MONITORING AUTOCORRELATED PROCESSES

MONITORING AUTOCORRELATED PROCESSES

By

Weiping Tang, M.Sc.

A Thesis

Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science

McMaster University

© Copyright by Weiping Tang, April 2011

MASTER OF SCIENCE (2011)

(Statistics)

McMaster University Hamilton, Ontario

TITLE:	MONITORING AUTOCORRELATED PROCESSES
AUTHOR:	Weiping Tang
	M.Eng. (Wuhan University of Hydraulic & Electrical
	Engineering, China)
SUPERVISOR:	Dr. Román Viveros-Aguilera
NUMBER OF PAGES:	xi, 88

Acknowledgements

Foremost, I would like to express my utmost gratitude to my supervisor, Dr. Román Viveros-Aguilera, for continuous support for my study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisor and mentor for my study and will never forget his sincerity.

Besides my supervisor, I would like to thank the rest of my thesis committee: Dr. Angelo Canty and Dr. Shui Feng, for their encouragement, insightful comments and challenging questions.

My sincere thanks also go to Dr. Peter Macdonald and Dr. Narayanaswamy Balakrishnan, for their encouragement and academic helps in my study.

This thesis is in memory of my father Ze Tang, and to my mother Lingxiu Hu. I would like to thank my family: my wife Zhibing Jiang, my son Ruikai Tang and my daughter Ruijun Tang, for love and support in my life.

Abstract

Several control schemes for monitoring process mean shifts, including cumulative sum (CUSUM), weighted cumulative sum (WCUSUM), adaptive cumulative sum (ACUSUM) and exponentially weighted moving average (EWMA) control schemes, display high performance in detecting constant process mean shifts. However, a variety of dynamic mean shifts frequently occur and few control schemes can efficiently work in these situations due to the limited window for catching shifts, particularly when the mean decreases rapidly. This is precisely the case when one uses the residuals from autocorrelated data to monitor the process mean, a feature often referred to as forecast recovery. This thesis focuses on detecting a shift in the mean of a time series when a forecast recovery dynamic pattern in the mean of the residuals is observed. Specifically, we examine in detail several particular cases of the Autoregressive Integrated Moving Average (ARIMA) time series models. We introduce a new upper-sided control chart based on the Exponentially Weighted Moving Average (EWMA) scheme combined with the Fast Initial Response (FIR) feature. To assess chart performance we use the well-established Average Run Length (ARL) criterion. A non-homogeneous Markov chain method is developed for ARL calculation for the proposed chart. We show numerically that the proposed procedure performs as well or better than the Weighted Cumulative Sum (WCUSUM) chart introduced by Shu, Jiang and Tsui (2008), and better than the conventional CUSUM, the ACUSUM and the Generalized Likelihood Ratio Test (GLRT) charts. The methods are illustrated on molecular weight data from a polymer manufacturing process.

Key Words: Autocorrelated data; Autoregressive integrated moving average; Average run length; Fast initial response; Adaptive CUSUM; Zero-state; Steady-state; Dynamic mean shift; Fault signature; Forecast recovery; Monte Carlo simulation; nonhomogeneous Markov chain; One-sided EWMA; Smoothing parameter; Transition probability matrix; Weighted CUSUM

Contents

Abstract

1	Fau	lt Signatures from Autocorrelated Processes	1
	1.1	Process Monitoring	1
	1.2	Autocorrelated Processes and the Forecast Recovery Phenomenon	2
	1.3	Autoregressive Integrated Moving Average Models	3
	1.4	Some Typical Autoregressive Integrated Moving Average Models	5
	1.5	Thesis Objectives	9
2	Cor	trol Charts for Monitoring Autocorrelated Data	11
	2.1	Cumulative Sum (CUSUM)	12
	2.2	Weighted CUSUM	13
	2.3	Adaptive CUSUM	14
	2.4	Zero-State, Steady-State and Fast Initial Response (FIR) Feature $\ .$.	15
3	The	e Exponentially Weighted Moving Average Schemes and Enhance	-
	mer	nts	17
	3.1	The Two-Sided EWMA	17

viii

	3.2	The Upper-Sided EWMA	19
	3.3	Markov Chain Approach for Average Run Length (ARL) Calculation	19
	3.4	Numerical Performance	22
	3.5	Enhancements	27
		3.5.1 The Effect of the Smoothing Parameter λ	27
		3.5.2 The Effect of the Fast Initial Response	29
4	Con	nparing the Upper-Sided EWMA with the Weighted CUSUM	40
	4.1	The Weighted CUSUM Scheme	40
	4.2	Zero-State ARL Comparison	41
	4.3	Steady-State ARL Comparison	43
	4.4	Improved Monte Carlo Simulation for the	
		WCUSUM Scheme	47
5	Mo	nitoring Molecular Weight in a Polymer Manufacturing Process	53
	5.1	The Molecular Weight Data	54
	5.2	ARIMA Fit and Residuals	55
	5.3	Simulated Cases with Dynamic Mean Shifts	58
		5.3.1 Performance Comparison of Zero-State Case	60
		5.3.2 Performance Comparison of Steady-State Case	61
6	Con	clusions	65
A	Aut	oregressive Integrated Moving Average Models	68

B Markov Chain Method for Average Run Length Calculation Under

	a Dynamic Mean	73
	B.1 ARL Calculation for the Two-Sided EWMA	. 73
	B.2 ARL Calculation for the Upper-Sided EWMA	. 77
	B.3 ARL Calculation for the One-Sided CUSUM	. 80
С	Monte Carlo Simulation Algorithm of ARIMA Models for the WCU Control Scheme	USUM 82
		02
Bi	bliography	85

List of Tables

1.1	Illustrative ARIMA Models	6
3.1	Zero-State ARL Comparisons Between the Upper-Sided EWMA and	
	the Two-Sided EWMA ($\lambda=0.2$)	24
3.2	Zero-State ARL Comparisons Between the Upper-Sided EWMA and	
	the Two-Sided EWMA ($\lambda=0.1$)	25
3.3	Zero-State ARL Comparisons Between the Upper-Sided EWMA and	
	the Two-Sided EWMA ($\lambda = 0.05$)	26
3.4	The Upper-Sided EWMA Zero-State ARL for Model 1, 2 and 3 with	
	Different Head Starts ($\lambda = 0.2$)	31
3.5	The Upper-Sided EWMA Zero-State ARL for Model 4, 5 and 6 with	
	Different Head Starts ($\lambda = 0.2$)	32
3.6	The Upper-Sided EWMA Zero-State ARL for Model 1, 2 and 3 with	
	Different Head Starts ($\lambda = 0.1$)	33
3.7	The Upper-Sided EWMA Zero-State ARL for Model 4, 5 and 6 with	
	Different Head Starts ($\lambda = 0.1$)	34
3.8	The Upper-Sided EWMA Zero-State ARL for Model 1, 2 and 3 with	
	Different Head Starts ($\lambda = 0.05$)	35

3.9	The Upper-Sided EWMA Zero-State ARL for Model 4, 5 and 6 with	
	Different Head Starts ($\lambda=0.05$)	36
4.1	Zero-State ARL Comparisons Between the Upper-Sided EWMA and	
	the WCUSUM for Models 1, 2 and 3 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	45
4.2	Zero-State ARL Comparisons Between the Upper-Sided EWMA and	
	the WCUSUM for Models 4, 5 and 6 \ldots	46
4.3	Steady-State ARL Comparisons Between the Upper-Sided EWMA and	
	the WCUSUM for Six Models	48
4.4	Simulated Zero-State ARL of the WCUSUM $(\lambda = 0.2)$	52
5.1	Polymer Molecular Weights from Montgomery (2005, p. 482)	54
5.2	Conditional Least Squares Estimation	55
5.3	Zero-State Simulated Data and the Responses of Upper-Sided EWMA,	
	WCUSUM and CUSUM Statistics ($\mu = 1, \phi = 0.57688, \theta = -0.19$,	
	$\sigma_y = 1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	61
5.4	Steady-State Simulated Data and the Responses of Upper-Sided EWMA,	
	WCUSUM and CUSUM Statistics ($\mu = 1, \phi = 0.57688, \theta = -0.19$,	
	$\sigma_y = 1$)	63

List of Figures

1.1	ARIMA Forecast Recovery Patterns	8
3.1	The Effect of λ for the Upper-Sided EWMA ARL	28
3.2	Zero-State ARL for the Upper-Sided EWMA ($\lambda=0.2)$ with FIR	37
3.3	Zero-State ARL for the Upper-Sided EWMA ($\lambda=0.1)$ with FIR	38
3.4	Zero-State ARL for the Upper-Sided EWMA ($\lambda=0.05)$ with FIR $$.	39
4.1 4.2	Zero-State ARL Comparisons Between the Upper-Sided EWMA and the WCUSUM for Six Models	44
4.2	the WCUSUM for Six Models	49
5.1	Molecular Weight Data and Autocorrelation Plots	56
5.2	Residual Plots from $ARIMA(1,0,1)$ Fit \ldots	58
5.3	Shewhart Chart Plot of the Residuals	59
5.4	Zero-State Control Charts with Shift $\mu = 1, \sigma_y = 1$	62
5.5	Steady-State $\tau = 41$ Control Charts with Shift $\mu = 1, \sigma_y = 1 \dots$	64

Chapter 1

Fault Signatures from Autocorrelated Processes

1.1 Process Monitoring

One of the most important reasons for monitoring processes, whether manufacturing or service processes, is that all of them are subject to variability. In general, there are two kinds of variability: **common cause variability** and **special cause variability** (Hawkins and Olwell 1998). Common cause variability usually comes from a process itself, such as the machine wear off, while special cause variability always comes from outside environment factors such as input material change. The statistics process control (SPC) methodologies focus on detecting special cause variability because reducing common cause always requires more fundamental process changes.

Usually, special cause variability has two categories: **transient special cause** and **persistent special cause**. Transient special cause affects a process or a system for a short while without an apparent pattern. For instance, a thunderstorm affects electrical power for a while. This kind of variability is unpredictable and rarely happens. Thus, it is very difficult to remove. Persistent special causes affect processes or systems in a persistent way and follow a pattern. For instance, it may be due to new operators or new methods involved in a process. This kind of variability happens more frequently and greatly affects process quality. SPC methodologies focus on detecting this variability and achieve tangible successes in continuous quality improvement.

Many different situations present persistent special cause variability. In general, a fixed persistent drift in the process mean is a simple situation and most of SPC methodologies can efficiently detect this kind of variability. The more complicated situation is a dynamic pattern of drift, in which the drift of a process varies over time. The objective of this thesis is to study some SPC methodologies for dynamic patterns of drift.

1.2 Autocorrelated Processes and the Forecast Recovery Phenomenon

Autocorrelated processes present typically dynamic patterns of drift. One of the popular methods for monitoring autocorrelated data is the residual chart or the special cause chart (SCC) (Alwan and Roberts 1988). It works in two steps. At first, a timeseries model is fitted to remove the autocorrelation. Then a conventional control chart is applied to the model residuals. Although by this process independent residuals are obtained, however, the mean of the residuals may change over time when a step shift occurs in the mean of the original series (Shu, Jiang and Tsui, 2008). This phenomenon is referred to in the literature as forecast recovery.

In some time series, the forecast recovery phenomenon always occurs. When the step mean shift of data stream happens, the mean shift of its residuals typically tends to reduce over time or disappear shortly. In other words, the effect of a mean shift on the monitoring data stream is short-lived, which suggests a limited window of opportunity for catching the drift. A variety of specific situations will be discussed in the next two sections. The approach followed will be based on deriving the mean of the residuals for different time series models for the original data.

1.3 Autoregressive Integrated Moving Average Models

Autoregressive integrated moving average (ARIMA) models typically exhibit forecast recovery. An ARIMA model with $p \ AR$ components, $q \ MA$ components and ddifferences ARIMA(p, d, q) for a time series $x_1, x_2, ...$ is defined as

$$x_t - \mu_0 = \frac{\theta(B)}{(1-B)^d \Phi(B)} a_t$$
(1.1)

where B is the back-shift operator, $Bx_t = x_{t-1}$, $\phi(B)$ and $\theta(B)$ are polynomials of degrees p and q, respectively, and the $a'_t s$ are independent and identically distributed (*IID*) white noise with variance σ_a^2 . Here μ_0 represents the mean of the process when it is operating on target. Without loss of generality, we will take $\sigma_a^2 = 1$. Following the standard SPC approach, all the parameters are estimated from a historical (hopefully large) database, usually called Phase I data, gathered when the process was operating on-target. This can be done employing standard time series methodology (Chatifield 2004, Shumway and Stoffer 2006). This thesis will not discuss how to estimate the ARIMA model parameters, and assumes that all the on-target parameters (e.g. μ_0 , σ_a^2 , time series coefficients) are known. When the process is invertible, the residuals can be written as

$$y_t = \frac{(1-B)^d \phi(B)}{\theta(B)} (x_t - \mu_0)$$
(1.2)

If the process is in-control, the mean of the process is μ_0 indicating that no drift occurs, i.e, $\mu_0 = E(x_t)$, $t = 1, 2, \cdots$. Suppose the process mean shifts from μ_0 to $\mu_0 + \mu$ at time τ , where τ is unknown. Then $f_t = E(x_t) - \mu_0$ will be given by

$$f_t = \begin{cases} 0 & t = 1, 2, \cdots, \tau - 1; \\ \mu & t = \tau, \tau + 1, \cdots \end{cases}$$

where $\mu \neq 0$. In this situation, the residuals can be presented as (see appendix A)

$$y_t = a_t + \xi_t$$

where

$$\xi_t = \frac{(1-B)^d \phi(B)}{\theta(B)} f_t \tag{1.3}$$

is the mean pattern that takes place in the residuals.

The mean shift f_t of x_t causes a mean pattern ξ_t in the residual y_t . Consider the situation where the time series x_t follows ARIMA(p, d, q) model with p = 1, d = 0and q = 1. In this case, taking $\phi = \phi_1$ and $\theta = \theta_1$, ξ_t can be shown to be (see appendix A)

$$\xi_t = E(y_t) = \begin{cases} 0 & t = 1, 2, \cdots, \tau - 1; \\ \frac{1 - \phi + (\theta - \phi)\theta^{t - \tau}}{1 - \theta} \mu & t = \tau, \tau + 1, \cdots \end{cases}$$
(1.4)

Although the shift f_t on the mean of x_t is constant, its effect on the mean of the residuals y_t is not, it has a dynamic pattern. The sequence ξ_t varies over time and depends on the shift that occurs at time τ . The **fault signature**, obtained by dividing the mean of the residual ξ_t by the shift's magnitude μ , is

$$FS_t = \frac{\xi_t}{\mu}.\tag{1.5}$$

For our particular case, the fault signature is

$$FS_{t} = \begin{cases} 0 & t = 1, 2, \cdots, \tau - 1; \\ \frac{1 - \phi + (\theta - \phi)\theta^{t - \tau}}{1 - \theta} & t = \tau, \tau + 1, \cdots \end{cases}$$

When time goes to infinity

$$FS_{\infty} = \lim_{t \to \infty} FS_t = \lim_{t \to \infty} \frac{1 - \phi + (\theta - \phi)\theta^{t - \tau}}{1 - \theta} = \frac{1 - \phi}{1 - \theta}.$$

The value of FS_{∞} measures the magnitude of the tendency from the change in mean μ in the patterned mean of the residuals. If FS_{∞} is close to 1, the tendency is small. Otherwise, the mean of the residuals will have a decreasing or increasing tendency. When $FS_t < 1$, the decreasing tendency indicates some degree of forecast recovery.

1.4 Some Typical Autoregressive Integrated Moving Average Models

For the purpose of comparing different control chart methods, six ARIMA(1,0,1) models have been selected for consideration, their (ϕ, θ) values are presented in Table 1.1. The same models are used by Shu, Jiang and Tsui (2008) to illustrate their methods. These models cover varying residual mean patterns ξ_t as seen in Figure 1.1

where the fault signatures for models 1-6 are plotted when $\tau = 1$ (i.e. the mean shift occurs from the very beginning) and when $\tau = 20$. The case $\tau = 1$ is referred to as **zero-state** while the case $\tau > 1$ is called a **steady-state**.

Model	ϕ	θ	FS_{∞}
Model 1	1.0	0.9	0
Model 2	0.9	0	0.1
Model 3	0.9	0.5	0.2
Model 4	0.5	-0.5	1/3
Model 5	0.5	0.5	1.0
Model 6	0.2	0.5	1.6

Table 1.1: Illustrative ARIMA Models

Model 1 with $\phi = 1$ and $\theta = 0.9$ yields a decreasing residual mean pattern that reduces practically to 0 after 50 time periods. This is a typical case found in autocorrelated process data. For Model 2 with $\phi = 0.9$ and $\theta = 0$, the residual mean shows a constant pattern after the change occurs at τ , staying at 10% of the mean shift in the original data. As with Model 1, Model 3 with $\phi = 0.9$ and $\theta = 0.5$, the residual mean also shows a decreasing pattern but the fall is much faster and leaves off at 20% of the mean shift in the original data. Typical of cases where $\theta < 0$, Model 4 with $\phi = 0.5$ and $\theta = -0.5$ produces an alternating mean residual pattern which settles down to 1/3 of the mean shift in the original time series after about 10 time periods following the change. Model 5 with $\phi = 0.5$ and $\theta = 0.5$ does not exhibit any forecast recovery, the residual mean is constant and equal to the original mean shift in the time series. For Model 6 with $\phi = 0.2$ and $\theta = 0.5$, the residual mean pattern shows the opposite of forecast recovery since, rather than decreasing, the residual mean increases quickly from the original shift to 1.6 times that shift. It takes only about 10 time periods to reach its stable value.

For Models 5 and 6, most control chart methods will work well in detecting the shift in the original time series data since the mean residual pattern stays on same or enlarged level of the original mean shift. However, it is much more challenging to detect the shift for Models 1-4 due to the magnitude of the forecast recovery and limited window to catch the mean pattern in the residuals.

Figure 1.1: ARIMA Forecast Recovery Patterns

Zero-State (τ =1)

1.5 Thesis Objectives

The focus of this thesis is on control chart methods that are effective to detect mean shifts in time series data when the residuals exhibit forecast recovery. The specific objectives are:

- (a) To develop in detail the upper-sided exponentially weighted moving average method for mean pattern detection in residuals from time series.
- (b) To calibrate the method by developing the necessary numerics to calculate average run lengths.
- (c) To compare the proposed method to the weighted CUSUM developed by Shu, Jiang and Tsui (2008).
- (d) To illustrate the methods with a real data set.

The thesis is organized as follows. Chapter 1 presents a discussion of the main concepts and formulas useful to construct control charts for autocorrelated data based on residuals. These include forecast recovery, fault signature and their expression for ARIMA(1,0,1) time series models. A detailed discussion of several control chart methods for autocorrelated data is presented in Chapter 2. These include the conventional CUSUM and the weighted CUSUM. The concepts of zero-state, steady-state and fast initial response are also presented. The main contribution in the thesis is presented in Chapter 3 where the upper-sided EWMA control chart is discussed for autocorrelated process data. The analysis includes a detailed discussion of average run length calculation using a non-homogeneous Markov chain, enhancements and

performance analysis. Chapter 4 compares the performance between the proposed upper-sided EWMA with FIR feature control scheme and WCUSUM control scheme, including zero-state and steady-state situations. In addition, an improved Monte Carlo simulation approach for the WCUSUM control scheme is another contribution in this thesis. An illustrative example using industrial data from Montgomery (2005) on polymer molecular weights is presented in Chapter 5. The main conclusions and recommendations of the work are presented in Chapter 6. Appendices with several derivational details are included.

Chapter 2

Control Charts for Monitoring Autocorrelated Data

Two challenging problems often encountered in quality control are the detection of changes in the mean when: a) a small persistent shift, which is less than half standard deviation, occurs, and b) when a "forecast recovery" with a dynamic mean shift pattern takes place. The second pattern in the mean is particularly difficult to detect. The main difficulty here stems from the fact that the standard methods do not react very quickly to this type of mean change, in fact, in many cases they do not react at all. However, the challenges for the two situations are different, and strategies should be different too. The difficulty with a persistent small mean shift is that the random variability is larger than the mean shift and the mean shift will be hidden in random variability. In essence, the old engineering problem of detecting a weak signal buried in noise. As for forecast recovery, the problem is the "limited window" for catching mean shift. If the opportunity is missed, it will be impossible to detect the mean shift later on. Several methodologies can be applied to detect mean shifts. Each methodology has its pros and cons for any particular case.

2.1 Cumulative Sum (CUSUM)

Walter Shewhart's Xbar and range (R) charts have been widely used for monitoring processes since 1931. However, the Xbar and R charts are not effective in detecting small to moderate shifts even if these shifts persist, mainly because these charts have no memory. The **cumulative sum** (CUSUM) chart was proposed to detect persistent process mean shifts. The main idea of the CUSUM is to use the cumulative sum of the sequence of residuals. If the CUSUM statistic falls within the decision interval, the process is considered in-control. If not, one takes the view that a process mean shift has occurred. The number of observations from the starting point up to the point at which the decision interval is crossed is called the **run length**. The run length is a random variable and its mean is called the **average run length** (*ARL*). For a comprehensive discussion about these and many other issues, see Montgomery (2005).

The upper-sided CUSUM statistic, denoted by W_t^U , is defined as

$$W_t^U = \max\{0, W_{t-1}^U + (y_t - k)\}$$
(2.1)

where y_t is the residual value at sampling period t and k is the **reference value** of the chart. When $W_t^U > h$, it signals an upward out-of-control where h is the selected upper control limit for the chart. The lower-sided CUSUM statistic, denoted by W_t^L , is similarly defined as

$$W_t^L = \min\{0, W_{t-1}^L + (z_t + k)\}$$
(2.2)

where z_t is the residual value at sampling period t. When $W_t^L < -h$, it signals a downward out-of-control. Assuming $y_t = -z_t$, it will be easy to see

$$W_t^U = -W_t^L \tag{2.3}$$

 ARL_0 represents the average run length when the process is in control, i.e., no mean shift occurs for the process. Usually, the CUSUM is designed by picking first an acceptably large ARL_0 and then determining h and k values that achieve such ARL_0 . In this thesis we work with $ARL_0 = 400$. The run length distribution of the CUSUM can be calculated by the Markov chain approach as shown in Appendix B. The CUSUM method treats the whole sequence in the same way, so it does not make any adjustment for detecting dynamic patterns in the residual mean shifts (Hu 1996).

2.2 Weighted CUSUM

Shu, Jiang and Tsui (2008) introduced their weighted CUSUM (WCUSUM) chart. Through numerical ARL calculations, they show that the WCUSUM is better than the traditional CUSUM, the Adaptive CUSUM (ACUSUM) and the Generalized Likelihood Ratio Test (GLRT) in detecting forecast recovery patterned residual mean shifts. When forecast recovery occurs, the residual y_t mean shifts quickly reduce to a low level or diminish. It is thus natural to think that putting more weight on early deviations $y_t - k$ after a shift occurs will enhance the ability to detect detecting dynamic mean shifts. The main idea of Shu's WCUSUM is to use a data-driven estimator of the feared signal to update the weights. The upper-sided WCUSUM statistic is defined as

$$W_t = \max\{0, W_{t-1} + (y_t - k)|Q_t|\}$$
(2.4)

where

$$Q_t = (1 - \lambda)Q_{t-1} + \lambda y_t \tag{2.5}$$

and $0 < \lambda < 1$. Note that the statistic Q_t is an exponentially weighted moving average (EWMA) scheme, which is simple and efficient (Hunter, 1986). Q_t plays a very important role in detecting patterned mean shifts because its values vary according to the sequence of residuals, thus it displays some adaptability to the evolving pattern. Shu, Jiang and Tsui (2008) use $\lambda = 0.2$.

2.3 Adaptive CUSUM

When designing the traditional CUSUM chart, the optimal reference value k is set at the half size of process mean shift magnitude, i.e., the performance of CUSUM charts is most efficient when the process mean shift magnitude is 2k (Moustakides 1986). Due to varying mean shift or unknown mean shift for the process, it is difficult to choose an optimal reference value k. The adaptive CUSUM overcomes this defect by using an adaptive way to change k. The core idea of ACUSUM is to adjust the reference value k in an adaptive way based on the estimation of the current process mean level (Shu, Jiang and Wu, 2008; Shu, Jiang and Tsui, 2008).

To maintain a pre-defined in-control ARL for the upper-sided CUSUM chart, the threshold h, or the decision interval, varies with the reference value k. Shu and Jiang (2006) established the relationship between the threshold and the reference value as

$$h(k) \approx \frac{\ln[1 + 2k^2 A R L_0^U + 2.332k]}{2k} - 1.166$$

The mean shift is unknown and its estimate Q_t (Li and Wang 2010) can be used for the reference value. Note that the estimate Q_t can be close to zero when the process mean shift is estimated. Usually, the model focuses on detecting mean shifts larger than δ_{min}^+ , so $\delta_{min}^+/2$ can be used as the reference value whenever $Q_t < \delta_{min}^+$.

Thus, ACUSUM is defined as

$$W_t^U = \max\left\{0, W_{t-1}^U + \frac{y_t - \hat{\delta}_t^+/2}{h(\hat{\delta}_t^+/2)}\right\}$$
(2.6)

where

$$\hat{\delta}_t^+ = \max\{\delta_{\min}^+, Q_t\}.$$

2.4 Zero-State, Steady-State and Fast Initial Response (FIR) Feature

There are different ARLs for some control charts, depending on when the process experiences an out of control excursion. The **zero-state** operation refers to situations where the process mean shift occurs from the beginning, i.e. $\tau = 1$. The **steadystate** operation refers to situations where the process mean shift occurs at some time later, i.e. $\tau > 1$. Correspondingly, the zero-state *ARL* refers to the average run length calculated when the process is in the zero-state, while the steady-state *ARL* is the one obtained when the process is in one of the steady-states. Typically in the *ARL* calculations one takes $W_0 = 0$. The **Fast initial response** (FIR) or **head start** (HS) feature refers to situations where the initial value of the control statistic is a percentage of the upper control limit h such as 50%. The objective here is to accelerate the control statistic towards the control limit when a shift to out-of-control takes place in process operation (Knoth, 2005).

Chapter 3

The Exponentially Weighted Moving Average Schemes and Enhancements

3.1 The Two-Sided EWMA

Roberts (1959) introduced the exponentially weighted moving average (EWMA) control scheme and noted its good performance in detecting a small mean shift in a process. In view of its weighting structure, the EWMA chart has alternatively been referred to as a **geometric moving average** chart. The chart has been applied largely to independent data with fixed shifts in the mean and has been studied extensively, for instance Robinson and Ho (1978), Hunter (1986), Waldmann (1986), Crowder (1987), Lucas and Saccucci (1990), and Abbasi (2010). A useful enhancement to the EWMA control scheme is the **fast initial response** (FIR) feature, which makes the scheme more sensitive to the forecast recovery patterned mean shifts discussed in this thesis.

Lucas and Saccucci (1990) furthered the study of the standard two-sided EWMA scheme and proposed a homogeneous Markov chain approach to calculate the chart's average run length. Their extensive numerical evidence reveals that the EWMA control scheme has average run length properties that are similar to those of the cumulative sum (CUSUM) control scheme. As we will see later, the homogeneous Markov chain method of Lucas and Saccucci (1990) is a special case of the more general non-homogeneous Markov chain approach developed in this thesis for the dynamic mean case.

The chart statistic is given by

$$W_t = (1 - \lambda)W_{t-1} + \lambda y_t, \quad t = 1, 2, 3, \dots$$
(3.1)

where λ is the **smoothing parameter** ($0 < \lambda \leq 1$), W_0 is the initial value of the statistic (typically set at 0) and y_t is the observed data at the *t*-th sampling period, in our case the observed residual. Usually the residuals are standardized so that when the process operates on target they have a mean of 0 and a variance of 1. As a result, if the residuals are normally distributed so will be W_t with mean 0 when the process operates on-target, thus the natural control limits are $\pm h$ where h > 0. The role of λ will be examined in more detail later when the numerical work is presented

Different approaches are available to design and calibrate a control chart. In this thesis we follow the method most widely used which is based on control limits and average run lengths. We do this in combination with the FIR feature to enhance performance.

3.2 The Upper-Sided EWMA

In practice, one usually looks for an upward mean shift or a downward mean shift. This leads to working with the one-sided EWMA, one chart for shifts above the target process mean (upper-sided) and one for shifts to values below the target mean (lower sided). This tuning of the method makes the chart more efficient.

Of particular interest in this thesis is the upper-sided EWMA. The relevant statistic is defined as

$$W_t^+ = \max\{0, (1-\lambda)W_{t-1}^+ + \lambda y_t\}, \quad t = 1, 2, 3, \dots$$
(3.2)

where λ and y_t are as for the two-sided EWMA, and W_0^+ is typically set at 0. The chart is intended for detection of shifts in the process mean to values larger than the target mean. By taking the maximum in eqn. (3.2), we are effectively adopting a resetting mechanism that prevents the statistic from venturing into negative values which are of no relevance when one aims to detect increases in the mean. Clearly $W_t^+ \geq 0$ for all t and large values of the statistic are indicative of a possible upward jump in the mean. Thus we need only an upper control limit h > 0. When $W_t^+ > h$, an out-of-control signal is issued associated with an upward trend in the process mean.

3.3 Markov Chain Approach for Average Run Length (ARL) Calculation

As noted earlier, the **average run length** (ARL) is the key measure used in the quality control literature to assess the performance of a control chart and to compare

charts. It is defined as

$$ARL = E(RL),$$

where RL is the **run length**, that is, the number of process runs until the chart jumps out of the control limit(s) for the first time across sampling periods. In other words, the ARL is the number of runs one would expect to observe on the average until the chart signals for the first time an out-of-control excursion in process operation.

Two types of ARLs are of interest. One is the **in-control** ARL, denoted by ARL_0 , which is the expected number of runs until the chart signals when the process operates on-target. In other words, the average number of runs until a false alarm occurs. This is an undesirable call and thus should not happen very often. In practice, the control limits are selected in such a way that ARL_0 is large, $ARL_0 = 400$ or 500 in this thesis. The other type of ARL, denoted by ARL_1 is the average number of runs until the chart signals when indeed the process has moved to an out-of-control state. Naturally efficient charts are those for which ARL_1 values are small. ARL_1 is referred to as the **out-of-control** ARL.

As discussed earlier, the aim is to use the residuals $y_1, y_2, y_3, ...$ from a time series model to build control charts for the mean μ of the original time series measurements $x_1, x_2, x_3, ...$ as proposed and illustrated by Shu, Jiang and Tsui (2008). However, unlike the standard setting for control charts where a step change in the mean of the measurements used in the monitoring occurs, a dynamic pattern in the mean ξ_t of y_t is shown as described by the forecast recovery eqn. (1.3). Following Shu, Jiang and Tsui (2008), we will assume that the residuals $y_1, y_2, y_3, ...$ are independent and normally distributed with a common variance, $y_t \sim N(\xi_t, \sigma^2)$. When the process operates in-control, $\xi_t = 0$ for all t. Appendix B contains a detailed presentation on run length distribution and average run length calculations. Non-homogeneous and homogeneous Markov chains are involved. We focus on the equations for average run length calculation, a summary of these equations is presented here.

Two-Sided EWMA. From Appendix B, the average run length is obtained from a non-homogeneous Markov chain as

$$ARL_1 = \sum_{n=1}^{\infty} n \boldsymbol{p}_0' \left(\prod_{l=1}^{n-1} \boldsymbol{P}_l \right) (\boldsymbol{I} - \boldsymbol{P}_n) \boldsymbol{1}, \qquad (3.3)$$

where P_t is the $(2m + 1) \times (2m + 1)$ transition probability matrix from sampling period t - 1 to t, given by

$$P_{ij}^{(t)} = \Phi\left(\frac{1}{\sigma}\left\{\frac{L}{\lambda}[2(j-(1-\lambda)i)+1]-h-L-\xi_t\right\}\right) -\Phi\left(\frac{1}{\sigma}\left\{\frac{L}{\lambda}[2(j-(1-\lambda)i)-1]-h-L-\xi_t\right\}\right),$$
(3.4)

where *m* is a positive integer (see eqn. (B.3)), L = n/(2m + 1) and $\Phi(\cdot)$ is the standard normal distribution function. In eqn. (3.3), p_0 is the $(2m + 1) \times 1$ chain's initial probability vector usually taken to have 1 at entry m + 1 and 0s at every other entry, and **1** is the $(2m + 1) \times 1$ vector of 1s. Strictly speaking the above are approximations with the right-hand-side of (3.3) converging to the exact *ARL* as $m \to \infty$. In the numerical cases discussed here, using m = 50 for a total of about 100 states in the chain gives satisfactory results. When the process is on target, the mean in the original *x* data remains constant at $\mu = \mu_0$, as a result $\xi_t = 0$ for all t. In this case the Markov chain is homogeneous and the *ARL* can be worked out in closed form resulting in

$$ARL_0 = \mathbf{p}_0'(I - \mathbf{P}_0)^{-1}\mathbf{1}, \qquad (3.5)$$

where \mathbf{P}_0 is the $(2m+1) \times (2m+1)$ common transition probability matrix obtained from (3.4) by taking $\xi_t = 0$.

Upper-Sided EWMA. As discussed in Appendix B, ARL equations (3.3) and (3.5) also apply to this case but with P_t replaced with the $m \times m$ transition probability matrix with entries

$$P_{ij}^{(t)} = \begin{cases} \Phi\left(\frac{1}{\sigma}\left\{\frac{L}{\lambda}[2(1-(1-\lambda)(i-1))-1]-\xi_t\right\}\right), \quad j=1; \\ \Phi\left(\frac{1}{\sigma}\left\{\frac{L}{\lambda}[2(j-(1-\lambda)(i-1)-1]-\xi_t\right\}\right) \\ -\Phi\left(\frac{1}{\sigma}\left\{\frac{L}{\lambda}[2(j-(1-\lambda)(i-1)-3]-\xi_t\right\}\right), \quad j\geq 2. \end{cases}$$
(3.6)

Here the chain's initial probability vector \mathbf{p}_0 is the $m \times 1$ vector usually taken to have 1 in the first entry and 0s at every other entry, and **1** is the $m \times 1$ vector of 1s. In this case, m = 100 gives satisfactory results for all the numerical cases considered.

3.4 Numerical Performance

We focus now on the numerical ARL performance of the two-sided and the uppersided EWMA charts in detecting dynamic changes in the mean. The particular scenarios considered are the 6 ARIMA(1,0,1) time series models detailed in Table 1.1. The ARL results are presented in Tables 3.1-3.3. The specifics of the numerical work were as follows.

- The in-control mean for the original x values was set at $\mu_0 = 0$ and the variance at $\sigma^2 = 1$.
- Upward step changes in μ from $\mu_0 = 0$ to μ_1 were considered ranging from $\mu_1 = 0.1$ to $\mu_1 = 4.0$, the change taking place at $\tau = 1$ (the zero-state situation).

- The above step changes in μ induced dynamic changes in the mean ξ_t of the y residuals, calculated from the forecast recovery eqn. (1.4) and graphed in the upper plot of Figure 1.1.
- The in-control mean was set at $ARL_0 = 400$ and was calculated using eqn. (3.5). The control limit *h* was obtained iteratively until ARL_0 was close enough to its set value of 400.
- The out-of-control average run length ARL_1 was calculated using eqn. (3.3). The number of terms kept in the series was 5000, this number of terms gave stable results.
- Three values of the smoothing parameter were used, namely λ = 0.2, 0.1 and 0.05, one table for each value of λ. The default value typically used is λ = 0.1.
 An examination of Tables (3.1)-(3.3) reveals the following trends.
- (1) Perhaps the most notable feature is the superiority of the upper-sided EWMA.
- (2) For small jumps in μ , small λ produces slightly better results, i.e. smaller ARL_1 values, while the opposite occurs for large jumps in μ .
- (3) Comparing Models 1 and 3, we can see that for both EWMAs, the lower the fast recovery falls, the larger the ARL_1 , i.e. the longer it takes to signal the change.
- (4) The best performance for both methods is shown in Model 6 where, one can see from the upper plot in Figure 1.1, the mean of the residuals exhibits an increasing pattern, somewhat the opposite of fast recovery.

lel 6	2	5	Two-sided	0.9644	399.8435	218.6289	87.0789	41.41324	23.77547	15.76177	5.681615	3.691737	2.848641	2.372434	2.087796	1.793542
Moc	0	0	One-sided	0.930427	399.9981	149.9471	65.87953	34.22094	20.71128	14.17267	5.411293	3.570137	2.771038	2.317208	2.050167	1.744554
lel 5	ъ С	5	Two-sided	0.9644	399.8435	303.4709	171.9926	96.35277	57.83423	37.51936	9.98351	5.298266	3.63067	2.804865	2.326893	1.822161
Mod	0	0	One-sided	0.930427	399.9981	212.7215	119.8768	71.92148	46.00503	31.30606	9.224577	5.036461	3.490132	2.712429	2.260535	1.766223
le] 4	ы С).5	Two-sided	0.9644	399.8435	386.3394	350.619	303.2057	254.0839	209.3367	79.59979	36.32064	19.85016	12.3664	8.392226	4.319708
Mod	0)–	One-sided	0.930427	399.9981	322.068	260.8454	212.5538	174.2992	143.8591	60.92744	30.41559	17.49545	11.19824	7.692241	3.943643
lel 3	6	ъ.	Two-sided	0.9644	399.8435	394.728	380.1598	357.9723	330.5968	300.5356	164.0325	84.05226	42.51577	20.94888	10.06807	2.818117
Moc	0	0	One-sided	0.930427	399.9981	350.5881	307.7914	270.6455	238.3401	210.1853	113.8846	62.12573	33.08922	16.85081	8.313846	2.52289
lel 2	6	(Two-sided	0.9644	399.8435	398.5267	394.7084	388.5238	380.141	369.8918	300.6526	226.0442	160.9319	115.2005	80.4594	35.00346
Mod	0	0	One-sided	0.930427	399.9981	374.4536	350.704	328.601	308.013	288.8332	210.5637	154.5738	113.5214	82.98712	59.33347	26.0654
lel 1		6	Two-sided	0.9644	399.8435	398.768	395.5667	390.0765	381.9949	371.1323	268.1413	120.7058	22.28583	4.598253	2.560871	1.853713
Mod		0	One-sided	0.930427	399.9981	394.2188	386.9327	377.7867	366.3611	352.4097	239.727	99.4664	17.30417	3.97578	2.453088	1.791267
odel	φ	θ	ype	h	0	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	4
We			Í								η					

= 0.2)
=
ed EWMA (
o-Side
e Two
nd the
IA ar
EWN
Sided
pper-
the U
Between t
parisons]
Com
ARL
ero-State
3.1: Z
Table \hat{z}
lel 6

Moc
lel 5
Moc
le] 4
Mod
lel 3
Mod
lel 2
Mod
lel 1
Moc
ləbc
Mc

\frown
0.
~
\mathbb{C}
_
ΔI
\geq
\geq
Ē
Ч
<u>ē</u>
10
ΛO
2
hé
÷t
Jd
aı
~
Λ_{I}
\leq
\geq
Γ
5
de
5
Ľ.
e.
bt
Ď
Θ
μ
-
G
ve
ţ,
m
6
q
s_{0}
ŗ
ра
nl
0
\circ
Ļ
Ч
A
ē
at
\mathbf{St}
Ĩ
ЭГ(
Ž
2
ŝ
le
qe
Ĥ

lel 6	2	5	Two-sided	0.4050293	400	141.3385	53.00858	29.40462	19.97323	15.12872	7.153123	4.935905	3.887062	3.268548	2.884595	2.252519
Moc	0	0	One-sided	0.3937305	399.9288	108.1894	46.00022	26.73384	18.56032	14.24554	6.924856	4.819495	3.807826	3.209715	2.83244	2.207273
lel 5	5	5	Two-sided	0.4050293	400	230.7947	104.7252	57.70223	37.43661	27.04915	10.90451	6.847904	5.043222	4.029928	3.386517	2.602322
Mod	0.	0.	One-sided	0.3937305	399.9288	166.6738	83.8276	49.80223	33.62803	24.85871	10.45573	6.64279	4.912898	3.93344	3.310067	2.537577
lel 4	5).5	Two-sided	0.4050293	400	369.6499	300.9492	230.2555	173.886	132.8932	48.03521	25.77551	16.88029	12.2974	9.545205	6.422924
Mod	0)–	One-sided	0.3937305	399.9288	292.4858	218.3747	166.5072	129.6447	103.0238	42.57685	24.01777	16.06048	11.80882	9.20281	6.205084
lel 3	6.	5 2	Two-sided	0.4050293	400	388.4187	356.8167	314.1447	268.9891	226.9181	97.65972	49.15511	28.11828	17.35779	11.21608	5.239491
Moc	0	0	One-sided	0.3937305	399.9288	330.346	274.7572	230.1056	194.0348	164.7222	79.67229	43.61337	25.90436	16.19567	10.49245	4.920408
lel 2	6	(Two-sided	0.4050293	400	397.1957	388.3797	374.5407	356.7231	336.1592	226.6216	146.2143	97.07564	67.2635	48.40951	27.20826
Mod	0		One-sided	0.3937305	399.9288	363.1981	330.4162	301.1113	274.8775	251.3612	164.8451	112.4883	79.48576	57.82297	43.04917	25.03684
lel 1		6	Two-sided	0.4050293	400	398.9084	394.9005	388.063	378.1162	364.8885	247.1563	99.00649	18.14661	5.622156	3.896724	2.787952
Mod		0	One-sided	0.3937305	399.9288	393.7954	385.9774	376.0724	363.6287	348.3569	226.7233	86.33647	15.66478	5.284412	3.777445	2.712547
odel	φ	θ	ype	h	0	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	4
M		θ	Ε Έ								μ					

.05)
0 =
$\boldsymbol{\varsigma}$
EWMA
o-Sided
, Tw
and the
EWMA 8
r-Sided I
Uppe
the
3etween
arisons I
Comp
ARL
Zero-State
Table 3.3:

3.5 Enhancements

3.5.1 The Effect of the Smoothing Parameter λ

To facilitate understanding the effect of λ , consider the two-sided EWMA statistic from eqn. (3.1). Expanding the right-hand-side recursively leads to

$$W_t = (1 - \lambda)W_{t-1} + \lambda y_t = \lambda \sum_{i=0}^{t-1} (1 - \lambda)^i y_{t-i} + (1 - \lambda)^t W_0, \qquad (3.7)$$

where $y_t \sim N(\xi_t, \sigma^2)$, $W_0 = 0$ and $0 < \lambda \le 1$. Hence,

$$E(W_t) = \lambda \sum_{i=0}^{t-1} (1-\lambda)^i \xi_{t-i}, \quad Var(W_t) = \lambda^2 \left(\sum_{i=0}^{t-1} (1-\lambda)^{2i} \right) \sigma^2 = \frac{1-(1-\lambda)^{2t}}{1-(1-\lambda)^2} \lambda^2 \sigma^2,$$

from which we can see that $\lim_{t\to\infty} Var(W_t) = \lambda \sigma^2/(2-\lambda)$ for $0 < \lambda \leq 1$.

Eqn. (3.7) shows clearly that W_t is a weighted average of the current and previous residuals $y_t, y_{t-1}, ..., y_1$. Moreover, the weights are determined entirely by the smoothing parameter λ . It is clear that the smaller the value of λ , the smaller the weight of the current residual thus the greater the impact of the previous residuals. In other words, small λ translates into more weight for the "history" W_{t-1} . One would expect therefore that a persistent small shift in μ will be more effectively detected using a small λ .

With this in mind, consider the performance of the upper-sided EWMA chart. Figure 3.1 contains graphs of the ARL for three values of λ , namely $\lambda = 0.2$, 0.1 and 0.05, and for each of the 6 ARIMA(1,0,1) time series models from Table 1.1. Other than Model 2, for all models the graphs show that a chart with small λ detects small mean shifts faster, while large mean shifts are more effectively detected by charts with large λ . The pattern for Model 2 shows somewhat similar performance at small and

large mean shifts but a better performance for charts with small λ for mean jumps of moderate size.

3.5.2 The Effect of the Fast Initial Response

Lucas and Saccucci (1990) put forward the concept of **fast initial response** (FIR) for the two-sided EWMA in the context of step shifts in process mean. They showed numerically that substantive increases in chart efficiency can result when the mean shift occurs early on in process operation. We expect that even a more dramatic impact will be felt for the fast recovery mean patterns considered here.

The basic idea of the FIR feature is that, rather than starting the chart at $W_0 = 0$. it should start at some other value. This will give an initial boost to the chart. We will discuss the FIR feature for the upper-sided EWMA, the chart that tends to perform better compared to the two-sided EWMA. With h as the upper control limit, i.e. [0, h] as the decision interval, the chart will have initial value

$$W_0^+ = ph,$$

where $0 \le p \le 1$. By working with the respective percentage, we say that the chart is given a head start of 100p%.

The method was applied to the upper-sided EWMA for the 6 ARIMA(1,0,1) models and λ values that have been discussed so far. The numerical results are tabulated in Tables 3.4-3.9. The same results are displayed graphically in Figures 3.2-3.4. Each table contains the results for 3 time series models, one value of λ and 4 head start values, namely 0% (the case of $W_0^+ = 0$ that has been considered so far), 25%, 50% and 75%. The main patterns noted from the tables and figures are as

follow.

- For all 6 models, substantive improvements in ARL are noted, particularly for large values of the mean shift.
- (2) In general, the larger the head start, the better the chart performs.
- (3) Note that the control limit h is adjusted for every level of head start. In general, the greater the head start, the larger the value of h. This should have been expected since starting from a larger value W_0^+ will lead to reach quicker the control limit h on average even if no change in the process mean occurs, and thus the value of h has to be increased to keep $ARL_0 = 400$.
- (4) The effect of the degree of smoothing λ is somewhat less apparent, perhaps easier to appreciate or small mean shifts: the greater the head start and the smaller the value of λ, the better the chart performance.

			75%	0.9403742	400	343.11	293.7872	250.9916	213.8656	181.6803	75.80774	28.00715	9.253565	3.136022	1.488639	1.023507
del 3	6.	.5	50%	0.9333317	400	347.9165	302.7415	263.3943	229.0603	199.0506	96.3219	43.42993	17.79029	6.82151	2.81709	1.169571
Mo	0	0	25%	0.9312275	400	349.9386	306.4163	268.5748	235.6023	206.8094	107.8714	54.87209	26.33769	11.84276	5.26008	1.650901
			0	0.930427	399.9981	350.5881	307.7914	270.6455	238.3401	210.1853	113.8846	62.12573	33.08922	16.85081	8.313846	2.52289
			75%	0.9403742	400	369.0456	340.0086	312.7241	287.0604	262.9347	162.6172	91.744	45.82721	20.09532	7.839003	1.495663
del 2	6.	0	50%	0.9333317	400	372.7682	347.4403	323.7537	301.5681	280.7735	194.0581	129.2838	80.61451	45.89966	23.25193	4.38527
Mo	Mode 0.9		25%	0.9312275	400	400 374.1308 374.1308 327.4202 327.4202 306.4032 306.4032 286.7923 286.7923 206.2651 1 147.6816 103.6219	70.01883	44.22652	13.15937							
			0	0.930427	399.9981	374.4536	350.704	328.601	308.013	288.8332	210.5637	154.5738	113.5214	82.98712	59.33347	26.0654
			75%	0.9403742	400	383.9675	364.7055	342.0998	316.1704	287.453	129.3926	29.90202	3.479821	1.398912	1.146115	1.016936
lel 1	1	6.	50%	0.9333317	400	390.027	377.549	362.0831	343.3013	321.2278	174.8303	51.29571	6.721225	2.056314	1.493013	1.116116
Moo		0	25%	0.9312275	400	393.0503	384.0406	372.6713	358.505	341.343	212.1163	75.49807	11.39112	2.936295	1.990074	1.402575
			0	0.930427	399.9981	394.2188	386.9327	377.7867	366.3611	352.4097	239.727	99.4664	17.30417	3.97578	2.453088	1.791267
Iodel	φ	θ	HS	h	0	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	4
A	Mo d										ц					

Table 3.4: The Upper-Sided EWMA Zero-State ARL for Model 1, 2 and 3 with Different Head Starts ($\lambda = 0.2$)

			75%	0.9403742	400	141.5406	57.90257	27.79732	15.58754	9.985868	3.219155	2.013054	1.532465	1.278214	1.131147	1.01674
del 6	.2	.5	50%	0.9333317	400	146.4216	62.28868	31.13453	18.11465	11.96153	4.136039	2.636318	2.016302	1.667901	1.425975	1.114184
Mo	0	0	25%	0.9312275	400	148.8457	64.65636	33.10294	19.72343	13.2979	4.851828	3.14661	2.42949	2.040281	1.795957	1.390953
			0	0.930427	399.9981	149.9471	65.87953	34.22094	20.71128	14.17267	5.411293	3.570137	2.771038	2.317208	2.050167	1.744554
			75%	0.9403742	400	204.0763	109.3802	61.90826	37.12477	23.6089	5.234984	2.509976	1.676099	1.315492	1.138218	1.016806
ام ت	ы П	ਹ	50%	0.9333317	400	209.2571	115.4579	67.47484	41.85611	27.54074	6.955896	3.499478	2.340548	1.785555	1.45897	1.11489
Moc	0	0	25%	0.9312275	400	211.6988	118.4571	70.41086	44.52786	29.90924	8.259322	4.342024	2.961102	2.289523	1.895361	1.3957
			0	0.930427	399.9981	212.7215	119.8768	71.92148	46.00503	31.30606	9.224577	5.036461	3.490132	2.712429	2.260535	1.766223
			75%	0.9403742	400	315.9415	250.4026	199.148	158.9388	127.2918	44.15928	16.63105	6.799724	3.106699	1.713781	1.056462
le] 4	ਹ	0.5	50%	0.9333317	400	319.9491	257.242	207.8696	168.8395	137.8548	54.10867	24.01317	11.75628	6.159297	3.404366	1.39478
Moc	0		25%	0.9312275	400	321.5572	259.8633	211.2161	172.6946	142.0561	58.72462	28.23017	15.41573	9.210178	5.785003	2.422412
			0	0.930427	399.9981	322.068	260.8454	212.5538	174.2992	143.8591	60.92744	30.41559	17.49545	11.19824	7.692241	3.943643
ndel	φ	θ	SE	h	0	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	4
M	φ									:	z.					

Table 3.5: The Upper-Sided EWMA Zero-State ARL for Model 4, 5 and 6 with Different Head Starts ($\lambda = 0.2$)

			75%	0.6210254	400	328.2626	269.2995	220.614	180.4199	147.2522	51.32957	16.77303	5.500697	2.218685	1.335405	1.027007
lel 3	6	5 L	50%	0.6125134	400	336.142	282.9062	238.426	201.1637	169.8689	73.15736	31.0289	12.9168	5.564155	2.779155	1.330163
Mod	0.	0.	25%	0.6097681	400	338.9247	288.0766	245.5526	209.873	179.8345	85.67281	42.05737	20.78797	10.35285	5.413811	2.207228
			0	0.6088623	400.0556	340.2003	290.359	248.722	213.8241	184.4727	92.53061	49.3985	27.29968	15.32373	8.753176	3.43964
			75%	0.6210254	400	360.9846	325.6774	293.4429	263.9951	237.1058	134.1254	70.50109	33.64763	14.46808	5.774722	1.358299
lel 2	6	0	20%	0.6125134	400	366.4823	335.8618	307.8807	282.2837	258.8518	167.7126	107.5147	67.01444	39.76647	21.97648	5.31482
Moc	Mode 0.9		25%	0.6097681	400	368.0157	338.9102	312.3307	288.034	265.8089	179.5689	122.8205 10 84.53404 67 58.07049 30	39.31576	16.12193		
			0	0.6088623	400.0556	368.789	340.2891	314.2801	290.5218	268.8047	184.7149	129.5888	92.52162	98896.99	48.86515	25.91919
			75%	0.6210254	400	375.86	347.9095	316.2445	281.5155	245.0349	81.19567	13.10294	2.146733	1.38593	1.173199	1.023327
lel 1	1	6.	50%	0.6125134	400	386.7496	369.9493	349.3271	324.7639	296.6419	133.2392	29.84573	4.339958	2.202406	1.749637	1.265679
Moo		0	25%	0.6097681	400	391.5711	380.754	367.0003	349.8657	329.2151	183.5377	54.46097	8.097449	3.12146	2.388077	1.806993
			0	0.6088623	400.0556	393.8751	385.9886	375.9874	363.4089	347.9723	225.1902	84.44447	14.18245	4.281144	3.001543	2.196571
Iodel	φ	θ	HS	h	0	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	4
A	Mo										Ħ.					

Table 3.6: The Upper-Sided EWMA Zero-State ARL for Model 1, 2 and 3 with Different Head Starts ($\lambda = 0.1$)

			75%	0.6210254	400	109.4761	39.40726	18.62514	10.96053	7.510896	2.997889	2.012525	1.575288	1.322048	1.161476	1.023177
lel 6	2	ъ.	50%	0.6125134	400	118.1775	45.99619	23.19897	14.27932	10.06263	4.183345	2.827824	2.227466	1.889910	1.655120	1.261772
Mod	0	0	25%	0.6097681	400	122.6313	49.91963	26.25423	16.68285	12.01293	5.172229	3.509645	2.753915	2.315012	2.055768	1.766636
			0	0.6088623	400.0556	124.7893	52.04421	28.09371	18.26232	13.38621	6.000246	4.113353	3.240194	2.725858	2.354605	2.003564
			75%	0.6210254	400	170.8131	80.38903	42.01749	24.38669	15.58165	4.271	2.375292	1.69059	1.353122	1.167302	1.023227
lel 5	5 L	5 L	50%	0.6125134	400	180.1997	89.84992	49.79373	30.51929	20.43807	6.31725	3.610871	2.575467	2.041229	1.706166	1.263293
Moc	0	0	25%	0.6097681	400	184.5803	94.8226	54.32096	34.41726	23.75801	8.013376	4.697927	3.366492	2.664732	2.246328	1.785838
			0	0.6088623	400.0556	186.6351	97.32083	56.7929	36.72457	25.87218	9.379365	5.66303	4.101196	3.251581	2.715753	2.11349
			75%	0.6210254	400	296.0364	221.0118	166.4022	126.3909	96.87139	29.45095	11.15535	5.042138	2.637751	1.625216	1.062041
lel 4	5 L).5	50%	0.6125134	400	302.8489	231.5489	178.8616	139.6262	110.1718	39.55414	18.07116	9.855803	5.982383	3.831586	1.747352
Moc	0) –	25%	0.6097681	400	305.3695	235.7235	184.0263	145.3343	116.1251	44.88679	22.2598	13.21044	8.811944	6.312201	3.522501
			0	0.6088623	400.0556	306.5783	237.6693	186.468	148.1023	119.0993	48.00083	25.01821	15.5646	10.8255	8.079715	5.088914
lodel	φ	θ	HS	h	0	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	4
ß	Mod ϕ									:	μ					

\frown
÷.
0
\prec
\smile
rts
[a]
Σ
рŗ
lea
Ξ
nt
ere
ffe
Di:
L L
it]
Μ
9
nd
aı
S
4,
el
pc
M
Ч
\mathbf{fo}
Ļ
R
4
ate
3t8
0
erc
Z
A
X
M
मि
g
de
Si.
-10
b(
d D
el
Ē
Ľ
3
ole
at
F

			75%	0.4075488	400	313.5379	246.2034	193.5718	152.3728	120.0764	37.11902	12.04917	4.45871	2.148705	1.412173	1.052313
lel 3	6	5 L	50%	0.3981104	400	324.1525	263.9015	215.7532	177.105	145.9441	58.39534	25.10152	11.52215	5.780521	3.325848	1.71872
Mod	0	0	25%	0.3948145	400	328.3925	271.3688	225.5629	188.5659	158.5155	71.73983	35.90421	19.27798	10.91327	6.527346	3.000387
			0	0.3937305	399.9981	330.346	274.7572	230.1056	194.0348	164.7222	79.67229	43.61337	25.90436	16.19567	10.49245	4.920408
			75%	0.4075488	400	353.0659	311.7418	275.1543	242.7373	214.0163	112.496	57.04604	27.41697	12.38766	5.381615	1.423399
lel 2	6	0	20%	0.3981104	400	359.7009	323.8963	291.9433	263.3927	237.8557	144.6589	89.46617	55.83847	34.80101	21.35481	7.239994
Moc	0		25%	0.3948145	400	362.0194	328.329	298.2062	271.2358	247.0569	158.1247	104.4566	70.88435	49.14488	34.60327	17.47181
			0	0.3937305	399.9981	363.1981	330.4162	301.1113	274.8775	251.3612	164.8451	112.4883	79.48576	57.82297	43.04917	25.03684
			75%	0.4075488	400	367.9908	332.0125	292.9148	251.9722	211.1135	55.21723	7.702441	2.063106	1.517672	1.267915	1.047583
lel 1	1	6.	50%	0.3981104	400	383.2703	362.6487	337.9034	309.1993	277.2699	109.8308	21.83434	4.110909	2.564866	2.103368	1.581696
Moc		0	25%	0.3948145	400	390.4383	378.4052	363.2015	344.439	322.0659	171.2652	48.16188	7.99541	3.714812	2.887928	2.15987
			0	0.3937305	399.9981	393.7954	385.9774	376.0724	363.6287	348.3569	226.7233	86.33647	15.66478	5.284412	3.777445	2.712547
Iodel	φ	θ	SH	h	0	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	4
4										:	ц					

05	
0.0	
\bigcirc	
rts	
sta:	
р Т	
Iea	
lt F	
rer	
iffe	
D	
rith	
3	
Ъ	
$a_{\rm I}$	
, 1 ,	
el	
Iod	
Γ	
foi	
RL	
A	
ate	
-St	
ero	
Z	
MA	
M	
E	
dec	
-Si	
per	
Up.	
he	
E	
le 3	
abl	
Г	

			75%	0.4075488	400	84.58998	28.66493	14.3162	9.118547	6.67562	3.076785	2.154942	1.718154	1.446575	1.252417	1.047348
lel 6	2	5 L	50%	0.3981104	400	97.32586	37.04398	19.82341	13.06446	9.716853	4.519356	3.145731	2.501685	2.135751	1.920798	1.568147
Mod	0	0	25%	0.3948145	400	104.6224	42.75051	24.02218	16.2795	12.29025	5.79614	4.019002	3.183102	2.684281	2.322926	1.996197
			0	0.3937305	399.9288	108.1894	46.00022	26.73384	18.56032	14.24554	6.924856	4.819495	3.807826	3.209715	2.83244	2.207273
			75%	0.4075488	400	141.6447	59.91337	30.35281	18.00454	12.07121	4.121855	2.506545	1.845717	1.485042	1.260337	1.047426
lel 5	ਹ	ਹ	20%	0.3981104	400	155.8264	72.44883	39.81238	25.1223	17.59305	6.504167	3.994978	2.937662	2.369754	2.026332	1.574083
Moc	0	0	25%	0.3948145	400	163.2194	79.93818	46.14085	30.31924	21.89257	8.628691	5.369338	3.948051	3.159282	:005 3.310067 2.653991 2.026332 1.260 5	2.08917
			0	0.3937305	399.9288	166.6738	83.8276	49.80223	33.62803	24.85871	10.45573	6.64279	4.912898	3.93344	3.310067	2.537577
			75%	0.4075488	400	275.8707	193.4564	138.0425	100.3027	74.24645	21.65283	9.10707	4.750671	2.789405	1.806005	1.11139
lel 4	5.	0.5	50%	0.3981104	400	285.9446	208.2016	154.4523	116.7663	89.95522	31.70229	15.67279	9.510294	6.467845	4.662643	2.531582
Moc	0		25%	0.3948145	400	290.4142	215.1458	162.5935	125.3467	98.53401	38.31314	20.44023	13.10797	9.34935	7.117215	4.613449
			0	0.3937305	399.9288	292.4858	218.3747	166.5072	129.6447	103.0238	42.57685	24.01777	16.06048	11.80882	9.20281	6.205084
Iodel	φ	θ	SH	h	0	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	4
4	Mo										ц					

ົດ	
Ő.	
0	
\prec	
\smile	
rts	
ta.	
Ś	
ad	
lea	
j_Li	
ant	
ere	
Æ	
Ē	
Ч	
ŗit	
4	
10	
no.	
g	
ь С	
4	
lel	
po	
Σ	
Ľ	
$f_{\rm C}$	
Ę	
₩	
4	
ate	
St:	
- -	
erc	
Ň	
V	
Z	
\geq	
Ē	
gq	
ide	
Š	
er-	
dc	
Ut	
e	
Γh	
.6.	
33	
ole	
at	
Г	

Figure 3.3: Zero-State ARL for the Upper-Sided EWMA ($\lambda = 0.1$) with FIR

Figure 3.4: Zero-State ARL for the Upper-Sided EWMA ($\lambda=0.05)$ with FIR

Chapter 4

Comparing the Upper-Sided EWMA with the Weighted CUSUM

As mentioned in Chapter 2, the WCUSUM has many advantages over other methods in detecting dynamic mean shifts. However, the WCUSUM also has its own flaws in some respects, and the upper-sided EWMA is comparable and in many instances better than the WCUSUM. The following sections will discuss them in detail. In addition, an improved Monte Carlo simulation approach is developed for the WCUSUM.

4.1 The Weighted CUSUM Scheme

Based on equations (2.4) and (2.5), Shu, Jiang and Tsui (2008) developed an algorithm based on a bivariate Markov chain for calculation of ARLs. It takes the random vector $(W_t, Q_t)'$ as a bivariate Markov chain, and the region $(0 \le W_t \le h, -\infty < Q_t < \infty)$ or $(0 \le W_t \le h, -L \le Q_t \le L)$ will be divided into a large enough number of subregions to construct the transient states of a Markov chain and associated transition probability. L is chosen to be

$$L = 8\sqrt{\frac{\lambda}{2-\lambda}}$$

designed to cover nearly all the area under the distribution for Q_t . Specifically, (0, h) is divided into m subintervals and (-L, L) is divided into n subintervals, this results in the region $(0 \le W_t \le h, -L \le Q_t \le L)$ being divided into mn subregions or rectangles. The number $mn \times mn$ is the dimension of Markov chain transition probability matrix. Even if m and n are small or moderate, the problem with this approach is that mn could be an unacceptable large number for the dimension of a matrix to calculate the ARL by the non-homogeneous Markov chain equation (B.5). As discussed in Appendix B, equation (B.5) requires many transition matrix calculations and the large dimension for the transition probability matrix will take a long time to compute the ARL. Thus, it is very time consuming to use the Markov chain approach to compute the WCUSUM ARL for dynamic mean shift models (Luceño, 1999), which is a critical issue of the WCUSUM method. The Monte Carlo simulation approach is an alternative to compute the WCUSUM ARL.

4.2 Zero-State ARL Comparison

As discussed before, the upper-sided EWMA with FIR exhibits high performance in detecting dynamic mean shifts. Tables 4.1 and 4.2 show the zero-state ARL results for the upper-sided EWMA and the WCUSUM. Each table contains the results for three different models, two λ values 0.2 and 0.05, each with two head start values 0% and 75% for upper-sided EWMA; while one λ value 0.2 for WCUSUM. Shu, Jiang and Tsui (2008) pointed out that the optimal k value for the performance of the WCUSUM chart at a particular mean shift is nearly insensitive to the value of λ . Hence, the WCUSUM yields similar performance when $\lambda = 0.2$ and $\lambda = 0.05$. However, for the upper-sided EWMA, the λ has a greater effect on its performance. Figure 3.1 illustrates the effect of λ , in essence, smaller λ has a better performance for small and moderate dynamic mean shifts. It implies that $\lambda = 0.05$ is preferable to $\lambda = 0.2$ when detecting small or moderate dynamic mean shifts.

Figure 4.1 is a graphical representation of Tables 4.1 and 4.2. In Figure 4.1, EWMA 0.2 represents the upper-sided EWMA with $\lambda = 0.2$ and HS = 0, while EWMA 0.2*a* represents the upper-sided EWMA with $\lambda = 0.2$ and HS = 75%. Similarly, EWMA 0.05 and EWMA 0.05*a* represent the upper-sided EWMA with $\lambda = 0.05$ and HS = 0 and the upper-sided EWMA with $\lambda = 0.05$ and HS = 75%, respectively. The best ARL values are in dark font. The main trends noted from the tables and figures are as follow.

- (1) The upper-sided EWMA with FIR feature HS = 75% is better than the WCUSUM for all six models and is much better when $\lambda = 0.05$. However, the WCUSUM exhibits a tiny advantage over the upper-sided EWMA without the FIR feature.
- (2) For Model 1, the upper-sided EWMA with FIR feature HS = 75% displays much better performance than the WCUSUM while the small λ without the FIR feature does not show strong improvement. This particular case is very difficult for other methods to detect the mean drift and the upper-sided EWMA

with the FIR feature demonstrates its superiority over others.

(3) For models 5 and 6, which do not exhibit forecast recovery, the upper-sided EWMA with FIR feature also performs well while the WCUSUM deteriorates a little showing a similar performance to the traditional CUSUM (Shu, Jiang and Tsui, 2008).

4.3 Steady-State ARL Comparison

The steady-state ARL considers situations where the mean shift occurs at time τ while the process is in-control before time τ . we consider specifically the situation where the process goes through 40 in-control periods before a mean shift occurs. Note that the EWMA's FIR features do not work well in the steady-state situation because at the beginning the process is in control and any jump out of the control limit within the on-target time periods indicate a "false alarm". Table 4.3 shows the steady-state ARL data of the WCUSUM and the one-sided EWMAs. It contains the results for six different models, two λ values 0.2 and 0.05 for the upper-sided EWMA and one λ value 0.2 for the WCUSUM. The better ARL values are in dark font. Figure 4.2 is a graphic representation of the results in Table 4.3. We notice the following trends:

- (1) For Model 1, 3 and 4, the upper-sided EWMA displays better performance with λ = 0.05 but worse with λ = 0.2 than the WCUSUM when the mean shifts are small and moderate. Opposing trends are seen when the mean shifts are large.
- (2) For Model 2, the performance of the upper-sided EWMA with $\lambda = 0.05$ is better than the WCUSUM when the mean shifts are small and moderate. The

Mean Shift of Original Data

Mean Shift of Original Data

Mean Shift of Original Data

					WCUSUM			
				λ :	= 0.2	$\lambda =$	= 0.05	$\lambda = 0.2$
				h = 0.930427	h = 0.9403742	h=0.3937305	h=0.4075488	h=2.009
ϕ	θ	FS_{∞}	μ	HS=0	HS=75%	HS=0	HS=75%	
			0	400	400	400	400	400
			0.5	352.4097	287.453	348.3569	211.1135	334.7
			1	239.727	129.3926	226.7233	55.21723	197.1
1.0	0.0	0.0	1.5	99.4664	29.90202	86.33647	7.702441	63.9
1.0	0.9	0.0	2	17.30417	3.479821	15.66478	2.063106	11.9
			2.5	3.97578	1.398912	5.284412	1.517672	3.6
			3	2.453088	1.146115	3.777445	1.267915	2.5
			4	1.791267	1.016936	2.712547	1.047583	1.7
			0.5	288.8332	262.9347	251.3612	214.0163	250.9
			1	210.5637	162.6172	164.8451	112.496	163
0.0	0.0	0.1	1.5	154.5738	91.744	112.4883	57.04604	108
0.9	0.0	0.1	2	113.5214	45.82721	79.48576	27.41697	72.8
			2.5	82.98712	20.09532	57.82297	12.38766	48.5
			3	59.33347	7.839003	43.04917	5.381615	31.6
			4	26.0654	1.495663	25.03684	1.423399	11.4
			0.5	210.1853	181.6803	164.7222	120.0764	163.4
			1	113.8846	75.80774	79.67229	37.11902	76.2
0.0	0.5	0.2	1.5	62.12573	28.00715	43.61337	12.04917	39.1
0.9	0.0	0.2	2	33.08922	9.253565	25.90436	4.45871	20.7
			2.5	16.85081	3.136022	16.19567	2.148705	11
			3	8.313846	1.488639	10.49245	1.412173	5.9
			4	2.52289	1.023507	4.920408	1.052313	2.2

Table 4.1: Zero-State ARL Comparisons Between the Upper-Sided EWMA and the WCUSUM for Models 1, 2 and 3

WCUSUM is better for other situations.

(3) For models 5 and 6, which do not have forecast recovery situations, the performances are very close when the mean shifts occur at small magnitudes while

					WCUSUM			
				λ :	= 0.2	$\lambda =$	= 0.05	$\lambda = 0.2$
				h=0.930427	h=0.9403742	h=0.3937305	h=0.4075488	h=2.009
ϕ	θ	FS_{∞}	μ	HS=0	HS=75%	HS=0	HS=75%	
			0	400	400	400	400	400
			0.5	143.8591	127.2918	103.0238	74.24645	102.5
			1	60.92744	44.15928	42.57685	21.65283	41.7
0.5	0.5	0.2	1.5	30.41559	16.63105	24.01777	9.10707	22.5
0.5	-0.5	0.5	2	17.49545	6.799724	16.06048	4.750671	14.1
			2.5	11.19824	3.106699	11.80882	2.789405	9.4
			3	7.692241	1.713781	9.20281	1.806005	6.5
			4	3.943643	1.056462	6.205084	1.11139	3.2
			0.5	31.30606	23.6089	24.85871	12.07121	24.4
			1	9.224577	5.234984	10.45573	4.121855	9.1
0.5	0.5	1.0	1.5	5.036461	2.509976	6.64279	2.506545	5.3
0.5	0.5	1.0	2	3.490132	1.676099	4.912898	1.845717	3.7
			2.5	2.712429	1.315492	3.93344	1.485042	2.8
			3	2.260535	1.138218	3.310067	1.260337	2.3
			4	1.766223	1.016806	2.537577	1.047426	1.7
			0.5	14.17267	9.985868	14.24554	6.67562	13.3
			1	5.411293	3.219155	6.924856	3.076785	5.7
0.9	0.5	1.0	1.5	3.570137	2.013054	4.819495	2.154942	3.8
0.2	0.0	1.0	2	2.771038	1.532465	3.807826	1.718154	2.9
			2.5	2.317208	1.278214	3.209715	1.446575	2.4
			3	2.050167	1.131147	2.83244	1.252417	2
			4	1.744554	1.01674	2.207273	1.047348	1.6

Table 4.2: Zero-State ARL Comparisons Between the Upper-Sided EWMA and theWCUSUM for Models 4, 5 and 6

the upper-sided EWMA with $\lambda = 0.2$ performs a bit better for moderate or large shifts.

4.4 Improved Monte Carlo Simulation for the WCUSUM Scheme

As discussed before, the Markov chain approach is extremely difficult to use for calculating the WCUSUM ARL in dynamic mean shift situations. A simple alternative is Monte Carlo simulation, which is a popular approach to evaluate the performance of statistical methods. Its advantage is simple and easy to explain, but one of the big issues is having to do large amounts of calculations. Thus, finding an efficient way is critical for some cases. The details of how to simulate WCUSUM ARL are presented in Appendix C.

From Appendix C, it is easy to see that every single simulation of run length should be efficient, otherwise the 160,000 simulations will be take an unfeasibly long time to yield the average run length. The challenge of simulating the run length algorithm is how to efficiently calculate the weight vector \boldsymbol{Q} since the dimension nusually is large. Here, a new method is proposed to reduce matrix dimension from $n \times n$ to $m \times m$, where n = km, m is an efficient dimension number for computer processing.

From Equation (C.2)

$$\boldsymbol{Q} = \boldsymbol{Y}_{n \times n} \boldsymbol{\lambda},$$

	WCUSUM	0.2	3.383	389.1	154.1	69.4	35.1	18.5	10.1	5.7	2.2		389.1	12.4	5.4	3.6	2.7	2.3	2	1.6
Model 3	4 EWMA	0.05	0.3937305	360.8199	141.5156	63.60538	31.97808	17.50139	10.23278	6.353128	3.008357	Model 6	360.8199	11.18322	5.327316	3.703818	2.934077	2.480741	2.178219	1.779786
	One-side	0.2	0.930427	361.525	186.2134	97.01769	49.81465	24.60886	11.63671	5.468904	1.749116		361.525	12.11316	4.469711	2.913711	2.25202	1.883856	1.65806	1.354265
	WCUSUM	0.2	3.383	389.1	240.5	153	99.2	65.2	42.7	27.7	10.7		389.1	22.4	8.5	4.9	3.5	2.7	2.2	1.6
Model 2	EWMA	0.05	0.3937305	360.8199	221.4896	140.6714	92.2242	62.19183	42.95776	30.25333	15.6194	Model 5	360.8199	19.7694	7.897336	4.945195	3.646684	2.92419	2.467274	1.918307
	One-sided	0.2	0.930427	361.525	258.1912	184.6292	131.3573	91.99233	63.04714	41.57248	15.28379		361.525	27.10789	7.583433	4.030326	2.76324	2.140208	1.778255	1.364145
	WCUSUM	0.2	3.383	389.1	309.9	174	56.1	11.2	3.6	2.4	1.6		389.1	96.7	38.3	20.4	12.7	8.5	5.9	ę
Model 1	I EWMA	0.05	0.3937305	360.8199	284.2241	154.1901	48.18069	8.470314	3.564228	2.71029	2.000579	Model 4	360.8199	88.3972	34.36094	18.41578	11.86281	8.480952	6.456894	4.170063
	One-sidec	0.2	0.930427	361.525	307.4233	193.4509	72.12792	11.39001	2.865285	1.889285	1.376198		361.525	128.0755	52.8268	25.39184	13.94123	8.468893	5.508479	2.600968
odel		γ	⁴	0	0.5	1	1.5	2	2.5	ŝ	4	odel	0	0.5	1	1.5	2	2.5	3	4
Me					а 					W					ή					

Table 4.3: Steady-State ARL Comparisons Between the Upper-Sided EWMA and the WCUSUM for Six Models

it is easy to see that the entries of vector $\boldsymbol{\lambda}$ have an interesting pattern, which is

$$\lambda_{i+m} = \lambda_i (1-\lambda)^m.$$

Divide the *n* dimension vector λ into *k* sub-vectors with dimension *m*, *n* = *km*, then λ can be presented as

$$\boldsymbol{\lambda} = \{\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2, \cdots, \boldsymbol{\lambda}_k\}',$$

where m dimension vectors $\boldsymbol{\lambda}_i$ and $\boldsymbol{\lambda}_{i+1}$ have the following relationship

$$\boldsymbol{\lambda}_{i+1} = \boldsymbol{\lambda}_i (1-\lambda)^m, \qquad i = 1, 2, \cdots, k-1$$

or

$$\lambda_{i+1,j} = \lambda_{i,j} (1-\lambda)^m, \qquad i = 1, 2, \cdots, k-1; \qquad j = 1, 2, \cdots, m.$$

Similarly, the n dimension vector \boldsymbol{Q} can be presented as

$$oldsymbol{Q} = \{oldsymbol{Q}_1,oldsymbol{Q}_2,\cdots,oldsymbol{Q}_k\}'$$

and the n dimension vector \mathbf{Y} can be presented as

$$\boldsymbol{Y} = \{ \boldsymbol{Y}_0, \boldsymbol{Y}_1, \boldsymbol{Y}_2, \cdots, \boldsymbol{Y}_{k-1} \}'$$

where

$$\boldsymbol{Y}_i = \{y_{im+1}, y_{im+2}, \cdots, y_{im+m}\}, \qquad i = 0, 1, 2, \cdots, k-1.$$

In addition, we define vector \boldsymbol{Y}_{ij} as

$$\boldsymbol{Y}_{ij} = \{y_{im+j}, y_{im+j-1}, \cdots, y_{im+j-m+1}\}, \quad i = 1, 2, \cdots, k-1; \quad j = 1, 2, \cdots, m;$$

sub-matrix $\boldsymbol{Y}_{i(m \times m)}$ as

$$\mathbf{Y}_{i(m \times m)} = \{\mathbf{Y}_{i1}, \mathbf{Y}_{i2}, \cdots, \mathbf{Y}_{im}\}', \qquad i = 1, 2, \cdots, k-1$$

and sub-matrix $\boldsymbol{Y}_{m\times m}$ as

$$\boldsymbol{Y}_{m \times m} = \begin{pmatrix} y_1 & 0 & 0 & \cdots & 0 & 0 \\ y_2 & y_1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & y_1 & 0 \\ y_m & y_{m-1} & y_{m-2} & \cdots & y_2 & y_1 \end{pmatrix}$$

Hence, \boldsymbol{Q}_1 is

$$\boldsymbol{Q}_1 = \boldsymbol{Y}_{m \times m} \boldsymbol{\lambda}_1$$

and \boldsymbol{Q}_i can be presented as

$$\boldsymbol{Q}_i = \boldsymbol{Q}_{i-1}(1-\lambda)^m + \boldsymbol{Y}_{(i-1)(m \times m)}\boldsymbol{\lambda}_1, \qquad i = 2, 3, \cdots, k.$$

The above algorithm only involves in $m \times m$ dimension matrix calculations. Thus, it is highly efficient by greatly reducing the amount of calculation for simulation.

Table 4.4 displays the simulation results of the WCUSUM created by the improved Monte Carlo simulation algorithm, which are very close to the results of Shu, Jiang and Tsui(2008).

Model		Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
φ		1	0.9	0.9	0.5	0.5	0.2
θ		0.9	0	0.5	-0.5	0.5	0.5
	0	400	400	400	400	400	400
	0.5	335.5191	251.6611	163.8554	103.0101	24.40665	13.321
	1	196.6326	162.7646	76.37638	41.0622	9.15385	5.7194
	1.5	60.49983	107.9981	39.09337	22.4485	5.2855	3.77415
μ	2	10.58418	72.70316	20.76481	14.0128	3.6591	2.8822
	2.5	3.549444	48.48518	11.07029	9.4156	2.81585	2.37095
	3	2.470769	31.52063	5.955244	6.4805	2.2881	2.03915
	4	1.705362	11.42681	2.193763	3.22745	1.68	1.64995

Table 4.4: Simulated Zero-State ARL of the WCUSUM $(\lambda=0.2)$

Chapter 5

Monitoring Molecular Weight in a Polymer Manufacturing Process

Polymer molecular weight is a key quantity that determines many physical properties. Temperatures for transitions from liquids to waxes to rubbers to solids are examples. But also important mechanical properties such as stiffness, strength, viscoelasticity, toughness and viscosity. For instance, it is well known that polymer strength (S)increases with molecular weight (M) through the functional equation

$$S = S_{\infty} - \frac{A}{M}$$

where S_{∞} is the ceiling strength and A is a constant. For a polymer to be useful, it must have mechanical properties sufficient to bear design loads. In polymer manufacturing, molecular weight is one of the key quality indicators monitored.

In this chapter we examine molecular weight data from a polymer manufacturing process and illustrate all the steps involved in setting up control charts to monitor the mean molecular weight. The analysis begins with an exploration of the available

Table 5.1: Polymer Molecular Weights from Montgomery (2005, p. 482)

2048	2025	2017	1995	1983	1943	1940	1947	1972	1983	1935	1948
1966	1954	1970	2039	2015	2021	2010	2012	2003	1979	2006	2042
2000	2002	2010	1975	1983	2021	2051	2056	2018	2030	2023	2036
2019	2000	1986	1952	1988	2016	2002	2004	2018	2002	1967	1994
2001	2013	2016	2019	2036	2015	2032	2016	2000	1988	2010	2015
2029	2019	2016	2010	2006	2009	1990	1986	1947	1958	1983	2010
2000	2015	2032									

data to establish the extent of autocorrelation. Once any problematic observations are removed, the data are taken to be as Phase I Data produced under on-target operation, and the model parameters are estimated and the charts calibrated. The estimated process parameters are then used to simulate data with out-of-control excursions to illustrate the use of the charts. Graphs and numerical results are reported to aid interpretation.

5.1 The Molecular Weight Data

Montgomery (2005, p. 482) reports molecular weight measurements from a polymer manufacturing process. In total, 75 measurements were collected on a polymer, measurements were gathered every 2 hours. The data are reproduced in Table 5.1 (read across from left to right, then down).

The top-left plot in Figure 5.1 contains a run plot of the data. No obvious unusual observations are noted. The clustering of neighboring observations looks somewhat stronger than for independent data. No apparent trend or seasonality is shown.

A scatter plot of x_t vs. x_{t-1} is displayed in the top-right plot of Figure 5.1. It is clear that consecutive molecular weights are positively correlated. A more thorough exploration of the correlation structure is shown in the bottom-left plot of Figure 5.1 where the autocorrelation function for the molecular weights is plotted for 18 lags. Only the two leading autocorrelations appear significant. Overall, the plot resembles a typical autocorrelation function for an autoregressive time series of order 1 with a positive coefficient.

5.2 ARIMA Fit and Residuals

Following the above preliminary findings, we began the modeling by fitting a loworder ARIMA model to the x data, namely an ARIMA(1,0,1) model. The fitting was done in SAS using the ARIMA procedure. No trend nor seasonality terms were added, only a mean term was included. The results of the fit are displayed in Table 5.2.

 Table 5.2: Conditional Least Squares Estimation

Parameter	Estimate	Standard Error	<i>t</i> -value
Mu	2001.03	6.56614	305.32
MA1	-0.19009	0.16878	-1.13
AR1	0.57688	0.14245	4.05

Table 5.2 suggests that if an ARIMA(1, 0, 1) was a good model for the molecular weight x data, then only the mean term and the autoregressive coefficient

Figure 5.1: Molecular Weight Data and Autocorrelation Plots

Autocorrelation Function

would be relevant. Let's examine further the goodness of fit of the model. Taking $\mu_0 = \overline{x} = 2001.03$, from equation (1.2), the residuals y_t from an ARIMA(1,0,1)model with mean term μ_0 are given by

$$y_t = \frac{(1-B)^d \phi(B)}{\theta(B)} (x_t - \mu_0) = \frac{1-\phi B}{1-\theta B} (x_t - \mu_0)$$
$$= (x_t - \mu_0) + (\theta - \phi)(x_{t-1} - \mu_0) + \theta(\theta - \phi)(x_{t-2} - \mu_0) + \dots + \theta^{n-1}(\theta - \phi)(x_{t-n} - \mu_0) + \dots,$$

where ϕ and θ are the respective autoregressive and moving average coefficients. From Table 5.2, the t value associated with estimate θ is -1.13, which could not reject that θ equals 0. However, the conditional least squares estimation gives estimate θ as -0.19. Here we can consider that θ equals -0.19. Taking $\phi = 0.67688$ and $\theta = -0.19$ yields residuals

$$y_t \approx (x_t - \mu_0) + (\theta - \phi)(x_{t-1} - \mu_0) + \theta(\theta - \phi)(x_{t-2} - \mu_0)$$

= $(x_t - 2001.03) - 0.76688(x_{t-1} - 2001.03) + 0.1457(x_{t-2} - 2001.03). (5.1)$

The residuals were calculated using eqn. (5.1), and run and autocorrelation plots were produced, these are shown in Figure 5.2. Both plots suggest that the residuals are quite random, centered around 0, and that the ARIMA(1,0,1) model effectively removed the autocorrelations. Note that the mean and standard deviation of the residuals are $\bar{y} = 0.2294$ and $s_y = 20.616$. To match the assumption of unit variance for the residuals made in the control charts discussed in previous chapters, we need to standardize the residuals to have a variance of 1, thus we just need to divide each residual by s_y . Thus the final transformation to work with from eqn.

Figure 5.2: Residual Plots from ARIMA(1,0,1) Fit

(5.1) is

$$y_t \approx \frac{1}{20.616} [(x_t - 2001.03) - 0.76688(x_{t-1} - 2001.03) + 0.1457(x_{t-2} - 2001.03)].$$
(5.2)

As a final check on the residuals, a simple Shewhart chart of the residuals from (5.2), namely a plot of y_t vs. t, with control limits at $\pm 3\sigma_y = \pm 3$ is shown in Figure 5.3. No residual seems off-target. Thus we will assume that the 75 molecular weights came from in-control process operation.

5.3 Simulated Cases with Dynamic Mean Shifts

Based on equations (1.3) and (5.1) for the ARIMA model time series, a step mean shift in time series x_t could lead to dynamic mean shift in time series y_t . Time series $\{y_t\}$ values are approximately independent and we can randomly generate dynamic

Figure 5.3: Shewhart Chart Plot of the Residuals

patterned means shift data to illustrate performance of some statistics that are used for detecting mean shift. In the illustrations below, the upper-sided EWMA statistic is based on equation (3.1), the WCUSUM statistic is based on equations (2.4) and (2.5) and the traditional CUSUM statistic is based on equation (2.1).

5.3.1 Performance Comparison of Zero-State Case

In this section, the charts are illustrated on a simulated data set of 200 x_t observations for which the mean changed from $\mu_0 = 0$ to $\mu = 1$ at the very beginning (zero state). The residual mean ξ_t were calculated from eqn. (1.4) with $\tau = 1$, $\mu = 0$, $\theta = -0.19$ and $\phi = 0.57688$. The 200 residual values y_t were generated in R with $\sigma_y = 1$. The first 13 values are displayed in column 2 of Figure 5.3.

The charts were then applied, specifically the upper-sided EWMA with FIR feature, the WCUSUM and traditional CUSUM schemes. Three head start leads were used, namely HS = 0, HS = 50% and HS = 75%. The numerical chart values are displayed in columns 3 - 7 of Table 5.3 along with the associated control limits for an $ARL_0 = 400$ and $\lambda = 0.1$ for the EWMA and $\lambda = 0.2$ for the WCUSUM. In this illustration, the traditional CUSUM detects the change at 13^{th} run, the WCUSM and the EWMA with HS = 0% detect the change at run 12, while the EWMA with HS = 50% and HS = 75% detect the change at run 11. The values in dark font in Table 5.3 indicate that the chart has gone beyond the control limit.

The charts values are plotted in Figure 5.4. The plots display graphically the features just noted. In this case, the higher the head start HS, the quicker the EWMA chart detects the change. Note also the case is no subtantive difference between the EWMA and the WCUSUM. The traditional CUSUM appears to be the slowest to
		Upper-Sided EWMA			WCUSUM	CUSUM
		$\lambda = 0.1$			$\lambda = 0.2$	
		h=0.60886	h=0.621	h=0.6125	h=3.383	h=4.173
t	Simulated y_t	HS=0	HS=75%	HS=50%		
1	0.6277	0.0628	0.4820	0.3384	0.0160	0.1277
2	0.3503	0.0915	0.4688	0.3396	0.0000	0.0000
3	0.0413	0.0865	0.4260	0.3098	0.0000	0.0000
4	1.4135	0.2192	0.5248	0.4201	0.3640	0.9135
5	-0.4609	0.1512	0.4262	0.3320	0.1463	0.0000
6	0.2965	0.1657	0.4132	0.3285	0.0973	0.0000
7	0.7640	0.2255	0.4483	0.3720	0.1885	0.2640
8	1.7341	0.3764	0.5769	0.5082	0.9573	1.4981
9	-0.3518	0.3036	0.4840	0.4222	0.5927	0.6463
10	1.6540	0.4386	0.6010	0.5454	1.3696	1.8002
11	1.6585	0.5606	0.7068	0.6567	2.3777	2.9587
12	1.5923	0.6638	0.7953	0.7503	3.4861	4.0510
13	1.3660	0.7340	0.8524	0.8118	4.4257	4.9170

Table 5.3: Zero-State Simulated Data and the Responses of Upper-Sided EWMA, WCUSUM and CUSUM Statistics ($\mu = 1, \phi = 0.57688, \theta = -0.19, \sigma_y = 1$)

react to the change, although not by much.

5.3.2 Performance Comparison of Steady-State Case

Similarly, a steady state data set was simulated corresponding to a situation where the mean for original x_t data shifts from $\mu_0 = 0$ to $\mu = 1$ at time $\tau = 41$. Thus the residual means ξ_t were calculated from eqn. (1.4) with $\mu = 1$, $\tau = 41$, $\theta = -0.19$ and $\phi = 0.57688$. In total 200 residuals were generated in R with the ξ_t means and $\sigma_y = 1$. Some of the data are listed in column 2 of Table (5.4). In this case, the upper-sided EWMA with HS = 0%, the WCUSM and the traditional CUSUM were used. The

Figure 5.4: Zero-State Control Charts with Shift $\mu=1,\,\sigma_y=1$

EWMA detects the change 14 runs after the change took place, while the WCUSUM and the traditional CUSUM react the change 15 runs after change. Thus the EWMA shows a slightly better performance for this data set. Figure 5.5 graphically presents the values of Table 3.4.

		Upper-Sided EWMA	WCUSUM	CUSUM
		$\lambda = 0.05$	$\lambda = 0.2$	
t	Simulated y_t	h=0.3937	h=3.383	h=4.173
1	0.1853	0.00926	0.0000	0.0000
31	-0.2782	0.0038	0.0000	0.0000
32	2.0850	0.1079	0.4545	1.5850
33	1.0463	0.1548	0.6942	2.1313
34	0.6477	0.1794	0.7651	2.2790
35	0.1359	0.1772	0.6153	1.9149
36	-0.5003	0.1434	0.3860	0.9146
37	0.3177	0.1521	0.3410	0.7323
38	0.9413	0.1915	0.5113	1.1736
39	0.2816	0.1960	0.4316	0.9552
40	0.0958	0.1910	0.3058	0.5510
41	1.3191	0.2474	0.7258	1.3701
42	-1.7275	0.1487	0.5817	0.0000
43	-0.0128	0.1406	0.5565	0.0000
44	1.1979	0.1935	0.7512	0.6979
45	-0.0921	0.1792	0.6300	0.1058
46	1.1892	0.2297	0.9067	0.7950
47	0.6140	0.2489	0.9574	0.9090
48	-0.3290	0.2200	0.7174	0.0799
49	0.1536	0.2167	0.6265	0.0000
50	1.3152	0.2716	1.0120	0.8152
51	1.4027	0.3282	1.6067	1.7179
52	0.0920	0.3164	1.3842	1.3099
53	1.0265	0.3519	1.7220	1.8364
54	1.5117	0.4099	2.5473	2.8482
55	2.4267	0.5107	4.7396	4.7748

Table 5.4: Steady-State Simulated Data and the Responses of Upper-Sided EWMA, WCUSUM and CUSUM Statistics ($\mu = 1, \phi = 0.57688, \theta = -0.19, \sigma_y = 1$)

Figure 5.5: Steady-State $\tau=41$ Control Charts with Shift $\mu=1,\,\sigma_y=1$

Chapter 6

Conclusions

This thesis proposes the upper-sided EWMA control scheme, which has the feature of adjusting memory magnitudes through the smoothing parameter λ , for monitoring correlated data. The control statistic puts more weight on the more recent observations as the monitoring progresses on. The thesis demonstrates on a variety of time series models that the proposed chart is very efficient for detecting changes in the process mean under the presence of forecast recovery which lead to dynamic patterned mean shifts. The method's performance is enhanced when combined with the fast initial response (FIR) feature which speeds the jump to out-of-control under forecast recovery situations. In practice, a dynamic patterned mean shift has either upper-sided or lower-sided direction, which can be monitored employing either the upper-sided or lower-sided version of the proposed one-sided EWMA control chart. Furthermore, the one-sided EWMA is much more efficient than the two-sided EWMA for detecting one-direction dynamic patterned mean shifts.

The CUSUM control schemes are widely used for monitoring processes due to

their simplicity and good performance in standard process monitoring. However, they do not perform well under dynamic mean shifts. Shu, Jiang and Tsui (2008) modified the conventional CUSUM by putting a weight function resulting in the weighted CUSUM (WCUSUM). The basic idea is to enhance the standard CUSUM by putting more weight on observations with higher mean thus trying to push the statistic to the out of control state faster when this happens. The WCUSUM indeed exhibits a far superior performance than the conventional CUSUM control scheme and other alternatives for detecting small to moderate shifts. However, the average run length calculations are much more complicated than for the conventional CUSUM due to the weighting function. A bivariate Markov chain is required for calculating the ARLin the WCUSUM, which requires the dimension of the transition probability matrix to be very large to achieve acceptable accuracy. As a result, one has to calculate the ARL using Monte Carlo simulation, an alternative that also involves larger dimension matrix calculations. An improved Monte Carlo simulation is proposed. It is shown in the thesis that the proposed alternative is much more efficient and that it works very well. The core idea of the improved Monte Carlo simulation is to divide a large dimension calculation into several smaller dimension ones that can be carried out much more efficiently in the computer.

Comparing performance of the upper-sided EWMA with the WCUSUM in forecast recovery situations, the WCUSUM does slightly better than the upper-sided EWMA without the FIR feature. However, the upper-sided EWMA with FIR (HS = 75%) feature does significantly better than the WCUSUM. In non-forecast recovery situations, the performances of the upper-sided EWMA without FIR feature and the WCUSUM are very close while the upper-sided EWMA with FIR feature does much better. Thus, the upper-sided EWMA with FIR feature is overall a better control chart than the WCUSUM.

The most widely used performance measure for control schemes is average run length (ARL), which is the measure adopted in this thesis. When the process operates in-control, the ARL_0 is set to be large in order to reduce the Type I error, that is the frequency of signaling an out of control state when in fact the process is operating well. But for detecting an out-of-control case, the ARL (ARL_1) should be small, that is the method has high power to detect an out-of-control excursion quickly. Thus, run length distribution is important, which requires further study.

The result of the statistical control schemes discussed here are based on six useful but simple ARIMA cases. Further research is required for more complicated ARIMA models or other time series. ARIMA models are widely used for modeling and prediction of financial market activity, economic trends, and ecological and demographic patterns. The proposed upper-sided EWMA control scheme has very good potential as a monitoring tool to detect changes in those processes.

Appendix A

Autoregressive Integrated Moving Average Models

Autoregressive integrated moving average (ARIMA) models typically exhibit forecast recovery. An ARIMA model with $p \ AR$ components, $q \ MA$ components and ddifferences ARIMA(p, d, q) is defined as

$$(1-B)^d \phi(B)(x_t - \mu_0) = \theta(B)a_t$$

or

$$x_t - \mu_0 = \frac{\theta(B)}{(1-B)^d \Phi(B)} a_t \tag{A.1}$$

where B is the back-shift operator, $\phi(B)$ and $\theta(B)$ are polynomials of degrees p and q, respectively, and $a'_t s$ are independently and identically distributed (IID) white noise with variance σ_a^2 . Here μ_0 represents the mean of the process when it is operating on target. Without loss of generality, $\sigma_a^2 = 1$. They are respectively defined as

$$Bx_t = x_{t-1},$$

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$$

$$a_t \sim N(0, \sigma_a^2),$$

$$\mu_0 = E(x_t).$$

See Chatifield (2004) and Shumway and Stoffer (2006) for a detailed discussion on time series models and methods. Following the standard SPC approach, all the parameters are estimated from a historical (hopefully large) database, usually called Phase I data, gathered when the process was operating on-target. This thesis will not discuss how to estimate the ARIMA model parameters and assumes that all the parameters are known.

When the process is invertible, the residuals can be written as

$$y_t = \frac{(1-B)^d \phi(B)}{\theta(B)} (x_t - \mu_0).$$
(A.2)

If the process is in-control, the process mean is μ_0 indicating that no drift occurs. i.e., $\mu = E(x_t) = \mu_0, t = 1, 2, \cdots$. Suppose the process mean shifts from μ_0 to $\mu_0 + \mu$ at time τ, τ is unknown. Then $f_t = E(x_t) - \mu_0$ will be given by

$$f_t = \begin{cases} 0 & t = 1, 2, \cdots, \tau - 1; \\ \mu & t = \tau, \tau + 1, \cdots \end{cases}$$

where $\mu \neq 0$. In this situation, the residuals can be presented as

$$y_{t} = \frac{(1-B)^{d}\phi(B)}{\theta(B)}(x_{t}-\mu_{0})$$

$$= \frac{(1-B)^{d}\phi(B)}{\theta(B)}(x_{t}-\mu_{0}-f_{t}+f_{t})$$

$$= \frac{(1-B)^{d}\phi(B)}{\theta(B)}(x_{t}-\mu_{0}-f_{t}) + \frac{(1-B)^{d}\phi(B)}{\theta(B)}f_{t}$$

$$= a_{t}+\xi_{t}$$
(A.3)

where

$$\xi_t = \frac{(1-B)^d \phi(B)}{\theta(B)} f_t \tag{A.4}$$

is the shift that takes place in the residuals, and

$$E(y_t) = E(a_t + \xi_t) = E(a_t) + \xi_t = \xi_t.$$
 (A.5)

The shift f_t of x_t causes a mean pattern ξ_t in the residual y_t . Consider the situation where time series x_t has a constant shift μ at time τ and ARIMA(p, d, q) model with p = 1, d = 0, and q = 1. In this case, taking $\phi = \phi_1$, and $\theta = \theta_1$. Then

$$\xi_t = \frac{1 - \phi B}{1 - \theta B} f_t$$
$$= (1 - \phi B)(1 - \theta B)^{-1} f_t$$

Hence, ξ_t can be written as

$$\begin{aligned} \xi_t &= (1 - \phi B)(1 + \theta B + (\theta B)^2 + (\theta B)^3 + \cdots)f_t \\ &= (1 + \theta B + (\theta B)^2 + (\theta B)^3 + \cdots - \phi \theta - \phi \theta B^2 - \phi \theta^2 B^3 - \cdots)f_t \\ &= (1 + (\theta - \phi)B + \theta(\theta - \phi)B^2 + \theta^2(\theta - \phi)B^3 + \cdots)f_t \\ &= f_t + (\theta - \phi)Bf_t + \theta(\theta - \phi)B^2f_t + \theta^2(\theta - \phi)B^3f_t + \cdots \\ &= f_t + (\theta - \phi)f_{t-1} + \theta(\theta - \phi)f_{t-2} + \theta^2(\theta - \phi)f_{t-3} + \cdots \end{aligned}$$

The constant shift μ on time series x_t at and after time τ ,

$$f_t = \begin{cases} 0 & t = 1, 2, \cdots, \tau - 1; \\ \mu & t = \tau, \tau + 1, \cdots \end{cases}$$

leads to

$$E(y_t) = \xi_t = \begin{cases} 0 & t = 1, 2, \cdots, \tau - 1; \\ \mu & t = \tau. \end{cases}$$

For $t = \tau + k$, where $k = 1, 2, \cdots$

$$E(y_{\tau+k}) = \xi_{\tau+k}$$

= $(1 - \phi B)(1 + \theta B + (\theta B)^2 + (\theta B)^3 + \cdots)f_{\tau+k}$
= $f_{\tau+k} + (\theta - \phi)f_{\tau+k-1} + \theta(\theta - \phi)f_{\tau+k-2} + \theta^2(\theta - \phi)f_{\tau+k-3} + \cdots + \theta^{i-1}(\theta - \phi)f_{\tau+k-i} + \cdots$

Note that

$$f_{\tau+k-i} = \begin{cases} \mu & i = 0, 1, 2, \cdots, k \\ 0 & i > k \end{cases}$$

Thus,

$$E(y_{\tau+k}) = \xi_{\tau+k}$$

$$= \mu + (\theta - \phi)\mu + \theta(\theta - \phi)\mu + \theta^2(\theta - \phi)\mu + \dots + \theta^{k-1}(\theta - \phi)\mu$$

$$= (1 + (\theta - \phi)(1 + \theta + \theta^2 + \dots + \theta^{k-1}))\mu$$

$$= (1 + (\theta - \phi)\frac{1 - \theta^k}{1 - \theta})\mu$$

$$= \frac{1 - \theta + (\theta - \phi)(1 - \theta)^k}{1 - \theta}\mu$$

$$= \frac{1 - \phi + (\theta - \phi)\theta^k}{1 - \theta}\mu$$

In addition,

$$\frac{1-\phi+(\theta-\phi)\theta^0}{1-\theta}\mu = \frac{1-\phi+\theta-\phi}{1-\theta}\mu = \mu$$

Hence,

$$\xi_t = E(y_t) = \begin{cases} 0 & t = 1, 2, \cdots, \tau - 1; \\ \frac{1 - \phi + (\theta - \phi)\theta^{t - \tau}}{1 - \theta} \mu & t = \tau, \tau + 1, \cdots \end{cases}$$

Although the shift f_t on the mean of x_t is a constant, its effect on the mean of the residuals y_t is not. It has a dynamic pattern. The sequence ξ_t varies over time and depends on the shift that occurred at time τ .

Appendix B

Markov Chain Method for Average Run Length Calculation Under a Dynamic Mean

B.1 ARL Calculation for the Two-Sided EWMA

Brook and Evans (1972) were the first to develop a Markov chain approach for calculating run length distributions and average run lengths for the conventional CUSUM chart. The procedure applies only to in-control process operation or sustained changes in the process mean. The key step is approximating a continuous-state Markov chain by a finite-state one. The method was extended to the two-sided EWMA by Lucas and Saccucci (1990) for the same context of in-control process operation or sustained jumps in the process mean. In this thesis, we extend the method to the context of a dynamic process mean. The two-sided EWMA chart statistic is (see eqn. (3.1))

$$W_t = (1 - \lambda)W_{t-1} + \lambda y_t, \quad t = 1, 2, 3, \dots$$
(B.1)

with W_0 being the initially set chart value, typically $W_0 = 0$. Here λ ($0 \le \lambda \le 1$) is amount of **smoothing**. The chart is usually standardized so that when the process operates on-target, W_t drifts around 0. Further, for the normal case considered here, W_t has a normal distribution centered at 0 under on-target process operation. Accordingly, the typical control limits are set at $\pm h$ where h > 0 is selected to achieve a desired on-target average run length ARL_0 , in our case $ARL_0 = 400$.

It is easy to see from eqn. (B.1) that W_t forms a continuous-state Markov chain with state space $(-\infty, \infty)$. To construct the finite-state approximating Markov chain, for a given positive integer m we divide the continuous state space into 2m + 3subintervals which define the chain states. Two states are absorbent, namely

$$E_0 = (-\infty, -h)$$
 and $E_{2m+2} = (h, \infty)$.

The remaining states, which are the ones of primary interest, are transient states and come from dividing the in-control range [-h, h] into 2m + 1 equal-width subintervals, $E_1, E_2, ..., E_{2m+1}$, where

$$E_1 = [S_1 - L, S_1 + L]; \quad E_i = (S_i - L, S_i + L], \ i = 2, 3, ..., 2m + 1,$$

where $S_i = -h + (2i - 1)L$ is the center of state E_i and L = h/(2m + 1). We say that the chain is in state E_i at sampling period t if $W_t \in E_i$.

The probabilities with which the statistic moves among the transient states as we go from sampling period t-1 to t are collected in the associated $(2m+1) \times (2m+1)$ transition probability matrix, denoted by \boldsymbol{P}_t here,

$$\boldsymbol{P}_{t} = \begin{pmatrix} P_{11}^{(t)} & P_{12}^{(t)} & \dots & P_{1j}^{(t)} & \dots & P_{1,2m+1}^{(t)} \\ P_{21}^{(t)} & P_{22}^{(t)} & \dots & P_{2j}^{(t)} & \dots & P_{2,2m+1}^{(t)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ P_{i1}^{(t)} & P_{i2}^{(t)} & \dots & P_{ij}^{(t)} & \dots & P_{i,2m+1}^{(t)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ P_{2m+1,1}^{(t)} & P_{2m+1,2}^{(t)} & \dots & P_{2m+1,j}^{(t)} & \dots & P_{2m+1,2m+1}^{(t)} \end{pmatrix}$$

The transition probability from state i to state j is

$$\begin{split} P_{ij}^{(t)} &= Pr\{W_t \in E_j \mid W_{t-1} \in E_i\} \\ &= Pr\{S_j - L < W_t \le S_j + L \mid S_i - L < W_{t-1} \le S_i + L\} \\ &\approx Pr\{S_j - L < (1 - \lambda)W_{t-1} + \lambda y_t \le S_j + L \mid W_{t-1} = S_i\} \\ &= Pr\left\{\frac{L}{\lambda}[2(j - (1 - \lambda)i) - 1] - h - L < y_t < \frac{L}{\lambda}[2(j - (1 - \lambda)i) + 1] - h - L\right\}. \end{split}$$

Under a dynamic mean, assume the process mean at sampling period t is μ_t . The process variance may stay in control or not, consider the general case of a changing process variance σ_t^2 . We assume a normal distribution under independent observations, thus $y_1, y_2, ...$ are independent with $y_t \sim N(\mu_t, \sigma_t^2)$. It follows then that

$$P_{ij}^{(t)} \approx \Phi\left(\frac{1}{\sigma_t}\left\{\frac{L}{\lambda}[2(j-(1-\lambda)i)+1]-h-L-\mu_t\right\}\right)$$
$$-\Phi\left(\frac{1}{\sigma_t}\left\{\frac{L}{\lambda}[2(j-(1-\lambda)i)-1]-h-L-\mu_t\right\}\right)$$
(B.2)

Note that this approximation improves as m increases. In the work done in this thesis, m around 50 gives satisfactory results. In the rest of Appendix B we will replace the "approximate" sign with the "equal" sign. The first interesting feature to notice here is that the transition probabilities vary over t resulting in a **non-homogeneous Markov chain**. The **run length** RL is the number of sampling periods observed until and including the sampling period when the statistic jumps to an absorbing state for the first time. Clearly $RL \in \{1, 2, ...\}$. From the theory of Markov chains (e.g. see Karlin and Taylor (1975, Chaps. 2-3)) we know that

$$Pr(RL > n) = \mathbf{p}_0' \mathbf{P}_1 \mathbf{P}_2 \cdots \mathbf{P}_n \mathbf{1}$$
$$= \mathbf{p}_0' \left(\prod_{l=1}^n \mathbf{P}_l \right) \mathbf{1}, \quad n = 1, 2, 3, ...,$$
(B.3)

where p_0 is the $(2m + 1) \times 1$ initial probability vector on the transient states and **1** is the $(2m + 1) \times 1$ vector of 1s.

Hence the probability mass function (pmf) of the run length is

$$f_{RL}(n) = Pr(RL = n)$$

= $Pr(RL > n - 1) - Pr(RL > n)$
= $p'_0 \left(\prod_{l=1}^{n-1} P_l\right) (I - P_n) \mathbf{1}, \quad n = 1, 2, 3, ...$ (B.4)

The resulting average run length is therefore

$$ARL = E(RL) = \sum_{n=1}^{\infty} n f_{RL}(n)$$
$$= \sum_{n=1}^{\infty} n \mathbf{p}_0' \left(\prod_{l=1}^{n-1} \mathbf{P}_l\right) (\mathbf{I} - \mathbf{P}_n) \mathbf{1}$$
(B.5)

A special case of particular interest is that where the means and variances are the same across t, that is, $\mu_t = \mu$ and $\sigma_t^2 = \sigma^2$ for all t. This leads to an **homogeneous Markov Chain**. Replacing $\mathbf{P}_t = \mathbf{P}$, for all t in (B.4) yields run length pmf

$$f_{RL}(n) = \mathbf{p}'_0 \mathbf{P}^{n-1} (\mathbf{I} - \mathbf{P}) \mathbf{1}, \quad n = 1, 2, 3, ...$$
 (B.6)

And the resulting average run length from (B.5) becomes

$$ARL = \sum_{n=1}^{\infty} n \boldsymbol{p}_0' \boldsymbol{P}^{n-1} (\boldsymbol{I} - \boldsymbol{P}) \boldsymbol{1} = \boldsymbol{p}_0' \left(\sum_{n=1}^{\infty} n \boldsymbol{P}^{n-1} \right) (\boldsymbol{I} - \boldsymbol{P}) \boldsymbol{1}$$
$$= \boldsymbol{p}_0' (\boldsymbol{I} - \boldsymbol{P})^{-1} \boldsymbol{1}.$$
(B.7)

Equations (B.6)-(B.7) were derived by Lucas and Saccucci (1990) in their analysis of the two-sided EWMA for in-control process operations or step mean changes. In particular, Lucas and Saccucci (1990) make extensive use of eqn. (B.7) to calculate the ARL when the process operates on-target or when the process jumps to another mean value from the very beginning (the so called zero-state).

B.2 ARL Calculation for the Upper-Sided EWMA

The upper-sided EWMA of interest here is the upper-sided version given by eqn. (3.2), namely

$$W_t^+ = \max\{0, (1-\lambda)W_{t-1}^+ + \lambda y_t\}, \quad t = 1, 2, 3, \dots$$
(B.8)

where the smoothing parameter λ and y_t are as in the two-sided EWMA just discussed, and $W_0^+ = 0$. Clearly $W_t^+ \in [0, \infty)$ with large values indicative of possible departure from on-target process operation in the direction of a larger mean. Thus, only an upper control limit h > 0 is needed. Again, one can readily show that W_t^+ forms a continuous-state Markov chain with $[0, \infty)$ as its state space.

The finite-state approximating chain will be constructed as follows. For every integer m > 0 there will be m transient states and an absorbent state. The absorbent

state will be $E_{m+1} = (h, \infty)$ while the transient states $E_1, E_2, ..., E_m$ will be obtained by dividing the decision interval [0, h] into m subintervals of which the first has length L and the remaining ones length 2L where L = h/(2m - 1). Specifically, $E_1 = [S_1, S_1 + L]$ and $E_i = (S_i - L, S_i + L]$ where $S_i = 2(i - 1)L$, i = 1, 2, ..., m. At any sampling period t, the control statistic W_t^+ is said to be in state E_i if $W_t^+ \in E_i$. Again, for the purpose of run length distribution and average run length calculations, we need to consider only the transient states.

The probabilities with which the control statistic moves among the transient states as we go from sampling period t - 1 to t are collected in the associated $m \times m$ transition probability matrix which we denote by \mathbf{P}_t ,

$$\boldsymbol{P}_{t} = \begin{pmatrix} P_{11}^{(t)} & P_{12}^{(t)} & \dots & P_{1j}^{(t)} & \dots & P_{1m}^{(t)} \\ P_{21}^{(t)} & P_{22}^{(t)} & \dots & P_{2j}^{(t)} & \dots & P_{2m}^{(t)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ P_{i1}^{(t)} & P_{i2}^{(t)} & \dots & P_{ij}^{(t)} & \dots & P_{im}^{(t)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ P_{m1}^{(t)} & P_{m2}^{(t)} & \dots & P_{mj}^{(t)} & \dots & P_{mm}^{(t)} \end{pmatrix}$$

For $i \ge 2$ and $j \ge 2$, the transition probability from state i to state j can be

written as

$$\begin{split} P_{ij}^{(t)} &= Pr\{W_t^+ \in E_j \mid W_{t-1} \in E_i\} \\ &= Pr\{S_j - L < W_t^+ \le S_j + L \mid S_i - L < W_{t-1}^+ \le S_i + L\} \\ &= Pr\{S_j - L < \max\{0, (1 - \lambda)W_{t-1}^+ + \lambda y_t\} \le S_j + L \mid S_i - L < W_{t-1}^+ \le S_i + L\} \\ &= Pr\{S_j - L < (1 - \lambda)W_{t-1}^+ + \lambda y_t \le S_j + L \mid S_i - L < W_{t-1}^+ \le S_i + L\} \\ &\approx Pr\{S_j - L < (1 - \lambda)W_{t-1}^+ + \lambda y_t \le S_j + L \mid W_{t-1}^+ = S_i\} \\ &= Pr\left\{\frac{L}{\lambda}[2(j - (1 - \lambda)(i - 1)) - 3] < y_t \le \frac{L}{\lambda}[2(j - (1 - \lambda)(i - 1)) - 1]\right\}. \end{split}$$

If the residual y_t is normally distributed with a dynamic mean μ_t over time and a possibly time-varying variance σ_t^2 , that is $y_t \sim N(\mu_t, \sigma_t^2)$, then the transition probability $P_{ij}^{(t)}$ is

$$P_{ij}^{(t)} \approx \Phi\left(\frac{1}{\sigma_t} \left\{\frac{L}{\lambda} [2(j - (1 - \lambda)(i - 1)) - 1] - \mu_t\right\}\right)$$
$$-\Phi\left(\frac{1}{\sigma_t} \left\{\frac{L}{\lambda} [2(j - (1 - \lambda)(i - 1)) - 3] - \mu_t\right\}\right).$$
(B.9)

Eqn. (B.9) also applies to i = 1. Consider now j = 1 and $i \ge 2$. Following the same reasoning, the respective transition probability can be approximated through the following equation

$$P_{i1}^{(t)} \approx \Phi\left(\frac{1}{\sigma_t}\left\{\frac{L}{\lambda}\left[1 - 2(1-\lambda)(i-1)\right] - \mu_t\right\}\right).$$
(B.10)

The formula is also valid for i = 1.

Note that, as was the case for the two-sided EWMA, under a time-changing mean and variance for y_t , the transition probability matrix P_t changes with t. Thus the finite-state approximating Markov chain is non-homogeneous. Equations (B.3)- (B.5) apply using the $m \times m$ transition probability matrix \mathbf{P}_t just calculated. Moreover, when μ_t and σ_t^2 are fixed, equal to μ and σ^2 say, for all t, the chain is homogeneous. Writing $\mathbf{P}_t = \mathbf{P}$ for all t, equations (B.6)-(B.7) can be used to obtain the respective run length pmf and average run length.

B.3 ARL Calculation for the One-Sided CUSUM

The upper-sided CUSUM enjoys greater attention than the upper-sided EWMA. We consider the upper-version of it for the same reasons we focused on the upper-sided EWMA. The chart statistic is given by

$$S_t^+ = \max\{0, S_{t-1}^+ + y_t - k\}, \quad t = 1, 2, 3, \dots$$
(B.11)

where k is the **reference value**. While the optimal k is given by $k = (\mu_0 + \mu_1)/2$ when we aim to detect a sustained change in process mean from $\mu = \mu_0$ to $\mu = \mu_1 > \mu_0$, however when we deal with a dynamic mean there is no optimal value and one ends up trying out several values.

Again from eqn. (B.11) one can readily verify that S_t^+ forms a Markov chain. The approach to calculate run length distribution and average run length follows the same steps as for the upper-sided EWMA. In particular, the state space is the same. The only and important difference is the way the $m \times m$ transition probability matrix P_t is calculated. For $i \ge 1$ and $j \ge 2$, the transition probability of moving from state i at sampling period t - 1 to state j at t is

$$P_{ij}^{(t)} \approx Pr\{[2(j-i)-1]L + k < y_t \le [2(j-i)+1]L + k\}$$

= $\Phi\left(\frac{1}{\sigma_t}\left\{[2(j-i)+1]L + k - \mu_t\right\}\right) - \Phi\left(\frac{1}{\sigma_t}\left\{[2(j-i)-1]L + k - \mu_t\right\}\right), \quad (B.12)$

where the errors $y_1, y_2, y_3, ...$ are independent with $y_t \sim N(\mu_t, \sigma_t^2)$. The respective $P_{i1}^{(t)}$ transition probability is

$$P_{i1}^{(t)} \approx Pr\{S_{t-1}^{+} + y_t - k \le L \mid S_{t-1}^{+} = 2(i-1)L)\}$$
$$= \Phi\left(\frac{1}{\sigma_t}\{k - (2i-3)L - \mu_t\}\right).$$
(B.13)

Again, under a time-varying mean and variance for y_t , the transition probability matrix \mathbf{P}_t changes with t resulting in a non-homogeneous finite-state approximating chain. Equations (B.3)-(B.5) can be used to calculate run length pmf's and average run lengths where \mathbf{P}_t is the $m \times m$ transition probability matrix with entries given by (B.12)-(B.13). Moreover, when μ_t and σ_t^2 are fixed, equal to μ and σ^2 say, for all t, the chain is homogeneous. Writing $\mathbf{P}_t = \mathbf{P}$ for all t, equations (B.6)-(B.7) can be used to obtain the respective run length pmf and average run length. These latter formulas were originally developed by Brooks and Evans (1972). They are useful to calculate on-target average run lengths.

Appendix C

Monte Carlo Simulation Algorithm of ARIMA Models for the WCUSUM Control Scheme

Monte Carlo simulation is a computational algorithm that relies on repeated random sampling to compute its results. Here, there are six ARIMA(1,0,1) time series models as detailed in Table 1.1. Monte Carlo simulation of the WCUSUM control scheme under ARIMA(1,0,1) data can be constructed by the following procedures:

Step 1. Find the distribution of the random variable.

From Equation (A.3)

$$y_t = a_t + \xi_t$$

where $a_t \sim N(0, 1)$ and

$$\xi_t = E(y_t) = \begin{cases} 0 & t = 1, 2, \cdots, \tau - 1; \\ \frac{1 - \phi + (\theta - \phi)\theta^{t - \tau}}{1 - \theta} \mu & t = \tau, \tau + 1, \cdots \end{cases}$$

It is easy to see that $y_t \sim N(\xi_t, 1)$.

Step 2. Find the relationship between the weight Q_t and random variable y_t .

.

From Equation (2.5)

$$Q_{t} = (1 - \lambda)Q_{t-1} + \lambda y_{t}$$

= $(1 - \lambda)((1 - \lambda)Q_{t-2} + \lambda y_{t-1}) + \lambda y_{t}$
= $(1 - \lambda)^{t}Q_{0} + \lambda((1 - \lambda)^{t-1}y_{1} + (1 - \lambda)^{t-2}y_{2} + \dots + (1 - \lambda)y_{t-1} + y_{t})$

Usually, $Q_0 = 0$,

$$Q_t = \lambda((1-\lambda)^{t-1}y_1 + (1-\lambda)^{t-2}y_2 + \dots + (1-\lambda)y_{t-1} + y_t).$$
(C.1)

Step 3. Randomly generate n independent values of y_t based on normal distribution $N(\xi_t, 1), t = 1, 2, \cdots, n.$

The number n can be considered as the maximum run length. It is suggested that n be chosen as large or equal to ten times the desired average run length. For instance, n = 4000 if ARL = 400.

Step 4. Construct a n dimension vector Q

$$\boldsymbol{Q} = \begin{pmatrix} \lambda y_1 \\ \lambda (1-\lambda)y_1 + \lambda y_2 \\ & \ddots \\ & \ddots \\ & \ddots \\ \lambda ((1-\lambda)^{n-1}y_1 + (1-\lambda)^{n-2}y_2 + \dots + (1-\lambda)y_{n-1} + y_n) \end{pmatrix}$$

Let $\boldsymbol{\lambda} = (\lambda, \lambda(1-\lambda), \cdots, \lambda(1-\lambda)^{n-1})'$, and

$$\boldsymbol{Y}_{n \times n} = \begin{pmatrix} y_1 & 0 & 0 & \cdots & 0 & 0 \\ y_2 & y_1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & y_1 & 0 \\ y_n & y_{n-1} & y_{n-2} & \cdots & y_2 & y_1 \end{pmatrix}$$

then

$$\boldsymbol{Q} = \boldsymbol{Y}_{n \times n} \boldsymbol{\lambda} \tag{C.2}$$

Step 5. Calculate run length.

From Equation (2.4),

$$W_t = \max\{0, W_{t-1} + (y_t - k)|Q_t|\}.$$

The process starts from $W_0 = 0$, *n* values of $y'_t s$ are generated at Step 3, and *n* values of $Q'_t s$ are calculated at Step 4, W_t is iteratively calculated based on the above equation. When $W_t \ge h$, the run length (RL) is the number of *t*, i.e. RL = t. Step 6. Calculate average run length.

Repeat the above N times to get run length values RL_1, RL_2, \cdots, RL_N . The

Simulated average run length (ARL) is the average of N run length values,

$$ARL = \frac{\sum_{i=1}^{N} RL_i}{N}.$$
 (C.3)

Usually N = 160,000.

Bibliography

- Abbasi A. S. (2010). On Sensitivity of EWMA Control Chart for Monitoring Process Dispersion. Proceedings of the World Congress on Engineering, 3, 2027-2032.
- [2] Alwan, L. C. and Roberts, H. V. (1988). Time Series Modeling for Statistical Process Control. Journal of Business & Economic Statistics, 6, 87-95.
- [3] Apley, D. W. and Shi, J. (1999). The GLRT for Statistical Process Control of Autocorrelated Process. *IIE Transactions*, **31**, 1123-1134.
- Barr, D. R. and Sherrill, T. E. (1999). Mean and Variance of Truncated Normal Distributions. *The American Statistician*, 53, 357-361.
- [5] Brook, D. and Evans, D. A. (1972). An Approach to the Probability Distribution of CUSUM Run Length. *Biometrika*, 40, 539-549.
- [6] Chang, C. T. and Gan, F. F. (1994). Optimal Designs of One-sided EWMA Charts for Monitoring a Process Variance. *Journal of Statistical Computation* and Simulation, 49, 33-48.

- [7] Chatfield C. (2004). The Analysis of Time Series An Introduction, Chapman & Hall/CRC.
- [8] Crowder, S. V. (1987). A Simple Method for Studying Run Length Distributions of Exponentially Weighted Moving Average Control Charts. *Technometrics*, 29, 402-407.
- [9] Gan, F. F. (1998). Designs of One-sided and Two-sided Exponential EWMA Charts. Journal of Quality Technology, 30, 55-69.
- [10] Hawkins, M. D. and Olwell, H. D. (1998). Cumulative Sum Charts and Charting for Quality Improvement, New York: Springer-Verlag.
- [11] Hu, S. J. and Roan, C. (1996). Change patterns of time series-based control charts. *Journal of Quality Technology*, 28, 302-312.
- [12] Hunter, J. S. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology, 18, 203-210.
- [13] Huwang, L., Huang, C. and Wang, Y. (2010). New EWMA Control Charts for Monitoring Process Dispersion. *Computation Statistics and Data Analysis*, 54, 2328-2342.
- [14] Jiang, W., Shu, L. and Apley, W. D. (2008). Adaptive CUSUM procedures with EWMA-based shift estimators. *IIE Transactions*, 40, 992-1103.
- [15] Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, Second Edition, New York: Academic Press.

- [16] Knoth, S. (2005). Fast Initial Response Features for EWMA Control Charts. Statistics Papers, 46, 47-64.
- [17] Li, Z. and Wang, Z. (2010). Research Article Adaptive CUSUM of Q chart. International Journal of Production Research, 48, 1287-1301.
- [18] Lucas, J. M. and Crosier, R. B. (1982). Fast Initial Response for CUSUM Quality-Control Schemes: Give Your CUSUM a Head Start. *Technometrics*, 24, 199-205.
- [19] Lucas, J. M. and Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. *Technometrics*, **32**, 1-29.
- [20] Luceño, A. (1999). Average run lengths and run length probability distributions for cuscore charts to control normal mean. *Journal Computational Statistics & Data Analysis*, **32**, 177-195.
- [21] Luceño, A. and Puig-pey, J. (2000). Evaluation of the Run Length Probability Distribution for CUSUM Charts: Assessing Chart Performance. *Technometrics*, 42, 411-416.
- [22] Montgomery, C. D. (2005). Introduction to Statistical Quality Control Fifth Edition, John Wiley & Sons, Inc.
- [23] Moustakes, G.V. (1986). Optimal Stopping Times for Detecting Changes in Distributions. The Annals of Statistics, 14, 1379-1387.
- [24] Roberts, S. W. (1959). Control Chart Tests based on Geometric Moving Average. *Technometrics*, 1, 239-250.

- [25] Robinson, P. B. and Ho, T. Y. (1978). Average Run Lengths of Geometric Moving Average Charts by Numerical Methods. *Technometrics*, 20, 85-93.
- [26] Shu, L. and Jiang, W. (2006). A Markov Chain Model for the Adaptive CUSUM Control Chart. Journal of Quality Technology, 38, 135-147.
- [27] Shu, L., Jiang, W. and Tsui, K. (2008). A Weighted CUSUM Chart for Detecting Patterned Mean Shifts. *Journal of Quality Technology*, 40, 194-213.
- [28] Shu, L., Jiang, W. and Wu, S. (2007). A One-sided EWMA Control Chart for Monitoring Process Means. Communication in Statistics - Simulation and Computation, 36, 901-920.
- [29] Shu, L., Jiang, W. and Wu, Z. (2008). Adaptive CUSUM Procedures with Markovian Mean Estimation. *Computational Statistics & Data Analysis*, **52**, 4395-4409.
- [30] Shumway, R. H. and Stoffer, D. S. (2006). Time Series Analysis and its Application with R Examples, New York: Springer Science.
- [31] Steiner, H. S. (1999). EWMA Control Charts with Time-Varying Control Limits and Fast Initial Response. *Journal of Quality Technology*, **31**, 75-86.
- [32] Waldmann, K. H. (1986). Bounds for the Distribution of the Run Length of the Geometric Moving Average Charts. Applied Statistics, 35, 151-158.