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ABSTRACT

This thesis is first and foremost an investigation of the actual infinite. It draws on
the work of Richard T. W. Arthur in defense ofG. W. Leibniz's view that the infinite,
while actual, should be understood syncategorematically. The actual infinite has now, due
to the work of Georg Cantor (along with Bernard Bolzano and Richard Dedekind), found
a permanent home within the foundations of mathematics. This was made possible by the
stipulation that the part-whole axiom does not apply to infinite collections in the way it
applies to finite ones: an actual infinite set is defined as a collection that can be placed in
a one-to-one correspondence with a proper subset of itself. In my view, however,
something more than a stipulation is required to guarantee the coherence of an infinite
set. It has not been sufficiently demonstrated that an actual infinite multiplicity can be
one and whole, fixed and definite-that is, can be categorematic-but this is being
assumed. Satisfactory justification is required, I believe, if the actual infinite is to play
such a fundamental role in the discipline of mathematics. Georg Cantor does attempt to
provide such justification in the form of three philosophical arguments, which I have
called the argument from irrationals, the divine intellect argument, and the domain
argument. His arguments, however, rely on an equation of the terms "actual" and
"potential" with the terms "categorematic" and "syncategorematic" respectively. But
based on the work ofG. W. Leibniz, such an equation is faulty. It is completely
legitimate to maintain that the infinite is both actual and syncategorematic, a possibility
not considered by Cantor. Once such a position is on the table-that is, once it is no
longer necessary that the actual implies the categorematic-Cantor's arguments are no
longer sound and the actual (and categorematic) infinite stands in need of further
justification.
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M. A. Thesis - A. Harmer

INTRODUCTION

McMaster - Philosophy

The concept of number has become so refined and subjected to such a detailed

analysis within contemporary mathematics that its current characterization seems to have

been granted the status ofnecessary truth. The way that mathematics is conceived, and

perhaps more importantly, the way mathematics is taught, takes number to be a genus

with a multitude of species faIling under it. Moreover, this list of species is treated as

though it follows immediately from the genus itself, i.e. from the concept of a number.

But the list of species is long and, to the layperson, perhaps even fantastical, containing

types ofnumbers that seem to be nothing more than the concoction of a theoretical

scientist. The pinnacle of the entire system is the "natural" number. This species of

number accords most readily with the common sense idea ofwhat a number looks like

and how it behaves; that is, these numbers are what one "uses" to count, which is perhaps

the first experience anyone has with numbers. But the list goes on from there: integers,

rational numbers, real numbers, complex numbers, imaginary numbers, and rounding off

the list there are the enigmatic transfinite numbers. With each species of number beyond

the natural numbers (and even perhaps within the naturals in the form of"O" and "1 ")

there is a departure from the definition of "number" strictly understood. By "strictly

understood" I mean understood as "number" was originally conceived, i.e. as a finite

plurality. 1 This clearly rules out numbers such as "0" and "1 ", which are not pluralities.

Also ruled out are rational numbers, negative integers, irrational numbers, and imaginary

numbers: how can one have a plurality composed of 4/5, -6, ~2, or 4i elements?

] Lavine (1994) identifies the Greek notion of arithmos as a finite plurality and cites it as the original notion
ofnurnber, one which is more akin to the modem notion of set than to the modem "natural" numbers.
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It seems, however, that the most troubling extension ofthe concept of number is

the final one listed above, the move to transfinite (or infinite) numbers, although this is

certainly debatable? It appears stunningly obvious that, so far as finite numbers are

concerned, Euclid's fifth common notion-i.e. the whole is greater than the part-is

uncontestable. The obviousness of this axiom with respect to finite numbers implies, for

many, that it should apply with equal obviousness to the case of infinite numbers, if such

numbers are to be coherent. The history of the discussion of infinite numbers serves as a

proof of this claim. Take, for example, Galileo's paradox:

IfI inquire how many roots there are, it cannot be denied that there are as
many as there are numbers because every number is the root of some
square. This being granted we must say that there are as many squares as
there are numbers because they are just as numerous as their roots, and all
the numbers are roots. Yet at the outset we said there are many more
numbers than squares, since the larger portion of them are not squares.
(Galileo 1999, §78)

In this reductio concerning the series of natural numbers and the series of squares, the

assumption that the whole is larger than the part was not even something considered for

rejection. Neither Galileo (nor Leibniz when he dealt with it) thought it possible to

relinquish this metaphysical principle even though they came to differing conclusions as

a result of this argument: Galileo concluded that the relations of "greater than", "less

than", and "equal to" do not apply when dealing with the infinite while Leibniz

concluded that the notion of an infinite number is absurd.3

2 See, for example, Benardete (1964). He endorses transfinite numbers, while rejecting what are considered
by many to be more innocuous extensions ofthe number concept.
3 Galileo discusses this problem in Two New Sciences (EN 79; TLC 56). Leibniz's actual conclusion is that
the number ofnumbers cannot form a whole, and that number is the sort of thing that does not permit a
greatest of its kind (TLC 179).
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But certain mathematicians thought that perhaps something else ought to be

relinquished as a result ofGalileo's paradox (and other similar paradoxes). The

something else to be relinquished, naturally, was the part-whole axiom itself. This

insight, which originated with Bolzano and Dedekind, and which was later taken up by

Cantor, provided the basis for a tidal wave of development both in numerical analysis and

in the foundations of mathematics. Instead ofbeing paradoxical, an infinite set became

defined as a collection which can be set up in a one-to-one correspondence with a proper

part of itself; thus, in the case ofan infinite collection, the who Ie is not greater than the

part. The fact that the sequence of natural numbers appears to be both equal to and

greater than the sequence of squares-the outcome of Galileo's paradox-is avoided by

claiming that one-to-one correspondence is the only criterion of equality with respect to

infinite sets and so these sequences (or rather the sets they compose) have equal

cardinality even though their members differ, and even if one is a proper part of the other.

Once the coherence of infinite sets was established in this way, a wealth of results

quickly followed. Dedekind was able to define irrational numbers with a rigour that was

not previously attainable: each irrational number is defined by means of dividing the

sequence ofrational numbers into two infinite sets, essentially "cutting" the line at the

spot where the relevant irrational number would sit. Cantor was able to argue that the

entire discipline of mathematics can be founded on a theory of sets and went on to

describe an elaborate theory of transfinite mathematics including rules analogous to

operations such as addition, subtraction, and multiplication as they apply to finite

numbers.

3
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Aside from these practical results, however, it is difficult to see the justification

fbr relinquishing an axiom as seemingly obvious as the part-whole axiom. What

justification could there be? Ultimately, the soundness ofdropping the part-whole axiom

can only be evaluated by the results to which it gives rise. At least, this appears to be the

common position. But there is a difficulty when it comes to the selection of the standard

by which the results themselves will be evaluated. For clearly it is counterintuitive to

relinquish the part-whole axiom. And if the results that follow from this are equally

counterintuitive, are we even in a position to evaluate them let alone claim that they

justify the initial supposition?

Perhaps foreseeing such an impediment, or perhaps for some other reason, Georg

Cantor provided arguments for his position that reach beyond the mere coherence of the

system he is able to construct. He attempted to provide philosophical justification for the

actual infinite. In particular, he gave three substantive arguments for this position: not

mathematical arguments, not arguments about what could be accomplished

mathematically by embracing the actual infinite, and not mathematical proofs, rather

arguments in defense of the concept that he wished to utilize, the concept of the actual

infinite.

The notion ofthe actual infinite, and the attempt made by Cantor to defend it, is

precisely what I will address in this thesis. The reason I have introduced this problem in

terms of the concept of number is twofold. First of all, if a number is a unified plurality,

the question as to whether there can be an infinite number and the question as to whether

an infinite collection can be one and whole are essentially the same question. Secondly,

4
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by framing my project in terms of the number-concept, the arguments surrounding the

philosophy ofthe infinite, which are often obscure and esoteric, are situated within a

context that shows up their relevance to ongoing work in mathematics. What could be

more important to mathematics than the number-concept? That a theory of sets, which

subscribes to a neo-Cantorian philosophy of the infinite, currently sits at the heart of the

fi::mndations of mathematics demonstrates that a certain position on the infinite is

presupposed by the number-concept, and in fact, is being presupposed by all work being

done in mathematics, even if this is not apparent. If the infinite is to be utilized in this

way, it is important to have a sensible theory from which to work.

My aim, therefore, is to evaluate Cantor's philosophical arguments in favour of

the actual infinite. It is my view that his arguments cannot stand up to scrutiny. They are

philosophically unsatisfactory and so his conclusions must be abandoned or some other

arguments must be provided. But this is not merely a critical project. I intend to provide

an alternative position, one which is able to avoid the shortcomings of Cantor's

arguments, yet maintain some ofhis insight into the nature of the infinite and how it

should be treated mathematically.

The alternative that I will provide originates with Gottfried Leibniz. By providing

this alternative, I am not abandoning Cantor's position in favour ofa more primitive

position on the infinite. That is, Leibniz's position was not once appreciated, but

relinquished in favour of a more satisfactory position. It was not unable to deal with

certain problems or objections and so abandoned: Leibniz's position was never seriously

5
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taken Up.4 Part of my goal, then, is to provide an account ofLeibniz's philosophy of the

infinite that demonstrates its appeal. This project, then, will have three central

components: (1) an exposition and defense ofLeibniz's position on the infinite, (2) an

exposition and analysis of Cantor's position on the infinite, and (3) an argument for why

Cantor's position is unsatisfactory and Leibniz's position is promising. The need for

these three components leads to the organization of my thesis into three chapters, which

will be organized as fo llows.

In chapter one I will present Leibniz's position. My focus will be on the way in

which he diverges from traditional positions regarding the infinite. Historically, all

positions have been framed by the Aristotelian distinction between potential and actual

infinities. Leibniz breaks out of this mold by espousing an infinite which is at once actual

and syncategorematic. Because of the novelty of his view, it at times seems like Leibniz

is contradicting himself. In certain places, he writes that he is very much in favour of the

actual infinite, while at other locations he derides the idea ofan infinite number as

contradictory and absurd. It is this feature ofLeibniz's philosophy that elicits the

~bllowing claim from Dauben (1979): "Leibniz was a particularly difficult case because

his opinions concerning the infinite seemed different depending upon occasion and

context" (124). My primary goal in the first chapter will be to defend Leibniz against the

charge of inconsistency. The apparent discrepancies within Leibniz's treatment of the

infinite are attributable to the inability to look beyond the traditional distinctions within

4 It is not my aim to provide an explanation ofwhy this is the case, but some possible reasons will likely
become apparent throughout the course of my exposition.

6



M. A. Thesis - A. Harmer McMaster - Philosophy

the philosophy of the infinite and see that Leibniz does have a perfectly consistent

position, which nevertheless does not fit within the traditional mold.

In chapter two I will present Cantor's position on the infinite. My focus in this

chapter will be the way in which Cantor, unlike Leibniz, is working precisely within the

traditional distinction between potential and actual. Although Cantor is clearly not falling

in line with the accepted position regarding this distinction-i.e. that the potential infinite

is acceptable while the actual infinite is not-he nevertheless remains within it in terms

ofthe inferences that he makes. I will give a brieftreatment of Cantor's transfinite

mathematics, but I will not focus on the technical aspects of his position. I am interested

in his mathematics only insofar as they demonstrate his philosophical commitments and

relate to his justification of his acceptance of the actual infinite. I am primarily interested

in three philosophical arguments that Cantor provides in defense of his position. I have

called these three arguments the argument from irrationals, the divine intellect argument,

and the domain argument. In each ofthese arguments, Cantor believes that he is

providing anar15ument in-favour-Gf'theactual-infinite-heYGudthe-mere.consistency-of'the

system he is able to construct once the actual infinite is accepted. I will treat these

arguments at some length, providing a detailed analysis of precisely what each argument

establishes as well as what Cantor believes it to establish. One cannot expect Cantor to

take seriously a position on the infinite the coherence of which was not seriously

considered until the twentieth century. Thus, I will not be criticizing Cantor for lack of

insight. I will, however, be arguing that the arguments he provides for the coherence of

7
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the actual infinite (as he understands it) are not satisfactory. In fact, once Leibniz's

position is on the table, it seems to be the more acceptable of the two.

In chapter three I will make an explicit argument for this claim, that Leibniz

provides us with a more desirable position on the infinite than does Cantor. I will begin

with a discussion of two of the known paradoxes that arise from Cantorian set theory­

the Burali-Forti paradox and Cantor's paradox-as well as the standard responses. In

particular I will discuss the way in which axiomatic set theory follows from the discovery

of these paradoxes, attempting to provide a way in which they can be avoided. While it

certainly has its appeal (and is widely accepted), I do not believe that axiomatic set theory

satisfactorily addresses the problems encountered by Cantor. Thus, although I

acknowledge the merits of this approach, I will be taking a different line. To be more

precise, I will be providing the foundation for a different line. In my view, once it is

acknowledged that Leibniz has a coherent position on the infinite according to which the

infinite is both actual and syncategorematic, then Cantor's arguments are no longer

sound. I will also consider an argument in favour of the actual infinite not given by

Cantor. Rucker (1995) attempts to argue for the coherence ofthe actual infinite based on

the Reflection Principle. While initially compelling, I do not believe that this argument is

any more satisfactory than Cantor's own arguments. In the end, I believe that all such

arguments can be answered, and that Leibniz's position shows significant promise for

providing an alternative theory of the infinite to be utilized by the foundations of

mathematics. While incorporating my results into the foundations of mathematics is

clearly beyond the scope ofthe present endeavour, I hope that by the end of the final

8
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chapter the possibility for such a project will be seen not as an unnecessary clouding of

the matter, but as relevant to achieving a satisfactory foundation for the discipline of

mathematics.

9
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CHAPTER 1: LEIBNIZ AND THE INFINITE

1.1 INTRODUCTION

When one begins to enumerate the historical positions on the infinite, one almost

inevitably does not get very far before the list is exhausted. All viable positions on the

infinite seem to be described in terms of the distinction between potential and actual. One

can accept one while denying the other, one can accept both, or one can reject both; there

dlo not seem to be any other options. This distinction between the potential infinite and

the actual infinite-as most everyone is aware-originates with Aristotle and can be

~ound within his treatment of one of Zeno's paradoxes of motion. According to Aristotle,

the potential infinite is unproblematic; so long as we can avoid the actual infinite we are

on firm philosophical ground. And this attitude seems to have endured for quite some

time. Generally speaking, it was not until Dedekind and Bolzano (followed by Cantor)

proposed that what had previously been considered paradoxical features of the actual

infinite could be taken as its defining characteristics (namely that an actually infinite

multitude can be placed in a one-to-one correspondence with a proper subset of itself)

that the actual infinite was even considered to be philosophically coherent.5

Presently, the actual infinite so thoroughly permeates the discipline of

mathematics (insofar as mathematics is supposed to have set theory as its fundamental

basis) that denying it seems to be tantamount to rejecting the entire foundation upon

which mathematics is built. Yet there are basic paradoxes that have pestered the actual

5 See Bolzano (1851).

10
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infinite and cast doubt upon its coherence, paradoxes that relate to the concept itself and

paradoxes that relate to its application in disciplines such as set theory. To consider the

case of set theory for a moment, it is clear that these paradoxes can be "dissolved"

through the careful construction ofaxiomatic systems which do not allow certain

problematic sets to be constructed. But from a philosophical or metamathematical

standpoint, I would argue, these problems or paradoxes have not been satisfactorily dealt

with; they have merely been avoided.

There has been a long history of opposition to the actual infinite. Thinkers such as

Brouwer and Hilbert have presented alternative positions on the infinite (Intuitionism and

Finitism respectively) and attempted to demonstrate how these positions provide a

sufficient foundation for mathematics. But both of these responses are still treating the

infinite from within the Aristotelian distinction between potential and actual. And while

this is not problematic in itself, remaining within this paradigm has led to a seemingly

intractable disagreement. Many mathematicians are content with the suspected problems

inherent within the actual infinite because of the valuable work that can be accomplished

once it is accepted. Many philosophers are unhappy with the amount ofwork being done

by a concept whose status remains dubious. The prospect of reconciliation certainly looks

bleak.

The situation as I have described it naturally leads one to hope for a third option

in this problematic dilemma, something outside of the traditional Aristotelian distinction.

11
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As I will argue, Leibniz presents us with just such a position.6 It is a bit of a historical

curiosity that Leibniz's position on the infinite has been so casually overlooked for such a

long time. Although my aim is not to provide an historical account ofwhy Leibniz's

position was not taken up, it is worth noting in a cursory way some possible reasons for

this. One possible reason is the divergent and often obscure locations at which his

arguments are found: many of his writings on the continuum, for instance, were only

published recently.? In my view, however, the overriding reason is the pure novelty of

Leibniz's position. 8 His view combines two ways of characterizing the infinite which

would likely be considered contradictory; in fact, some modern commentators still

maintain that Leibniz's position is fundamentally incoherent.9 Their view is no doubt due

to the fact that the actuaVpotential distinction has come to be considered both mutually

exclusive and jointly exhaustive. As a result, any position that breaks away from this

taxonomy ofthe infinite is viewed as nonsensical. Thus, the main hurdle that I have to

overcome before I can even begin to rank Leibniz's position against the well-established

view of Cantor is to demonstrate that Leibniz' s position is self-consistent, i.e. it makes

sense.

The present chapter, then, will be dedicated to this goal. I will present a basic

sketch of Leibniz's position while defending it against the accusation that it fails to meet

even the most basic criterion, namely internal consistency. The second goal will be left

6 In this view I follow Richard Arthur, who is the original proponent of the coherence ofLeibniz's position
on the infinite.
7 I am referring here to the writings contained in The Labyrinth a/the Continuum.
8 As I will mention below, Leibniz did have predecessors-namely, Spinoza-who pointed toward this
position. For a discussion ofSpinoza on this matter see Riesterer (2006). Leibniz was, however, the first
thinker to develop it in such detail.
9 I have in mind Gregory Brown and Samuel Levey, whose objections will be discussed below.

12
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a.side for now, to be returned to only in the third chapter once Cantor's position on the

infinite is on the table. Something to bear in mind throughout the following exposition is

that Leibniz's presentation of his position on the infinite is carried out in large part

through examples of "infinity in the small", i.e. through the consideration ofparts whose

size is ever diminishing. While this is a crucial part of Leibniz' s position, it is my

intention to apply the position arrived at through these discussions to the question of

infinite number, i.e. "infinity in the large". There is an important distinction to be made

between an infinite magnitude (great or small) and an infinite multiplicity. It is the latter

which is relevant to a discussion of infinite number in the sense that there are infinitely

many parts (great or small) that mayor may not have a cardinality, that is, a number.

Thus, what is important in the following exposition is not the question of infinitely small

magnitudes, i.e. infinitesimals, but the multiplicity that they constitute. It is in this sense

that the position held by Leibniz is comparable to Cantor's position.

1.2 IDENTIFYING THE PROBLEM

Right at the outset there is a curiosity within Leibniz's characterization of the

infinite. In fact, at first glance it would appear as though Leibniz is making contradictory

claims. In certain locations within his philosophical writings, he clearly advocates the

actual infinite, an attitude for which he receives Cantor's praise. 10 However at other

locations Leibniz explicitly denies that the notion of infinite number is coherent, which

10 In fact, in his "Grundlagen einer allgemeinenen Mannigfaltigkeitslehre" Cantor quotes a passage from
Leibniz's correspondence with Foucher: "Indeed, I believe there is no part ofmatter which is not, I do not
say divisible, but actually divided; and that consequently the least particle ought to be considered as a
world full of an infinity of different creatures" (Arthur, unpublished). Cantor goes on to comment that
"already in Leibniz we find in many places essentially the correct point ofview" (Cantor 1932, 180).

13
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clearly distinguishes his from a straightforward Cantorian position. The way in which the

former attitude is displayed is that at various and divergent locations within his writings

Leibniz makes the claim that body-i.e. matter, material stuff-is actually infinitely

divided. Leibniz's rationale behind these claims will be explained below. InA Specimen

ofDiscoveries ofthe Admirable Secrets ofNature in General he writes:

Moreover, there are no atoms, but every part again has parts actually
divided from each other and excited by different motions, or what follows
from this, every body however small has actually infinite parts, and in
every grain ofpowder there is a world of innumerable creatures. (TLC
317; emphasis added)

He reiterates this view in a short work entitled Created Things are Actually Infinite:

Created things are actually infinite. For any body whatever is actually
divided into several parts since any body whatever is acted upon by other
bodies. And any part whatever of a body is a body by the very definition
of body. So bodies are actually infinite . .. i.e. more bodies can be found
than there are unities in any given number. (TLC 235; emphasis added)

As Russell (1937) observes, "an actual infinite has been generally regarded as

inadmissible, and Leibniz, in admitting it, is face to face with the problem of the

continuum" (108). Aside from the possible problems with the continuum, ofwhich

Leibniz was certainly well aware, this attitude towards the actual infinite was novel to say

the least. At the time Leibniz was writing, considerations of the infinite were strongly

guided by the Aristotelian distinction between potential and actual infinities, the latter

being considered inadmissible by Aristotle and thus generally so. Hence the motivation

~or Russell's claim. So in this regard, Leibniz is stepping into dangerous philosophical

14
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tl;:rritory by viewing the actual infinite as something coherent.1
] To put it differently,

Leibniz is already opening himself up to attack by espousing something the incoherence

ofwhich was thought to be well established. But the problems do not end here.

By espousing actually infinite division, it would appear that Leibniz is also

espousing the possibility ofan actually infinite number. For if an actually infinite

multiplicity exists-i.e. as a result of actually infinite division-it seems that we can ask

about its cardinality; in other words, we can ask how many? At first glance, it seems that

giving this multiplicity a cardinality is a straightforward implication of the doctrine of

actually infinite division. Thus, if one were only to read this aspect ofLeibniz's position

on the infinite, one might think that he had anticipated Cantor's acceptance of the actual

infinite and was in a position to proceed to the theory of infinite cardinals to be developed

by Cantor some two hundred years later. However, there is more to be said about

Leibniz's position; and this is where the curiosity lies. For in his dialogue Pacidius to

Philalethes Leibniz rejects the notion of infinite number as contradictory based on the

v,ery concept of number. He writes: "I believe it to be the nature of certain notions that

they are incapable ofperfection and completion, and also of having a greatest of their

kind. Number is such a thing" (TLC 179).12 Thus, Leibniz cannot accept that the infinite

multiplicity implied by his doctrine ofactually infinite d.ivision has a cardinality. In doing

II There are precedents for the espousal of the actual infinite going right back to Ancient Greece. For
example, Anaxagoras writes "All things were together, infinite both in number and in smallness; for the
small too was infinite. And of all things together none was evident on account of smallness" (DK32B1).
12 As I will discuss, the literal implication of this statement is not at odds with Cantor's own position
regarding infinite number. However, one cannot read too much of a similarity here; for Leibniz had no
conception of an infinite number in the sense ofa Cantorian transfinite number, a middle ground between
the finite and the absolutely infinite. For Leibniz, "infinite number" could mean nothing other than a
number that is quantitatively not increasable.

15
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so he would be committed to the acceptance of infinite number. But since he denies that

number is the sort of thing that can have a "greatest of [its] kind" his position would very

quickly fall into inconsistency.13 So it would seem that Leibniz is in a rather difficult

position. Nevertheless, I do not believe that he can be charged with any inconsistency. It

is certainly tenable to espouse the existence of an infinite multiplicity while denying the

existence of an infinite cardinal that numbers this multiplicity. The way in which this

position takes shape can be found within Leibniz's own writings. That is, the following is

not an account ofthe way in which Leibniz could have avoided this apparent

inconsistency; it is an account of the way he did infact avoid it. The first step is to see the

way in which Leibniz commits himself to the espousal of the actual infinite. An

explanation of his doctrine of the actually infinite division of matter win serve to

demonstrate this commitment.

1.3 THE INFINITE AS ACTUAL

It seems that the doctrine of actually infinite division has its origin in the

Cartesian method ofexplaining the motion of matter through uneven spaces in a plenum

(Arthur 1989). Descartes' account of motion in a plenum is as follows: "a body entering a

given place expels another, and the expelled body moves on and expels another, and so

on, until the body at the end ofthe sequence enters the place left by the first body at the

precise moment when the first body is leaving it" (CSM 1237-238). In order for this

13 This is not a completely novel position. See Riesterer (2006) for an argument that Spinoza has a
conception ofthe infinite as syncategorematic. However, it is with Leibniz that the application of such a
position within mathematics is discussed.

16
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doctrine to make sense, Descartes requires that all motion be circular, i.e., that all bodies

move in a circle. If everything moved in concentric circles, then perhaps no further

explanation would need to be given. But then it seems that everything would need to

move at a constant rate. So Descartes considered the case of non-concentric circles. In

order to understand the scenario Descartes is describing, simply imagine a small circle

inscribed within a larger circle, the centers of which do not align with one another.

Further imagine corpuscles moving through the corridor created by the exterior edge of

the smaller circle and the interior edge of the larger circle. At certain locations during the

traversal ofthis corridor the corpuscles will be moving through a widening space while at

other locations the corridor will be narrowing. Deseartes argues that bodies passing

through a smaller space must move faster in order for enough bodies to move through to

fill up the space ofthe corpuscles on the other side of the corridor. In particular the

bodies moving though the smaller space move n times as fast as bodies passing through a

larger space, where the larger space is n times as large as the smaller. It is the need for all

of these corpuscles to fit through the small part of the corridor that leads Descartes to

espouse what he describes as "indefinite division". Descartes writes,

for what happens is an infinite, or indefinite, division of the various
particles of matter; and the resulting subdivisions are so numerous that
however small we make a particle in our thought, we always understand
that it is in fact divided into other still smaller particles. (CSM I, 239)

It is only through this indefinite division that a sufficient mass of corpuscles will be able

to move through the small space quickly enough to fill the space of the widening

corridor, which is clearly required in order to maintain the doctrine of the plenum.
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When we compare Descartes' articulation of this doctrine with Leibniz's

articulation above, there are two striking similarities: the motion of the bodies is the

cause of their division and there is no smallest body (however small a body is, it is infact

still divided into smaller particles). The crucial difference between their positions is that

while Descartes wants to maintain that the division is merely "indefinite", Leibniz does

not hesitate to assert that this division must be actually infinite.14

Descartes' explanation of why he distinguishes the indefinite from the infinite

(and from the finite as well) can be found in his treatment ofwhether the world is

infinite:

I do not say that the world is infinite but only that it is indefinite. There is
quite a notable difference between the two: for we cannot say that
something is infinite without a reason to prove this such as we can give
only in the case of God; but we can say that a thing is indefinite simply if
we have no reason which proves that it has bounds ....Having then no
argument to prove, and not even being able to conceive, that the world has
bounds, I call it indefinite. But I cannot deny on that account that there
may be some reasons which are known to God though incomprehensible
to me; that is why I do not say outright that it is infinite. (CSM III, 319­
320; Bassler 852-853)

Something is indefinite, then, if there is no proof that it is bounded. To be infinite, on the

other hand, it is necessary to construct a proof, but such a proof is beyond the capacity of

a finite intellect. Based on this account, the indefinite can be thought of as a kind of

middle ground between the finite and the infinite.

14 This is not to say that Descartes' account is without its difficulties. By stopping at "indefinite" Descartes
believes that he can avoid tackling the problems of the continuum. Leibniz, however, attempts to address
what he believes to be the actual implications of claiming that any part we can imagine is infact divided
into yet smaller parts. .
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In his early writings, Leibniz also upheld this distinction between the indefinite

and the infinite, describing, for example, the number of numbers as indefinite but not

infinite (Bassler 850). Later in his career, however, Leibniz moves to the position that the

indefinite is infinite, and this is what leads him to a different conclusion than Descartes

concerning what indefinite division actually entails. ls The rejection of this distinction is

very much tied up with Leibniz's position that the infinite should be understood

syncategorematically as opposed to categorematically. This will be discussed at length in

the fo llowing section.

As I pointed out, according to Leibniz division is carried out through the motions

of bodies. Since all ofthe parts ofa body are "excited by different motions" the division

is actual, that is, it has already taken place (TLC 317). Furthermore, since "any part

whatever ofa body is a body", the same thing can be said of the parts-i.e. they are

actually infinitely divided. Although by now it should be apparent, it is important to

notice the contrast between Leibniz's view and a doctrine of infinite division in which the

division is not necessarily carried out, i.e. is merely potential. For it is in this respect that

Leibniz is shown to espouse the actual as opposed to the potential infinite.

Contrast this with Aristotle's position. To say that matter is infinitely divisible is

to say only that it is capable of being divided. That is, any part can be further divided into

smaller parts, which can be further divided, and so on. But the division is only

potential-it is not necessarily carried out. The import of this is that the parts need not be

15 Bassler (1998) traces the development ofLeibniz's position on this matter. I will not repeat it here,
however. I am only interested in Leibniz's mature position as that is what leads to his doctrine of actually
infinite division.
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nlrther divided (since they may not be actual parts), and thus need not be infinitely small

or infinite in number. Ifthis were Leibniz's position, he would not be at odds with his

peripatetic ancestors, who maintained that the potential infinite was the only consistent

notion of the infinite. For if the parts were, so to speak, waiting to be created, then they

would not be present actually but only potentially, and thus it would not be case that

body would seem to have an infinite number of infinitely small parts. I
6

However, when a body is said to be actually divided, this problem does arise. And

this is precisely what Leibniz does say. In fact, in his letter to Foucher (1692) he makes

an explicit effort to distinguish his position from one according to which the divisions are

only potential: "Indeed, I believe there is no part of matter which is not, I do not say

divisible, but actually divided; and that consequently the least particle ought to be

considered as a world full of an infinity of different creatures" (0.1.416; Arthur

unpublished, 1; emphasis added). For it is not the case that the division could be carried

out, rather that it is carried out. If a body is actually divided, then it seems to have an

infinite number of infinitely small parts. For using the term "divided" gives a connotation

of completeness, which leads to the conclusion that Leibniz is in fact espousing a

categorematic infinity-i.e. an infinity present all at once. This espousal of the actual

infinite is exactly what brings Leibniz face to face with the problem of the composition of

16 As I will discuss, certain commentators have argued that Leibniz's doctrine of infinite division should
have been one of potential division. See, for example, Brown (2000).
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the continuum and, in tum, leads to the apparent necessity that Leibniz accept the notion

of infinite number. l
?

1.4 THE INFINITE AS SVNCATEGOREMATId8

As clearly as Leibniz accepts that bodies are actually infinitely divided, he denies

that there can be such a thing as an infinite number. In Pacidius to Philalethes, Leibniz

argues that the notion of an infinite number is inconsistent because the whole becomes

equal to the part. He uses various examples to draw this conclusion, but the example of

the number of all squares (Galileo' s paradox) is the easiest to deal with here. It runs thus:

The number of all squares is less than the number of all numbers, since
there are some numbers which are non-square. On the other hand, the
number of all squares is equal to the number of all numbers, which I show
as follows: there is no number which does not have its own corresponding
square, therefore the number of numbers is not greater than the number of
squares; on the other hand, every square number has a number as its side:
therefore the number of squares is not greater than the number of numbers.
Therefore the number of all numbers (square and non-square) will be
neither greater than nor less than, but equal to the number of all squares:
the who Ie will be equal to the part, which is absurd. (TLC 177)

As Arthur (2001) points out, Leibniz identifies two statements that may be rejected as a

result of this reductio. "(W) that in the infinite the whole is greater than the part, and (C)

that an infinite co llection (such as the set of all numbers) is a who Ie or unity" (103). From

the fact that one set ofnumbers (i.e. the natural numbers) can be set up in a one-to-one

correspondence with one of its proper sub-sets (i.e. the squares of the natural numbers),

17 There is another aspect of this problem that will not be dealt with here; i.e. the relationship between
actually infinite division and the continuity of motion. For a treatment of continuity in Leibniz, see, for
example, Crockett (1998) and Levey (1998).
18 This reading ofLeibniz's philosophy ofthe infinite is presented by R. T. W. Arthur in a series of papers
from 1998 through 2001.
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Leibniz denies (C). Cantor has the opposite intuition and denies (W). Since (W) and (C)

are incompatible with one another, given the other commitments of this argument,

Cantor's theory and Leibniz's theory are found to be fundamentally opposed to one

another. And thus, as I will argue in a further chapter, this argument cannot be the basis

D::>r deciding between the two theories. That is, we cannot argue from a Cantorian

perspective that Leibniz should have simply accepted infinite number (Arthur 2001, 104).

It has been objected that this argument is based on an equivocation on the

phrase "number of' (Benardete 46). As a result, it has been argued, Leibniz's denial of

infinite number is fallacious: it is incorrect to claim that either one maintains the part-

whole axiom or one accepts infinite number. For on Benardete's account, the

contradiction arises from an equivocation rather than from the part-whole axiom and thus

can be avoided by clarifying the various senses ofthe terms being used. And since the

part-whole axiom is not involved in the contradiction, the supposition that the number of

numbers forms a whole need not be given up in order to maintain it.

The three criteria of equality that Benardete distinguishes are as follows:

(1) If A is a proper subset ofB, then there is a greater number of elements in B
than in A.

(2) If A and B can be placed in 1-1 correspondence, then A and B contain the
same number ofelements.

(3) If all the elements ofA can be placed in 1-1 correspondence with a proper
subset of B, then B contains a greater number of elements than A. (47)

The upshot ofBenardete's analysis is summarized in the following passage:

There is no contradiction, as Leibniz supposed, if judiciously we note that
in one sense (according to the first criterion) the number of integers is
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greater than the number of even numbers; in another sense (according to
the second criterion) the number of elements in the one class is equal to
the number of elements in the other; and in still another sense (according
to the third criterion) the number of the one is both greater and less than
the number of the other. (47)

Even ifthis avoids the contradiction, it does so at the cost ofunivocality, which is odd

considering that this is the very charge Benardete is bringing to bear against Leibniz. The

equivocation that Benardete believes he has identified is rather the contradiction itself:

maintaining a univocal sense of "number of' is not possible on the supposition that the

number ofnumbers forms a whole. Benardete has admitted this much. I suppose it is

possible if one rejects the part-whole axiom altogether and relies solely on one-to-one

correspondence to determine the equality of sets. But since this axiom is certainly

legitimate in the case offinite collections, this move is rather counterintuitive. It cannot

be argued that one must relinquish the part-whole axiom as a result of this argument,

which is ultimately what Benardete is arguing. There ought to be some overriding

consideration in favour of this maneuver, if it is to be made. Without such a consideration

we are right back where we started: one may reject one of two statements as a result of

this reductio. Leibniz rejects that the number of numbers forms a whole, Cantor (pace

Bolzano and Dedekind) rejects that the part-whole axiom applies to infinite sets. To argue

on the basis of this argument alone that one of them is wrong is at best unproductive.

Even if this objection can be answered, based on the previous section, Leibniz's

theory seems to imply the existence ofan actually infinite number (as Cantor espouses),

but in denying (C)-that an infinite collection is a whole or unity-Leibniz is by

implication denying infinite number. There are really only two options open to Leibniz at
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this point. Either he must acknowledge that his doctrine does commit him to infinite

number, a notion which he rejects on separate grounds, and so his theory is inconsistent,

or he must provide an explanation of how his theory of actually infinite division does not

commit him to infinite number, in which case his theory is (for the moment) coherent.

Fortunately, Leibniz does provide such an explanation. It is to be found within his

treatment of infinite convergent numerical series (Arthur 1999,109).19 Take, for

example, the series "1/2 + 1/4 + 1/8 + 1/16 + ... + 1I2n
". This series is said to have a sum

of I even though there is an infinity of terms. This, in turn, seems to imply that an infinity

of terms combines to make a whole and that there is an infinite number of them. But

Leibniz construes the sum of an infinite convergent series in such a way as to avoid this

conclusion. In Infinite Numbers he describes this construal:

Whenever it is said that a certain infinite series ofnumbers has a sum, I
am ofthe opinion that all that is being said is that any finite series with the
same rule has a sum, and that the error always diminishes as the series
increases, so that it becomes as small as we would like. For numbers do
not in themselves go absolutely to infinity, since then there would be a
greatest number. But they go to infinity when applied to a certain space or
to an unbounded line divided into parts. (TLC 99; Arthur 1999, 109)

Since there is no irifinitieth term of the series it is not the case that the series can be taken

as a single collection of terms-i.e. the series is not a completed whole.2o

To understand how this works, it is necessary to introduce the distinction between

"categorematic" and "syncategorematic". This distinction is medieval in origin and was

J9 This point, of course, brings up some interesting questions about the relation, in Leibniz's view, between
mathematics and ontology. Unfortunately, 1 cannot give a detailed treatment of this question here. See,
however, Levey (1999) for a discussion ofthis topic.
20 As 1pointed out above, Leibniz's notion ofthe sum of a convergent infinite numerical series is
essentially the modem notion of a limit. That is, "any finite series with the same rule has a SWll, and...the
error always diminishes as the series increases, so that it becomes as small as we would like" (TLC 99).
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initially intended to be applied to terms; i.e. it is a grammatical distinction. It comes from

a famous passage in Priscian's work Institutiones grammatice in which he identifies two

types ofword classes: those that have a definite meaning on their own and those-

syncategorema or consignificantia-that must be combined with words from the first

class in order to acquire a definite meaning (Spruyt 4). It is then given a more detailed

treatment by Peter of Spain in his work Syncategoreumata and later taken up and refined

by Jean Buridan and Gregory ofRimini (A. W. Moore 51). William ofOckham

characterizes the distinction as follows:

Categorematic terms have a definite and fixed signification, as for instance
the word 'man' (since it signifies all men) and the word 'animal' (since it
signifies all animals), and the word 'whiteness' (since it signifies all
occurrences ofwhiteness). Syncategorematic terms, on the other hand, as
'every', 'none', 'some', 'whole', 'besides', 'only', 'in so far as', and the
like, do not have a fixed and definite meaning, nor do they signify things
distinct from the things signified by categorematic terms. (51)

The main feature to note in his discussion is that categorematic terms refer to something

fixed and definite, while syncategorematic terms do not. With that in mind let me present

the distinction as it is applied to the infinite. As A.W. Moore puts it, "to use 'infinite'

categorematically is to say that there is something which has a property that surpasses

any finite measure; to use it syncategorematically is to say that, given any finite measure,

there is something which has a property that surpasses it" (2002, 51). In the case of an

infinite multiplicity, this distinction amounts to the following: to say that for every finite

number x there is a finite number y which is greater than it-i.e. 'dx3y(y > x)-is to use

the term 'infinite' syncategorematically; to say that there is a number x which is greater

than any number y-i.e. 3x'dy(x:;t y -+ x> y)-is to use the term 'infinite'

25



M. A. Thesis - A. Harmer McMaster - Philosophy

categorematically. It is clear from these definitions that there is nothing about

'syncategorematic' that necessitates its equation with 'potential'.

The distinctions between the potential and actual, categorematic and

syncategorematic are no more equivalent than the analogous distinctions between the a

priori and a posteriori, analytic and synthetic were for Immanuel Kant-the distinctions

are cross-cutting. This does not necessarily mean that every combination of these terms

results in a possible conception of the infinite; however, it does mean that there are more

than simply two options-i.e. actual (=df categorematic) or potential (=df

syncategorematic). Thus, it is no more necessary that an actual infinity be categorematic

than it is (according to Kant) that an a priori statement be analytic.

It has been argued that by claiming that body is actually infinitely divided,

Leibniz is not in a position to reject that the series has an infinite number of terms. Brown

(1998) has claimed that "[Leibniz's] failure to embrace infinite number was due to an

uncharacteristic failure of mathematical imagination on his part" (12 I). I believe,

however, that this reading ofLeibniz is not taking into account the subtle distinction

between the actual infinite and the categorematic infinite.

IfLeibniz's rejection of the categorematic infinite is treated as a rejection of the

actual infinite, then a contradiction may not be avoidable. But all that Leibniz claims is

that the infinite number of numbers is not one and whole. This claim denies the

possibility ofa categorematic infinity; it denies that an infinity of terms can be present as

a unity. So long as we equate the categorematic with the actual, then Leibniz's rejection

of infinite number entails a denial of the actually infinite, from which follows a
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contradiction in Leibniz's position. But this equation need not be carried out. For it is

certainly possible for there to be an actual, yet syncategorematic conception of the

infinite. And if Leibniz's view is understood in this light, then his position does not fall

into inconsistency.

1.5 SOME OBJECTIONS CONSIDERED

Arguments against Leibniz have generally not given due weight to the distinction

between actual and categorematic. According to Brown (2000), the existence of an

infinite cardinal number is implied by the fact "that all the divisions in such a body [i.e.

an infinitely divided body] are conceived by Leibniz to be actually given" (27). He

continues as follows:

Given Leibniz's operational treatment of infinite series, it is natural to
suppose that the series is not actually completed, that it is not, to use
Arthur's expression, 'a completed whole.' But the same cannot be said for
actual bodies. For Leibniz is quite unambiguous, throughout the whole of
his philosophical career, in stating that the divisions in actual bodies, as
opposed to those imagined in what he considered to be ideal
mathematical continua, are determinate, and thus actually, and not just
potentially, infinite. (27-28)

From the claim that bodies are actually infinitely divided, Brown is inferring that all the

divisions are actually given. Whereas the former is an articulation of the actual infinite,

the latter is the categorematic infinite. Thus, he has reasoned from the actual to the

categorematic. While the categorematic clearly implies the actual, the other direction of

implication cannot be taken for granted, which is precisely what Brown is doing. While

"every division is actual, in that each part is actually subdivided, that does not give you

27



M. A. Thesis - A. Harmer McMaster - Philosophy

all the divisions" (Arthur 2005). It is one thing to say that all divisions are actual; it is

another thing to say that the collection of all divisions can be given as a whole.

Brown makes another similar claim just below: "Given that the body is actually

divided to infinity, as Leibniz contends, all of the parts, or divisions, ofthe body are

actually given, and in that sense it is a 'completed whole'" (28). It is obvious from the

locution "actually given" that the notion of infinity being wielded in these passages is that

of a categorematic infinite. For a categorematic infinite is precisely an infinite which is

present all at once. But this is not Leibniz's conception of the infinite. In other words,

Leibniz can legitimately claim that for any number ofdivisions specified, there are

already (not possibly) more, while stilI claiming that there is no number that captures all

of the divisions. This is because the body whose divisions are being considered is not a

true whole. As Arthur (I 989) puts it, "at each instant, any given body is the sum of all its

parts. But this sum is an infinite sum which, like an infinite series, is never completed. It

is not a true whole, or even a collection of them, but a distributive whole" (I 88). It is in

this sense, i.e. a distributive sense, that the word "all" is being used in the phrase "all the

divisions". As in an infinite sum, all the terms cannot be given all at once, but they are

actual, and they can be given in this distributive sense.

The discrepancy identified within these passages on the basis ofan equation of

actual with categorematic is articulated by Brown as follows: "[Leibniz's] constructivist

stance in mathematics led him to treat the mathematical infinite as merely potentially

infinite, whereas his metaphysics of divided matter led him to treat the divisions in bodies

as actually infinite" (2000, 36). This has been described as "a dualistic view of the
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infinite" and an instance of"[Leibniz's] constructivism [spilling] over disastrously into

his philosophy of matter" (Levey 1999, 155). As a result, Brown believes that ''just as

talk of an actual infinity of terms in an infinite series gives way to talk of a merely

potential infinity ofpartial sums, each ofwhich is itself actually finite," "talk ofan actual

infinity of divisions" should give way "to talk of a merely potential infinity of divisions"

(37). But this only follows if actual is equated with categorematic.

Ifbody were infinitely divisible, we would have a clear-cut case of a

syncategorematic, potential infinity-at any step of the division it would be possible to

carry out the division one step further, the infinite number of divisions being thus

potentially present. However, for Leibniz, body is infinitely divided, for according to this

doctrine, all divisions have already been carried out through the different motions of the

different parts of the body. This means that at any step along the way, the division has

already occurred-in this sense it is actual. But any number whatsoever of identified

divisions will be less than the actual number of divisions present-in this sense it is

syncategorematic. It is not possible to identify the number ofdivisions; there is no

completed totality to be identified (this would be a categorematic conception). As Leibniz

says, "more bodies can be found than there are unities in any given number" (TLC 235).

Thus, all that Leibniz means when he says that there is an actually infinite division is that

:Dor any number of divisions proposed, there are already more divisions than that number.

As a result, to claim that this position commits Leibniz to the existence of infinite number

commits the "quantifier shift fallacy", that is, to reason from (Vx)(::3y)y > x to (::3y)(Vx)y >

x (Arthur 2001, 107). Therefore, if the infinite division of bodies is (onto logically) actual,
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yet (numerically) syncategorematic, the problems identified by Brown can be avoided.

As Rescher (1955) puts it, "the vast storehouse ofnature does indeed encompass an

infinite multitude ofexistents, but this actual infinity cannot be contained by any

numerical limit whatever" (113).

Even if, as I believe, Leibniz' s rejection of infinite number is consistent with his

doctrine of actually infinite division, there is a further problem that needs to be addressed.

It is clear that Leibniz denies the existence of infiniitesimals as anything more than a

fa90n de parler, a useful fiction. As Arthur (1999) puts it: "infinitesimals are infinitely

small fictional parts into which a continuous whole can be resolved, but not infinitely

small actuals or elements that compose into the whole" (109). The following passage

fi'om Pacidius to Philalethes clearly indicates that Leibniz wants to avoid the conclusion

that body is resolved into points:

Accordingly the division ofthe continuum must not be considered to be
like the division of sand into grains, but like that of a sheet of paper or
tunic into folds. And so although there occur some folds smaller than
others infinite in number, a body is never thereby dissolved into points or
minima. (TLC 185)

The analogy of the tunic is important and I will return to it later. For now, it presents the

conclusion that Leibniz wants to avoid-i.e. that body is resolved all the way down into

infinitesimals, and thus that points become parts. Nonetheless, it does seem that he is at

risk of running into such a problem by claiming that body is actually infinitely divided,

f()r (ontologically speaking) there is an actual infinity of divisions. Further, any part, no

matter how small, is itself a body and is therefore itself actually infinitely divided. Thus,

there is a problem as to how these parts can be composed of anything but infinitesimals.
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There are two paths open to Leibniz if he is to escape this labyrinth. The first is to

claim that according to his doctrine ofactually infinite division, it is not the case that

body is resolved into points or minima. For if the constituent bodies have some finite,

determinate magnitude, it is not a problem that they compose into a whole. This argument

can be made based on the folds analogy mentioned above. Slightly below the previously

quoted passage from Pacidius to Philalethes Leibniz continues the analogy of the folded

tunic:

It is just as if we suppose a tunic to be scored with folds multiplied to
infinity in such a way that there is no fold so small that it is not subdivided
by a new fold: and yet in this way no point in the tunic will be assignable
without its being moved in different directions by its neighbors, although
it will not be tom apart by them. And the tunic cannot be said to be
resolved all the way down into points; instead, although some folds are
smaller than others to infinity, bodies are always extended and points
never become parts, but always remain mere extrema. (TLC 185)

So based on this analogy, Leibniz believes that he has avoided the conclusion that points

become parts of bodies. For all the parts are not of uniform size ("some folds are smaller

than others to infinity") and thus cannot be considered minima or infinitesimals. If this

were the case, i.e. the parts were of a uniform size, then points would become parts and

the labyrinth would get the better of Leibniz. But he thinks that the model of the folds is

able to avoid this problem. Initially, this seems plausible: if the divisions result in parts of

differing sizes, then even if these divisions are carried out to infinity, body does not

become a powder of infinitesimals.

But Levey (1999) sees a problem lurking here. In an attempt to clarify exactly

what has gone wrong, he presents two "ontological" models ofLeibniz's division
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analogous to the infinite convergent numerical series. The first is called the "diminishing

pennies" model.

DP: Imagine that there is a glass jar halfway full of pennies. The pennies
are organized as follows: there is one penny (the largest) one-half inch
thick. There is another penny which is half as thick, one-quarter inch
thick. There is a third penny one-eighth inch thick, and so on ad infinitum.
All pennies in the jar are unique and, save their thickness, share the same
dimensions.

It is important to note that there are infinitely many pennies, "but while the pennies grow

successively thinner and thinner without end, each one has yet some finite thickness to it

and stands in some specifiable finite ratio to the thickness ofthe [largest] penny" (143).

The second model is called the "divided block" model:

DB: Imagine a block ofone cubic foot in volume. The block is neatly
divided down the middle by a hairline fissure. Each ofthe halves is further
divided down the middle. Each quarter is divided down the middle, and so
on ad infinitum.

In this case it is important to note that "unlike the diminishing pennies model in

which... every penny... is finite and undivided, in the divided block model there are no

flnite and undivided parts of matter to be found" (144). It is Levey's contention that the

divided block model more accurately captures Leibniz's folded tunic model, while the

diminishing pennies model would have been the sounder choice.

However, the diminishing pennies model is ruled out by Leibniz's claim that the

"foIds [are] multiplied to infinity in such a way that there is no fo ld so small that it is not

subdivided by a new fold" (TLC 185). Based on this claim, the parts cannot have finite

and determinate dimensions. Since every part (every body) is divided to infinity, it is

hard to avoid the conclusion that body is resolved into infinitesimals. But this is explicitly
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denied by Leibniz. Is the claim that every fold is subdivided by a new fold simply an

instance of over-zealousness on the part ofLeibniz? In other words, ifwe ignore

Leibniz's claim that every part of matter is infinitely divided, then can we accept the

diminishing pennies model and avoid the problem altogether? As Brown (2000) puts it,

Now Arthur seems to think that infinitesimals can only be avoided by
denying that the infinity ofparts in a body constitute a completed whole,
but that is not the only way that infinitesimals might be avoided. For if a
body is conceived to be infinitely divided after the manner of Levey's
diminishing pennies model, then the parts may be conceived as
constituting a completed whole, in the sense that an infinity of parts are
actually given, without thereby supposing that there are any infinitesimal
parts. (37)

But given the doctrine of actual infinite division as presented by Leibniz, this is not an

option, for "there is no fold so small that it is not subdivided by a new fold"-i.e. "all

things are subdivided" (TLC 211; Levey 1999, 145). Therefore, it ought to be determined

whether Leibniz's position is coherent as it stands before proceeding to suggest what

Leibniz should have or could have done instead.

In an attempt to remain within Leibniz's position, I will explore the second option

open to Leibniz, which Brown attributes to Arthur, namely that infinitesimals can be

avoided by denying that the infinity of parts in a body constitute a completed whole. The

reason that Leibniz seems committed to infinitesimals based on his doctrine of actually

infinite division is that we expect the parts that exist as a consequence of these divisions

to recombine, so to speak, into a unified whole. But does Leibniz expect this to be the

case? Brown (2000) has made the claim that

it is not altogether clear that Leibniz, at any rate, actually realized that his
commitment to the doctrine that every part of matter is actually divided to
infinity entails that bodies are not wholes, despite the fact that such would
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seem to follow rather directly from the former doctrine in conjunction
with the doctrine that an infinity of things cannot make a whole. (37-38)

I contend, however, that it is altogether clear that Leibniz was aware of this consequence.

Leibniz maintains unambiguously that bodies are merely aggregations. This can

be seen in the following excerpts from his correspondence with Arnauld:

Thus you will never find a body of which we can say that it is truly a
substance: it will always be an aggregation of many substances. Or rather,
it will never be a real being, since the parts which make it up face just the
same difficulty, and so we never arrive at real being, because beings by
aggregation can have only as much reality as there is in their ingredients.
(l16i1

In the following instance, he even speaks directly to the doctrine ofactually infinite

division:

But not only is a continuum divisible to infinity, but every part of matter is
actually divided into other parts which are as different from each other as
the two diamonds mentioned above.22 And since that goes on and on in the
same way, you will never arrive at something ofwhich you can say it is a
true being until you find animated machines, the substantial form of which
produces a substantial unity which is independent of the external union of
contact. And ifthere are none, it follows that except for man there is
nothing substantial in the visible world (WF 118).

21 A similar comment is made a few lines later: "I answer that in my opinion our body in itself, or the
corpse, considered in isolation from the soul, can only improperly be called a substance, like a machine, or
a heap of stones, which are only beings by aggregation" (WF 117).
22 The passage in which Leibniz discusses the diamonds is worth quoting in full: "For imagine there were
two stones, for example the diamond ofthe Grand Duke and that of the Great Mogul. We can use a single
collective noun to do service for both ofthem, and say that they are a pair of diamonds, although hey are a
long way apart from one another; but we would not say that they constitute a substance. Now, matters of
degree play no part here. 1fwe gradually bring them closer together, therefore, and even bring them into
contact, they will not be any more substantially united. And ifwhen they were in contact we joined them to
some other body which prevented them from separating-for example, ifwe mounted them in a single
ring-the whole thing would make up only what is called unum per accidens. Because it is as ifby accident
that they are forced to move in unison" (WF 118).
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Thus, it is clear that Leibniz does not equate "substantial unity" with "aggregate", and

nlrther, that body is unequivocally not a substantial unity. Interestingly, in these passages,

Leibniz provides a response to the following criticism by Levey:

Since any part of matter we specify would be subject to the precisely same
infinite division into parts, it follows that no part of matter can truly be
one or a whole. But to say that something is not truly one is to say that it
does not truly exist. Thus in the folds model of matter's infinite division,
since no part of matter can truly be one, there can't be any matter. (1999,
146)

It seems that within his correspondence with Arnauld, Leibniz agrees with these very

claims. That is why there is a "need for something substantial and non-material to act as a

principle of unity for body" (Arthur 2001, 110). For according to Leibniz, matter qua

matter is not real; it is phenomenal. Thus, a body is explicitly not a unity.

But Leibniz does not equate "substantial unity" with "whole" either (Carlin 1997,

8-9). So what we have is this: "substantial unity" ::j::. "aggregate" and "substantial unity" ::j::.

"whole". But where does this leave the relationship between "aggregate" and "whole"?

Leibniz writes that "an infinite aggregate is [not] one whole" (G. II. 304; Russell 110). So

at least when the infinite is involved we may also say that "aggregate"::j::. "whole", as long

as "aggregate" is understood as "infinite aggregate". For to be one who Ie is to be given

all at once-i.e. to be categorematic. But as I argued above, Leibniz espouses a

syncategorematic conception of the infinite, and thus in an infinite aggregate the parts

never combine to form a true whole (or "one whole").

To sum up, we have the following: a body is clearly identified to be an aggregate.

Since an aggregate is not a unity (save a unum per accidens), a body is not a unity.

Furthermore, since an infinite aggregate is clearly not a whole, and a body is an infinite
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aggregate (based on the doctrine of actually infinite division), a body is explicitly not a

whole. Finally, if a body is not a whole, then it is not the case that infinitesimals combine

to form a whole. And if infinitely many infinitely small parts are not combining to form a

whole, then the problem of the composition of the continuum does not apply. Thus,

Leibniz is able to escape the labyrinth.

1.6 CONCLUSION

I would like to conclude with a final word about the diminishing pennies versus

the divided block as possible ontological models for the infinite converging numerical

series. For it could be objected that my argument in the above section still relies on an

ontological interpretation ofa mathematical model to which Leibniz is not entitled. That

is, the notion ofa distributive whole, or even a mechanical aggregation (unum per

accidens) still rests on the fact that each term of the infinite series is finite and indivisible.

In other words, I need the series to do the ontological work that the diminishing pennies

model does. I do not believe, however, that an objection along these lines can be

successful.

Suppose that we think of the number I as a body and we think of the actually

infinite divisions as the series 1/2 + 1/4 + 1/8 + 1/16 + ... and so on?3 My claim is that

the terms of the series combine into an infinite aggregate, which is not a whole and not a

unity. Therefore, if 1 (insofar as it represents a body) is a unity, it is not because the terms

23 It must be remembered that the mathematical series is only an analogy. For insofar as each term is
represented by a number, it appears to be a unity. But this is not Leibniz's position. Each term should be
thought of as an infinite aggregate, not a whole and not a unity.
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combine in such a way as to make it so; rather it is because of some non-material

principle of unity. But Leibniz claims that every part of a body is a body, and is thus

actually infinitely divided itself. So we must also think of 1/2 as a body and 1/4 as a body

and so on, which are in tum infinite aggregates as well. For if a body qua body is not a

whole (as is the case even in the diminishing pennies model), then the parts are not

wholes either. Thus, the parts need the same ontological model as the original body. In

other words, the diminishing pennies model must be "multiplied to infinity". But we are

able to deal with this. For 1/2 may be divided as follows: 1/4 + 1/8 + 1/16 + ... and so

on. What we get in the end is a system ofparallel convergent series:

1 = 1/2 + 1/4 + 1116 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 111024 + .

1/2 = 1/4 + 1116 + 1/32 + 1/64 + 11128 + 1/256 + 1/512 + 1/1024 + .

1/4 = 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 111024 + .

1/16 = 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 1/1024 + .

1/32 = 1/64 + 1/128 + 1/256 + 1/512 + 111024 + .

1/64 = 11128 + 1/256 + 1/512 + 1/1024 + .

1/128 = 1/256 + 1/512 + 1/1024 + .

1/256 = 1/512 + 111024 + .

1/512 = 1/1024 + .

1/1024 = .

If the series applies in the first instance, as Levey and Brown believe that it does in the

diminishing pennies model, I believe that it works in all other instances as well. But the

extension of the diminishing pennies model that I have presented above is manifestly not
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equivalent to the divided block model. To jump from the diminishing pennies model to

the divided block model simply because Leibniz says that every part (or body) is actually

infinitely divided is a mistake. For if Levey's analysis is granted, the divided block leads

to infinitesimals, a conclusion which Leibniz was consciously trying to avoid as he

explicitly acknowledged it to be unacceptable. By simply extending the diminishing

pennies model to infinity, as Leibniz extends the folded tunic model, we can reach a

much more accurate picture of what Leibniz had in mind, without being committed to

infinitesimals. And since, in the context of the present objection, Leibniz is committed to

a categorematic infinite (and by extension infinite number) ifhe is committed to

infinitesimals, the inference does not go through.

Based on this, then, I believe it is possible and even quite plausible to remove the

apparent contradictions from Leibniz's view while remaining within the textual evidence.

Thus, the doctrine of actually infinite division, far from being inconsistent, is actually

quite coherent. Having thus established the internal consistency ofLeibniz's position, I

will now proceed to an exposition of Georg Cantor's position on the infinite. My focus

will be conceptual; that is, I will investigate the philosophical arguments that Cantor

proposes to establish that a categorematic infinite is coherent. As we will see, Cantor is

operating with the presupposition that "potential" is synonymous with

"syncategorematic" and that "actual" is synonymous with "categorematic". This

oversight will playa central role in the evaluation of his argument.
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CHAPTER 2: CANTOR AND THE INFINITE

2.1 INTRODUCTION

In the previous chapter I argued that Leibniz's position on the infinite is in fact

coherent. In particular I argued for the following three claims: Leibniz describes the

infinite as actual; he maintains that this actuality is to be syncategorematically

understood; and finally, the combination of these views is not contradictory. The third

claim is by no means obvious and various commentators have argued the contrary. Both

Brown and Levey have taken this position. I believe, however, that their arguments do

not satisfactorily take into account the distinction between actual and categorematic or

the distinction between potential and syncategorematic. While these terms are generally

treated as synonymous, they are not synonyms and treating them as such leads to the

rejection of a perfectly coherent position on the infinite: i.e. that the infinite is actual, yet

syncategorematically understood.

In the present chapter, I will move from a discussion ofLeibniz to a discussion of

Georg Cantor. Like chapter one, this chapter will be mainly expository. I will present the

basic components of Cantor's theory of transfinite numbers. In particular, I will focus on

Cantor's philosophical justification for his mathematical conclusions. Thus, I am not

interested in an analysis ofthe mathematics involved, except perhaps indirectly. My goal

is to present a thorough account of Cantor's philosophical arguments as well as the

principles behind his mathematical ones. Mirroring chapter one, in this chapter I plan to

establish the following three claims: Cantor describes the infinite as actual; he maintains
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that this actual infinite is to be categorematically understood; and finally, he takes

"actual" and "categorematic" to be synonymous. Once these arguments have been

presented, chapter three wiII begin what I call a Leilbnizian response to Cantor's view.

That is to say, I will apply the conclusions of chapter one to the content of chapter two.

2.2 THE FORMALISM OF TRANSFINITE MATHEMATICS

In metaphysical discourse, the part-whole axiom enjoyed the status of an

intuitively obvious principle for some time. As discussed in chapter one, the likes of

Galileo and Leibniz would not give it up in the face of clear reductio arguments. Instead

they chose to give up other statements. Galileo concluded that relations such as "larger

than", "equal to" and so on simply do not apply when dealing with the infinite.24 Leibniz

concluded, as we saw, that the notion ofan infinite totality, i.e. an infinite number, is

incoherent. And these views persisted for some time. It was not until Bolzano and

Dedekind decided that what seemed like a contradiction, i.e. that a part is equal to the

whole, could actually be taken as the defining characteristic of an infinite set that the

status of the part-whole axiom was reduced to that of a postulate.25 This move opened the

door for Cantor, who proceeded to construct a comprehensive system of transfinite

arithmetic. Ultimately, Cantor was motivated by his conviction that any set has a

determinate power or cardinality; in his mind it was obvious that this would apply to

24 The passage from Two New Sciences runs as follows: "And in final conclusion, the attributes of equal,
greater, and less have no place in infinities, but only in bounded quantities" (EN 79; TLC 356).
25 See Bolzano (1851), §20.
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infinite sets in the same way it does to finite ones (Hallett 32 ff.).26 But there is a problem

here that needs to be overcome, for in the case offinite sets Cantor supposed (not without

some reasonableness) that the power or cardinality is a natural number. For example, the

power of the set {4, 657, 9} is clearly "3". But what is the power of the set {I, 2,3, . 00' n,

... }? It is by no means clear (Hallett 2). Cantor's initial account of transfinite numbers

attempts to provide an answer to this question in terms ofwhat he calls "transfinite

ordinals".

2.2.1 Generation Rules, Number Classes, and Transfinite Arithmetic

Transfinite ordinal numbers come to life by means of two generation principles.

However, as Hallett notes, the principles actually only postulate the existence of such

numbers; the term "generation principle" seems to imbue these statements with a power

they do not possess. Cantor fITst presents these principles in his essay Ueber unendliche

lineare Punktmannigfaltigkeiten published in 1883. Here are the principles as stated by

Hallett:

(1 ) if a is an ordinal number (whether finite or transfinite) then
there is a new ordinal number a+ 1 which is the immediate
successor of a;

(2) given any unending sequence of increasing ordinal numbers
there is a new ordinal number following them all as their 'limit'
(that is to say, no ordinal number smaller than this limit can be
strictly greater than all ordinals in the given sequence). (49)

26 This position is referred to as Cantor's finitism. Certain commentators have seen Cantor as extending the
definition of finite rather than attributing finite characteristics to the infinite. See, for example, Mayberry
(2000).
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Two important observations about these principles must be made. First of all, it is the

second of these two principles that is responsible for "generating" the first transfinite

ordinal number. The first taken on its own only gives rise to an indefinite series of finite

ordinals; something else is needed to give rise to the transfinite. The crucial difference

between the role of each principle can be illuminated by appealing to the quantifier shift

fallacy discussed in chapter one.27 In logical symbolism, ifthe domain under

consideration is the ordinal numbers and "Sxy" represents "x is the successor ofy", the

fiirst principle can be captured by "(\fx)(3y)(Sxy & x =F y)"-i.e. for all ordinal numbers

there exists at least one ordinal that is its successor. By shifting the quantifiers we arrive

at the second principle: "(3x)(\fy)(x =F y ----+ Sxy)". That is, there exists an ordinal number

that is the successor of all other ordinal numbers within a given sequence. As we saw in

chapter one, it is the second formula that captures the notion of a categorematic infinite.

The first transfinite ordinal generated by this principle is denoted by "0)". Based on the

generating principles, the ordinals do not come to an end here. Every ordinal has a

successor, which means that ro has a successor as well. Moore (2001) gives the following

representation of the hierarchical series ofordinals to which these two principles give

rise:

0, 1,2, ...
ro, ro + 1, ro + 2, ro + 3, ...
rox 2, (rox 2) + 1, (rox 2) + 2, (rox 2) + 3, ...
rox 3, (rox 3) + 1, ...
rox 4, .
rox 5, ..

27 See chapter one.
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2 2 2co , co + 1, co + 2, ...
ul + CO, co2 + co + 1, co2 + co + 2, ...
co2 + (CO x 2), ...

co2
X 2,

2 3 2co X , ... , co x 4, ... ,
3

CO, ...
4

CO, ...
5

CO, ...

coO),
. (A. W. Moore 127)
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It is clear that this can be continued indefinitely and that there is apparently no limit to

the application ofthe generation principles. Since the only thing that the principles can

generate is more ordinal numbers, it is certain that they can always be applied.28

The second important observation is that the second principle is an extension of

the concept of a limit. The standard definition of a limit is what is called the £-8

definition. It runs as follows:

Let fbe a function defined on some open interval that contains the number
a, except possibly at a itself. Then we say that the limit of f(x) as x
approaches a is L, and we write lim [x ---7 a] f(x) = L if for every number £

> 0 there is a number 8 > 0 such that If(x) - L I< £ whenever 0 < Ix - a I<
8. (Stewart 115)

The crucial aspect of this definition is that for any value one chooses, there is always one

closer to the limit value within the open interval. That is to say, as x approaches a, L -

f(x) approaches O. In the case of co, however, each successive finite ordinal is no closer to

co than the previous one. That is, as x increases to infinity co - f(x) does not decrease. This

means that although in an intuitive sense co may look like the limit ofthe series of natural

28 In chapter three it will be shown that these principles give rise to certain paradoxes.
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numbers, in a technical sense, the concept of a limit has been extended. Cantor is no

longer using "limit" in a univocal way. He was certainly aware of this, however. So much

so in fact that he felt the need to clarify his use ofthe term: "he added that by this he

meant only to emphasize the character of ro taken as the first whole number following

next after all the numbers n E N. The idea of ro as Jlimit served to satisfy its role as an

ordinal, the smallest integer larger than any integer n E N" (Dauben 98). So the aspect of

the concept of limit that Cantor wanted to stress was the idea that the limit follows every

member of, say, a given series. Thus, Cantor's infinite is not categorematic in the sense

that there is an infinitieth term in the series of natural numbers within the series itself. In

this respect his position coincides with Leibniz's comment noted in chapter one that

number is not the sort of thing to have a greatest of its kind. But unlike Leibniz, Cantor

ho Ids that for any infinite series 0 f numbers, convergent (akin to the limit of a function)

and divergent (akin to the series of natural numbers) alike, there will be a number

standing outside of the series that is the next greatest number than all the numbers in the

series. Cantor's contention is that every series has such a "limiting" ordinal.

The second step in the explication of the transfinite is the idea of a number class.

This idea is important because it begins to connect the theory of ordinals with the

question posed at the beginning of this section; i.e. how can the notion ofpower (or

cardinality) be understood in the case of infinite sets? Before this question can be

answered, some details need to be presented. In what could be called the first application

of the second generation principle ro results; this application also gives rise to the first

class of transfinite ordinals (1). Further applications of the first principle give rise to the
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series co, ro + 1, ro + 2, ... All of these ordinals are still within the first number class; i.e.

the first number class is closed under transfinite addition. Once the second principle is

applied to this series, however, the result is a new class oftransfinite ordinals, the second

class (II). This process can be continued indefinitely giving rise to more and more classes

of ordinals-i.e. ordinals that cannot be reached from the series "below" them by

successive addition. Cantor needed a way to distinguish in a definite way each number

class from those below it and those above it. What he came up with was a third principle,

which he called the principle of limitation:

Definition: We define therefore the second number class (II) as the
collection of all numbers a (increasing in definite succession) which can
be formed by means ofthe two principles of generation:

ro, ro + 1, ... , Va of + Vj of-I + ... + v ll' ... , roO), ... , a, ... ,

which are subject to the condition that all numbers preceding a (from 1
on) constitute a set ofpower equivalent to the fITst number class (1).
(Cantor 1932, 197; Dauben 98)29

The importance of this principle is that it gave Cantor a way to compare the size of

different transfinite number classes, which is a large step towards understanding the

notion of power as it applies to infinite sets. Instead ofjust having an indeterminate mess

of transfinite ordinals, Cantor now had a completely detenninate succession of numbers

whose comparative sizes could be considered in detail (Dauben 99). Questions such as is

(1) > (II)? Is (1) = (II)? and so on now had some sense.

29 In the original: "Wir definieren daher die zwiete Zahlenklasse (II) als den Inbegriff aller mit Hilfe der
beiden Erzeugungsprinzipe bildbaren, in bestimmter Sukzession fortschrietenden Zahlen ex.
co, co + 1, ... , Va of + VI of-1 + ... + vJ.l, ... , coO), ... , ex., ... ,
welche der Bedingung unterworfen sind, dass aile der Zahl ex. Yoraufgehenden Zahlen, yon 1 an, eine
Menge yon der Maechtigkeit der Zahlenklasse (1) bilden."
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At this point I can begin explicitly to tie Cantor's theory of ordinals to the notion

ofpower. An ordinal number, in a figurative or intuitive sense, measures a well-ordering

ofa given set. Moore (2001) defines "well-ordering" as follows:

A well-ordering ofa set X (finite or infinite) is an imposition of order on
the members ofX satisfying the following three conditions: it singles out
one of the members ofX as the first, unless, of course, X has no members
(that is, unless X is the empty set); it singles out another member of X as
the second, unless X has only one member; it singles out another as the
third, unless X has only two members; and quite generally, it singles out,
for each member of X that has already been singled out, another as its
immediate successor, unless there are none left; more generally still, it
singles out, for each set of members ofX that have already been singled
out (finite or infinite), a first to succeed them all, again unless there are
none left. (123)

A well-ordering, then, is a relation, which imposes an order on a given set. For example,

a well-ordering of the set N ofnatural numbers would be the relation "is the immediate

successor of'. Sets whose well-orderings have the same "length" or "shape", then, have

the same ordinal number. Some examples ofwell-ordered sets along with their ordinal

number may help to elucidate this definition.

Ordinal Number

{O, 1,2, ... }

{2, 4, 6, ... }

{1,2,3, ... ,0}

{3, 5, 7, ... , I}

{I, 2, 4,5, ... ,0, 3}

{O, 2, 4, ... , 1,3,5, ... }

{2, 4,6, ... , 1,3,5, ... , O}
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{2, 4, 6, ... ,3,5,7, ... ,0, I}
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(ill X 2) + 2. (A. W. Moore 124-126)

It is obvious that the sets with different ordinal numbers have different "shapes" in an

intuitive sense, but how does this tell us anything about their size? There is a clear way in

which the ordinal number of a given set is tied to its power or cardinality, which is further

tiled to the specification of number classes given above.

Cantor was convinced that just as in the case of finite sets, infinite sets must have

a determinate cardinality. His demarcation ofthe number classes of transfinite ordinals

supplied him with a straightforward way to identify those cardinalities. It is relatively

simple: every set that has an ordinal within a given number class has the same cardinality.

That is, the elements of a set with a given ordinal number can be placed in a one-to-one

correspondence with the elements of a set whose ordinal number is the same number

class. Thus, just as there is an increasing hierarchy of transfinite ordinal numbers, there is

also an increasing hierarchy of transfinite cardinal numbers-one for each ordinal

number class. Cantor chose the first letter of the Hebrew alphabet, ~, to represent the

transfinite cardinals. ~ 0 is the first transfinite cardinal and represents the cardinality of

sets whose ordinal number falls within the first number class-for example, {O, 1, 2, ... }

or {2, 4, 6, ... }. The series of cardinals continues as follows: ~], ~ 2, ~ 3, ... , ~ OJ, ... ~ v,

.". As in the case of the ordinals, there is no end to this series.3o

Cantor also provided rules of arithmetic for his transfinite numbers, some of

which have been tacitly utilized in the foregoing exposition. I will focus here on two

30 That the series of cardinals has no end is stated explicitly by Cantor in his letter to Dedekind (1899). In
this letter (among other things) Cantor introduces a problem that would later be known as Cantor's
paradox. This will be discussed in chapter three.
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simple examples: addition and multiplication. 31 The addition of transfinite numbers is

defined in tenns ofwell-ordered sets such that the numbers being added represent the

numbering of the respective sets. Addition is carried out, then, by constructing a set made

up ofthe sequence of elements from one set followed by the sequence of elements from

another set. As a result, addition of transfinite numbers is not always commutative. For

example, 1 + 0) = 1, 1, 2, 3, ... ;j:. 1,2, 3, ... , 1 = 0) + I (Dauben 104). For while the

sequence corresponding to I + CD has the same "shape" as the sequence of natural

numbers (given the specified ordering), the sequence corresponding to CD + 1 does not:

N = I, 2, 3, 4, ...

1 + CD = 1, 1, 2, 3, ...

CD + 1 = 1, 2, 3, 4, ... , 1

It is clear that the "shape" of N differs from CD + I but not from 1 + CD. Despite the

differing ordinal numbers, however, the cardinality ofthe sets formed by these sequences

is the same. Ultimately it is one-to-one correspondence that serves as the measure of

cardinality and thus as the foundation for transfinite arithmetic.

Multiplication was also defined in terms ofwell-ordered sets: "Given a well-

ordered set of numbering ~, by replacing each of its elements by elements ofnumbering

0:, ... if ~ = 0), a = 2, then: ~ . a = 0). On the other hand: a . ~ = 20)" (Dauben 104). Thus,

multiplication fails to be commutative as well. Many more operations on transfinite

numbers were defined, but these two examples are sufficient to illustrate that Cantor

worked out a comprehensive and self-consistent system of transfinite numbers. The

31 These operations are described in "Contributions to the founding ofthe theory of transfinite numbers" §3
and §8 (Cantor 1955,91-94 and 119-122).

48



M. A. Thesis - A. Harmer McMaster - Philosophy

question that remains is whether or not this is enough to guarantee the existence of such

numbers. Before I address this question, however, I would like to consider the extension

of the idea of number that has occurred here. That Is to say, it does not seems as though

the transfinite numbers can be numbers in the same sense of "number" as, for example,

the natural numbers.

2.2.2 Cantor's Idea ofNumber

Aristotle provides us with objections to the existence of transfinite numbers.

Although he is clearly not commenting directly on Cantor's conception of transfinite

numbers, his objection is so fundamental that it must be considered. In the Physics he

writes, "nor, for that matter, can there be a separated infinite number: for number, or what

has number, is countable, and so, if it is possible to count what is countable, it would then

be possible to traverse the infinite" (IIL5 204b7-9). An obvious example of a "separated

infinite number" would be a Cantorian transfinite number. The reason Aristotle makes

such an objection is that he conceives ofnumber as something that is by definition

countable. As a consequence, an infinite number could not exist, for the counting of such

a thing would continue indefinitely. To count to infinity, so to speak, would not be

possible, for one cannot move through an infinite number of steps in a finite time (i.e.

"traverse the infinite"). Therefore, Aristotle concludes that such numbers cannot exist; or

perhaps better, they cannot be numbers at all.

Cantor's reply, however, is that the numbers ro and ~ 0 are different kinds of

numbers than the finite numbers (Rioux 116). Aristotle is assuming that "number" is a
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species, and therefore, that a given number must have the same characteristics as any

other. However, Cantor is making a more fundamentally conceptual move than a simple

introduction of a quantitatively larger number (in }\ristotle's sense of "number"). Cantor

is, essentially, making the claim that number is not a species but a genus (Rioux 166).

Thus, the transfinite numbers are an entirely separate species of number than the finite

ones, both ofwhich reside within a larger genus. Cantor provides a reason for this

difference of species; it comes from the way in which ro is obtained. It is discovered by

thinking of "the limit to which numbers v [i.e. the series of whole numbers] approach, ro

is the first integer which succeeds all numbers v, that is, it is to be regarded as greater

than everyone of the numbers v" (Cantor 1932, 195; Rioux 104).32 It is not obtained by

the successive addition of finite numbers, but by an entirely conceptual method. Thus, by

definition, it is not of the same kind as any finite number. To put it differently, co is not

the infinitieth term in the sequence of natural numbers; rather it stands outside of the

series. Since Aristotle's objection is based on the supposition that "number" is a single

species, it is not able to hold in light of Cantor's claim.

Interestingly, many of the "numbers" that make up the common currency of

mathematics are anomalous, if, that is, the term "number" must be applied univocally to

each and every case.33 Take, for example, the numbers 0 and 1. 1 was thought by the

Greeks to be the unit out ofwhich numbers are constructed and not a number itself. 0 was

introduced as a place holder for the absence ofa number and, again, not a number itself.

32 In the original: "welcher die Zahlen v zustreben, wenn darunter nichts anderes verstanden wird, als dass
(JJI die erste ganze Zahl sein soll, welche auf aile Zahlen v folgt, d. h. grosser zu nennen ist als jede der
Zahlen v."
33 See Benardete (1964).
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The same claims can be made regarding the negative integers, imaginary numbers, and so

on. Thus, if an objection to Cantor's transfinite numbers is to be made on this basis, an

account must be provided as to why the status of, f:or example, the irrational numbers or

the negative integers is any different. And in fact, Cantor exploits just such a

consideration in order to demonstrate that his transfinite numbers are actually coherent.

2.2.3 "Free" Mathematics and Ontology

At this point I would like to return to the question ofwhat exactly follows from

the fact that Cantor has created a comprehensive and self-consistent theory of transfinite

numbers. Or more precisely, I would like to investigate Cantor's view about what follows

fi:om this.

Cantor believes that mathematics is inherently free. By this he means that the only

limitation on mathematical advances is contradiction: if a purported theory leads to a

contradiction then it is not an accurate theory and needs to be corrected. However, if no

contradiction can be found, then the theory is actually self-justifying. This in itself is not

peculiar. It is a common practice in mathematics to judge the merits of a supposition by

the results to which it gives rise. And if this alone were Cantor's position, then he mayor

may not be susceptible to criticism on this basis. But Cantor makes a further inference

beyond the mere technical viability of the mathematical structure whose consistency he

believes to have demonstrated. He believes that ontological conclusions follow from pure

logical or formal consistency (Hallett 16). This is the peculiar nature of Cantor's

methodology, his Platonism.
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From this it follows that the pure coherence of transfinite mathematics is

sufficient to guarantee the existence of its content. Nevertheless, Cantor does provide

philosophical arguments in justification ofhis mathematics. Whether he thought these

arguments necessary because his ontological conclusions move beyond what is justifiably

concluded based on arguments from coherence or whether he provided them for those of

us simply unconvinced by his argument from coherence is another matter altogether. In

either case, I would like to consider these philosophical arguments in some detail. First,

however, I would like to present Cantor's philosophy of the infinite in general, beginning

with what he thought the actual/potential distinction amounts to.

2.3 CANTOR'S PHILOSOPHY OF THE INFINITE

Despite Cantor's position that a coherent mathematical system is somehow self­

justifying, he did not therefore shun philosophical inquiry into the content of his

mathematical theories. In fact, Cantor seems to have believed that the coherence of a

mathematical system is determined through philosophical investigation. That is, he seems

to have believed that pure logical consistency is not sufficient; one also needs to provide

positive arguments for the coherence of the concepts involved. At least, this is one way of

understanding Cantor's motivation for providing the arguments that will occupy us

throughout this section.

It seems clear that Cantor was not only a historian of mathematics, but of

philosophy as well. Cantor's philosophy ofthe infinite obviously originates with the

PlIistotelian distinction between actual and potential infinities. But it does not end there.
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Cantor seems to be aware of developments in metaphysics from the medieval period right

through to the time ofLeibniz and further on into his own century. Cantor believed that

many arguments against the actual infinite in fact beg the question. That is, the arguments

attempt to attribute properties of finite numbers to infinite numbers; when the application

leads to contradiction it is concluded that the actual infinite is nonsensical. Take, for

example, Galileo' s argument from chapter one. The reductio leads Leibniz to the

conclusion that infinite number is problematic; this is because Leibniz believes it more

plausible to maintain the part-whole axiom in the face of this contradiction. Cantor,

however, believes that while the part-whole axiom may be fine when finite quantities are

involved, to assume that it must be maintained when dealing with infinite quantities is a

mistake. Thus, while Cantor fits his theory into the traditional jargon, he very much alters

what must be accepted or rejected based on the traditional distinctions. I will now move

on to a consideration of how Cantor understood the traditional distinctions within the

philosophy of the infinite.

2.3.1 The Actual and Potential, the Categorematic and Syncategorematic

For Cantor, the potential infinite is more accurately described as a variable finite

(Jane 378). "Potentially infinite" essentially means that for any given value, a larger

value can be conceived. This larger value, in turn, will be nothing but another finite

value, with respect to which a larger value can again be conceived. Thus, inherent within

Cantor's conception ofthe potential infinite is the notion of incompleteness. For example,

if one only had the first generating rule at one's disposal, it could be applied successively
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without approaching a definite totality. As Cantor puts it, "a variable magnitude x

successively taking the different finite whole number values I, 2, 3, ... , v, ... represents a

potential infinite" (Cantor 1932,409; Jane 379).34 Mathematical induction, then, would

be an example of a process that would lead to a potential infinity: each step along the way

is finite but the operation that generated it can be repeated an indefinite amount of times.

This conception is in fact identical to the Aristotelian conception of the potential

infinite. As Aristotle says, "in general, the infinite exists in this way: by one thing's

always being taken after another-each thing taken is finite, but it is always one followed

by another" (Physics 1II.6 206a27-b). Thus, Aristotle asserts (along with Cantor) that any

step along the way of a potential infinity is itself finite. The only thing that makes it

infinite is the fact that another step can always be taken. It is what could be described as a

successive actualization. All ofthe parts will never be actualized at once, and therefore,

the infinity can only be potential, not actual.

Cantor approaches an explanation of the actual infinite through the notion of a set.

As a continuation of the quotation above, Cantor says: ''the set (v) of all whole finite

numbers, conceptually determined in full by a conceptual law, offers the simplest

example of an actual infinite quantum" (Cantor 1932, 409; Jane 379).35 Thus, an actual

infinity is an infinite multiplicity of things, which comprise a totality or a completed

whole. Even though there is no largest whole number, it is nonetheless possible to

34 In the original: "So stellt uns beispielsweise eine veraenderliche Groesse x, die nacheinander die
verschiedenen endlichen ganzen Zahlwerte 1,2,3, ... , v, ... anzunehmen hat, ein petentiales Unendliches
vor ..."
35 In the original, continuing from the above footnote: " ...wogegen die durch ein Gesetz begrifflich
durchaus bestimmte Menge (v) aller ganzen endlichen Zahlen v das einfachste Beispiel eines actual­
unendlichen Quantums darbietet."
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conceive ofthe set of whole numbers as something limited (although infinite). An infinite

slet, therefore, is an actual infinity. It is something determinate, bounded, and complete,

and in this way actual, yet it is made up of infinitely many members, and in this way

infinite.

As mentioned in chapter one, the distinction between categorematic and

syncategorematic originates with Peter of Spain, although the exposition I have utilized is

fiom William of Ockham. As previously stated, the distinction is this:

Categorematic terms have a definite and fixed signification, as for instance
the word 'man' (since it signifies all men) and the word 'animal' (since it
signifies all animals), and the word 'whiteness' (since it signifies all
occurrences ofwhiteness). Syncategorematic terms, on the other hand, as
'every', 'none', 'some', 'whole', 'besides', 'only', 'in so far as', and the
like, do not have a fixed and definite meaning, nor do they signify things
distinct from the things signified by categorematic terms. (5 I)

Although this distinction seems to be analogous to the distinction between actual and

potential, it is not (as I spent a great deal of time arguing in chapter one). I will not repeat

those arguments here; rather I will consider the way in which Cantor seems to have

understood this distinction. One thing is worth noting, however: the syncategorematic

seems to encompass the potential infinite. In other words, if someone holds that the

infinite is potential, then it follows that it is syncategorematic. The difference comes in

when the converse is considered. Simply because the infinite is described as

syncategorematic, one cannot infer that it is potential (as chapter one serves to

demonstrate). It is questionable whether or not Cantor realized this.

It is clear that he found the distinction between categorematic and

syncategorematic to be both important and useful. In fact, it seems as though he may
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have found it preferable, in some sense, to the actual/potential distinction made by

j\ristotle: among Cantor's immediate predecessors, Bolzano utilized this distinction in a

way that impressed Cantor (Dauben 124). With respect to this distinction, however,

Cantor does not seem to realize that syncategorematic and potential are not synonyms. He

seems to have taken syncategorematic as a more precise (or perhaps more accurate) way

ofdescribing what had traditionally been described as a potential infinite. In the

Grundlagen, Cantor writes: "This infinite (called by some scholastics the

'syncategorematic infinite') is a mere helping-concept, a relation-concept of our thought;

in its definition it includes variability, and so 'datur' can never be said of it in the proper

sense" (Cantor 1932, 180).36 But to think ofthe syncategorematic infinite merely as a

refinement of the potential infinite is to overlook something rather important. This in

itself is not problematic, for as my argument in chapter one indicates, the fact that the

terms "potential" and "syncategorematic" are not synonymous has not been widely

acknowledged. The problem is that, based on Cantor's arguments for the coherence ofthe

transfinite, i.e. the coherence of the actual infinite, this distinction, or at least his failure to

identify it, adversely effects the conclusions that he believes he can draw. With this in

mind, I will now move on to a discussion of these arguments themselves.

36 In the original: "Dieses Unendliche (von einigen Scholastikem "synkategorematisches Unendliches"
genannt) ist ein blosser Hilfs- und Beziehungsbegriffunseres Denken, welcher seiner Definition nach die
Veraenderlichkeit einschliesst und von dem somit das "datur" niemals im eigentlichen Sinne ausgesagt
warden kann."
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2.3.2 Three Philosophical Arguments
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It is important to note that the following arguments are not intended to establish

the same conclusion, although the conclusions ofeach one are intended to support the

position that the transfinite is coherent, more precisely that the actuaVcategorematic37

infinite is coherent. As a result, an objection to, or refutation of, one is not a refutation of

them all. This must be kept in mind. Each argument is presented as the basis for the

acceptance ofthe actuaVcategorematic infinite, but there is a slightly different

intermediary goal in mind in each case. There are three arguments that I will discuss here:

the argument from irrationals, the divine intellect argument, and the domain argument.

My aim here is not to accept or refute these arguments, merely to present them. They will

serve as the basis for the presentation in chapter three of a possible Leibnizian response

to Cantor.

One of the reasons that Cantor felt justified in extending the concept of number in

the way indicated above38 is that he felt the basis for such numbers was already

presupposed by more mundane and uncontroversial types of numbers. In particular,

Cantor believed that the irrational numbers provided the basis for his transfinite numbers.

Essentially, he argued that there is a slippery slope. If one accepts the irrational numbers

as coherent, one must also accept the transfinite numbers. If one denies the transfinite

numbers one must also deny the irrationals, something no serious mathematician is likely

to do. In Cantor's words:

37 Since, as I have argued, Cantor took "actual" to be synonymous with "categorematic" and "potential" to
be synonymous with "syncategorematic", when referring to Cantor's view I will use the compound terms
"actual/categorematic" and "potential/syncategorematic" respectively to indicate the applicability ofboth
terms.
38 See section 2.2.2.
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The transfinite numbers themselves are in a certain sense new irrationals,
and in fact I think the best way to define the finite irrational numbers is
entirely similar; I might even say in principle it is the same as my
method... for introducing transfinite numbers. One can absolutely assert:
the transfinite numbers stand or fall with the finite irrational numbers;
they are alike in their most intrinsic nature [inneresten Wesen]; for the
former like these latter (numbers) are definitely, delineated [abgegrenzte]
forms or modifications ... ofthe actual infinite. (Cantor 1932, 395-396;
Dauben 128)39

As Dauben goes on to say, the reason that Cantor believed that the transfinite numbers

followed so directly from the existence of the irrationals is that ''to define the irrational

numbers, infinite collections of rational numbers had been required" (128). Thus, when

the curtain is pulled back, all that this argument amounts to is the claim that transfinite

numbers follow directly from the existence of actuaVcategorematic infinite sets. The

irrationals just happen to give us an example of infinite sets being used in mathematics.

Beyond this, there is no significant similarity between the irrationals and the

transfinites. 4o This is not so much a criticism of Cantor's argument as an identification of

its actual content. I mention it because it will be important in further sections to

understand exactly what this argument establishes.

In fact, this argument does not establish very much. It does not establish the

connection between infinite sets and transfinite numbers, nor does it establish the

legitimacy of infinite sets; it only shows that their legitimacy is assumed in areas of

39 In the original: "Die transfiniten Zahlen sind in gewissem Sinne selbst neue Irrationalitaeten und in der
Tat ist die in meinen Augen beste Methode, die endlichen Irrationalzahlen zu definieren, ganz aehnlich, ja
ich moechte sogar sagen im Prinzip dieselbe wie meine oben beschriebene Methode der Einfuehrung
transfiniter Zahlen. Man kann ungedingt sagen: die transfiniten Zahlen stehen oderfallen mit den endlichen
Irrationalzahlen; sie gleichen einander ihrem innersten Wesen nach; dennjene wie diese sind bestimmt
abgegrenzte Gestaltungen oder Modifikationen ...des aktualen Unendlichen."
40 I suppose one could argue that a similarity between them still exists on the grounds that both involve an
extension of the number concept beyond the original notion of counting numbers. But one extension does
not justify any extension one pleases and so another argument would nonetheless be required to establish
the legitimacy of extending the number concept to include transfinites.
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mathematics other than transfinite arithmetic. What it does establish is merely the

fI~llowing hypothetical syllogism:

(P1) If one accepts irrational numbers (as defined by Dedekind), one accepts
infinite sets.

(P2) If one accepts infinite sets, one accepts transfinite numbers.

(C) If one accepts irrational numbers (as defined by Dedekind), one accepts
transfinite numbers.41

By way of this formalization of Cantor's argument, it is clear that by a simple Modus

Tollens argument, the rejection of transfinite numbers leads one to a rejection of

irrational numbers. The component ofthis argument most susceptible to refutation is P 1.

P2 is fairly innocuous; as we will see in the final chapter, even Leibniz would grant this

conditional. But one man's Modus Ponens is another man's Modus Tollens: this

conditional itself does not do the work Cantor needs it to do, not, that is, without PI.

Thus, what is required is a justification of P 1.

The obvious response to this analysis is that PI has already been justified.

Through the use of the actual infinite, Dedekind has finally set irrational numbers on a

firm foundation. If PI is rejected, then the irrationals need to be grounded in some other

way. This is clearly not a welcome task. There are two things that I would say in response

to such a challenge. In the first place, this is not an objection to my analysis ofCantor's

argument; rather it is an objection to the rejection of infinite sets. Such an objection is

based purely on pragmatic considerations. It has nothing to do with the concept of an

41 In fact, from Cantor's comments above, the conclusion he is after is actually the following biconditional
statement: One accepts irrational numbers if and only if one accepts transfinite numbers. I have elected to
focus on Cantor's argument for this direction of implication, since it is more relevant to the present
discussion.
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actual/categorematic infinite set; it merely points out the fruitfulness of their acceptance.

I do not disagree with this claim: it seems clear that the acceptance of

actual/categorematic infinite sets is useful, but this does not provide sufficient

justification for their coherence and by extension for their use in defining irrational

numbers. Furthermore, and as I will discuss in the next chapter, the rejection of

actual/categorematic infinite sets does not necessarily undermine Dedekind's

characterization of irrational numbers. If this is the case, then PI is left without any

ground to stand on. And since Dedekind's characterization only legitimates Cantor's

transfinites if actual/categorematic infinite sets are employed, if Dedekind' s

characterization can be modified, one need not accept Cantor's transfinites on the basis of

their analogy to the irrationals.

This is not Cantor's only attempt to justify his transfinites, however. In the second

argument that I will consider, the divine intellect argument, Cantor attempts to justify the

acceptance of transfinite numbers without appealing to Dedekind's characterization of the

irrationals; in fact, he does not appeal to any pragmatic considerations whatsoever. The

basic starting point ofthis argument is Cantor's definition of set: "When...the totality of

elements ofa multiplicity can be thought without contradiction as 'being together', so

that their collection into 'one thing' is possible, I call it a.. .set" (Cantor 1932,443;

Hallett 34).42 Alternatively, and more succinctly: "By a 'manifold' or 'set' I understand

in general any many [Viele] which can be thought ofas a one [Eines]" (Cantor 1932, 204;

42 In the original: "Wenn hingegen die Gesamtheit der Elemente einer Vielheit ohne Widerspruch als
"zusammenseiend" gedacht warden kann, so dass ihr Zusammengefasstwerden zu "einem Ding" moeglich
ist, nenne ich sie eine..."Menge"."
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Hallett 33).43 The method by which the elements are unified into a single whole is

somewhat vague, but it is nonetheless a relatively clear (if not technical) characterization

of what a set is. In the case of sets with a finite number of elements it seems obvious that

a unification of these elements by a human intellect is possible. That is, I can "hold

together" the set of, say, even whole numbers less than ten-{2, 4, 6, 8}. But in the case

of, say, all even whole numbers, there is something about the set that eludes

completion-{2, 4, 6, 8, ... }. I am forced to resort to " ... " in order to diagrammatically

unify this set and in terms of some more abstract or mental form of unification, I am at a

loss. Since there is no last element of the set, I have nothing to occupy the final slot of my

mental characterization of it in the way that "8" occupies the final slot of the finite set

mentioned above. While this may be a counterargument to Cantor's claim that an infinite

set can in fact be complete, i.e. be actuaVcategorematic, he has a response.

The most obvious case is that of the natural numbers themselves. Since there is

always a number larger than the one chosen, it seems impossible to call the entire

collection a "one" in the sense required for the natural numbers to be a set as defined by

Cantor. He writes:

Each individual finite cardinal number is in God's intellect both a
representative idea and a unified form for the knowledge of innumerably
many compound things, that is, those which possess the cardinal number
in question. Allfinite cardinal numbers are thus distinct and
simultaneously present in God's intellect. They form in their totality a
manifold, unified thingfor itself [Dingfuer siehl, delimited from the
remaining content of God's intellect, and this thing is itself again an object
[Gegenstand] ofGod's knowledge. (Cantor Naehlass VI, 170; Hallett 36).

43 In the original: "Unter einer "Mannigfaltigkeit" oder "Menge" verstehe ich naemlich allgemein jedes
Viele, welches sich als Eines denken laesst..."

61



M. A. Thesis - A. Harmer McMaster - Philosophy

What Cantor takes this argument to establish is just that the natural numbers do in fact

exist as a set (a "unified thing for itself') "and that it is God, not us, who has conceived

the collection with the necessary unity" (Dauben 36). Since this collection exists as a

unified whole in the divine intellect, it is not necessary that it exist as a unified whole for

the finite, human intellect. The fact that God can "hold it together" guarantees its status

as a set.

This argument certainly comes with its theological commitments. However, this is

not what I am concerned with. I will not provide an objection to this argument on its own

terms. Such an approach would no doubt take me much too far afield. I have included this

argument for one reason only: it demonstrates that Cantor felt it necessary to argue for

the view that an infinite collection can be a unified whole. In other words, he believed

that something was needed to justify his assumption that an actuaVcategorematic infinite

set is a coherent thing. Whether or not this particular argument is sufficient to establish

this position is not important at present. What is important is that, even in Cantor's mind,

some such argument is needed. If the argument that Cantor gives is judged to be

unsatisfactory, it is unclear what argument could take its place. I will return to this point

in the next chapter.

The final argument that I will consider, the domain argument, argues that the

aetuaVcategorematic infinite must be presupposed as a domain for the

potential/syncategorematic infinite. In fact, Cantor believed that in order to utilize the

potential/syncategorematic infinite, as one is free to do, the actuaVcategorematic infinite

must be accepted. In Cantor's words,
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There is no doubt that we cannot do without variable quantities in the
sense ofthe potential infinite; and from this the necessity of the actual
infinite can also be proven, as follows: In order for there to be a variable
quantity in some mathematical inquiry, the 'domain' of its variability must
strictly speaking be known beforehand through a definition. However, this
domain cannot itself be something variable, since otherwise each fixed
support for the inquiry would collapse. Thus, this 'domain' is a definite,
actually infinite set ofvalues. Thus, each potential infinite, if it is
rigorously applicable mathematically, presupposes an actual infinite.
(Cantor 1932,410-411; Jane 385)44

Cantor believes that the existence of a variable (or potential) infinite presupposes an

actual infinite over which it varies. To show how much within the history Cantor remains

with this argument, it is worth noting that a surprisingly similar claim appears in

Aristotle's Physics:

To be [infinite] so as to exceed every [definite quantity] by addition is not
possible even potentially unless there is something which is actually
infinite, accidentally, as the natural philosophers say that the body outside
the world-system, ofwhich the substance is air or some other such thing,
is infinite. But if it is not possible for there to be a perceptible body which
is actually infinite in this sense, it is manifest that there cannot be one even
potentially infinite by addition. (Physics III.6 206b20-27)

In this passage Aristotle is considering bodies, and therefore he does not arrive at the

same conclusion as Cantor. However, it is interesting that the relation between the actual

and potential infinite held by each thinker is the same in this case. In an admittedly basic

formalization, these can be seen as competing Modus Ponens and Modus Tollens

arguments:

44 In the original: "Unterliegt es naemIich keinem Zweifel, dass wir die veraenderlichen Groessen im Sinne
des petentialen unendlichen nicht missen koennen, so laesst sich daraus auch die Notwendigkeit des
Aktual-Unendlichen folgendermassen beweisen: Damit eine solche veraenderliche Groesse in einer
mathematischen Betrachtung verwertbar sei, muss strenggenommen das "Gebiet" ihrer Veraenderlichkeit
durch eine Definition vorher bekannt sein; dieses "Gebiet" kann aber nicht selbst wieder etwas
Veraenderliches sein, da sonstjede feste Unterlage der Betrachtung fehlen wuerde; also ist dieses "Gebiet"
eine bestimmte aktual-unendliche Wertmenge. So setztjedes potentiale Unendliche, soli es streng
mathematisch verwendbar sein, ein Aktual-Unendliches voraus."
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Cantor: 1) potential infinite -7 actual infinite
2) potential infinite

Thus, 3) actual infinite.

Aristotle: 1) potential infinite -7 actual[ infinite
2) ~ actual infinite

Thus, 3) ~ potential infinite

McMaster - Philosophy

Both Aristotle and Cantor, therefore, believe that the potential infinite somehow depends

on the actual infinite. It is important to note that in this argument Aristotle is only

referring to the infinite by addition, not to the infinite by division. In the case of the

infinite by division Aristotle credits the potential infinite without being committed (in his

mind) to the actual infinite; simply because a line can be divided at any point does not

mean that it is divided at every point (in fact this was the central consideration in

Aristotle's response to Zeno's Dichotomy paradox). Perhaps, the differing conclusions

drawn are indicative of the objects under consideration in each case. In any case, what is

interesting here is that Aristotle clearly did not have at his disposal the distinction

between categorematic and syncategorematic infinities. That he arrived at the same

conclusion as Cantor regarding the relationship between the syncategorematic/potential

and the categorematic/actual is further (although admittedly not conclusive) evidence that

Cantor had no conception of the difference between potential and syncategorematic. For,

as I will show in chapter three, when this distinction is taken seriously, Cantor's

argument does not establish what he takes it to establish.

Although these three arguments provide justification for three different claims, it

is easy to see that they all serve as justification for the larger position that the

actuaVcategorematic infinite is coherent. The first argument, the argument from
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irrationals, attempts to establish that if one accepts the irrational numbers one must also

accept the transfinite numbers (implicit in this argument is that one must accept the

irrationals). The second argument, the divine intellect argument, attempts to show that an

actuaVcategorematic infinite collection is a coherent notion even if it seems problematic

for a finite intellect. This argument is very much on the mark as to what Cantor needs to

establish ifhis transfinite numbers are to have any ground to stand on. The final argument

tries to demonstrate that the potential/syncategorematic infinite, something everyone no

doubt accepts, actually presupposes or necessarily relies upon the actuaVcategorematic

infinite. This is perhaps the strongest of the three and so it will receive the most attention

in the next chapter.

2..3.3 The Absolute

One final point of interest regarding Cantor's philosophy of the infinite is that

Cantor's transfinite numbers, both the cardinals and ordinals, end up becoming a

syncategorematic infinity themselves. It is interesting because Cantor's account of the

hierarchy of transfinite numbers sounds very much like Leibniz's position regarding any

infinite collection whatever. As Cantor says,

To every transfinite cardinal number... there is a next greater proceeding
out of it according to a unitary law, and also to every unlimitedly
ascending well-ordered aggregate of transfinite cardinal numbers ... there
is a next greater proceeding out of that aggregate in a unitary way. (Cantor
1932, 296; Cantor 1955, 109)45

45 In the original: "Zujeder transjiniten Kardinalzahl .. .gibt es eine nach einheitlichem Gesetz aus ihr
hervorhehende naechstgroessere; aber auch zujeder unbegrenzt aursteigenden wohlgeordneten
Menge...von transfiniten Kardinalzahlen ...gibt es eine naechstgroessere, einheitlich daraus
hervorgehende."
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Cantor calls infinities ofthis sort, i.e. those analogous to the unending series of

transfinites, an "absolute" infinity: in this case it appears to be a potential infinity

composed ofactual infinities. Therefore, when number is "increased" as much as

possible, we do not end up with a completed, actual infinity. In fact, this hierarchy of

transfinite cardinals very much resembles a syncategorematically understood actual

infinite. For there is a cardinal greater than any cardinal one may choose. However, this

hierarchy cannot merely be a potential infinity, for the so-called "generation" principles

do not actually bring these numbers into existence; i.e. the numbers already exist before

they are reached by the generating principles. It is not only the series of transfinite

cardinals that has this characteristic, i.e. that it comprises an absolute infinity. Any set

that cannot be coherently thought of as a unity falls into this category (Cantor 1932,

443).46 Such sets are called "inconsistent multiplicities" in contrast to "consistent

multiplicities", the unity ofwhich presents no problems. For example, Russell's set-the

set of all sets that are not members of themselves-is an inconsistent multiplicity as is the

set of all sets. For one reason or another these sets result in contradiction when thought of

as a unity and thus they are not strictly speaking sets, i.e. they are not consistent

multiplicities. So Cantor did acknowledge that not all infinite collections form coherent

unities. The sets that do not are deemed Absolutely Infinite.

Interestingly, Cantor's domain argument should apply equally well in this case,

making it impossible to have a variable range without a fixed domain over which it

46 In the original: "Eine Vielheit kann naemlich so beschaffen sein, dass die Annahme eines
"Zusammenseins" aller ihrer Elemente auf einen Widerspruch fuehrt, so dass es unmoeglich ist, die
Vielheit als eine Einheit, als "ein fertiges Ding" aufzufassen. SoIche Vielheiten nenne ich absolute
unendliche oder inkonsistente Vielheiten."

66



M. A. Thesis - A. Harmer McMaster - Philosophy

ranges. But unlike the case of the natural numbers, Cantor now has an independent

consideration against the unity of this domain; namely, his distinction between consistent

and inconsistent multiplicities. The fact that Cantor seems to have a coherent model of an

aetual infinite, syncategorematically understood, at work within his characterization of

the Absolute serves to further bolster the coherence ofLeibniz's position.

2.4 CONCLUSION

In this chapter, I have provided a basic account of Cantor's theory of the

transfinite as well as three main arguments put forth by Cantor in support of his position.

The three main claims that I hope to have established in this chapter are that Cantor views

the infinite as actual, that he understands this actual infinite as categorematic, and that

these terms turn out to be synonyms on his account. Moreover, the terms "potential" and

"syncategorematic" tum out to be synonymous for Cantor as well. These equations of

terms will cause significant difficulty for Cantor. Bearing these claims in mind, I will

now move on to the third and final chapter, in which I attempt to compare the

characterization ofLeibniz provided in chapter one with the characterization of Cantor in

the present chapter.
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CHAPTER 3: A LEIBNIZIAN RESPONSE

McMaster - Philosophy

3.1 INTRODUCTION

In the first two chapters I have presented two very different positions concerning

the infinite. According to Leibniz, the infinite is actual yet syncategorematically

understood. That is to say, although Leibniz espouses the actual infinite (as indicated by

his doctrine of the actual infinite division of matter) he denies that an infinite multiplicity

(even if it is actually infinite) is one and whole. While it has been objected that such a

position is inconsistent, I have maintained that these objections blur the distinction

between actual and categorematic and between potential and syncategorematic. Although

this distinction is subtle and at times tricky to maintain without ambiguity, I believe that

it is a justifiable distinction to make; in fact, I believe that Cantor needs this distinction in

order to make sense of his position on the Absolute. Thus, I have argued, Leibniz does in

fact have a coherent position on the infinite. However, coherence is only the most basic

of steps towards a plausible theory and so I will attempt to take further steps in the

present chapter.

In chapter two I presented Georg Cantor's theory of transfinite mathematics. This

theory is certainly of interest in itself-i.e. as a purely mathematical theory-since it

rejects certain axioms (in particular the part-whole axiom) that seem to be so deeply

entrenched in our way of thinking as to be considered irrefutable, yet nonetheless

produces a (mathematically) coherent and self-consistent system. Of more interest to my

present inquiry, however, is whether or not the philosophy behind the mathematics is

68



M. A. Thesis - A. Harmer McMaster - Philosophy

coherent and self-consistent. As I demonstrated, Cantor presents three main philosophical

arguments for the view that the actual infinite is a coherent notion, despite the treatment

that it received from his predecessors. Thus, Cantor was interested in the philosophical as

well as the technical viability of his position. But if this viability is to be taken seriously,

Cantor's arguments need to be able to stand up to scrutiny. For just as in the case of

Leibniz's position, simple coherence is not sufficient to justify the acceptance of this

theory.47

In this chapter I intend to take more substantive steps towards the position that not

only is Leibniz's position coherent, it is a plausible and viable alternative to the Cantorian

theory of the infinite. In fact, it is possibly a more desirable position to maintain. In my

view Leibniz is able to provide adequate responses to Cantor's arguments. Furthermore, I

believe that while Cantor's conclusions do not validly follow from his arguments, these

arguments do support (in a certain sense) Leibniz's position. In other words, Leibniz's

position follows from Cantor's arguments. What I mean by this will become clear

throughout the course of this chapter. I will argue that the Leibnizian position on the

infinite is in many respects philosophically superior to that of Cantor.

I will begin this chapter with a consideration of two central paradoxes that have

led mathematicians and philosophers to question Cantor's theory of the infinite (or at

least question the way in which Cantor presents it). These paradoxes have been known

for some time and so I will simply be repeating them. What is original is the response to

47 Although this may seem to contradict Cantor's methodological commitments (see section 2.2.3), as I
have argued the presentation of the arguments in section 2.3.2 above indicates the possibility that Cantor
believed that technical consistency was not enough to justifY ontological claims insofar as he provided the
philosophical arguments I have discussed.
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these paradoxes that I intend to give. Modern set theorists have responded by taking an

axiomatic approach; and while this may have its merits, it is not the line that I intend to

take. I will, however, spend some time describing the line that modern set theorists have

taken and attempting to justify my motivation for choosing a different path. Ultimately, it

comes down to a question ofpriorities. That is, the sort of theory one wishes to end up

with will determine what is prioritized, what is essential and inessential to the theory. If

one wants a theory to be able to do a great deal ofmathematical work, then one may

sacrifice certain philosophical considerations in favour of technical prowess. If, however,

one is willing to sacrifice a certain amount of mathematical fruitfulness, or at least the

ease with which developments are made as a result of the theory, then one may prioritize

different things. Finally, I will provide a Leibnizian response to Cantor's three

philosophical arguments. The basis for these responses will in large part be the d.istinction

between potential and syncategorematic, actual and categorematic, which is why I spent

so much time in chapter one attempting to establish that this is in fact a tenable

distinction.

3.2 PROBLEMS WITH CANTORlAN SET THEORY

Right from the start Cantor is confronted with problems that need to be overcome.

First of all, his definition of"set" is rather vague. To say that a set is simply a many that

can be thought of as a one, i.e. a multiplicity that can be unified, may have a certain

intuitive appeal, but it buys this appeal at the cost of substantive content. How does this

definition allow one to determine whether a given multiplicity is a set? What exactly does
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unification amount to? Who needs to do the unifying? These questions, as well as many

others that I have not included, do not seem to have a clear answer. Cantor certainly tries

to answer them, but his responses do not seem satisfactory. When confronted with certain

sets that seem to lead to contradiction, Cantor introduces the distinction between

consistent and inconsistent multiplicities, the former being sets proper and the latter being

described as absolutely infinite and therefore not capable of being unified. But what does

this distinction amount to? An inconsistent multiplicity is defined as a collection that

cannot be thought of as a unity. But this definition does not even attempt to explain why

it is that the unification is impossible, it only claims that it is. Until a contradiction is

discovered, there is no way to differentiate between sets and non-sets. One needs to have

the ingenuity to discover the contradiction in order to classify the collection correctly. At

best, then, this distinction is simply not very helpful; at worst, it is vacuous.

This inability to define "set" satisfactorily led many mathematicians to abandon

the project altogether. Instead, they decided to put together a system of axioms for set

construction that simply did not allow one to construct sets that lead to contradictions.

Before I describe such an axiomatic system, I will present the paradoxes that gave rise to

the need (in the minds of some mathematicians) to take this approach.

3,,2.1 Two Paradoxes

The two paradoxes that I will be treating here are analogous. The first is the

paradox of the largest cardinal number and the other the paradox of the largest ordinal

number. The schema of the paradoxes is identical; different terms can be substituted into
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this schema to create each paradox. Thus I will spend more time describing the first

paradox, the details ofwhich can be applied to the second paradox as well.

Cantor himself is the originator of the paradox of the largest cardinal. He

describes it in a letter to Richard Dedekind dated 1:899. While the actual intention ofthe

letter is to establish that all infinite sets (i.e. consistent multiplicities) have an aleph as

their cardinal number and furthermore that for any two cardinal numbers a and b, either a

= b or a < b or a > b--what Dauben calls the comparability hypothesis48-Cantor also

addresses the problem inherent in the notion ofa largest cardinal number or,

alternatively, of the set of all cardinal numbers. Cantor already has a response in mind

when he presents the paradox, however, so he does not see it as harmful to his system in

anyway.

The paradox itself relies on certain prior results concerning the transfinite

numbers. In an 1891 paper, Cantor introduces what is now called the Power Set Axiom;

namely, that from any set A a new set with a larger cardinality can be formed by taking

the set of all subsets of A. This result ensures that there is no end to the sequence of

transfinite cardinals, since larger and larger cardinalities can always be generated by

forming the power set. The second result on which this paradox relies is the fact that all

sets can be well-ordered.49

48 Interestingly, this is a direct refutation of Galileo's position with respect to the infinite (see footnote 24).
This demonstrates Cantor's full acceptance of the actual infinite and furthermore what Hallett calls
Cantor's "finitism", i.e. the infinite numbers must be treated as far as possible just like the finite ones.
49 This statement was not satisfactorily established until Zermelo's 1904 paper; however, Cantor proceeds
as though it were a proven result. Interestingly, one reaction to this paradox was simply to deny that all sets
can be well-ordered, Q being the obvious example.
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Consider the set 0 of all numbers: "since it is a well-ordered set, there would

correspond to it a number 8 greater than all numbers of the system 0; but the number 8

also occurs in the system 0, because this system contains all numbers; 8 would thus be

greater than 8, which is a contradiction" (Cantor 1899, 115). As indicated, this result

follows directly from the assumption that 0 is a set and thus well-orderable and that

every set has a power set, which guarantees that there is no end to the series of cardinals,

i.e. that 8 exists.

Burali-Forti discovers an analogous paradox with respect to the transfinite ordinal

numbers (1897). By means of the second generation principle (which plays the role of the

power set axiom above), it is clear that there is no end to the series of ordinal numbers;

for any series of ordinals there always exists an ordlinal greater than every member of the

series. Just as with Cantor's paradox, then, we can consider the set 0 ofall ordinal

numbers. By the second generation principle, there exists an ordinal number 8 greater

than every member ofO. But since, 0 contains all ordinal numbers, we have a

contradiction. Once again 8 must be greater than 8. This is unacceptable.

Reactions to these apparent paradoxes vary. Burali-Forti took this result to be a

refutation ofthe comparability hypothesis, falling in line somewhat with Galileo's

response to the series of squares problem, i.e. that the relations "less than", "greater

than", and "equal to" do not apply to the infinite in the same way they do to the finite.

Cantor, however, had a ready-made response. The "set" 0 is simply not a set; it is an

inconsistent multiplicity, absolutely infinite, and therefore not subject to the same
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restrictions as a set proper. It is not clear that this response is sufficient, however. For

there is no way to identify consistent versus inconsistent multiplicities save the discovery

of paradox. What sets other than that of all the ordinals or all the cardinals are abso lutely

infinite? What differentiates an inconsistent multiplicity from a consistent one? What

characteristic guarantees that a multiplicity is consistent? The inability to provide

satisfactory answers to these questions led many mathematicians to the view that the

problem needed to be addressed more thoroughly. This, ultimately, seems to be the

motivation for the axiomatization of set theory.5o

3.2.2 Modern Axiomatics

Current set theory has its basis in the Zermelo-Fraenkel axiom system introduced

at the start of the twentieth century. The goal of the theory is to provide a way to

characterize sets without running into the traditional paradoxes. This is accomplished by

specifying certain axioms and definitions that allow one to characterize only

unproblematic sets. Nowhere is "set" defined; nowhere does one find intuitive proofs

such as one can find in Cantor. Proofs of theorems are carried out via the apparatus of

fiirst order logic, leaving no room for ambiguity. There are seven standard axioms at the

5C1 Lavine (1994) does not share this view. He sees the move to axiomatics as a clarification of Cantorian
set-theory that is supposed to clear up the misunderstandings responsible for the paradoxes. However, the
view he endorses does not, in my opinion, differ in any significant respect. Whether to avoid the paradoxes
by setting Cantorian set-theory on a firmer foundation or to clarify Cantorian set-theory, the outcome is the
same. For Lavine's discussion of the motivation for the axiomatic system, see especially chapter one to
chapter three.
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heart of the theory.51 The Axiom ofExtensionality (AI) states that if two sets have the

same members then the sets are identical:

VxVy(VZ(Z E X H Z E y) --7 X = y)

The Axiom of Replacement (A2) states that if the domain of a function is a set, then its

range is also a set:

8(x,y) is a function --7 VA3BVy(y E B H 3x(x E A & 8(x,y)))

The Set Existence Axiom (A3) states that there exists at least one set:

3A(A=A)

The Power Set Axiom (A4) states that for every set there exists a set containing all the

subsets of that set:

VA3CVx(x E C H X ~ A)

The Union Axiom (A5) states that the union ofa set-i.e. the collection ofall individuals

contained in its subsets-is a set:

VA3wVz(z E w H 3y(z E Y& YEA))

The Axiom ofInfinity (A6) states that there is at least one infinite set:

3A(A is inductive)

The Axiom of Choice (A7) states that every set has a choice function, which turns out to

be equivalent to the claim that for every set, there exists a relation that well-orders that

set. One can clearly see that these axioms essentially specify how to legitimately

construct sets from other sets, on the necessary assumption that at least one set exists. It is

acknowledged that these seven statements are unprovable, which is why they have been

51 This particular statement of the axioms is taken from Moore (2005).

75



M. A. Thesis - A. Harmer McMaster - Philosophy

granted axiom-status. From these axioms along with certain definitions a wealth of

theorems can be proven, none of which fall into the contradictions that are found in

Cantor's theory. For example, it is now a provable result that there is no set of all sets, i.e.

-3A'v"x(x E A), where the variables range over sets.

In an alternate approach-von Neumann-Bernays-Godel set theory-Cantor's

notion of inconsistent multiplicities has been refined. In its place stands a distinction

between sets and classes. Classes that are not sets are called proper classes and they are

defined by their inability to become members of other classes without contradiction

(Suppes 12). Thus, all sets are classes but not all classes are sets. As a result the Burali­

Forti paradox and Cantor's paradox cannot be constructed, since they require proper

classes to be members of other classes, which is not permitted (Suppes 12).

The paradoxes have certainly been avoided, but at what cost? This axiomatized

system, while it may coincide with the results of Cantor's set theory, has the air of

arbitrariness. While Al through A5 may be intuitively obvious and so undisputable, A6

and A7 are not. There was significant controversy surrounding the introduction of these

axioms and, while they have come to be accepted, this acceptance is not due to their

intuitive obviousness, rather to their mathematical efficacy: they allow one to prove the

theorems and to obtain the results that one would like to prove and to obtain. This is

perhaps a somewhat bold statement to make but I will not spend much time trying to

defend it. It seems to me that whatever the status of this assertion as to the motivation for

adopting these two axioms, it is clear that the only justification that they enjoy is their
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usefulness; the absence of any other form ofjustification is implicitly granted by their

status as axioms.

I do not intend to dispute the usefulness of the axiom system. It is coherent,

elegant, and able to avoid the problems faced by Cantor. However, there is something

lacking: it has failed to define the key concept with which it is working-namely, that of

a set. As Dauben notes, Cantor's notion of set underwent significant revisions, all of

which failed to solve the problems that it faced (241). This failure prompted the move to

an axiomatic approach, one that was supposed to reclaim certainty in mathematics.52 But

a clear definition of set is conspicuously absent. This may be acceptable to some, but I

fI~el that a clear definition of set is a crucial aspect of any complete theory of sets.53 Since

all of the paradoxes seem to originate with Cantor's definition of set, it seems that

another way to resolve them would be to refine this definition in such a way as to avoid

the paradoxes. While this approach was abandoned when it became clear that no simple

revision would suffice, it is the approach that I favour. For to make the move to an

axiomitized system avoids rather than resolves the paradoxes. And if these problems are

to be satisfactorily dealt with, I believe that resolution is what is required.

These paradoxes seem to point to some important considerations regarding the

infinite. To ignore them is to sacrifice understanding for the sake ofpracticality or

usefulness. The philosophical commitments implied by such a method are far-reaching.

52 Once again, Lavine (1994) has a slightly different take on the motivation for axiomatic set-theory. But I
do not believe that his account differs from my own in any respect relevant to the present argument.
53 Mayberry (2000) argues, and I completely agree, that axiomatic set-theory actually presupposes a theory
of sets as its foundation insofar as it uses the tools of first-order logic. For the logic, rather than being the
foundation for a theory of sets, actually requires a theory of sets to get itself off the ground. Ifthis is the
case, then anything done in axiomatic set-theory, rather than providing an argument for a particular view of
sets or ofthe infinite, is actually just a statement of that position.
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As Cantor himself noted, mathematics is self-justifying only insofar as it avoids

contradiction. One problem with this is that what counts as a contradiction to one person

counts as something else to another. In my view, while the formalism of the transfinite

may indeed be free from contradiction as a result ofthe axiomatization, its conceptual

basis is not. This needs to be sorted out if the theory is to be anything more than a clever

game of symboI manipulation. Thus, I intend to provide not a refutation of axiomatic set

theory, but an alternative to it (or at least the foundation for one). I will argue that Leibniz

has a response to each of Cantor's conceptual arguments for the coherence of the actual

infinite and thus if one proceeds with a Leibnizian notion of set at the heart of one's

theory, perhaps the paradoxes can be avoided in a way that provides a true resolution of

the problems that lay at their centre.

As mentioned in chapter one, Leibniz cannot simply respond to Cantor's

arguments by appealing to the part-whole axiom. While this would clearly be an adequate

response to Cantor, it would even more clearly be question-begging. From Galileo's

paradox, Cantor and Leibniz chose to give up different statements, that the whole is

greater than the part and that the number of numbers forms a whole respectively. One

statement cannot be wielded against the other with any force. The only possible

consideration that could lend Leibniz's position any force over Cantor's is that Cantor

does not as a result of Galileo's paradox give up the part-whole axiom per se; it is only

given up in the case of infinite sets. Thus there is a tension with Cantor between the

desire to treat the infinite as much as possible like the finite54 and the need to depart so

54 I.e. Cantorian finitism as discussed by Hallett (1984).
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dramatically from this maxim with respect to the part-whole axiom. This type of

consideration was dealt with in chapter one when I responded to the charge of

equivocation against Leibniz in relation to Galileo' s paradox; and so I will not dwell on it

here. For as I concluded in chapter one, all that this line of argument serves to

demonstrate is that the choice of which statement to abandon cannot provide the basis for

a refutation of either position.

3.3 A LEIBNIZIAN RESPONSE

As indicated, I believe that Leibniz has a response to Cantor's arguments in

f.wour of the actual infinite. That is not to say I believe that within Leibniz one can find a

refutation of modern axiomatic set theory. What would such a refutation consist in? I

believe that although modem set theory has departed from Cantor's line ofargument his

conclusions and his foundational assumptions remain. This is an odd state of affairs to

say the least. To accept Cantor's conclusions but not his arguments leaves one in the

unfortunate position ofeither constructing new arguments for these conclusions or

acknowledging that no such arguments have been made. As the above section shows, a

consistent theory-i.e. axiomatic set theory-can be constructed on the assumption that

the actual infinite is coherent, but this by no means justifies this assumption. In light of

these observations, this section will contain a challenge to the very notion of an actually

infinite multiplicity, understood categorematically. I will argue that none of Cantor's

arguments establish the coherence of the actual infinite (in the categorematic sense). The

basis for my arguments will be the Leibnizian position, namely that there is an important
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distinction between "potential" and "syncategorematic" on the one hand and between

"actual" and "categorematic" on the other, coupled with a tacit appeal to Ockham's razor

(which is no doubt favourable to modem set theorists). That is to say, I am assuming that

if it seems that two statements can be inferred from a given argument, the more modest

statement is the one that should be accepted.

3.3.1 Three Philosophical Arguments Refuted

I will maintain the same order ofpresentation here that I established in chapter

two, beginning with what I called the argument from irrationals and ending with the

domain argument. The argument from irrationals claims that transfinite numbers and

irrational numbers must stand or fall together. This is how I presented this argument in

chapter two:

(P1) If one accepts irrational numbers (as defined by Dedekind), one accepts
infinite sets.

(P2) If one accepts infinite sets, one accepts transfinite numbers.

(C) If one accepts irrational numbers (as defined by Dedekind), one accepts
transfinite numbers.

This argument is supposed to appeal to those who believe that irrationals are necessary

mathematical content and not subject to controversy. It is supposed to prevail on the

efficacy and indubitability in mathematics of the irrationals and claim that their status

must be called into question if one doubts the validity of transfinite numbers. More

intermediately, it argues that if one does not accept actual/categorematic infinite sets,

then one cannot accept irrational numbers. However, this argument rests upon a particular

80



M. A. Thesis - A. Harmer McMaster - Philosophy

definition of irrational numbers, or perhaps better, a particular way of characterizing

them-namely, by means of the Dedekind cut. Lavine (1994) explains this

characterization of irrationals as follows:

Dedekind's theory ofcuts defines -.J2, for example, in terms of the infinite
set of all positive rational numbers p such that p2 > 2. (That set and the set
of remaining rational numbers-that is, those rational numbers p that are
negative or such that i < 2-cut the rational numbers into two parts, an
initial segment and a final segment, hence the name "cut"). (38)

I do not intend to contest this definition. However, I must be clear about what this

actually demonstrates. This argument appeals to the fact that actual/categorematic infinite

sets are used in order to define irrational numbers. Insofar as this definition is successful,

it is supposed to legitimize the actual/categorematie infinite sets to which it appeals. But I

do not believe that this argument is sufficient.

The innocuous part of this argument is P2: this is a statement that even Leibniz

would grant. But he would turn Cantor's Modus Ponens into a Modus Tollens: since

Leibniz has rejected infinite number, he needs to deny the unity of any infinite

multiplicity in order to avoid the consequence that Cantor has rightly identified. For once

an actual/categorematic infinite is accepted, it certainly appears necessary that it should

have a least upper bound (its limiting ordinal) and a cardinality (its cardinal).

The heart of this argument, however, is the alleged implication ofPI 's consequent

by its antecedent. That is, in order for PI to hold, actual/categorematic infinite sets must

be a necessary condition of Dedekind's characterization of the irrationals (assuming, of

course, that this is the only way to characterize the irrationals with the desired rigour).

Thus, as an argument for the coherence of the actual/categorematic infinite, the argument
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firom irrationals can get nowhere unless Dedekind's characterization of the irrationals (as

it is understood by Cantor) necessitates actuaVcategorematic infinite sets. This, then, is

where I will direct my objection. I believe that there is a way in which one can maintain

Dedekind's characterization of the irrationals without accepting actuaVcategorematic

infinite sets.

In fact, the possibility of such a response to Cantor can be found within Leibniz's

position on the infinite. And as with many of my criticisms of Cantor's arguments, this

objection is based on his failure to distinguish between actual and categorematic.55 Once

the apparatus of the actuaVsyncategorematic infinite is at one's disposal, the infinite sets

referred to in Dedekind's cut need not be actuaVcategorematic infinite sets. A Leibnizian

infinite multiplicity will suffice. In the case of the sum Y2 + Y4 + ... + 1/2n + ... , as

described in chapter one, even though it is acknowlledged that there is no last term, the

infinite sum can be thought of as a distributive whole-that is, all the parts are actual

since they follow from the law of the series, but they do not compose a unified whole. In

the case ofthe Dedekind cut, each required set can be thought ofas a distributive whole,

following from what is analogous to the law of the series. For example, in the case of--./2

the "law of the series" would be {p: p2 < 2} and {p: i > 2}, just as with the series above

the law would be {p: 1/2P, pEN:?: I}. As in the case of the infinite series, there is no

55 I do not mean to imply by this statement that Cantor should have seen the distinction between
categorematic and actual that I am attributing to Leibniz via the interpretation given by Richard Arthur. As
I said in chapter one regarding Brown's objections to Leibniz's position, one cannot be faulted for not
espousing an apparently contradictory position when one feels that one has a perfectly consistent theory of
one's own. The lengths to which I have gone to argue that Leibniz's position is merely consistent
demonstrates that such a position would not have seemed a viable option to Cantor.
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need that the collections specified be categorematic in order for the specification to have

sense.

It is important to note that I am not presenting an alternate theory of irrationals.

Something so grandiose would be beyond the purview of this project. I am merely

identifying a tacit assumption within Cantor's understanding of Dedekind's cut method.

The assumption is that the infinite sets being utilized must be categorematic. It is clear

that they must be actual-a potential infinite certainly would not do-but nothing

necessitates that they be categorematic. The mere possibility that an

actuaVsyncategorematic infinite would suffice is all that I require for a successful

objection to P1.56 And without PI, the hypothetical syllogism that is the argument from

irrationals cannot possibly go through.

The next argument to be considered is the divine intellect argument. This

argument states that 0) is a consistent multiplicity, i.e. a set, because it can be "held

together" as a unity in the divine intellect. That is, even if the limited human intellect

cannot see how an infinite multiplicity can be a unified whole, this does not prevent 0)

from being a set. It is sufficient that some intellect can unify the multiplicity, even if that

intellect belongs to God. This argument cannot be criticized on the same grounds as the

argument from irrationals. It certainly does not assume anything about infinite sets. In

fact, it is directed precisely at providing justification for the coherence ofan

actuaVcategorematic infinite set. Its main flaw, however, is that it is too strong. Leaving

aside for a second the theological commitments inherent in the premises of this argument,

56 PI is the following conditional statement: if one accepts irrationals, one accepts actual/categorematic
infinite sets.

83



M. A. Thesis - A. Harmer McMaster - Philosophy

it proves too much. It seems that no multiplicity whatsoever would be incapable of

unification in the divine intellect. Even if one grants the theological presuppositions of

this argument, I do not believe that this objection can be avoided. What prevents God

from ensuring that every multiplicity is a set? This seems to collapse Cantor's distinction

between consistent and inconsistent multiplicities. For how can a multiplicity be

inconsistent if one can always appeal to the divine intellect in order to guarantee its

unity? The unwelcome answer is that one cannot maintain this distinction. But if Cantor

no longer has the distinction between consistent and inconsistent multiplicities at his

disposal, then he cannot avoid the paradoxes of the largest cardinal and the largest

ordinal.

These considerations have been given in an attempt to refute Cantor's divine

intellect argument on its own terms. That is, I have argued that even if one ignores the

theological commitments of this argument, it is not able to prove what it is supposed to

prove. But one cannot simply ignore the theological commitments ofthis argument. To

appeal to the divine intellect in order to justify the actual/categorematic infinite is simply

not a good strategy. It relies on too many metaphysical premises, premises which would

certainly be disputed by many philosophers and mathematicians including those who

have carried on with Cantor's work on the theory of sets. Ultimately, then, this argument

is no more satisfactory that the argument from irrationals: in order to accept it one must

also accept significant metaphysical claims, claims whose status is perhaps even more

controversial than the statement that they are intended to support.

84



M. A. Thesis - A. Harmer McMaster - Philosophy

Interestingly, Leibniz also holds the view that God or the divine intellect serves as

the foundation for mathematics. For Leibniz, however, it is the practice of mathematics as

a discipline that is grounded by God, not particular mathematical results, insofar as

mathematical laws are prescribed by God (Letter to Herman Coming, 1678; L 189). But

to appeal to the divine intellect to justify particular results can be nothing other than self­

serving. And so Cantor's divine intellect argument is no more compelling that his

argument from irrationals.

Finally, I arrive at the domain argument. In many ways this argument can be seen

as the strongest of the bunch. And so it ought to receive the most thorough refutation. The

domain argument states that any variable finite quantity presupposes an infinite and

definite (i.e. actuaVcategorematic) domain within which it ranges. Therefore, the use of

potentially infinite quantities or numbers in mathematics, which is certainly legitimate,

leads one necessarily to the postulation of actually infinite quantities or numbers

(understood categorematically). The initial problem with this argument is that it relies

completely on the equation of "actual" with "categorematic". That is, it is fine to say that

the potential infinite commits one to the actual infinite in the way described above;

however, why must one understand this categorematically? It seems that this follows only

so long as "categorematic" is taken to be synonymous with "actual". The possibility of

holding the position that the infinite is actual, understood syncategorematically, implies

that Cantor's conclusion is too strong. That is to say, even if! grant Cantor's point that

the variable finite presupposes an actual infinite domain, I can still maintain that the

domain should be understood syncategorematically. In other words, there is nothing that
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guarantees the unity of the domain. When one takes "actual" as synonymous with

"categorematic", that the domain is categorematic follows directly from the fact that the

domain is actually infinite. But since I have established that it is perfectly coherent to

maintain that an infinite multiplicity is actually infJinite but that it is not one and whole,

there is a more modest conclusion that can be drawn from Cantor's argument. This is the

appeal to Ockham's razor that I mentioned above. The more modest, and in my view

legitimate, conclusion is simply that the domain is actually infinite, but its actuality is to

be understood syncategorematically. As I have discussed, this is precisely Leibniz's

position regarding the infinite; and thus Leibniz's and not Cantor's position is what

validly follows from Cantor's argument.

There is a further consideration regarding this argument. The application of the

domain argument to the series oftransfinite ordinalls lands one right in the middle of the

Burali-Forti paradox.57 That is, as I explained in chapter two, Cantor's transfinite ordinals

form an ordered sequence that very much resembles the sequence of finite ordinal

numbers. In the case of the finite ordinals, the argument that their variability presupposes

a fixed and definite domain within which they range leads one to conclude that ro, the set

of all finite ordinals, is a legitimate set. However, when this reasoning is applied in the

case of the transfinite ordinals, a paradox results. For to assume that the transfinite

ordinals range within a fixed and definite domain ought to give rise to the set Q, the set

of all ordinal numbers. But such a set, as we have seen in section 3.2.1, gives rise to the

57 An analogous line of argument could be carried out with respect to the series of transfinite cardinals and
Cantor's paradox. However, since the two arguments would be virtually identical, I have chosen to focus
on the ordinals alone with the understanding that this equally applies to the cardinals.
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Burali-Forti paradox and is thus deemed an inconsistent multiplicity by Cantor. What

makes the set of finite ordinals special? Why does this argument apply to them but not to

the transfinite ordinals? These considerations indicate that this argument is not as strong

as it may appear. And they further support my point that while the domain of the variable

finite may need to be actual, it need not be categorematic.

Jane (1995) argues that Cantor's domain argument actually serves to guarantee

the existence of the Absolute. Since this is in direct opposition to the claims I have just

made, it is worth taking some time to consider his argument. The following passage

summarizes Jane's argument:

Cantor's claim [i.e. the domain argument] implies that a potentially
infinite sequence, or, more generally, any sequence of terms (of any
length) is, strictly speaking, unintelligible and unacceptable in
mathematics if it is not previously determined what all its different terms
are, which is equivalent to say, if the totality whose elements are the tenns
of the sequence has not been previously defined.

Thus generalized, the domain principle will also apply to the
sequence of all ordinal numbers. According to it, the whole ordinal
sequence, or, what amounts to the same, the unlimited applicability of
both generating principles, is unintelligible unless the absolute totality of
all ordinal numbers actually exists. (1995, 386).

Jane goes on to cite the following passage from Cantor in support of this position:

The transfinite with its wealth of arrangements and forms necessarily
points at an absolute, at the ''true infinite", whose magnitude is unable to
increase or decrease at all, and thereby must be considered quantitatively
as an abso lute maximum. The latter exceeds, so to speak, all human
comprehension and eludes mathematical determination. (Cantor 1932,
405)

The interesting feature of this passage is Cantor's use of the verb "hinwesen", which

means ''to point at". Jane notes that Cantor uses the same verb when discussing the way

in which the finite natural numbers "point at" co. This similarity completes the analogy
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between the two relations, between the finite numbers and co on one hand and between

the transfinite ordinals and n on the other.

Despite the valid semantic argument for this analogy, it breaks down upon

consideration ofwhat is established in each case. For in the case of the relation between

the finite numbers and co, it must be the case that the resulting domain is categorematic. If

the domain is not categorematic, then it will not serve the function required of it. In the

latter case, however, the case of the relation between the transfinite ordinals and n, it

must be the case that the resulting domain is not categorematic. If the domain is

categorematic, then the Burali-Forti paradox rears its head. As I see it, this gives rise to a

dilemma for the analogy Jane is attempting to draw. Since both applications of the

domain principle must be analogous, they must both give rise to a categorematic domain

or neither can. Since in one case the categorematic domain is required and in the other

case it needs to be avoided, there is no viable option to be found here. If the domain

argument itself is to be considered valid, there are only two options: either the Absolute

must be considered a consistent multiplicity, which Cantor denies, or my initial argument

is correct: there is no necessity in inferring an actual/categorematic domain from the

variable finite range of the natural numbers.; one may, and in my view should, only infer

an actual infinite domain from this argument if this domain is understood

syncategorematically.

There is one objection to my responses that I should consider. If! am claiming, as

I have been, that it is possible to grant that the potential infinite implies the actual infinite

(in the sense described above), then I need to consider the possibility that a
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syncategorematically understood infinite implies a categorematically understood infinite.

For initially, these distinctions seem as though they could have an analogical relationship

to one another. But this cannot be the case. The reason is simple and I have already

discussed it: to infer a categorematically understood infinite from a syncategorematically

understood infinite is to commit the quantifier shift fallacy, i.e. to reason from, for

example, (Vx)(3y)y > x to (3y)(Vx)y > x, which is clearly invalid. Thus, there is not a

strict analogy between potential/actual and syncategorematic/categorematic, even though

it may appear that there should be. As a result, there is nothing committing one to a

categorematically understood infinite simply by accepting a syncategorematically

understood infinite.

3.3.2 The Reflection Principle

Although I do not believe that anyone of Cantor's three philosophical arguments

is sufficient to demonstrate the accuracy of his position, there may be another route to his

conclusion. That is to say, there may be an independent argument for the coherence ofthe

actual infinite. I did not include this possibility in the second chapter because I do not

believe that it is an argument Cantor himself put forward. However, it does flow naturally

out of certain statements that Cantor did accept and so it is important to consider it here.

This alternative argument is based on what is called the Reflection Principle. The

reflection principle applies to the Absolute, what Cantor called "0". It states that for any

property x possessed by 0, there always exists some set s-i.e. some consistent

multiplicity-that has property x.
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As I discussed in the previous chapter, the Absolute is beyond any formal or

mathematical determination; it is neither complete nor one and whole. It falls under the

heading of what Cantor calls inconsistent multiplicities. In fact, Cantor goes so far as to

identify the Absolute with God: he calls it "the true Absolute, which is God, and which

permits no determination" (Cantor 1932, 175; Hallett 44). In this way, the Absolute is

seen as utterly unintelligible, i.e. incoherent.

The incoherence of the Absolute is the starting point for the argument from the

Reflection Principle in support of the actual infinite. Since the Absolute is incoherent,

there cannot be any description peculiar to it, any description that can successfully refer

only to the Absolute. As Rucker (I 995) puts it:

The motivation behind the Reflection Principle is that the Absolute should
be totally inconceivable. Now, ifthere is some conceivable property P
such that the Absolute is the only thing having property P, then I can
conceive of the Absolute as "the only thing with property P". The
Reflection Principle prevents this from happening by asserting that
whenever I conceive of some very powerful property P, then the first thing
I come up with that satisfies P will not be the Absolute, but will instead be
some smallish rational thought that just happens to reflect the facet of the
Absolute that is expressed by saying it has property P. (50)

When considered in this way, the Reflection Principle pre-empts any individuating

property of the Absolute by stipulating that there will always be a non-Absolute

collection that shares the specified property.

The way in which the Reflection Principle can be used to construct an argument

in favour of the actual infinite is as follows. As the Reflection Principle states, "every

conceivable property ofn is shared by some ordinal less than n. Thus, ... since we know

that n is greater than all the finite numbers n, we know by Reflection that there must be
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some existing ordinal, call it 0:>, that is also greater than all the finite n" (Rucker 80).

What Rucker believes to follow from this is that "if one accepts the various infinite

Abso lutes, then one is fairly well committed to accepting the existence of infinite ... sets"

(.50). In other words, Rucker is arguing that if one accepts the Absolute then one must

also accept the actuaVcategorematic infinite. This argument can be thought ofas the

converse of Cantor's domain argument as it was applied by Jane to the question ofthe

Absolute. In that case Cantor argued that the actual infinite implies the Absolute. Here

Rucker is arguing that the Absolute implies the actual infinite.

I do not believe, however, that this argument is sufficient to demonstrate the

coherence of the actuaVcategorematic infinite. Aside from certain required assumptions,

such as Rucker's particular characterization of the Absolute as non-characterizable (even

negatively) and the coherence of the Reflection Principle itself, the main problem that I

see with his argument is his treatment of the Absolute as though it actually were

mathematically determinable. Consider the property described above by Rucker: "0 is

greater than all the finite numbers n". To set up the absolutely infinite collection 0 in the

relation "greater than" to the set of all finite numbers n is to make an illicit move. For

what could "mathematically undeterminable" mean but (among other things) something

along the lines ofwhat Galileo concluded from his paradox of the squares: "the attributes

ofequal, greater, and less have no place". Rucker has assumed that 0 can be placed in

the second of these relations. But that must be incorrect. The Absolute cannot simply be a

superlatively large collection, greater than any other collection whatsoever. Despite what

our intuitions may tell us, it is not correct to say that 0 is greater than anything. And if

91



M. A. Thesis - A. Harmer McMaster - Philosophy

this is the case, it cannot be inferred that there exists a consistent multiplicity, co, greater

than all finite numbers. Ultimately, then, the Reflection Principle cannot provide a basis

for the actual/categorematic infinite.

In the end, the perspective given by Leibniz's philosophy of the infinite is able to

provide an adequate response to Cantor's arguments. The refutation I have provided

clearly depends on the distinction between "potential" and "syncategorematic", the

meaningfulness ofwhich I believe to have established in chapter one. While this is by no

means a definitive refutation of Cantor and of the notion ofan actual/categorematic

infinite set, it is certainly the first step. The next step will be to provide a coherent notion

of set from the Leibnizian perspective that is not susceptible to the paradoxes that plague

Cantor's theory of sets. While such an investigation is much too involved to be carried

out here, I believe that the considerations in this section provide the foundation for such a

project. The conclusion of this chapter will provide some brief comments as to the

motivation for this type of endeavour.

3.4 CONCLUSION

I would be well-advised to pause for a moment and begin to compile exactly what

I have argued in this chapter. First of all, I have presented the traditional problems with

Cantor's set theory. Cantor's paradox and the Burali-Forti paradox are problematic for

Cantor, despite his confidence that they can be explained away by appealing to the

distinction between consistent and inconsistent multiplicities. I then presented the most

common response to these paradoxes: the axiomatization of set theory. This response is
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appealing insofar as it is straightforward, elegant, and coherent. It is crucial to note that

this approach implicitly accepts Cantor's philosophical position with respect to the

infinite, although it does not explicitly espouse it within the axioms Al through A7.

Axiomatic set theory is essentially an attempt to provide adequate foundations as well as

adequate rigour for the standard arguments and conclusions that are found in Cantor's

vvriting. It does not seem to be susceptible to the two paradoxes I have discussed, since

the construction of the contradictions is no longer possible within the framework of the

seven axioms I have presented. Many of Cantor's claims regarding the transfinite are still

provable within this system, but their proofs are no longer carried out in the intuitive

manner utilized by Cantor; set theorists now have the apparatus of first-order logic to

guarantee the validity oftheir proofs. This theory appears to be airtight.

However, there is still something very unsatisfactory about this approach. First of

all, and as I have already mentioned, it tacitly accepts Cantor's philosophical position

regarding the infinite. But this position is littered with contradictions, as the paradoxes

themselves indicate. Thus, to avoid the paradoxes but maintain the same underlying

theory is problematic. This would not be the case if the axiomatic system satisfactorily

dealt with the paradoxes. But it does not. The paradoxes are certainly avoided, but they

are by no means resolved. For the paradoxes seem to originate with Cantor's definition of

set, or at least to involve the identification of some multiplicity as a set. Nowhere in

axiomatic set theory, however, is "set" defined; axioms are merely given that allow one

to "construct" sets from previously given sets. As Mayberry (2000) notes, to characterize

something axiomatically is not so much to define it as to define it away (60). Thus, in one
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sl1mse the problem has been solved (or rather dis-solved) but in another sense it has not.

What exactly is a set? What makes one multiplicity a set and another a proper class?

Simply indicating that one can be characterized by the axioms and the other cannot is

circular.58 Something more is required.

This is the motivation for section 3.3.1, in which I provide refutations of Cantor's

philosophical arguments. It seems to me that the problems that continually appear all

stem from Cantor's assumption that any actual infinite is categorematic. By

demonstrating the shortcomings of these arguments, I am attempting to isolate the origin

of the paradoxes that are found within Cantor's theory ofthe transfinite. Based on the

content of these arguments, it is clear that Cantor himself found it necessary to justify his

acceptance of the actuaVcategorematic infinite. It seems that the usefulness or fruitfulness

of his theory has blinded some to the insufficient foundations on which it is constructed.

It is not clear that the distinction between consistent and inconsistent multiplicities and by

extension sets and proper classes can be maintained in a univocal way. Ultimately it

seems to come down to a pragmatic decision: which sets are going to lead to

contradiction and how can we avoid the construction of these contradictions?

Furthermore, how does one maintain the obvious insight that Cantor had into the

nature of the infinite and its role in mathematics without falling into the same

contradictions that Cantor falls into? This is where Leibniz's position displays its

attractiveness. By crediting the actual infinite, Leibniz leaves the door open for the

58 I am not alone in my diagnosis that the absence of a clear definition of set is a problem for axiomatic set
theory. See also Lavine (1994) and Mayberry (2000). Although their approach differs from mine, they are
responding to the same need, i.e., a definition of"set" sufficient for the role it needs to play in the
foundation ofmathematics.
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acceptability of, for example, Cantor's domain argument, with one small modification:

although the domain is actually (not potentially) infinite this actuality is not to be

understood as categorematic but as syncategorematic. What this means, to put it in

modern terms, is that the domain is similar although not identical to a proper class. It is

actually infinite, but it is not a unified whole. The details ofthis need to be worked out in

more detail, but the crucial point is that many of Cantor's results in the theory of sets

could be maintained (in an admittedly modified form) while the paradoxes and problems

could be avoided. In the end this possibility is due to the consistency of maintaining both

that the infinite is actual and that this actuality should be understood

syncategorematically. This insight, which I have credited to Leibniz via an interpretation

ofhis writing first proposed by Richard Arthur, can, I believe, provide the possibility for

a rich and fruitful, yet consistent and philosophicaHy justified theory of sets.
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CONCLUSION

A lot ofground has been covered in a relatively small space. I began with a

presentation ofLeibniz's position on the infinite and a defense of it against the most basic

charge, i.e. that it is not even self-consistent. I ended by arguing that within Leibniz one

can find a viable alternative to the Cantorian position on the infinite, one that has the

potential to playa part in the foundations of mathematics. There is a substantial gap

between these two components, and so I would like to conclude by attempting to bridge

it, at least slightly. 1will describe what I believe to have accomplished in the preceding

chapters as well as give some considerations as to what remains to be done, i.e. what

other possible avenues the above arguments point towards.

Despite some initial apprehension at the time ofhis first publications, Cantor's

mathematical treatment ofthe infinite is now so widely accepted that to challenge it is to

move into difficult territory. Although the technical viability of Cantor's theory is hard to

dispute, I believe that conceptually it leaves much to be desired. Nevertheless, the

Cantorian take on the infinite has become common currency in contemporary

mathematics. The actual infinite plays a large role in the foundations of mathematics,

since axiomatic set theory (arguably a refinement of Cantorian set theory) performs the

function ofgrounding the entire discipline. But the question remains: how does one

justify the acceptance and the use of the actuaVcategorematic infinite? This is a crucial

question. For, at least in some sense, contemporary mathematics is piggy-backing on

Cantor's justification of the actual infinite without accepting many of Cantor's central

premises. It seems unlikely that anyone would accept, for example, Cantor's justification
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of the unity of an infinite collection by appeal to the divine intellect. But they

nevertheless want to use the result. There is not necessarily anything wrong with this, but

I feel that it is at least important to clarify what this commits one to. It commits one to the

position that any stipulation that leads to a consistent set of results is thereby justified,

that coherence is the only standard of evaluation in mathematics. It is ultimately because

I do not want to be committed to such a position that I believe it important to find an

alternative. And I have championed Leibniz's position because of his complex treatment

of the actual infinite.

As I discussed in chapter one, Leibniz's position initially looks as though it

cannot help but fall into inconsistency. On the one hand, Leibniz espouses the doctrine of

actually infinite division. That is to say, he does not claim along with Aristotle that matter

is capable of being infinitely divided, that such a division is possible. He claims that

matter is already infinitely divided, that the division is actual. On the other hand, Leibniz

denies that the notion ofan infinite number is coherent. As a result of Galileo' s paradox

of the squares, Leibniz denies that the number of numbers forms a whole. But it does not

seem consistent to endorse actually infinite division, to claim that there is an actually

infinite multiplicity, without also granting that the multiplicity has a ~ardinality. But if

the multiplicity has a cardinality, then one must accept infinite number; not to do so

would lead to a clear inconsistency in one's theory.

From within the traditional discussion of the philosophy ofthe infinite, there is no

avenue open to Leibniz. Even though the grammatical distinction between categorematic

and syncategorematic terms had been known for some time before Leibniz, this
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distinction was taken to be a refinement ofthe distinction between actual and potential.

That is, the term "infinite" can be said in two ways: syncategorematically, it means "for

any number specified there are/can be more"-this is equated with the potential

infinite-and categorematically, it means "there are more than any number given"-this

is equated with the actual infinite. But when each option is formalized, it is clear that

there is nothing within syncategorematic that prevents one from maintaining that the

collection of elements is actual. That is why I have included "are/can be" in my

description of syncategorematic. To say that the term "infinite" is being used

syncategorematically is perfectly consistent with either the actual or the potential infinite.

Thus, the relationship between the four terms is quite complex. "Categorematic" implies

"actual"; but "actual" does not imply "categorematic". "Potential" implies

"syncategorematic", but "syncategorematic" does not imply "potential". The objections I

considered all assume that "actual" implies "categorematic" and that "syncategorematic"

implies "potential". When these implications are shown to be faulty, all of the objections

to Leibniz's point ofview become answerable.

With this, the situation is complicated somewhat, for there are now more than

simply two options to consider: the actual infinite may be categorematic or

syncategorematic. This, ultimately, is what prompts the reconsideration of Cantor's

arguments in favour of the actual infinite. Even if these arguments lead one to the actual

infinite, it remains to be seen whether that infinite is categorematic or syncategorematic.

In chapter two I argued that in Cantor's mind, "actual" and "categorematic" are

synonymous. As a result, when Cantor provides an argument that supports the actual
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infinite, he automatically concludes that the same argument supports that the infinite is to

be understood categorematically. Because ofthis, I believe that he has drawn conclusions

that are underdetermined by his premises.

In the case of the argument from irrationals, Cantor's first premise is subject to

dispute because he assumes that Dedekind's characterization ofthe irrationals requires

the categorematic infinite. But the collections of rationals used in this characterization,

can be understood as actually infinite, yet syncategorematic. Thus, all that is needed is

that for any rational less than, for example, ~2, there is always one closer, not potentially,

but actually, yet the collections described by {p: p2 < 2} and {p: l > 2} are not unified

wholes. In this way the "sets" of rational numbers that compose the Dedekind cut need

not be categorematic. So long as they are actual, they will do the work required ofthem.

Clearly the technical details of such an approach would need to be worked out before it

could be considered an actual alternative in the sense that it could do any mathematical

work. While I am unable to provide such a treatment here, the possibility of doing so

casts some doubt on the assumption that the collections specified in Dedekind's

characterization of the irrationals need to be categorematic.

In the domain argument similar considerations apply. Even if a potential infinite

(in the sense ofa variable finite) implies an actual infinite, there is nothing necessitating

that it be understood categorematically. In fact, Cantor himself demonstrates this by his

utilization of the same argument in the case of the Absolute. The Absolute cannot be

categorematic, but based on the domain argument it must be actual. Thus, even within

Cantor's own system, there is an example of the syncategorematic actual infinite. And as
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I have argued, once this option is on the table, then any defense of the actual infinite that

understands it categorematically becomes problematic.

This is essentially where my argument ends. Even if the actual infinite is

necessitated by certain other acceptable beliefs, the categorematic infinite stands in need

of further justification. In an attempt to be somewhat constructive, rather than wholly

destructive, I have attempted to point towards an alternative point ofview, namely the

one held by Leibniz. It seems to me that by using the actual/syncategorematic infinite as

the basis for one's theory, it is possible to construct a theory of sets free from the

problems of the Cantorian approach.

I am well aware that Axiomatic set theory claims to have done just that, but with

the advantage ofbeing able to utilize the actual/categorematic infinite. What I am doing

here, however, is attempting to provide an alternative to that approach. I do not claim to

be refuting it. What would such a refutation consist in? It is unclear how one would refute

the specification of seven axioms of set construction. But this is, in part, the trouble I

have with this approach and why I am looking for an alternative. The selection of the

axioms must be based on certain underlying principles. But these principles, whatever

they may be, are merely tacit. As Mayberry (2000) argues, a theory of sets is assumed by

an axiomatic approach. It is such a theory that I am after, and it is in the specification of

such a theory that I believe Leibniz's position has something to offer.
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