., 2007). Other
work in Mediterranean coast of Israel has documented changing environments in
Caesarea’s Roman harbor and its submergence and destruction as result of co-seismic
subsidence and an ancient tsunami impact (Reinhardt and Raban, 1999; Reinhardt et al.,
2006a). Coastal geoarchaeological reconstructions have also been employed to determine
the long-term impacts of ancient engineering structures (i.e. causeways, breakwaters) on
coastal depositional systems (Millet et al., 2007; Marriner et al., 2007).

A developing area of application in coastal geoarchaeology is the predictive
mapping of submerged prehistoric sites (Quinn et al., 2000; Reinhardt et al., 2006b;
Sonnenburg and Boyce, 2008). Predictive modeling has been employed with success in

terrestrial archaeology for determining the site distributions; most models incorporate a
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broad range of paleoenvironmental factors (e.g. proximity to shorelines, water bodies,
slope gradients, habitat types) that are statistically weighted according to their importance
in determining settlement location (Conolly and Lake, 2006; Chapman, 2006). It has been
well demonstrated in North America for instance, that the locations of raised Pleistocene
shorelines and relict river terraces are excellent predictors of Paleoindian and Archaic site
distribution (Boyd, 2007; Karrow et al., 2007). Geomorphic data have also been
employed in the exploration for underwater prehistoric sites (Fedje and Christiansen,
1999; Faught, 2004) but statistical numerical modeling using a wide range of site
determinants has not yet been attempted.

One of the major constraints on the use of predictive modeling techniques in
underwater archaeological exploration is that the relative sea-level history for a site must
be known in some detail. As shown by Lambeck (1995) and Lambeck and Purcell (2005)
relative sea level change is a function of least three regionally varying components —
eustacy (water volume transfers between ice masses and oceans), glacio-hydro-isostacy
(isostatic effects due to fore-bulge development and hydrostatic loading) and tectonics
(vertical crustal motions). As a result, prediction of shoreline positions using generalized
eustatic sea-level curves and coastal bathymetry data are likely to simplistic and would be
of limited use for site modeling. This is particularly true for tectonically-active areas such
as the Aegean basin (Figure 1.2) where a complex interplay of these three factors has
resulted in regionally-varying rates of relative sea level rise (Lambeck, 1995, 2005;
Lambeck and Bard, 2000). Regional differences in sea level history are well documented

from several coastal sites in Greece and western Turkey (van Andel and Lianos, 1983;
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Stiros et al., 1996; Lambeck, 1996). These data show that some coastal areas have
undergone net uplift while others have experienced subsidence, or no apparent net change
in sea level. Lambeck (1995) attributed these regional variations in the Aegean to
isostatic adjustment of the crust and local tectonic motions.

As a result of rapid tectonic subsidence and a long history of human settlement,
many areas of the Aegean coastlines of Greece and western Turkey have a high
archaeological potential for underwater prehistoric archaeology. This is particularly the
case for large segments of the Anatolian coastline of western Turkey (Figure 1.1), which
has experienced relatively rapid rates of coastal subsidence during the Holocene in
connection with regional extension. The region lies within the Aegean extensional
province, a zone of active crustal stretching and normal faulting produced by the
westward extrusion of the Anatolian plate into the Aegean back-arc basin (Ocakoglu,
2005) (Figure 1.2). Regional extension has been ongoing since the Oligocene and is
manifested by the development large fault-bounded graben and horst structures
(Brinkman, 1976; Bozkurt and Sozbilir, 2004).

The Bay of Izmir region is of archaeological importance as it contains a large number of
prehistoric archaeological sites, including the long-occupied Chalcolithic-Bronze Age
settlements at Liman Tepe, Bakla Tepe, Panzatepe and the recently discovered site of
Baglararasi (Saholgu, 2007; Erkanal, 2008; Saholgu, 2008). These sites have been under
investigation since the 1990°s as part of the Izmir Regional Excavations and Research

Project (IRERP) under the direction of Dr. Hayat Erkanal of Ankara University. Most of
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Figure 1.1: A. Location of study area on the

eastern Aegean coast; B. Location of study area
within the Bay of [zmir.
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Black Sea

Mediterranean
Sea

Figure 1.2: Tectonic setting of Turkey and the Aegean Sea (modified from Ocakoglu et
al., 2005). NAFZ: Northern Anatolian Fault Zone; CFLZ: Cephalonia—Lefkada Fault
Zone. Liman Tepe/Klazomenai lies at the edge of the Aegean extensional province.
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detailed bathymetry. Locations of archaeological sites also indicated: Klz - Klazomenai, LT - Liman

Tepe, AH - Archaic harbour; AC - Alexander’s causeway, CH - Classical Harbour, LT-01 - Core
locations.
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the coastal sites are of Chalcolithic-Late Bronze Age and very few Neolithic sites with a
clear coastal context have been discovered.

Liman Tepe is a well-fortified, Early Bronze-age settlement located on the south
shore of the Bay of Izmir (Figure 1.3). Excavations have uncovered pottery evidence
indicating the presence of Neolithic peoples in the area; however a Neolithic settlement
has not been discovered (Erkanal, 2008). The regional subsidence of the coastline around
the Bay of Izmir, indicates that Neolithic sites if present, are likely submerged and lying
at some distance seaward of the Bronze Age land site in shallow water.

In this thesis, the paleoenvironmental record of coastal environmental changes at
Liman Tepe was investigated using detailed multi-proxy geoarchaeological study of 6
sediment cores extracted from the Bay of Izmir (Figure 1.3). Sedimentological and
micropaleontogical data from core samples were used to identify changes in depositional
environments and to document changes relative sea levels at Liman Tepe. The core data
were combined with detailed bathymetry and seismic data taken within a 4 km? area
around the site to identify the prehistoric shorelines and to reconstruct the Late Neolithic
coastal paleogeography. The resulting paleogeographic maps identify a series of
prehistoric shorelines that have been radiocarbon dated to the Late Neolithic period. The
integrated core and geophysical data also provided a basis for investigating changes in
the coastal environments stemming from a causeway barrier constructed by Alexander
the Great during the early Hellenistic period (ca. 4™ ¢ BC). The causeway was
constructed to defend the Ionian port city of Klazomenai, which was founded on the site

Liman Tepe during the Archaic period, against Persian attack.
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1.2 Objectives

The overall objective of this thesis is to document changes in coastal depositional
environments and shoreline positions at Liman Tepe/Klazomenai during the Late
Neolithic (ca. 4000 BC) to present. Previous work has established the coastal
environments that existed during the main Early to Late Bronze Age occupation of the
site (Goodman. 2006: Goodman et al., in press) but little is known about the
configuration of the coastline when the first Neolithic peoples settled here. The presence
of Neolithic and Chalcolithic cultures is indicated by scattered pottery remains on land
but no Neolithic settlement to date with a clearly coastal context has been located. The
generally low visibility of Late Neolithic coastal sites in the region probably reflects both
a bias towards the study of terrestrial sites and major changes in the coastal configuration
during prehistory. A major emphasis is to reconstruct the shoreline positions during the
Late Neolithic in order to provide the baseline data for future predictive modeling and
exploration for submerged prehistoric sites.

A second major objective of the thesis is to document the human impacts on the
coast that resulted from the growth of the city of Klazomenai. The construction of the
Alexander causeway in 334 BC had major impact on the coastal depositional
environments. This thesis aims to document these changes and to better resolve how the
coastal sediment budget and depositional systems were altered by the causeway

construction.
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The detailed objectives are to:

1. Reconstruct the changes in the coastal paleogeography and shoreline positions at

Liman Tepe/ Klazomenai from the Late Neolithic to present (~ 6000 years).

2. Better resolve the timing of the construction of the Alexander causeway at
Klazomenai and its impact on the natural coastal environment and depositional
processes.

3. Determine which geoarchaeological methods and proxies (coring, sediment,

physical and magnetic properties, geophysical remote sensing, geochemistry) are

most useful for reconstructing coastal environments.

1.3 Study Area

This study area is located about 40 km to the southwest of the city of I[zmir, in
western Turkey (Figure 1.1). Geoarchaeological studies and geophysical investigations
were conducted within a 4 km? area including the modern Port of Iskele and nearby
Karantina Island. The area includes two significant archaeological sites — the Bronze-age

settlement at Liman Tepe and Classical port city of Klazomenai (Figure 1.3).

1.3.1 Geological Setting

The study area lies within the Aegean extensional province of western Turkey,
which is defined by a series of major west-east trending graben structures formed during
late Oligocene-Miocene extensional faulting (Brinkman, 1976; Bozkurt and Sozbilir,

2004 — Figure 1.2). The Bay of Izmir lies over a major fault-bounded extensional basin
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Aegean Sea

Figure 1.4: Mapped faults in the Bay of Izmir and surrounding region (from
Ocakoglu et al., 2005) The Bay of Izmir lies within a graben structure that has
experienced tectonic motion throughout the Holocene. Rectangle indicates study

area. N and S labels are identified fault structures according to Ocakoglu et al.,
2005.
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(Izmir Graben) that is associated with modern-day seismicity and active tectonic
subsidence. The Bay is underlain by a number of N-S trending normal and strike-slip
faults that divide the Bay into a series of graben and half-graben structures (Ocakoglu,
2005) (Figure 1.4). Recent seismic activity was recorded with a > 5 magnitude (Richter
Scale) earthquake offshore of Izmir in 2005.

The basement rock consists of Cretaceous schists overlain by Neogene marls,
shales and limestones (Ocakoglu et al., 2005). The Neogene sediments form the local
bedrock below the Liman Tepe and Karantina Island. The sedimentary rocks are locally
interbedded with Neogene volcanics (tuffs, lavas) that form the coastal highlands on the
south shore of the Bay of Izmir (Figure 1.5).

The Neogene sedimentary cover rocks are overlain by thin Pleistocene and
Holocene marine sediments within the Bay of [zmir (Aksu et al., 1987). The upper part
of the marine sediment sequence at Liman Tepe consists of modern marine muds, silts
overlying older Holocene lagoonal and terrestrial sediments deposited during lowered
phases of sea level (Goodman et al., in press). The marine sediment thickness is greater
on the eastern side of Karantina Island owing to its more sheltered location behind the
Alexander causeway.

The causeway construction (334 BC) effectively shut-down the natural east-west
longshore transport of sediment along the coast, creating a sheltered embayment with
more rapid sediment accumulation to the east of the island. The sediment accumulation
on the western side of Karantina Island has been much less extensive, as indicated by the

presence of bedrock outcrops and relict wadi and shoreline features on the modern seabed
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Figure 1.5 Geologic map of lands surrounding the Bay of Izmir. Modified from the Institute of Min-
eral Research and Exploration — Ankara (1964). Rectangle indicates study area.
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(Boyce et al., in review). The relict shoreline features record early Holocene low-stand

phases when sea levels were more than 10 m below present.

1.3.2 Bay of Izmir: Physical Setting

The Gediz River is the dominant geomorphological feature in the Bay of [zmir.
The Gediz Delta has prograded through the late Quaternary, infilling the southeastern end
of the Gediz Graben, an E —W trending half-graben system that has been active
throughout the late Pliocene (Hakyemez et al., 1999 — Figure 1.6A). The main sediment
source in the study area is poorly-sorted alluvial sediments from the Gediz River and
erosion of the surrounding coastal highlands (Duman et al., 2004 — Figure 1.6).

The dominant wind pattern in the Bay of Izmir is from the north to northwest and
blows Aegean waters along the southern coast into the Bay. creating localized gyre
systems (Ivanov et al. 1998; Sayin, 2003). The gyres create an east-west transport
direction of sediments along the southern shores of the Bay away from Izmir. A second,
wind-dominated current system moves eastward along the western shoreline of the
Karaburun Peninsula, however little deposition occurs on the western side of the
causeway due to a lack of sediment supply (Sayin, 2003). These characteristics are
evident in the construction of various harbours on the south shore of the Bay of Izmir.
Most modern harbours have an arcuate breakwater that open to the east, preventing

siltation by sediment transported by westerly currents.
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Figure 1.6: Aerial images of study area (courtesy of Google Maps #325519188). A. Bay of Izmir
showing outflow from the Gediz River. Sediments are carried by currents south-west along the
northern shore of the Bay. B. A view of the causeway and sediment basin forming by prograding
beach barriers to the east of the structure.
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Within the study area, the modern harbour at Iskele is oriented in this fashion but
the adjacent Archaic mole structure at Liman Tepe opens westward. This may indicate
that the easterly longshore sediment transport was dominant prior to the construction of
the causeway. A second Classical-age harbor on the eastern side of Karantina Island,
opens to the north, also avoiding the eastern sediment supply. When the causeway was
constructed, the sediment from the east rapidly prograded the coastline on the east side of

the structure (Figure 1.7A, B).

1.3.3 Archaeological Setting

The coastal settlement at Liman Tepe was established in the late Neolithic period
(8,000 — ~3,500 BC) and early Chalcolithic (3.500 — 2,800 BC) (Goodman, 2006). The
settlement grew and eventually took over a small hill located next to the modern
shoreline during the Bronze Age (2800 — 1200 BC). The Bronze-age city, Liman Tepe,
literally “Harbour Hill", had a well-defined urban character with a monumental
architecture and well fortified walls.

Previous studies have shown that this site was ideal — it provided a landscape that
created a sheltered marina and was located at a thin portion of land that connects the
Karaburun Peninsula with the rest of Turkey (Sahoglu, 2005). Ancient traders wishing
to sail along the Turkish coastline would be delayed for days having to go around the
peninsula, while the Liman Tepe settlement provided a perfect location to offload goods

and transport them quickly over-land.
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Figure 1.7: Aerial images of archaeological sites in the study area (courtesy of Google Maps
#325519188) A. A close view of Alexander’s and the modern Causeway structures. B. A view of
the area noting submerged location of modem Iskele harbour and Liman Tepe/Klazomenai land
sites. C. Archaeological digs on land, both Klazomenai (left) and Liman Tepe (right) are being
worked by Ege and Ankara Universities (respectively). No work has been done on the actual
causeway structure.
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The settlement was later re-colonized by Greek settlers in the 9" century BC and
later became known as ‘Klazomenai’. The area expanded during the Classical and
Roman periods, becoming a thriving port dealing in the trades of olive products and the
trans-shipment of goods from Anatolia (Ersoy, 1993). Klazomenai was one of the 12
cities (Dodecapolis) of the Ionian League, a confederation of lonian city states in western
Anatolia that joined in a political alliance (Herodotus, 5™ ¢ BC) (Figure 1.8). Klazomenai
was of strategic importance as an access point to two major river valleys, the Gediz to the
north and the Kucuk Menderes to the south that led to the interior of Anatolia and to
major trade centers connecting with Mesopotamia (Sahoghlu, 2005). Persian
encroachment during the 6™ and 5" centuries BC prompted a move by the Klazomenains
to the nearby Karantina Island (Ersoy, 1993). Alexander the Great, upon
defeating the Persians, ordered the shoreline to be secured and a causeway was built to
connect the island city to the mainland (Pausanius, 2" ¢ BC). This causeway drastically
altered the near-shore currents and a small sediment basin formed that can still be seen

today (ca. 334 BC; Figure 1.7; 1.9).

1.4 Historical background of Klazomenai

References to Klazomenai (also Clazomenai) in Greek and Macedonian history
books are, in general, scarce. Historian Pausanias provides background to the settlement
of the city in his Guide to Greece, written in the 2" century BC. The city was settled by a
contingent of Greeks displaced from the Peloponnese in the 9" ¢ BC. Klazomenai was
one of a politically allied citied western shoreline of lonia (Turkey) called the

Dodecapolis (Herodotus, 5" ¢ BC; Figure 1.8).
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Figure 1.8: Map of lonia showing locations of ancient cities
(Pausanius 2nd ¢ BC). Klazomenai was one of 12 cities united in
culture and politics known as the Ionian ‘Dodecapolis’
(Herodotus, Sth c. BC).

20



M.Sc. Thesis — G.M. Krezoski — McMaster University Department of Geography and Earth Sciences

21

Figure 1.9: A.
View of bay on
west side of the
Alexander Cause-
way (center)
Karantina Island
(Left) and the
mainland (right)
looking west from
Liman Tepe. B.
Image from the
south end of cause-
way looking north
to Karantina Island.
The ruins of the
Roman causeway
renovation parallels
the modem struc-
ture. C. View of
Liman Tepe and the
modem port of
Iskele.
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1.5 Alexander the Great

In 334 BC, Alexander the Great of Macedon crossed the Hellespont and entered
Anatolia. Meeting the Persian troops at the Battle of Granicus, the Macedonians won and
continued to push into Anatolia via Sardis, eventually arriving in Ephesus (Figure 1.10).
From Ephesus, Alexander ordered his general Parmenion to travel to the surrounding
countryside to receive lonian submission. This included the construction of the causeway
from the mainland to the island of Klazomenai in order to thwart the Persian fleet from
landing on the island (Green 1991). Historians Pliny and Pausanius (2" century BC)
both record the connection of the island to the mainland after the battle of Granicus (334
BC). In southern Lebanon, Alexander ordered the construction of two more causeways,
the most notable in Tyre. Alexander moved on to construct the Heptastadion in
Alexandria and spread his country’s knowledge and culture throughout the east.

Despite the abundant historical record of Alexander the Great’s campaigns,
ancient historians wrote about his exploits, including the Klazomenaian causeway, at
least two centuries after his death. There is no record corresponding to the actual
construction timeline, and therefore this study aims to use multi-proxy sedimentological
analysis as well as radiocarbon dating in order to confirm the causeway’s 4th ¢. BC

construction.
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Figure 1.10: Alexander the Great’s campaign in Anatolia and Syria (334-331 BC).
The causeway at Klazomenai was built following battle of Granicus (334 BC).
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1.6 Previous Work

Excavations at Liman Tepe have been conducted by the archaeologists of Ankara
University since the early 1990°s as part of the large Izmir Regional Excavations and
Research Project (IRERP) (Erkanal, 2008). The land excavations have uncovered
extensive Chalcolithic and Early Bronze-age occupation phases and also evidence for a
harbour structure. The harbour has been investigated since 2002 by a team from Haifa
University out of Israel. The excavations had led to the discovery of large pithoi and
abundant Bronze-age pottery materials which indicate the importance maritime trade at
Liman Tepe. The harbour basin included a protective breakwater (mole structure) that

™ ¢. BC). The mole now lies

was constructed during the Archaic period (ca. 6-7
submerged at a depth of ~1.5 m below present sea level.

Goodman (2006) investigated the Bronze Age coastal depositional environments
at Liman Tepe using land cores from the archaeological site and marine cores from the
harbour basin. Goodman identified two main depositional phases: a transgresssive
systems tract that was formed during mid-Holocene sea level rise, and a subsequent high-
stand systems tract that formed as sea level rise decelerated after ca. 2800 BC. The high
stand led to the development of an extensive beach barrier complex with back barrier
lagoon and wetland environments (Goodman et al., in press).

The Classical archaeology of ancient Klazomenai is being investigated by

researchers from Ege University, under the direction of Dr. Y. Ersoy. Excavations on

Karantina Island have found evidence for one of the earliest known olive pressing plants.
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Beginning  Ending Beginning  Ending Date
Cultural Period Date (BC)* Date (BC) Date (yBP) (yBP)
Neolithic 8,000 3,500 10,000 5,500
Chalcolithic 3,500 2,800 5,500 4,800
Bronze Age 2,800 1,200 4,800 3,200
Iron Age - Dark Ages 1,200 1,000 3,200 3,000
Iron Age - Geometric 1,000 700 3,000 2,700
Iron Age - Archaic 700 450 2,700 2,450
Iron Age - Classical/
Hellenistic 450 114 2,450 2,114
Roman 114 400 AD** 2,114 1,600

*BC: Before Christ
** AD: Anno Domini - After Christ

Figure 1.11: Archaeological time periods for western Aegean in years BC/AD and
years Before Present (yBP) (after Manning, 1995; Warren and Hankey, 1989; Renfrew,
1972 and Goodman, 2006).
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Abstract:

Liman Tepe is a long-occupied prehistoric coastal settlement located on the
southern shore of the Bay of Izmir in western Turkey. The configuration of the
submerged mid-Holocene (ca. 5-6 Ka) coastline was investigated at Liman Tepe to guide
the search for underwater Neolithic archaeological sites. Shoreline features were mapped
on the shallow shelf area (4 kmz) using a single-beam (200 kHz) echosounder and chirp
(18-24 kHz) sub-bottom seismic profiler. Changes in the coastal paleoenvironments were
determined by detailed sedimentological (lithofacies, grain size, magnetic susceptibility)
and micropaleontological analyses of five marine sediment cores.

The sediment cores revealed a sequence of poorly-sorted pebbly shoreface
deposits containing abundant shell and coralline fragments (Unit E shell hash) overlain
by marine muds and silts (Units D-B) deposited in lagoonal/wetland and low-energy
shallow marine environments. The contact between the pebbly sands and mud sequence
is represented in seismic profiles by a high amplitude reflection that is continuous basin-
wide. The reflector surface (top of Unit E) shows a number of northwest-trending ridges
and terrace features that are interpreted as buried paleoshorelines. '*C dating of shell
materials from uppermost buried beach ridge yielded a Late Neolithic age of 3860 +/-
120 cal BC. The laminated mud sequence (Unit C, D) overlying the beach deposits record
the development of a shallow back-barrier wetland/lagoon. The lagoonal sediments
transition at 60-80 cm in the core to sandy, organic-rich muds containing abundant
organic fragments (Unit B). Organic (plant) materials from just below Unit B yielded a

"¢ date at 450 +/- 70 cal BC. The transition is interpreted as the onset of construction of
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the Alexander causeway (~ 4™ ¢ BC) connecting the mainland with Karantina Island.
Following the causeway construction, the shoreline on the east side of the island

prograded rapidly covering older barrier/lagoonal sequences with a > 1 m mud drape.

2.1 Introduction

Since the end of the Last Glacial Maximum (LGM ~20,000 Ka.) ocean levels
have risen approximately 125 m to the present-day levels (Fleming, 1998). In the
Mediterranean, sea-level rise throughout the Holocene is the reason most human
settlements on coastal locations are no longer accessible. Sites associated with cultures
during the Neolithic (~8,000-3,500 BC) and earlier have been inundated. Because of
this, studies completed in the past three decades have addressed the question of local sea-
level curves (Lambeck, 1995; 1996) Using these curves, geologists can re-create
shoreline environments at archaeological sites and determine the geomorphology of
landscapes based on changing erosional and depositional rates (Kraft, 2003). In the
Aegean, this task is made more difficult by the active tectonism of the area caused by
movement of the Anatolian plate between the European and African plates.

Prior to the past decade, the underwater realm has gone relatively unexplored due
to the belief that artifacts would be poorly preserved and surveys expensive to run
(Bailey, 2004). Recent advances in remote sensing and sedimentological analysis have
proven the opposite, with submerged sites found in better condition than similar land
excavations (Quinn, 2000; Bailey, 2004). With these new techniques, the submerged

archaeological world has become accessible, with many pioneering studies providing a
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wealth of information from submerged archaeological sites in the North Sea (Flemming,
2004).

The Bay of [zmir in the eastern Aegean Sea (western Turkey shoreline), is the
location of a long-occupied archaeological site (Liman Tepe/Klazomenai) known for its
major contributions to the understanding of the ancient Anatolian trade network
(Sahoglu, 2005). The bay is an arm of an E-W trending horst and graben system that has
developed throughout the Holocene (Gediz Graben). The dominating sediment source to
the bay is the Gediz River, north of the study site, and the major wind direction travels
from the North/Northwest.

Recent geoarchaeological evidence at the site has documented changes in coastal
environments during the main Bronze-Age (2800 - 1200 BC) phase of occupation
characterized by a beach-barrier/back lagoon system proximal to the modern-day
shoreline (Goodman, 2006). Evidence of older settlements has been discovered at the site
(pottery) but no sites have been found on land. In this study the configuration of the pre-
Bronze-age shorelines were reconstructed using detailed geophysical and
sedimentological analyses in order to assist in the exploration for older inundated
Neolithic shorelines (8,000-3,500 BC). Bathymetric and seismic surveys identified a
series of relict shorelines, the most recent at approximately 10 m below modern sea-
levels that has been dated to approximately 3860 BC corresponding to the Late Neolithic
age.

This study also examines geomorphologic changes at the study site due to

changing sea-levels in an attempt to determine possible locations of Neolithic occupation
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sites. It was discovered that the Bronze-age beach barrier was the youngest in a series of
(now submerged) relict shorelines that were preserved by rapid inundation. The relict
shorelines are buried to the east of the causeway by sediments after ca. 2800 BC, when
the depositional environment changed from transgressive shoreline to progradational
beach-barrier system. The accretion was likely further accelerated during the Hellenistic

period by the construction of Alexander’s causeway in the 4" ¢ BC.

2.2 Study Area

The study area is located on southern shore of the Bay of Izmir, Turkey, about 40
km southwest of the city of [zmir (Figure 2.1A). The area lies within the geologically
active Aegean extensional province in western Turkey, formed from the movement of the
Anatolian plate between the European and African plates (Ocakoglu et al., 2005). The
Bay is a fault-bounded graben structure bordered to the north and south by the Gediz and
Kucuk Menderes Grabens respectively. The Gediz River is a major sediment source in
the Bay of Izmir and has prograded seaward over 400 km? since the Pleistocene (Erinc,
1978). Localized gyres of water masses within the Bay transport sediment toward Liman
Tepe from the east (Figure 2.1A; B — Sayin 2003). Smaller, localized sediment sources
are derived from erosion of the nearby volcanic highlands.

Differences in deposition within the study area can be seen in the bathymetry
map. To the west of the causeway the sea-bottom has a rugged topography with relict
shorelines and wadi systems that record a drowned terrestrial landscape. On the eastern
side, the bottom topography smooth due to much thicker accumulation of Holocene

sediments (Figure 2.1C).
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The Bay of Izmir is associated with several tectonically active fault systems
including several major west-east trending faults and a number of minor north-south
fracture systems that are oriented perpendicular to the direction of basin extension
(Ocakoglu et al., 2005). Regionally, bedrock consists of Cretaceous sedimentary rocks
(exposed in highlands), Neogene volcanics and sediments (rhyolites and andesites;
limestones and sandstones) (Ocakoglu et al., 2005; Brinkman, 1972). Neogene limestones
form the local bedrock at Liman Tepe, and are overlain by unconsolidated Quaternary
sediment layers of variable thicknesses.

Archaeologically the area is of great importance, preserving a major Bronze-age
settlement Liman Tepe and later Classical and Roman-age Klazomenai. Liman Tepe
figured prominently in the Bronze Age as trading port of the Anatolian Trade Network
(Sahoglu, 2002). Recent evidence has demonstrated that Liman Tepe may have eclipsed
its contemporary, Troy in terms of its economic importance during the Bronze Age
(Erkanal, 2008; Sahoglu, 2008). The city of Klazomenai was also an important olive

producing centre and shipping port during the Hellenistic and Classical periods.

2.4 Methods

2.4.1 Geophysical survey

A detailed bathymetric and sub-bottom seismic study was conducted in a 4 km® area
around Karantina Island to map the location of relict shoreline features (Figure 2.2).
Bathymetry data were acquired using a 200 kHz Knudsen single-beam echosounder with

nominal 50-75 line spacings along north-south and east-west transects (Figure 2.2).
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Figure 2.1: A. Location of Liman Tepe study area in western Turkey. B. Dominant wind and
current patterns in Bay of Izmir (after Sayin, 2003). Predominant longshore transport direction is
west-east with localized transport from the east due to clockwise circulation of water in the
eastern end of the Bay of Izmir. C. Digital elevation and bathymetric model for coastal plain and
inshore areas around Liman Tepe. Bathymetry map from Boyce et al., (In review). Land topogra-
phy based on 1:5000 Turkish land survey maps. Klz = Klazomenai, LT = Liman Tepe, AH =
Archaic-age harbour, CH = Classical-age harbour, AC = Alexander Causeway. Bronze-age relict
barrier (BR) and back-barrier lagoon (L) identified by Goodman (2006) are also visible in

topography. -
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Bathymetry data were processed according to the methods outlined by Sonnenburg and
Boyce (2008). The corrected bathymetry data were integrated with land elevations
obtained from 1:5000 topographic maps and interpolated using a kriging algorithm to
create digital elevation model (Figure 2.1).

Sub-bottom seismic profiles were acquired at 75-100 m line spacing using a
Knudsen swept frequency (18-24 kHz) chirp echosounder. The penetration depth of the
high-frequency chirp source was limited to <2 m across much of the survey area by the
presence of reflective (sandy) bottom sediments. To the east of Karantina Island, greater
penetration of up to 6 m was achieved due to the dominantly silty bottom sediments. The
processing of the seismic profiles included the application of automatic gain control
(AGC) to equalize trace amplitudes, band-pass filtering (pass band 15-30 kHz) and
depth-conversion of the two-way travel times using an estimated sediment velocity of
1550 ms™ . The reflector surfaces in each profile were then digitized and the calculated

depths interpolated to create maps of the reflector surface relief and isochore thickness.

2.4.2 Sediment Coring and Physical Properties

Five sediment cores were collected on the eastern side of the causeway using 20 ft
aluminum irrigation tubes and percussion coring methods (Figure 2.2). Cores were split
into 1 m sections and placed in cold storage (4-6 degrees C) until split for analysis.

Sedimentary characteristics, including grain texture and visual size, horizon changes,
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organics and carbonates were logged, digitized, and plotted to depth (Figure 2.3).

Radiocarbon dates were obtained on four samples in order to constrain the
sediment ages: two from LT-04 (olive pits, 76-77 cm depth; plant organics 171-172 cm
depth) and two from LT-01 (plant organics 84-85 cm and plant material at 99-101 depths)
for radiocarbon (AMS) dating.

Grain size samples (5 c1n3) were taken every 5 cm in each core and processed
according to van Hengstum et al. (2007). Samples were treated with a 10% Hydrochloric
Acid (HCL) solution and a 40% Hydrogen Peroxide (H>O,) solution in order to remove
carbonate and organic populations, respectively. Samples were treated with a 1%
Sodium Carbonate (Na,COs3) and heated to 85 degrees C for 2 hours in order to remove
the organic silica content (diatoms) (Conley and Schelske, 2001). Samples were allowed
to evaporate into a paste, then mixed and run three times for particle size averages on a
Beckman 250 LS Coulter Counter using the Fraunhofer optical model. Results (mean
um) were plotted down-core and compared to lithology. Results were converted to phi
scale and displayed using a minimum curvature grid in Geosoft’s Oasis Montaj in order
to create a visual surface plot (van Hengstum, 2007; Beierle et al, 2002).

Magnetic susceptibility was performed on the cores in order to determine ease of
magnetization of sediments using a Bartington MS2F probe. The probe was placed every
5mm along the spine (back 2 cm removed) of archived cores and measurements corrected
for drift every 5 to 7 measurements. Trends were plotted downcore using Oasis Montaj

geophysical software and plotted to compare with lithology.
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2.4.3 Micropaleontological Analysis

Foraminifera have been employed in a number of previous studies to as indicators
of changes in salinity, water depth and trophic conditions in marine environments (Scott
et al., 2001). In this study the down-core trends in foraminifera abundance were
investigated to assist in the interpretation of depositional environments. Foraminifera
abundances were determined on ca. 5 cm® sediment samples taken at 10-30 cm intervals
from core LT-04. Samples were separated using a 500 um and 63 um sieves, dried and
split into aliquots. Each aliquot was then counted until a minimum of ca. 300 specimens
were identified to the genus level according to Cimerman and Langer (1991). The relative
abundance of each genus was determined then plotted to depth (Figure 2.4). The
representative foraminifera were photographed using a scanning electron microscope
(SEM) to aid in the identification (Figure 2.5). A Q-mode cluster analysis was performed
using Ward’s sorting method and Shannon diversity index calculated using the PAST

statistical software package (Davis, 2002 Hammer et al., 2001; Figure 2.6).

2.5 Results
2.5.1 Core Lithostratigraphy
Unit E: Pebbly shell hash facies.

This lowermost unit in cores LT-01 and LT-04 consists of a pebbly shell hash.
The shell hash has a matrix of coarse pebbly sand with abundant shell and coralline
fragments and some bivalve and gastropod shells. The bivalve shells and coralline

fragments are mainly moderate to well-rounded and abraded. The granule and
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pebble lithic fragments are similarly well rounded. The unit has overall high carbonate
content (40%) with some well preserved Posidonia oceanica (sea grass) leaf fragments.
Particle size analysis has revealed a coarse siliciclastic fraction averaging between 0-3
phi. Magnetic susceptibility is uniformly low between 0-5 SI x 10°. A radiocarbon date
on plant material at the top of Unit E (¢m in core LT-04) yielded an age of 3860 +/- 120
cal BC.

The coarse-grained character and presence of well-rounded pebbles and coralline
fragments in Unit E indicate a high-energy nearshore environment. The top of Unit E
corresponds with a distinctive high-amplitude reflector that is traceable as a basin-wide
reflector in seismic profiles (Figure 2.7). The interpolated top of Unit E (Figure 2.8)
shows several (2-3) linear north-west trending ridges that are interpreted as drowned
beach barriers. Assuming the beach sediments were deposited in shallow water (< 1 m),
the shoreline position ca. 3800 ka was ~6 metres below present sea level.

Unit E has been identified as a paleo-shoreline rather than a major environmental
event due to the lack of any depositional features (i.e. interbedding or fining-upward
sequences). The presence of organics and the poor sorting indicates a random

depositional process influenced by wave action.
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Unit D: Wetland silt facies.

Unit D consists of crudely laminated silt lithofacies containing peat and woody
reed fragments with a few disseminated shell fragments. The unit overlies Unit E across
a conformable transitional contact. The unit reaches a thickness of over 80 ¢cm within a
small basin indicated by a depression in the surface of surface of Unit E (Figure 2.3),
Grain size fines upward throughout the unit from fine sand to a coarse silt (5 to 7 phi).
The carbonate content is much lower than underlying Unit E (loss of shell material, ~
20%) and organics increase to from 5% to 10%. The volume magnetic susceptibility (k)
is low, between 0 and 15 SIx 10°.

The laminated silts in Unit D marks a conformable transition from a high-energy
beach environment to a low-energy, wetland. As sea-levels rose in the area, the beach
system (Unit E) was inundated and a shallow wetland system covered the area. The
upwards-fining trend within Unit D indicates an increase in water depth within the area
and a shift to lower energy conditions. Laminations and reed fragments are consistent
with deposition in a shallow, sheltered wetland environment. The location of this wetland
shoreward from Unit E indicates a beach-barrier and back wetland/environment existed

sometime after ~3860 BC.

Unit C: Lagoonal silt facies
Unit C is a fine to medium laminated silt lithofacies. The unit shows a continuing
fining-upward sequence from Unit D to a medium silt (7.5 Phi) with cm-scale

laminations. In LT-04, Unit C contains a large (30 cm) horizon of abundant, well-
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preserved olive pits at 47-77 cm depth. In LT-01, pottery fragments are present at 68-70
and 91-92 cm depth. Organic content increases up to 18%, corresponding with a
decrease in carbonate content (up to 10-15%). The volume magnetic susceptibility is
high (up to 30-40 SI x 10°), and shows several discreet peaks that correspond with
decreasing grain size. Radiocarbon dates obtained on olive pits from LT-04 yielded a date
of 450 +/- 70 cal BC at 76-77 cm depth, giving the maximum age of causeway
construction.

The presence of laminated sediments and the fining upward trend in Unit C
indicates rising water levels and the development of a back-barrier lagoon system. The
geometry of the sediment package, thickening within a shallow basin and thinning over
the beach ridge (Unit E) is consistent with this interpretation. The presence of olive pits
and pottery fragments at the top of the unit indicates human activity around the ancient
city of Klazomenai. Variability in magnetic susceptibility in Unit C indicates changes in
the flux of terrestrial sediments being delivered to the lagoon. The primary source of
magnetic particles is likely titano-magnetite derived by erosion of volcanic highlands.
Peaks in magnetic susceptibility indicating phases of erosion may be related to climatic

factors or anthropogenic activities such as land clearance (Figure 2.3).

Unit B: Organic-rich silty sand facies
Unit B is a massive silty sand lithofacies with abundant well-preserved plant
macrofossils. Dominant organic matter is the remains of Posidonia oceanica seagrass.

The contact between Units C and B is abrupt with a distinct grain size coarsening from
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fine to medium silt (7.5 phi) to a silty sand (1-4 phi). Organics remain steady throughout
this unit (up to 10%) and carbonates begin to increase (up to 20%). Magnetic
susceptibility shifts to lower values across the boundary, (0 to 5 SI x 10™). All cores jump
to higher (>10 <20) SI values in the top 5 cm of each core (Core 3 jumps to over 70 SI x
10%). Radiocarbon ages obtained on plant organics at 84-85 cm depth in LT-01 was dated
to approximately 2" ¢ AD.

Unit B records a major shift in depositional environments a few cm above the
radiocarbon date of ~450 BC. With calculated deposition rates of ~.3 cm/year, this
places the major depositional change at approximately the mid to early 4" ¢ BC. One
major even that occurred during that time period was the construction of the Alexander
causeway in 334 BC. The causeway accelerated shoreline progradation that had begun
after 2800 BC (Goodman, 2006), and is recorded by a shift to coarser grain sizes in Unit
B. A similar explanation identifies Unit B as a relict beach barrier ‘tail” recording sea-
level rise and movement of the barrier system identified by Goodman (2006) inshore.
The date of 450 BC underneath this horizon, however, disproves this theory as
Goodman’s (2006) barrier was in place prior to 2800 BC. The silty substrate of Unit B
provided an ideal environment for the growth of extensive Posidonia Oceanica meadows

in the shallow embayment that formed after causeway construction.

Unit A: Fine sand facies
Unit A consists of fine, well-sorted quartz sand (3-4 Phi) with a few thin (1 cm)

horizons of articulated shells. The carbonate and organic content is negligible and the
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magnetic susceptibility is moderately high, between 5 to 25 x 10° SI.

Unit A overlies Unit B across a sharp, unconformable contact. The well-sorted
and dominantly sandy composition of Unit A is consistent with deposition in a foreshore
or beach environment. The lithofacies records the progradation of recent beach sediments

over the older Holocene sequence.

2.5.2 Micropaleontology:

The downcore trends in foram abundances are shown in Figure 2.4. A total of 17
statistically significant, foram genera were identified (Figure 2.5). The most prevalent
taxa are the Rodalinids, most notably Rosalina sp. (15-30% of total abundance). Cluster
analysis yielded three distinct clusters that indicate three major biofacies (Figure 2.6).
The biofacies correspond with major depositional phases recognized from the core

lithostratigraphy and physical property data (Figure 2.3).

Biofacies 1:

Biofacies 1 is defined by a lowermost cluster (120-210 cm depth; Figure 2.4; 2.6))
that corresponds with depositional environments in Unit E and the transition to Unit D.
The biofacies is dominated by Ammonia, Rosalina, Triloculina, and Quinqueloculina sp
(10-20%). Many tests show signs of abrasion and rounding and fragmented shells are also
abundant, consistent with reworking in a shallow, foreshore environment. Most of the
genera show a increasing abundance towards the top of Unit E, except the notable decline

in Ammonia, Triloculina and Haynesina species. Bolivina sp. and Planorbulina sp. are in
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low abundance (0-0.5%), as both species are typically found in lower energy settings (i.e.
seagrass meadows; Murray. 2002) and have a low preservation in high-energy beach or
environments (Murray, 2002). The gradual increase in species across the Unit E/Unit D

boundary in consistent with the transitional nature of the contact.

Biofacies 2: 24 and 2B

Biofacies 2A corresponds with Unit D (wetland) and is marked by a gradual
decrease of the larger species mentioned in Biofacies 1, and an increase in the less
populous genera (Planorbulina sp., Spiroloculina sp.) as waters begin to calm and
become more vegetated.

Biofacies 2B corresponds with Unit C (Lagoon) with a major eutrophication
signal (Bolivinids) increasing up to 3% mirroring a decrease in larger Quinqueloculina
sp., Triloculina sp. and Miliolinella sp. that fall from over 35% to less than 10%
abundance. A second eutrophication indicator, Rosalina sp.. also peaks in Biofacies 2A,
up to 30%. These two indicator species are also identified in Goodman (2006) as harbour
eutrophication indicator species. Peaks in LT-04 correspond with the same time period
as Goodman’s biofacies, indicating a eutrophication over a larger area that is

anthropogenically influenced.



147

'_.
5
o
=~

Dept

3
2

8 o
45

40

L ll‘
]

Quinqueloculina sp.

Asterigerinata sp.
Spiroloculina sp.*
Vertebralina sp.*

Planorbulina sp.*
Textularina sp.*

Lithology
Depositional
Environment
Total
- 1000 Abundance
2000 (per 1cc)
Biofacies
Elphidium sp.
Ammonia sp.
Rosalina sp.
Haynesina sp.
Cornuspira sp.
Triloculina sp.
Miliolinella sp.
Articulina sp.*
Bulimina sp.*
Bolivina sp.*

Fractional Abundance (Relative % 1cc)

S Do S Do 0 69 69 6 Q o 60 69
L A « i N H 2

Cibicides sp.*

T
I

T
il
B3

I
e
P3: Upper Shoreface

CCH

F

[450 +/- 70 cal BC]

80
100+

204~

R

B2B

T

al

|

&
le]
P2: Wetland/Lagoon
B2A

[3860 +/- 120 cal BC|

P1: Foreshore
B1

Figure 2.4: Foram percentage abundances for core LT-04 (weighted to 1 cc). Note distinct shift in foram abundances at 75 cm
that also coincides with changes in grain-size and magnetic susceptibility associated with the causeway construction horizon
(CCH). The shift to higher abundance of Bolivinids and Rodalinids and decrease in other species indicates an increasing eutro-
phication of the waters around Karantina Island during the Archaic period.

$20U219S YT puv (ydpa3020) f0 JuawLIDda (1S4201U[) LAISDINI — 1YS0Z4Y “N'D — SIS [ SV



M.Sc. Thesis — G.M. Krezoski — McMaster University Department of Geography and Earth Sciences

Figure 2.5: Scanning electron microscope (SEM) images of representative forams. 1. Ammonia sp. spiral side
(x 106) 2. Ammonia sp.umbilical view (x 263) 3. Cibicides sp. spiral view (x 263) 4. Cibicides sp. umbilical
view with aperture (x 252) 5. Haynesina sp. (x 300) 6. Articulina sp. spiral side (x 424) 7. Articulina sp with
aperture (x 312) 8. Asterigerinata sp. ventral view (x 263) 9. Asterigerinata sp. umbilical view with aperture
(x 263) 10. Textularina sp. (x 106) 11. Vertebralina sp. apertural view on edge (x 156) 12. Rosalina sp. spiral
view (x 170) 13. Rosalina sp. umbilical view (x 170) 14. Elphidium sp. spiral view (x 7.15) 15. Elphidium sp.
on edge (x 163) 16. Bulimina sp. with aperture (x 388) 17. Bolivina sp. (x 252) 18. Vertebralina sp. spiral view
(x 212) 19. Vertebralina sp. apertural view (x 163) 20. Planorbulina sp., apertural view (x 406) 21. Planorbu-
lina sp. ventral view (x 178) 22. Miliolinella sp. (x 655) 23, 24, 25, 26. Miliolid sp. (x 126, 137, 137, 137) 27.
Triloculina sp. (x 312) 28. Spiroloculina sp. (x 143).45
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Biofacies 3:

Biofacies 3 corresponds with the shallow marine environment that was
formed after the causeway construction horizon (~334 BC). Many foraminifera
abundances revert back to pre- Unit C/ Biofacies 2A abundances. This change is the
most visible trend in the foraminiferal data set. Rosalina sp. decrease to 10%,
Quingueloculina sp. increase from ~7% to over 20%. Many of the less abundant genera
(Vertebralina sp., Articulina sp.) also increase immediately after the causeway
construction horizon. These species did not show major abundances lower in the core and
first begin to show significant percentages at the top of the core. Planorbulina sp. also
increase again in Biofacies 3, indicating the onset of the modern Posidonia Oceanica

meadows.

Major changes in foraminiferal abundances occur at the boundary between Unit D
and C, and between C and B. transitioning from a wetland to a lagoon to the post-
causeway environment (Figure 2.4). More focused foraminifera work will have to be
undertaken in order to determine species-level identification and to discern the more
subtle environmental changes. however a preliminary relationship has been established
linking foraminiferal changes with lithology. The fact that major trends in foraminifera
abundances do not appear to shift toward abundances indicating brackish water, that sea-
waters were accessible to the area at all times. This indicates a steady supply of sea-
water into the back wetland/lagoon, possibly from a channel or opening to the west

(under the causeway structure).
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Additionally, using foraminiferal trends. a rise in Bolivinid sp. was noted
throughout Unit C (lagoonal). Goodman (2006) describes a similar rise in Bolivinid sp.
during a eutrophic period in harbour construction on the western side of the causeway,
located inside the harbour at Liman Tepe (Figure 3.7 — Chapter 3) These trends would
indicate that anthropogenic influences had an influence on the entire basin-wide area
during the Archaic period. This corresponds with an increase in the civilization’s

industry and its rise as a leading producer of olive oil products.

2.5.3 Bathymetry and seismic profiling

The digital bathymetry has been combined with the topographic relief to create a
digital elevation model (DEM) shown in Figure 2.1. The bathymetry reveals a rugged
sea-bed topography with minimal sediment cover to the west of Karantina Island, and a
smooth, gradually sloping sea-bed to the east. The western portion of the map shows
several submerged features, including relict river channels, shorelines and former coastal
promontories. The shoreline locations are indicated by steeper sea-floor gradients
occurring at depths of ca. -10 m, -14 m and -16 m beneath relative sea level (m rsl). The
bathymetry also clearly shows the location of a previously studied submerged Archaic-
age (AH; 6" ¢. BC) harbour at Liman Tepe and a later (Classical) harbour (CH)
structures on the east and west of Karantina Island (Figure 2.1).

The smooth bottom relief to the east of Karantina Island is a result of coastal
progradation and infilling of the sea-floor topography by Holocene sediments (Figure

2.3). A N-S linear feature to the east of Karantina Island marks the location of a shallow
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trench and pipeline that carries effluents from a the local sewage treatment plant (circa
1992).

Changes in the thickness and geometry of the Holocene package on the east side
of Karantina Island were determined from the sub-bottom seismic profiles (Figure 2.7).
Chirp profiles were also collected to the west of the island but the seismic penetration
was limited here by the presence of thin reflective (sandy) sediments and bedrock
outcrops.

To the east of the island, the uppermost sequence of lagoonal mud and marine
muddy silt (Units B-D) is represented by a crudely-stratified seismofacies that is draped
across a distinctive basal reflector (Unit E; Figure 2.7). The surface relief on top of Unit
E and the isochore thickness map of the overlying sediment sequence (Units B-D) are
shown in Figure 2.8. Seismic data reveals a series of linear terraces made up of sediment
consistent with Unit E at levels similar to bathymetry data on the western side of the
causeway (~-10. -14 and -16 m depth). The major feature seen between -6 and -10 m
depth has been identified as a drowned beach barrier, and chirp seismic shows a lagoonal
lowland shoreward from the feature. A headland can also be seen near Liman Tepe, most
likely associated with later shoreline progradation. A small channel structure appears to
open to the west of the lagoon (under the causeway structure) but was not traced beyond
the modern causeway. The base of Unit E was not resolved due to the limited penetration
of the chirp source but other work using a low-frequency boomer seismic indicates Unit

E in places directly overlies the Neogene limestone bedrock (Mueller et al., in press).
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Bathymetric and seismic data reveal Karantina Island was connected to the
mainland sometime before 3860 BC. As water-levels rose, the former shoreline became a
shallow-marine platform that was a nucleus for shoreline progradation. This platform

was taken advantage of by Alexander the Great’s troops when building his causeway.

2.6 Discussion
2.6.1 Depositional environments

Sedimentological and geophysical surveys at Liman Tepe have identified several
relict shorelines that are associated with a drowned beach barrier/lagoonal system that
existed during the late Neolithic age (~3860 BC) (Figures 2.3; 2.8). A previous coastal
reconstruction by Goodman et al. (in press) using land-core data found evidence for a
higher level barrier/lagoon system dated to ca. 2800 BC (Bronze-Age). This younger
barrier is represented on land by a broad, low-level ridge (<1 m above sea level) that lies
~200 m inland from the present shoreline (BR; Figure 2.1). The ridge is backed by a
broad depression in the surface topography that marks the location of a former lagoon.
The barrier-lagoon facies succession from the land core data is shown in Figure 2.9 for
comparison with the lithofacies identified in this study. The high-level barrier identified
by Goodman et al. (in press) is characterized by shoaling upward succession, consisting
of upper shoreface sands overlain by lagoonal deposits and capped by foreshore sands
and terrestrial sediments. The shoaling upwards sequence was interpreted by Goodman et
al. (in press) as a prograding shoreface environment, formed during a highstand following

the mid-Holocene (ca. 5-6 Ka) deceleration in sea level rise (Lambeck and Bard, 2000).
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As sea levels stabilized close to modern sea level, the sediment supply to the coast began
to outstrip the available accommodation space and the coastline prograded rapidly.

The facies succession of the Late Neolithic barrier system identified in this study
shows a deepening-upwards succession (Figure 2.3; 2.9). The sequence is comprised of
foreshore sediments at the base (Unit E) followed by wetland silty muds (Unit C)
and lagoonal muds (Unit D) that clearly indicate increasing water depths. This sequence
is capped by foreshore sand and silts (Units A, B). These two uppermost units were not
part of the late Neolithic barrier-lagoonal complex and were deposited during later
regressive phase following the causeway construction (~4" ¢ BC). The barrier-lagoon
deepening upwards succession identified in this study is indicative of a transgressive
barrier system that underwent drowning in place as a result of a rapid sea level rise

(Rampino and Sanders, 1980; Elliot, 1986).

2.6.2 Paleogeographic Reconstruction

Using geophysical data, the paleoshoreline represented by the foreshore facies
(Unit E) can be traced to both the western and eastern sides of the causeway at
approximately -6 to -10 m (Figure 2.10). This shoreline was used in a paleogeographic
model to re-create the former shoreline for the Late Neolithic/Early Chalcolithic time
period around 3860 BC (Figure 2.11A). Seismic data reveals a small lagoon on the
eastern side bordered by a beach barrier (Figure 2.8). Relict channels cut through the old

shoreline and the lagoon flanked by two small promontories.
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According to Lambeck and Bard (2000) water-levels had begun to stabilize 5-
6000 years ago, however, a local period of rapid transgression occurred locally between
3860 and 2800 BC, drowning the relict shoreline and preserving its erosional features. A
shallow wetland covered land formerly exposed between the mainland and what is now
Karantina Island. As water-levels rose, the wetland environment transitioned into a
lagoonal and later shallow-marine environment (Figure 2.11 B).

During the Archaic period, major settlement arose in the area as Klazomenai
developed into a major olive oil production center and trading port (Figure 2.11 C).
Refuse (olive pits, pottery fragments) and higher magnetic susceptibility levels can be
identified in Unit C demonstrating increased human activity. During this time period,
major harbour constructions on land (Liman Tepe) and later on Karantina Island were
built. Sea-levels continue to slowly rise, depositing even finer grains off-shore in the
lagoonal environment.

The Archaic period also marks Persian encroachment into the Bay of Izmir and as
a result, the re-establishment of Klazomenai onto Karantina Island. After Alexander the
Great ordered the construction of a causeway connecting the island to the mainland, long-
shore currents were interrupted and rapid progradation of the shoreline accelerated
(Figure 2.11 D). Modern-day environments feature a shoreline that has prograded
approximately 200 m into the bay since 2800 BC, the thickest sediment deposition
occurring proximal to the causeway construction. Turkish officials are planning on
removing the current causeway construction in order to encourage re-establishment of

long-shore currents and slow beach progradation.
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Figure 2.10: Reconstructed position of paleoshorelines position near Liman Tepe.
Shorelines lie buried beneath the early Holocene sediment cover to east of Karantina
but are also clearly visible in the bathymetry map to the west side of the island,
where the marine muds are thinner. The shorelines are identified in bathymetry map
by an increase in slope gradient at ca. -10, -14, and -16 m water depth. The -10 m
contour (see also Figure 2.8) corresponds with a Unit E 14C date of 3,860 BC and is
inferred to be of Late Neolithic/Early Chalcolithic age.
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2.6.2 Sea-level Reconstruction

Using core and geophysical data from this study as well as sea level indicators
from previous work (Goodman, 2006) a local sea-level curve has been constructed to
constrain the ages of shorelines identified in this study (Figure 2.12). The global eustatic
sea-level curve and hydro-glacio-isostatic curve for the Mediterranean are also shown for
comparison (Fleming, 1998; Lambeck, 1995). This study has identified a relict beach
environment at — 6 m (ca. 3860 BC) and several older shorelines at -10, -14 and 16 m
below present sea level. The reconstructed sea level curve provides a basis for
constraining the ages of these older relict features. The local curve shows that sea levels
at Liman Tepe prior to 3000 BC were up to 3 to 4 m below the hydro-glacio-eustatic sea
level curve of Lambeck (1995). The difference in the local versus modeled curve can be
attributed to rapid tectonic subsidence within the Bay of [zmir. The local sea level curve
also shows that the mid-Holocene sea level deceleration did not occur until after 2800
BC, about 1000 years after the inflection indicated by Lambeck’s modeled curve. The
curve, when back-extrapolated, indicates that the older relict shorelines (-10 to -16 m) are
likely 6-8000 years old. Further sea level indicators and radiocarbon dates are needed to
constrain the ages of these older shorelines. The preliminary estimates obtained in this
study, however, show that they are of likely Neolithic age and warrant investigation for

prehistoric sites.
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2.7 Conclusion:

Liman Tepe has experienced sea-level rise of approximately 10 m since 3860 BC,
slowing to only a ~1.5 m rise since Archaic harbour construction (~500 BC). By
compiling sea level indicators, a local sea-level curve has been estimated showing that
sea levels during the Neolithic and Bronze Age were considerably lower (ca. 3-4 metres)
than predicted by models (Lambeck, 1995; Lambeck and Bard, 2000; Fleming et al.,
1998; Goodman, 2006) (Figure 2.12). The mapped locations of the submerged shoreline
and age constraints provide a basis for further archaeological exploration at Liman Tepe
for prehistoric settlements. This study also demonstrates the advantages of integrating
geophysical and sedimentological analysis in order to achieve a more complete

understanding of the paleogeography of submerged pre-historic shorelines.
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3.1 Abstract

In 334 BC, Alexander the Great ordered the construction of a 400 m long
causeway connecting the port city of Klazomenai (modern-day Karantina Island, western
Turkey) with the lonian mainland to defend the island against Persian attack. The
causeway construction interrupted the natural long-shore currents, creating a sheltered
basin on the eastern (leeward) side of the causeway. A detailed multi-proxy study was
conducted on five marine sediment cores to document changes in the coastal
environments resulting from the causeway construction and to verify the early 4" ¢. BC
age of the structure.

Three distinct depositional phases were recognized based on core lithofacies,
particle-size, magnetic properties, trace metals and foram abundances. The pre-causeway
environment is recorded by a lowermost sequence of coarse-grained pebbly sand with
abundant shell fragments deposited in a high-energy foreshore environment (Phase 1).
Plant material in the Phase 1 beach sediments yielded a "*C age of 3860 + 120 cal BC.
The beach sediments are transitional above to a laminated silt facies deposited in a back-
barrier lagoon that developed during a phase of Holocene coastal transgression (Phase 2).

The onset of causeway construction (Phase 3) is identified by a shift to coarser
mean grain size within an uppermost organic-rich silty mud layer containing abundant
Posidonia Oceanica sea grass fragments. The transition is associated with the appearance
of pottery fragments, masonry and abundant olive pits which yielded a "¢ date of 450 +
70 cal BC, giving a maximum age for the causeway. The transition to the post-causeway

environment is also clearly recognizable in changes in foram abundances, trace metals

(@)
N



M.Sc. Thesis — G.M. Krezoski — McMaster University Department of Geography and Earth Sciences

and sediment magnetic susceptibility. The causeway construction dramatically altered the
coastal sediment budget, contributing to accelerated sedimentation and rapid progradation

of the coastline to the east of the barrier.

3.2 Introduction:

During his campaign against the Persians (ca. 334-331 BC), Alexander the Great
laid siege to a number of well-fortified cities including the coastal settlements at Miletus,
Halicarnassus and Tyre (Pausanius, 2" ¢. BC; Quintus Curtius Rufus, 1 ¢. AD) (Figure
3.1A). The siege of Tyre was one of Alexander’s most difficult conquests as the ancient
city was located on a small island one kilometre off the Phoenician coast. The Tyrians
also possessed a superior naval fleet, which discouraged a direct Macedonian attack by
sea (Nir, 1996). In order to conquer Tyre, Alexander ordered the construction of a
causeway connecting the island with the mainland. The project was a major undertaking,
considering the required length of the causeway (> 1 km) and the prevailing strong winds
and heavy sea conditions on the Phoenician coast (Nir, 1996). After approximately six
months and several failed attempts, the causeway was completed and Alexander’s forces
gained Tyre’s walls, sacking the city in 332 BC (Pausanius, 2" C. BC; Quintus Curtius
Rufus, 1*' ¢. AD).

Geological and geoarchaeological investigations at Tyre have documented the
impact of the causeway construction on the coastline and have established that the
structure was built on top a pre-existing natural isthmus (Nir, 1996; Marriner et al., 2007

Stafford, 2007). Marriner et al. (2007) interpreted the isthmus as a submerged proto-

66



L9

A 0 200 km 4\ 481090 1em S
i - i il N
Pella Turkey N L. L %
Tion 19 %g,’,",fgf i _r'*. Ancyra Karantina S
33337 \ Island 14 m—
Phesos 7~ Xilssus ) 1
S, o8 Tarsos Bay of Izmir

Greecé ooﬁ é, ass S }

& 12m ™
b g, P '0
Mediterranean  sigon
Sea Tyre il
Alexandria

N
~o|
N
>
8m /8
S
6m —]
4m—"]
2m —

KIaZOmenal
Iskele (modern) '

Figure 3.1: A. Map of Alexander the Great’s campaigns, 334-331 BC. The causeway at Klazomenai was constructed shortly after
the battle of the Granicus in 334 BC. B. Location of study area within the Bay of Izmir. C. Study area showing location of cores

and generalized bathymetry (contour interval 2 m).

$20U2108 1407 pup {ydpa30ar) [0 1udWIIDAI] N1S1241U)) LDISDINIPY — 1YSOZALY "N D) — SISal | IS W



M.Sc. Thesis — G.M. Krezoski — McMaster University Department of Geography and Earth Sciences

tombolo (sand spit) extending from a promontory on the mainland to the eastern side of
the island. Considering the lower sea levels (ca. 1.5 m) during the early Classical period
(Nir, 1996) the proto-tombolo would have provided an ideal foundation for the
construction of a mole. According to historical sources. the mole structure was built out
from the headland with rubble from the ruins of mainland Tyre and shored up with timber
(Quintus Curtius Rufus, 1*' ¢. AD). The structure acted essentially in the same manner as
a coastal pier, blocking the natural long-shore transport along the coast and leading to
rapid growth of a broad wave-dominated tombolo that now joins the old city with the
modern shoreline (Nir, 1996: Marriner et al.. 2007). Nir (1996) estimated that on the
order of 10 million m® of sand accumulated within the tombolo since 332 BC. Following
his success at Tyre, Alexander commissioned the construction of another causeway in
Alexandria’s harbour to link the mainland with Pharos Island (the Heptastadion; Millet
and Goiran, 2007).

The causeways at Tyre and Alexandria were impressive feats of coastal
engineering that significantly altered the natural coastal environments (Nir, 1996; Stanley
and Bernasconi, 2006; Marriner at al., 2007; Millet and Goiran, 2007). These structures
were not unique in antiquity, however, as they were proto-typed on an earlier causeway
commissioned by Alexander in 334 BC to defend the port city of Klazomenai, in western
Ionia (Figure 3.1C) against Persian attack. At that time the city centre of Klazomenai was
located on a small island lying ~500 m off the lonian mainland (modern day Karantina
[sland; Figure 3.1C). In order to secure the island against a naval invasion, Alexander

ordered his general Parmenion to build a causeway connecting it with the mainland to

68



M.Sc. Thesis — G.M. Krezoski — McMaster University Department of Geography and Earth Sciences

allow the Macedonian army rapid access to the city (Figure 3.1C) (Green, 1991). The
details of the causeway construction at Klazomenai are not known, as the only
descriptions of the structure in antiquity were written by historians centuries after it was
built (ex. Pausanius, 2" ¢. BC; Pliny the Elder, 1* ¢ BC). The causeway underwent
several phases of renovation and rebuilding during the Hellenistic and Roman périods.
The ruins of the Roman causeways are visible close to modern sea level ca. 10 m to the
west of the modern causeway bridge (Figure 3.2). The remains of the original earthen-
work causeway are obscured by these later constructions but its general form is indicated
by a broad rubble platform that is visible in bathymetry images to the east of the modern
road (Figure 3.2).

The causeway at Klazomenai is important not only as example of coastal
engineering in antiquity (e.g. Nir, 1996; Marriner et al., 2007) but also as an valuable
archive of the long-term impacts of engineering structures on coastal processes. The
sheltered basin created on the east side of the causeway following its construction
provided favorable conditions for the accumulation of a continuous record of the post-
causeway sediments. In this paper we examine the coastal sediment record of the
causeway construction and alteration of coastal environments at Klazomenai using multi-
proxy analysis of marine sediment cores. The results show that causeway barrier
produced an abrupt change in the coastal currents and sedimentation patterns in the Bay
of Izmir as recorded by distinctive shifts in lithology, particle size, foram abundances and

a range of other sediment physical properties.''C dates on organics from the pre- and
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Figure 3.2: A. Portion of bathymetry map showing broad submerged platform, paralleling the modern
causeway. B. The original earth-work causeway constructed by Alexander underwent successive phases
of reconstruction during Hellenistic and Roman periods. The remains of the Roman phase are present
close to water level about 10 metres west of the modern causeway. C. The modern causeway is of
Ottoman construction.
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post-causeway constrain the age of the causeway to within the 4™ ¢, BC, verifying the
descriptions by historical sources.

The long-term record of the coastal impacts documented at Klazomenai provides
baseline data for evaluating future coastal developments in the Bay of Izmir. These future
developments include plans by the local municipal governments to construct a new
elevated causeway bridge on pylons in an attempt to re-establish longshore flow and
nourishment of beaches on the west side of the causeway. Our results provide a basis for
evaluating the potential environmental consequences of these planned engineering

interventions.

3.3 Study Area

The ancient port city of Klazomenai is located near the modern town of Iskele on
the southern shore of the Bay of Izmir, approximately 40 km east [zmir in western
Turkey (Figure 3.1B). The area is of archaeological importance, as it contains a number
of long-occupied coastal archaeological sites. The small coastal promontory to the east of
modern Iskele harbour was the site of an important prehistoric coastal settlement known
as Liman Tepe (Figure 3.1). Liman Tepe was first occupied in the Late Neolithic/Early
Chalcolithic period and during the Early Bronze Age (EBA) became an important port
city with well-fortified walls and monumental architecture (Erkanal, 2008; Sahoglu,
2008). The EBA city figured prominently in the trade and trans-shipment of goods
between central Anatolia and the western Aegean (the Anatolian Trade Network;

Sahoglu, 2005).
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The city of Klazomenai was founded on top of the Bronze-age settlement in the
9™ ¢. BC by Ionian settlers from the Greek mainland and later became one of the 12 cities
of the Tonian League (the Dodecapolis; Herodotus, 5" ¢ BC). The city, a contemporary of
the famous Troy, was located initially on the mainland but was moved to Karantina
Island sometime during the early 6" ¢. BC during the Ionian Revolt against the Persians
(Ersoy, 1993). Later in Classical and Roman times the city became and important
shipping port and olive producing centre.

The study area lies within the tectonically active Aegean extensional province in
western Turkey. The Bay of Izmir is a major fault-bounded graben structure that is
associated with active seismicity and tectonic subsidence. The bedrock within the region
consists of Neogene volcanics (predominantly rhyolites, andesites) and sedimentary rocks
(Ocakoglu et al., 2005). Tertiary limestones form the local bedrock within the study area
and are draped by a variable thickness of unconsolidated late Quaternary and Holocene
sediments. On the west side of the causeway, the bottom sediments are thin or absent, and
bedrock is partially exposed (Boyce et al., in review). The main sediment input to the Bay
is from the Gediz River approximately 30-40 km north-east of the study site (Duman et
al., 2004). On the southern shore of the Bay, sediments are derived from erosion of the

coastal highlands and delivered to the coast by seasonal wadi flow (Duman et al., 2004).

3.4 Methods
A total of six cores were extracted from the east and west side of the causeway in

water depths of 1-4 m using a percussion corer operated from a Zodiac inflatable boat.
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The coring system employed a 50 kg slide hammer to drive the 6 m long aluminum tubes
(60 mm dia.) up to 3.8 m into the seabed sediment. The sediment-filled core tubes were
extracted using airbag lift systems deployed by SCUBA divers. The cores were drained,
cut into 1 m sections, shipped, and placed in cold storage (4-6 degrees C) until processed.

The split cores were sampled at 5 cm intervals for grain size analysis and loss on
ignition (LOI) measurements. LOI was conducted on 2 gram samples according to the
methods outlined by Heiri et al. (2001). Grain size analysis was performed on 5 cm’
samples using a Beckmann LS 230 Coulter Counter with three repeat runs for each
sample. The full grain size distribution curve was recorded for each sample and summary
statistics (average mean, mode, and standard deviation) calculated and plotted versus
depth. To facilitate interpretation the particle size abundances were gridded and plotted
as a colour surface plot of depth, grain diameter (¢) and percentage abundance (Beierle et
al., 2002; van Hengstum et al.. 2007).

Volume magnetic susceptibility (k) was measured at 5 mm intervals on split cores
using a Bartington MS2E probe. Air measurements were taken every 5-7 measurements
to monitor instrumental drift and corrections were interpolated and applied to the data set.

Micropaleontological analyses (foraminifera) were completed on a single core
(LT-04) to aid in interpretation of environmental conditions. Twelve samples of ca. 5 cm’
were taken between 10 and 30 cm spacing. Samples were sieved using a 500 um and 63
um sieve and then dried. Forams were picked and identified according to Cimerman and

Langer (1991). Samples were recorded, calculated to 1 cc abundances and plotted for
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relative percent. Further analysis, including diversity indices and cluster analysis, are
included in Krezoski et al., (Chapter 2).

Trace metal analyses have been used in widely in studies of soils from terrestrial
archaeological sites to determine occupation histories and metal use but have rarely been
used in marine archaeological contexts. In this study, the down-core abundances of
selected trace metals in marine were determined using mass spectrometry for comparison
with other environmental indicators. Digested samples were prepared following the EPA
3050B guidelines (1998) for environmentally available metals and measured on a
Micromass ICP-MS at the University of Wisconsin, Milwaukee. All trace metal data
were corrected for mean enrichment factors (EF) using Aluminum and plotted versus
depth (Tylmann, 2007). Six metals associated with historical human usage were
measured including Copper (Cu), Lead (Pb), Tin (Sn), Arsenic (As), Antimony (Sb),
Nickel (Ni), and Iron (Fe).

Three radiocarbon dates were obtained on organic materials from cores to
constrain the timing of causeway construction. Olive pits were taken from 76-77 cm
depth in LT-04, and bulk organic samples were taken from 171-172 e¢m in LT-04, and 84-
85 cm and 99-101 cm depth in LT-01. AMS '*C dates were performed by Beta Analytic

in Florida, USA and calibrated to calendrical ages.
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3.5 Results
3.5.1 Core Lithostratigraphy and Depositional environments

Five distinctive lithostratigraphic units (A-E; Figure 3.3) were recognized in cores
based on sedimentary facies characteristics, grain size and down-core shifts in .
foraminifera abundances. The correlated core lithostratigraphy is shown in a N-S cross-
section in Figure 3.3. The correlation of sedimentary units was also aided by chirp sub-
bottom seismic reflection profiles acquired as part of a detailed coastal reconstruction
conducted by Krezoski et al., (Chapter 2). The units were grouped and three main

depositional phases were identified.

Phase 1: Pre- causeway high-energy beach environment

The earliest phase of deposition is represented in cores by a coarse-grained pebbly
sand shell hash (Unit E; Figure 3.3; 3.4; 3.5). The unit contains abundant abraded
coralline fragments, some well-preserved organic matter and abraded bivalve and
gastropod shells. The hash has a mean grain size of 0-3 ¢ and overall low magnetic
susceptibility (0-5 ST x 10®) and high carbonate content (up to 30%).

The coarse-grained character and presence of abraded shell and coralline
fragments are indicative of deposition in a high-energy foreshore (beach) environment.
Organic matter from the top of Unit E has been dated to 3860 +/- 120 cal. BC placing it
within the Late Neolithic/Early Chalcolithic. Paleogeographic reconstruction of the
coastline by Krezoski et al. (Chapter 2) has identified Unit E as a paleoshoreline that

existed at ca. 6-10 m below present sea levels.
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Phase 2: Pre-causeway wetland/lagoonal environment

Phase 2 is recorded by a fining-upwards sequence of laminated silts and organic-
rich muds (Units C, D) that were deposited in a coastal wetland and back-barrier lagoonal
environment. The facies show a marked shift to finer grain sizes and a reduction in
carbonate content (10-20%) (Figures 3.3; 3.4; 3.5). Unit D contains peat and reed
fragments and is transitional to more organic-rich and fine-grained laminated silt of Unit
C. The magnetic susceptibility is overall low throughout the sequence with several
correlatable higher peaks towards the top of Unit C. The peaks in susceptibility indicate
an increased influx of magnetic minerals into the lagoon, possibly as a result land
clearance with the growth of Klazomenai (see Discussion). At a depth of 80-95 cm in
Unit C a distinct zone of cultural materials, including pottery fragments and well-
preserved olive pits is noted in cores LT-01 and LT-04 (Figure 3.3; 3.4; 3.5). AMS "*C
dates obtained on olive pits from the top of Unit C (76-77 cm LT-04) yielded an age of
450 BC +/- 70 cal BC.

Phase 2 indicates a period of rising sea-levels and a transition from near-shore
beach environments to lower-energy shallow lagoonal environments. Krezoski et al.
(Chapter 2) have interpreted the Phase 2 sediment sequence as a transgressive barrier
system that formed during rapid Holocene transgression after ca. 3800 BC. The reed
fragments and peat materials in Unit C record coastal wetlands that were inundated by

rising sea levels after ~3800 BC.
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Figure 3.4: Particle size and physical property data for core LT-01. The causeway construction horizon
(CCH) is identified at 115 cm by an abrupt shift to coarser grain size.
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Phase 3: Post-causeway sheltered embayment

Phase 3 is identified by a distinct shift to coarser grain sizes (from 0 to 4 ¢) at the
contact between Units B and C (ca. 115 cm in core LT-1 and 70 cm depth core LT-04)
(Figures 3.3; 3.4; 3.5). Unit B consists of crudely-laminated to massive sandy silt with
abundant Posidonia Oceanica fragments in the upper part of the unit. The organic
content correspondingly shows an increase to over 15%. The magnetic susceptibility is
low throughout the unit and shows a gradual increase in the upper 10-15 cm of the core.
A "C date taken at 84-85 cm in core LT-1 yielded a Late Roman age of ~ 200 - 300AD.
The linear sedimentation rate using both '*C ages is consistent between cores LT-01 and
LT-04 at 0.3 mmyr™.

The phase 3 sequence is capped closest to shore by a well-sorted fine sand (Unit
A) with no organics and thin shell horizons. Unit A is interpreted as a beach deposit
formed by shoreline progradation (Figure 3.3).

The Unit C - Unit B transition marks the change from shallow-marine
environment to a low energy coastal embayment formed by the closure of the coastline
following shoreline progradation that was accelerated by causeway construction. The
causeway interrupted the dominant west-east long-shore current creating eddy current on
the east side of the island and the trapping of sediment. In the shallow nutrient-rich low-
energy environment, Posidonia oceanica meadows began to thrive. The onset of
causeway construction is constrained by the radiocarbon date of 450 BC +/- 70 cal BC

obtained from Unit C just below the boundary.

80



M.Sc. Thesis — G.M. Krezoski — McMaster University Department of Geography and Earth Sciences

3.5.2 Micropaleontology:

Foraminifera have been employed in a number of previous studies to reconstruct
water depths, salinity and paleoenvironmental conditions at coastal archaeological sites
(Scott et al., 2001). In this study, shifts in the abundance of two foram genera (Rodalinids
and Miliolinids) were examined and compared with the depositional phases identified by
sediment physical properties (Figure 3.6).

Rodalinid species show a marked increase in abundance just prior to the onset of
causeway construction and decrease rapidly above the boundary. Elphidium sp. in
particular show a clear peak in abundance corresponding with the boundary (Figure 3.6).
Miliolid sp. are dominant in the Phase 1 sediments and show a rapid decline to < 10% in
Unit C, just prior to the interpreted causeway construction horizon. The abundance of
Miliolid sp. rebounds to more than 20% above the causeway horizon. Bolivinid species
show a marked inverse trend, increasing in abundance to ca. 10% within the same
horizon.

An increase in the abundance of Bolivinids and Miliolinids was also identified in
Late Archaic harbour sediments from Klazomenai by Goodman (2006). Figure 3.7 shows
the foram abundances from this study and Goodman (2006) for comparison. The increase
in these two genera was interpreted by Goodman (2006) as an indicator of increasing
anoxia and eutrophication of the harbour basin. The cause of the eutrophia is not known
but may have resulted from an increased loading of nutrients and organic matter to the

harbour. This in turn would have led to anoxic bottom water conditions that are favoured
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by Bolivinid sp. (Goodman, 2006). It is noted that a sharp decrease in these foraminifera
genera occurs in both data sets after ca. 500-450 BC, corresponding with a period of
harbour construction and renewed activity in the Late Archaic period at Klazomenai

(Figure 3.7).

3.5.3 Trace Metals:

Trace metal ratios for LT-01 and L.T-04 corrected for enrichment factors are
shown in Figure 3.8. Trace metal ratios are low; however ratios higher than 1 typically
indicate enrichment caused by either anthropogenic sources or increased weathering rates
in the area indicating a change in metal flux (Ngriau, 1996; Tylmann, 2007). Copper
(Cu), lead (Pb) and tin (Sn) show higher ratios at the base of the core corresponding with
Neolithic/Chalcolithic ages, then demonstrate a downward trend toward the caliseway
horizon. A small spike occurs in the top 10 cm of the core most likely correlating with a
modern-day pipe releasing raw sewage into the embayment.

Overall trace metal analysis at this site does not reveal abundant information for
historical pollution levels. Trends that are identified could correspond with ancient land
clearance or climate change that would correspond with increased erosional rates during
the Neolithic time period. The small increase at the top of the core samples indicates
modern-day pollution, possibly related to a sewage pipe installed circa 1992 on the

eastern side of the causeway.
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3.6 Discussion

3.6.1. Impacts on Coastal Environments

The generalized modern day circulation patterns in the Bay of Izmir are shown in Figure
3.9. The movement of surface water masses is dependent on wind direction and salinity
gradients generated by inflow from the Gediz River (Sayin et al., 2003). On the south
shore of the bay the dominant wind direction is from the N-NW and generates strong
longshore currents traveling south and eastward from the northern tip of the Urla
peninsula towards Iskele. A weaker. but significant component of westerly alongshore
transport also occurs due to a clockwise circulation of surface water in the central Bay of
Izmir. As a result, a large volume of sediment released from the Gediz River is
transported southeast towards [zmir and then westward along the southern shore of the
bay.

The construction of the causeway in 334 BC effectively shut-down the west to
east longshore transport between Karantina Island and the mainland, and created an eddy
circulation pattern in the lee side of the island trapping sediment arriving from both
directions. This in turn accelerated shoreline accretion, creating small beach ridges that
prograded into the sheltered embayment. A sediment drape also covered the floor of the

embayment, obscuring former topographic features.
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Figure 3.9: A. Major water circulation patterns and longshore sediment transport directions
in the Bay of Izmir. B. Dominant wind direction is from the north-northwest, resulting in a
dominant northwest-southeast longshore flow on the south side of the Bay (from Sayin,
2003). C. Construction of causeway in 334 BC shut-down west-east longshore transport.
Sedimentation is dominated by progradation of the coastline and sediment supply from the
east.
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3.6.2 Archaeological Significance

The new data presented in this paper confirms the 4" ¢. BC date for the causeway
construction and provides important insights into configuration of the coastline at the
time of its construction. Changes in the paleogeography of the coastline at Klazomenai
from Late Neolithic times to present are shown in Figure 3.10. The coastal reconstruction
is based in part on detailed coring and geophysical investigations conducted by Krezoski
et al. (Chapter 2) and shoreline reconstructions for the Bronze-age phase by Goodman et
al. (in press). During the Late Neolithic (Phase 1) sea levels were more than 6-10 m
below present and the island was connected to the mainland by broad system of beach
barriers with an extensive back-barrier lagoons and wetlands (Figure 3.10A). As sea
levels continued to rise during the late Holocene transgression (Phase 2) the barrier
system was drowned in place and Karantina Island was separated from the mainland. By
the Early Bronze-age (2800 BC) the sea level rise had slowed and a high-level prograding
beach barrier and lagoon were established during a relative high-stand close to the
modern sea level (Figure 3.10B). By the Late Archaic period (500 BC) a harbour had
been constructed from the headland at Liman Tepe and the shoreline had prograded
basinward as a headland identified in seismic data (Chapter 2).

In depositional Phase 3 at the time of causeway construction (334 BC), the island
and mainland were separated by shallow shoreface environment (Figure 3.10D). The
water depth on the shoreface is not known but was likely less than 1-2 m in order for
Alexander’s engineers to construct the causeway platform out to the island. The

construction of the barrier interrupted the west-east longshore flow, creating a sheltered
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embayment on the east side of the island and accelerating the progradation of the
shoreline and trapping of sediments on the eastern side(Phase 3, Figure 3.10C; D).
Though progradation had occurred prior to 334 BC, the causeway has been attributed to
being the major sediment trap due to there being no deposition on the western side of the
causeway. The construction of the causeway froze sediment supply to the west, and
therefore a record of the original pre-causeway shoreline exists near Liman Tepe. The
beach barrier identified by Goodman (2006) is close to the modern-day shoreline near
Liman Tepe (<50 m). By examining the original shoreline prior to causeway
construction, it can be seen that the causeway became a major sediment trap, causing the
shoreline to prograde more than 200 m into the Bay of [zmir from the 2800 BC shoreline

(Figure 3.10D).

3.7 Conclusion:

Geological analysis has begun to play a larger part of archaeological excavations,
providing much-needed context in order to determine where and why sites exist. Cities
such as Troy, a major part of the Mediterranean historical record, have often been
geomorphologically altered over the past millennia by river-delta progradation or
inundation by coastlines (Kraft, 1980; 2003). Often a complete archaeological record, or
even the actual site cannot be found without the background landscape information. By
understanding land usage, harbour locations, and how the landscape has changed since
original construction, it is possible to understand the original settlement logistics and

even find new site locations.
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Overall by combining many studies into one in order to examine all aspects of
depositional environments, anthropogenic alterations could be identified. Radiocarbon
dates have also proven useful in the quest to constrain causeway ages. Future
archaeological projects should incorporate geological methods in order to understand the

entire environmental background of a study area.
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Chapter 4: Research Summary and Conclusion

4.1 Summary of Research Results

This thesis has investigated the marine sediment record of changing coastal
environments at Liman Tepe/Klazomenai. In Chapter 2, core data were combined with
detailed bathymetry and seismic reflection profiles to identify a series of submerged relict
shorelines at depths of -10 m rsl and were correlated with pebbly beach sands of Unit E
and dates to ca. 3800 BC. The shoreline appears to record a phase of decelerating sea
level rise at the end of the Holocene transgression. The contoured upper surface of Unit E
reveals that Karantina Island was attached to the mainland via a beach barrier during the
mid-Holocene.

In order to determine a chronology for shoreline development, sea level indicators
from previous work (Goodman, 2006) were compiled with the new data to produce a
relative sea level curve for Liman Tepe (Figure 2.12). This curve shows that the relative
sea levels were -6 to -10 metres lower during the Mid- to Late Neolithic (5000-3800
BC). These estimates are more than 2-3 metres below the modeled hydro-glacio-isostatic
curve developed for the Mediterranean by Lambeck (1995) and Lambeck and Bard
(2000) (Figure 2.12), indicating the importance of local tectonic effects in the Bay of
[zmir. The shoreline maps and reconstructed paleogeography of the coastline (Figure
2.11) provide a useful framework for predicting the potential locations of Neolithic
settlements on the prehistoric coast

In Chapter 3 the sedimentology of core data was examined in detailed to identify

a record of coastal changes stemming from the construction of the Alexander causeway at
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Klazomenai. The causeway construction horizon (CCH; Figure 3.3) was identified by
distinctive shift in lithology particle size, and foram abundances. 14C dates obtained on
organics from just below this transition confirm the 4™ ¢. BC age for the structure as
recorded in historical writings. This causeway created a sheltered embayment, trapping
sediment and accelerating progradation of beach sediments. The study has shown that
high-resolution particle-size analysis was the most sensitive discriminator of these
environmental changes. Micropaleontological analysis also revealed subtle environmental
changes, showing a major genera shift beneath the causeway horizon that is interpreted as
a shift to more eutrophic conditions. Lithology and loss on ignition were important for
determining major organic and carbonate horizons, and magnetic susceptibility for
identifying phase of increased magnetic mineral loadings, possibly indicating changes in

land use around Klazomenai.

4.2 Depositional Environments

This thesis has documented a change in relative sea level on the western
Anatolian coastline of more than 10 metres since the Late Neolithic (Figure 2.12). This
sea level change has resulted in significant changes in the coastal depositional
environments and configuration of shorelines. The lithostratigraphic sequence revealed
by coring fits well the *drowned-in-place’ transgressive barrier model forwarded by
Rampino et al. (1980). The sequence of depositional environments is shown in a
conceptual model in Figure 4.1. The relict shorelines identified in the bathymetry and

core data (Figure 2.10) were formed during a mid-Holocene phase of relatively rapid sea
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level rise. The presence of several discrete shoreline terraces seems to indicate several
periods of shoreline stabilization, followed by deceleration of sea level rise around 3800
BC and the formation of an extensive beach-barrier complex (Figure 4.1 A). The fining-
upwards sequence of lagoonal muds overlying foreshore sands, records the shoreward
expansion of the back-barrier lagoon as a result of transgression. By 2800 BC, the
shoreline had transgressed several hundred metres inland of the present shoreline, and a
new, higher-level beach barrier complex was established during a high-stand phase. This
last phase of transgression must have been rapid, possibly associated with co-seismic
subsidence, as the relict wadi channels on the 3800 BC shoreline were preserved. By
about 2800 BC sea level rise had slowed to modern rates and a high-stand systems tract
obtained (Goodman, 2006; Goodman et al., in press). The coastline began to build rapidly
into the basin through the growth of small barriers and the progradation of shoreface as
indicated by the coarsening upwards sequence of shoreface sediment over lagoonal
deposited identified in land cores (Goodman, 2006). The progradation of the coast was
greatly accelerated during the early Hellenistic Period (334 BC; Figure 4.1 D), when the
causeway created a sheltered embayment, trapping the sediment delivered by long-shore
transport from east. Since that time the shoreline position has regressed more than 200
metres into the Bay of [zmir, as recorded by the presence of modern sandy beach facies
(Unit A; Figure 2.3) over an older lagoonal sequence. The shoreline regression continues

on the modern day coastline (Figure 4.1D) which consists of welded beach barrier ridges
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A. 3860 BC (Transgressive shoreline)

Units C, D Unit E

Possible Neolithic/
Chalcolithic settlements

Rising
Sea Level

B. 2800 BC (High-stand)

Lagoonal | New barrier
lfacies iGoodman

Y (2006)

Shoreface | Units C, D | Unit E

Sediments

Drowned ridge
/

Rising
Sea Level

C. 334 BC (High-stand/ regressive shoreline)

Prograding shoreline

— UnitA | UnitB
Wetlands, Goodman (2006)

Sediment
drape formation

Rising
Sea Level

D. Modern (Regressive shoreline)

lUnit A

Figure 4.1. Conceptual model showing changes in depositional environments at Liman Tepe/Klazomenai (3860 BC
to present). A. Pre-historic (3860 BC) beach ridge with a back-barrier lagoonal environment formed during
mid-Holocene transgression (after Reinson, 1992). B. As water levels rose rapidly, the barrier was drowned in-place
and a higher-level barrier established shoreward during a high-stand phase (2800 BC) (Goodman, 2006). C. Cause-
way construction (334 BC) accelerated beach progradation. D. Continued progradation of modern beach (Unit A)
over mid-Holocene lagoonal sediments. Approximate core locations from this study are shown.
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with intervening shallow lagoons (Figure 4.1 C). The process will be altered
significantly when the existing causeway is removed and longshore transport is

established along the coast to the south of Karantina Island.

4.3 Limitations

One major limitation on the resolution that was achieved in this thesis is the core
sampling interval. For a number of properties (trace metal, micropaleontology) a coarse
sampling interval was necessary in order to complete the study in time. Trace metal
analyses were conducted on 44 samples from 4 separate cores. Higher-resolution core
sampling (e.g. at 10 cm intervals) would have provided a more detailed record of trends
in trace metals. Trace metals are expensive to run, however, and require a large time
commitment for digestion. Similarly for micropaleontology, a higher-resolution data set
with identification down to the species level would have provided the ability to identify
subtle changes depositional environments and environmental conditions. Though these
limitations apply to this specific project, the potential to still complete these analyses
exists for future work.

A second limitation to the project was its location in Turkey. Often data (geologic
maps, geology of the area) was obtained through second-hand information. Articles from
the field area in Turkish had to be translated or completely overlooked due to translation
issues. The distance for collecting additional samples proved insurmountable due to high
operating and transportation costs. Also, due to the remote location, supplies (vibra-corer)

were not available and more rudimentary methods had to be applied. In turn, these
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methods might have limited the author from collecting cores deeper than Unit E in order

to determine sub-unit E sedimentation.

4.4 Broader implications

The results have broader implications for understanding the archaeological record
at Liman Tepe/Klazomenai and future impacts of coastal developments in the Bay of
[zmir. This project examined the utility of combining multiple data-sets in order to create
a complete model of site morphogenesis at Liman Tepe/Klazomenai over the past 6,000
years. Using this information, the IRERP project currently excavating Bronze-age sites
at Liman Tepe can trace the Neolithic shoreline to determine where ancient settlements
might have once existed. This data-set has proven valuable in order to determine likely
locations of archaeological sites in a previously inaccessible area.

In addition, the Turkish government is eager to begin new plans to alter near-
shore sedimentation at the causeway location by replacing the structure with a bridge
supported by pylons. This bridge will re-instigate normal coastal sedimentation. This
study provides the information on the environment of deposition, in another two-
thousand years a second study can determine how this new construction has positively (or

negatively) affected shoreline processes.

4.5 Future work
The potential for future work on this project is high, possibly providing the

opportunity for further thesis work by additional undergraduate or graduate students.
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Micropaleontology has proved relative easy and cheap to determine depositional
environments. Preliminary interpretations have been carried out in this thesis, however a
high-resolution micropaleontology survey on (abundant) remaining core samples would
provide further insight into the subtle environmental changes of this anthropogenically
rich area. Also, a more detailed look at trace metals would determine if trends seen in the
data-sets are real or simply a result of processing or natural erosive processes.

A second study can also examine land-sites nearby surrounding the area, creating
an even larger regional paleo-geographic reconstruction and applying this data to the

work done by Sahoglu (2005) on evidence for the regional trade network.
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Appendix A: Methods

111



M.Sc. Thesis — G.M. Krezoski — McMaster University Department of Geography and Earth Sciences

1.7 Methods
1.7.1 Sediment coring extraction

Locations for coring were chosen based upon proximity to the causeway feature,
as well as assumption of the best sediment records within the basin. Five cores were
taken along the eastern edge of the causeway (Figure 1.3) ranging in length from just
over one meter to 3.6 meters (Appendix B). A sixth core was taken on the western side of
the causeway in order to compare long-shore current facies to the eastern side. This core
was not included in the final papers due to a lack of time for interpretation (Appendix B).
A percussion corer was used to obtain core samples using a slide hammer to insert 20
foot aluminum irrigation tubes off the back of a zodiac (Figure A.1.A; Figure A.2.A, B,
D). Core catchers were installed in the ends of the tubes to stop sediment escape upon
extraction. Extension rods were attached to the top of a collar to obtain a maximum
amount of sediment (Figure A.1.B). Upon completion, SCUBA divers removed the rods,
placed a plastic cap on the top of the core to create suction, and attached air bags to a
collar on the core (Figure A.1.C). The air bags were then filled with oxygen from a
secondary SCUBA tank, and the core floated to the top (Figure A.1.1.D; Figure A.1.C).
Divers capped the bottom of the core prior to removal from the water in order to keep

sediment in the tube.
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On land, caps were removed from the top of the tube and measurements taken to
determine compaction (~ between .5 and 1 m). Sponges were inserted, water allowed to
drain, then cores were cut, labeled and shipped to the McMaster Micropaleontology
Laboratory for cold storage (~6 degrees C).

Cores were split and lithologic aspects logged prior to sampling. One half of the
core was left in cold storage as an archive. Visual sediment changes were correlated
within the cores and digitized. Cores were sampled at pre-determined intervals for loss on
ignition, grain size analysis, trace metals, volume magnetic susceptibility and
micropaleontological analysis (Figure A.3). Core LT-04 was identified as having a more
complex sedimentary record and was analyzed in more detail for micropaleontology and

trace metals.

1.7.2 Loss on Ignition (LOI)

Loss on ignition (LOI) measures the percent of organic and carbonate contents in
the sample by calculating the amount lost in a regime of high-level heating. Following
Heiri and others (2001), approximately 2 cm® of sediment from a 5 cm interval were
placed in crucibles in an oven and dried for a minimum of 24 hours. Samples were then
placed in desiccators to cool for eight hours and weighed to determine moisture lost.
Samples were baked at a temperature of 550 degrees Celsius for four hours, cooled and
weighed for loss of organic matter. Samples were baked again at 950 degrees Celsius for

2 hours, cooled and weighed for loss of carbonates. Weights were then calculated into
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Figure A.2: A. Brass core catchers installed in irrigation tubes. B. Core tubes and coring components.
C. Core extraction using lift bags. Note lush Posidonia Oceanica meadows along the sea-floor. D.
Gravity coring in shallow water.
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Figure A.3: A. LOI sample preparation. B. Micromass ICP-MS, University of Wisconsin,
Milwaukee C. Operation of Coulter laser diffraction counter (after Last, 2001). Pictured are a
Beckman LS230 Coulter Counter console and sample vials ready for digestion. D. Bartington
MS2-F volume magnetic susceptibility meter demonstrating placement of the probe for
measurements on the back of archived core samples.
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percentages of organic matter and carbonates within the original sample and plotted in
Microsoft Excel.

Studies have shown that ovens used for LOI contain convection currents that
concentrate heat in the middle of the oven, causing skewed heating rates (Heiri et al,
2001). Because of this, samples were kept at the same size (~ 2 g) and placed slightly
away from furnace edges in order to avoid differences in heating. Samples were also
randomly moved to different locations each time they were placed in the furnace in order

to eliminate any skewed results.

1.7.3 Grain Size Analysis

Grain size analysis was completed to determine source changes for sedimentation
within the basin. By determining changes in grain size populations, sedimentation rates
and sources can be identified (Schwamborn et al., 2002; Clark, 2004). In this study, five
cm® of sample taken every 5 cm down-core were placed in 50 mL tubes for digestion
according to van Hengstum et al. (2007). Care was taken to avoid the edges of the core
tube when sampling in order to avoid any sediment contamination. Samples were treated
with a 10% hydrochloric acid (HCI) solution to remove carbonates. Samples were then
treated with a 40% hydrogen peroxide (H,O,) solution to remove any organics
(Matthews, 1991). Samples were centrifuged after each chemical treatment and leftover
chemicals decanted. Samples were then heated in a warm bath (85 degrees Celsius) with
a 1% sodium carbonate solution (Na,CO3) for one hour in order to eliminate biogenic

silica (diatoms) (Conley and Schelske, 2001). Samples were then mixed to promote
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homogeneity, treated with 1% Calgon to deter sediment clumping, and run through a
Beckmann LS 230 Coulter Counter for analysis using the Fraunhofer optical model
(Murray, 2002; van Hengstum et al., 2007). Digestion of samples has been shown
beneficial when measuring for particle size, as carbonates, organics and diatoms can all
skew results (Matthews, 1991; Conley and Schelske, 2001).

Results were plotted to a Wentworth Phi scale in OASIS Montaj Geosoft software
using a minimum curvature grid in order to create a colored surface plot diagram (van
Hengstum, 2007; Beierle et al., 2002). Further statistics (standard deviation, skewness,
mean, median and mode) were recorded and calculated in Microsoft Excel and plotted
depth-wise. Though particle size analyzers are quick and efficient, some problems have
been recorded with fine (clay) particle measurements in past studies. Because the results
demonstrated in Chapter 2 and appendices demonstrate diverse multi-modal populations,
it is believed that the differences in particle size are correctly represented (Murray, 2002;

Blott and Pye, 2000).

1.7.4 Magnetic Susceptibility

Magnetic susceptibility refers to the ease sediment becomes magnetized when
introduced into a magnetic field and is measured with the magnetic field (H) divided by
magnetization (k) per unit volume (M) (M= x*H). Measurement of the downcore change
in magnetic susceptibility has been used in a number of previous studies to determine the
onset soil erosion impacts, the onset of land clearance and deforestation, burning histories

and to map environmental pollutants (Clark, 2004).
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In order to determine magnetic susceptibility levels, a Bartington Magnetic
Susceptibility Meter was used with an MS2F probe (2 x 10° Sl at 0.1 range — Bartington,
2004). Archived cores were allowed to warm to room temperature, turned over, removed
from their core tubes, and the back ~2 c¢cm of sediment removed in order to ensure a lack
of metal contamination. Cores were covered with plastic wrap to avoid sediment
contamination of the sensor and readings taken every 5 mm, with an air measurement
every five to seven measurements prior to re-zeroing the instrument. Results were
plotted in Oasis Montaj, corrected for instrument drift and linear susceptibility correlated

to core logs.

1.7.5 Trace Metals

Trace metals in the environment allow scientists to discern anthropogenically
created pollution levels. Many studies have been carried out on modern-day pollution in
near-shore marine settings. The use of trace metal analysis on historic sites has increased
over the past decade. Véron et al. (2006) has used lead trace metal and isotope analysis to
determine that there was a settlement at the location of Alexandria prior to Alexander’s
arrival in 332 BC. More recently, trace metal analyses have been completed on surface
sediments within the Bay of [zmir as a way to assess pollution levels (Bizsel and Uslu,
2000; Kucuksezgin et al., 2000).

For this study, samples were taken from four sediment cores. LT-04 samples were
taken at 20 cm intervals in order to gain a more in-depth look at the 4 lithofacies
characteristics. For the rest of the cores, sample sizes varied (Appendix A; Figure 3.8 —

Chapter 3).
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Metals were digested according to the Environmental Protection Agency 30508
guidelines for trace metal analysis on an Inductively Coupled Mass Spectrometer (ICP-
MS). Samples (~2 cc) were placed in crucibles to dry over a 24 hour period. Samples
were weighed, and then ground into a fine silt. Samples were re-weighed to determine
sediment lost, then placed in Erlenmeyer flasks for digestion. Concentrated ICP-MS
grade HNO3 (70%) was diluted to 30% and 10 mL of 1:1 mixture were added to samples.
Samples were placed on hot plates for 15 minutes where temperatures ranged from 40-50
degrees C. An additional 5 mL of concentrated HNO3 was added to flasks and heated for
30 minutes until reactions ceased and white fumes observed. Flasks 29-44 required an
additional 5 mL of concentrated HNO3.

Samples evaporated overnight to approximately 5 mL, and 10 to 20 mL of 30%
H202 (2:3 ratio) was added to the samples. Samples 6 through 20 were incorrectly
calculated and thus received 15% more H202 than other samples. (Note: After samples
were run on the Mass Spectrometer, it was found that the trace metals in the high grade
H202 were negligible for altering sample percentages.) All samples were evaporated to
5 mL and diluted to 100 mL with Distilled Water. Control samples were made without
the sediment and extra chemicals were set aside for control analysis.

Samples were run on a Micromass I[CP-MS at the University of Wisconsin —
Milwaukee. Samples were diluted to a 1:1 dilution for most trace metals. An additional
dilution was created of 1:300 for metals that had high concentrations, like Iron (Fe).
Samples were tested for As, Fe, Ni, Cd, Cu, Sn, Al, and Pb. Samples were recorded and

digitized in Microsoft Excel. The control sample made previously was also run and
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concentrations found in the original chemicals were subtracted from metal
concentrations.

Many studies have shown that obtaining metal concentrations in parts per million
are effective; however there is a certain natural abundance that must be taken into
consideration. One way to account for natural metals in the environment is to normalize
sample concentrations using Aluminum (commonly called the Mean Enrichment Factor
or EF) (Kemp et al., 1976; van Metre and Callendar, 1997). Aluminum is found
abundantly in the environment, however humankind did not find a way to extract and use
it until the 20" century. Using normalization of to Al also compensates for grain size and
mineralogy because aluminum is found in alumino-silicates (typically fine-grained clays)
that carry most of the trace metal populations (Abraham, 1998; Tylmann, 2007). By
using the equation below it is possible to determine a ratio of anthropogenically placed
metals in the environment:

EF= (Cx/CAl)s/(Cx/CAl)

Where the enrichment factor = the concentration of element (x) over the
concentration of Aluminum in the sample divided by the concentration of element (x)
over the concentration of Aluminum in unpolluted sediments. A ratio of 1 or more
indicates an imbalance and therefore most probably a different source has entered the
picture. A ratio of 1 or less indicates natural environments (Tylmann et al., 2007).

In this case, the natural ratio sample was chosen from the base of LT-06. Core 6
is on the western side of the causeway in an arca of low deposition. The base, which is

almost 3 m under the sediment surface, is most likely free of influence from humankind.
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The other ratios from stratigraphically higher samples were compared to the natural state

and pollution levels were determined.

1.7.6 Micropaleontology

Foraminifera are single-celled protests (testate rhizopods) that live in all types of
salt-water environments. Their calcareous ‘test’ is preserved in the fossil record and
provides an ideal history of local environmental change. Foraminifera are abundant in
oceans and seas, and therefore are relatively cheap and efficient to sample, with small
sample sizes providing statistically significant numbers. Because the life-span of
foraminifera is short, they reproduce quickly and en masse, thus adapting quickly to their
environment. The record of these adaptations has been compiled throughout the world,
and a comprehensive understanding of these creatures and their environments has aided
in many environmental reconstructions (Scott et al., 2001). Geoarchaeologically,
Reinhardt et al. (1998) have used foraminifera and their stable isotopes to reconstruct
how the ancient harbor at Casearea Maritima off the Israeli coast was destroyed, as well
as re-constructing the climatic environment of the living organisms using the isotopes.

A survey of benthic foraminifera in Core LT-04 was completed at approximately
20-30 cm intervals in order to determine large-scale trends within the core. Core 4 was
chosen due to the presence of all four historical units and the need to gain further support
for the depositional environments.

Samples were chosen from intervals previously analyzed. In some cases, the

required 5 cc sample aliquot was not available. In this case, the smaller sample size was
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taken then calculated up to 5 cc. Samples were sieved using a 500 um and 63 um sieve,
dried, then picked to a statistically significant 300 count or over. Samples were identified
using Cimerman and Langer (1991), then plotted in Microsoft Excel for relative
abundance.

Individual foraminifera were taken to the McMaster Brockhouse Institute for
Materials Research and photographed on a Philips 515 Scanning Electron Microscope.
Statistically significant populations were determined according to Rivieros et al. (2007)
with the equation: Sxi = 1.96*squarrt(Fi*((1-Fi)/Ni)) where Fi= fractional abundance
and Ni = total amount of specimens counted in the sample. Samples were divided to the
smallest aliquot (1 cc) and relative abundance placed in Paleontological (PAST) software
package to determine diversity indices and cluster analysis (Hammer et al., 2001). The
cluster analysis used Q-mode clustering (looking at the relationship between groups to
determine if there are patterns) and Ward’s method of sorting (using dissimilarity to
group clusters using changes in sums of squares) (Davis, 2002). These methods are
typically used for micropaleontological work and have proven successful in the past
(Fishbein and Patterson, 1993; Reinhardt et al, 2005; Sonnenburg, 2006). Shannon
Diversity Index (SDI) was also determined in order to estimate species diversity to
determine the richness of the species community (Patterson et al., 2002). Though
samples were only counted to the genera level, definite trends were discerned and the
term ‘biofacies’ assigned to major areas between population shifts and were correlated to

depositional environments.
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1.7.7 Geochronology

Four radiocarbon dates were taken from cores LT-01 and 04. These cores,
showing the most complete pre-causeway sediment record, were determined to be prime
candidates for sampling in order to discern the causeway horizon (Appendix C). Two
samples were taken from LT-04 at 76-77 cm and 171-172 cm. The first sample was
taken at the base of an approximately 40 cm thick horizon of olive pits. Klazomenai was
known for its olive oil production and thus the olive pits give a spectacular constraint to
the beginnings of this industry in the area. The second sample was organics taken from
the top of a pebble and shell hash horizon towards the base of the core.

Two more samples were taken from 84-85 cm and 99-101 c¢cm in core LT-01.
These samples were bulk organics (rinsed from the sediment) and plant organics
(Posidonia sp.) respectively. Samples were sent to Beta Analytic and treated using AMS

dating (Appendix C).

1.7.8 Bathymetry

Bathymetry data provides a digital model of sea-bed topography. A survey of the
area surrounding Liman Tepe/ Karantina Island was conducted using a Knudsen 320 BP
single-beam echosounder with a 200 kHz transducer attached to the Zodiac boat (see
Boyce et al., in review for set-up). Lines were recorded at 50-75 m spacings in both
north-south and east-west transects. Positions were recorded using a Trimble Ag132

Differential Global Positioning System (DGPS) with accuracy to less than 1 m. Data was
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processed according to Boyce et al. (in review) and digitized using Oasis Montaj Geosoft

software using a minimum curvature grid.

1.7.10 Chirp sub-bottom seismic profiling

Seismic data was acquired on the eastern side of the causeway in order to
determine what features existed prior to sediment in-filling after 334 BC. Data was
acquired with a Knudsen 24 kHz transducer at 75 m spacings. Data were processed

according to Boyce et al. (in review) and analyzed for major return horizons.
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Appendix B:
Additional Multi-proxy information for Cores LT-01, LT-02, LT-03, LT-04, LT-05 and
LT-06 (not included in analysis)
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LITHOLOGY
¢ Peat e Sand - Medium
===| Clay - == Silty Sand ;) sand - Coarse
== Clayey Sil Sand - Fine 0 Gravel Hash with Shells

Gastropod, fragments @ Radiocarbon dates

@ /@5 Bivalve, fragments O Clast
& @

Wood / bark, fragments Pottery
Sharp contact WUV UMWY Sea grass

_____ Gradual contact Laminations

Figure B.1: Lithologic descriptors for core logs
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Figure B.2: Particle size and physical property data for core LT-01. The causeway construction horizon (CCH) is
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Figure B.4 Particle size and physical property data for core LT-03. P2: Pre-causeway Wetland/Lagoon,.:
Post-causeway (334 BC) deposition. The causeway construction horizon (CCH) is indicated at ~70 cm

depth by a shift in partile size from silt to coarser sand.
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Figure B.S: Particle size and physical property data for core LT-04. The causeway construction horizon
(CCH) is indicated at 70 cm by an abrupt shift to coarser grain size. A 14C date obtained on olive pits at
76-77 cm depth yielded an age of 450 +/- 70 cal BC, confirming the 4th c. age for the causeway.
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Figure B.6: Particle size and physical property data for core LT-05. P3: Post-causeway (334 BC) deposition.
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Appendix B

Core Number Water Depth (m)  Length (m) Easting/Northing
LT2006 01 4.2 2.68 481099.2 / 4246518.3
LT2006 02 3.8 1.70 481046.1 /4246355.3
LT2006 03 4.5 3.60 481049.8 / 4246349.6
LT2006_04 4.2 2.20 481271.4/4246692.0
LT2006_05 1.8 1.50 480977.9 /1 4246289.4
LT2006 06 4.5 2.88 480579.7 / 4246240.2

Figure B.8: Liman Tepe/ Karantina Island marine core locations (UTM), depths and
lengths.
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Appendix C:
Statistics and Foraminifera counts, LT-04
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Appendix C: Fractional abundance (%) and standard error (20) of LT-
04 foraminifera at Liman Tepe/Clazomenae.

Core depth (cm) 5.5 30.5 50.5 65.5 75.5 95.5
Total Count 267 774 491 240 462 465
Specimens per 1cc 854.4 1764.6 1301.1 384 1140.8 1488
Phase 3 3 3 312 2 2
Elphidium sp. 10.4% 10.1% 6.6% 20.4% 21.0% 11.1%
Standard error 2.1% 1.4% 1.3% 4.0% 2.4% 1.6%
Ammonia sp. 7.5% 6.5% 6.6% 15.4% 7.7% 7.5%
Standard error 1.8% 1.1% 1.3% 3.6% 1.5% 1.3%
Rosalina sp. 18.7% 14.5% 11.1% 17.9% 34.5% 29.2%
Standard error 2.6% 1.6% 1.7% 3.8% 2.8% 2.3%
Haynesina sp. 13.4% 12.2% 13.1% 17.5% 6.2% 15.9%
Standard error 2.3% 1.5% 1.8% 3.8% 1.4% 1.8%
Asterigerinata sp. 4.1% 3.8% 3.4% 2.9% 4.8% 8.6%
Standard error 1.3% 0.9% 0.8% 1.7% 1.2% 1.4%
Cornuspira sp. 0.7% 0.9% 1.4% 0.4% 0.7% 0.4%
Standard error 0.6% 0.4% 0.6% 0.6% 0.5% 0.3%
Triloculina sp. 0.8% 7.8% 7.0% 1.7% 2.2% 1.7%
Standard error 1.8% 1.2% 1.4% 1.3% 0.9% 0.7%
Quinqueloculina sp. 16.8% 16.7% 22.5% 7.1% 6.9% 3.9%
Standard error 2.5% 1.7% 2.3% 2.6% 1.5% 1.0%
Miliolinella sp. 4.5% 12.6% 12.8% 0.8% 2.1% 1.5%
Standard error 1.4% 1.6% 1.8% 0.9% 0.8% 0.6%
Spiroloculina sp. 1.5% 0.6% 0.4% - 0.6% 0.0%
Standard error 0.8% 0.4% 0.3% - 0.4% 0.0%
Articulina sp. 1.1% 1.4% 0.2% - 0.3% 0.0%
Standard error 0.7% 0.6% 0.2% - 0.3% 0.0%
Vertebralina sp. 4.1% 2.3% 1.6% - 0.3% 0.4%
Standard error 1.3% 0.7% 0.6% - 0.3% 0.3%
Planorbuina sp. 0.7% 2.1% 3.5% 1.3% 1.1% 0.0%
Standard error 0.6% 0.7% 1.0% 1.1% 0.6% 0.0%
Bulimina sp. 0.4% 0.4% 0.4% 1.7% 2.0% 2.2%
Standard error 0.4% 0.3% 0.3% 1.3% 0.8% 0.7%
Bolovina sp. 4.9% 3.5% 3.7% 8.3% 4.6% 11.1%
Standard error 1.4% 0.9% 1.0% 2.8% 1.2% 1.6%
Textularina sp. - 0.5% 0.4% 0.8% - 1.1%
Standard error - 0.3% 0.3% 0.9% - 0.5%
Cibicides sp. 3.0% 4.0% 7.2% 3.8% 5.0% 5.2%
Standard error 1.1% 0.9% 1.4% 1.9% 1.3% 1.1%
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Appendix B: Fractional abundance (%) and standard error (20) of LT-

04 foraminifera continued.

Core depth (cm) 110.5 120.5 140.5 160.5 180.5 210.5| Shannon
Total Count 260 390 753 352 448 369| Diversity
Specimens per 1cc 1664 2141.6 2400 1126.4 1433.6 1180.8| Index
Phase 2 2 2 1 1 1 -
Elphidium sp. 11.9% 6.7% 5.2% 1.7% 2.5% 2.4% 2.29
Standard error 1.6% 1.4% 0.9% 0.8% 0.8% 0.9%

Ammonia sp. 4.6% 4.9% 4.7% 8.8% 6.3% 1.6% 2.436
Standard error 1.0% 1.2% 0.8% 1.7% 1.3% 2.1%

Rosalina sp. 33.4% 26.3% 2.6% 26.7% 21.6% 14.6% 2.348
Standard error 2.3% 2.4% 1.8% 2.6% 2.1% 2.0%

Haynesina sp. 8.5% 9.3% 8.1% 9.9% 10.0% 16.3% 2.423
Standard error 1.3% 1.6% 1.1% 1.7% 1.6% 2.1%
Asterigerinata sp. 5.0% 2.8% 4.3% 4.5% 3.1% 5.4% 2.349
Standard error 1.0% 0.9% 0.8% 1.2% 0.9% 1.3%
Cornuspira sp. - 1.0% 0.7% 1.1% 0.9% 1.9% 2.314
Standard error - 0.6% 0.3% 0.6% 0.5% 0.8%

Triloculina sp. 6.5% 10.3% 12.5% 11.4% 14.3% 17.3% 2.231
Standard error 1.2% 1.7% 1.3% 1.9% 1.8% 2.2%
Quinqueloculina sp. 1.5% 14.4% 11.7% 9.7% 17.6% 6.8% 2.314
Standard error 1.7% 2.0% 1.3% 1.7% 2.0% 1.4%

Miliolinella sp. 3.5% 8.2% 11.6% 12.5% 14.7% 16.8% 2.18
Standard error 0.9% 1.5% 1.3% 1.9% 1.8% 2.1%
Spiroloculina sp. 0.8% 2.6% 0.8% 22.7% 0.9% - 2.092
Standard error 0.4% 0.9% 0.4% 0.9% 0.5% -

Articulina sp. 0.0% - 0.4% 0.9% 0.2% - 1.696
Standard error 0.0% - 0.3% 0.5% 0.2% -

Vertebralina sp. - 0.3% - - - - 1.425
Standard error - 0.3% - - - -

Planorbuina sp. 1.9% 3.9% 2.4% 1.4% 0.7% 0.3% 2.111
Standard error 0.7% 1.1% 0.6% 0.7% 0.4% 0.3%

Bulimina sp. 1.2% 1.0% 1.1% 0.6% 0.4% 0.3% 2.329
Standard error 0.5% 0.6% 0.4% 0.4% 0.3% 0.3%

Bolovina sp. 3.8% 5.7% 6.4% 3.7% 51% 2.2% 2.258
Standard error 0.9% 1.3% 1.0% 1.1% 1.1% 0.8%
Textularina sp. 0.4% - 0.7% - 0.4% - 1.826
Standard error 0.3% - 0.3% - 0.3% -

Cibicides sp. 3.5% 2.6% 3.1% 4.8% 0.1% - 2.278
Standard error 0.9% 0.9% 0.7% 1.3% 0.5% -
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Appendix D: Radiocarbon Dates

Beta Measured Conventional
Sample Radiocarbon Age 13C/12C Radiocarbon Age
Core Depth Number (Raw date) Ratio (Libby Value) Analysis Material 2 Sigma Calibration
Cal AD 120-260 (Cal BP 1830-
LT2006-01| 84-85cm | 243245 | 1800 +/-40BP |-24.2 0/oo| 1810 +/- 40 BP AMi’j\tlae”da’d orPIaar?iE:s 1680) AND Cal AD 280-330 (Cal
v 9 BP 1670-1620)
LT2006-01| 99-101 cm | 243246 | 111.1+/-0.5 pMC | -13.7 oloo| 108.6 +/- 0.5 pMC | AM>-Standard | Plant | Age of 0 BP, material living within
delivery material the last 50 years
LT2006-04| 76-77cm | 234186 | 2330+-40BP |-23.40/00| 2360 +/-40 BP AMij\t/ae??ard Olive pits| ©2! BC 520 t°233i%)(ca' BP 2470-
LT2006-04| 171-172cm | 234187 | 4910+-40BP |-14.10/00| 5090 +-40Bp |AM>Standard) Plant | Cal BC 3970-3790 (Cal BP 5920 to
delivery organics 5740)

All dates provided by Beta Analytic, Miami, Florida
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