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Abstract

Several control schemes for monitoring process mean shifts, including cumulative

sum (CUSUM), weighted cumulative sum (WCUSUM), adaptive cumulative sum

(ACUSUM) and exponentially weighted moving average (EWMA) control schemes,

display high performance in detecting constant process mean shifts. However, a vari-

ety of dynamic mean shifts frequently occur and few control schemes can efficiently

work in these situations due to the limited window for catching shifts, particularly

when the mean decreases rapidly. This is precisely the case when one uses the resid-

uals from autocorrelated data to monitor the process mean, a feature often referred

to as forecast recovery. This thesis focuses on detecting a shift in the mean of a

time series when a forecast recovery dynamic pattern in the mean of the residuals is

observed. Specifically, we examine in detail several particular cases of the Autore-

gressive Integrated Moving Average (ARIMA) time series models. We introduce a

new upper-sided control chart based on the Exponentially Weighted Moving Average

(EWMA) scheme combined with the Fast Initial Response (FIR) feature. To assess

chart performance we use the well-established Average Run Length (ARL) criterion.

A non-homogeneous Markov chain method is developed for ARL calculation for the

proposed chart. We show numerically that the proposed procedure performs as well
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or better than the Weighted Cumulative Sum (WCUSUM) chart introduced by Shu,

Jiang and Tsui (2008), and better than the conventional CUSUM, the ACUSUM and

the Generalized Likelihood Ratio Test (GLRT) charts. The methods are illustrated

on molecular weight data from a polymer manufacturing process.

Key Words: Autocorrelated data; Autoregressive integrated moving average;

Average run length; Fast initial response; Adaptive CUSUM; Zero-state; Steady-state;

Dynamic mean shift; Fault signature; Forecast recovery; Monte Carlo simulation; non-

homogeneous Markov chain; One-sided EWMA; Smoothing parameter; Transition

probability matrix; Weighted CUSUM

v



Contents

Abstract viii

1 Fault Signatures from Autocorrelated Processes 1

1.1 Process Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Autocorrelated Processes and the Forecast Recovery Phenomenon . . 2

1.3 Autoregressive Integrated Moving Average Models . . . . . . . . . . . 3

1.4 Some Typical Autoregressive Integrated Moving Average Models . . . 5

1.5 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Control Charts for Monitoring Autocorrelated Data 11

2.1 Cumulative Sum (CUSUM) . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Weighted CUSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Adaptive CUSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Zero-State, Steady-State and Fast Initial Response (FIR) Feature . . 15

3 The Exponentially Weighted Moving Average Schemes and Enhance-

ments 17

3.1 The Two-Sided EWMA . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



3.2 The Upper-Sided EWMA . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Markov Chain Approach for Average Run Length (ARL) Calculation 19

3.4 Numerical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 The Effect of the Smoothing Parameter λ . . . . . . . . . . . 27

3.5.2 The Effect of the Fast Initial Response . . . . . . . . . . . . . 29

4 Comparing the Upper-Sided EWMA with the Weighted CUSUM 40

4.1 The Weighted CUSUM Scheme . . . . . . . . . . . . . . . . . . . . . 40

4.2 Zero-State ARL Comparison . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Steady-State ARL Comparison . . . . . . . . . . . . . . . . . . . . . 43

4.4 Improved Monte Carlo Simulation for the

WCUSUM Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Monitoring Molecular Weight in a Polymer Manufacturing Process 53

5.1 The Molecular Weight Data . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 ARIMA Fit and Residuals . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Simulated Cases with Dynamic Mean Shifts . . . . . . . . . . . . . . 58

5.3.1 Performance Comparison of Zero-State Case . . . . . . . . . . 60

5.3.2 Performance Comparison of Steady-State Case . . . . . . . . 61

6 Conclusions 65

A Autoregressive Integrated Moving Average Models 68

B Markov Chain Method for Average Run Length Calculation Under

vii



a Dynamic Mean 73

B.1 ARL Calculation for the Two-Sided EWMA . . . . . . . . . . . . . . 73

B.2 ARL Calculation for the Upper-Sided EWMA . . . . . . . . . . . . . 77

B.3 ARL Calculation for the One-Sided CUSUM . . . . . . . . . . . . . . 80

C Monte Carlo Simulation Algorithm of ARIMA Models for the WCUSUM

Control Scheme 82

Bibliography 85

viii



List of Tables

1.1 Illustrative ARIMA Models . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Zero-State ARL Comparisons Between the Upper-Sided EWMA and

the Two-Sided EWMA ( λ = 0.2 ) . . . . . . . . . . . . . . . . . . . . 24

3.2 Zero-State ARL Comparisons Between the Upper-Sided EWMA and

the Two-Sided EWMA ( λ = 0.1 ) . . . . . . . . . . . . . . . . . . . . 25

3.3 Zero-State ARL Comparisons Between the Upper-Sided EWMA and

the Two-Sided EWMA (λ = 0.05) . . . . . . . . . . . . . . . . . . . . 26

3.4 The Upper-Sided EWMA Zero-State ARL for Model 1, 2 and 3 with

Different Head Starts ( λ = 0.2 ) . . . . . . . . . . . . . . . . . . . . 31

3.5 The Upper-Sided EWMA Zero-State ARL for Model 4, 5 and 6 with

Different Head Starts ( λ = 0.2 ) . . . . . . . . . . . . . . . . . . . . 32

3.6 The Upper-Sided EWMA Zero-State ARL for Model 1, 2 and 3 with

Different Head Starts ( λ = 0.1 ) . . . . . . . . . . . . . . . . . . . . 33

3.7 The Upper-Sided EWMA Zero-State ARL for Model 4, 5 and 6 with

Different Head Starts ( λ = 0.1 ) . . . . . . . . . . . . . . . . . . . . 34

3.8 The Upper-Sided EWMA Zero-State ARL for Model 1, 2 and 3 with

Different Head Starts ( λ = 0.05 ) . . . . . . . . . . . . . . . . . . . . 35

ix



3.9 The Upper-Sided EWMA Zero-State ARL for Model 4, 5 and 6 with

Different Head Starts ( λ = 0.05 ) . . . . . . . . . . . . . . . . . . . . 36

4.1 Zero-State ARL Comparisons Between the Upper-Sided EWMA and

the WCUSUM for Models 1, 2 and 3 . . . . . . . . . . . . . . . . . . 45

4.2 Zero-State ARL Comparisons Between the Upper-Sided EWMA and

the WCUSUM for Models 4, 5 and 6 . . . . . . . . . . . . . . . . . . 46

4.3 Steady-State ARL Comparisons Between the Upper-Sided EWMA and

the WCUSUM for Six Models . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Simulated Zero-State ARL of the WCUSUM (λ = 0.2) . . . . . . . . 52

5.1 Polymer Molecular Weights from Montgomery (2005, p. 482) . . . . . 54

5.2 Conditional Least Squares Estimation . . . . . . . . . . . . . . . . . . 55

5.3 Zero-State Simulated Data and the Responses of Upper-Sided EWMA,

WCUSUM and CUSUM Statistics (µ = 1, φ = 0.57688, θ = −0.19,

σy = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Steady-State Simulated Data and the Responses of Upper-Sided EWMA,

WCUSUM and CUSUM Statistics (µ = 1, φ = 0.57688, θ = −0.19,

σy = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

x



List of Figures

1.1 ARIMA Forecast Recovery Patterns . . . . . . . . . . . . . . . . . . 8

3.1 The Effect of λ for the Upper-Sided EWMA ARL . . . . . . . . . . . 28

3.2 Zero-State ARL for the Upper-Sided EWMA (λ = 0.2) with FIR . . . 37

3.3 Zero-State ARL for the Upper-Sided EWMA (λ = 0.1) with FIR . . . 38

3.4 Zero-State ARL for the Upper-Sided EWMA (λ = 0.05) with FIR . . 39

4.1 Zero-State ARL Comparisons Between the Upper-Sided EWMA and

the WCUSUM for Six Models . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Steady-State ARL Comparisons Between the Upper-Sided EWMA and

the WCUSUM for Six Models . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Molecular Weight Data and Autocorrelation Plots . . . . . . . . . . . 56

5.2 Residual Plots from ARIMA(1,0,1) Fit . . . . . . . . . . . . . . . . . 58

5.3 Shewhart Chart Plot of the Residuals . . . . . . . . . . . . . . . . . . 59

5.4 Zero-State Control Charts with Shift µ = 1, σy = 1 . . . . . . . . . . 62

5.5 Steady-State τ = 41 Control Charts with Shift µ = 1, σy = 1 . . . . . 64

xi



Chapter 1

Fault Signatures from

Autocorrelated Processes

1.1 Process Monitoring

One of the most important reasons for monitoring processes, whether manufacturing

or service processes, is that all of them are subject to variability. In general, there

are two kinds of variability: common cause variability and special cause vari-

ability (Hawkins and Olwell 1998). Common cause variability usually comes from

a process itself, such as the machine wear off, while special cause variability always

comes from outside environment factors such as input material change. The statis-

tics process control (SPC) methodologies focus on detecting special cause variability

because reducing common cause always requires more fundamental process changes.

Usually, special cause variability has two categories: transient special cause

and persistent special cause. Transient special cause affects a process or a system
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for a short while without an apparent pattern. For instance, a thunderstorm affects

electrical power for a while. This kind of variability is unpredictable and rarely

happens. Thus, it is very difficult to remove. Persistent special causes affect processes

or systems in a persistent way and follow a pattern. For instance, it may be due to new

operators or new methods involved in a process. This kind of variability happens more

frequently and greatly affects process quality. SPC methodologies focus on detecting

this variability and achieve tangible successes in continuous quality improvement.

Many different situations present persistent special cause variability. In gen-

eral, a fixed persistent drift in the process mean is a simple situation and most of SPC

methodologies can efficiently detect this kind of variability. The more complicated

situation is a dynamic pattern of drift, in which the drift of a process varies over

time. The objective of this thesis is to study some SPC methodologies for dynamic

patterns of drift.

1.2 Autocorrelated Processes and the Forecast Re-

covery Phenomenon

Autocorrelated processes present typically dynamic patterns of drift. One of the

popular methods for monitoring autocorrelated data is the residual chart or the special

cause chart (SCC) (Alwan and Roberts 1988). It works in two steps. At first, a time-

series model is fitted to remove the autocorrelation. Then a conventional control chart

is applied to the model residuals. Although by this process independent residuals are

obtained, however, the mean of the residuals may change over time when a step

shift occurs in the mean of the original series (Shu, Jiang and Tsui, 2008). This
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phenomenon is referred to in the literature as forecast recovery.

In some time series, the forecast recovery phenomenon always occurs. When

the step mean shift of data stream happens, the mean shift of its residuals typically

tends to reduce over time or disappear shortly. In other words, the effect of a mean

shift on the monitoring data stream is short-lived, which suggests a limited window

of opportunity for catching the drift. A variety of specific situations will be discussed

in the next two sections. The approach followed will be based on deriving the mean

of the residuals for different time series models for the original data.

1.3 Autoregressive Integrated Moving Average Mod-

els

Autoregressive integrated moving average (ARIMA) models typically exhibit fore-

cast recovery. An ARIMA model with p AR components, q MA components and d

differences ARIMA(p, d, q) for a time series x1, x2, ... is defined as

xt − µ0 =
θ(B)

(1−B)dΦ(B)
at (1.1)

where B is the back-shift operator, Bxt = xt−1, φ(B) and θ(B) are polynomials of

degrees p and q, respectively, and the a′ts are independent and identically distributed

(IID) white noise with variance σ2
a. Here µ0 represents the mean of the process when

it is operating on target. Without loss of generality, we will take σ2
a = 1. Following the

standard SPC approach, all the parameters are estimated from a historical (hopefully

large) database, usually called Phase I data, gathered when the process was operating

on-target. This can be done employing standard time series methodology (Chatifield
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2004, Shumway and Stoffer 2006). This thesis will not discuss how to estimate the

ARIMA model parameters, and assumes that all the on-target parameters (e.g. µ0,

σ2
a, time series coefficients) are known. When the process is invertible, the residuals

can be written as

yt =
(1−B)dφ(B)

θ(B)
(xt − µ0) (1.2)

If the process is in-control, the mean of the process is µ0 indicating that no drift

occurs, i.e, µ0 = E(xt), t = 1, 2, · · · . Suppose the process mean shifts from µ0 to

µ0 + µ at time τ , where τ is unknown. Then ft = E(xt)− µ0 will be given by

ft =

 0 t = 1, 2, · · · , τ − 1;

µ t = τ, τ + 1, · · ·

where µ 6= 0. In this situation, the residuals can be presented as (see appendix A)

yt = at + ξt

where

ξt =
(1−B)dφ(B)

θ(B)
ft (1.3)

is the mean pattern that takes place in the residuals.

The mean shift ft of xt causes a mean pattern ξt in the residual yt. Consider

the situation where the time series xt follows ARIMA(p, d, q) model with p = 1, d = 0

and q = 1. In this case, taking φ = φ1 and θ = θ1, ξt can be shown to be (see appendix

A)

ξt = E(yt) =

 0 t = 1, 2, · · · , τ − 1;

1−φ+(θ−φ)θt−τ
1−θ µ t = τ, τ + 1, · · ·

(1.4)
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Although the shift ft on the mean of xt is constant, its effect on the mean of the

residuals yt is not, it has a dynamic pattern. The sequence ξt varies over time and

depends on the shift that occurs at time τ . The fault signature, obtained by dividing

the mean of the residual ξt by the shift’s magnitude µ, is

FSt =
ξt
µ
. (1.5)

For our particular case, the fault signature is

FSt =

 0 t = 1, 2, · · · , τ − 1;

1−φ+(θ−φ)θt−τ
1−θ t = τ, τ + 1, · · ·

When time goes to infinity

FS∞ = lim
t→∞

FSt = lim
t→∞

1− φ+ (θ − φ)θt−τ

1− θ
=

1− φ
1− θ

.

The value of FS∞ measures the magnitude of the tendency from the change in mean

µ in the patterned mean of the residuals. If FS∞ is close to 1, the tendency is small.

Otherwise, the mean of the residuals will have a decreasing or increasing tendency.

When FSt < 1, the decreasing tendency indicates some degree of forecast recovery.

1.4 Some Typical Autoregressive Integrated Mov-

ing Average Models

For the purpose of comparing different control chart methods, six ARIMA(1,0,1)

models have been selected for consideration, their (φ, θ) values are presented in Table

1.1. The same models are used by Shu, Jiang and Tsui (2008) to illustrate their

methods. These models cover varying residual mean patterns ξt as seen in Figure 1.1
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where the fault signatures for models 1-6 are plotted when τ = 1 (i.e. the mean shift

occurs from the very beginning) and when τ = 20. The case τ = 1 is referred to as

zero-state while the case τ > 1 is called a steady-state.

Table 1.1: Illustrative ARIMA Models

Model φ θ FS∞

Model 1 1.0 0.9 0

Model 2 0.9 0 0.1

Model 3 0.9 0.5 0.2

Model 4 0.5 −0.5 1/3

Model 5 0.5 0.5 1.0

Model 6 0.2 0.5 1.6

Model 1 with φ = 1 and θ = 0.9 yields a decreasing residual mean pattern

that reduces practically to 0 after 50 time periods. This is a typical case found in

autocorrelated process data. For Model 2 with φ = 0.9 and θ = 0, the residual mean

shows a constant pattern after the change occurs at τ , staying at 10% of the mean

shift in the original data. As with Model 1, Model 3 with φ = 0.9 and θ = 0.5, the

residual mean also shows a decreasing pattern but the fall is much faster and leaves

off at 20% of the mean shift in the original data. Typical of cases where θ < 0, Model

4 with φ = 0.5 and θ = −0.5 produces an alternating mean residual pattern which

settles down to 1/3 of the mean shift in the original time series after about 10 time

periods following the change. Model 5 with φ = 0.5 and θ = 0.5 does not exhibit any

forecast recovery, the residual mean is constant and equal to the original mean shift

in the time series. For Model 6 with φ = 0.2 and θ = 0.5, the residual mean pattern

shows the opposite of forecast recovery since, rather than decreasing, the residual
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mean increases quickly from the original shift to 1.6 times that shift. It takes only

about 10 time periods to reach its stable value.

For Models 5 and 6, most control chart methods will work well in detecting the

shift in the original time series data since the mean residual pattern stays on same

or enlarged level of the original mean shift. However, it is much more challenging

to detect the shift for Models 1-4 due to the magnitude of the forecast recovery and

limited window to catch the mean pattern in the residuals.
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Figure 1.1: ARIMA Forecast Recovery Patterns
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1.5 Thesis Objectives

The focus of this thesis is on control chart methods that are effective to detect mean

shifts in time series data when the residuals exhibit forecast recovery. The specific

objectives are:

(a) To develop in detail the upper-sided exponentially weighted moving average

method for mean pattern detection in residuals from time series.

(b) To calibrate the method by developing the necessary numerics to calculate av-

erage run lengths.

(c) To compare the proposed method to the weighted CUSUM developed by Shu,

Jiang and Tsui (2008).

(d) To illustrate the methods with a real data set.

The thesis is organized as follows. Chapter 1 presents a discussion of the

main concepts and formulas useful to construct control charts for autocorrelated data

based on residuals. These include forecast recovery, fault signature and their expres-

sion for ARIMA(1,0,1) time series models. A detailed discussion of several control

chart methods for autocorrelated data is presented in Chapter 2. These include the

conventional CUSUM and the weighted CUSUM. The concepts of zero-state, steady-

state and fast initial response are also presented. The main contribution in the thesis

is presented in Chapter 3 where the upper-sided EWMA control chart is discussed for

autocorrelated process data. The analysis includes a detailed discussion of average

run length calculation using a non-homogeneous Markov chain, enhancements and
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performance analysis. Chapter 4 compares the performance between the proposed

upper-sided EWMA with FIR feature control scheme and WCUSUM control scheme,

including zero-state and steady-state situations. In addition, an improved Monte

Carlo simulation approach for the WCUSUM control scheme is another contribution

in this thesis. An illustrative example using industrial data from Montgomery (2005)

on polymer molecular weights is presented in Chapter 5. The main conclusions and

recommendations of the work are presented in Chapter 6. Appendices with several

derivational details are included.
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Chapter 2

Control Charts for Monitoring

Autocorrelated Data

Two challenging problems often encountered in quality control are the detection of

changes in the mean when: a) a small persistent shift, which is less than half standard

deviation, occurs, and b) when a “forecast recovery” with a dynamic mean shift

pattern takes place. The second pattern in the mean is particularly difficult to detect.

The main difficulty here stems from the fact that the standard methods do not react

very quickly to this type of mean change, in fact, in many cases they do not react

at all. However, the challenges for the two situations are different, and strategies

should be different too. The difficulty with a persistent small mean shift is that the

random variability is larger than the mean shift and the mean shift will be hidden

in random variability. In essence, the old engineering problem of detecting a weak

signal buried in noise. As for forecast recovery, the problem is the “limited window”

for catching mean shift. If the opportunity is missed, it will be impossible to detect
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the mean shift later on. Several methodologies can be applied to detect mean shifts.

Each methodology has its pros and cons for any particular case.

2.1 Cumulative Sum (CUSUM)

Walter Shewhart’s Xbar and range (R) charts have been widely used for monitoring

processes since 1931. However, the Xbar and R charts are not effective in detecting

small to moderate shifts even if these shifts persist, mainly because these charts have

no memory. The cumulative sum (CUSUM) chart was proposed to detect persistent

process mean shifts. The main idea of the CUSUM is to use the cumulative sum of

the sequence of residuals. If the CUSUM statistic falls within the decision interval,

the process is considered in-control. If not, one takes the view that a process mean

shift has occurred. The number of observations from the starting point up to the

point at which the decision interval is crossed is called the run length. The run

length is a random variable and its mean is called the average run length (ARL).

For a comprehensive discussion about these and many other issues, see Montgomery

(2005).

The upper-sided CUSUM statistic, denoted by WU
t , is defined as

WU
t = max{0,WU

t−1 + (yt − k)} (2.1)

where yt is the residual value at sampling period t and k is the reference value of

the chart. When WU
t > h, it signals an upward out-of-control where h is the selected

upper control limit for the chart. The lower-sided CUSUM statistic, denoted by WL
t ,
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is similarly defined as

WL
t = min{0,WL

t−1 + (zt + k)} (2.2)

where zt is the residual value at sampling period t. When WL
t < −h, it signals a

downward out-of-control. Assuming yt = −zt, it will be easy to see

WU
t = −WL

t (2.3)

ARL0 represents the average run length when the process is in control, i.e., no

mean shift occurs for the process. Usually, the CUSUM is designed by picking first

an acceptably large ARL0 and then determining h and k values that achieve such

ARL0. In this thesis we work with ARL0 = 400. The run length distribution of the

CUSUM can be calculated by the Markov chain approach as shown in Appendix B.

The CUSUM method treats the whole sequence in the same way, so it does not make

any adjustment for detecting dynamic patterns in the residual mean shifts (Hu 1996).

2.2 Weighted CUSUM

Shu, Jiang and Tsui (2008) introduced their weighted CUSUM (WCUSUM) chart.

Through numerical ARL calculations, they show that the WCUSUM is better than

the traditional CUSUM, the Adaptive CUSUM (ACUSUM) and the Generalized Like-

lihood Ratio Test (GLRT) in detecting forecast recovery patterned residual mean

shifts. When forecast recovery occurs, the residual yt mean shifts quickly reduce to

a low level or diminish. It is thus natural to think that putting more weight on

early deviations yt − k after a shift occurs will enhance the ability to detect detect-

ing dynamic mean shifts. The main idea of Shu’s WCUSUM is to use a data-driven
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estimator of the feared signal to update the weights. The upper-sided WCUSUM

statistic is defined as

Wt = max{0,Wt−1 + (yt − k)|Qt|} (2.4)

where

Qt = (1− λ)Qt−1 + λyt (2.5)

and 0 < λ < 1. Note that the statistic Qt is an exponentially weighted moving average

(EWMA) scheme, which is simple and efficient (Hunter, 1986). Qt plays a very

important role in detecting patterned mean shifts because its values vary according

to the sequence of residuals, thus it displays some adaptability to the evolving pattern.

Shu, Jiang and Tsui (2008) use λ = 0.2.

2.3 Adaptive CUSUM

When designing the traditional CUSUM chart, the optimal reference value k is set

at the half size of process mean shift magnitude, i.e., the performance of CUSUM

charts is most efficient when the process mean shift magnitude is 2k (Moustakides

1986). Due to varying mean shift or unknown mean shift for the process, it is difficult

to choose an optimal reference value k. The adaptive CUSUM overcomes this defect

by using an adaptive way to change k. The core idea of ACUSUM is to adjust the

reference value k in an adaptive way based on the estimation of the current process

mean level (Shu, Jiang and Wu, 2008; Shu, Jiang and Tsui, 2008).

To maintain a pre-defined in-control ARL for the upper-sided CUSUM chart,

the threshold h, or the decision interval, varies with the reference value k. Shu and
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Jiang (2006) established the relationship between the threshold and the reference

value as

h(k) ≈ ln[1 + 2k2ARLU0 + 2.332k]

2k
− 1.166

The mean shift is unknown and its estimate Qt (Li and Wang 2010) can be used for

the reference value. Note that the estimate Qt can be close to zero when the process

mean shift is estimated. Usually, the model focuses on detecting mean shifts larger

than δ+min, so δ+min/2 can be used as the reference value whenever Qt < δ+min.

Thus, ACUSUM is defined as

WU
t = max

{
0,WU

t−1 +
yt − δ̂+t /2
h(δ̂+t /2)

}
(2.6)

where

δ̂+t = max{δ+min, Qt}.

2.4 Zero-State, Steady-State and Fast Initial Re-

sponse (FIR) Feature

There are different ARLs for some control charts, depending on when the process

experiences an out of control excursion. The zero-state operation refers to situations

where the process mean shift occurs from the beginning, i.e. τ = 1. The steady-

state operation refers to situations where the process mean shift occurs at some time

later, i.e. τ > 1. Correspondingly, the zero-state ARL refers to the average run

length calculated when the process is in the zero-state, while the steady-state ARL

is the one obtained when the process is in one of the steady-states. Typically in the

ARL calculations one takes W0 = 0.
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The Fast initial response (FIR) or head start (HS) feature refers to sit-

uations where the initial value of the control statistic is a percentage of the upper

control limit h such as 50%. The objective here is to accelerate the control statistic to-

wards the control limit when a shift to out-of-control takes place in process operation

(Knoth, 2005).
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Chapter 3

The Exponentially Weighted

Moving Average Schemes and

Enhancements

3.1 The Two-Sided EWMA

Roberts (1959) introduced the exponentially weighted moving average (EWMA) con-

trol scheme and noted its good performance in detecting a small mean shift in a

process. In view of its weighting structure, the EWMA chart has alternatively been

referred to as a geometric moving average chart. The chart has been applied

largely to independent data with fixed shifts in the mean and has been studied ex-

tensively, for instance Robinson and Ho (1978), Hunter (1986), Waldmann (1986),

Crowder (1987), Lucas and Saccucci (1990), and Abbasi (2010). A useful enhance-

ment to the EWMA control scheme is the fast initial response (FIR) feature, which
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makes the scheme more sensitive to the forecast recovery patterned mean shifts dis-

cussed in this thesis.

Lucas and Saccucci (1990) furthered the study of the standard two-sided

EWMA scheme and proposed a homogeneous Markov chain approach to calculate

the chart’s average run length. Their extensive numerical evidence reveals that the

EWMA control scheme has average run length properties that are similar to those

of the cumulative sum (CUSUM) control scheme. As we will see later, the homo-

geneous Markov chain method of Lucas and Saccucci (1990) is a special case of the

more general non-homogeneous Markov chain approach developed in this thesis for

the dynamic mean case.

The chart statistic is given by

Wt = (1− λ)Wt−1 + λyt, t = 1, 2, 3, ... (3.1)

where λ is the smoothing parameter (0 < λ ≤ 1), W0 is the initial value of the

statistic (typically set at 0) and yt is the observed data at the t-th sampling period, in

our case the observed residual. Usually the residuals are standardized so that when

the process operates on target they have a mean of 0 and a variance of 1. As a result,

if the residuals are normally distributed so will be Wt with mean 0 when the process

operates on-target, thus the natural control limits are ±h where h > 0. The role of

λ will be examined in more detail later when the numerical work is presented

Different approaches are available to design and calibrate a control chart. In

this thesis we follow the method most widely used which is based on control limits

and average run lengths. We do this in combination with the FIR feature to enhance

performance.
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3.2 The Upper-Sided EWMA

In practice, one usually looks for an upward mean shift or a downward mean shift.

This leads to working with the one-sided EWMA, one chart for shifts above the target

process mean (upper-sided) and one for shifts to values below the target mean (lower

sided). This tuning of the method makes the chart more efficient.

Of particular interest in this thesis is the upper-sided EWMA. The relevant

statistic is defined as

W+
t = max{0, (1− λ)W+

t−1 + λyt}, t = 1, 2, 3, ... (3.2)

where λ and yt are as for the two-sided EWMA, and W+
0 is typically set at 0. The

chart is intended for detection of shifts in the process mean to values larger than the

target mean. By taking the maximum in eqn. (3.2), we are effectively adopting a

resetting mechanism that prevents the statistic from venturing into negative values

which are of no relevance when one aims to detect increases in the mean. Clearly

W+
t ≥ 0 for all t and large values of the statistic are indicative of a possible upward

jump in the mean. Thus we need only an upper control limit h > 0. When W+
t > h,

an out-of-control signal is issued associated with an upward trend in the process mean.

3.3 Markov Chain Approach for Average Run Length

(ARL) Calculation

As noted earlier, the average run length (ARL) is the key measure used in the

quality control literature to assess the performance of a control chart and to compare
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charts. It is defined as

ARL = E(RL),

where RL is the run length, that is, the number of process runs until the chart jumps

out of the control limit(s) for the first time across sampling periods. In other words,

the ARL is the number of runs one would expect to observe on the average until the

chart signals for the first time an out-of-control excursion in process operation.

Two types of ARLs are of interest. One is the in-control ARL, denoted by

ARL0, which is the expected number of runs until the chart signals when the process

operates on-target. In other words, the average number of runs until a false alarm

occurs. This is an undesirable call and thus should not happen very often. In practice,

the control limits are selected in such a way that ARL0 is large, ARL0 = 400 or 500

in this thesis. The other type of ARL, denoted by ARL1 is the average number of

runs until the chart signals when indeed the process has moved to an out-of-control

state. Naturally efficient charts are those for which ARL1 values are small. ARL1 is

referred to as the out-of-control ARL.

As discussed earlier, the aim is to use the residuals y1, y2, y3, ... from a time

series model to build control charts for the mean µ of the original time series mea-

surements x1, x2, x3, ... as proposed and illustrated by Shu, Jiang and Tsui (2008).

However, unlike the standard setting for control charts where a step change in the

mean of the measurements used in the monitoring occurs, a dynamic pattern in the

mean ξt of yt is shown as described by the forecast recovery eqn. (1.3). Following Shu,

Jiang and Tsui (2008), we will assume that the residuals y1, y2, y3, ... are independent

and normally distributed with a common variance, yt ∼ N(ξt, σ
2). When the process

operates in-control, ξt = 0 for all t.
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Appendix B contains a detailed presentation on run length distribution and

average run length calculations. Non-homogeneous and homogeneous Markov chains

are involved. We focus on the equations for average run length calculation, a summary

of these equations is presented here.

Two-Sided EWMA. From Appendix B, the average run length is obtained from a

non-homogeneous Markov chain as

ARL1 =
∞∑
n=1

np′0

(
n−1∏
l=1

P l

)
(I − P n)1, (3.3)

where P t is the (2m + 1) × (2m + 1) transition probability matrix from sampling

period t− 1 to t, given by

P
(t)
ij = Φ

(
1

σ

{
L

λ
[2(j − (1− λ)i) + 1]− h− L− ξt

})
−Φ

(
1

σ

{
L

λ
[2(j − (1− λ)i)− 1]− h− L− ξt

})
, (3.4)

where m is a positive integer (see eqn. (B.3)), L = n/(2m + 1) and Φ(·) is the

standard normal distribution function. In eqn. (3.3), p0 is the (2m + 1) × 1 chain’s

initial probability vector usually taken to have 1 at entry m + 1 and 0s at every

other entry, and 1 is the (2m + 1) × 1 vector of 1s. Strictly speaking the above

are approximations with the right-hand-side of (3.3) converging to the exact ARL as

m → ∞. In the numerical cases discussed here, using m = 50 for a total of about

100 states in the chain gives satisfactory results. When the process is on target, the

mean in the original x data remains constant at µ = µ0, as a result ξt = 0 for all t.

In this case the Markov chain is homogeneous and the ARL can be worked out in

closed form resulting in

ARL0 = p′0(I − P 0)
−11, (3.5)

21



where P 0 is the (2m+ 1)× (2m+ 1) common transition probability matrix obtained

from (3.4) by taking ξt = 0.

Upper-Sided EWMA. As discussed in Appendix B, ARL equations (3.3) and (3.5)

also apply to this case but with P t replaced with the m ×m transition probability

matrix with entries

P
(t)
ij =


Φ
(
1
σ

{
L
λ

[2(1− (1− λ)(i− 1))− 1]− ξt
})
, j = 1;

Φ
(
1
σ

{
L
λ

[2(j − (1− λ)(i− 1)− 1]− ξt
})

−Φ
(
1
σ

{
L
λ

[2(j − (1− λ)(i− 1)− 3]− ξt
})
, j ≥ 2.

(3.6)

Here the chain’s initial probability vector p0 is the m×1 vector usually taken to have

1 in the first entry and 0s at every other entry, and 1 is the m × 1 vector of 1s. In

this case, m = 100 gives satisfactory results for all the numerical cases considered.

3.4 Numerical Performance

We focus now on the numerical ARL performance of the two-sided and the upper-

sided EWMA charts in detecting dynamic changes in the mean. The particular

scenarios considered are the 6 ARIMA(1,0,1) time series models detailed in Table

1.1. The ARL results are presented in Tables 3.1-3.3. The specifics of the numerical

work were as follows.

• The in-control mean for the original x values was set at µ0 = 0 and the variance

at σ2 = 1.

• Upward step changes in µ from µ0 = 0 to µ1 were considered ranging from µ1 = 0.1

to µ1 = 4.0, the change taking place at τ = 1 (the zero-state situation).

22



• The above step changes in µ induced dynamic changes in the mean ξt of the y

residuals, calculated from the forecast recovery eqn. (1.4) and graphed in the

upper plot of Figure 1.1.

• The in-control mean was set at ARL0 = 400 and was calculated using eqn. (3.5).

The control limit h was obtained iteratively until ARL0 was close enough to its

set value of 400.

• The out-of-control average run length ARL1 was calculated using eqn. (3.3). The

number of terms kept in the series was 5000, this number of terms gave stable

results.

• Three values of the smoothing parameter were used, namely λ = 0.2, 0.1 and 0.05,

one table for each value of λ. The default value typically used is λ = 0.1.

An examination of Tables (3.1)-(3.3) reveals the following trends.

(1) Perhaps the most notable feature is the superiority of the upper-sided EWMA.

(2) For small jumps in µ, small λ produces slightly better results, i.e. smaller ARL1

values, while the opposite occurs for large jumps in µ.

(3) Comparing Models 1 and 3, we can see that for both EWMAs, the lower the fast

recovery falls, the larger the ARL1, i.e. the longer it takes to signal the change.

(4) The best performance for both methods is shown in Model 6 where, one can

see from the upper plot in Figure 1.1, the mean of the residuals exhibits an

increasing pattern, somewhat the opposite of fast recovery.
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3.5 Enhancements

3.5.1 The Effect of the Smoothing Parameter λ

To facilitate understanding the effect of λ, consider the two-sided EWMA statistic

from eqn. (3.1). Expanding the right-hand-side recursively leads to

Wt = (1− λ)Wt−1 + λyt = λ
t−1∑
i=0

(1− λ)iyt−i + (1− λ)tW0, (3.7)

where yt ∼ N(ξt, σ
2), W0 = 0 and 0 < λ ≤ 1. Hence,

E(Wt) = λ
t−1∑
i=0

(1− λ)iξt−i, V ar(Wt) = λ2

(
t−1∑
i=0

(1− λ)2i

)
σ2 =

1− (1− λ)2t

1− (1− λ)2
λ2σ2,

from which we can see that limt→∞ V ar(Wt) = λσ2/(2− λ) for 0 < λ ≤ 1.

Eqn. (3.7) shows clearly that Wt is a weighted average of the current and

previous residuals yt, yt−1, ..., y1. Moreover, the weights are determined entirely by

the smoothing parameter λ. It is clear that the smaller the value of λ, the smaller the

weight of the current residual thus the greater the impact of the previous residuals. In

other words, small λ translates into more weight for the “history” Wt−1. One would

expect therefore that a persistent small shift in µ will be more effectively detected

using a small λ.

With this in mind, consider the performance of the upper-sided EWMA chart.

Figure 3.1 contains graphs of the ARL for three values of λ, namely λ = 0.2, 0.1 and

0.05, and for each of the 6 ARIMA(1,0,1) time series models from Table 1.1. Other

than Model 2, for all models the graphs show that a chart with small λ detects small

mean shifts faster, while large mean shifts are more effectively detected by charts with

large λ. The pattern for Model 2 shows somewhat similar performance at small and
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large mean shifts but a better performance for charts with small λ for mean jumps

of moderate size.

3.5.2 The Effect of the Fast Initial Response

Lucas and Saccucci (1990) put forward the concept of fast initial response (FIR)

for the two-sided EWMA in the context of step shifts in process mean. They showed

numerically that substantive increases in chart efficiency can result when the mean

shift occurs early on in process operation. We expect that even a more dramatic

impact will be felt for the fast recovery mean patterns considered here.

The basic idea of the FIR feature is that, rather than starting the chart at

W0 = 0. it should start at some other value. This will give an initial boost to the

chart. We will discuss the FIR feature for the upper-sided EWMA, the chart that

tends to perform better compared to the two-sided EWMA. With h as the upper

control limit, i.e. [0, h] as the decision interval, the chart will have initial value

W+
0 = ph,

where 0 ≤ p ≤ 1. By working with the respective percentage, we say that the chart

is given a head start of 100p%.

The method was applied to the upper-sided EWMA for the 6 ARIMA(1,0,1)

models and λ values that have been discussed so far. The numerical results are

tabulated in Tables 3.4-3.9. The same results are displayed graphically in Figures

3.2-3.4. Each table contains the results for 3 time series models, one value of λ and

4 head start values, namely 0% (the case of W+
0 = 0 that has been considered so

far), 25%, 50% and 75%. The main patterns noted from the tables and figures are as
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follow.

(1) For all 6 models, substantive improvements in ARL are noted, particularly for

large values of the mean shift.

(2) In general, the larger the head start, the better the chart performs.

(3) Note that the control limit h is adjusted for every level of head start. In general,

the greater the head start, the larger the value of h. This should have been

expected since starting from a larger value W+
0 will lead to reach quicker the

control limit h on average even if no change in the process mean occurs, and

thus the value of h has to be increased to keep ARL0 = 400.

(4) The effect of the degree of smoothing λ is somewhat less apparent, perhaps easier

to appreciate or small mean shifts: the greater the head start and the smaller

the value of λ, the better the chart performance.
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Chapter 4

Comparing the Upper-Sided

EWMA with the Weighted

CUSUM

As mentioned in Chapter 2, the WCUSUM has many advantages over other methods

in detecting dynamic mean shifts. However, the WCUSUM also has its own flaws

in some respects, and the upper-sided EWMA is comparable and in many instances

better than the WCUSUM. The following sections will discuss them in detail. In ad-

dition, an improved Monte Carlo simulation approach is developed for the WCUSUM.

4.1 The Weighted CUSUM Scheme

Based on equations (2.4) and (2.5), Shu, Jiang and Tsui (2008) developed an al-

gorithm based on a bivariate Markov chain for calculation of ARLs. It takes the
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random vector (Wt, Qt)
′ as a bivariate Markov chain, and the region (0 ≤ Wt ≤ h,

−∞ < Qt < ∞) or (0 ≤ Wt ≤ h, −L ≤ Qt ≤ L) will be divided into a large

enough number of subregions to construct the transient states of a Markov chain and

associated transition probability. L is chosen to be

L = 8

√
λ

2− λ

designed to cover nearly all the area under the distribution for Qt. Specifically, (0, h)

is divided into m subintervals and (−L,L) is divided into n subintervals, this results

in the region (0 ≤ Wt ≤ h, −L ≤ Qt ≤ L) being divided into mn subregions or rect-

angles. The number mn×mn is the dimension of Markov chain transition probability

matrix. Even if m and n are small or moderate, the problem with this approach is

that mn could be an unacceptable large number for the dimension of a matrix to cal-

culate the ARL by the non-homogeneous Markov chain equation (B.5). As discussed

in Appendix B, equation (B.5) requires many transition matrix calculations and the

large dimension for the transition probability matrix will take a long time to com-

pute the ARL. Thus, it is very time consuming to use the Markov chain approach to

compute the WCUSUM ARL for dynamic mean shift models (Luceño, 1999), which

is a critical issue of the WCUSUM method. The Monte Carlo simulation approach is

an alternative to compute the WCUSUM ARL.

4.2 Zero-State ARL Comparison

As discussed before, the upper-sided EWMA with FIR exhibits high performance in

detecting dynamic mean shifts. Tables 4.1 and 4.2 show the zero-state ARL results

for the upper-sided EWMA and the WCUSUM. Each table contains the results for
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three different models, two λ values 0.2 and 0.05, each with two head start values

0% and 75% for upper-sided EWMA; while one λ value 0.2 for WCUSUM. Shu,

Jiang and Tsui (2008) pointed out that the optimal k value for the performance of

the WCUSUM chart at a particular mean shift is nearly insensitive to the value of

λ. Hence, the WCUSUM yields similar performance when λ = 0.2 and λ = 0.05.

However, for the upper-sided EWMA, the λ has a greater effect on its performance.

Figure 3.1 illustrates the effect of λ, in essence, smaller λ has a better performance

for small and moderate dynamic mean shifts. It implies that λ = 0.05 is preferable

to λ = 0.2 when detecting small or moderate dynamic mean shifts.

Figure 4.1 is a graphical representation of Tables 4.1 and 4.2. In Figure 4.1,

EWMA 0.2 represents the upper-sided EWMA with λ = 0.2 and HS = 0, while

EWMA 0.2a represents the upper-sided EWMA with λ = 0.2 and HS = 75%. Simi-

larly, EWMA 0.05 and EWMA 0.05a represent the upper-sided EWMA with λ = 0.05

and HS = 0 and the upper-sided EWMA with λ = 0.05 and HS = 75%, respectively.

The best ARL values are in dark font. The main trends noted from the tables and

figures are as follow.

(1) The upper-sided EWMA with FIR featureHS = 75% is better than the WCUSUM

for all six models and is much better when λ = 0.05. However, the WCUSUM

exhibits a tiny advantage over the upper-sided EWMA without the FIR feature.

(2) For Model 1, the upper-sided EWMA with FIR feature HS = 75% displays

much better performance than the WCUSUM while the small λ without the

FIR feature does not show strong improvement. This particular case is very

difficult for other methods to detect the mean drift and the upper-sided EWMA
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with the FIR feature demonstrates its superiority over others.

(3) For models 5 and 6, which do not exhibit forecast recovery, the upper-sided

EWMA with FIR feature also performs well while the WCUSUM deteriorates

a little showing a similar performance to the traditional CUSUM (Shu, Jiang

and Tsui, 2008).

4.3 Steady-State ARL Comparison

The steady-state ARL considers situations where the mean shift occurs at time τ

while the process is in-control before time τ . we consider specifically the situation

where the process goes through 40 in-control periods before a mean shift occurs. Note

that the EWMA’s FIR features do not work well in the steady-state situation because

at the beginning the process is in control and any jump out of the control limit within

the on-target time periods indicate a “false alarm”. Table 4.3 shows the steady-state

ARL data of the WCUSUM and the one-sided EWMAs. It contains the results for

six different models, two λ values 0.2 and 0.05 for the upper-sided EWMA and one λ

value 0.2 for the WCUSUM. The better ARL values are in dark font. Figure 4.2 is a

graphic representation of the results in Table 4.3. We notice the following trends:

(1) For Model 1, 3 and 4, the upper-sided EWMA displays better performance with

λ = 0.05 but worse with λ = 0.2 than the WCUSUM when the mean shifts are

small and moderate. Opposing trends are seen when the mean shifts are large.

(2) For Model 2, the performance of the upper-sided EWMA with λ = 0.05 is

better than the WCUSUM when the mean shifts are small and moderate. The
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Table 4.1: Zero-State ARL Comparisons Between the Upper-Sided EWMA and the

WCUSUM for Models 1, 2 and 3

One-sided EWMA WCUSUM

λ = 0.2 λ = 0.05 λ = 0.2

h=0.930427 h=0.9403742 h=0.3937305 h=0.4075488 h=2.009

φ θ FS∞ µ HS=0 HS=75% HS=0 HS=75%

0 400 400 400 400 400

1.0 0.9 0.0

0.5 352.4097 287.453 348.3569 211.1135 334.7

1 239.727 129.3926 226.7233 55.21723 197.1

1.5 99.4664 29.90202 86.33647 7.702441 63.9

2 17.30417 3.479821 15.66478 2.063106 11.9

2.5 3.97578 1.398912 5.284412 1.517672 3.6

3 2.453088 1.146115 3.777445 1.267915 2.5

4 1.791267 1.016936 2.712547 1.047583 1.7

0.9 0.0 0.1

0.5 288.8332 262.9347 251.3612 214.0163 250.9

1 210.5637 162.6172 164.8451 112.496 163

1.5 154.5738 91.744 112.4883 57.04604 108

2 113.5214 45.82721 79.48576 27.41697 72.8

2.5 82.98712 20.09532 57.82297 12.38766 48.5

3 59.33347 7.839003 43.04917 5.381615 31.6

4 26.0654 1.495663 25.03684 1.423399 11.4

0.9 0.5 0.2

0.5 210.1853 181.6803 164.7222 120.0764 163.4

1 113.8846 75.80774 79.67229 37.11902 76.2

1.5 62.12573 28.00715 43.61337 12.04917 39.1

2 33.08922 9.253565 25.90436 4.45871 20.7

2.5 16.85081 3.136022 16.19567 2.148705 11

3 8.313846 1.488639 10.49245 1.412173 5.9

4 2.52289 1.023507 4.920408 1.052313 2.2

WCUSUM is better for other situations.

(3) For models 5 and 6, which do not have forecast recovery situations, the perfor-

mances are very close when the mean shifts occur at small magnitudes while
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Table 4.2: Zero-State ARL Comparisons Between the Upper-Sided EWMA and the

WCUSUM for Models 4, 5 and 6

One-sided EWMA WCUSUM

λ = 0.2 λ = 0.05 λ = 0.2

h=0.930427 h=0.9403742 h=0.3937305 h=0.4075488 h=2.009

φ θ FS∞ µ HS=0 HS=75% HS=0 HS=75%

0 400 400 400 400 400

0.5 -0.5 0.3

0.5 143.8591 127.2918 103.0238 74.24645 102.5

1 60.92744 44.15928 42.57685 21.65283 41.7

1.5 30.41559 16.63105 24.01777 9.10707 22.5

2 17.49545 6.799724 16.06048 4.750671 14.1

2.5 11.19824 3.106699 11.80882 2.789405 9.4

3 7.692241 1.713781 9.20281 1.806005 6.5

4 3.943643 1.056462 6.205084 1.11139 3.2

0.5 0.5 1.0

0.5 31.30606 23.6089 24.85871 12.07121 24.4

1 9.224577 5.234984 10.45573 4.121855 9.1

1.5 5.036461 2.509976 6.64279 2.506545 5.3

2 3.490132 1.676099 4.912898 1.845717 3.7

2.5 2.712429 1.315492 3.93344 1.485042 2.8

3 2.260535 1.138218 3.310067 1.260337 2.3

4 1.766223 1.016806 2.537577 1.047426 1.7

0.2 0.5 1.6

0.5 14.17267 9.985868 14.24554 6.67562 13.3

1 5.411293 3.219155 6.924856 3.076785 5.7

1.5 3.570137 2.013054 4.819495 2.154942 3.8

2 2.771038 1.532465 3.807826 1.718154 2.9

2.5 2.317208 1.278214 3.209715 1.446575 2.4

3 2.050167 1.131147 2.83244 1.252417 2

4 1.744554 1.01674 2.207273 1.047348 1.6
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the upper-sided EWMA with λ = 0.2 performs a bit better for moderate or

large shifts.

4.4 Improved Monte Carlo Simulation for the

WCUSUM Scheme

As discussed before, the Markov chain approach is extremely difficult to use for cal-

culating the WCUSUM ARL in dynamic mean shift situations. A simple alternative

is Monte Carlo simulation, which is a popular approach to evaluate the performance

of statistical methods. Its advantage is simple and easy to explain, but one of the big

issues is having to do large amounts of calculations. Thus, finding an efficient way is

critical for some cases. The details of how to simulate WCUSUM ARL are presented

in Appendix C.

From Appendix C, it is easy to see that every single simulation of run length

should be efficient, otherwise the 160, 000 simulations will be take an unfeasibly long

time to yield the average run length. The challenge of simulating the run length

algorithm is how to efficiently calculate the weight vector Q since the dimension n

usually is large. Here, a new method is proposed to reduce matrix dimension from

n × n to m × m, where n = km, m is an efficient dimension number for computer

processing.

From Equation (C.2)

Q = Y n×nλ,
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it is easy to see that the entries of vector λ have an interesting pattern, which is

λi+m = λi(1− λ)m.

Divide the n dimension vector λ into k sub-vectors with dimension m, n = km,

then λ can be presented as

λ = {λ1,λ2, · · · ,λk}′,

where m dimension vectors λi and λi+1 have the following relationship

λi+1 = λi(1− λ)m, i = 1, 2, · · · , k − 1

or

λi+1,j = λi,j(1− λ)m, i = 1, 2, · · · , k − 1; j = 1, 2, · · · ,m.

Similarly, the n dimension vector Q can be presented as

Q = {Q1,Q2, · · · ,Qk}′

and the n dimension vector Y can be presented as

Y = {Y 0,Y 1,Y 2, · · · ,Y k−1}′

where

Y i = {yim+1, yim+2, · · · , yim+m}, i = 0, 1, 2, · · · , k − 1.

In addition, we define vector Y ij as

Y ij = {yim+j, yim+j−1, · · · , yim+j−m+1}, i = 1, 2, · · · , k − 1; j = 1, 2, · · · ,m;
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sub-matrix Y i(m×m) as

Y i(m×m) = {Y i1,Y i2, · · · ,Y im}′, i = 1, 2, · · · , k − 1

and sub-matrix Y m×m as

Y m×m =



y1 0 0 · · · 0 0

y2 y1 0 · · · 0 0

· · · · · · 0 0

· · · · · · 0 0

· · · · · · y1 0

ym ym−1 ym−2 · · · y2 y1


Hence, Q1 is

Q1 = Y m×mλ1

and Qi can be presented as

Qi = Qi−1(1− λ)m + Y (i−1)(m×m)λ1, i = 2, 3, · · · , k.

The above algorithm only involves in m×m dimension matrix calculations. Thus, it

is highly efficient by greatly reducing the amount of calculation for simulation.

Table 4.4 displays the simulation results of the WCUSUM created by the

improved Monte Carlo simulation algorithm, which are very close to the results of

Shu, Jiang and Tsui(2008).
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Table 4.4: Simulated Zero-State ARL of the WCUSUM (λ = 0.2)

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

φ 1 0.9 0.9 0.5 0.5 0.2

θ 0.9 0 0.5 −0.5 0.5 0.5

µ

0 400 400 400 400 400 400

0.5 335.5191 251.6611 163.8554 103.0101 24.40665 13.321

1 196.6326 162.7646 76.37638 41.0622 9.15385 5.7194

1.5 60.49983 107.9981 39.09337 22.4485 5.2855 3.77415

2 10.58418 72.70316 20.76481 14.0128 3.6591 2.8822

2.5 3.549444 48.48518 11.07029 9.4156 2.81585 2.37095

3 2.470769 31.52063 5.955244 6.4805 2.2881 2.03915

4 1.705362 11.42681 2.193763 3.22745 1.68 1.64995
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Chapter 5

Monitoring Molecular Weight in a

Polymer Manufacturing Process

Polymer molecular weight is a key quantity that determines many physical properties.

Temperatures for transitions from liquids to waxes to rubbers to solids are examples.

But also important mechanical properties such as stiffness, strength, viscoelasticity,

toughness and viscosity. For instance, it is well known that polymer strength (S)

increases with molecular weight (M) through the functional equation

S = S∞ −
A

M
,

where S∞ is the ceiling strength and A is a constant. For a polymer to be use-

ful, it must have mechanical properties sufficient to bear design loads. In polymer

manufacturing, molecular weight is one of the key quality indicators monitored.

In this chapter we examine molecular weight data from a polymer manufactur-

ing process and illustrate all the steps involved in setting up control charts to monitor

the mean molecular weight. The analysis begins with an exploration of the available
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Table 5.1: Polymer Molecular Weights from Montgomery (2005, p. 482)

2048 2025 2017 1995 1983 1943 1940 1947 1972 1983 1935 1948

1966 1954 1970 2039 2015 2021 2010 2012 2003 1979 2006 2042

2000 2002 2010 1975 1983 2021 2051 2056 2018 2030 2023 2036

2019 2000 1986 1952 1988 2016 2002 2004 2018 2002 1967 1994

2001 2013 2016 2019 2036 2015 2032 2016 2000 1988 2010 2015

2029 2019 2016 2010 2006 2009 1990 1986 1947 1958 1983 2010

2000 2015 2032

data to establish the extent of autocorrelation. Once any problematic observations

are removed, the data are taken to be as Phase I Data produced under on-target

operation, and the model parameters are estimated and the charts calibrated. The

estimated process parameters are then used to simulate data with out-of-control ex-

cursions to illustrate the use of the charts. Graphs and numerical results are reported

to aid interpretation.

5.1 The Molecular Weight Data

Montgomery (2005, p. 482) reports molecular weight measurements from a polymer

manufacturing process. In total, 75 measurements were collected on a polymer, mea-

surements were gathered every 2 hours. The data are reproduced in Table 5.1 (read

across from left to right, then down).

The top-left plot in Figure 5.1 contains a run plot of the data. No obvious

unusual observations are noted. The clustering of neighboring observations looks
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somewhat stronger than for independent data. No apparent trend or seasonality is

shown.

A scatter plot of xt vs. xt−1 is displayed in the top-right plot of Figure 5.1. It

is clear that consecutive molecular weights are positively correlated. A more thorough

exploration of the correlation structure is shown in the bottom-left plot of Figure 5.1

where the autocorrelation function for the molecular weights is plotted for 18 lags.

Only the two leading autocorrelations appear significant. Overall, the plot resembles

a typical autocorrelation function for an autoregressive time series of order 1 with a

positive coefficient.

5.2 ARIMA Fit and Residuals

Following the above preliminary findings, we began the modeling by fitting a low-

order ARIMA model to the x data, namely an ARIMA(1, 0, 1) model. The fitting

was done in SAS using the ARIMA procedure. No trend nor seasonality terms were

added, only a mean term was included. The results of the fit are displayed in Table

5.2.

Table 5.2: Conditional Least Squares Estimation

Parameter Estimate Standard Error t-value

Mu 2001.03 6.56614 305.32

MA1 −0.19009 0.16878 −1.13

AR1 0.57688 0.14245 4.05

Table 5.2 suggests that if an ARIMA(1, 0, 1) was a good model for the molec-

ular weight x data, then only the mean term and the autoregressive coefficient
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Figure 5.1: Molecular Weight Data and Autocorrelation Plots

0 20 40 60

19
40

19
80

20
20

20
60

Run Plot

Sampling Period (t )

M
ol

ec
ul

ar
 W

ei
gh

t (
x t
)

1940 1980 2020 2060

19
40

19
80

20
20

20
60

First-Order Correlation

x t−1

x t

0 5 10 15

-0
.2

0.
2

0.
6

1.
0

Lag

A
C
F

Autocorrelation Function

56



would be relevant. Let’s examine further the goodness of fit of the model. Tak-

ing µ0 = x = 2001.03, from equation (1.2), the residuals yt from an ARIMA(1, 0, 1)

model with mean term µ0 are given by

yt =
(1−B)dφ(B)

θ(B)
(xt − µ0) =

1− φB
1− θB

(xt − µ0)

= (xt−µ0)+(θ−φ)(xt−1−µ0)+θ(θ−φ)(xt−2−µ0)+· · ·+θn−1(θ−φ)(xt−n−µ0)+· · · ,

where φ and θ are the respective autoregressive and moving average coefficients. From

Table 5.2, the t value associated with estimate θ is −1.13, which could not reject that

θ equals 0. However, the conditional least squares estimation gives estimate θ as

−0.19. Here we can consider that θ equals −0.19. Taking φ = 0.67688 and θ = −0.19

yields residuals

yt ≈ (xt − µ0) + (θ − φ)(xt−1 − µ0) + θ(θ − φ)(xt−2 − µ0)

= (xt − 2001.03)− 0.76688(xt−1 − 2001.03) + 0.1457(xt−2 − 2001.03). (5.1)

The residuals were calculated using eqn. (5.1), and run and autocorrelation

plots were produced, these are shown in Figure 5.2. Both plots suggest that the

residuals are quite random, centered around 0, and that the ARIMA(1, 0, 1) model

effectively removed the autocorrelations. Note that the mean and standard deviation

of the residuals are y = 0.2294 and sy = 20.616. To match the assumption of unit

variance for the residuals made in the control charts discussed in previous chapters,

we need to standardize the residuals to have a variance of 1, thus we just need to

divide each residual by sy. Thus the final transformation to work with from eqn.
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Figure 5.2: Residual Plots from ARIMA(1,0,1) Fit
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(5.1) is

yt ≈
1

20.616
[(xt − 2001.03)− 0.76688(xt−1 − 2001.03) +

0.1457(xt−2 − 2001.03)]. (5.2)

As a final check on the residuals, a simple Shewhart chart of the residuals from

(5.2), namely a plot of yt vs. t, with control limits at ±3σy = ±3 is shown in Figure

5.3. No residual seems off-target. Thus we will assume that the 75 molecular weights

came from in-control process operation.

5.3 Simulated Cases with Dynamic Mean Shifts

Based on equations (1.3) and (5.1) for the ARIMA model time series, a step mean

shift in time series xt could lead to dynamic mean shift in time series yt. Time series

{yt} values are approximately independent and we can randomly generate dynamic
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Figure 5.3: Shewhart Chart Plot of the Residuals
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patterned means shift data to illustrate performance of some statistics that are used

for detecting mean shift. In the illustrations below, the upper-sided EWMA statistic

is based on equation (3.1), the WCUSUM statistic is based on equations (2.4) and

(2.5) and the traditional CUSUM statistic is based on equation (2.1).

5.3.1 Performance Comparison of Zero-State Case

In this section, the charts are illustrated on a simulated data set of 200 xt observations

for which the mean changed from µ0 = 0 to µ = 1 at the very beginning (zero state).

The residual mean ξt were calculated from eqn. (1.4) with τ = 1, µ = 0, θ = −0.19

and φ = 0.57688. The 200 residual values yt were generated in R with σy = 1. The

first 13 values are displayed in column 2 of Figure 5.3.

The charts were then applied, specifically the upper-sided EWMA with FIR

feature, the WCUSUM and traditional CUSUM schemes. Three head start leads were

used, namely HS = 0, HS = 50% and HS = 75%. The numerical chart values are

displayed in columns 3 − 7 of Table 5.3 along with the associated control limits for

an ARL0 = 400 and λ = 0.1 for the EWMA and λ = 0.2 for the WCUSUM. In

this illustration, the traditional CUSUM detects the change at 13th run, the WCUSM

and the EWMA with HS = 0% detect the change at run 12, while the EWMA with

HS = 50% and HS = 75% detect the change at run 11. The values in dark font in

Table 5.3 indicate that the chart has gone beyond the control limit.

The charts values are plotted in Figure 5.4. The plots display graphically the

features just noted. In this case, the higher the head start HS, the quicker the EWMA

chart detects the change. Note also the case is no subtantive difference between the

EWMA and the WCUSUM. The traditional CUSUM appears to be the slowest to
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Table 5.3: Zero-State Simulated Data and the Responses of Upper-Sided EWMA,

WCUSUM and CUSUM Statistics (µ = 1, φ = 0.57688, θ = −0.19, σy = 1)

Upper-Sided EWMA WCUSUM CUSUM

λ = 0.1 λ = 0.2

h=0.60886 h=0.621 h=0.6125 h=3.383 h=4.173

t Simulated yt HS=0 HS=75% HS=50%

1 0.6277 0.0628 0.4820 0.3384 0.0160 0.1277

2 0.3503 0.0915 0.4688 0.3396 0.0000 0.0000

3 0.0413 0.0865 0.4260 0.3098 0.0000 0.0000

4 1.4135 0.2192 0.5248 0.4201 0.3640 0.9135

5 -0.4609 0.1512 0.4262 0.3320 0.1463 0.0000

6 0.2965 0.1657 0.4132 0.3285 0.0973 0.0000

7 0.7640 0.2255 0.4483 0.3720 0.1885 0.2640

8 1.7341 0.3764 0.5769 0.5082 0.9573 1.4981

9 -0.3518 0.3036 0.4840 0.4222 0.5927 0.6463

10 1.6540 0.4386 0.6010 0.5454 1.3696 1.8002

11 1.6585 0.5606 0.7068 0.6567 2.3777 2.9587

12 1.5923 0.6638 0.7953 0.7503 3.4861 4.0510

13 1.3660 0.7340 0.8524 0.8118 4.4257 4.9170

react to the change, although not by much.

5.3.2 Performance Comparison of Steady-State Case

Similarly, a steady state data set was simulated corresponding to a situation where

the mean for original xt data shifts from µ0 = 0 to µ = 1 at time τ = 41. Thus the

residual means ξt were calculated from eqn. (1.4) with µ = 1, τ = 41, θ = −0.19 and

φ = 0.57688. In total 200 residuals were generated in R with the ξt means and σy = 1.

Some of the data are listed in column 2 of Table (5.4). In this case, the upper-sided

EWMA with HS = 0%, the WCUSM and the traditional CUSUM were used. The

61



Figure 5.4: Zero-State Control Charts with Shift µ = 1, σy = 1

EWMA detects the change 14 runs after the change took place, while the WCUSUM

and the traditional CUSUM react the change 15 runs after change. Thus the EWMA

shows a slightly better performance for this data set. Figure 5.5 graphically presents

the values of Table 3.4.

62



Table 5.4: Steady-State Simulated Data and the Responses of Upper-Sided EWMA,

WCUSUM and CUSUM Statistics (µ = 1, φ = 0.57688, θ = −0.19, σy = 1)

Upper-Sided EWMA WCUSUM CUSUM

λ = 0.05 λ = 0.2

t Simulated yt h=0.3937 h=3.383 h=4.173

1 0.1853 0.00926 0.0000 0.0000

· · · · ·

· · · · ·

· · · · ·

31 -0.2782 0.0038 0.0000 0.0000

32 2.0850 0.1079 0.4545 1.5850

33 1.0463 0.1548 0.6942 2.1313

34 0.6477 0.1794 0.7651 2.2790

35 0.1359 0.1772 0.6153 1.9149

36 -0.5003 0.1434 0.3860 0.9146

37 0.3177 0.1521 0.3410 0.7323

38 0.9413 0.1915 0.5113 1.1736

39 0.2816 0.1960 0.4316 0.9552

40 0.0958 0.1910 0.3058 0.5510

41 1.3191 0.2474 0.7258 1.3701

42 -1.7275 0.1487 0.5817 0.0000

43 -0.0128 0.1406 0.5565 0.0000

44 1.1979 0.1935 0.7512 0.6979

45 -0.0921 0.1792 0.6300 0.1058

46 1.1892 0.2297 0.9067 0.7950

47 0.6140 0.2489 0.9574 0.9090

48 -0.3290 0.2200 0.7174 0.0799

49 0.1536 0.2167 0.6265 0.0000

50 1.3152 0.2716 1.0120 0.8152

51 1.4027 0.3282 1.6067 1.7179

52 0.0920 0.3164 1.3842 1.3099

53 1.0265 0.3519 1.7220 1.8364

54 1.5117 0.4099 2.5473 2.8482

55 2.4267 0.5107 4.7396 4.7748
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Chapter 6

Conclusions

This thesis proposes the upper-sided EWMA control scheme, which has the feature

of adjusting memory magnitudes through the smoothing parameter λ, for monitoring

correlated data. The control statistic puts more weight on the more recent obser-

vations as the monitoring progresses on. The thesis demonstrates on a variety of

time series models that the proposed chart is very efficient for detecting changes

in the process mean under the presence of forecast recovery which lead to dynamic

patterned mean shifts. The method’s performance is enhanced when combined with

the fast initial response (FIR) feature which speeds the jump to out-of-control under

forecast recovery situations. In practice, a dynamic patterned mean shift has either

upper-sided or lower-sided direction, which can be monitored employing either the

upper-sided or lower-sided version of the proposed one-sided EWMA control chart.

Furthermore, the one-sided EWMA is much more efficient than the two-sided EWMA

for detecting one-direction dynamic patterned mean shifts.

The CUSUM control schemes are widely used for monitoring processes due to
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their simplicity and good performance in standard process monitoring. However, they

do not perform well under dynamic mean shifts. Shu, Jiang and Tsui (2008) modified

the conventional CUSUM by putting a weight function resulting in the weighted

CUSUM (WCUSUM). The basic idea is to enhance the standard CUSUM by putting

more weight on observations with higher mean thus trying to push the statistic to

the out of control state faster when this happens. The WCUSUM indeed exhibits

a far superior performance than the conventional CUSUM control scheme and other

alternatives for detecting small to moderate shifts. However, the average run length

calculations are much more complicated than for the conventional CUSUM due to

the weighting function. A bivariate Markov chain is required for calculating the ARL

in the WCUSUM, which requires the dimension of the transition probability matrix

to be very large to achieve acceptable accuracy. As a result, one has to calculate the

ARL using Monte Carlo simulation, an alternative that also involves larger dimension

matrix calculations. An improved Monte Carlo simulation is proposed. It is shown

in the thesis that the proposed alternative is much more efficient and that it works

very well. The core idea of the improved Monte Carlo simulation is to divide a large

dimension calculation into several smaller dimension ones that can be carried out

much more efficiently in the computer.

Comparing performance of the upper-sided EWMA with the WCUSUM in

forecast recovery situations, the WCUSUM does slightly better than the upper-sided

EWMA without the FIR feature. However, the upper-sided EWMA with FIR (HS =

75%) feature does significantly better than the WCUSUM. In non-forecast recovery

situations, the performances of the upper-sided EWMA without FIR feature and the

WCUSUM are very close while the upper-sided EWMA with FIR feature does much
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better. Thus, the upper-sided EWMA with FIR feature is overall a better control

chart than the WCUSUM.

The most widely used performance measure for control schemes is average

run length (ARL), which is the measure adopted in this thesis. When the process

operates in-control, the ARL0 is set to be large in order to reduce the Type I error,

that is the frequency of signaling an out of control state when in fact the process

is operating well. But for detecting an out-of-control case, the ARL (ARL1) should

be small, that is the method has high power to detect an out-of-control excursion

quickly. Thus, run length distribution is important, which requires further study.

The result of the statistical control schemes discussed here are based on six

useful but simple ARIMA cases. Further research is required for more complicated

ARIMA models or other time series. ARIMA models are widely used for modeling

and prediction of financial market activity, economic trends, and ecological and de-

mographic patterns. The proposed upper-sided EWMA control scheme has very good

potential as a monitoring tool to detect changes in those processes.

67



Appendix A

Autoregressive Integrated Moving

Average Models

Autoregressive integrated moving average (ARIMA) models typically exhibit fore-

cast recovery. An ARIMA model with p AR components, q MA components and d

differences ARIMA(p, d, q) is defined as

(1−B)dφ(B)(xt − µ0) = θ(B)at

or

xt − µ0 =
θ(B)

(1−B)dΦ(B)
at (A.1)

where B is the back-shift operator, φ(B) and θ(B) are polynomials of degrees p and q,

respectively, and a′ts are independently and identically distributed (IID) white noise

with variance σ2
a. Here µ0 represents the mean of the process when it is operating on
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target. Without loss of generality, σ2
a = 1. They are respectively defined as

Bxt = xt−1,

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp,

θ(B) = 1− θ1B − θ2B2 − · · · − θqBq,

at ∼ N(0, σ2
a),

µ0 = E(xt).

See Chatifield (2004) and Shumway and Stoffer (2006) for a detailed discussion on

time series models and methods. Following the standard SPC approach, all the

parameters are estimated from a historical (hopefully large) database, usually called

Phase I data, gathered when the process was operating on-target. This thesis will

not discuss how to estimate the ARIMA model parameters and assumes that all the

parameters are known.

When the process is invertible, the residuals can be written as

yt =
(1−B)dφ(B)

θ(B)
(xt − µ0). (A.2)

If the process is in-control, the process mean is µ0 indicating that no drift occurs.

i.e., µ = E(xt) = µ0, t = 1, 2, · · · . Suppose the process mean shifts from µ0 to µ0 + µ

at time τ , τ is unknown. Then ft = E(xt)− µ0 will be given by

ft =

 0 t = 1, 2, · · · , τ − 1;

µ t = τ, τ + 1, · · ·
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where µ 6= 0. In this situation, the residuals can be presented as

yt =
(1−B)dφ(B)

θ(B)
(xt − µ0)

=
(1−B)dφ(B)

θ(B)
(xt − µ0 − ft + ft)

=
(1−B)dφ(B)

θ(B)
(xt − µ0 − ft) +

(1−B)dφ(B)

θ(B)
ft

= at + ξt (A.3)

where

ξt =
(1−B)dφ(B)

θ(B)
ft (A.4)

is the shift that takes place in the residuals, and

E(yt) = E(at + ξt) = E(at) + ξt = ξt. (A.5)

The shift ft of xt causes a mean pattern ξt in the residual yt. Consider the situation

where time series xt has a constant shift µ at time τ and ARIMA(p, d, q) model with

p = 1, d = 0, and q = 1. In this case, taking φ = φ1, and θ = θ1. Then

ξt =
1− φB
1− θB

ft

= (1− φB)(1− θB)−1ft

Hence, ξt can be written as

ξt = (1− φB)(1 + θB + (θB)2 + (θB)3 + · · · )ft

= (1 + θB + (θB)2 + (θB)3 + · · · − φθ − φθB2 − φθ2B3 − · · · )ft

= (1 + (θ − φ)B + θ(θ − φ)B2 + θ2(θ − φ)B3 + · · · )ft

= ft + (θ − φ)Bft + θ(θ − φ)B2ft + θ2(θ − φ)B3ft + · · ·

= ft + (θ − φ)ft−1 + θ(θ − φ)ft−2 + θ2(θ − φ)ft−3 + · · ·
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The constant shift µ on time series xt at and after time τ ,

ft =

 0 t = 1, 2, · · · , τ − 1;

µ t = τ, τ + 1, · · ·

leads to

E(yt) = ξt =

 0 t = 1, 2, · · · , τ − 1;

µ t = τ .

For t = τ + k, where k = 1, 2, · · ·

E(yτ+k) = ξτ+k

= (1− φB)(1 + θB + (θB)2 + (θB)3 + · · · )fτ+k

= fτ+k + (θ − φ)fτ+k−1 + θ(θ − φ)fτ+k−2 + θ2(θ − φ)fτ+k−3 + · · ·+

θi−1(θ − φ)fτ+k−i + · · ·

Note that

fτ+k−i =

 µ i = 0, 1, 2, · · · , k;

0 i > k

Thus,

E(yτ+k) = ξτ+k

= µ+ (θ − φ)µ+ θ(θ − φ)µ+ θ2(θ − φ)µ+ · · ·+ θk−1(θ − φ)µ

= (1 + (θ − φ)(1 + θ + θ2 + · · ·+ θk−1))µ

= (1 + (θ − φ)
1− θk

1− θ
)µ

=
1− θ + (θ − φ)(1− θ)k

1− θ
µ

=
1− φ+ (θ − φ)θk

1− θ
µ
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In addition,

1− φ+ (θ − φ)θ0

1− θ
µ =

1− φ+ θ − φ
1− θ

µ = µ

Hence,

ξt = E(yt) =

 0 t = 1, 2, · · · , τ − 1;

1−φ+(θ−φ)θt−τ
1−θ µ t = τ, τ + 1, · · ·

Although the shift ft on the mean of xt is a constant, its effect on the mean of the

residuals yt is not. It has a dynamic pattern. The sequence ξt varies over time and

depends on the shift that occurred at time τ .
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Appendix B

Markov Chain Method for Average

Run Length Calculation Under a

Dynamic Mean

B.1 ARL Calculation for the Two-Sided EWMA

Brook and Evans (1972) were the first to develop a Markov chain approach for calcu-

lating run length distributions and average run lengths for the conventional CUSUM

chart. The procedure applies only to in-control process operation or sustained changes

in the process mean. The key step is approximating a continuous-state Markov chain

by a finite-state one. The method was extended to the two-sided EWMA by Lucas

and Saccucci (1990) for the same context of in-control process operation or sustained

jumps in the process mean. In this thesis, we extend the method to the context of a

dynamic process mean.
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The two-sided EWMA chart statistic is (see eqn. (3.1))

Wt = (1− λ)Wt−1 + λyt, t = 1, 2, 3, ... (B.1)

with W0 being the initially set chart value, typically W0 = 0. Here λ (0 ≤ λ ≤ 1) is

amount of smoothing. The chart is usually standardized so that when the process

operates on-target, Wt drifts around 0. Further, for the normal case considered here,

Wt has a normal distribution centered at 0 under on-target process operation. Ac-

cordingly, the typical control limits are set at ±h where h > 0 is selected to achieve

a desired on-target average run length ARL0, in our case ARL0 = 400.

It is easy to see from eqn. (B.1) that Wt forms a continuous-state Markov

chain with state space (−∞,∞). To construct the finite-state approximating Markov

chain, for a given positive integer m we divide the continuous state space into 2m+ 3

subintervals which define the chain states. Two states are absorbent, namely

E0 = (−∞,−h) and E2m+2 = (h,∞).

The remaining states, which are the ones of primary interest, are transient states and

come from dividing the in-control range [−h, h] into 2m+ 1 equal-width subintervals,

E1, E2, ..., E2m+1, where

E1 = [S1 − L, S1 + L], ; Ei = (Si − L, Si + L], i = 2, 3, ..., 2m+ 1,

where Si = −h+ (2i− 1)L is the center of state Ei and L = h/(2m+ 1). We say that

the chain is in state Ei at sampling period t if Wt ∈ Ei.

The probabilities with which the statistic moves among the transient states as

we go from sampling period t−1 to t are collected in the associated (2m+1)×(2m+1)
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transition probability matrix, denoted by P t here,

P t =



P
(t)
11 P

(t)
12 . . . P

(t)
1j . . . P

(t)
1,2m+1

P
(t)
21 P

(t)
22 . . . P

(t)
2j . . . P

(t)
2,2m+1

...
...

...
...

...
...

P
(t)
i1 P

(t)
i2 . . . P

(t)
ij . . . P

(t)
i,2m+1

...
...

...
...

...
...

P
(t)
2m+1,1 P

(t)
2m+1,2 . . . P

(t)
2m+1,j . . . P

(t)
2m+1,2m+1


.

The transition probability from state i to state j is

P
(t)
ij = Pr{Wt ∈ Ej | Wt−1 ∈ Ei}

= Pr{Sj − L < Wt ≤ Sj + L | Si − L < Wt−1 ≤ Si + L}

≈ Pr{Sj − L < (1− λ)Wt−1 + λyt ≤ Sj + L | Wt−1 = Si}

= Pr

{
L

λ
[2(j − (1− λ)i)− 1]− h− L < yt <

L

λ
[2(j − (1− λ)i) + 1]− h− L

}
.

Under a dynamic mean, assume the process mean at sampling period t is

µt. The process variance may stay in control or not, consider the general case of a

changing process variance σ2
t . We assume a normal distribution under independent

observations, thus y1, y2, ... are independent with yt ∼ N(µt, σ
2
t ). It follows then that

P
(t)
ij ≈ Φ

(
1

σt

{
L

λ
[2(j − (1− λ)i) + 1]− h− L− µt

})

−Φ

(
1

σt

{
L

λ
[2(j − (1− λ)i)− 1]− h− L− µt

})
(B.2)

Note that this approximation improves as m increases. In the work done in this thesis,

m around 50 gives satisfactory results. In the rest of Appendix B we will replace the

“approximate” sign with the “equal” sign.
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The first interesting feature to notice here is that the transition probabilities

vary over t resulting in a non-homogeneous Markov chain. The run length

RL is the number of sampling periods observed until and including the sampling

period when the statistic jumps to an absorbing state for the first time. Clearly

RL ∈ {1, 2, ...}. From the theory of Markov chains (e.g. see Karlin and Taylor (1975,

Chaps. 2-3)) we know that

Pr(RL > n) = p′0P 1P 2 · · ·P n1

= p′0

(
n∏
l=1

P l

)
1, n = 1, 2, 3, ..., (B.3)

where p0 is the (2m + 1) × 1 initial probability vector on the transient states and 1

is the (2m+ 1)× 1 vector of 1s.

Hence the probability mass function (pmf) of the run length is

fRL(n) = Pr(RL = n)

= Pr(RL > n− 1)− Pr(RL > n)

= p′0

(
n−1∏
l=1

P l

)
(I − P n)1, n = 1, 2, 3, ... (B.4)

The resulting average run length is therefore

ARL = E(RL) =
∞∑
n=1

nfRL(n)

=
∞∑
n=1

np′0

(
n−1∏
l=1

P l

)
(I − P n)1 (B.5)

A special case of particular interest is that where the means and variances

are the same across t, that is, µt = µ and σ2
t = σ2 for all t. This leads to an

homogeneous Markov Chain. Replacing P t = P , for all t in (B.4) yields run
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length pmf

fRL(n) = p′0P
n−1(I − P )1, n = 1, 2, 3, ... (B.6)

And the resulting average run length from (B.5) becomes

ARL =
∞∑
n=1

np′0P
n−1(I − P )1 = p′0

(
∞∑
n=1

nP n−1

)
(I − P )1

= p′0(I − P )−11. (B.7)

Equations (B.6)-(B.7) were derived by Lucas and Saccucci (1990) in their anal-

ysis of the two-sided EWMA for in-control process operations or step mean changes.

In particular, Lucas and Saccucci (1990) make extensive use of eqn. (B.7) to calculate

the ARL when the process operates on-target or when the process jumps to another

mean value from the very beginning (the so called zero-state).

B.2 ARL Calculation for the Upper-Sided EWMA

The upper-sided EWMA of interest here is the upper-sided version given by eqn.

(3.2), namely

W+
t = max{0, (1− λ)W+

t−1 + λyt}, t = 1, 2, 3, ... (B.8)

where the smoothing parameter λ and yt are as in the two-sided EWMA just discussed,

and W+
0 = 0. Clearly W+

t ∈ [0,∞) with large values indicative of possible departure

from on-target process operation in the direction of a larger mean. Thus, only an

upper control limit h > 0 is needed. Again, one can readily show that W+
t forms a

continuous-state Markov chain with [0,∞) as its state space.

The finite-state approximating chain will be constructed as follows. For every

integer m > 0 there will be m transient states and an absorbent state. The absorbent
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state will be Em+1 = (h,∞) while the transient states E1, E2, ..., Em will be obtained

by dividing the decision interval [0, h] into m subintervals of which the first has

length L and the remaining ones length 2L where L = h/(2m − 1). Specifically,

E1 = [S1, S1 + L] and Ei = (Si − L, Si + L] where Si = 2(i− 1)L, i = 1, 2, ...,m. At

any sampling period t, the control statistic W+
t is said to be in state Ei if W+

t ∈ Ei.

Again, for the purpose of run length distribution and average run length calculations,

we need to consider only the transient states.

The probabilities with which the control statistic moves among the transient

states as we go from sampling period t− 1 to t are collected in the associated m×m

transition probability matrix which we denote by P t,

P t =



P
(t)
11 P

(t)
12 . . . P

(t)
1j . . . P

(t)
1m

P
(t)
21 P

(t)
22 . . . P

(t)
2j . . . P

(t)
2m

...
...

...
...

...
...

P
(t)
i1 P

(t)
i2 . . . P

(t)
ij . . . P

(t)
im

...
...

...
...

...
...

P
(t)
m1 P

(t)
m2 . . . P

(t)
mj . . . P

(t)
mm


.

For i ≥ 2 and j ≥ 2, the transition probability from state i to state j can be
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written as

P
(t)
ij = Pr{W+

t ∈ Ej | Wt−1 ∈ Ei}

= Pr{Sj − L < W+
t ≤ Sj + L | Si − L < W+

t−1 ≤ Si + L}

= Pr{Sj − L < max{0, (1− λ)W+
t−1 + λyt} ≤ Sj + L | Si − L < W+

t−1 ≤ Si + L}

= Pr{Sj − L < (1− λ)W+
t−1 + λyt ≤ Sj + L | Si − L < W+

t−1 ≤ Si + L}

≈ Pr{Sj − L < (1− λ)W+
t−1 + λyt ≤ Sj + L | W+

t−1 = Si}

= Pr

{
L

λ
[2(j − (1− λ)(i− 1))− 3] < yt ≤

L

λ
[2(j − (1− λ)(i− 1))− 1]

}
.

If the residual yt is normally distributed with a dynamic mean µt over time

and a possibly time-varying variance σ2
t , that is yt ∼ N(µt, σ

2
t ), then the transition

probability P
(t)
ij is

P
(t)
ij ≈ Φ

(
1

σt

{
L

λ
[2(j − (1− λ)(i− 1))− 1]− µt

})

−Φ

(
1

σt

{
L

λ
[2(j − (1− λ)(i− 1))− 3]− µt

})
. (B.9)

Eqn. (B.9) also applies to i = 1. Consider now j = 1 and i ≥ 2. Following the

same reasoning, the respective transition probability can be approximated through

the following equation

P
(t)
i1 ≈ Φ

(
1

σt

{
L

λ
[1− 2(1− λ)(i− 1)]− µt

})
. (B.10)

The formula is also valid for i = 1.

Note that, as was the case for the two-sided EWMA, under a time-changing

mean and variance for yt, the transition probability matrix P t changes with t. Thus

the finite-state approximating Markov chain is non-homogeneous. Equations (B.3)-
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(B.5) apply using the m×m transition probability matrix P t just calculated. More-

over, when µt and σ2
t are fixed, equal to µ and σ2 say, for all t, the chain is homo-

geneous. Writing P t = P for all t, equations (B.6)-(B.7) can be used to obtain the

respective run length pmf and average run length.

B.3 ARL Calculation for the One-Sided CUSUM

The upper-sided CUSUM enjoys greater attention than the upper-sided EWMA. We

consider the upper-version of it for the same reasons we focused on the upper-sided

EWMA. The chart statistic is given by

S+
t = max{0, S+

t−1 + yt − k}, t = 1, 2, 3, ... (B.11)

where k is the reference value. While the optimal k is given by k = (µ0+µ1)/2 when

we aim to detect a sustained change in process mean from µ = µ0 to µ = µ1 > µ0,

however when we deal with a dynamic mean there is no optimal value and one ends

up trying out several values.

Again from eqn. (B.11) one can readily verify that S+
t forms a Markov chain.

The approach to calculate run length distribution and average run length follows the

same steps as for the upper-sided EWMA. In particular, the state space is the same.

The only and important difference is the way the m×m transition probability matrix

P t is calculated. For i ≥ 1 and j ≥ 2, the transition probability of moving from state

i at sampling period t− 1 to state j at t is

P
(t)
ij ≈ Pr{[2(j − i)− 1]L+ k < yt ≤ [2(j − i) + 1]L+ k}

= Φ

(
1

σt
{[2(j − i) + 1]L+ k − µt}

)
− Φ

(
1

σt
{[2(j − i)− 1]L+ k − µt}

)
, (B.12)
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where the errors y1, y2, y3, ... are independent with yt ∼ N(µt, σ
2
t ). The respective

P
(t)
i1 transition probability is

P
(t)
i1 ≈ Pr{S+

t−1 + yt − k ≤ L | S+
t−1 = 2(i− 1)L)}

= Φ

(
1

σt
{k − (2i− 3)L− µt}

)
. (B.13)

Again, under a time-varying mean and variance for yt, the transition proba-

bility matrix P t changes with t resulting in a non-homogeneous finite-state approxi-

mating chain. Equations (B.3)-(B.5) can be used to calculate run length pmf’s and

average run lengths where P t is the m×m transition probability matrix with entries

given by (B.12)-(B.13). Moreover, when µt and σ2
t are fixed, equal to µ and σ2 say, for

all t, the chain is homogeneous. Writing P t = P for all t, equations (B.6)-(B.7) can

be used to obtain the respective run length pmf and average run length. These latter

formulas were originally developed by Brooks and Evans (1972). They are useful to

calculate on-target average run lengths.
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Appendix C

Monte Carlo Simulation Algorithm

of ARIMA Models for the

WCUSUM Control Scheme

Monte Carlo simulation is a computational algorithm that relies on repeated random

sampling to compute its results. Here, there are six ARIMA(1, 0, 1) time series models

as detailed in Table 1.1. Monte Carlo simulation of the WCUSUM control scheme

under ARIMA(1, 0, 1) data can be constructed by the following procedures:

Step 1. Find the distribution of the random variable.

From Equation (A.3)

yt = at + ξt
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where at ∼ N(0, 1) and

ξt = E(yt) =

 0 t = 1, 2, · · · , τ − 1;

1−φ+(θ−φ)θt−τ
1−θ µ t = τ, τ + 1, · · ·

It is easy to see that yt ∼ N(ξt, 1).

Step 2. Find the relationship between the weight Qt and random variable yt.

From Equation (2.5)

Qt = (1− λ)Qt−1 + λyt

= (1− λ)((1− λ)Qt−2 + λyt−1) + λyt

= (1− λ)tQ0 + λ((1− λ)t−1y1 + (1− λ)t−2y2 + · · ·+ (1− λ)yt−1 + yt)

Usually, Q0 = 0,

Qt = λ((1− λ)t−1y1 + (1− λ)t−2y2 + · · ·+ (1− λ)yt−1 + yt). (C.1)

Step 3. Randomly generate n independent values of yt based on normal distribution

N(ξt, 1), t = 1, 2, · · · , n.

The number n can be considered as the maximum run length. It is suggested

that n be chosen as large or equal to ten times the desired average run length. For

instance, n = 4000 if ARL = 400.

Step 4. Construct a n dimension vector Q

Q =



λy1

λ(1− λ)y1 + λy2

·

·

·

λ((1− λ)n−1y1 + (1− λ)n−2y2 + · · ·+ (1− λ)yn−1 + yn)


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Let λ = (λ, λ(1− λ), · · · , λ(1− λ)n−1)′, and

Y n×n =



y1 0 0 · · · 0 0

y2 y1 0 · · · 0 0

· · · · · · 0 0

· · · · · · 0 0

· · · · · · y1 0

yn yn−1 yn−2 · · · y2 y1


then

Q = Y n×nλ (C.2)

Step 5. Calculate run length.

From Equation (2.4),

Wt = max{0,Wt−1 + (yt − k)|Qt|}.

The process starts from W0 = 0, n values of y′ts are generated at Step 3, and n

values of Q′ts are calculated at Step 4, Wt is iteratively calculated based on the above

equation. When Wt ≥ h, the run length (RL) is the number of t, i.e. RL = t.

Step 6. Calculate average run length.

Repeat the above N times to get run length values RL1, RL2, · · · , RLN . The

Simulated average run length (ARL) is the average of N run length values,

ARL =

∑N
i=1RLi
N

. (C.3)

Usually N = 160, 000.
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