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ABSTRACT

Pl

‘We study the effects of energy dependence in the
electrbnic density of states (EDOS) on the eieétron quasi-
particle properties in the normal state,‘the single particle
tunneling characteristics into supérconductors and the super-
conducting thermodynamic properﬁies. The Migdal-Eliashberg
equations generalized to include nonconstant EDOS are derived
in detail in the isotropig¢c approximation. By numerical
solution of the electron self-energy equations in the normal
state we assess the effect‘of the interplay of the energy
dependence in EDOS, the electron-phonon interaction and/or
elastic impurity scattering on the electron qﬁasipgrticlg
properties. The frequency.gependenée of the inverse life-
time due to the electron-phonon interaction is significantly
affected by energy dependence in EDOS on thé scale of several
Debye energies around the Fermi level Egp. The analysis of
singlé-particle tunneling density of states into supercoﬁauctor
with nonconstant EDOS via solution of the three generalized
Eliashberg equations and ipversion of the calculated tunnel-
ing conductances shows tﬁat the effects of the peaks in EDOS,
on a scale of several Debye energies,lare.important and cannot
necessarily be reproduced within the usual El;ashberg éheory,
by workinngith‘some effective values of azF and/or u* without

introducing unphysical fedtures of these'parahetefs. We

iii



derive the expression for ehe free energy differenc/ubetween
the normal state and supercopducting state for a s etric
lorentzian model of EDbS sta}ting from Eliashberg's expression
for the grand thermodynamid potenfial of an interacting
electron-phonon system. From the soiution of the generalized
Eliashberg equations on the imaginary frequency aﬁis we
calculate the superconducting critical field devthion function
D(t). Also, by analytical continuatiion of the im%ginary a#is
solutions via N-point Padé‘approxima.ts we'calcul;te the
corresponding ratios (2&‘)/(k T ). 'We show that for a peak

in EDOS near E w1$h a half-width les than the Debye energy
one can describe the effect of this peak on the above mentioned
_thermodynamlc guantities only w1th1¢ the full Ellbshberg
theory modified to include the energy dependence in EDOS. ,
However for a peak half-width great%r than the Debye energy, the
influence of the structure in EDOS on D(t), Tc and (ZAO)/(kBTC)

is small.
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CHAPTER I

INTRODUCTION

I.1 INTRODUCTION TO THE SUBJECT OF THE THESIS

In recent years there has been a considerable number
of attempts (Refs. 1-8) to incorporate the effects of a rapid-
ly varying electronic density of states (EDOS) near‘the Fermi
levelFEF into the so-~called strong coupling (or Eliashberg)
tbsdf?vof superconductivity, which takes into .account the de-
tails of the basic interactions in superconductors. The moti-

\\\Yétion for these attempts is that some A-15 superconducting
ﬁaterials with the folmu)a A@ (A =V, Nb, ¢+, B = Si,'Ge,
Al, Ga, Sn ) , which p s the highest superconducting
critical temperatures (v~ 20°K), have long been suspected of

having unusually sharp peaks in EDOS near E_ (for review see

F

+ Refs. 9, 10, 1l1), with structure on the scale of Debye ener-
gy wp Mf=1), which is of the order of several tens of meV.
Oriéinally, in the early sixties, peaks in EDOS were invoked 12)
to explain the anomalous temperature deéendence of the mag-
netic susceptibility and Knight shift of several vanadium

based A-15 materials. Subsequently'Wegerl3)

suggested
that the coﬁcept of sharp peaks in EDOS N(E) is consistent
with the presence of A-atom linear chains in A~-15 A3B struc-

ture. The rapid variation in N(E) near EF was also used to



explain unusual elastic properties of these materials, inclu-
ding the structural trangsformation from the cubic to the tetra-

gonal phase, which occurs in some of the A-15 compounds 9’10’11).

Indeed, several recent baﬁé structure calculations(l4-18)
have confirmed the possibility of sharp peaks in EDOS for ma-
terials with A-15 crystal structure. Unfortunately,‘at pre-
sent there is not enough agreement between various band struc-
ture calculations on the scale of wy to make their results com-
pletely convincing (see for examéle Ref. 19). Therefore, mo-
del EDOS are still being used to fit various properties of

Z)'Zl). Nevertheless, a quite general argument'

these materials
has been given by Ho et al.lS) which explains why one can

expect sharp peaks in EDOS of A-15 compounds and another class

of materials, the Chevrel-phase compounds, having a relative-

ly large number of transition element atoms per unit cell. In
the A-15 materials there are six transition metéi atoms per -
unit cell and therefore 6x5= 30 d bands within the energy
interval ~ 10 eV. Ho et al. state that the strong interaction
between the bands and the requirement of no band crossing off
symmetry planes results in sharp peaks in N(E) from éach band.
Since the peak width in Nb is less than 1 eV,. they estimate

that the peak widths in A-15 materials should ‘be less than 150
meV. It should be noted that according to more xecent band

14-18)

structure calculations peaks in the EDOS have nothing

to do with the singular nature of one-dimensional band-struc-

turezz) .



Thé influence of the above described feature of EDOS
of A-15 materials on their superconducting properties was
fir;t treated by Labé et al.23). First of all, sharp peaks
in” EDOS should imply large vélues of N(EF)’ This lérge
éegeneracy around the Fermi level is favourable for supercon-
ductivity since there are then a large number of electrons‘to
‘participate in "the pairing correlations. Normally, the finite
width of the phonon spectrum limits the attractive range
of the electron~phonon interaction which brings about super-
conductivity. Labé et al.23) conclude that in A-15 compounds,
however, the narrowness of the peak in N(e) (they used the

Labé-Fredel model N(E) = N(0) (E4E m)"l/ 2

with Em = 1.8 meV)
limits the attractive range of interaction.
Since all of the A-15 materials with high %uperconduc-
ting critical temperature T,r except V3Si, are expected to
be strong coupling superconductors, i.e. ones where retarda-
tion and damping effects play a significant role, it is of
interest to analyze\the effects of rapid variation in N(E) in
the context of stro%g coupling theory of superconductivity.
The general formalism which takes into account all the complexi-
ties of the band structure has been developed by Garlana’?) .
A limiting case of Garland's formalism, which ignores all
anisotropy effects and possible energy dependence of the elec-

tron-phonon coupling, But retains the energy dependence of

N(E), has been applied in the analysis of Tc in some A-15
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1)

materials by Horsch and Rietschel™’ and independently by

Nettel and Thdmasz). Both groups have neglected the damping

2) reach a con-

23)

effects in their analysis. Nettel and Tbomas
clusion which is analogous to that of Labé et.al. ’ whilé
Horsch and Rietschell) claimed that a particular placement

of tﬁe Fermi levél within the peak may lead to enhancement of
T, due to the suppresion of the repulsive part of the electron-

3)

phonon interaction. Lie and Carbotte calculated the func-

tional derivative éTc/ﬁN(E) by using the complete Eliash-

berg theory24’25)

in its imaginary axis formulation; thus
damping effects were included in their analysis.ﬂ Lie and
Carbotte fo nd\from their galculated 6TC/GN(E)'that the va-
lues of N(E) only within 5 to 10 T_'s around the chemical
potential'haveappreciabheeffgct on Tc (GTc/éN(e) is approxi-
mately of Lorentzian form centred at the chemical potential

€ = 0 and becomes negative only at larger energies ¢ ztSO Tc).

Ho et al. were first to point out that the effective smearing
of the normal state EDOS at Tc due to the damping effects at
finite T may be ; limiting mechanism for achieving still higher
superconducting critical temperatures in A-15 compoundsls). In
their semiquantitative analysis based on the results of the

band structure calculations, experimental resistivity data and

uncertainty'principle,

Aet v 1

according to wqich for given life-time 1 any fine structure in

|

¥



N(e) on the ;cale Ae is smeared out, they conclude that the
measured T, of NﬁéGe is several degrees lower than what would
" follow from T = 0*band-structure properties. By rewriting

thé strong coupling Eliashberg equations at Tc on the real

4)

frequency axis with certain approximations Pickett has shown

explicitly how the damping effects influence N(¢) and there-
by the critical temperature. ’

In recent years a new experimental method has been
employed iﬁ studying the superconducting properties of Q—lS
compounds, (see Ref. 26 and references therein). By ehanging
the intrinsic properties’of A-15 materials through raziation
damage and then measuring the resulting changes in the physical
properties one expects to gain more understandi#g of the
essential microscopic features of these difficuit'materials.
Since the fluence of the radiation can be controlled, one can
study the dependence of various physical properties on the
amount of alteration of the original structure. Analogous
methods are the changing of the composition or alloying. 1In
most cases the superconducting critical temperature of A-15
compunds decreases with increasing fluence. Various exélana—

19,26,27)

tions of this behaviour have been given ; the most

"prominent being the smearing of the peak in EDOS. The point
is that other e#planations of the reduction in Tc’ such as

7)

the washing out ' of gap anisotropy2 , cannot account for the

increase in the superconducting critical temperature of



Mo3Ge2g) with increasing fluence. Most likelyzs) the Fermni

level of M03Ge is located in a valley in the electronic density
of states, between the bonding and antibonding peak, and the
smearing of the str&c£ure in' EDOS fesults in an effective in-
crease of NTéF) , which implies an increase in T,-

From radiation damage experiments it is possible to ob-
tain a rough estimate of the energy scale on which N(E) va-
rieszs). From these experiments it has been deducedzs)
thatforv3si structure on the scale of 100°K is possible.
However, since in these analyses of radiation damage experi-
ments oversimplified formulae of at best limited accuracy
are used for Tc it is of interest to sfudy the effects of
smearing in EDOS within the context of rigorous Eliashberg
theory modified to include energy dependence in N(E). This
study has been carried out by Lie and Carbottes) and by Mul-
ler et al;7) who treated the broadening of EDOS due to static
disorter in a phencmenological way. More recently Schachin-
ger ét a1.29) treated a similar problem, including the scat- .
tering of ordinary or paramagnetic dmpurities in a more exact
way.
‘ Since the superconducting critical temperature is a
fairly complicated functional of the basic microscopic para-
meters it is of interest to study the influence of energy
dependence in EDOS on other superconducting properties. One

expects that the study of single particle tunneling experi-

ments30’3;), which are known to provide the most detailed in-



formation about basic microscopic interactions in supercon-
ductors, may give more direct information about EDOS than the

other superconducting properties. The preliminary results of

6) and the more de-

8)

tailed analysis was done by Mitrovié and Carbotte ’.

such a study were published by Lie et al.

Obviously the study of superconducting properties in
the presence of sharp peaks in EDOS should be paralleled by
an analogous investigation of the normal state properties, in
particular the ef%ects of the electron-phonon interaction in
the normal state. A nonselfconsistent quantitative analysis
of the effects of the interplay between the electron-phonon
interaction and energy dependence in N(E) was given by Fra-

din32), while a selfconsistent, but forﬁal, treatment of the
4)

same problem was given by Pickett

I.2 °'SCOPE OF THE THESIS

In this thesis we investigate the effects of sharp
structure in EDOS near the Fermi level on some superconducting
and normal state properties. In Chapter II we study the ef-
fects of the interplay between energy dependence in N(E),
electron-phonon interaction, and/or elastic impurity scat-
tering on the electron guasiparticle propertiex in the normal
state. In Sect%on II.1 we present a fairly detailed derivation
of the self-energy equations relevant to the problem under

consideration. In Sec. II.2, the electron self-energy eguation



is solved for the electron-phonon problem and/or impurity
problemigf T=0. The resulting quantities determine the elec-
tron quasiparticle properties in the normal statgz In Sec.
II.3 we analyze the p;oblem of the eiectrOn phonon interaction
in the normal state for finite temperature in the presence

of sharp peaks in N(E). The temperature dependence of the
electron-phoﬁoﬁ mass enhancement parameter A (T) is calculated
for two model electronic densities of states.

In Chapter III we consider tunneling'into superconduc~
tor with nonconstant N(E) and calculate some thermodynamic
properties. In Section III.l1 of this chapter we give the
derivation of the Eliashberg equations for the superconducting
state generalized to include variation in EDOS on the scale
e Section III.2 contains

an analysis of the single-particle tunneling experiments at

of a few Debye energies around E

T=0 for the case of nonconstant N(E). In Sec. III1.3 we pre-
sent numerical results for the superconducting critical field
deviation function and the corresponding ratios (2A0)/(kBTC)
obtained with several Lorentzian models for N(E).

Chapter IV contains summary and conclusions.

In Appendix 1 we summarize, for convenience, some
Green's function properties and many-body perturbation éheory
diagrammatic rules. Appendix 2 contains the derivation of
éeveral integrals appearing in the self-energy equations.

Appendix 3 contains an analysis of Eliashberg's expression



for the grand thermodynamic potential of an interacting elec-
tron-phonon system in both the normal and superconducting
state. We show how this expression is to be generalized to
include short-range Coulomb repulsion in the superconducting
state and scattering by ordinary (or paramagnetic) .impurities.
In Appendix 4 we present a detailed derivation of the ex-
pression for the free energy difference betdéen superconducting

and normal state for a symmetric Lorentzian model of N(eg).



CHAPTER II

ELECTRON SELF-ENERGIES IN THE NORMAL STATE DUE TO THE

ELECTRON-PHONON INTERACTION AND TO ORDINARY IMPURITY

SCATTERING FOR THE CASE OF A NONCONSTANT ELECTRONIC
DENSITY OF STATES

IT.1 THEORETICAL BACKGROUND

The problem of the electron-phonon interaction and or-
dinary impurity scattering in metals is well known and has been
formulated and reviewed in several books, formal articles and
review articles (see in particular refs. (33) - (61)). Here we
will briefly present those aspects of the problem which are .of
interest in this thesis, namely the energy dependence in the
electronic density of states (EDOS) and the effects of the in-
terplay between the electron-phonon interaction (or ordinary im-
purity scattering) and energy dependence in the EDOS.

The normal state electronic self-energy part due to the
electron-phonon interaction and to scattering by ordinary (non-

magnetic) impurities is given by (see Fig. II.1l)

Z(k;lwn) = Xep(k,lwn) + ZiN(k,lwn) (I1.1)
where (we take the volume of the system V=1)

+o0
: _ 2 e i s Vo
Zep(k,lwn) = T}}i' m:z_w i lgkk.}\| D, (k-k',iw -iw )G(k ,mm) (II.2)

~
is the self-energy part coming from the electron-phonon interac-

10
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tion and

A b2
Lglkriu ) = ny i' | <k|Vv k!> ]G (k" iw ) (II.3)

is the contribution due to ordinary impurity scattering.

| I .
D(&-k, 1w, ‘wa\
700N
;7 ™
N
. 7 ™
= % ey l‘l > |+ = r: -
. v
A G(king) Taka G4 iy
Fig. II.1
Here k‘= (E,n), where ﬁ is the wave-~vector in the first

Brillouin zone, n is the band index and iwn are the Fermion

thermal or Matsubara frequencies

w = mT(2n~1) ' n=0,x1,t2,¢°*" (1II.4)

where T is the absolute temperature (we use the system of units
in which Boltzmann's constant kB==1 and #=1). |

G(k,iwn) is the electron thermodynamic Green's function
(see Appendix I),which is related to the noninteracting electron
thermodynamic Green's function

1

G (k,iw ) = T (II.S)
0 n l(.on Ek



(
N

S

12
and to the self-energy part Z(k,iwn) by the Dyson equation

S N DN :
6Nk, dw ) = Gyt (kodw ) - E(k,dw ) (1I.6)

Here € YRre the Bloch energies measured with respect to the
true interacting chemical potential u, which is determined by

the equation

N = tr{exp(- % (H-uN) 1N} / tr{exp[- % (H-uN) 1}
) (I1.7)
oo iw 07
=2T ¢ £ G(k,iv )e B
n
k n=-x

where N is the average number of electrons in the system, H is
the Hamiltonian of the system, ﬁ-—gartiqle number operator
and 0" is a positive infinitesimal.
In equation (II.2) Dk(a,ivn) is the phonon thermodynamic
Green's function defined by
4o

1 _ 1
iv-u ~ Iv.*
n n

]

Dx(q.ivn) dQBk(q,Q)[ | (IT.8)

where

]

iv

ivy inT2n (n = 0,%21,%2,++) (II.9)

and BA(E,Q) is the phonon spectral weight function for the wave-

vector a and polarization A (a is restricted to the first, Bril-



13

\\
™~

louin zone). DA(E’iVn) is related to its noninteracting counter-
part
. 208, ,
D,.(g,iv_) = ¢ (IT.10)
A0 n (iv )2_(99 )
n gA

(where Q%A is the unrenormalized (or bare) phonon frequency for
the wave-vector 3 and polarization A) and to the polarization

part Hx(a,ivn) through the Dyson egquation
-1, - . _—l+_ - >
DX'(q’lvn) = Dko(q’lvn) Hx(q,lvn) . (IX.11)

In the qguasiparticle approximation for phonons (i.e. for long

lived phonons)

+ .
B, (q,0) = °(Q'QEA) (II.12)
where an is the renormalized phonon frequency for wave-vector
a and polarization A 'which is the physical phonon frequency |
measured in experiments. We note that (\\
F(@) = I B,(q,®) , (II.13)
g\

is the phonon density of states at {;equency Q.;

Ik’ ) is the electron-phonon coupling functlon defined
by )
m, M2 . ilk=k') <50
= e [ cmre——— ' .
fen =TI ) DRI e (e

(II.14)
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where Nc is the number of uﬁit cells per unit volume, Mc is

the net mass of the ions within a unit cell. |k> and |k'> are
Bloch states and Uia is the screened and Coulomb vertex correc-
ted éne-body potential ‘'on the i-th eieqtron due to the a-th ion
in the unit cell located at its equilibrium position 32 with

respect to the origin. The P 's are phonon polarization

k-k',A /s

vectors.

We assume that the effects ofuthe Coulomb interaction
between the electrons are included in calculating the electronic
band-structure as well as screening and Coulomb vertex correc-

tions for the electron—phonoq couplihg function. We also assume

"that the static screening approximation is applicable. How

good this approximation is for transition metals and their com-
pounds, where one can -expect a sharp structure in the elecﬁronic
density of states, femains an open questionlg'szl.

) The ‘impurity contribution ZiN(k,iwn) given'by .the Eq.
(II.3) is obtained in the standard way40'5l) by diagrammatic
expansion, ensemble averaging over impurity configurations,
whereby it is assumed that the impurity concentration n.y is
spall, and assuming that the Born approximation is applicable
so that diagrams given in Figs. II.2 b,c (and higher oraer ones)

give small contribution compared to the second diagram in

Fig. II.1
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X % X
' \ 20N
i VAN Y (AN
/ \ | AN
! ’ \ /, | AN
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/
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a) \ b) )
\
3%
Fig. II.2

It should be noted that the diagram in Fig. II.2a) which cor-
responds to the single scatterihg by one ;mpurity giveé a
constant term upon ensemble averaging, if the Bloch states are
approximated by plane-waves and leads to a constant shift of
the chemical potential. 1In the case of Bloch states this

graph leads to a non-rigid shift of the bands and can be handled
implicitly by taking for the unperturbed states |k> the eigen-
states of the redefined average crystal potentialsg) .

Before we proceed to isolate the effects of the energy
dependence in ghe electronié density of states in Egs. (II.2)
and (II.3) we complete the solution of the electron-phonon prob-
lem by giving the expression for the polarization part H(&,ivn)

(seé Fig. II;3)
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+oc0

> 2 . . .
M(g,iv )= 2T E miim lgk,k+q,xl G(k+q,iv +iw )G(k,iw ) (II.15)
k
: G (4+q, ('.V“'}‘('.w“)
3&‘&‘\-3’% % Leg b, 2

G(k,iw,)

Fig. II.3

Equations (II.2) and (II.l4) are essentially Migdal's equa-

33)

tions for the electron-phonon problem in the normal state.

It should be noted that M}gdal‘s equations have limited vali-
s 1

dity 38), They break down for g+ 0 optical phonons whose

phase velocity is greatef than the Fermi velocity and one has

to include higher order vertex cgrrections to tﬁe simple elec-
tron—phonog vertex Ik’ A" However, we shall ignore this 4iffi-
culty. This may not be cémpletely justified for A-15 c0mpouqu

where it has been suggested 63)

modes plays an important role.

that coupling to the optical



In order to isolate effects of the energy dependence of

N(e) in Egs. (1) and (2) it is convenient 4) to define for |
any quantity Q(k) |
Q(e) = [Z Q(k)t‘S(E-Ek)]/N(E) (I1.16)

k

where N(e) is the single spin band-structure electronic density
of state&per unit volume at energy ¢ measured with respect to

the true chemical potential; then Egs. (II.2) and (II.8) give

|2 x

, _ 1 : _ -
Eep(e_:,an) = N }Z{Zep(k,lwn)é(e ek)
4o 4 .
=7 3 ae 20 - — 2L T |gg.,l%B, (k-k',Q) x
m=-x (w_=-w_)"+R" k k' A
n m
0
6(€—Ek) - . v o,
X _N—(E)_—_ de'é (s —Ek,)G(k,lwm)
oo +c 40
=7 "I ‘g —28 — de " N(l) Iéle-e) I T lg,
=—co (w_-w_)“+Q* € x k' A
n m
0 -0
x BA(kfk',Q)G(k',imm)é(s'-ek,) .
We will éssume that the equality
1 _ _ )
ETET'Z Ql(k)Qz(k)G(e Ek) = Ql(a)Qz(E) (IT1.17)

k

is valid which amounts to ignoring all anisotropy effects. Then
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We can write

2 -t 3 LI =
i' i ngk'kl B, (k=k',2)G(k',dm )6(e'~€},)
= 7 G(k",iw )8(e'-e,..) I I |g |2B (k=k',Q)8(e'~€g,,)
N(e') [ u "m k" ' kk'A A ’ k*
k k' A
2
— ' 3. 1! L.
- G(E llwm) k' i ngk'xl Bx(k k ,Q)ﬁ(& ekll
and
+ 4o
e N(e') 2
: — 1 ] s . ]
Zep(s,lwn)-T m:iw de N(0) Gl(e ,1wm) AR “F(Q;e,e') x
-0 0
x 28 s (II.18)
(w_~w_) "+
n m
where
aZF(Q;e,e') = N(0) 2 ¢ I ngk'xlsz(k-k"Q) X
k k* A
X 6(e-ek)6(e'—ek,)/N(s)N(e') . (11.19)

The same type of algebra leads to
4o :
, N(e') 1.
[]
N(0) 2nTiN(e,s )

! . = ' \
Ly leriv) de G(e',iw ) (II.20)

where
l 1 2 - - - ' 1
n; "N (0) i i' | <k |VN[k>| §(e-e, )8 (e £, /N(e)N(e")

21.(c,e") =0y
N

(I1.21)
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and VN is the chaﬁge in the crysthl potential due to ordinary
(normal) impurities.

For calculating the equilibrium thermodynamic proper-
ties of the interacting electron-phonon system in the normal
state (which may contain small amounts of ordinary impurities)
in principle one needs only the thermodynamic Green's functions
G(k,iwn), Dx(a,ivn) and the corresponding self-energy parts
Z(k,iwn), HX(E,ivn). However, in order to calculate other
properties of this system such as, for example, the electron
quasiparticle properties, one needs the retarded electron Green's
function GR(k,Z) and the corresponding self-energy part ZR(k,z)

for the real values of the complex argument Z (see Appendix 1).

It can be shown that for the real vaiues of w

GR(k,w) = G(k,w+1id) ' (IX1.22a)

ZR(k,w) I(k,w+id) , (II.22Db)

where § is a positive infinitesimal and I (k,w+id) should be a
bounded function of w.

When performing an analytic continuation it is worth
noting tha? for wo > 0 (wn < Q) G(s,iwn) is equal to GR(a,iwn)
(GA(E,i@n)—advanced Green's function) which is analytic and
nonvanishing in the upper half (lower half) complex pl;ne.

Therefore (I1.18) can be rewritten jin the form



4-c0 <)
. _ , N(g' 2 . .
Zep(e’lwp)" T J de N(O) dRa"F(;e,e') x
-0 0
> . 1 1
x{ E GR(E'lmm)[iw -1w_-Q iw_-iw +Q] *
m=1 n m n m
> 1 1
v IoGlede ) o T mie ) (11.23)
= n -m n -m
.-
It is convenient to use identities (B = 1/T)
= 1 Fp2 ‘
z Fl(iw ) = % - dz —————o N (II.24a)
n 2miT
n=1 +82
C e +1
1
® - 1 Fo(2)
I F_.(iw ) = + - dz ————— (II.24Db)
— 2 7 -n 27iT -
n=0 +B2Z
c e +1
2

where Fl (Fz) is analytic and nonvanishing in the neighbourhood

1 and C2

are shown in Fig. II.4a. For a given w > 0 and any & from the

of the positive (negative) imaginary axis and contours C

open interval 10,+~[ the function

Gple,2) ——
" iw_=-2+Q

n
is nonvanishing in the upper-half complex Z-plane and has a’

simple pole at 2 = i@nIQ which is off the positive imaginary

axis, while



21

1

G, (g,2) —
A iw -2%Q

is nonvanishing and analytic in the lower-half complex plane.

Lo
w— -

O
N

Fig. II-4

Then for a given w > 0 and Q@ > 0 contrours Cl and C2 in Figqg.

1) ]
II.4a'can be deformed into Cl and C, of Fig. II.4b, respectively.

2
Since Gp(e,2) = O(1/2) and G,(e,2) = 0(1/z) for |z + = the

contributions from the large semi-circles vanish and %ne has
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Putting (II.25a) and (II.25b) back into (II.23) we obtain

4
1
5mi ‘ de

Zep(e,lwn)

4o
x {I do' (G (e W) =G, (W) 1 {

-0

1

l 9
iw -lwm+9
. 1
2ami (f e
1

- QO

1

iw_ ~w'+Q
n

Since

eBm'

GR(E'M)—GA(EIw)

+1

=

(see Appendix 1), we have

)G

¢ N(e')
N(0)

] —‘2ﬂi

211mGR(e,w)

G.(g,iw

(e,iwnIQ)

1

1

Lo (¥B) (FQ)

1 +

R

iw ~w'-=-Q
n

- T
e Bw +1

- 1 +
n Q)+GR(8,1wn Q)

= 2iImG(e,w+id)

(-1)

iw —w'¥Q
n

+o
[ anzF(Q;e,a') X

22

(II.25a)

X

(II.25Db)
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400 +-0
o) = . , N(e) (L
Zep(e,lwn) = J dw [ de X(0) { N‘ImG(e ,w'+i8)} x
r+

x 40a%F (Q;e,e') [—2 1 1 L

iw_~w'-Q -Bw' lw_ ~w'+Q w'
) “n e 8 +1 n eB +1

+

r+oo 4o )
N(e') a"F(Q;e,e") Vo L v
J dag B0 [GR(s ,1wn Q)+GR(€ ,lwn+Q)] .
e =1
-—0 0
(II.26)

Dy

Now, setting iwn + w+in, where n is a positive infinitesimal we

finally obtain

+o0 400
Zep(eyw+in) = I dw' J de’ N(e') {- L ImG(e',w'+id) } x

N(0) i
[+
2 1 1 1 1
X dQa"F(Q;e,e') [—=x= ey + = . —] +
J w=w'=-Q+in e Bw +1 w-w'+Q+in eBw +1
0 -
(e A 2 : .
+ ger Nlel) an LEWEe]) (g(er,w-a+in) +G (), wtatin) ] .
N(0) BO_
J e
-0 o

(IX.27)
It is trivial to analytically continue the impurity con-
tribution, Eg. (II.20):

N(e') 1
N(0) 2nriN<e,e )

0
EiN(e,m+in) = { de' G(e' ,w+in) . (I1.28)

-0

We now have the major approximation in this thesis by

assuming'thathzF(Q;ehe') does not depend on ¢,€' on the scale of
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several times the Debye energy w_ around the Fermi level, or

D
better that the ¢,¢'-dependence of azF(Q;e,E') is much weaker

than the ¢' dependence of N(e¢') for €,¢' in the indicated ener-
gy range. The point is that one is interested in the values of
Zep(e,iwn) or Zep(e,w+in) for e,lwnl,lml in the range of a

few times Wy around the Fermi level. Since the phonon frequen-

cies @ fall in the range from zero to v Wy the factor

+c

f anzF(Q;e,e') 20 > in (II.18) is a rapidly decrea-
0 (wn—wm) +Q

sing function of w_ for |w_| > a few times w_ with |w_| in the
: m m n

D
interval from zero to several times Wy Therefore the major
contribution to the m-sum in (II.18) comes from the values of
lwml in the interval from zero to a few times wy. On the other
hand, since G(e',iu_) = [iw_-e'~I(e',iw )17}, the main contri-
bution to the t¢'=-integration will come from the values of e¢' in
the same energy interval. This is the reason why one considers
the variation in N(e) and azF(Q;e,a') for €,¢' in the indicated
enérgy range.

The approximation

22F(Q5e,e') = a’F(R:0,0) = a®(Q)F(Q) (I1.29)

simplifies the treatment considerably since the self-energy

T i T - i

“ep(e’lwn) (or uep(t,w+ln)) now depends only on frequency

as can be seen from Egqg. (II.1l8) (or (IX1.27)). We‘emphasize that

such an approximation is an ad hoc assumption and a full micro-

scopic justification, presumably on the basis of a detailed cal-
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culation of the electron-phonon coupling function in a material
where N(e¢) varies rapidly near the Fermi level, 1is requiged.

It should be noted that Horsch and Rietschell) . who together
with Nettel and Thomasz)were the first to explicitly analyze
the effect of sharp structure in EDOS near the Fermi level on
the superconducting critical temperature Tc’ in the context of
the strong-coupling theory, state that for the case of the in-
terchain scattering model for the electron-phonon interaction
in the A-15 compounds calculations show that such an approxi-
mation is justified (see also\Ref. 64 ). Here we restrict
ourselves to the case where only the energy dependence in N{(g)
is retained. Before the complete solution to the problem of
electron-phonon coupling in A~15 materials can be given, it
seems gppropriate to first catalogue the effects of t¢-dependence
in N(g), (e,e')-dependence in azF(Q;e,e') and anisotropy
effects one at a time. This work is concerned only with the -
effects of rapid variation in the electronic density of states.

Assuming that (II.29) is valid Eqg. (II.27) reduces to

+co 4+
P )
Zep(w+in) = { dw' { de’ %%%TL f— %Im G(e',w'+id)} x
[+
2 1 1 1 1
x dQa " (L)F () [ I T AL + — F L4 1 l +
J w=w ' =L+in e Bw +1 w-w'++in eBw +1
0
r+°° 2 +o0
| ag & UIFGD b g NIED) (oo ontin) +G (¢ wtn+an) ]
88 N(0)
) e -1
0 - B

(II.30)
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Ordinarily it is assumed that N(tg) can be taken con-
stant in the range of several times wp around the Fermi level
and then, since only this range contributes to the e'-integral
as discussed previously

4o
J de %%%% (- = InG(e',w+if)) =

o0

=1 (II.31)

Al

40
e ImI (w+id) — &
€ 2 2
[e'-(w-Rel (w+id)) )+ [ImE (w+id)-§]

-0

where we have used the fact that the self-energy has a negative
imaginary part in the upper-half complex plane (see Appendix 1).

Also

+oo

-0

[ o]

Note that the results (II.31) and (II.32) do not depend on what
is used for I in G as long as the imaginary part of I has the
right sign, and the simplest choice is to use instead of G the

noninteracting Green's function G, (g,w+1i8) = 1/(w+id~c). This

0
conclusion is based on: 1) I does not depend on momentum (or,
equivalently, ¢) and 2) the electronic density of states N{g)
can be assumed to be constant. As soon as one of ;hese two
conditions is not valid Eq. (II.27) or Eé. (I1.30) has to be

solved self-consistently for I.

It should be stressed that the Quantity
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¥

400
N(0)N(w') 2 de'N(e") {- -}r- IMG(e',w'+id)} =
ad% ~
= 3 A(k'w') ’ (II.33)
(27m)

where A(i,w') is the electron spectral function (see Appendix
I), gives the quasiparticle density of states. Strictly spea-
king this term is somewhat artificial since it is well known38)
that the concept of the quasiparticle looses its meaning, in
the case of a strong electron-phonon interaction even at T=0,
for excitation energies of the order of typical phonon-frequen-
cies (provided one defines the gquasiparticle as ‘an excitation
whose level width is mdch smaller than the energy of the exci-
tation). The term is reminiscent of the case when G in Eg.
(II.33) can be replaced by the noninteracting Green's fungtion
1

Go(e',m'iid) = [w+id-¢]" (or equivalently AO(E,w') = 6(ez-w'))

since then Eq. (II.33) gives

N(O)N(w') = N(w') . (II.34)

However, such an interpretation of N(O)ﬁ(w') is never necessary
for calculating various properties of the interacting electron-
phonon system. At the same time this guantity embodies in\a
precise way the qualitative ideas about smearing; or better-
depletion, of the peak in the electronic density of states due

to the electron-phonon interaction at T> 0 (or due to the impurity
scattering), which were mentioned in Ch. 1 and were based on

the uncertainty principle. To see this, let us assume that the
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EDOS has the form of a Lorentzian superimposed on the constant
batkground at least for the values of |e| which are within

several times Wy around the Fermi level €=0

_ s
N(g) = Nb(l + = —7-—7) . (II.35)

As discussed before, the quantity N(O)ﬁ(w) defined by Eq.
(I1.33) appears in the self-energy equation (II.30) and in the
context of that equation the main contribution to the integral
over €' in Eq. (II.33) is coming from the interval of several
Debye energies around e=0. Therefore it is legitimate to as-

sume that N(e) is given by (II.35) for all values of €, since

,
-

it simplifies the evaluation of the integral. With this choice )

for N(g) we have (see Appendix II)

N(0)R(w) = Nb(L + & at| Im3 (w+is) |
(w-ReL (w+id)) %+ (a+|ImE (w+ié) |)

2] (II.36)

-
IA)

which has the form of a broadened EDOS given by Eq. (II.35).

At finite T> 0 ImI(w+id) is finite everywhere and the function

N(D)ﬁ(w)'has a loweE,maximum than the original electronic density

of states. This is the precise statement of the gualitative

idea relating to smearing of the peak in EDOS. Another impor-

tant point is that what appears in 'Lorentzian form', Eq. (II.36),
is the renormalized enerqgy wLReZ(w+i6), instead of just the.

energy w. In Sec. II.2 the results of numerical calculations

will be presented and the effect of this renormalization will be
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.

clarified. From Eq. (II.36) it is evident that for a < w, and
s/(ma) of the order of 1 it is important to solve Eq. (II.30)
self-consistently. 4 )

The completely self-consistent solution of the electron-
phonon problem should include the subsystem of phonons as well
(see Egs. (II.15) and (IIX.11)). It was pointed out by Knapp

et al. 65)

that the sharp structure in the d-band density of
states near the Fermi level causes a strong temperature depen-
dence of the bare phonon frequencies renormalization which re-
sults in phonon softening as the temperature is decreased.
However such a completely self-consistent solution of the self-
enerqgy equapions is an extremely difficult problem and the short-
cut solution would be to use at each temperature phonon frequen-
cies, that is az(Q)F(Q), determined from experiments at that
temperature and solve self-consistently énly the electron self-
energy equation, Eq. (IIﬂﬁo). We will restrict ourselves to

the low temperature regime, that is we will coﬁsider the tem-
peratures which are at most 30% of W and assume that in this
temperature range az(Q)F(Q) can be taken as temperature indepen-

66) have performed inelastic neutron

dent. Schweis$ et al.
scattering experiments on several A-15 compounds and Chevrel
phase materials. They have measured a generalized phonon den-
sity of states G(Q2), a quantity closely related to ordinary

phonon density of states F(Q), and found, for high Tc materials,

a considerable shift in weight under G(Q) towards the lower '



frequencies upon cooling from room temperature to the liquid
helium temperature. Since in our calculations the temperature
will not exceed 80°K it is hoped, upon comparing the amount of
softening in V3Si between 297°K and 77°K and in Nb3Sn between
297°K and 5.6°K (see Ref. 66), that our approximation of a

temperature independent az(Q)F(Q) is not a bad one.

We will conclude this section by simplifying the im-
purity contribution to the electron-self energy, Eg. (II.28).
We consider elastic impurity scattering and will assume that
l/EJe,a') defined by Eg.(II.21) can be set equal to a con-

is short ranged.

stant 1/16 thus assuming that the potential V N
2 .

Eq. (IX1.28) then reads

[y

t +o
in) = 2  N(e') ' :
ziN(e,w+1n) = Z“TiN [ de N(0) G(e',w+in) . (IT.37)

-00

Equation (II.37), or the one which is obtained when the elec-
tron phonon contribution and the impurity contribution are
summed to giée the total electron self-energy, has to be solved
self-consistently. We note that our treatment of impurity

' 67)

scattering is quite similar to the one of Williamson et al.

(see also Ref. 68 ).
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I1.2 EFFECTS OF THE INTERPLAY BETWEEN A SHARP STRUCTURE IN
. THE ELECTRONIC DENSITY OF STATES NEAR THE FERMI LEVEL,
THE ELECTRON-PHONON INTERACTION AND ORDINARY IMPURITY
SCATTERING, ON THE ELECTRON QUASIPARTICLE PROPERTIES IN
THE NORMAL STATE AT T=0
In this section we will present numerical solutions of
the self-energy equations (II.30), (II.37) and (II.1l) for
several model electronic densities of states (EDOS). In this
way we will illustrate the possible effects of the interplay
between sharp peaks in the EDOS, the electron-phonon interaction

and/or ordinary impurity scattering.

At zexo temperature Eq. (II.30) reduces to

+o +0 '
sy ' . N(e') _ 1 v vas
Zep(w+1n)— dw de N(0) { = ImG (€' ,w +i8)} x
+oo -
x | dea(Q)F(Q) [— e B (0') + — L B8(-w')]  (II.38)
w-w'=-0+in w—w'+0Q+in "
0

)

In the constant density of states approximation Eq. (II.38)

takes the form (see Eq. II.31)

+o0 +c0

1 1

: — ' 2 - ' - L i d

Egplotin) = | dw' | a0 (F (@) (gogrigrs 9" + goprrarey 0(-w')]

—C0 0
or

+co +co
£ (wtin) = | dw' | da0a?(Q)F(Q) I 1 + L3 (11.39)
ep w=w'=Q+in  wtw'+Q+in )
0

0

from which it can be easily seen that Re Zep(w+in) is an odd
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function of w, while Im Zep(w+in) is an even function. The
quantity Re Zep(o+in) gives the shift of the chemical poten-
tial due to the electron-phonon interacti n38:69) qnus in the
constant EDOS approximation (and assuming that the self-energy
is not momentum dependent) Re Zep(o+in) = 0, i.e. the elec-
tronQphonon interaction does not sHift the chemical potential

1/2, where m is the electron mass and

(to an accuracy of (m/M)
M is the ion mass). This can be easily understood on the
basis of usual second order perturbation theory arguments for
the calculation of the energy shift due to the electron pho-

non interaction43

. This argument will also help to understand
that, in the case when the electronic density of states N(E)
does not possess particle-hole symmetry around thekband struc-
ture chemical potential at E=0 (i.e. when N(E) # N(-E) close
to E=0 on the scale of several Debye energies), one‘can ex—
pect a shift of the chemical potential due to the electron-
phonon interaction. There are two effects contributing to the
energy of the interacting electron-phonon system at T= 0 when
an extra partiéle is added to the system in momentum state E,
with ISI > pp (Pp is the Fermi momentum). First, the added
particle can virtually emit a phonon of energy QE‘E',K r go
over to the state p', with 15" | > pp (due to the Pauli prin-
ciple) and then reabsorb this phonon returning to the original

state El(see Fig. II.5a). The contribution AE'of this type of

process to the energy of the system will) among other things
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Fig. II.5

depend on the density of intermediate states 5', |§'| > Ppr
. avai;able to the added electron at E. Furthermore, in the
absence of the added electron, there are virtual fluctuations
of the system due to the electron-phonon interaction'contri—
buting to the ground state energy, in which an electron in
the state p'within the Fermi sea, |p'] < Pps Virtually emits
a phonon of energy Q> -,

P-P' /A

Q;'*E ) going over to the intermediate state P, with |p| > Pp
1 .

(due to the Pauli principle) and then returns to the original

(or equivalently absorbs a phonon

state by reabsorbing this phonon. Now, when the particle is
added to the system in the momeptum state p with |p| > Py -these
fluctuations of the system in which particles in momentum states

p' with |p'| < pp 90 over to the state p and then return back
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to the original state by virtually emitting and reabsorbing
a phonon, are blocked by the Pauli principle and the corres-

ponding contribution AE, to the ground state energy has to

2
be subtracted. For the given state E, IE[ > Ppr the later
contribution will depend on the density of states E' with
}§'| < Pp- Now letting IEI * pps in order to find the shift
of the chemical potential due to the electron phonon interac-
tion, we see that if the electronic density of states is con-
stant or symmetric around E=0 we can expect a zero shift of
the chemical potential, while if N(E) is not symmetric around
E=0 there will be a finite shift of the chemical potential,
since AEl and AE2 do not ctancel each other.

Moreover, if the electronic density of states is not
symmeﬁric around E= 0 on the scale of a few Debye energies
there is no reason to expect that Im Zep(w+in) will be an
even function of w or that Re Zep(w+in) will be an odd func-
tion of w, as in the case of a constant eleétronic density
of states.’

We have solved Eg. (II.38) by taking the following form

of the band elec¢tronic density of states



(B, for E < E; = -100 meV
P-B _
B + (E~E,) , for E, < E < E_, = =10 meV
BB, 1 1 5
N(E) = A (IX1.40)
B+ -2 (E-E.) , for E. < E < E. = 25 meV
E.-E 3 2 Z F3
372
B , for E > Eq
with B/N(E=0) = 0.44 and P/N(E=0) = 1.22 which has the form

of a triangle superimposed on a constant background of height
B. It should be noted that the 'bare' band structure chemical
potential (T =0°K) is located at E= 0. This choice of N(E)
was made to reduce the numerical work when solving Egq. (II.38)
and to approximate the detailed band structure EDOS for Nb3Sn
as calculated by Klein et al. 14) (see also Ref. 7,

where the effects of lifetime broadening due to static disor-
der have been approximately taken into account f£or the band
EDOS of Ref. 14). The electronic band density of states ap-
pears in Eq. (II.38) in the form N(t¢') where &' is measured
with respect to the true interacting chemical potential. The

two energies are related by
E(g') = €'+Re Zep(o+in) (I1.41)

or equivalently

35
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' = — :
B, for ¢' < ¢ 2 E,;-Re Zep(o+1n)
B + P-8 (e'-€,) for e,< eg' < g, = E.-Re I __(o+in)
€,7€) 1 1 - 2 2 ep
N(e') = A (I1.42)
B-P 1 1 = - N
B + TN (e 53) for €y <e' < oeg _E3 Re Zep(o+1n)
B, for e' > €3
\

At every stage of iteration of Eqg. (II.38) the band density of
states N{e') was redefined according to Eq. (IIF42) on the ba-
sis of ReCE;p$o+in) obtained as a result of the/previous ite-
ration. The iterations were started ,with the noninteracting
guess I (w+in) = 0. Instead of.redefining N(e') at every stage
of iteratiog, the eguivalent procedure would be to subtract
from tﬁe solution Re I (w+in) the number Re Z(o+in), as is evi-
dent frog the structure of Eq. (II.33). However, since the
number of frequencies w at which I(w+in) was calculated was
much larger (typically 108l nonuniformly spaced frequencies)
than the number of intervals at which N(E) varies linearly
(only 4 for N(E) given by Eq. (II.39)) the first procedure was%
more economical from the computational point of view. The
integral over €' can be carried out analytically for any
piecewise linear function and we give the results of such an
integration for EDOS given by Eq. (II.42) in Appendix II. It
should be noted that since at T= 0 the imaginary part of the
electron-phonon self-energy vanishes at w=0 (position of the

interacting chemical potential) we have, with an arbitrary N{(g)
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+co
Im | de N(e) 1

N(O)N(0) -£~Re L (o+id)+1ié

A=

1
i

H

N(e = -Re L[(0o+id)) (I1.43)

which is exactly the value of the band structure elecéronic
density of states at the band structure chemical potential
E=0 (see Eq. (IX.41)). Thus, at T=0°K the value of the
electronic density of states is ‘'pinned' to the chemical po-
tential (at T= 0 and very close to w=0 one can talk about
quasiparticles even in the case of a strong electron-phonon
interaction) .

As the input az(Q)F(Q)—spectrum we have taken Shen's

31y witn

result for Nb3Sn obtained from the tunneling experiments
0

Az o2 a0 () F(Q) /9 = 1.7 (II.44)

0

and a maximum phonon frequency w = 28.9 meV (f = 1). The

max

Zep(w+in) solution of Eq. (II.38) was obtained in the interval

o] < w_ = 150 meV. The w' integration in (II.38) was car-

ried from -» to +« by assuming that

+

N(w') = - 2'In | de(e)/N(0))G(e,0'+in)
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is constant for |w'| > w_ . Connected to this latter point we
note that if one wants to solve Eg. (II.38) with the actual
band structure calculation result for N(E), like the one in
Ref, ( 14 ), it is useful to assume that N(-E) = N(E) = const.
for |[E| > W, in order to be able to carry the integration over
w' in Eq. (II.38) from -» to +~ . This is essential in order
not to underestimate the renormalization effects by cutting

off the w'~-integration in Eg. (II.38) at ¢ w§7).For lw] < w

- C
where w, 1s of the order of 5 Wrax to 10 Wiax’ Eq. (II.38)
can be rewritten as (assuming N(w') = ﬁ(wc) for |w'] > wc)
+w w
c R max >
Zep(w+in) = dw'N(w') dAQa” (Y F(Q) x
~W
C
1 [} l - ]
. Fe “nax 5 1
1] 2Ry —e -
+ N(wc) dw'{ [P dQa” () F (%) o T0
W 0
w
max 2 1 2
- P dQa“(R)F(Q)P )]—in[a F(~({w'-w)) +

Nt (w'=w

+ 2PF (= (w'+w))])

Since az(Q)F(Q) is zero outside the interval [o’wmax] one has

$FF (- (w'-w)) = azF(—(w'+w)) =0 for w' > w > |w|, so that

the second term in the above formula can be written in the form
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o~ “max 2 Qtw —~w
N(wc) J dfa” () F () An 5:;;:; .
0

In Wig. (II.6) we present the real part of the solution
of Eq. (IIj§§3 (solid line) for the electronic density of
states N(E) given by Eg. (II.40). For comparison we present
in the same figure the corresponding solution for the case of
a constant electronic density of states equal to the ;alue of
N(E) given by Eq. (II.40) at E=0. We will refer to these two
cases as Case 1) and Case 2), respectively. 1In both of these
cases the same az(Q)F(Q) spectrum was used. From Fig. (II.6)
it can be seen that Re Zep(w+in) in Case 1) is not an anti-
symmetric function of w. This is a consequence of the asym-
metry of the band EDOS given by Eq. (II.40). As was anti-
cipated in the previous qualitative description of the proces-
ses contributing to the excitation energy of the interacting
electron-phonon system, this asymmetry of the band EDOS re-
sults in the finite shift of the chemical potential. For the
model EDOS N(E), Eq. (II.40), this shift is Re Zep(o+1n) = 6.43.
meV which is about 20% of Woax®

In Fig. (II.7) we plot the -Im Zep(w+in) for Case 1)
(solid line) and Case 2) (dotted line). Again Im Eep(w+in)
‘ig‘the case of a nonconstant glectronic density of states, 'is
not an even function of w, thus reflecting the asymmetry of

the underlying band EDPOS. It is worthwhile to define, in par-

ticular for the treatment of the superconducting state, the
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Fig.11.6

The real part of the electron-phonon self-energy.
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The imaginary part of the electron-phonon self-energy.
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even and odd part of Z(iwn) in Matsubara frequencies iwn

(see Sec. 1I.1l) by

X(iw ) = %[Z(iwn) + 3 (-iw )] (II.45a)

LSTF g

iw (1-2(iw )" = [Z(iwn)—Z(-ibn)] . (IX.45b)

In order to find the analytic continuation X (w+in), where n
is positive infinitesimal by.letting iwn + w+in in the upper

half complex plane, it should be remembered that

I

Z(lwn) ZR(lwn) row > 0 (1I1.46a)

Z(iwn)

ZA(lwn) f W, <0 (IX.46Db)

with ZR(iwn) and ZA(iwn) analytic in the upper and lower half

complex plane respectively (see Appendix 1l). Thus

X (w+in) = %[ZR(w+in) + ZA(—w—in)] (IT1.47a)

w(1-2 (w+in)) = %[ZR(w+in) - £, (~w=in)] , (11.47b)

A
or after using the relation (see Appendix I)

I, (w=in) = E;(w+in) , (II.48)

y(w+in) = & [Z(w+in) + I (~w+in)] (II.49a)

N

]

w(1-% (w+in)) % [T (w+in) = I*(-w+in)] . (II.49b)
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\

The function 2 (w+in) is known as the renormalization function.
In Figs. (£1.8) and (II.9) we present the real and imaginary
part of 2z, respectively,.for'Case 1 (solid lines) and Case 2)
(dotted lines). The reduction in the renormalization, i.e.
in Re Z, for the case of the peak in the EDOS is the obvious
consequence of the overall reduction in weight under N(E)
given by (Eg. II.40) in the interval of several W ax around
E=0, as compared to the constant EDOS equal to N(E=0). The
imaginary part of %z, Fig. (II.9) contains more information
about the local variation in w of the symmetrizedlEboé, or
more precisely %(ﬁ(w')+ﬁ(-m')), which will be discussed in
more detail below. In Fig. II.10 we give the real (solid
line) and the imaginary part (dotted line) ©f x calculated for
the peaked EDOS (X vanishes for the case of a constangveléc— ’
tronic density of states as is obvious from the definigion,
Eq. (II.45a)).

In Fig. II.1ll we plot the quasiparticle density of

states N(0)N(w) = -~ (1/7)Im J deN(e)G(e,w+id) divided by the

value of the band structure EDOS at the band structure chemir
cal potential, N(E=0) (solid line) and the band EDOS N{w)
normalized to N(E=0) (dotted line). The position of the

true interacting chemical potential is at w=0 and the circle
denotes the position of the bare band chemical potential at
T=0. We note that several iterations of Eq.(II.38) are re-

quired before the condition (II.43) was satisfied to suffi-



Fig.II.8

The real part of the normal state renormalization function.
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Fig.II.9

Imaginary part of the normal state renormalization function.
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Fig.II.1l0

1 and imaginary parts of the self-energy component which

degcribes the shift of the chemical potential.
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The quasiparticle density of states normalized to N(O) (—)
and the band electronic density of states normalized to N(O)
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cient numerical accuracy. (It took 16 iterations of Eq. (II.38)
to converge the solution I (w+id) at each of 1081 frequencies
between -150 meV and +150 meV to the 12 decimal places on

the McMaster's CDC Cyber 170 méchine.)

The effective narrowing of the peak in the quasipar-
ticle density of states as compared to the bare band EDOS
results from the energy renormalization due to the electron-
phonon interactiaqn. To see this we consider the energy range
w << wy at T = 0°K where the imaginary part of the self-energy

is very small. Then

+-c0
N(O)&(m) = - % Im deN(e)G(e,w+id) =
+-co
= deN(¢) % [ ImZ (@+i8) |

[e—(w—ReZ(w+i6))]2+]Im2(w+i6)l2

= N(€=(w-ReZ(w+id)))=N€F4wReZn(w+id)-Rex(w+id)))
= N(E = wReZn(w=i6))

= N(E = w(1+xeff)) (II.50)
where Aeff is defined by

Keff z ZN(0+10)-1 (II.51)

(to be distinguished in the case of a nonconstant EDOS from
the 'spectral' X defined by Eq. (II.d44) Thus the value of
the quasiparticle density of states at the energy w(<< mD)

>



with respect to the true interacting chemical potential is
the same as the value of the bare band EDOS at the energy

E = w(l+Aeff) with respect tb the band chemical potential. If
the band EDOS varies linearly near E= 0, N(E) = aE+b (as in

the case of our choice, Eq. (II.40)) then the quasiparticle

density of states varies as N(O)ﬁ(w) = a(l+Aeff)w+b near
w= 0, that is, the effective slope Aaff = a(l+Aeff) is in-
creased by a factor (l+Aeff). For Aeff in the range from 1

to 2 this gives a factor of 2 to 3. If the electronic density

*

of states was assumed to be a constant in the range from —wp

to +w_ this effect would go away and one would obtain the

D
well known result53)

that the electron-phonon interaction
does not affect the quasiparticle density of states in the
normal state.

It should be noted that the above described narrowing
of the quasiparticle density of states due to the electron-
phonon interaction is one of the reasons for solving Eq. (II.30)
self-consistently, since the amount of narrowing depends on
Re I (w+id), which is in turn determined by N(w'). Upon exa-
mination, the slope of the normalized gquasiparticle density of
states N(w), given by the selid line in Fig. IT¥.11, around w=0
we £ind (dN(w)/dw) _, = - 0.0519 meV ' which is to be com-

pared ((dN(E)/dE)__ /N(0))xZ(0+i8) =-0.77 meV 'x2.33435 =-0.0519

mev_l thus confirming our previous analysis. The reduction in
the .effective ?enormalization parameter Aeff = 1.33435 (see
Eg. (II.51)) compared to the spectral A = 1.7 (see Eq. (II.44))

is 21.5%.



P By using a contour integration analogous to the one

-

'in Sec. II.l it can be shown (see also ref. 70 ) that the
equation for the chemical potential § in terms of the average
number of particles (per unit volume, since in this work we.

set V=1), Eq. (II.7), can be written in the form

N=2]| do "B%T‘“ {- _71? Im {. deN(e)Gle,w+id)} . ‘
J e" 41
, rtoo o
= 2 dw Bi N(0)N (w) (II.52)
’ J e”" +1
where
o, for € < - q :
N(e) = (II.53)
. #0 , for ¢ > -y

is the band s$ingle spin EDOS measured with respect to the true
interaction chemical potential. This equation (II.52), reé-

places the commonly used equation

o
N=2]| ae -—B-i—— N(e) (II.54)
e” " +1 T
~co

which is appropriate only in the absence of interactions

(other than those erlicitly included in calculating the band
structure). Hence, the above described sharpening of the struc-—
ture in N(O)ﬁ(w) as compared to N(w) in the range from "~ -w
to v twy (due to the electfon-phonon interaction which, as it
Qill be seen below, persists even at finite T) ﬁgy be related

to the fact that the models fdr the .bare. band EDOS‘used to fit

-
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the (anomalous) teﬁperature dependence of the various normal
state properties of A-15 materials are often pathologically
sharp (see Ch. I).

In Fig. (II.1l2) we present the frequency dependent re-

normalization parametexr

AMw,T=0) = - g% Re I, (w,T=0) (II.55)

obtained by numerical differentiation, for the case of a non-
constant EDOS given by Eg. (II.40).

In Fig. (II.13) we give the corresponding derivative
of the |Im Zep(w,T=0)| = I'(w,T=0). The quantity I'(w,T) is
equal to 1/(21(w,T)) whefe T(w,T) is the (unrenormalized) life-
time of the 'quasiparticle'. 1In the constant EDOS approxi-
mation and at T= 0, Eq. (II1.39), one has

lw] - o]

[ (w,T=0) =7 do'd%F(|wl-w') =T dw'a?F (') (II.56)

and thus

ar(wéng) - HGZF(lwt)Sgnw . (II.57)

In the case of a nonconstant EDOS and at T'=0 Eq. (II.38) gives

|w] '
Nw,T) == f dw'[B(w)ﬁ(w')+6(-w)§1(—w’)]a2F(le-w') (1I.58)

0

a——

v

Upon differentiating this expression with respect to w and using

. ~
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Fig.II.12

The frequency dependence of electron-phonon renormalization

parameter at T=0.
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the trivial identity

g% azF(lwI-w') = -sgn(w) 5%7 azF(lml-w')

F}

(where we have assumed that azF(Q) is differentiable) as well
as

azF(o) =0,

N(O) =1,

we obtain

|w] .
ingégfgl_ = nsgn(w)[azF(IwI) + dw'azF(|w|-w') 8N(sgg§w)w )]
0 (II.59)

In the case of a constant EDOS this reduces to Eq. (II.57).
In Fig. (II.13) we have plotted sgn(w)ar(w,T=0)/3; for the
EDOS given by Eq. (II.40). This derivgtive was calculated nu-
merically by differentiating im Eep(w+ié).' The negative

tails result from the drop in |Im Zep(w+ié)| for |w] '

2 “max
as ‘can be seen from Fig. (II.7), which is directly related
to the fact (see Eq. (II.58)) that N(w) drops as one moves
away from the origin because of the particular form of the
underlying Band EDOS. Here we have a gqualitative difference
between ‘the constant EDOS case and the one where the EDOS is
sharply peaked in~tpe range from ~ —wn to v 0y around the
Fermi level. In the constant EDOS app;oximation one has



Fig.II.13

The frequency derivative of the inverse life-time due to
the electron-phonon interaction at T=0.
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I'(w,T=0)

T, w> W (I1.60)

where

wmax 2
A= aga” (Q)F (Q) : (II.61)

0

is the area under the electron-phonon spectral function. The

reasons that at T=0 the damping rate.l above the (upper)

threshold wm

1)

2)

ax for the phonon emission is constant are:

The multiphonon processes, like the one in Fig. II.14 do
not contribute to the damping rate due to the assumption
that N(e) = N(0) for - @ < ¢ <+ 38)

If the 'quasiparticle' is added to the system at the

energy w > w

max Lt has at its disposal all thd phonons

to emit and the density of final states is constant no

matter what the initial energy w > w Here, we talk

max

about single phonon emission proceséés~and the damping rates

Fig. II.1l4



I8

due to each of these individual processes have to be ad-
ded| to produce the total damping rate.
“ Leaving for the moment point 1) we see that in the
case of la peaked EDOS an analysis similar to the one given in
2) leads|us to the conclusion that the damping rate is not

necessarily constant. This is illustrated schematically in

Fig. II.15 where we have assumed an Einstein model for
|

i
i

|

xq'\\ﬂ oL “F (D)

()

]
|
1
Q I |
| |
| { .
' |
}
| f
4‘4 l l‘ >
8 w-0 w w
Fig. IX.15 v
aZ(Q)F(Q) = AS(9-R). With this model for az(Q)F(Q) Eq. (I1.58)
gives

[{w,T=0) = gAN(w—Q) , for w > & (II.62)
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in accord with the above more or less intuitive argument.
This is precisely what is happening in our full treatment with
the EDOS given by Eq. (II.40).

In Fig. II.16 we plot 7= (3T (w,T=0)/duw+dl (~w,T=0)/3w)
for our triangular model of N(E) (solid line) and the corres-
ponding gquantity for the case of Ehe flat EDOS (ﬁ(w) = 1) -
dotted line - which is just the imput electron-phonon spectral

density az(Q)F(Q) (see Eq. (II.57)). This function is equal

to

w
%; g% [wImZN(w+id)]==§% J dw' o °F (w-w') %[ﬁ(w')+&(-w')] ,

(II.63)
0 w >0

Thus, ImZN(w+i5) contains the information about the local varia-
tion in % [ﬁ(w')+ﬁ(-w')]. The fact that at low‘frequencies the
solid curve in Fig. II.l6 agrees with the input az(Q)F(Q)

spectrum is the consequence of N(w') being a linear function

in w', for small values of |w']| so that in this range
5 N(w')+N(-0') = N(0) = L.

It is evident that in some cases the effects of a
nonconsfant EDOS cannot be simulated within the usual theory
of the.electron-phonon interaction in the normal state by
working with some effective electron-phonon spectrum azFeff
provided one requires that this spectrum possess the usual
propé;tiesﬁ for instance that it i? nog-negative. Similar

effects will persist in the superconducting state, as will be

-
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Fig.II.16

(

) The function which in the constant electronic density
of states case is equal to the input electron-phonon spectral

density (---.. ).
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geen in Sec. III.l, where we solve the Eliashberg equations
generalized to include an energy dependent EDOS and analyze
the tunneling characteristics into a superconductor.

We have mentioned that in the constant EDOS approxi-
mation the multiphonon processes, like the one in Fig. II.1l4,
do not contribute to the self-energy part Zep(w+id), al-
though they are implicitly included in the treatment of the
electron-phonon problem outlined in Sec. II.l (see the first
diagram in Fig. II.l where the electron line is the full line).
This fact was pointed out by Engelsberg and Schrieffer38)
in their treatment of the electron-phonon problem in the Ein-
stein model for the lattice. The reason for this is38)

that, for instance, the contribution of the diagram in Fig.

(I1.14) contains the factor

+co
de N(e,) 1 - (II.64)
I ‘(w*ek+1dsgn€k) :
which gives zero if one assumes
N(e, ) = N(0) ' -® < g < o (IT.65)

k k

However if the EDOS is not assumed to satisfy the condition

(IT.65) the multiphonon processes will contribute to Zep and
our self-consistent treatment of the electron-phonon interac-
tion in the normal state with nonconstant N(E) includes these

processes.



The contribution to the total self-energy part due to

the elastic impurity scattering, (Eq. (II1.37), gives

- +m
: _ 1 , N(e') '
Re?iN(w+16) = Re EF?;E de N(O) G(e' ,wtd) (IIi66a)
N -
ImZiN(w+16) = 2TiN N(w) . (11.66Db)

.In the constant density of states approximation the real part
of this self-energy vanishes and the imaginary part reduces

to the familiar result -i/(ZTi ). Note that if the full

N
Green's function G in the_expression (IX.37) was replaced by
a noninteracting (retarded) Green's function Go(e,w) = l/(w-ek+ié)

Egs. (II.66a) and (II.66) would give

400
s _ 1 1 N(¢g)
ReZiN(w id) = EFﬂwﬁTST |4 ’ de o=c ’(11.67a)
ImZiN(w-i-J.é) = - 3= N(w) (II.67b)
iN
61)

which are just the 'textbook' results obtained in secoqd
order perturbation theory. The scattering rate‘given by Eq.
(II.67b) is proportional to the EDOS to which the particle can
be elastically scatteréd, while the corrésponding formula
(IT.66b) contains the quasiparticle density of states. The

difference between Egs. (II.66a)-(IX.66b) on the one hand and

Egs. (IX.67a)-(IXI-67b) on the other is that in the latter case
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.

we have' summed all the diagrams for G given in Fig. II.l17a, while

/ N / N \
/7 N 7/ N\ ,/' N
7/ N 4 \ / N\
/ \ / N P \
yi \\ + ya \L Vi \
G% ‘ G% ' G% Go
- b)
P /}\\ /A\\ /lx
' // \\ //‘ . \\ / /%\ \\
- X, » /X, 2N\ / 2\
VR fol &, \
Lz 1/ \\ \.\ + 1" \\ 1/ \\\L + jq 1/1/ \\ \\ \\

Fig. II.l7

T

in the former case we have included besides the diagrams in

Fig. II.1l7a all the nested diégréms in Fig. I1.17b. Ifnthe

EDOS was assumed to ﬁe constant, all the nested diagrams would
% give a zero contribution in analogy with ;he electron-phonon

.interaction and tﬁé.two treatments wou%d be identicgl.

| ‘Since,éhé impurity contribution ZiN(w) has. a finite

imaginary part fbr all w, we cannot, as in the case-of elec-
tron-phonon intéraction at T=6, locate the‘positioﬁ of the
chemical potentiél by the frequency at which ImXiNkw) va-
nishes 1), Instead, one has to solve Eq. (II.52) which is
the gquat}én for:the'interaétihg chemiéél‘potential”ih térms
of the average number of;pafticies. we'will réstrict our-
selves to the case when the 'EDOS has, thé form of {g L&z‘:eni;zién
. ) , ' 7

]

-3
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superimposed on a constant background and which is symmetric

around the band chemical potential,

_ S a
N(E) = Ny (1+

oy ) [
hif a2+E2

“Hg S E <+ > (I1.68)
and we will assume‘u0 >> a,s. Thus, we will ignore any shift
of the chemical potential and will instead focus on the exact
form of the smearing in the guasiparticle density of states

due to ‘the impurity scattering. More specifically, in several

Dr,72)

recent attempt to account for lifetime effects on the

band density of states, a phenomenological approach has been
taken in which the lifetime broadening of the ehefgy levels

is described by

(II.69)

<N(E)> = j dE'N(E')S(ErE‘rEb)

*

\

where S(E}E',Eg) is some broadening function, usually taken to

"be a Lorentzian

Eb‘
S(E,E',E,) « — — (II.70)
Eb+(E—E')
or a derivative of the Fermi function
CS(E.E'LE) = 22r | L ] (I1.71)
A OE' © (E'-E)/E, S
e +1 S

: ¢ ‘ '
The input consisted of N(E), v(E) etc. obtained from band

[
;
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structure calculations and several average gquantities were cal-
culated on the basis of an averaging procedure, similar to the
" one given by Eq. (II.69). The number of states was preserved
And the cheﬁiqal potential.was changed accordingly.

Instead, we will choose the Lorentzian model previously
described which simplifies the treatment conéiderably from
the computational point of view, but we will treat life-time
effects exactly. It should be noted that, recently, this Lorent-
zian model has been successfully used infitting the temperature
dependence of several normal state properties for the series .of
A-15 (v, Cr ),si alloys?9/21)  yith this model for EDOS Eqgs.

(II.66a) and (II.66b) give (see Appendix II)

1 Nb w=-Rel (w+id)

Rel. (wt+id) = s (II.72a)
. iN 20755 N0 7 (| ImE (w+id) |) 2+ (w=Re I (w+id)) 2
Do L 1
ImZiN(w+16) = - 57— N(w) (II.72b)
iN
with (see Eq. (I1I.36))
N(0)N(w) =N (1+2 a+|Imz (wtis) | 51 . (I1.72¢)

T (at+|ImE (w+id) |) %+ (w-Rel (wt+id))

We have solved Eqs. (II.72a)~(II.72c), assuming that only im-
purity scattering is present, i.e. L(w+id) = ZiN(w+i6) with
a = 96 meV, S = ma for two different values of the parameter

1/2t = 1 meV and 10 meV. The choice of these. Lorentzian para-

5
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meters was made to simulate the size of the peak in the EDOS
for Nb.Ge which was obtained from self-consistent pseudopoten-

3
16)

tial band-structure calculations , with the Fermi level

situated at the center of the peakls) . Also, the half-widths
of the model Lorentzian peaks used in Ref. 20 are comparable
to our choice. ﬁ |

In Fig. II.18 we plot the band EDOS normalized to N(0)
(solid liPe),,ﬁ(w) for l/(ZTiN) = 1 meV (dotted line) and for
l/(ZtiN) = 10 meV (dashed line). These guantities, upon multi-
blying by the corrésponding l/éTiN, also give the decay rates
(Eq. (II.66bf)e Note that if the impurity problem was treated
by the éecond order nonselfconsistent perturbation theofy,
Eqs. (IX1.67a)-(II1.67b), the decay rates would be given by multi-
plying the so}i& line in Fig. II.18 with the éorresbonding
1/(275). Thus, in the full self-consistenﬁ treatment the scat-
tering by the impurities is, in a sense, self-limiting due fo
the smeariné of the quasiparticle density of states.: The in-
crease in the wvalue of fhe parameter l/(2tiN) from i meV to
10 meV should be interpreted as an increase in‘impurity concen-
tration of a fagéor of- 10 (sée Egs. (II.20) and (II.21)). In
the constant EDOS case or in a nonselfconsistent treatment of
the impurity écattering, Egs. (II;67a)—ﬂII.67b), this would
correspond to an increase in_ the sca;tering rate at the Fermi

surface of a factor of 10 while.it 4i's only 8 in the full self-

consistent calculation. In other words, the impurity scat-



bHA

FPig.II.18

Quasiparticle densities of stateX for the elastic impurity
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scattering.
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'

tering rate is #ot ﬁecessariﬁy linear in concentration when
:1 £he EDOS cannot\be assumed tolbe constant. In Fig. II.19 we

| plot the scatteﬁing rate at tﬁe Fermi surface (solid line) vs.
l/(ZTN), the 1aﬁter parameter:being'linearly proportional to
the concentratio§, for the Lorentzian model of the EDOS. (It
should be noted %hat, strictly speaking, our treatment of the

elastic impurity\scattering problem is valid only in the limit

of small impurity\concentraticn, as explained in Sec. II.l.)

|
Once the peak has|been largely smeared out, i.e. for 1/(2t.,) >

1N
ependence is again approximately recovered

60 meV the linear
with the slope ~ 0)5 (dotted line is the simple linear depen-

dence with the slo 1).

In Fig. .II.20 we plot' the real part of L, y(wtid) for

) = 1 meV (dotted line) and for l/(2TiN) = 10.meV. Thus

4

i.?. AL = —[BReZiN( +i8)/dw]

imp # 0, once the EDOS cannot

! w= 0
bq‘assumed to be nstant. This is ‘also true in the case of a

LY
1

anselfconsistent second order perturbation theory treatment,
ds. (II.67a)~(11.67b),\with the renormalization parameter being

linearly proportional to ghe concentration (or l/(ZTi )). How-

N
ever in the full self-consistent treatment this ceases to be

the case due to the smeariing of the peak as is evident from

Fig. II.21, where we plot vs. l/jzriN). The shape of

‘Aimp
this curve can be understood qualitatively.if after differen-

’tiating Eq. (IX.72a) at w=0 we ignore Aimp compared to 1 and

et
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Fig.II.19

Imaginary part of the self-energy due to elastic impurity

scattering as a function of the parameter which is pro-

portional to. the impurity concentration.
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The real part of the elegtron self-energy due to- the
q\

elastic impurity scattering.
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Fig.II.21

Renormalization parameter due to Elastic impurity scattering
as a function of the quantity which is linear in the impurity

concentration.
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replace“—ImZiN(o+i6) with l/(Z%N). The result is

- ) (l/2TiN)
imp (a+1/2 2
a TN
This formula would predict the maximum at l/(ZIiN) = a, while
in fact the maximum is near 1/(2Tt._) = 2a. The reason for

in

this is that —ImZiN(o+ié) is of order of magnitude 1/21iN
and it would be more appropriate to take —ImZiN(o+ié) =
C(l/(ZTiN))(l/(ZTiN)) ‘with C(l/(QTiN)L‘between 1 and 0.5
with our model for EDOS (see Fig. II.1l9).

We have also solved the complete self-energy equation
at T=0 when both the electron-phonon\interactiog and elastic
impurity scattering are present, for the s;me Lorentzian
model. The imput electron-phonon spéctrum was the one for
Nb

Sn and we have chosen l/(2'r.l ) = 10 meV. In Fig. 11,22 we

3 N
plot the real part of the total self-energy when only the
electron-phonon interaction is présent (solid line), when

the impurity contribution is also péesent (dotted line) and
wheﬁ the real part of the impurity 'self-energy is ignored
(dashed line). Note that all three curves are odd in w due to
assumed syﬁmetry of EBOS,&&th respect to the chemical potential.
In Fig. II.23 we plot -ImI (w+id) for these three cases and in
Fig. II1.24 we plot the EDOS normalized to N(0) (solid 1line):
ﬁ(w) when only the electron phonon interaction is present (dot-
ted liﬂe), ﬁ(w) when the elastic‘impurity scattering is also.

included (dashed line) and N(w) when the real part of the im-.
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The real part of the electron self-energy.
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The imaginary part of the elec¢tron self-energy.
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The quasiparticle density of states normélized to N(O).
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§

igurity self-energy is ignored (dash-dot). The reason that-we
consider the case when the real part of the impurity self-
energy is ignored is that in the recent treatment of the

same problem by Pickett?)

the real part of the impurity
self-energ& does not appear due to the matpematical approxima-
tions which went inté his analysis.

Here again we have considerable 'sharpening! of the
structure in the quasiparticle density of states as compared
to the bare band EDOS due to renormalization by the strong
electron-phonon interaction. Of course, the.peak is heavily
depleted by the impurity scattering but is at the same time
nérrowed compared to the case when the electron-phonon interac-
tion is 'switched-off' (seg the dashed curve in Figqg. II.18).

The value of the effective renormalization parameter
Aeff = —[8ReZ(w+id)/8w]w;0 in the case when only the elecpron*
phonon interaction is present is Aeff(ep) = 1.1577. The same
quantity for the case when elasfic impurity scattering is also
included has the value Aeff(ep+imp) = 0.9532, or if the real
part of the impurity self-energy is left out from the consi-
derations A;ff(ep+imp) = 1.0829. The difference Aeff(eﬁ)
A;ff(ep+imp) = 0.0748 is coming froﬁ the depletion of the peak
in the quasiparticle.density of states close to w=0, due to
the impurity scattering. This'depletion is about the same,
whether one includes or not the 'real part of the impurity self-

energy as can be seen from Fig. IX.24. Therefore, most of the

difference between Aeff(ep) and Aeff(ep+imp),-Xeff(ep)
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Xeff(ep+imp) = 0.2045 is coming from the impurity renormaliza-
tion parameter, Aimp = —[aReZiN(w+16)/8w]w=o whl?h is negative
for our model of EDOS. It is interesting t¢ ask why the

'
n : _ . - .
value of |A ~N Xeff(ep+1mp) Aeff(ep+1mp) 071297 is almost

imp|

twice the value |A, | = 0.0714 when only impurity scattering

1mp

is present with the same l/(21’i ) = 10 meV. The reason for

N
this is that the effective narrowing of the peak in the quasi-
particle density of states due to the electron-phonon interac-
tion as compared to the corresponding case (the same l/(ZTiN))
when there is only elastic impurity scattering, increases the

" value of.the impurity renormalization parameter (for the given
model of EDOS). To see this it is best to consider the result
for ReZiN(w+i6) which is obtained in nonselfconsistent second
order perturbation theory }

. +c0 .
N
ReZiN(w+i<s) = —_— P I de N{(e) = 1 b S w

1
21T N(O)

which after differentiation gives

. . _ 2 b S5 L_
Ngp = TIOReI (wkif) /dw] = 21, N(0) 7a a
__ 1 ™ s 1
3T, S, ma a ’
iN (l+'ﬁ)

For a given peak height over the background, i.e. for a given

. 1 .
S/(am) and Nb, and for a given l/(ZTiN) Ikimpl = = . Since at
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T= 0 the electron-phonon interaction does not give any damping
at w= 0 the heights of the two curves, the dashed one in Fig.
I11.18 and the dashed one in Fig. 1I.24, are almost the same
(since the parameter l/(ZTiN) has one and the same value)
while the effective half-wdith of the latter is about one half

of the former. Thus the value of the Ai when the e%ectron—

mp
phonon interaction is piesent is about twice the value when
this interaction is switched off.

The natural question is, to what extent are the conclu-
sions of our analysis dependent on thé particuiar model for
EDOS, i.e. the symmetric Lorentzian model? We believe that
the details will dépend on the details of the particular band

structure EDOS. The common effect which will always be

present is the smearing of thg structure in the EDOS due to

"lifetime effects and the sharpening of the possible structure

close to w=0 due to electron-phonon renormalization effects.
The last effect has been overlooked, although it is implictly
present, in several recent works concerned with similar to-

picsl"4).

To see how the details of the EDOS come in, suppose
that in our analysis of the impurity problem we would start
with the model ¢f a. displaced Lorentzian, for example the solid
curve in Fig. II.18 displaced by some amount to the left. By

adding impurities to the system this curve would be smeared so

that the corresponding quasiparticle densities of states would
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be given by the displaced dotted and dashed curves in Fig.
I1.18., Obviously, depending on the original displacement, the
smearing may result in a decrease or increase, in the value of
the quasiparticle density of states at the chemical potential,
cémpared to its value when there are no impurities present.
This can, for examp;e, lead to a decrease or increase in the
decay rate at the chemical poﬁéntial over which one would
obtain from Eqs. (IX.67a)-(IIX.67b), etc. However if the posi-
tion 6f the Fermi level is only slightly digﬁlaced from the

center of the Lorentzian our conclusions should remain more or

less unchanged.

II.3 EFFECTS OF THE INTERPLAY BETWEEN A SHARP PEAK IN THE
ELECTRONIC DENSITY OF STATES AND ELECTRON-PHONON INTERAC-
TION AT FINITE T

We conclude this chapter by presenting the solutions of
Eq. (II.30) at finite temperature, for two models of the elec-
tronic density of states (EDOS). At T> 0 the averagé number of

phonons with frequency @ becomes non-vanishing and is given

[}

by N(2) = 1/(e?®-1), 8 =1/T (& = 1, Boltzmann's constant ky=1).
As a consequence there is a finite damping at all w, i.e. the
imaginary part .of the Zep(w+ié) becomes nonvanishing for all w.
If the EDOS cannot be assumed to be constant in the range of
several Debye energies around the Fermi level it is necessary

to locate the position of the true interacting chemical potential

by solving Eq. (II.52), as we have explained in Sec. I1I.2 in

(,
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connection with the problem of elastic impurity scattering. To
simplify the numerical calculations.we will assume, as was

the case with the impurity problem, that the EDOS is symmetric
around the 'bare'band chemical potential. More specifically,
we will work with the symmetric Lorentzian model (see Sec.
IT.2, Eq. (1II.68)) previously described and with the symme-

tric triangulas model

ro ' Ei;‘

0
B ’ —uO<E§-Ew
N(E) = {B + %’f (B+E,) ,  -E,<E<0 (I1.73)
B-P
B + 5— (E“Ew) p 0<E§Ew

=

B , E>E

W' We can neglect any shift in the chemi-

cal potential. Thus we are primarily interested in the effects

By assuming Mo >> E

og the decrease in the EDOS as one moves away from E=0.

The problem of the.electron-phonon interaction at fi-
nite temperature in the presence of sharp structure in the EDOS
near the Fermi level was treated by Fradin32)) and Pickett4)
Fradin's analysis is within the framework of nonselfconsistent
second order pertrubation theory for the electron-phonon in-

teraction., Pickett's approach is similar to ours, i.e. it is

self-consistent, but we do not perform (unnecessary) mathema-
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tical approximations which are present in his analysis.
In Fig. II.25 we give the real part of Zep(m+id”T)

with the Lorentzian model £6r the EDOS (a = 9.6 meV, S/(ma) =1)

"

at four temperatures: T = 0° (solid line), T 10°K (dotted

20°K (dashed line) and at T = 80°K (dash-dot). In-

line), T
cidentally, the superconducting critical temperature for this
EDOS and input aZF spectrum described in Sec. II.é, is T, =

15°K (with u*(wc) = 0.1747 and W, = 240 meV). The correspon-

ding imaginary parts are given in Fig. II.26. In Fig. I1I.27

we plot the bare band EDOS ( ) and quasiparticle densities

of states at T= 0°K (e-+0), T

]

10°K (====), T = 20°K (=+=--)
and T = 80°K (mee=ee=), all curves being normalized to
N(E=0). |

It can be seen that the effective narrowing in the
quasiparticle density of states due to renormalization by the
electron-phonon interaction, persist at fihite T. At the same
time, however, there is a progressive depletion énd relative
broadening with increasing temperature; caused by the increase
in damping. The change of the normalized gquasiparticle density
of states, §Iw,T), at w=0 with temperature is illustrated
by the solid line in Fig. II.28. This effect, i.e. the tem-
perature smearing of the peak in the electronic density of
states, was first pointed out By Ho et al.ls) -on the basis of
uncertainty principle argu&ents. By using the results of their

self-consistent pseudopotential band-structure calculations for
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The real'part of the electron self-energy at four different

temperatures.
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Fig.II.26

The imaginary part of the electron self-energy at four

different temperatures.
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The quasiparticle density of states at four different

temperatures.
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Nb,Ge and Nb3A116)

have estimated that the peaks in EDOS for these two materials

and experimental data on resistivity they

(with the size of the peak for Nb.Ge similar to our choice)

3
are virtually destroyed at T = 80°K and T = 75°K, respective-
ly, assuming the value of the electron-phonon mass enhancement

1l.7. However, it is strictly speaking the quasi-

parameter A
particle density of states N(O)N(w'), defined by Eq. (II.33),
that contains the information about the band structure EDOS
and incorporates the lifetime effects. Our accurate numerical
calculation, with the similar imput parameters shows that
their conclusion is more or less correct. .

We have also calculated the temperature dependence of

the electron mass enhancement parameter

MT) = - (OReI__(0,T)/3w) o (II.74)

which can normally be measured in cyclotron resonance experi-
ments (for review see Ref. 58). 4We have calculated the tem-
perature dependence of A(T) in the following four cases:

1) with the Lorentzian model (a = 9.6 meV, S/(ma) = 1) for
EDOS within the full self-consistent theory as described by
Eq. (II1.38) (solid lines in Figs. (II.29) and (IT1.30));

2) with the same Lorentzian model but taking the non self-

consistent approach of Fradin which amounts to using the non-

interacting Green's function in place of the full Green's
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Fig.II.29

Temperature dependence of the electron-phonon mass renormali-

zation parameter.
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Fig.II.30

Temperature dependence of the electron-phonon mass renormali-

zation parameter normalized to the value at T=0.
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function in Eq. (II.30) (dotted lines in Figs. (II1.29) and
(11.30)). 3) By using the symmetric triangular model, Eq.
(II:73), with P-B = B, and E = 28.9 meV so that it has ap-
proximately the same size as the above Lorentzian model

(dashed lines). 4) Assuming a flat EDOS (dash-dot lines).

In all four cases the imput a2F~Spectrum was the same, i.e.

>
the one obtained by Shen from tunneling experiments on Nb3Sn.

By comparing the solid and the dotted lines in Figs.
(II.29) and (II.30) we see that the non self-consistent
treatment overestimates the value of A (T) at all temperatures.
At low T (f 10°K) this overestimate is mainly coming from the
lack of narrowing due to the renormalization of the quasi-
particle density of states in the non self-consistent treat-
ment. At temperatures T > 10°K the effect of smearing
N(O)ﬁ(u) starts to play an important role.

In the case of a flat EDOS the quantity A(T)Y/A(0)
does not depend on the scale of the particular az(Q)F(Q) but
on its shape as can be easily seen from Eg. (II.30) (see
also ref. 73 ). Here however, the differences are coming
from the fact that the EDOS 1s energy dependent in the range
of several Debye energies around the Fermi level.

We point out that the above values of A(T) were calcu-
lated by numerical differentiation of the Rezep(w,T) at w=20,
since in the case of energy dependent EDOS the thermal phonon

term in Eq. (II.30) starts contributing to the renormalization
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in analogy with the case of elastic impurity scattering. This
prohibits the derivation of a simple formula for A(T), analo-

gous to the Grimvalls expression73)

in the case of a flat
EDOS, which would be valid at all T. Even if one neglects
the contribution of thermal phonons (i.e. the one coming from

the last term in Eg. (II.30)) to X(T), the resulting expression

A(T)

(II1.75)

’

5]

+co 4o
dwN (w) anz(Q)F(Q)[fif‘“’)2 + flw)
(Q+w) (S-w)

0 0

where we have assumed that ﬁ(w) is even in w, 1is of little
use since the quantity ﬁ(w) is unknown, unless one solves the
complete problem. The formula analeébhs to (Eq. II.75) has
been derived by Pickett4). |

The dashed curve in Fig. I1I.28 gives the temperature
dependence of the normalized quasiparticle density of states
at the chemical potential for the triangular model of EDOS.
The dotted curve describes the same quantity for the Lorentzian
model which is obtained after just one iteration. By compa-
ring the solid and the dotted curve in Fig. II. 29 it is seen
that, as in the case of impurity scattering, the temperature
smearing of ﬁ(w) caused by the electron-phonon interaction is
to some extent self-limiting.

At present there is very little experimental informa-
tion about the gffects of the electron-phonon interaction inl

the normal state of the A-15 compounds with high superconducting

‘
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critical temperature, where one expects sharp peaks in EDOS. One

of the main reasons for this is that the high upper critical
field; in thesg materials require large magnetic fieldé (up
to 400 kKOe) to quench the superconducting state. Only very
réceﬁél have the de Haas-van Alphen measurements been per-

formed on Nb3§n and V3

s, . 74)
in these materials near EF .

Si in order to study the band structure

In general, the single particle tunneling experiments
into superconductors can provide the most detailed information
about the electron-phonon interaction. In the following chap-
ter we will analyse effects of sharp structure in EDOS on these

.

experiments.

Pl
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CHAPTER III

THE EFFECTS OF SHARP STRUCTURE IN THE ELECTRONIC

DENSITY OF STATES ON THE SINGLE PARTICLE TUNNE-

LING CHARACTERISTICS AND THERMODYNAMIC PROPERTIES
OF SUPERCONDUCTORS.

IIT.1 THE ELIASHBERG EQUATIONS FOR STRONG COUPLING SUPER-
CONDUCTORS GENERALIZED TO INCLUDE THE ENERGY DEPENDENT
ELECTRONIC DENSITY OF STATES

The problem of generalizing Eliashberg's theory for

&t

strong coupling superconductors to include all the cémplexi—
ties of the underlying band structure was first treated by

Garland24). OHly very recently, several more specific stu-

dies1™4)

analyzed the effects of sharp structure in the elec-
tronic density of states (EDOS) on the superconducting cri-
tical temperature within the framework of Garland's formalism.
Here we will give a brief outline of the Eliashberg- equations
generalized to include the effects of énergy dependent EDOS,
following the review article of P.B. Alleh60) (see also 24)
In order to describe the pairing correlations in the
superconducting- state it is traditional to use Nambu's two-

75), Within this formalism one can still

component formalism
apply the Feynman-Dyson many-body diagrammatic techniqgéiowith
6nly a slight modification of the rules appropriate for the

normal state (see Appendix l). The two central objects of the

90
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theory are the 2x2 matrix electron thermodynamic Green's func-
tion G(k;iwn) and the corresponding self-~energy part Z(k,iwn)

which are related by the Dyson equation

A A
—

\ _ -1 . _A .
G (k,lwn) = GO (k,lwn) Z(k,lwn) . (I11.1)

Here, Go(k,iwn) is the noninteracting_ electron thermodynamic

Green's function

l/(iwn-ak)
Go(k,iw ) = . (I111.2)

n
0 .l/(lwn+ek)

A

The meaning of other symbols is the same as in Sec. II.l.
In close analogy with the normal state, the electron-

phonon contribution to f(k,iwn) is given by (see Sec. I1I.l,

Eq. (II.2)) i
~ +CO 2 N ~ A A
] e - 1 : - .
Zep(k,lwn) T i' mjlw i |gkk,xl Dy (k=k',ie ~iw ) T,6(k,diw )1,
(II1.3)
where
~ 1 0
T, = ' (III.4)
0 -1

and the other symbols have meanings analogous to those in the
normal state (Sec. II.1l). Eq.(IIX.3) is essentially Eliash-
berg's generalization of Migdal's equation (II.2) to the super-

conducting state34735)
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In the normal state the effect of the Coulomb interac-
tions were included in the band-structure energies, screening
and Coulomb vertex corrections of the electron-phonon coupling

function. To include the effects of short-range screened

‘Coulomb repulsion between the electrons on the pairing correla-

tions it is necessary to add onto Zep(k,iwn)60)

oo N ~ n

- — - ~1! 27 [ - 2
L) =-T I T |V (k-k') [“T5{G (k" ie ) =G (k',iw )T

k' m=—-= 3

(III.5)

where Vsc(k-k') is the screened Coulomb matrix elément, which

is assumed to depend only on the momentum transfer. Also, the

~

static screening approximation ig assumed. Gn is the normal
state limit of G and is subtracted from it in order not to
double count the effects of the Coulomb interaction, which

have already been included in calculating the band structure

energies. Since the off-diagonal part of G, GOd, corresponds

75)
1

to the pairing correlations it is legitimate to approxi-

A~

mate G—Gn, within the context of Eg. (III.5) for the Coulomb

self-energy, with_GOd

é-én = g (III.6)

This approximation is justified by the scales of characteris-

tic energiesS7)'

for the Coulomb interaction (1 eV per atom),
electron-phonon interaction (10--4 ev perlatom) and supercon-

ducting pairing correlations (10-7 eV per atom). Thus we take
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~ +w A A
Ik =-11 5 |v__(k-k")|?7,6°
k m=-

d, ., . 2
(k' iw )Ty  (IIL.7)

as the Coulomb contribution to the total self-energy part in

the superconducting state,
Z(k,lwn) = Zep(k,lwn)+2c(k,1wn) (I1I.8)

After some algebra, identical to that which leads to

Eq. (IIX.18), we obtain

A +0) e N(E) A A ~
Zep(lwn) =T mjiw A (n-m) de N(0) r3G(e,1wm)T3 (IIIT9)
with
+o0
A (n-m) = aa? (2) F () 29 ) (III.10)
2 2
Q7+ (w_~w )
n m
0

Hére, we have made use of the approximation that the
azF(Q;e,e') defined by Eq. (II1.19) does not depend on €,¢'
in the range of several Debye energies around the chemical po-
tential, as discussed in Sec. II.1l.

An analogous treatment of the Coulomb contribution,
Eq. (III.7), gives

+-co
~ +o0

' ~ aod . -
Zc(e) =-T I de N(e')Vsc(e,e')r3G (e',lwm)13 (ITIT.11)

m=-®

where
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|
|

2 i
(k=k") | §(e-g) ) 6(e-e, )]/ (N(e)N(e"))
(I11.12)
|

For computation purposes it is convenient to exploit
the above mentioned relation between the characteristic ener-
gy scales of the basic interactions and rewrite Eq. (III.1l)
in a form which involves only the sum over the excitation ener-
gies within a range about one order of magnitude larger than

the maximum phonon frequency w_ .. (= w For lwml > w_, with

D)'

wC ~o10 wmax
~ L (e")
6% (er,iw ) = =S (ITI.13)
m . 2 2
(lmm) -¢!
and since
1,67, = 1,@%6% 2, = 69-g°C (I11.14)
Eq. (II.ll) can be written as
e v leret)
de' {6 (e-€)+T z N(e') =———1}L (') =
Jwg | >w, wi+e'2 <
00
- - ' ' R ~od L -
= T o ?(w de'N(e )Vsc(e,e )TBG (e ,lwm)T3 (III.15)
m c

The left-hand side of the above eqguation has the structure
4o
de'M(e,e')Ec(e') (I11.16)
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with

M(e,c') = 6(6—6')+TN(€')VSC(€,€')

>Ww w —+e!
mi c m

- - -

| w

Since the second term in the kernel M(e,€) is positive, the

+-00
linear integral operator J de'M(e,e') cannot map a nonzero

—oR
4

function into zero, i.e. it is nonsingular. Therefore, it can

to -
be inverted. By applying the inverse, J de'M'(e,€'), of the

above operator to both sides of Eq. (III.1l5) we obtain

+oo
+co
A = - - o N(e7) -1l P
L (e)=-T mjlw 6 (w, ]wml) de' J10) Ule,e') 146G (&' dw )Ty
(I11.18)
where
400
U(e,e') = N(OQ) dC"M'(e,S")VSC(E",€') (IXI.19)

-— 0

is the so-called Coulomb pseudopotential. An integral equation

. +
for U(e,e') can be obtained by applying the operator j deM(el,e)

gl
on both sides of Eg. (III.19). The result is (see Eqg. (III.17))

+-co

' N(e) . 1
U(el,e ) +T de N(o) N(O)Vsc(el,e)U(e,e ) z

-0

= N(O)Vsc(el,e') (II.20)
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We are interested in fc(e) for € in the vicinity of &=a,
Since the factor ?3§°d?3 in Eq. (IIX.18) drops off very rapid-
ly for ¢ > W (see below) énd since, as can be seen from Eqg.
(II1.20), U(o,e') varies slowly for |e'| < w, (the scale of
variation in U(o,e}) with e' is the same as for V(o,e'), of
the order of Fermi enexgy) U(e,e*) in Eq. (III.1l8) will

be evaluated at € = ¢' = 0. Calling

u*(wc) = U(0,0) (IIT.21)

our final result for the Coulomb contribution to the total self-

energy part is

n to :
= = - y N{¢') ~ a0d,_, . ~
£, =-T m=>:_m B ()8 (w |wm|) de’ Foy- T3C (e iwp)Ts .

~c (IIT1.22)

It is convenient to decompose f(iwn) into the various
(linearly independent) matrix compgfents. Since Pauli ma-

trices together with the unit 2x2 matrix

co= 01 7= 0 -i T 10 2= 10y |
1 10 ! 2 i o0 ! 3 0-1 ! 0 01 ;
form a basis in the four-dimensional complex vector space of

2x2 matrices it is possible to write
Z(lwn)==lwn(l—z(1wn))ro+¢(1wn)rl+¢(lwn)rz+x(1wn)r3 . }III.24)

-Also, from (III.1l) and (IXI.2) &
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é(e,iwnk=ung(iwn)%0+(ek+x(iwn))%3+¢(iwn)%l+$(iwn)%2]/detc'1(e,iwn)
(II1.25)

Ay s : 2_ : 2_,2,. _72 .
det(G') = (lwnz(lwn)) (e+x(1wn)) ¢ (lwn) ¢ (lwnL (I11.26)

By substituting (III.24), (III.25) and (III.26) into (III.8),

with Ee and Ec given by (III.10) and (III.22) respectively,

p
and by equating coefficients of the various Pauli matrices, the

following equations can be obtained:

oo Heo iw_ 2 (iw_)
iw_Z(iw )=ie +1T I Mn-m) [= | de EES; n ]
m=—o (-detG ™ (e,iw_))
(III.27a)
+oo oo
x(iw ) ==1T T A(n-m) (3 de gﬁg; £XX ] (III.27b)
n M=o (-detG “(e,iw_))
m
+00 .
4o ¢ (iw )
, 1 N(¢€) m
$(iw ) =7T I [A(n-m)-p*(w )6(w -juw_|)1[= | de —
n M=o c ¢c m m N(0) (-detG l(e,imm))
(III.27¢)

and an equation for 5(iwn) which has the form identical to the
Eq. (III.27). At the superconducting critical temperature Tc
the pairing self-energies ¢, 5 become small and the ¢2, 52
appearing in detG—l(e,iwn) can be set equal to zero. Thus at
Tc Egs. (III.27a) and (III.27b) decouple from Eq. (III.27c) and

the corresponding equation for . Also, equations for ¢ and y

become linear homogeneous equations independant of each other.
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For T > T the gquantities Z(iwn) and x(iwn) are the ones de-
fined by Egs. (II.45a) and (II.45b) and therefore they are
even functions of iwn. Assuming ;hat there is no spin de-
pendent interaction one can show 60) that Gll(k,iwn)=~G22(-k,-iwn).
Therefore ¢2(iwn)+52(iwn) must be an even function of iwn.
Since at TC ¢ and 5 are not coupled, each one of them must be
an even function of iw,.

For calculating the equilibrium properties the ?2— .
component of £ can be transformed away by choosing the phases
of single-particle states |k>, used to define creation (C;O)
and destruction (Cko) operators, in the appropriate way (see
Ref. 75 , Eq. (2.20)). Therefore, one has only to solve Egs.
(IXI.27a)-(I1I.27c) plus the equation for the chemical poten-—

tial in terms of the average number of particles N

. +
+o iw O

= _ ) n
N 2T ﬁ m:im Gll(k,lwn)e (III.28)

where 611 is (1,1)-component of the matrix é. Eg. (III1.28) 1is
completely analogous to.Eq. (IX.7), appropriate to the normal
state.

In Sec. (IIX.3) we shall study the thermodynamic
properties of a strong coupling superconductor taking a symme-
tric Lorentzian model for EDOS. For that purpose it is suf-.

/

ficient to consider only the imaginary axis form of the Eliash-

berg equations (III.27a)-(III.27c). On the other hand, to
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study, for example, the single particle tunneling experiments
(Sec. II1.2) one needs the retarded 2x2 matrix thermodynamic
Green's function and the corresponding self-energy part for
the real values of their frequency arguments, i.e. G(e,w+is),
f(w+1é). There are two alternatives for obtaining a(e,w+i6)
and i(w+16). The first one 1s to set up and solve the Eliash-
berg equations on the real frequency axis; the second is to
find some numerical procedure for analytic continuation of
the imaginary frequency axis solution. Serene and Vidberg76)
have found a method for an analytic continuation by means of
N-point Padé approximants. The method of Serene and Vidberg

works well76)

at low temperatures when the spacing between
successive Matsubarg frequencies is small. However, even then
the method does not give analytically continued functions which
are exactly the same as the corresponding solutions of the
Eliashberg equations on the real frequency axis. This is,
presumably, due to the intrinsic limitations of the N-point
Padé approximant method76) . We have used this method to cal-
culate the normalized tunneling conductance o(w) from the
imaginary frequency axis solutions of the Eliashberg egua-
tions generalized to include the rapidly varying EDOSG)o Al-
though certain trends were observable, we did not know to what
extent the modifications in calculated o(w), compared to its

form when the EDOS is assumed to be flat, resulted just from

the intrinsic limitations of the method, especially in the
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range w > W where it is expected76) that the method starts
to fail and where the modifications turned out to be large. For
this reason we have decided to formulate and solve the modi-
fied Eliashberg equations on the real frequency axis. It
turned out that the method of N-point Padé approximénts was
describing correctly the trends in the changes of o (w) due to
peaks in EDOS throughout the whole frequency range considered
(from w = Ao up to w = 1.5 wmax+A0)’ but the details were
somewhat different from the real axis solutions.

To obtain the analytic continuation of Egs. (III.3)

and (III.5) to the real frequency axis it 1s necessary to re-

peat step by step the procedure given in Sec. (II.l1). The re-

sult is $oo -

a . 1 N(g) ~ A 0y o

s = t{—- = e - ' X

uep(w+1n) dw' { - Im de N(0) T3G(L,W +10)r3}
(re

1 1 1 1 ]

2
< | dea? () F(8) (——— b — +
e —u¥in cBue' ) wmwiHiRn Bel

0
r+(!) 2 +
4o A () F(9) D T fQtin) s
+ § —255:1—__ de N0y [T3G(L,w s+ln)r3+13G(e,w 5+lﬂ)f3]
J
0 e (III.29)
and oo o
a e 1 ~A oA
Loey=1 du {~3 Im ds'N(s')Vsée,e')t3G°d(g',w+lo)t3} x
« L tanh(éﬂ—) (III.30)
2 2 -
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where n and 6 are positive infinitesimals.
From Eqs. (II.49a) and (II.49b) it follows that in the

normal state

X(=win) = x*(w+in) , Z(-w+in) = 2* (w+in) (II.3la,b,)

These relations should hold in the superconducting state as well.
Therefore (see Eq. (III.26)) ¢2(w+in) must have a property
analogous to (III.3la,b), which implies ¢ (-w+id) = 2¢o*(w+id).
From the spectral representation for, say, 61277)

that ¢(iwn) is an even function of iwn it follows that

and the fact

¢ (-w+id) = ¢*(w+id) . (II.31lc)

By using (III.3la,b,c) one finds

Im[€360d(e',-w-+is)€3]=-xm[?3é°d(e-,w'+16)€31

Also the %O—component of Im?Béd (e' ,w+id) T
:

sign when w + -w, while its

3 does not change

3 component does change sign
under such a transformation. Knowing this we can transform

Eq. (II.29) into
00

fp i) = T I AN, (@' +18) [£(-w" ) K_(w,0")+£(w')R_(0,-w') ] +
0 R

~

+
o1, J dw'ﬁx(m'+i6)[f6~w'¥x+(w,w')-f(w')K+(w,-w')]

0
+x > +co .
. af () F(Q) N(g) 2 A i an ad o
+[ as —eE-QL-l——- [ de N(O) [T3G (e,w Q+16)T3+T3G (t,uJ'*‘Q'*‘l(S)TB]

-0

(ITI.32)
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+
B0 (wrin) = | dw'N, (6+i8) [£(-w)K, (0,0")E(w K, (w,m0') 1T, +
0
+4-c0 2 40
a“ (Q)F(Q) N(e) (2 sod _ A
+ an —-—B—Q—-—-—-— de m—o—)- [T3G (e,w Q""iﬂ’TB +
e =1
0 —co
- ?36°d(e,w+a+in)?3] i (III.33)
Here
+
~ coy oo 1 N(e) w2 (w+id)
Nz(w+1¢) = - Im de N(0) D(c,wtid) (I1I.34a)
0
~ . _ 1 N(e) e+x (w+id)
N, (w+i8) = 2 Im de §75y BT%TEIIET . (III.34b)
+o0
. N | N(e) _¢(wtis)
NA(w+16) = - Im de N(0) Dic, orid) (III.?4C)
OO (\
with
. 2.2 . 2 .. - . 2 -
D(e,wtid) = w27 (w+id)-¢ " (w+id) - (c+x (w+id)) . (IIXI.34d)
Also
oo N
K (w,0') = dna? (Q)F (R) [ (——k ) ‘% (———se——)] (III.35)
2! w'tw+R-in’ T w'=w+-1in ‘
0

¥

Since the function under the w'-integral in (III.30)
is even in w', the Coulomb contribution can be written in the

form
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4o

dw'ﬁA(w'+ié)tanh‘(§%—')u*(wc)e(wc-w') (III.36)

where the Coulomb pseudopotential (wc,u*(wc)) has been intro-
duced in a way analogous to our previous treatment of the
imaginary frequency equations.

In the following section we will solve these genera-
lized Eliashberg equations on the real frequency axis at T=0
to study the zero temperature single particle tunneling ex-~
periments in a superconductor with rapidly varying EDOS

near the Fermi level.

{

L\
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III.2 TUNNELING IN A SUPERCONDUCTOR WITH AN ENERGY DEPENDENT
ELECTRONIC DENSITY OF STATES

A

In this section we solve generalized Eliashberg eqﬁa—
tions on the real frequency axis at T= 0 for the model elec-
tronic density of states (EDOS), Eq. (II.40)," which approxi-

14) for

mates the result of the band structure calculations
NbBSn. We also study the effects of a rapidly varying EDOS

on single particle tunneling egperiments. These experiments
can provide the most detailed informati&n about the electron-
phonon interaction, i.e. az(Q)F(Q), in sterconducting mate-

30)

rials via inversion of. Eliashberg equations It is pre-

cisely within the context of these experiments in numerous -

31) that the ac-

polyvalent simple metals and their alloys
curacy of the usual Eliashberg theory, which assumes a con-
étant EDOS, wa; confirmed to within a few percent (see Ref.
30 » Sec. VI.C). However, such experiments on transition
metals and their compounds have been difficult to perform and
interpret78’83) . The main reason for this difficulty is
that with these materials it is very difficult to produce
good quality tunneling barriers by the usual thermal Oxid;tion

d78). Experimental results suggest78’80)that when the

metho
tunneling barrier is thermally grown, a thin layer of normal
material having a much smaller critical temperature Tc

may form between the superconductor and insulating tunneling.

barrier. Thus in the tunneling experiment one is sampling
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not the bulk properties of the superconductor which is being
studied but rather the propertiés of superconductor-normal

layer proximity sandwich. Only very recently a quantitative

analysis of such an experimental situation has been proposed84)

and performed on several transition meta1585"87)

85)

, their alloys
and compounds such as A-15 compounds87'90). In this
procedure 86) , the normal layer is characterized by two para- .
meters which are then self-consistently determined by the
inversion program modified to include the presence of the
proximity sandwich, along.with the bulk values of az(Q)F(Q)
and u* (w_).

However, it 1s not always clear whether a normal layer

is forme particularly for some A-15 materials where the

tunneling junctions were fabricated by first depositing a
thin layer of Si on the superconducting film before exposure
to the atmosphere89{There, the attitude is taken that if the

30)

usual McMillan-Rowell inversion procedure gives anomalous

values for azF and u* (too small values of A = 2 f anZ(Q)F(Q)/Q

) 0
and negative values of p¥* ) the existence of a proximity

sandwich is éssumed and the experimental results are iﬁverted
by taking into account the proximity effect84). It should
be noted that in the case of Nb an alternative explanation of
the\anomalous results of the tunneling exberiments has been
givengo) . transparency of the tunneling bafrier was assumed

and the experimental results were inverted by taking into ac-

count this transparency, with as much success as in the case
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of proximity sandwich model. -

Here we will illustrate the possible effects of a sharp
structure in EDOS on the T= 0 single particle tunneling experi-
ments assuming an ideal tunneling experiment in which none
of the above difficulties with the tunneling barrier is pre-
sent.

At T=0 the Eliashberg equations generalized to in-

»
L4

clude EDOS are (see Sec. III.1l)

+
A(w+in) Z(w+in) = dw'ﬁA(w'+i6)[K+(w,w')—u*(wc)6(wc~w')] (ITII.37a)
0
400
w(l-2 (w+in)) = do'N, (w'+i8)K_(w,w') (III.37b)
0
+=c0
x (o+in) = dw'ﬁx(w'+ia)x+(w,w') , (III.37c)
0 \
where
e Aid%is) = ¢ (w+id) /2 (w+if) (II1.374)

— J / .

is tHe so-called gap-function. We have solved these equations
4

for EDOS N(E) given by Eq. (II.40). For the imput o’ (R)F(R)-

spectrum we have taken.Shen's result for Nb.Sn (A = 1.7) and

3

u*(wc) 0.18 with w, = 180 mevgl)_

Note that, as in the normal state, EDOS appearing in
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~

A NZ and ﬁx (see their defi-

nition in Sec. III.l) is N(¢), where ¢ is measured with res-

Eqs. (III-37a)-(III.37c) via N

pect to the true interacting chemical potential. The relation-
ship between the band-structure energies E, measured with

respect to the bare band chemical potential, and € is
E(e) = € + Reyx{o+id) . (I11.38)

As in the normal state calculations which were described in
Sec. II.2, N(e) was redefined at each stage of iteration ac-
cording to Eg. (III.38). The gquantities ﬁA' ﬁz and ﬁX were
calculated analytically for the given N(E) (see Appendix II).

In Figs. (III.la)-(III.lc) we present solutions of
Egs. (III.37a)-(III.37c) (solid lines) together with corres-
ponding solutions when the electronic density of states ds
taken to be constant and equal to N(E=0) (dashed lines).
Note the strong resemblance to the corresponding results of
the normal state calculations (Figs. (II.8), (II.9) and
(IX.11)), as one would expect for the diagonal part of the
superconducting self-energy. However, since quite different
numerical routines were followed in the superconducting and
normal state calculations, with the algorithm for the supexr-
conducting state being more complicated and tedious than in
the case of the usual Eliashberg equations, we find such

resemblance very reassuring.

)



Fig.III.1l

Solutions of Eliashberg equations. bashed lines in (&)
and (c) correspond to the case of constant electronic

density of states equal to N(O).

3039



108

10 T T T T

_ 2 | \é—___/-
__4 { i { 1 i | L
0 20 40 60 80 100 20 140

w=-Ag (meV)



109

Upon careful examination of the expressions for ﬁA
and ﬁz for the triangular model of EDOS one can argue that

the first two equations for A and Z, Egs. (III.37a)-(III.37b),
are largely independent of Eg. (III.37c) for x. More precise-
ly, one can argue that x can be set equal to zero when sol-
ving Egs. (III.37a) and (III.37b) for 4 and 2. (This is equi~
valent to stating that x vanishes.) We have verified this
argument explicitly for our model of EDOS, Eg. (II1.40), by
numerical ;olution of Egs. (III.37a) and (III.37b) where ¥

was set equal to zero as an external constraint.

The main effect of energy dependence in N(E) is that

the quasiparticle density of states

4+

EN

N(O)(ﬁz(w+in)—ﬁx(w+in))=- Im deN(€)Gy, (e,w+in)  (III.39)

-0

and the analdgous guantity in the gap equation, N(O)ﬁA, are
modulated by the underlying band-structure EDOS. Close to the

gap edge AO = ReA(w=AO) these quantities are dominated by the

superconducting square-root singularity while for w > Weax

(= wD) the quasiparticle density of states is mainly deter-

~

A’ Ng

and ﬁX with the triangular model for N(E), Egq. (II.40), are

mined by N(e). The actual analytic expressions for N

long and uninstructive (see Appendix II). For the symmetric
Lorentzian model N{e) = Nb(l + (s/n)a/(a2+52)) the guasipar-

ticle density of states is
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~ ‘ . 2,2 1/2
N(0) N, (u+i6)=Re [w/ (wi-a2 () /21 (14 2 e 22IELIL =0 (D) ;.
a"+2" (w) (07-0"(w))
. 2 2, . .1/2
- N, S Imle/ (P -0 () P2y 2L 28 (W) (111.40)

a%+2% (0) (w2-2% (w))

We note that the root (wz—Az(w)l/2

is chosen in such a way that
Z(w)(wz--Az(w))l/2 has a positive imaginary part. Although
the above expression is less transparent then the corresponding
formula for the guasiparticle density of states in the normal
state, Eq. (II1.36), it can be seen that the renormalization
due to the electron-phonon interaction acts in the siﬁﬁlar way
as in the normal state, i.e. the energies become renormalized
(w > wZ(w)).

In order to calculate the normalized tunneling conduc-

30)

tance o(w) = (dI/dV)s/(dI/dV)N we have assumed that the

tunneling matrix element is given by the WKB resultgz), which

is the standaxd assumptionSl).

This result gives for the
tunneling matrix element an expression which is inversely pro-
portional to the electronic density of states perpendicular to

the barrier and one recovers the usual strong-coupling expres- °

sion for o(w)

o(w) = Rel (ITI.41)

= ]
(wz-Az(w))l/2

Note, however, that N(0)o(w) is not equal to the gquasiparticle

density of states for the non-constant N(E) case.

-
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¥

In Fig. (III.2a) we present (o(w)/0o (w))—i, where

1/2 BCS

oBCS(m) = w/(wz*Ag) , calculated from the solution of

Egs. (III.37a)-(III.37c) with N(E) given by (1X.40) (solid
lines). In the same figure the dashed line 1s the corres-
ponding quantity for constant EDOS. While no new structure

is introduced it is evident that the slopes in (o(w)/0 1)

pcs (@)~
are larger for a nonconstant EDOS near the position of the
two lower peaks in the input azF—spectrum (dashed line in
Fig. (III.3a)), near w—AO = B.4 meV and w—Ao = 17 meV, than
the slopes in the corresponding curve for the case of flat
EDOS. This effect will cause , as shown below, an overesti-
mate of the weight under azF in the lower portion of the
spectrum if the solid curve in Fig: III.2a is inverted con-

30)

ventionally Another important feature of this

(o(w)/oBcs(w))—l is a sharp swing back towards zero around
-

w—AO = 35 meV. For these large values of w one can write

_ L2, .2
og(w) = 1 + ;(?—(Al(w) Az(w)) (III.42)

where Al and A2 are the real and imaginary part of A respec-

tively. Therefore, the rapid reduction in ]o(w)/oBés(m)—lt
is coming from the rapid decrease in Az(w) in the neighbour-
hood of w = 35 meV (> w__ = 28.9 meV) as can be seen from

Fig. (IXI.la). We have found such behaviour for Az(w) in all

our calculations done with the peak in EDOS around the Fermi
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Fig.III.2

Normalized tunneling conductance reduced to the corresponding
BCS expression: a) for a peak in EDOS (solid line), b) for a
valley in EDOS (solid line). Dashed curves in a) and b) are

obtained with a flat EDOS equal to N(O).
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level, and the resulting rapid decrease in [o(w)/cBCS(w)—li
for « larger than the maximum phonon frequency in the input
aZF—spectrum. In Fig. (III.3) we show o(w) calculated from
the analytically continued solution of the modified Eliash-
berg equations on the imaginary frequency axis (see Sec. III.1l)
for two symmetric Lorentzian models of N(c¢). The analytic
continuation was performed by means of N~point Padé approxi-
mants76)(see¢5ec,III.l). The solid curve in Fig. (III.3)

corresponds to the flat EDOS, while the dashed one and the

10 20 30 40
(w-4,) in meV

Fig. III.3

dotted one correspond to the Lorentzian model with half-widths

of a = 60 meV and a = 15 meV respectively. Note that in the
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case of narrower peak, o(w) goes faster to unity for w> WAy

It 1s interesting to see what the inversion of the
calculated o(w)/oBCS(w)-l (selid line in the Fig. III.2a)
would give for the electron-phonon spectral function assu-
ming the usual Eliashberg theory, which does not take into
account the energy dependence in EDOS, is applicable. To
this end we have applied the inversion procedure of Galkain,
D'yachenko and Svistunov93). This inversion procedure be-
sides being very simple and unambiguous has a distinct aann-
tage over the more conventional McMillan-Rowell procedure3o):
during inversion of the gap equations for azF, the value of
p*(wc) does not enter. Once the a2F is determined, u*(wc)
is fitted to the experimental gap edge.

The central relation of the procedure proposed by

Galkin et.al. is the dispersion relation

e
1 2 w' dw'
Im = = {Re } (IXI.43)
[w2~A2(w)f1/2 " [u)';z—A2(uu')]l/-2 wz—w'z
20
which cénnects the measured guantity
2 o(w) = Re = (III.44)

[w2-2% (0) 1172

with Im{w?-2%(w)]™Y. Eqs. (III.43) and (III.44) are two

equations for two unknowns Al(w)'and 4, (w). Thus the gap

2
Function can be determined directly from the tunneling experi-
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ment without reference to the Eliashberg equations. Once A(w),
and therefore ﬁA(w) = Re[A(w)/sz—Az(w))l/z] and ﬁz(w) = og(w) .,
are known, the Eliashberg equations can be used to set up a li-
near integral equation for az(Q)F(Q). By taking the imaginary
part of the gap equation (III.37a), p*(wc) drops out and one
has

w
A(A +w')
0 azF(w—w')

/ImA(A +w)z(a . +w)) =1 dw'Re

N 0 0 [(A0+w')2+A2(AO+w')]l/2
N 0 ]
. (III.45)
with’ -
1 +w Aotw’

Z(A.+w) =1 - dw'Re

0 Bgtw [(A0+w')2-A2(A0+w')]l/2
0

400

f
x,J aga? () F () [ L 1
0

O FwtF2A F18 T R Fnt-18

]  (III.46)

A guess is made for az(Q)F(Q) and 2 is calculated from Eq.

(I1I.46). This 2 and the known A are used in BEq. (IXII.45) to
calculate new spectral function aZF; then the whole procedure

is repeated. This iterative procedure converges rapidly. It

is sufficient to assume that azF is a hiStogréwi\iji:iiig"i;’ﬁ\//fﬁ
is defined on a fine enough grid (a bin width of W= meV is

small enough). This fact simplifies the numerical work consi-

derably since for the histogram-like azF, Eq. (III.45) has the
form
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1 1 1
b2 ¢, ¢ 0 0 +-- a,
= |cy C, Cy 0 oo aj (I11.47)
\ J \ / J
where for the set of equally spaced frequencies
0 = QO < Ql <Ry <
a, = a2(Q)F(Q) for Q. , < £ < Q
i i-1 - - i ]
= 1 4 3=
bi == ImA(A0+Qi)Z(AO+Qi) +i=1,2, (III.48)
4 BBy *e")
c, = dw'Re
: [(ag*0') 2-a2 (a24y1) /2
0 0 ‘ )
Q1 -

Care was to be exercised in calculating the integrals defining
the c; numbers.
Before. applying this inversion procedure to the

o(w)/o (w)-1 (so0lid 1line in Fig. III.2a) calculated for the

BCS
assumed model of N(e), we tested it for the case of the elec-
tron-phonon spectrum of NbS>? and Nb3Sn91)(which is the input
spectrum in all other calculations in this thesis). The pro-

cedure works extremely well, giving after a few iterations an

D
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azF spectrum which is indistinguishable from the input azF

when exgmined by eye.
In Fig. III.4a we plot the effective spectrum

[az(Q)F(Q)]eff obtained by the inversion of o (w) /o (w)-1

BCS
from Fig. III.2a. In the inset we give the assumed band
structure EDOS N(E). The dashed line in Fig. III.4a is our
input azF. The main deviations from the input azF are the
shift in weight under the spectrum towards the lower frequen-
cies, the attenuated longitudinal peak (at Q=25 meV) and the

negativé tail. The negative in azFe does not have a physi-

ff
cal meaning if this spectrum is-interpreted as the true
spectrum, since the electron-phonon coupling function should
be a positive quantity. The presence of the negative tail is
completely analogous to the problem with the frequency deri-
vative of the inverse life-time at zero temperature in the
normal state, Sec. II.2. Only when we a%lowed during the
inversion procedure for the possibility of negative values of

az(Q)F(Q)eff did the recalculated o{(w) and o(w) /o (w)=-1

BCS
agree well with the original functions. In Figs. III.5a-
III.5b,dotted lines represent the functions obtained from the
solutions of Egs. (III.37a)-~(III.37b) with nonconstant EDOS
and aZF—specfrum given by the dashed line in Fig. IIX.4a,
while the solid 1lines were obtained from the solutions of

the unmodified Eliashberg equations with az(Q)F(Q)eff as the

input spectrum. .
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Fig.III.4

Effective electron-phonon spectral densities obtained by
inversion of calculated normalized tunneling conductances within
the usual Eliashberg theory (solid lines). Dashed lines represent
the input electron-phonon spectral density. In insets we give

corresponding EDOS.
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Fig.III.S

Comparison of the normalized tunneling conductance
calculated for a peak in EDOS (dotted line) and the
one recalculated from the effective electron-phonon
spectrum in Fig.III.4a (solid line).

The guantities as in a) normalized to the BCS

expression for the normalized tunneling conductance.

1aR



119

115

IO

.00

06

(b)

o2k -

)/ Oy ) ) -1
@)

-.02F .

(o (w

-.04

T
1

- ! ] ] |
'OGO IO 20 30 40

w-Ag (MeV)




ORI e e T S g o

R A A Y e St BBt % 17 g

T

120

Leaving the negative tail out while inverting o (w)
leads to a poor agreement between this function and the one
which is recalculated from an azF with the negative tail omit-
ted, in particular in the range w > Woax (see Figs. II11.6a,b

and (III.7)). Note that the curvature of the o(w)/o (w)=-1

BCS

recalculated from such an azF (Fig. III.7) is in the range

eff

w > wmax similar to the one for the case of flat EDOS (dashed

line in Fig.III.4a).

/’Ab In Fig. III. 4b we give another gffectlve azF spec-
trum—obtained for the EDOS presented in the inset of the same

figure. The corresponding (o(w)/o (w))=1 curve is shown in

BCS
Fig. III.2b (solid line). Here the trend in the change of the
a?F—spectrum is exactly opposite to the previous case and is
connected to the fact that the Fermi level falls in a small
valley, not a peak, in the EDOS.

In conclusion, the effects of a nonconstant EDOS on
the normalized tunneling conductance o(w) are significant and
cannot be accounted for in a meaningful way within the stan-
dard Eliashberg theory by working with effective values of

az(Q)F(Q) Needless to say, when we inverted the

*
eff and Heff-
Eliashberg egquations (III.37a)-(III.37c) modified to include
the energy dependent EDOS, in a way completely analogoﬁs to
the previously described inversion technique and starting from

-

the calculated A(w), we have obtained back our input electron-

S~



a)

b)

P

\A 18

Fig.III.6

Normalized tunneling conductance (solid line)
recalculated from the electron-phonon spectral
function which was obtained by inversion of the
dotted curve. The negative tail in the spectral
function was ignored in the process of inversion.
The same quantities as in a) normalized to the
BCS formula for the normalized tunneling con-

ductance.
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Fig.III.7

The effective electron-phonon spectral density inverted
from the calculated normalized tunneling conductance for
a peak in EDOS (solid line). The negative tail was ignored
during the inversion process. Dotted line is the input

electron-phonon spectral function.
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phonon spectral density azF. This procedure, however, requires

a detailed knowledge of the band EDOS.

v

Note that the dispersion relation (III.43) still re-

mains valid since 1t results from the energy integration,

40
J dek, of the equality
oo R

1
dw {l Imcll(e ,w'+id) } (ITII.49)

U)+i6) = P UJ—:F p=

ReGll(e

k' k

which is just the real part of the spectral representation
for the ll-component of Nambu's Green's function G(¢,w+id).
The critical fact is that the various self-enérgy parts appea-

ring in G do not depend on the electron energy ¢; this fact

11
follows from our assumption that azF(Q;e,e') does not depend

on ¢ and ¢'. Note that the integration of the real part of

the spectral representation for G
+ d3§ .
(2m)°

-0 -0

fact unnecessary identity.

11 over the momentum, i.e.

+co
= J dekN(ek) would give a more complicated and in

Now the question is whether there exists some ‘eéxperi-
mental evidence for the effects we have established so far of
energy dependence in EDOS on the single-particle tunneling
characteristics. The most natural candidates are the A-15 ma-
terials, for which successful tunneling experiments have been

performed only very recently82'89'9l). In all cases the conven-
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~
tional McMillan-Rowell inversion procedure gives anomalous
values for the parameters ) and u*(wc); also the resulting
QZF-spectra and u*(wc) give a poor f1t88’89) to the experimentally
measured o(w). These difficulties were ascribed88'89) to the
proximity effect, and improved values of the azF—spectra and
Coulomb repulsion parameters were obtained by applying the
modrfied McMillan-Rowell procedure, which accounts for the
presence of the proximity sandwich. With this modification,
the i1inverted parameters give a good fit to the experimentally
measured normalized tunneling conductance. In one case onlysz),
the inversion was attempted using the method of Galkin et al.
with presumably anomalous results, but the character of the
anomalies, unfortunately, was not clearly specified. It is
not completely clear whether the two methods necessarily give
thé'same result, once the conventicnal description of the
tunneling experimeﬁt 1s inapplicable for one reason or another.

82,88,89)

Wwe find that all published normalized tunne-

(w)-1) for

ling conductances o(wf {or eguivalently o(w)/oBCS

A-15 materials show beahviour in the freguency range w > W ax

characteristic of a peak in EDOS around the Fermi level, name-
ly a very rapid approach to uniéy (oxr equivalently zero).

That something unusual is h;ppening in this frequency range

is evident from the very recent work of Kwo and Geballe on

Nb3A189). They found that if the usual McMillan-~Rowell pfo-
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Eedure was employed, a too small cutoff (less than 30 meV)

had to be imposed with the result that the structure in o(w)
between 20 meV and 40 mevV (= wmax) was left out of consi-
deration. This omission was necessary in order to prevent the
itefét%ve solutions from becoming unstable. However, these
difficultiés were interpreted as a result of the proximity
effect84), It should be noted that the"azF-spectra deduced
for Nb3Sn88’9l) and Nb,a1%?)

towards lower fregquencies compared

show a large shift in weight
66,82,91) to‘the corres-
ponding measured phonon densities of states. Such behaviour is
gquite different from the one founq in other superconducting
materials. |

By improving the tunneling junctions and by performing
systematic studies of tunneling spectra for A-15 materials
with varying composition, it will be possible to gain more in-
sight into the microscopic properties of these materials.
Some studieslof this type have glready been performed on Nb3Sn
and Nb3A182'39XThe results are nof inconsis;ent with the ﬁy-

pothesis that changes in stoichiometry result in the smearing

of the peak in EDOS (see Fig. III.4).
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III.3 THERMODYNAMIC PROPERTIES OF & SUPERCONDUCTOR WITH A
SYMMETRIC LORENTZIAN ELECTRONIC DENSITY OF STATES
In this section we will give results of our numeri-
cal calculations of the thermodynamic properties of a strong
coupling superconductor having an electronic density of

states (EDOS) represented by a symmetric Lorentzian

-

s _a

a2+e2

N(e) = N (1 + (III.50)

As in Section II.3 of Chapter II we can ignore any shift of

the chemical potential p by assuming that y >> a (see also
Appendix 3). This assumption will simplify the treatment
considerably since we will then have to solve only two equa-
tions for the renormalization function Z and the pairing self-
energy ¢ (or equivalently the gap function 4),. This assump-
tion will also simplify £he treatment of the free energy dif-
ference AF between the normal and superconducting state, since
AF can then be calculated as the difference between the corres-
ponding grand thermodynamic potentials (see Appendices 3 and
4). Thus we restrict ourselves to a study of the effects of
decrease in EDOS as one moves gway from the chemical potential
at €¢=0. The problem of calculating the free energy difference
between the normal and the superconducting states becomes very
complicated with non-constant EbOS because. the standard theo-

ries cannot be applied directly. 1In fact it has.been shown by
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Lie and Carbotte94) that when the EDOS cannot be assumed con-
stant, the method due to Wada45) does not describe correctly
the ordexr of superconductive phase transition. The exact
origin of this difficulty remains unclear at present. At the
same time a direct application of the method due to Bardeen

and Stephen46)

is not possible, essentially because of the
self-consistency of the electron self-energy equation in the
normal state (see Ch. 1I). Like Bardeen and Stephen we start
from the general Eliashberg formula for the grand thermodyna-
mic potential Q@ of the interacting electron-phonon system36),
but then proceed somewhat differently. Since this derivation
is fairly complicated and technical we present it in Appendix
4. In Appendix 3 we discuss in some detail the problem of
calculating the grand thermodynamic potential of the interac-
tiﬂg electron-phonon system in both superconducting and[normal
state and show how Eliashberg's result can be generalized to
include the effects of the screened Coulomb repuisién‘éﬁ the
pairing self-energy. 'We also generalize Eliashberg's result to
include scattering by small amounts of orginary and paramagne-
tic impurities. It should be noted that our final formula

for the free energy difference (Eq. (A4.13) of Appendix 4)

with a Lorentzial model of EDOS is applicable when the Coulomb
repulsion and scattering by ordinary or paramagnetic impurities

are present. Numerical calculations of the superconducting




g e

128

thermodynamic properties based on our formula, Eg. (A4.13),
when the system contains small amounts of ordinary or paramag-

1.29) and

netic impurities were performed by Schachinger et a
will be presented elsewhere. In Appendix 4 we explicitly

show that the order of superconductive phase transition is
described correctly by Eg. (A4.13), i.e. that this transition
is not first order.

Before presenting the- results of our numerical calcu-
lations we will specify the form of the generalized Eliash-
berg equations, Egs. (III.27a)-(IXII.27c), appropriate to the
EDOS given by Eg. (III.50). The integrals over € in Egs.
(III.27a)-(III.27c) are evaluated in Appendix 2. The resulting

equations are

1

+o w ~
w. Z(iw ) =w +7T T  A(n-m) n N(iw ) (III.51)
n n n = o (w2442 (iw )]l/f m
m ‘ m
400 I I A( iwm)
A(iw )Z(iw )=7T £ [A(n-m)-p*(w )0 (w —lw_ |)] .
m m - c c m [wz+A2(iw )11/2
m m
x ﬁ(iwm) (III.52)
+o N X (iw_)
X(iw ) =-1T I A(n-m) —B- S - .
g m==c0 ‘ (o) (a+2 (iw )Y w2482 (iw )) 2+y2 (iw )
n m n X n
(III.53)
with
‘) < N, . Z(iwn)[wi+A2(iwn)]l/2+a
lwn)-'ﬁTET {l+-; } (III.54)

[Z(iwn)[w§+A2(iwn)]l/2+a]2+X2(iwn)
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N

Since the factor multiplying x(iwm) under the summatian over
m in Eq. (III.53) is positive, the solution x(iwm)= 0 (m =
0, *1,-..) is consistent with Eg. (III.53) as one can anti-
cipate from the fact that N(e) is symmetric around €= 0. Thus
the problem is reduced to solving Egs. (III.51l) and (III.S53)
with ﬁ(iwn) given by Eq. (III.54) and X set equal to zero.
These equations can be solved readily for the given input
parameters.

At the supercoqducting critical temperature Tc Egs.

(ITI.51) and (III.52) become linear:

4

wnz(iwnf = w, + 7T mjlw X(n-m)sgn(wm)ﬁL(iwm) (III.55)
4 A(iwm)Z(iwm) .
A(iwm)z(iwm)==wT f [A(n—m)-u*(wc)e(wc—{wl)] : NL(iwm)
m=-w Ime(lwm)l N
(ITI.56)

where the subscript L on ﬁL(iwn) means that A2

has to be set
equal to zero in Eq. (II1I.54). Tc is defined as the highest
temperature at which (III.56) has a nontrivial solution.

From the knowledge of the free energy difference AF be-
tween the normal state and superconducting state (;.e. the
condensation energy), one can evaluate the thermoéynamic criti-
cal field of the superdonductor via
HZ (T)

AF = 8

(III.57)
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(we consider a system of unit volume). Also, from the general
thermodynamic relation S = -(BF/BT)V N one can calculate the

r
entropy difference between the normal and superconducting state

as (see Eq. (IIf.57))

1 dHc(T)
AS = - ves H (T) 7 (I11.58)
and the electronic specific heat difference
3 (AS) T a’E_(T)  aH_(T)
C_(T)-C_(T) =T( ) =~ == [H _(T) + ( ) 1 (III.58)
n [ T V,N 4n c dT2 aT

“\
Since the measured values of HC(T) deviate by small amounts
from the predictidn of the phenomenological two-fluid model

(see for instance Ref. 43) which gives

T 2
H (T) = H_(0)[1 - (T:) 1 (II1.60)

it is traditional, and in fact very useful, to present the data
on HC(T) in the form of the deviation from the two-fluid model
prediction
Hc(T) 2 X
D(t) = ﬁ-c—(—o-s- - (l-t ) r t = T/TC . (III.Gl)

The function D(t) is called the superconducting critical
field deviation function (or simply the deviation function).
48,57,95)

It turns out that the superconductors in which retarda-

tion and damping effects are large (the so-called strong coupling
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superconductors such as Pb and Hg) show a positive deviation
from the prediction of the two~fluid model, with the maximum
in D{(t) of the order of 0.01-0.02, while for the ones in
which these effects play a less important role (In, Sn, Al)
D(t) is negative with the minimum in D(t) of the order -0.01

to -0.04. Empirically D(t)'s order according to the electron

+co
phonon mass enhancement parameter A = 2,f anZ(Q)F(Q)/Q:
0
for X > 1 D(t) is positivé, for A < 1 D(t) is negative and for

A = 1 D(t) has an S-shape (Nb96)

).
We will present our results for HC(T) in the form of
D(t) 'since there the absolute value of the parameter determi-

ning the magnitude of N(g¢), i.e. N appearing explicitly in

bl
the formula for AF drops out (see (A4.13)). In all our calcu-
lations we have taken the shape of the input az(Q)F(Q) spec-

trum to be that of Nb3Sn9£%d the wvalue of u*(wc)= 0.1747 with

w, = meax (wmax = 28.9 meV is the maximum phonon frequency

in az(Q)F(Q)). For each choice of Lorentzian parameters, and
the scale of azF « N(0) the linearized equations (III.55) and
(ITI.56) were solved first to determine the value of T, Then
the nonlinear equations (III.51), (III.52) were solved at
twenty reduced temperaﬁures (T/Tc) and the resulting solutions
{A(iwn5}, {Zs(iwn)} ,{Zn(iwn)} (where the subscripts n and s

are used to indicate the normal and superconducting states)

were used to calculate the free energy difference AF according
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A

to the formula (A4.b) of Appendix 4. Note that the iteration
procedure was more complicated than in the usual case of a flat
electronic density of states, because Eq.a(III.SS) for the
normal state renormalization function had to be solved self-
consistently. By using the method of N-point Padé-approximants
(see Sec. III.1l) we analytically continued the lowest tempera-
ture solution A(iwn) to the real frequency axis. From the
analytically continued A(w+io+,T) the 'corresponding gap at the

gap edge, AO(T), was determined by solving the equation

AO(T) = ReA(w = AO(T),T) .
)

Since the temperature T was such that T/T = 0.1, we have
) c

identified AO(T) with the zero temperature gap edge AOE AO(T==0),
A(T) being almost constant for T< 0.1 Tc57). The main reason
for using‘the above method for calculating the zero temperature
energy gap, rather than solving the corresponding Eliashberg

equations n the real frequency axis (Sec. III.2) is that the

sharp cutoff w_ on the imaginary frequency axis does not trans-

97)

late into the same cutoff on the real frequency axis W,

The two sets of Eliashberg equations are completely equivalent
before the cutoff W, and the Coulomb pseudopotential u*(wc) are
introduced. After introducing (wc,u*(mc)) the two sets of

"equations are not so directly related. For this reason we have

calculated AO from the imaginary axis solution. Recently we

checked this method of obtaining AO for 30 superconducting ma-
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of obtaining A
98)

0 for 30 superconducting materials with excellent

results

The ratio (ZAO)/(kBTc) is an excellent indicator of

48,57)

the strength of the electron-phonon coupling The Bardeen-

Coéper-Schrieffer (BCS) theory of superconductivity43), which °©
does not take into account the retardation and damping effects,
predicts for this quantity the universal value (2A0)/(kBTc) =
3.53. It also gives a universal shape for D(t), which is
negative with the minimum of —0.03795). Since the effective
damping of the quasiparticles increases with temperature, Tc

is effectively lowered more than AO (T=0) with stropg coupling

99)

and therefore the ratio (2A0)/(kBTc) increases It has

been suggested by Ho et al.ls) Ehat with a peak in EDOS cen-
tred at the Fermi level and a strong electron-phonon interaction,
the depletion of the peak Qith increasing T should also increase
the value of (ZAO)/(kBTc).

In Fig. (III.8 ) we present the D(t) calculated for

the four sets of Lorentzian parameters in (III.50). The input

91)

azF-spectrum was that.of Nb,Sn in all four cases, ané the

3
value of s/(ma) which determines the height ¢f the peak over

the background was set equal to unity. The only parameter
being varied is the half-width a. The solid line in Fig.

(II1.8 ) corresponds to a = 2wmax’ the dotted line to a='1.5"

w , the dashed curve is for a = w and the dash-dot for
max : max .

a = 0.25¢ .Thus the deviations in B_(T)/H_(0) from the
max c c

o
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prediction of the two-fluid model decrease with decreasing a.
This behaviour is to be expected since by reducing a while
s/(ma) remains fixed one reduces the strength of the effec-
tive coupling between the electrons. For large a > WA

the increase in D(t) with decrease in a is relatively small
because the density of states N(g) does not vary too rapidly
in the important energy range from W to Wy The

corresponding values of Tc and the ratio (ZAO)/(kBTC) are

summarized in Table III.1l.

Table III.1l

T, (2A0)/(kBTC)
a = 2w 17.28°K 4.63
max
a = 1.5uw 17.08°K 4.63
max )
a=uw 16.66°K 4.62
max
a = 0.25w 14,.20°K 4.49
max

Thus the value of the ratio (2A0)/(kBTc) decreases with re-
ducing a, consistently with the behaviour of D(t). However
the reduction in (ZAO)/(kBTc) between, say, the case of

a =:2u>max and the case a = 0.25 @ ax is much smaller than the
overall reduction in D(t), presumably due to the effect anti-

cipated by Ho et al. which is more pronounced for a narraw

peak.



Fig.III.8

Superconducting thermodynamic critical field deviation

function D(t) for four different Lorentzian half-widths.

™

. -

135R



135

T T T T
\
\\
i T
l--o \
\....‘\
.-.-. -~
A
i
\..\ -~
- P
L o Vd
S .
AV /
. Ve *
» \ \
/7 /
7 \ ‘
Ly g
\
LN
.-. /
- -../
~
~
S~
///
—_— ./.
/-
L 4
i [ 1 1 1
LO O I @) (an ] Lo
q¥] J — — o
o o) o o, S
* [

40 .60 .80 100

.20




136

In Fig. (III.9 ) we present another set of deviation

functions calculated for a fixed peak width a = 1.5 Wax!

fixed value of N(e=0) and thereby constant scale of azF.

Here s/ (ma), the height of the peak over the background, 1is
variedr The solid line is for s/(ma) = 0.5, the dotted one
1s for s/(ma) = 1, the dashed laine is for s/(ma) = 2 and thé
dash-dot line 1is for s/(ma) = 4. The corresponding values

of TC and the ratio (24 )/(kBTC) are presented in Table

0
ITI.2.

Table III.2

Tc (ZAO)/(kBTC)
s/(ma) = 0.5 17.21°K 4.60
s/(na) =1 17.08°K 4.63
s/ (ma) = 2 16.97°K 4.66
s/ (ma) =

4 16.90°K 4.69

We find somewha; surprising behaviour. While Tc decreases
with increasing s/(ma), D{(t) and (28)/(kgT_) increase
with s/(ta). However all the changes are very small, presumabl&
due to the fact that the peak is fairly broad (a = 1.5 wmax)‘
To see to what extent the above behaviour depends on

the width of the peak, in Fig. (III.10) we give two D(t)

functions calculated for fixed a = 0.25 ©oax” fixed N(e = 0)



Fig.III.9

D(t) for fixed N(0O), fixed lorentzian half width a =1.5 w

and varying ratio of the peak height over the background.
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and two difference values of s/(ma). The solid line is for
s/(na) = 0.5 and the dotted one is for g/(ma) = 1. The cor-
responding values of Tc and (2A0)/(kBTC) are given in

Table III.3.

Table III.3

TC (2AO)/(kBTC)
s/(ma) = 0.5 15.14°K 4.45
s/{(ma) =1

14.20°K 4.49
Thus Tc and D(t) decrease slightly with increasing s/(na);
while the ratio (ZAO)/(kBTc) remains practically ﬁhbhanged.

We see that the effects of the interplay between the
energy dependence in EDOS and a strong electron-phonon interac-
tion are fairl& complex. If the peak is narrow enough (a < wD)
Tc and D(t) are reduced by decreasing the weight under the

density of states in the important enerqgy range between —We oy

and I whether this weight is decreased by reducing the a

or by increasing the height of the peak above the background.
On the other hand»for a given height of the peak the ratio
(ZAO)/(ksTc) is increased by a sharpening of the peak if this
sharpening is accomplished by increasing the ratio of peak
height over baékground.‘ For a given ratio N(e=0)/Nb (seg Eq.

(I11.50))and given N(e=0) all three guantities TC, D(t),

o '



Fig.III.10

D(t) for fixed N(O), fixed rorentzian half-width a=0.25 w

and varying peak height over the béckground.
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(ZAO)/(kBTc) decrease with a sharpening of the peak, the

decrease being smallest for (24 )/(kBTC). Note that only Tc

0
is monotonically decreasing with the reduction of weight

under N(e¢) at fixed N(e=0), consistently with the functional

3)

derivative GTC/GN(E) of Lie and Carbotte However if the

peak is broad enough (i.e. a > w aX) the modifications in all

m
the thermodynamic quantities are small.

In addition Lie et al.6) have calculated the behaviour
of (ZAO)/(kBTc) for the case of a Lorentzian model of N(e),

Eq. (II1.50), as a function of a with fixed s and N The

0
ratio (2AO)/(kBTC) turned out to be a decreasing function of

-«

a with tye largest decrease at small values of a/wD (f 1)
and was practically constant for a equal to several times Woax®
In the analysis of the experimental data from radia-
tion damage experiments where the behaviour of Tc with disorder
is studied, it is usually assumed that the effects of the peak
in EDOS can be accounted for by assuming A « <N> , where <N>
is the average value of N(e) in the intgrval from ~0p to Wy
(wy is the Debye energy). While thi's assumption works well
fér rather broad peaks with no appreciable variation on the
scale of Wy it fails for narrower peaks 6).
It is inte;estihg to see what the effect is of such
an averaginé procedure on D(t), i.e. how well D(t) can be
described by ;pplying the usual Eliashberé theory and using

the averaged value of N(eg) over the range from WA to Wk
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From Figs. (III.8 ) and (III.9 ) it is clear that for broad

peaks. (a > w ax) the effect of energy dependence in N(g) on

m

D(t) ii\?ather small. Therefore we consider the case of very
~

narrow peak, a = 0.25 o __ , s = 132 and NOIN(O) = 0.335. The

value of Tc and AO for this choice of Lorentzian parameters

0
Fig. (III.1ll) the solid line represents D(t) calculated for’

1 = ° - —
is Tc 20.9°K and A 4.91 meV (ZAO/(kBTC) 5.45. 1In

* the above values of the Lorentzian parameters while the

dotted curve represents D(t) calculated within the usual
Eliaéhggrg theory by using the value of averaged EDOS (the
average was calculated in the interval from gL to wmax).
The Tc corresponding to the latter curve is 17.32°K. It is
seen that such an averaging procedure fails badly for D(t),
while for T, it gives a fairly close value.

In summary, for the peaks in EDOS near the Fermi level
with the half-widths of the order of Debye energy or larger
the modifications in all thermodynamic quantities considefed
here due to the variation in N(e) are small and the problem of
calculating the thermodynamic qgaﬁtities in the superconducting
state can be treated within the usual Eliashberg theory. How-

ever, if the scale of variation in N(e) is less than w, one has

D
to apply modified theory in order to account for the thermody-

namic properties.

It should he remembered that our treatment is strictly

i



12/

Fig.III.1ll

D(t) for a narrow FEorentzian peak in EDOS obtained with modified
eliashberg theory (solid line) and D(t) obtained within the usual
eliashberg theory by using the average value of the same density

of states 1n,§he interval from ~Wax to Wrax (dotted line). .
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speaking valid only for the case when the EDOS can to a good
approximation be represented by a symmetric Lorentzian model.

A separate investigation would be required when this assumptioq
ceases to be valid. 1In particular if the given EDOS does not
possess particle-hole symmetry, X (Eg. III.53) would be non-
vanishing; that s;tuationcéllsfor the solution of a more
complicated set of equations. Also, the expression for the J
free energy difference would have to be reconsidered. Since the
symmetric Lorentzian models (a Vv 150°K) have been successfully
used in fitting the,£emperature,dependence of some A-15 mater-
1a1s20721) Lur results shoyld prove useful for those materials

at least. .

K
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CHAPTER IV

SUMMARY AND CONCLUSIONS

In the A-15 materials, band structure calculations and
numerous anomalies~in the normal state properties have led to
the idea that there may be unusually sharp structures in the
electronic density of states (EPOS) of these materials. Any
structure in EDOS on the ;cale of one or two Debye energies
around the Fermi level requ;res careful study of both normél
state and superconducting preperties. We have analysed this
problem within the isotropic apprpximation.

To understand the combined effects of a nonconstant

+EDOS and a strong realistic electron-phonon interaction in

" the superconducting state, wé first had to find the effects

on the electron quasi-particle properties in the normal state.

The effect of smearing of the peak in the electron gquasipar-

'ticle density of states (QDS) due to lifetime effects was trea-

-~

ted from first principles. We showed that the renormalization
by a strong electron-phonon interaction affects QDS as much

as smearing if EDOS is not constant. The resulting sharpening
of the structure in QDS may be related to the fact that in

the pést‘pathologically sharp models for EDOS (with square-root

singularities or step-like discontinuities) have been needed

4 N ~
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to fit some of the experimental data on normal state properties.
We have also shown that the frequency dependence of the inverse
lifetime due to the electron -phonon interaction is strongly
a?fected by structure in EDOS. The temperature dependence of
the electron mass enhancement parameter A due to coupling with
phonons was calculated for two model EDOS and the ratio
A(T)/A(0) was found to depend on EDOS as well as on azF.

The large superconducting critical fields in those A-~15
materials with high superconducting critical temperatures have
so far prohibited the experimental study of the effects of the
electron-phonon interaction in the normal state at low tempera-
tures. Also the large lattice anharmonocity in these materials
makes any deta;led analysis of the normal state specific heat
data difficult. The analysis of the superconducting properties
looks, at present, more promising.

In the superconducting state we have analyzed experimen-
tal single particle tunneling into superconductors. We have
shown that the structure in EDOS influences the results of these
.experiments significantly even for a fairly modest amount qf
structure. Also, the character of the modifications in the
normalized tunneling conductance and results obtained if this
data is inverted conventionally, without taking non-constant
EDOS into account, have been shown to correlate with the type
of structure in EDOS. On the basis of several recent tunneling
measurements on Nb3Sn and Nb3A182’88’89) we conclude that the resul-

ting normalized tunneling conductances show behaviour charac-
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teristic of a peak in EDOS. However, it seems that similar
behaviour could also be caused by the proximity effect. Pre-
sumably further improvement of the gquality of the tunneling
junctions and more experiments on the off-stoichiometric A-15
materials or A-15 ternary alloys will establish whether non-
constant EDOS is actually significant.

We have also analysed the thermodynamic properties of
a superconductor with rapidly varying EDOS. The expression
for the free energy difference between the superconducting
and normal state has been derived for a model electronic density
of states, namely the s§mmetric Lorentzian model. We have
calculated the resulting critical magnetic field deviation
function D(t) for several sets of Lorentzian parameters. The
corresponding values of the ratio (2A0)/(kBTC) have also been
calculated. We/have established that if the characteristic
scale of variation in EDOS is greater than the Debye energy w

D

the effects of energy dependénce in EDOS on D(t), T, and -~

(ZAO)/(kBTc) are small. However if the peak in gaos has a

the resulting effects can be described

&+

half-width less than Wy s
only by a theory which takes the nonconstant N(E) fully into
account.

Our results should prove useful in analyzing the effects
of non-constant iDOS on the superconducting thermodynamic pro-
perties. As witn_the'tunneling experiments, an experimental

study of the effects on D(t) of alloying, changing the stoi-

*
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chiometry or the impurity concentration should give information
about the importance of the peaks in EDOS in determining the

superconducting thermodynamic properties of A-15 materials.

.100)

At present D(t) has been measured only forlv381 , among all

the A-15 materials. The resulting D(t) has an S~shape charac-
teristic of a medium coupling superconductor (i.e. A = l). Tﬁ
measured ratios of (ZAO)/(kBTC) range from 3.5 to 3.883'101f$§t2n‘
sistent with this D(t); such vélues are characteristic of a

weak to medium coupling superconductor. However, the recent
102,103)

far infra-red absorption experiments in V3Si

large value, A > 1.3. Only by considering the overall consis-

suggest a fairly

tency of various experimental and theoretical results will it

be possible to understand the most important features determi- @

—

ning the superconducting properties of A-15 materials.

AN \
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APPENDIX 1

In this. appendix we summarize some definitions and
properties of the electron Green's functions and list the
rules for evaluation of some-Feynman diagrams. More de-
tails can be found in Ref. (40), (43), (56), (104).

The electron thermodynamic Green's function is defined
by

~.-

+ ]
G(k,t) = - <Tck(r)ck(0)>

where the index k stands for momentum index and spin. < >
denotes the average in a grand canonical ensemble, T is Wick's
time ordeking operator and ck(t)(c;(t)) are electron destruc-

tion (creation) operators at time t in the Heisenberg picture.

G can be expanded as the Fourier series ’

+oo —iwnt
G(k,T) =T .Z e GKk,iwm)

m=wo

9 = 7T (2n=1) _ n = 0,tL, =~ .

«

It can be shown that G(k,iwn) has the spectral representation

. oy
(or form)
-+
) _ A(k,w)
G(k,lwn) -I dw 'I-L_u-J:;:J— .

-—C0
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- n

Using this relation one can define the function G(k,2Z) with 2
complex. Note that since A is real G has the property<'

G(k,2*) = G*(k,2) . | o

It turns out that at iw with n ;;l G coincides with the re-
tarded Green's function Gg(k,2)} which is analytic and non-

vanishing in tﬁe upper?half compiex plane, while at iwn with
n<06G coincides with the advanced Green's function G, (k,Z)
which is analytic and nonvanishing in the lower-half complex

&

plane.  One can show that

%
_ 1l
X |ZI > ~
- 1
For real w
» il ;k '
‘ - ! IA i)
| GR(k'w) - !dw W-w'+1 -
Lo
¢ [+ Alk,w')
= dof DIEL0 )
GA(k'w) - ey
J &F
Thus
" Afk,w) = - = ImG, (k,w) = & ImG. (k,w)
! ] R'™! ﬂ R '
and
G(k,w+i0") = Gp(k,u)
G(k,w-i0¥) = G, (Kyw) .
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[

It follows that . -

1

-7 ImG(k,w+id) .

A(k,w) =

From the spectral form one can conclude that
, . L)

ImG(k,2) <0 if ImZ > 0 , .

ImG(k,z) >0 if ImZ < 0 .

From the Dyson equation

e T
G (k,lwn) = iw -e, Z(k,lwn)

+

many of the properties of G translate into the corresponding
properties ofPX.' ' -

: We will state now the rules for calculating the con-
tribution of various diagrams for the élgctren—phonon interac-
tion. ‘ .

A

1. With each solid internal line of the diagram one assqciates
the noninteracting Green's function G%(k,iwn) = [iwn—ekl—l
where €x ;s the electronic energy measured with respect to
the chemicgl potential.

2. With each wavy (phonon) line of wave-veétor a, polarization
A\ and frequency iv  (see Ch. II) associate the phonon in-
teracting Green's function on(q,iwn).

3. Associate with each electron-phonon vertex in which a pho-

. , I

b4 . . > ; ‘
non of polarization A and wave-~vector ¢ is emitted and an. .

electron is scattered from k to k' the factor Iy k'A~( =
. ’
* . ® .

Fr,k, 0
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. / |
-~ f ]
4. Multiply ‘the result with Tn(--l)n(-l)2 where n.is the num-

Per of phonon-lines and % is the number of closed electron

~
P

loops and sum over all internal k's and iwh‘s.“

~

In the superconducting state, within Nambu's formalism, these
rﬁles remain ﬁnchanged except that the eleqtron's Green's
funqtioﬁ becomes a 2X2 matrix G and with each vertex one asso-
ciates a %3-matrix. One has also 'to keep matriceé in their

proper order given by the structure of t@e diagram. and to trace

over the free matrix indices for each clésed electron 1loop.
Analogous rules apply for the‘Coﬁlomb problem; It

should be remgmbered that a given set'of di&grahmmatic rulés

depend on the actual form of the interactions.



APPENDIX 2

. EVALUATION OF SOME INTEGRALS WHICH APPEAR
IN THE SELF-ENERGY EQUATIONS

4

4

In, this appendix we evaluate the integralg

+c0
-1 N(e) ~ . o
- Im [ de ﬁT?T GN(s,w+16) ,‘ . (A2.1)
+
re | ae ME) g (¢,u+is) (A2.2)
N(0) "N "' ‘ '

for a Lorentzian model and a triangular model of N(e). Here
GN(e,w+6) is the retardeepglectron Green's function in the
normal state. We also calculate the corresponding integrals

for the superconducting state

pte
-1 N(e) » & TRRY '
T de N(0) T3Gs(s,1wn)13 ' } : (A2.3)
[
- ;_ N(E) A A . A
= de N(0) TBGS(e,w+16)T3 (A2.4)

where @S(s,iwn) is Nambu's 2x2 matrix electron thermodynamic
Green's function in the superconducting state and &s(e,w¥i6) is
the retarded Nambu's Green's function just above the real fre-

guency axis.

152
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A2.1 NORMAL STATE , | |

In the normal state, assuming that I does not depend

on €-

_ 1 .
- w+16-e-zl(w+18)-i22(w+ai)"

GN(e,w+i6) (A2.6)

where I, (wt+id) = Re £y (w+id) and I,(w+id) = Im I(w+id). There-

2
fore A )
(-~ % sgn (a) lgtw 5 s for a # 0 (A2.7a)
(e~R) “+|d| :
1
- =Im G, =+
Tf' N : VN . ) '
8§ (e-B) o, for a =0 (A2.7k?
where we have defined
o = Zé(w+i§) , (A2.8a)
and
B = w-Zl(w+i6) . ’ (A2.8Db)

i .

In formula (A2.7b) G(E—B)’is a Dirac delta-function. Also

- —€-8 , for B # 0 (A2.9a)

(5-8)2+|a|2

c-B . + for B =0 (A2.9bx
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A2.I.1 LORENTZIAN MODEL FOR N(€)

1y

We take.-

1 a

N(e) = N (1 + s = ) (A2.10)
b T (e+b) 2+a’

where a> 0. In order to evaluate integrals (A2.1) and (A2.2)

we .need the following results

+o
de %"—-——12-——5 =1 : (A2.11)
(e=b) "+a
+e ‘a a a.+a
{ ae i - 3 2“%1' 22 "2]"'%’ 22 7 (A2.12)
) (e+bl) +a1 (e+b2) +a2 (alfaz) +(bl—b2)
+o0 ,
de 25 5 1 2 = - b — (A2.13)
£ +al (e+b) "+a (a+al) +b
+00 ,
de %‘%“““%—7= - 2b 3 (A2.14)
(e+b) "+a a“+b

where we have assﬁmed that a, a,r a, > 0. Equations (A2.11)-
(A2.13) are most easily obtained by the residue theorem and |
(A2.14) is to be interpreted as a principal part integral (since
the term 1/¢ in this integral arises from the real part of the

Green's function). Then
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,ir

.a+]a]

, N .
(-sgn(a) =2 (l+s %

N(0)

+
“ ..l. N(g) i 8 =
= Im I de GN(e¢w+1d)—

For a # 0

N{(O)
-0 . N .
b . 1 .a
{l+s =
L N (0) ] a2+(b+8)
’anda .
+o
Re de ELEL G.(e,w+id) = Nb s B+b
A2.I.2 TRIANGULAR MODEL FOR N(c)
.'Here we consider
B, €< ¢
P-B _
|B + e (e €;) ‘ €1 S € <‘52
N(E) = 4 , '
: B~-P
B + —— (e-€,) ’ €, < € < €
£57€, 3 2
L8 \B ’ €3 .<. €
We have
. oo
1 N{e) Cari8) =
- = Im [ de N(0) GN(e,w+16) =
I 1 B-e €8
= - sgn{a) w10 {B + = (P-—B)[e c (arctg ol -
S I |
el—% 8—53 €.,~-8 \\EQ?B
- arct ) = {axct - arct +
g | I 83—32 d T—Td d T—T—)A
2, 2 ' 2.2
- + -
. .];Jal in (82 B) a _ _]_-Alal n (53 B) ,+0‘ ]}
2 £y7gy (e,-8) %+ 2 %\ii:ii (e,-8)2+a?

(g+|a|)?+(b+syf
For a # 0 (A2.15a)

5 ) yFor a = 0

(A2.15Db)

(a2.16) "

(A2;l7)

(A2.18a)

..

3
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and
’ + Y ( ’ ‘ :
- l . N(e) 1 = ..——-N B) =
T Im J ‘de N(0) GN(e,w+16) §00) ' for a = 0 (A2.18b)

For the integrals over the real part of the Green's fgnction we

get

4400 .
N(e) . _
Re [ de N(O) GN(E,w+16) I"

_ P-B €y-8 €8

l I - -
= §70) { PN farctg T—T— arctg T—r—]

. 2 2
-B € -8 B-¢g (e,=-B) "+o
Ial [ € 1 1 2
- == arctg - arctg 1-5 o= Ln +
- E37%, o | I l 2 €1 (elds)2+a2
L B-€5 (83-8)2+a2 (
+ 5 = 3 2} , for a # 0 ; (A2.19a)
3772 (e,=8) “+a”,
S "
N(E) -
Re de N(O) G (e w+id) =
_p-B_ P73 €378l By €78
- N(O) [s ~-€ n e -B| E€.-¢ In|g -B ]
3 72 2 2 71 1l
for a = 0 and B # €1r E5¢ 53;. (A2.19b)
Heo £ A€ € €
N(€) oy _ _ P-B,~3 1 3751
’ /
- ’ . ) ,
for a = 0\ and B8 = €y (A2.19¢)
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Re J‘M de %%—g—g— QN’(_e,w+i6) =- NP(‘C?) 2n :;:zi ‘
for o =’6 and B =ct, ; (2.194)
+oo0 ‘ - . -
Re ] de g%%% Gy (e,0+is) = - 5733 zz_zi o3 -Z ,
: N for a =0 .and: B8 = e5 - ‘AZ.lQe)

We note‘that in evaluating integrals (A2.l9a)-(A2.19e).one has
to interpret them as principal part integrals whengver neces-
sary;

'Obviously, if an attempt is made to use the N(e) ob-
tained from band-structure calculations it would be convenient
to assume that it is a piece-wise liﬁear function and hence
one would have to solve the same type of integrals as for the

,.

triangular model.

"A2.I1 SUPERCONDUCTING STATE

\3
We have

iwnz(iwn)?b+(s+x(iwn))%3+Z(iwnLA(iwn)f
Zz(iwn)[ﬂimn)Z—Az(iwn)]—(s+x(iwn))2

Ggleriu ) = 1L (a2.20)

and g ~ ~ ~
(w+i§)Z(w+id)r0+(e+x(w+ié))r3+Z(m+iG)A(w+id)rl

22 (0+i8) [(w+is) 2=A% (w+id) ]~ (e+y (w+id)) 2

q@s(e,w+$) =

10, 01 1 0

(A2.21)

where 1, = (0 l)’ T, = (1 o)} and T4y = (0 ~1) are Pauli matrices.

We have assumed that Z, x and A do not depend on €. .

7,
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A2.II.1 LORENTZIAN MODEL FOR N (&)

*

Here we‘assume:that N(€) 8 the form giveﬁ by (A2.10).

Note that the T -component: and the T -compdnent of

0
lA)\ . ~
T TBGS(Eilwn)T3 have the form

1

X(o,) . L1 zle) a2 Ze 1Y

n . 2,2, 1/2 7 2. 2.2, . 2
2 (iw ) [w +A% (1w )] 27 (io) [w +A" (1w ) I+ (e+x (1w ))
. ? +
¢ ’ . - (szzl) ¢
- N . ‘ ®
where X(lwn) = 1wnZ(1wn) and ’X‘lwﬁo = —Z(;wn)A(lmn7 respectively.

Here Z, A and x are reaﬁ\numbers and Zlis positive. Using (AZ.l%L

and (A2.12) we obtain

towo
N(€) ; -
J de tT(T)T Y(Grlwn) =

X(lwn) 1

LN
b

= -———q{1+s-—x

2w ) [w2ra? ¢ia )12 MO L

1
r 4

2 (iw_) [wits? (1w, 114244
x 2 / 2} (A2.22)
[Z(iwn)[wn+A(lwn)] +a] +(x(iwn)-b)

A}

L4

The 13—component glves (see A2. l3)t>

I+m qe N(e) 1 e+x (iwy) T
£ - =
NOP T 22 (G0 ) (wiea? (dw ) Herx ()2
N X (iw_)=b !
= Nf%) s — (A2.23)

(a+Z(iwn)v/wz+A (1w )) +(x(1w ) =b) (/
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On the real frequency axis calculations for the superx-
conducting state were performed only with a triangular model
fér N(e). Therefore we do not give the corresponding integrals

. ~ ~ . A
fo% (-l/n)r3Gs(e,m+16)r3.

A2.1I1.2 TRIANGULAR MODEL FOR N(¢)
. o .
In the superconducting state calculations with the tri-

angular moael for N(e), Eq. (A2.17), were performed only on the
reél frequ;ncy axis. Hence we give onf& the values of

(=1/7)Im I+m de(N(e)/N(0)) x ?3§(e,w+ié)§3. The quantities
which ?pp§§r~in the zero temperature Eliashberg equations

generalized to include the energy dependence in the electronic

density of states are (see Egs. (III.37a)-(III.37b):

+
- ) PN
N (wtid) = - Tam | ac EES; e . (A2.24)
Q7 (w+id) = (e+x (w+id)) .
ghere
A(w+id)Z(w+id) for the A-equation
X(w+id) = (A2.25)
wZ (w+id) - for the Z-equation
and « +oo
N, (w+i6) = 2 Im | ae gfg% St fotid) : (A2.26)
X ~ Q% (w+i) = (e+x (w+ib))

-0

S

for the x equation.

The quantities A, %2 and x are generally complex and
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Q(w+if) = Z(w+id)R(w+id) ., (A2.27)

o
m

R(u+i8) = [(w+id)2=A% (w+is)]1/2 (A2.28)

-

R

[

where for a given w > 0 the branch of the square-root in Eq.

(A2.28) is chosen in such a way that

Q ImQ > 0 .

2

In general we will denote the real parts of complex quantities
by the subscript 1, while the imaginary parts will be labelled

by the subscript 2.

Eq. (A2.24) can be written in the form

N_(w+id) = g, 5(2) (A2.29)
where
+oo
(1) . 1 " B X
J 2 - =vIm 4a (A2.30)
v [ N(O) Qz~(€+x)2 ) \
E2 £=-€
(2) . 1 P-B 1 X )
J : - = Im{ de - +
m J N(0) €57€y QZ'(€+X)2
El .
£
3 £~€
B~P 3 X . :
+ de - —} . . (A2.31)
J N(0) ey=e, QZ’(€+X2) g
€

2

We calculate Jl by the residue theorem. The vigue will
depend on the signs of x2—02 and X2+Q2' It is worth noting that
physically, at T=0, Q defined by Eq. (A2.27). can vanish only

at the gap edge w' = AO and that at other values of w it has a
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finite imaginary part (we asdume that the phonon frequencies
span the :angé from zero up to some maximum value wD). One

has the following cases:

1) Q#0
1.1) Xp™Ry < 0 and Xo*Qy > 0
(1) B

I = [0y Be

W
[(w+is) =22 (w+is)11/2 .

(A2.32)

1.2) x,7Q, < 0 and x,*Q, = 0

k4

5 _1_8B

< , w
, =3 §(o)y e

[(w+i6)2-bz(g+16)]1/2

and x2+92 <0 , gt =9

o

1.3) x5;7Qy <

and x2+Q2 > 0, J(l)

o

1l.4) xz-Q2 = is thée same as in 1.2).

“+

1):‘00

-

We do not give the other possibilities since they would con-

tradict our starting convention 02 > 0.

2) Q =\o and Xo ='0 (the situation at the gap edge)

(1)

The integral J is equgl to zero since in this case*X

is real.

We now consider the integr;l J(z).
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where

1.1') 2, =

Re I(Z)

Im I(2)

The -integral J(z)

- . 1%P2B 1 w Ay
= = 3wy ¢ )Im[R (X(x-Q)-I(x+q))]

€ £
2 £~ 3

2
+zl i (e3+zl) +2

N N

(e +Z')2+Z2
<’ »

€3 +Z

x(arctg(—T——T)-arctg(—T——T))]

+Z (e +2.) +z
en 2 1

2
2

2,2
(€l+zl) +Z2

£+Z

(arctg(T*—T—) arctg(—T——T))]

hEe
zZ,  (e,+3)%z
{?r &n 5

(52+21)A+Z

-

2
2
2
2

x

e§+zl €2+Zl
(arctg(-TzzT)—arctg(T~—T—))]

C
L2, (e42)) +z§ S
-z _é [7r n 5 = sgn(2 )(€1+Zl) x
271 (el+Z ) +Zz )
5 +Z
x (arctg(T——T—)varctg(T~—T~))] (A2.36) .

+|2

o+

E-

€

5l

|2

€

-

x

2!

x

E+2
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can be. written in the form'

(A2.33)

Id

(A2.34)

(A2.35)

- sgn(z,) (e4+2,) x
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1.2') 2, =Im2Z=0 ,
1 = - - -
1.2.1') Zl Re 2 # El' 52, 53
r—‘
<
_ £3+Zl e3+Z1 - el+zl €2+Z \\\
Re 1(2) = &= oy g.=¢, e T .
3 72 2 71 2 1 1 71
, (A2.37)
Im I(2) =0
t U 3
lg2.2 ) Zl El )
v\»‘v// M
' €375 €375y
N Re I(2) = s n e
3 72 2 1
Im I 0 ' (A2.38)
~ -
1 . =
1.2.31) Z1 €2
€.~€
Re I{(z) = &n 3 2
, X €,7€4
& \ , (A2.39)
I =Y -
102|4')
£.—€ £.,~E
’ 2 71 371
. ¢(A2.40)
I(Z2) =0
¢,
R

e e ]
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(2)

2') Q= O‘and*x2 = 0 (situation at the gap edge) J = 0

For ﬁx(w+ia), Eq. (A2.26), we have

N, (u+is) = g (1) 4k (2) (A2.41)
oo ‘
g1 - ZIn | de Nfz) —t (A2.42)
- Q%= (e+x)
(€2 g-€
< = L ml| e gy ook 5T
J 2 "1 Q°-(e+Y)
1
€
3 £E-€
‘ B-P 3 ety
+ de — }o. (A2.43)
{ N(O).e3 €5 Q2_(€+x)2
€ . 2
2
We consider first the integral K(l).
1"y Q#0
(1) _ 1 B -
X = 3§00 (sgn(x2+02)+Sgn(x2 Qz)) ;72.44)
where in this formula we assume that sgn(x) = 0 for x = 0.
Note ﬁhat in the normal state for w > 0
_ . - l , . - . ~
Q2 = wzz(w+16) = 5 [22(w+16) + Zz( wtid) ] (A?.45)
_1 (8) = T (mwtd ]
XZ = 3[22(w+16) 22( w+id) ] (A2.46)

-

where 22 is the imaginary part of the'normal state self-energy

L(w+id) = w(l-Z(w+i8)) + x(w+is) (see Chapter II). Therefore
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X2"02==E(w+i6) <0 (A2.47)
‘and

x'2+Qz‘= - I (-w+is) > 0 (A2.48)

®

(1)

so that one can expect that the integral K is zero in the
superconducting state ‘at least for large enough w > 0. At any
rate, if Q2 > Ile, which seems t© be the case in practice,

(1)

the integral K is zero,

1.2") Q= 0 and Xy = 0 (the situation at the gap edge) the

21 N(0)

integral K(l) is zero.
It can be easily seen tﬁat the integral K(z) reduces
\ ( - v
to
k(2 o o L BB o (1(y=Q)+I(x+Q)) : (A2.49)

where the integral I(2) is defined by Eqg. (A2.34).
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APPENDIX 3
THE GRAND THERMODYNAMIC POTENTIAL FOR THE INTERACTING
ELECTRON-PHONON SYSTEM IN THE NORMAL AND.SUPERCONDUCTING

STATE. THE FREE ENERGY DIFFERENCE BETWEEN THE SUPERCON-
DUCTING AND NORMAL STATE

As is well known from statistical mechanics, in order
to calculate the thermodynamic properties of ; macroscopic
system it is sufﬁicient to know the form of the g&and thermo-
dyngmic potential Q2(8,u,V) which is related to the grand parti-

tion function ZG(B,u,V) by

|

Zo(B,1,V) = exp[-B2(B,1,V)] . ©(a3.1)

e
In the above formula B = 1/T (as usual we take a system of units

in which Boltzmann's constant kB==l and ¥= 1), u is the chemi-
cal potential and V is the volume of the system. A first prin-
cipal calculation of Q for a compliéated many-body system which
consists of strongly interacting barticles is a difficult prob-
lem. The canonical solution of this problem for an isotropic

system of spin 1/2 fermions interacting via instantaneous spin-

independent two-body potential was given by J.M. Luttinger and J.C.

Ward69). They have shown that for such a system of fermions
"1 e + 1
e = L3 — - 1] . . '
197 3 i njim exg(lwno ) {en[-G (k,}wn)]+Z(k,1wn)G(k,1wn)}+Q

(A3.2a)

166,
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where

[ Contribution of all closed linked skeleton |

diagrams computed according to the approé— ,
Q' = 4 : + (A3.2b)
riate diagramatic rules but with Go(k,iwn)

| replaced by the full G(k,iwn

Here k = (i,m), where k is momentum and m is the spin projec-

tion guantum number,

L]

w = m(2n-1)/8 (n = 0,x1,%£2,°°+°)

G is the electron thermodynamic Green's function and I is the

corresponding self-energy part defined by

s N 3 .
G T(k,dw ) = 6" (kodw) - Elk,dw ) . (A3.3)

Thus, Q@ given by Egs. (A3.2a), (A3.2b) can be considered as a
functional of k{(k,iwn)}. Luttinger and Ward have shown that
this Q@ is stationary with respec£ to a first order variation in

{Z(k,iw )} if and only if

Contribution of all possiblelskeleton
z(k,iwn) = { diagrams with G_(k,iu ) replaced by (A3.4)

G(E,iwn) )

In other words, the first order change in Q is zero when one
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makes a first o:éer change in Z(k,iwn) around its correct va-

)

lue. This property of Q which we will call stationary proper-
ty, is very useful in various practical calgilations N

Eliashberg36) has generalized the procedure of Luttin-
ger and Warg'to the interacting electron-phonoh system in both
the normal and superconducting state. For é homogeneous and
isotropic model of a metéi Eliashberg's r ult for the grand

thermodynamic potential per unit volume in the normal state can

be written in the form

Q= - }23‘ L exp(in 07) {2n[-G"1(P)] + L(P)G(R} +
1 o+ -1
T L exp(iv 0'){&n[-D "(Q)] + T(Q)D(Q) } - (A3.5)
Q
L

2G(P)D(P-P')G(B")

2L g ol
g2 p p» PP’

where
n n= 0, 1, (A3.6)
Q = (E,ivn) oV, = m2n/8 - '
4+ . *-.+-co
L = I X ‘ L 2z z (A3.7)
P -}E n==-om ) Q a n=-w

D(Q) is the phonon thermodynamic Green's function (we'havé sup-
pressed phonon polarization index) and m(Q) is the polarization

part defined by
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o) = t@ - T (A3.8)

(see Chapter II). Ipop! is the electron-phonon coupling func-
tion. Again, Q.given by Eq. (A3.5) ecan he considered as a
functional of“{Z(P)} and {7(Q)} and is stationary with respect
to a small yaéiation in these quantities if and only if they

are given by'Migdal's equations (see Egs. II.2 and II.1l5)

Z(P) = - % z IgP__P.|2D(P-P')G(P') . (A3.9a)
Pl
3
2 2
T(Q) = = |g.|° £ G(P+Q)G(P) . (A3.9b)
B 2 p

We note that one can prove quite generally that for a
given model of a metal the grand thermodynamic potential per

unit volume -in the normal state is given by

Q=227 exp(iu;n0+){2n[~G-l(P)] +I(P)G(P)} +
B P
1 R -1 '
+ 55 L exp(iv 0 ){&n[-D “(Q)] + 7(Q)D(Q)} +
0 ,
+ Q
where Q' is given by ' - *



vt

/ | 170

»

~[ Contribution of closed linked skgleton

diagrams computed aécording to the rules
' = + -+
v of Appendix 1 with bare Green's functiomns

e

| replaced by the full Green's f%nctions <
l N

Eliashberg's result, Eq. (A3.5), “amounts to retaining only the

contribution of the lowest d;aér\graph in @', which is given

A

in Fig. (A3.1) .

G(P)

) b0

G(P)
Fig. (A3.1)

The contribution of this graph is equal to (see Appendix 1)

. + . +
iw O lmn,O

IgP_P.lzG(?)D(P-P')G(P')e e (A3.10)

r I
8% p p!

which is precisely the last term in Eliashberg's result (A3.5);

Higherrorder graphs in Q', like the one in Fig. (A3.2)

Fig. (A3.2)
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s

‘can be neglected compared to the lowest order one becalse of «
the same type of argument as usgd by Migdal in his solution of
the Dysoq‘equations for the electron-phonon prd@lem. This is

precisely the reason why the equations §Q/8L = 0 and 6Q/8m =0,
with § given by Eq. (A3.5) resui}(in Migdal's equations (A3,9a)

and (A3.9b).

~

In passing we note that from the above discussion it
should be reasonable to expect that the expression for the elec-

tronic part of the specific heat for the interacting electron-

»

‘RBonon system in the normal state obtained from the Eliashberg's

result for Q, Eq. (A3.5), is egqual to the one derived by Prange

£44)

and Kadanof in a quite different way. Namely, Pragge and

Kadanoff analysed the transport equations for the interacting
electron-phonon system and obtained the result for several egui-
librium properties, like the etbctronic part of the specific
heat, by reinterpreting the partial derivatives with respect to
time in- their granspor£ equations as the derivatives with res-

pect to temperatufe. Since Migdal's approximation played a

crucial role in their treatment one can expect that the end re-

sult for the electronic part of the specific heat, Csl, should

be the same. This was explicitly demonstrated by Grimvallss).

For the grand thermodynamic potential per unit volume

in the superconducting state Eliashberg has obtained the follo-

-

wing result by ignoring thédshort range Coulomb repulsion be-

N

tween the electrons:
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2 Dt W S | ‘
Q= ==1 exé;lw y{= ¢n[-2(P)] +Z,(P)G(P) - L. (P)F(P)}
8 p ;F 2 . 1 2
1 . + -1
*+ 58 L exp(iv O y{an[-D “(Q)]1+7(Q)} - (A3.11)
Q el

. +. +
5 iw_O 1wn,0
L /1g§_P.I [G(P)D(P=P')G(P')~F (P)D(P-P')F(P') Je
P,%’l
\

The gquantities Zl(P), 22(P), $(P), G(P) and F(P) are related

™
ol

to Nambu's 2x2 matrix self-energy £(P) and the electron thermo-

dynamic Green's funa€€8ﬁfé(p) (see Ch.III) by

In®

i
il

Zl(P) iwn(l-Z(iwn)) *xx(iwn) | (A3.12a)

/

Z..(P) ¢ (ks i) (A3.12b)

12

]
"

Z,(P)

—

& (P) = det G-l(P)==(iwnz(k,iwn))2-(ek+x(k,iwn))2—¢2(k,iwn) (a3.12¢)

d 1

A A A ~d : . . A=
G(P) = (156 (P)r3)ll=Gll(P) = llwnZ(k,lwn)+(€k+x(k,1wn))]/det G “(P)
(A3.124d)
_ .2 A0d A . (_Aod __ #& =1
F(P) = (1567 (P)T4) 15, = (=G (P)),= L,,(P)/det G "(P) (A3.12e)

\

ﬁere éd(P) and @Od(P) are the diagonal and off-diagonal part

of G(P), respectively. Also, since we are interested in the
equilibrium thermodynamic properties of a superconductor, the
phase of the single-particle state |k> used to define the crea-
tion operator C; can be chosen in such a wa§ that the ?2~component

of £(P), i.e. ¢(P) (see Ch.III) is equal to zero.



173

As before, the expression (A3.1l) has the useful proper-
ty that it is stationary with respect to small changes in

{Zl(P)}, {ZZ(P)} and {m(Q)} around their correct values given

by
T (P) =~ %% |gu. ., |?D(P-P")G(P) (A3.13a)
1 B L, 19-p :
. (P) = - =3 | | 2p (=" )F (P) (A3.13b)
2 B o Ip-p! .
1@ =% |gyl? I [G(P+Q)G(P)-F (+Q)F ()] (A3.13c)
p

‘

We note that the equations (A3.l1l3a) and (A3.13b) are equivalent

to
~d 2 A ~ .4
%) = - % 3 |9p_p+ | 2D(P=R") (1,8(P) T ) (A3.14a)
aod N § 2 _p1y (2 Az ,od
T (P) = 3 g' |gP_P,| D(P-P ) (146T5) (A3.14Db)

which are just the usual Eliashberg equa?ion.;, for a superconduc-
tor with the Coulomb repulsion set equal to zero (see Ch.III).
Equation (A3.13c) is the equation for the phonon polarization
part in the superconducting state. Also, in the limit Zz(g)* 0
Egs. (A3.11), (A3.13a) and (A3.13c) reduce to the corresponding
normal state equations (A3.5), (A3.9a) and (A3.9b). |

The last term in Egqg. (A3.1l) is equal to the contribu-
tion of the diagram in Fig. (A3.l) where now each. vertex is to
be interpreted as g?B (see Appendix 1 and the first diagram in

Fig, A3.3). The contribution of the higher order diagrams can
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be neglected as before.

It shéuld be noted that the effects of the Coulomb in-
teraction between the electrons have been included in (A3.5)
and (A3.11l) only through the elecgronic energies €x* A first
princ}éﬁé calculation of @ for the Coulomb interéction, which
would inblude all many-body effects, is a difficult tésk'd&é N
to the absence of a small expansion parametér gor the Coulomb’
problem. However, we are ultimately interested in calculating
the difference QS-Qn between the grand thermodynamic potential
in the superconducting state, Qs' and corresponding quantity
in the normal state Qn. The major part in Qs-Qn comes from
the superconducting correlations and is well described by the
BCS theory. The corrections to the BCS result come mostly from
the details if the basic interaction which brings about
superconductivity - i.e. the electron-phonon interaction. There-

fore it seems appropriate to modify the expression for Qs by

adding to the last term in Eq. (A3.,11) the contribution of the

second diagrams in Fig. A3.3 which accounts for the effect of the

G- G4

et

Fig. A3.3
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short-range Coulomb repulsion on the pairing self energy. The

contribution of the two diagrams in Fig. A3.3 is (from now on we
do not write explicitly./sthe small convergence factors exp(iwn0+),

exp(iwn,0+) etc.)

/ -
.4 25 o ' 'y - 2 '
oz pr' {lgp_p | “G(P)D(P-P")G(P')-F (P) [|gy_p, | “D(R-P") +

(A3.15)

+ SC(P~P')]F(P')}

and the last term in Eq. (A3.1ll) is replaced by the expression
(A3.15). VSC(P-P') denotes the screened Coulomb matrix element.
Note that the expression (A3.11) modified in the described man-
ner is now stationan\with respect to the small changes in
{Zl(P)} and {ZZ(P)} around their values given by the Eliashberg
‘equations extended to include the effects of the short-ranée
Coulomb repulsion (see Ch.III):

K
\

N ¢ 20 (pop? '
L,(P) = - =& g lgP_P.I D(P-P')G(P') (A3.1l6a)

= - * 20 popt —p :
I,(P) = - 2 g' [|gP_P,| D(P-P')+V__(P-P') |F(P") (A3.16b)

(Equation (A3.13c) which is equivalent to §Q/8n = 0 remains
unchanged.) Here again, the effects of the Coulomb interaction

in the normal state are included via band-~structure anergies €

and fully screened and Coulomb vertex corrected electron-
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phonon coupligg function Ip_p'

In the case when a small amount of ordinary (nonmagne-
tic) impurities is present the last term in Eqg. (A3.15) shoul?
be supplgmeﬁted by the contribution of the diagram in Fig.

N/

(A3.4)

Fig. A3.4 ) \
and the last term in Eq. (A3.5) for @ in the normal state by the
contribution of the analogous diagram for the normal state,
after appropriate configuration averaging over the impurity

configurations. The contribution of this diagram is \

\

1 1y 12 ' _pry |2 .

i g' [G(P)niNIViN(P-P )| “G (P )-F(P)niNIViN(P P') | F(P)], (A3.17)
| |

where’n.lN

is the impurity concentration (number of impurilies

per unit volume) and Vi is the change in the crystal pot

n—
N a

tial due to impurity. Again, with this term added to the ex-

pression (A3.15) (which is already modified to include the
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Coulomb repulsion) @ is stationary with respect to small chan-

ges in {Zl(P)} and {ZZ(P)} around the values given by

|A2 ]
L, (P) =~ z |ViN(P-P )1“G(P') (A3.18a)

1 2 :
-B-IZ)' |gp_p+ | “D(P-P")G(P)+n, L

L,(P)

- .}_ 2 D! Dt ]
5 12“;' (lgp_pi | “D(P=P") +V__(P-P")]F(P') +
(A3.18b)
2
*ngy I, 1V B-p) [Pr )

which are the Eliashberg equations extended to include scattering
by small amounts of ordinary impuritieé.

A 'similar treatment is applicable in the case of small
amounts of péramagnetic impurities. Then Q is to be corrected
by the contribution of the diagram analogous to the one in Fig.

A3.4, with the main difference that the T.-matrices at the ver-

3

~
tices are now unit To-matrlces:

1 ’ ' 1 )
—IZ) 12‘;' [G(P)‘hiPS(S-*-l)ViP(P—P JG(P') +

w

(A3.19)

+ . . D! -l
F(P)anS(S+l)VlP(P P')F(P')]
}
~ where Nip is the concentration of the paramagnetic impurities,

S is the magnitudé of the impurity spin and ViP is the change in
the crystal potential due to the paramagnetic impurity.

The problem of the free energy difference between the

normal and supercodducting state has been treated by Wada45)

46)

and

by Bardeen and Stephen . Wada's treatment starts from a first
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principle calculation éf the thermodynamic average <ﬁ—uﬁ> where
H is the total Hamiltonian of the system. In order to eliminate
the ion kinetic energy from the problem he uses the so-called
Chester's relation which is of thermodynamic nature. The ef-
fects of the Coulomb interaction were included in his treatment
from the beginning but there appears to be an implicit restric-~
tion on the size‘of the Coulomb repulsion in order to have the

l/Z' where M is the mass of the

simple isotope effect Tc « M
ion. However, in practice, this difficulty has been ignored by
computational theorists and the results of the numerical calcu-
lations have been in good agreement with the experiments.
Bardeen and Stephen have started from the Eliashberg's
expression for the grand thermodynamic potential in the super-
conducting state, which also gives the‘aﬁprop;iate formula for
the normal state upon taking the limit 22 + 0. By assuming
that there is no change in the chemical potential due to the
superconducting transition, which is an excellent approximation
(this change is of the order of A2/4un, where Mo is the chemi-
cal potential in the normal state) the free energy difference
is given by Qs—ﬂn. Furthermore, they have exploited the.fact
that both Qs and Qn are stationary with réspect to small chan-
ges in various self-energy parts and in the expression for Qn
they have réplaced 21n by le and ﬂnrby T (indices n and s
refer to the normal and superconducting state respectively),
since the différences Zln - Zl and 7 - w_ are small (Zs--Zn

s n s
2
. 2 “p
is of the orxrder of AO(AO/wD) ln(wO(AO)[l-+e(w wD)(Zr) ] where

«
4
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AO =-|gP_P.12N(0), N(0) being the single spin electronic den-
sity of states, and w is the excitation eyergy:; T is of
the order of (A0/8)(Ag/un)zn(zwb/Ao)). The resulting quantity

is called Qns and the free energy difference is calculated as

g en =-1 T [tn(Ee I (P)F(P)]
~Q =- 4 tn(z2—=) - I (P)F(P)] -
s ns B P @nS(P) 2 (A3.20)
- —j; I l9p_pi |2 1G(R) -G (P)ID(P=B") [G(P") -G _(P")]
p,P
where
o 2 L2
@ns(P) = (1wnZn(k,1w 1) - - (ek+xn(k,1wn)) (A3.21a)
G (P) = T 1)_(€ T (A3.21b)
ns LWpep oy ! k' Xp\fri0p

In the next step Bardeen and Stephen neglect the momentum depen-
dence of Zl and 22 and the energy dependence in the electronic
density of states. The first approximation is retained in this
thesis (essentially because azF(Q;e,e“) is assumed to be inde-
pendent of ¢ and ¢') while the second one is relaxed since it
is the subject of central interest in the present work. Then

X vanishes (see Ch.III), i.e. Zl(iwn) is an odd function of

iw_, and
iw . .

1

5 éf l9p_p (P) . (A3.22)

2 1 1 .
- | “D(P-P )G (P = I,

We note at this point that the above equality is an important

part of Bardeen and Stephen'é derivation and that it breaks
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down if the self-energy is momentum dependént and/or electronic
density of states cannot be assumed to be a constant in the
energy range of the order of Wy around the Fermi level. This
wi}l foice us to use a somewhat different procedure in evalua-
ting the free energy difference for a Lorenzian model of the
electronic density of states (see Appendix 4) from that used

by Bardeen and Stephen. The final result of Bardeen and

Stephen's calc¢ulation of the free energy difference is

2,. ,
A (lwn)ZS(lw )

21N (0) n . 2 ,.2,. 1/2
Q_~-Q_ =50 I =22 _(iw) [(w_+A° (iw_)) -w_] =
s "'ns B n=1 (w§+A2(iwn)ﬂ/2 s o n n n
(A3.23)
. . (.L)n
- mn(Zs(lwn)-Zn(lwn))(l - 5 1/2)}

(w§+A (iv_))

where A(imn) = ¢(iwn)/Z(iwn) .

It should be noted that the above formula, (Eq. A3.23), is
valid when the Coulomb interaction between the electrons is
included in the way previously described. It expresses the free

energy difference in terms of various self-energy components

in the superconducting and normal states, which are to be de-

. termined from the solutions of the Eliashberg equations at fi-

nite‘temperature with appropriate input parameters qz(Q)F(Q) and
*
(u* (w,) sw ) .
As shown by Bardeen and Stephen their expression for the
free energy difference is equivalent to Wada's formula for this

quantity, which, from the numerical point of view, converges
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more slowly. The key step fn this proof is the identity

é Gn(P)le(P) = é GS(P)Zln(P) (A3.23)

which is the consequence of the obvious identity

2 Dt ] —_ 2 D!
1§1§' G (P)|gp_pi | D(P-P )G (P )-g g' G (P)lgp_p: | “D(P-P )G (P)

-

the assumption that WS(Q) = nn(Q) and the Migdal-Eliashberg
equations (A3.9a) and (A3.14a) (see Fig. A3.5). We note here

that the equation (A3.23) is valid in the case of a momentum

Fig. A3.5

dependent').‘.l and/or energy dependent electronic density of states
N(e) as long as one can assume that the phonon propagator re-
mains unchanged by the superconducting transition. We will

use this equality, Eq. (A3.23), in our generalization of the

formula for the free energy difference to the case of a noncon-
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stand electronic density of states (Appendix 4).
. Finally, we note that the last term in Eq. (A3.1l1)

for QS exactly cancels against one half of

2.
gV

T exp(iw O+)[21(P)G(P)-Z (PYF(R)]

p n 2

in the first term upon using the Eliashberg equations. This is
also the case if the last term in Eqg. (A3.1l) is replaced by

(A3.15) in order to include the effects of the Coulomb repul-

sion, or if it is extended to include impurities, so that one

has
= - L - -
g = & g {an[ ¢S(P)]4-le(P)GS(P) ZZS(P)F(P)} +
(A3.24)
+ 52— I {en[-D-Y(Q)] + 7_(Q)D_(Q)}
2BV a s s s
and similarly
Y ’ .
T =T gy L Unl-e (B 1 (G (R)) 4
(A3.25)
+ 5k é {(an[-D_1(Q)] + 7_(Q)D_(} .

By assuming that ﬁs(Q) = nn(Q) (and consequently DS(P) = DS(Q))
AN
Egqs. (A3.24) and (A3.25) give-

- ¢_(P)
= - S - -
Q- = 5V g {zn[¢n(P)1 + I, (P)G_(P)=I; (P)G (P)

(A3.26)

- I,,(P)F(P))
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This will be our starting formula for finding the expression
for the free energy difference between the superconducting

and the normal state for a Lorentzian model of N(g).

,



APPENDIX 4
DERIVATION OF THE FORMULA FOR THE FREE ENERGY DIFFERENCE

BETWEEN THE SUPERCONDUCTING AND NORMAL STATE FOR THE SYM-
METRIC LORENTZIAN MODEL FOR N({(g)

We take
N(e) = N_(1 + s i ——2—5) (A4.1)
b LI )

as a model for the electronic density of states (EDOS) and
calculate the free energy difference Qs-Qn between the normal

and superconducting state per unit volume (see Appendix 3):
i

1 ¢s(P)
Qs—Qn - E g (4n @n(P) + le(P)Gs(P)-Zln(P)Gn(P) -
(A4.2)
- £, (P)F(P)]
where
P = (E,iwn) ‘ (A4.3a)
b

+0 3> +c0

- é .= - % £ 49—23 - é I de+N(e>) ,  (Ad.3b)
P n=-« | (2m) n=-% PP

0 (B) = - (22 () (wi+a? (Le ) ved) (4.3c)
o () = - [Zi(iwn)wi+e%] , (34 .3d)

184
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ZlS(P) = iwn(l - Zs(iwn)) ’ (A4 .3e)
iwnZs(iwn)+€5
G (p) = -~ ‘ (A4.3f)
s 2,. 2,,2,. 2
ZS(_‘Lwn) ((un+A (lwn))+€§
Zln(P) = iwn(l - Zn(imn) ' (Ad.3g)
iw 2 (iw )+e>
G (P) = -8 n p | (A4 .3h)
n 2 2
27 (1w )w +eF
n."n' n p
ZZ(P) = A(iwn)ZS(iwn) , (A4.31)
Aliw )2 (iw )
F(P) = — e B 5 - (A4.33)
Z7(iw ) (w +AT (iw ) ) +e3
s n n n P

Here, Zs(iwn) and Zn(iwn) are renormalization functions in the
‘superconducting and nofmal state, respectively. Since the peak
in the glectronic density of states given by Eq. (A4.1l) is
symmetric with respect to ¢ =0, i.e. N(-¢) = N(g), and since
N(¢) does not change rapidly for |e| << a we have ignored small
symmetr;c components xs(iwn) and xn(iwn) in the off diagonal
self-energy parts. Also, for the temperatures which are at
\)”most v 0.1 a (or v 0.1 wy) we do not have to take into account

any change of the chemical potential (assuming that the model
(A4.1) describes the EDOS only in the range of several w. around

D
the Fermi level).
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-

Instead of evaluating Qs—Qn in the form given by Eq.
(Ad4.2) it is more convenient to calculate this difference in
the form which is obtained by adding and subtracting le(P)Gn(P)

from the expression in the square brackets in Egqg. (A4.2):

¢ (P)
3, ()

+ P)GS(P)—ZIS(P)Gn(P) +

zls(
(Ad4.5)

+ ZlS(P)Gn(P)-Zln(P)Gn(P)-ZZ(P)F(P)} .

We will first integrate various combinations of the terms in

4
Eq. (A4.5) over the electronic energies. Since

b 2 = anpa®p?) T -lal) (Ad.6)

+ca

2,,2,.2 1/2

de on a_+b +e
a +¢

=00

where a and b are real numbers and

= 2 (A4.7)

e 2, 2
in(a“+e”) ¢n(lal+|bl)
de = —>5—3— 5]
b%+¢

For real a, b# 0, we have

¢ (e,iwn)

40 +w
deN(€) in $§TE~IE~T = dENb(l + s % —52—7)
n'~'"n e“+a

-0 -0

2,. 2 2. 2,. 2..2,. 2, . 2
. Zn(lwn)wn+[zs(lwn) Zn(lmn)]wn+Zs(1wn)A (lwn)+€ )
Zz(im )w2+€2
n n n
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. 2.2, 1/2 .
= N 2“{[Zs(lwn)(wn+A (1w )) -Zn(lmn)lwnl] +

. 2. .2, 1/2
a+2 (iw ) (wZ+A° (1w ))
+ s % on s n n n b (A4.8)
a+2 (iw ) |w_|
n n n

We have used the fact that Zs and Zn are positive. By using

the identity (A3.23) of Appendix 3

L ZlS(P)Gn(P) =

. Zln(P)Gs(P)

z
P

we can write

; g [le(P)Gs(P)‘Zlé(P)Gn(P)]= g [ZlS(P)Gs(P)'Zln(P)GS(P)l
E and

+00

J dEN(E)[le(iwn)Gs(E,iwn)-Zln(iwn)Gs(E,iwn)] =
+co

=)

a2+82

X

. N o s : 5 1
=iw (2 (iw )-2_(iw )) de&b(l *s Z

-—C0

iw 2 (iw )+e
) iw, s( n)

Zi(iwn)(w§+az(iwn))+ez

w
n
(mr:iﬂkz(i.mn))l/2

= nwn(zs(imn)~zn(iwn)) X

x Nb[l + s 1 . l2 5
a+Zs(1wn)(wn+A (lwn))

1/21 (A4.9)

kit
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(see Egs. (A2.12)-(A2.14) of Appendix 2). In the same way we

get
oo
deN(e)[le(imn)Gn(e,iwn)—Zln(iwn)Gn(e,iwn)] =

-0

= - nwn(zs(iwn)-zn(iwn))sgn(mn)Nb[l+-s L L 3.

a+Zn(iwn)|wn|

\\iij.lo)
Finally,

+oo +oo
J deN(e) I, (iw JF(e,iw ) = A(iwn)Zs(iwn) [ deNy (1+s % ;7227.) x

-0 -0

) A(lwn)Zs(lmn) )

Zi(iwn)(wi+A2(iwn))+€2
A(iwn)
= tA(iw )2 (iw ) N, [1+
n s n (w2+A2(iw ))1/2 b
n n
1 !
+s < i77) (A4.11)

2,.2,.
a+ZS(iwn)(mn+A (1wn))
Putting all these results together and using the symmetry pro-
perties
A(—lwn)==A(1wn) P Zs(-lmn)= Zs(iwn) ' Zn(-lwn)= Zn(lmn) P

and

w_, = #T(2(-n)-1] = -1T(2(n+l)-1] = -w
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'

when converting the sum over the Matsubara frequencies on the
negative imaginary axis into the sum over the Matsubara fre-
quencies on the positive imaginary axis, i.e.

+x

z f(iwn)

n=-=%x

L [f(iwn)+f(iw_n+l)]==n£l [f(iwn)+f(~iwn)]

i}
e g

l/ n

!\V

(where it is assumed that all series converge absolutely so

that the terms can be rearranged at will), we obtain

Camy = Az(imn)zs(iwn)
-0y = —5— I =3 173
n=1 (wn+A (iwn))
- 2(2_(iw ) (w§+A2(iwn)-) l/z-zn'(iwn)wn) +
2% (iw )2 (iw )
1l u)n s wn 1
s Tl 173 73 177 ~
(w2a? (1w_)) a+2_(dw_) (02+2% (1w )
. 2.2, 1/2 5
P a+Zs(1wn)(wn+A (lwn))

a+zn(iwn)wn * wn(zs(iwn)—zn(iwn)) )
‘ 1 : “n 1
a+2 (1w )w 2.2, . 1/2 , 2. .2,

n n’'n (wn+A (lmn)) a+ZS(1wn)(wn+A (lwn))

-~

(Ad4.12)

By adding and subtracting ZZs(iwn)mn from the expression in the
first square bracket in the above formula and 2 2n(a+zs(iwn)mn),
wn(ZS(lmn)-Zn(lmn))/(a+Zs(lwn)mn) from the expression 1n.the

second square bracket (this is done to obtain a form of QS~Qn
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which is more convenient for the analysis of the order of the

‘

phasé transitién) we 'can rewrite Eg. (A4.12) in the form

2an

n

2,. .
A (1wn)Zs(1wn)

Q_-Q 173

s 'n B

i

{[
1 (w§+A2(imn))

8

-2 Zs(iwn)(wi+A2(iwn))l/2Twn)-

“n
2. ,2,.
(wn+A (1wn))

o, (Zg (Lo ) =2, (1w ) (1 - 71+

2,. .
A (lwn)zs(lwn) 1

[ -
(w§+A2(iwn))l/2 a+ZS(iwn)(wi+A2(iwn))l/2

+
4]
A

. 2..2,. ..1/2
a+Zs(1wn)(wn+A (1wn))

- 2 &n -
a+ZS(1mn)wn

1
a+Zs(1wn)wn

- wn(zs(iwn)-zn(iwn))(

‘wn r . )
T T2 2. 1/2 . 2. . 2,. 1/2
) (wn+A (lwn)) a+Zs(1wn)(wn+A (}wn))
+ o (2 (iw ) -2 (iw ) (——= + 1 ) - -
n''s n n n a+Zs(imn)mn a+zn(iwn)wn
a+Z (iw )w
-2 ¢n R}, . (A4.13)

a+zn(1wn)wn

Equation (A4.13) is o/;/éinal,expression for the free energy
7
difference between the superconducting and the normal state
for an isotropic superconductor with electronic density of states

which is described by equation (Ad4.1). There are several im-
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portant points to be noted:

1) In the limit a + +~ (or equivalently s -~ 0), equation

A(4.13) reduces to ;
27N, © A% (iw )2 (iw )
(QS-Qn) = b + ¢ n_"s "’ _
B.S. B 2 .2 1/2

n=1 (wn+A (imn))
- ZZS(iwn)((w§+A2(iwn))l/2—wn)

w
n
2 .
(wn+A (1wn))

- o (2 (le )-Z (iw ) (1 - 7750} (A4.14)
which is just the Bardeen-Stephen's result for the case of a
flat electronic density of states equal to Nb’ in order to
show that the phase transition is not of the first order it is
suff;cient to demonstrate that for each n all the terms

which are proportional to-:-the second power of A(imn) (and
'weaker' functiqns of A(iwn)) explicitly cancel in the limit
Ta-Tc“O+, adsuming that.at'rc A« (TC-T);/Z. The last assump-
tion is presumably valid for strong coupling superconductors
(it is esdct in the BCS theory) since near Tc the damping ef-
fects on A(T) and Tc are the same and the strong-coupling
effects 'cancel'. 1Indeed, expanding in powers of A and keeping
only (explicitly) the terms up to the second order in A we get

for the -(general) n-th term in the series (A4.14) for (Qs-ﬂn)B s
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22 (1w )z _(iu_) 2% (i)
w - 223(1“’n)wn(l t 3 —*—5___) -
n u)n

2,. »
A° (1w ) d
\ - . _ 1 - """n" '[
- o (22, (e ) 1 = (1= 5 =] £
n

= - (z,(w)-2_(iw)) 8% (lw)/(2e) ¥ T » T 0" .

Since Zs(iwn)-zn(imn) = o(A(iwn)), A(iwn) + 0. (see Appendix 3)

the general term in the series (A4.17) is o(A3(iwn)) near Tc'

2) To‘prove the same property for the expression (A4.13) it
remains to analyze the term in the second square bracket, since
the one in the first square bracket has the same form as the
general term in Bardeen-Stephen's formula (A4.14). The expres-
sion in the second square bracket in (A4.13) can be written in

the form

A+B+C . (A4.15)

with
2% (iw )2 (iw )
n' s n 1

A = 173

w22 (10 )2 arz_(ia ) wiea? (1w )) 2
.. 2,.2,. 1/2
a+zs(1wn)(wn+A (1wn))

a+Z_ (iw_)w
s " n’ ' n

- 2 4n (A4.16)
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_ o 1
B = wn(zs(lwn) Zn(lwn))(a+zs(iwn)mn

- “n 1

) (A4.17)
(w§+A2(imn))l/2 a+zs(iwn)(w§+A2(imn))l/2

_ 1 1
c= wn(zs(wn)nzn(wn))(a+z (1w _Jw t 35z (iv Jw ) -
s n’“n n n’ n

a+Z (iw )w
- 2 n n

a+Z2 (1w )w * (A4.18)
n n’ n
Near the Tc A becomes

2, . )
A (1wn)zs(1wn) )

A = 1 _ .
w a+z (iw_ )w t
n . S n’' ' n K
) 1,,2,. 2 !
atz (dw Jw [1 + 5(8% (1w )/w )] 5 '
-2 Y T atZ (io Jw + o(4A (_uun))
) S n n
A% (i) Z_(iw_) . 1 2 (e)  a%(ie) |
= n S . -2 an[l+_ S _n n ] + .
w o a+tz_(lo Jw . 2 a+2_(lw )w w
S n n S n n

. 2 . '
+ o(A (lwn))
A% (iw ) .2 (iw ) A%Giw ) Z_(iw )
n S n n S n

W, a+Zs(1wn) Wy a+ZS(1wn)

=

+ o(Az(iwn)) = o(Az(iwn)).
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For the B we have

2,.
AT (iw_ )
. . 1 1 n 1
B==mn(zs(J'wn)-'zn(lmn))(a+Z (o Jo_ (1-3 2 ) 353 (ie )w )+
s "“n’"n we s

Zs(iwn)~zn(iwn))A2(iwn)

+-o(A2(iwn)) + o(AZ(iwn))

-

an(a+zs(1wn)wn7

2, . +
= oA (1wn)) ' T > Tc-O

since Zs(iwn)—zn(iwn) = o(A(iwn)), A(iwn) +‘0

LY

Finally, near Tc C becomes
wn(Zs(lwn)-Zn(lwn)
a+Zz (1w _)w
n n''n
¢

1
a+7Z (iw )w
s n n

(2 +

) -

C = wn(Zs(iwn)—Zn(iwn))

wn(Zs(iwn)-Zn(iwn))

=2 &n(l + a+?2 (iw )w ) =
n n’ n

_ wn(Zs(iwn)-Zn(iwn)) .,
a+?Z (iw )w
s n’ ' n

wn(ZS(iwn)-Zn(iwn))

2,.
a+Z2 (iw Jw + ol (lwn))
n n’ n

2, .
o(b (1wn))

since, as before Zs(iwn)-zn(iwn) = o(A(iwn)) ’ A(iwn) + 0.

Thﬁs, the formula (A4.13) for the free energy difference per

unit volume, AF, describes a phase transition which is not of

the first order. This is a very important property of the expres-
sion for the free eﬁefgy difference and accounts for the super-
conductive transition. Also, this point is nontrivial, since

an approach to the problem of finding the formula for AF when

the electronic density of states cannot be taken as constant,
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which was based on Wada's method has led to a formula for AF
which does not correctly describe the order of the superconduc-
tive transition?4{The exact origin of this difficulty with Wada's

method -remains unclear at present.

3) At least formally we can take the limit a + +0 in the
formulas (A4.1) and (A4.13). The electronic density of states

is then given by

N(e) = Nb(l;ﬁscs(e)) . (A4.19)

It is not hard to see that in‘khis limit Eq. (A4.13) reduces
to the form which would be thained by direct calculation of
(A4.5) with the electronfc density of states given by (A4.19)
and that the resulting expression describes the phase transition

which is not of the first order.

4) Bardeen and Stephen, in their treatment of the free energy
difference between the superconducting and normal state, have
calculated Qs;Qns’ instead of Qs-Qn, where (see Egqg. (A3.1l1l) of

Appendix 3).

{Rn[—QS(P)]+Els(P)GS(P)ﬂ22(P)F(P)] +

+ -2-1-53 (an{-p_h (@)1 + T_(@D (@} (24.20)
and
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[\S]

— l .
e ="%5L (5 enl-2__(P)]1+I; (P)G__(P)} +

1 -1
* 35 é {an{~D_"(Q)J+I_(Q)D_(Q)} -

IH

. é gv Gns(P)Dn(P—P')Gns(g') (A4.21)

N

and ¢ns(P) is obtained from ¢n(P) by replacing Zln(P) with
ZlS(P) and similarly Gns(P) is obtained from GA(P) by repla-

cing Zln(P) with I, (P). Note carefully that for Qs we have

ls
cancelled the last term in Equation (A3.1ll) against one half
of (-2/B) & le(P)Gs(P) is the first term of the same equation,
while in tﬁe corresponding expregsion for the normal state
(whicﬁ is obtained by setting,ZZ(P) = () we have replaced
2141With'zls and Gn wﬁth Gns without performing the analogous
cancellation (which' is obtained upon using the Migdal-Eliash-
berg equations). This is thé tricky point of the derivation
since it ensures that the final expression (see for instance
Eq. (A4.14)) has a form which gives thé right order of the phase
transition. <

This replacement of Qs—Qn with Qs-Qns’ as it was ex-
plainea in Appendix 3, is based on thg fact that @ is statio-
nary with respect to the small changes)in various self-energy
parts around their correct values. and( that le and Zln differ
by a small amount. By using the same property of Q, Hn(Q)
can be replaced with HS(Q) (and consequently Dn(Q)=DS(Q)ED(Q))'

AY

so that one has
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= _1 - : -
Bglng = L In10,(B)/0, (R) =2, (R)F (B))
-L 12(G_(P)~G__(P))D(P=P') (G_(P')=G__(P'))
2 . gP---P' 5] ns s ns
82 p,p
(A4.22)

Now, if the self-energy le(P) does not depend on momentum and

the electronic density of states can be assumed as constant one

has

2 ' -
z lgP_P,l D(P-P')G__(P) =

|2D(p-P')G_(P')  (A4.23)
P! n

g' . IgP_PI

so that Eg. (A4.21) reduces to

N | -
Q-0 = z {2n(e_(P)/¢__(P)1-I,(P)F(P)} +

o]
[}
pos)

1
.t E (2, ,(P)=Z_(P)) 12; (G, (P)-G__(P)]

and direct evaluation of the integrals over the electronic ener-

gies leads to the formula (A3.23).

However, if the electronic density of states cannot be
assumed as a constant the equality (A4.23) breaks down and one
has to introduce the quantity Zns(iwn) defined by
1
io (1-2__(iw)) =z, (B) S-% 1 g _,1%D(P-P")G__(P') (A4.24)

n ns n’’ 7 "1ns g p p-p' ' ns
(We assume that the various self-energy parts do not depend on

momentum.) In that case one has
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D
I
il
I
o

é {ln[Qs(P)/®ns(P)]-ZQ(P)F(P)} +

ns

+
|

(F1g(B)=Eypg(P)) I (6 (P) =G, (P)]

and evaluation of the integrals over the electronic energies

with the N(e) given by the Eq. (A4.1l) gives

2,. .
A (1wn)zs(1wn) _
1/2

Q -0 - —= T {]
g - 2. .2,
=] (wn+A (lwn))

- 2Zs(iwn)((Ai+w2(iwn))l/2-wn) -

w
- (2 (iw )~Z_ _(iw_)) (1 - n )] +
n'“s n ns n (w2+A%(iwn))l/2

2,. .
A (1wn)Zs(1mn) 1

+ s = [ -
(wira? (iw ) 12 arz_(iw ) (w2+s? (10 )) 12

/2

a+2 (1w ) (w2422 (iw )t
- 2 in s " n’‘'n n

- :
a Zs(lwn)

1 _ “n
2 000, w2ea? (i )) 2

-wn(ZS(iwn)—Zns(iwn))(

1
a+zs(iwn)<w§+A2(iwn)>

1/2)] (A4.25)

The above expression, Eq. (A4.25), for Qs-Qns is very similar
to the Eg. (A4.13) for QS—Qn except that the last two terms in
the second square bracket in (A4.13) (i.e. C given by (A4.18))

are missing in Egqg. (A4.25) and that Zn in (A4.13) is replaced
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by Zns' The unpleasant feature of the formula (A4.25) is that
the artificial quantity Zns’ defined by Eg. (A4.24), appears.
One would certainly prefer to have the expression for the free
energy difference in which only various self-energy parts in
both the superconducting and the normal state appear, since
they are the quantities with the physical meaning. In order to
illustrate the difference between Zs(iwn), Zn(iwn) and Zns(iwn)
we have solved the generalized Eliashberg equations for EDOS given
by Eq. (A4.1) (see Egs.(III.51),(III.52)) and the corresponding
linearized eguation (II.55) at low temperature,where one would ex-
pect the difference between these quantities to be large. In
Table Al we give the values of Zs(iwn), Zn(iwn), Zns(iwn),
2 (ie )-2 (iw ), 2_(iw )-Z_(iw ) at several low Matsubara
frequencies for T = 1.5°K. The solufflons {Zs(iwn)} and {Zn(iwn)}
were obtained for the az(Q)F(Q) spectrum measured by Shen
for NbsSn (A =1.7), a = 28.9 meV (which is ~ the maximum
phonon frequency in azF) and s = Ta. {zns(iwn)} was calculated
from {Zs(iwn)} by using Egq. (A4.24). It can be seen that at
small‘values of wy (on the scale of the maximum phonon frequency)
(Zns—Zn) is several percents of (Zn-zs) while at values of
Wy which are larger than the maximum phonon fregquency (Zns-zn)/
(zn—zs) v 0.1. Since Q@ is stationary with respect to the
small changes in self-energy parts it seems justified to use

’

Zn(Lwn) instead of Zns(lwn) in Eq. (A4.25). Then the two

equations for QS~Qn, Eq. (A4.13), and Qs-Qn Egq. (A4.25),

sl
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Table Al

n wn(mev) Zs(lwn) Zn(lwn) Zns(lwn) ns—zn —Zs

1 0.4061 2.1762 2.3386 2.3420 .0034 .1624
5 3.6546 2.1297 2.2345 2.2375 .0030 .1048
10 7.7152 2.0176 2.0725 2.0748 .0023 . 0550
20 15.8366 1.7919 1.8084 1.8095 .0011 .0165
40 32.0797 1.5081 1.5105 ,1.5108 .0003 .0024
60 48.3218 1.3621 1.3627 1.3628 .0001 .0006
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would differ only by term C given by Egq. (A4.18).
As shown by Bardeen and Stephens in the case when the
momentum dependence of the self-energies can be ignored and

electronic density of states can be taken as a constant

Qn~Qns = 0, that is no error is introduced into the formula
for the free energy difference by replacing L, with £, in

the calculation of Qn. From the previous analysis 1t is glear
that when the density of states cannot be taken as constant
59the two equations (A4.13) and (A4.25), wherein the second one
Zns is replaced by Zn, give slightly different formulas for
the free energy difference per unit veolume between the super-
conducting and the normal state, the(Zifference being the
term C given by Eq. (A4.18). However, by expanding the expres-

sion for C into pawers of Zs(iwn)-zn(iwn) one obtains

C = QF(ZS(imn)-Zn(iwn))z)

which indicates that this correction is small (i.e. of second
order in the difference IZlS(P)—Zln(P)[). Indeed, several
numerical tests of these two equations have given almost
identical thermodynamic properties of a superconductor. Still
from the computational point of view it is not difficult to ﬁse

the exact result, Eq. (A4.13).
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