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Abstract

Parallel MRI, in which k-space is regularly or irregularly undersampled,
is critical for imaging speed acceleration. In this thesis, we show how to opti-
mize a regular undersampling pattern for three-dimensional Cartesian imaging
in order to achieve faster data acquisition and/or higher signal to noise ratio
(SNR) by using nonlinear optimization. A new sensitivity profiling approach
is proposed to produce better sensitivity maps, required for the sampling opti-
mization. This design approach is easily adapted to calculate sensitivities for
arbitrary planes and volumes. The use of a semi-definite, linearly constrained
model to optimize a parallel MRI undersampling pattern is novel. To solve
this problem, an iterative trust-region is applied. When tested on real coil
data, the optimal solution presents a significant theoretical improvement in
accelerating data acquisition speed and eliminating noise.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a widely used clinical imaging tech-
nology. Compared to CT and X-Ray, MRI is non-invasive, uses non-ionizing
radiation and able to generate multiple image contrasts. Nowadays, MRI can
produce excellent anatomic images with sub-milimetre resolution. In addition
to anatomical information, MRI is becoming a valuable tool for monitoring
dynamic physiologic processes including function and perfusion. Moreover,
MRI is widely used in cardiac diagnosis and metabolism analysis. However,
the speed of data collection of conventional MRI techniques is inherently lim-
ited due to the essentially sequential fashion of collecting data by successive
gradient encoding[13]. Besides gradient performance enhancement to acceler-
ate data acquisition, parallel sensitivity encoding (SENSE) techniques employ
multiple surface-coil or phased-array detectors to further accelerate MRI data
collection [14]. Parallel MRI provides manifold increases in imaging speed by
replacing some of the gradient spatial-encoding steps with spatial information
derived from the distinct sensitivity profiles of the array coils[3].

In this thesis, we show how to optimize a regular undersampling pat-
tern for three-dimensional Cartesian imaging in order to achieve faster data
acquisition and/or higher signal to noise ratio (SNR) by using nonlinear op-
timization. In Chapter 3, we propose a new sensitivity profiling approach to
produce better sensitivity maps, required for the sampling optimization. This
design approach is easily adapted to calculate sensitivities for arbitrary planes
and volumes.

The use, in Chapter 4, of a semi-definite, linearly constrained model to
optimize a parallel MRI undersampling pattern is novel, and the main contri-
bution of this thesis. To solve this problem, an iterative trust-region method
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is applied. When tested on real coil data, the optimal solution presents a
significant theoretical improvement in accelerating data acquisition speed and
eliminating noise. The thesis contains five chapters with three topics, namely,
sensitivity profiling, undersampling optimization, and the trust-region method.

All data was collected on a 1.5T engineering prototype scanner, using
an 8 channel head coil, and integrated body coil.
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Chapter 2

SENSE Imaging Backgrounds

2.1 MRI Basics

The clinical use of Magnetic Resonance Imaging (MRI) is based on the obser-
vation of water molecules (in particular, of hydrogen) in the human body. In
summary, an MRI experiment can be described as follows: upon the applica-
tion of an external static magnetic field, the protons of water molecules will
be preferentially aligned with the magnetic field as magnetic dipoles. When
they are disturbed by a second alternating magnetic field of induction at a
certain radio frequency, they begin to resonate. According to Faraday’s law,
the precessing of magnetic dipoles induces an electric current, giving rise to a
signal, in a RF receive coil surrounding them. The signal is detected in the
radio frequency (RF) range, but transformed into the lower audio frequency
range for sampling and analysis[9, 6].

The spatial distribution of protons can be encoded into the signals by
the application of linear magnetic field gradientsG. This is usually understood
in terms of the concept of k-space. The gradients G correlate the precessional
frequency k with spatial position, measured in coordinates, r,

k =

∫ t

0

G(r, τ)dτ

whereas the signal intensity M(k), considered as a complex value M = Mx +
iMy, has magnitude proportional to the proton density weighted |ρ(r)| in
tissues and decays with their relaxation times (T1, T2, and T ∗

2 ). The complex
phase of ρ encodes susceptibility and other effects which are outside the scope
of this thesis. MRI scan can be applied both in 2D and 3D and most of the

3
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discussion in thesis is based on a 3D example. The dominating schemes for
MRI have been based on the Fourier transform relationship between k-space

{M(k)|M ∈ C,k ∈ R
3}

and image space

{ρ(k)|ρ ∈ C, r ∈ R
3}.

In the mathematical point of view, the MR signal received, when neglecting
all relaxation phenomena, can be written as:

Mκ(k) = F{ρ(r)} =

∫

R3

ρ(r)ejkκ·rdr (2.1)

In the case of pulsed RF excitation, the Fourier transform is used to
extract the frequency and intensity information, resulting in MR images. To
generate conventional multidimensional images, k-space is sampled by the use
of incremental phase encoding in the absence of RF pulses[16]. The gradi-
ent fields G directly manipulate the ρ(r) to be depicted. Since each line of
k-space corresponding to a certain proton magnetization requires preparation
time (including RF pulses and delays), serial imaging is time consuming. As
a consequence only one such encoding can be performed at a time, resulting
in the long scan durations that severely restricts the application of MRI[12],
see in Figure 2.1.

Figure 2.1: Three dimensional gradient echo with phase encoding in y and z

directions.
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2.2 SENSE imaging

In order to accelerate imaging speed, parallel imaging techniques have been
proposed[8, 4, 10, 17]. Different from conventional MRI, receive coils for par-
allel imaging techniques consist of a number of elements or channels, each
working more or less independently and sensitizing to a different region of the
field of view (FOV). The coils generally work in combination with a separate,
larger transmit coil with uniform excitation profile over the entire FOV. In
general, by reducing the encoding steps by a factor of L, the L-folded image
is obtained. A 1D example of aliasing is shown in Figure 2.2.
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Figure 2.2: Aliasing due to undersampling: red and green curves show two
continuous functions representing the signal produced by single points in k-
space, and the identical discrete samples for both in blue in (a).In (b) we see the
corresponding image-space representations of the true signals (red and green
delta functions), and the reconstructed signal in blue showing very significant
aliasing.

As early as 1993, Ra and Rim described a method that uses sets of
equally spaced k-space lines from multiple receiver coils and combines them
with sensitivity profile information in order to remove the aliasing that occurs
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due to the undersampling. A 4-folded decrease in the image acquisition time
of a water phantom was shown using an array of four coils[7, 15]. Later on,
the sensitivity encoding (SENSE) method was proposed by Pruessmann et al.,
which is a parallel imaging technique relying on the use of 2D sensitivity pro-
file information in order to reduce image acquisition times in MRI[14]. The
Cartesian version of SENSE requires the acquisition of equally spaced k-space
lines in order to reconstruct sensitivity weighted, aliased versions of the image.
The aliasing is then removed with the use of the sensitivity profile information
at each pixel. This is done by resolving in the space domain the linear system
of equations obeyed by the intensity of each pixel in the image.

In the mathematical point of view, SENSE imaging can be modeled as
a linear system as follows,

Mc,κ(k) = Fs{ρ(r)} =

∫

R3

ρ(r)Sc(r)e
jkκ·rdr (2.2)

where Fs represents the hybrid encoding functions, which are no longer pure
plane waves F in Eq. 2.1, but plane waves multiplied by coil sensitivity Sc(r).
Accordingly, in their equivalent k-space representation they are no longer Dirac
peaks but now have distinct shapes and a significant extent. Mathematically
speaking, this is the result of a convolution with the Fourier transform of the
respective coil sensitivity function.

Based on this observation, the Fourier representations of the coil sen-
sitivities may also be referred to as the coils k-space kernels. The most im-
portant aspect of the transition to hybrid encoding functions is that different
coils have different sensitivities and hence different k-space kernels. This means
that, with multiple receiver coils, one can perform multiple different encodings
at one time. Owing to the extent of these kernels, each encoding no longer
yields a genuine k-space sample but rather a weighted integral of data from a
certain k-space neighborhood. Therefore the encoding operation can no longer
be interpreted as sampling the Fourier transform of ρ(r). In a more general
mathematical sense the integral in Eq. 2.2 represents a scalar product, which
may be interpreted as the projection of ρ(r) onto the hybrid encoding basis
Ec,κ(r,k),

Mc,κ(k) = Fs{ρ(r)} =

∫

R3

ρ(r)Ec,κ(r,k)dr

where Ec,κ(r) is defined as follows,

6
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Ec,κ(r,k) = Sc(r)e
jkκr

As a consequence, image reconstruction can no longer be accomplished by
mere Fourier transform but amounts to recovering ρ(r) from a set of more
general projections[12].

In order to appropriately cover the k-space of the image ρ(r), which
ρ(r) is the reconstructed image, the choice of the phase modulations used in
the inversion matrix should be determined by the frequency content of the
sensitivity profile. In the spatial domain, the image received in a coil having
a sensitivity profile Sc(r) can be written as follows,

Ic(r) = Sc(r)ρ(r)

In the frequency domain, the k-space profile of Ic(r) is shown as follows,

Mc(k) = Ŝc(k) ∗M(k)

where ∗ is convolution operator, M(k) is the k-space profile of the image ρ(r),
Ŝc(k) is the k-space profile of the sensitivity profile Sc(r). This convolution
amounts to a blurring of the k-space data M(k) of the image. Since a different
convolution is performed for each coil, a different blurring of M(k) occurs at
each coil. Subsampling the convolved k-space data received in different coils
therefore results in different coverages of the k-space of the image ρ(k). Hence,
in order to get the best k-space coverage of the ρ(r) for a given Sc(r), it is
necessary to optimally sample the k-space data from all the coils[7].

Moreover, simultaneous encoding by coil sensitivity can be used to
complement gradient encoding and hence to reduce the number of gradient-
encoding steps required for one image. It is an important and as yet largely
unanswered question how the reduced set of sampling positions in k-space can
be optimally chosen. Various undersampling patterns have been investigated.
In terms of sampling trajectory, k-space sampling strategies can be categorized
into two main approaches, Cartesian and non-Cartesian sampling. Cartesian
undersampling regularly or irregularly undersamples k-space in phase encoding
direction(s). Based on the redundant information from multiple coils, the im-
age can be reconstructed with regularization. Cartesian undersampled image
reconstruction is relatively cheap in computation but misses amount of spatial
information, especially regularly sampled k-space data could miss the middle
of k-space, resulting in poor contrast resolution. Compared with Cartesian

7
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undersampling, non-Cartesian sampling is more versatile and faster in data
acquisition, but the reconstruction is fairly expensive and gridding in k-space
may also cause unpredictable artifacts which are difficult to eliminate in post
processing.

8



Chapter 3

Sensitivity Estimation

In SENSE imaging, sensitivity profiles of RF receive coils are required to re-
construct images. Obtaining the sensitivity information in a clinical setting
has been proven problematic[18]. To calculate these profiles, a number of
techniques described in the literature can be used[13, 7, 18]. In all of these
methods, as is common in the literature, it is assumed that the sum of squares
image obtained from all receive coils is equivalent to the body image. How-
ever, most of the receive coils are surface coils, which have low signals in the
center of the object being imaged. As a result, the sum of squares image is
non-homogeneous. Sensitivities calculated based on this assumption produce
non-homogeneous images, which are of less clinical use, because they take
longer to adjust (window and level).

In this section, different from the previous approaches, a newly de-
veloped sensitivity profiling approach has been proposed, followed by topics
on: introduction of polynomial fitting models, polynomial basis selection, and
results and discussion.

3.1 Polynomial Fitting Models

As discussed in Chapter 2, the sensitivity of a receiver coil Sc is determined
by the Biot-Savart Law and the principle of reciprocity. Specifically, Sc(r) is
the laboratory frame magnetic field at location r produced by a hypothetical
unit current flowing in the coil. However, even in the low frequency limit, it is
impractical to calculate Sc(r) directly by Biot-Savart Law explicitly, because
it is highly dependant on coil geometry, position, orientation, coil load, and
the scan object.

9
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As an alternative, the sensitivity profile can be estimated from recon-
structed images. Using polynomials to fit sensitivity has been used in parallel
imaging for many years[14, 7]. All of the previous sensitivity models use the
sum-of-squares image in place of a uniform (body coil) image. As discussed
at the beginning of this chapter, this assumption will lead to low signal in the
centre of objects. To overcome this disadvantage, we propose the following
sensitivity profiling scheme, a set of relatively low resolution fully sampled
images are acquired by a body coil and multiple surface coils. More specifi-
cally, image Ib(r) is the image from the body coil, which we assume to have a
homogeneous sensitivity profile covering the whole object. This is reasonable
for low field imaging. Image Ihc (r) is the image of the same object acquired
using the cth surface coil, which is only sensitive to part of the object. With
the low resolution of body coil image and surface coil images, polynomials are
fit to them and the coefficients of polynomials can easily be calculated. Based
on the set of coefficients, interpolation of the RF receive coils sensitivity is
applied. The polynomials are then interpolated to the resolution required for
subsequent SENSE reconstruction resolutions and geometries. This designed
calculation is chosen for its simplicity and adaptability to 3D applications.
Furthermore, both the ordinary polynomial fitting and rational polynomial
fitting are investigated.

3.1.1 Ordinary Polynomial Fitting

Sc(r) is the sensitivity profile of the cth surface coil and can be represented by
a polynomial,

Sc(r) =
∑

i

ai,cpi(r)

{pi} is the polynomial basis for sensitivity fitting. Without consideration of
noise in images,

Ihc (r) = Ib(r)Sc(r)

. Moreover, we assume only the information from the object (and not noisy
signal from the surrounding air) contributes to polynomial fitting. Among
various approaches which can be utilized to detect the object region, the mag-
nitude of the body image is a good choice as weighting W , because it is easy to
measure, relatively cheap in computation, as well as rich in region information.
As a result, weighting W is introduced as follows,

W =
√

Ib ·pointwise Ib
∗

10



M.Sc. Thesis – Qiong Wu – McMaster – Biomedical Engineering

. To sum up, the coefficients can be calculated as follows,

min
ai,c

∑

r∈{voxel locations}

‖Ib(r)Sc(r)− Ihc (r)‖2W (r) (3.1)

where

Sc(r) =
∑

i

ai,cpi(r).

3.1.2 Rational Polynomial Fitting

As metioned at the begining of this section, the sensitivity profile is the lab-
oratory frame magnetic field produced by a hypothetical unit direct current
flowing in the coil. Based on Biot-Savart law,

Sc(r) =

∫

R3

µ0

4π

IdI × r

|r|3 (3.2)

where I is the current, dI is a vector, whose magnitude is the length of the
differential element of the wire, and whose direction is the direction of con-
ventional current, Sc is the sensitivity profile, µ0 is the magnetic constant, r
is the full displacement vector from the wire element to the point, where we
want to get the sensitivity.

Based on Eq. 3.2, when r goes to 0, Sc would go to infinity. In other
words, the sensitivity profile of the area which is close to surface coil wire will
go to infinity. In mathematical point of view, the points in the area are poles
of the function Sc(r). To model this sigularity property, a rational polynomial
fitting model is investigated. Different from the ordinary polynomial, Sc(r)
can be modeled as the fraction of two polynomials Sp,c(r), Sq,c(r). The same
weighting is applied to this model,

min
ai,c,bi,c

∑

r∈{voxel locations}
‖Ib(r)Sp,c(r)− Ihc (r)Sq,c(r)‖2W (r) (3.3)

where

Sp,c(r) =
∑

i

ai,cpi(r)

Sq,c(r) =
∑

j

bj,cqj(r)

Sc(r) =
Sp,c(r)

Sq,c(r)

11



M.Sc. Thesis – Qiong Wu – McMaster – Biomedical Engineering

3.2 Polynomial Basis Selection

In the above models Eq. 3.1 or Eq. 3.3, both objective functions are quadratic.
Based on numerical optimization theory, when f : Rm → R is twice contin-
uously differentiable and the Hessian ∇2f is invertible, both of the problems
can be solved with one step of Newton’s method[5]. Take Eq. 3.1 for example,
objective function in the ordinary polynomial fitting is shown below,

f(a1, a2, · · · , am) =
∑

r∈{position locations}
‖Ib(r)Sc(r)− Ihc (r)‖2W (r)

Consequently, the Hessian of f is calculated as follows,

∂2f

∂ai∂aj
=

∫

r

2wri
b
r

2
pi(r)pj(r)

define 〈pi,pj〉w′ =
∫

r
2wri

b
r

2
pi(r)pj(r), Hessian of f can be written as follows,

H =











〈〈p1,p1〉w′ 〈p1,p2〉w′ · · · 〈p1,pm〉w′

〈〈p2,p1〉w′ 〈p2,p2〉w′ · · · 〈p2,pm〉w′

...
...

. . .
...

〈〈pm,p1〉w′ 〈pm,p2〉w′ · · · 〈pm,pm〉w′











(3.4)

In order to solve the above problem, the square matrix H must be numerically
invertible. In other words, the columns of the matrix are supposed to be linear
independent. Consequently, polynomial basis selection is critical in solving the
problem. Based on the discussion above, two criteria need to be considered in
selection of polynomial basis: {pi} is linear independent, as well as combina-
tion of {pi} smooth enough to map smoothness of sensitivity. In this section,
we will discuss three polynomial bases that were used in this fitting problem.

3.2.1 Orthogonal Ordinary Polynomial Basis

In various polynomial basis, {xiyjzk} is the easiest one to calculate, where
(x, y, z) are the coordinates of r in space. However, {xiyjzk} cannot be directly
used in our models because the polynomials are highly linear dependent. To
modify our polynomial basis set, Gram-Schmidt orthonormalization is applied.
Define a set of polynomials {pm(r)|pm(r) = xiyjzk,−1 ≤ x, y, z ≤ 1}. Define

12
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the inner product 〈p, q〉 =
∫

r
p(r)q(r)dr, the Gram-Schmidt process is

p′
0 = p0

p′
1 = p1 −

〈p′
0,p1〉

〈p′
0,p

′
0〉
p′
0

p′
2 = p2 −

〈p′
0,p2〉

〈p′
0,p

′
0〉
p′
0 −

〈p′
1,p2〉

〈p′
1,p

′
1〉
p′
1

· · ·

(3.5)

Notice Eq. 3.5 is not a complete Gram-Schmidt procedure, because it omits the
normalization process. The reason for that is because the Gram-Schmidt pro-
cedure is highly expensive and our goal is to make the Hessian of f invertible.
Orthogonalization is good enough to satisfy our requirements.

3.2.2 Weighted Othonormal Ordinary Polynomial Basis

Besides the ordinary orthogonal polynomial basis, we also investigated a weighted
orthogonal polynomial basis set. Based on the observation of Eq. 3.4, we de-
fined a weighted Gram-Schmidt process. Similar procedure to Eq. 3.5, we
used weighted inner product 〈p, q〉w instead of 〈p, q〉 when calculating the
projection,

〈pi,pj〉w =

∫

r

wrpi(r)pj(r) (3.6)

Regarding to choice of wr, W =
√

Ib ·pointwise Ib
∗ is still valid to use. Moreover,

in order to accelerate computation speed, we also proposed a cylinder 0-1
phantom generated as wr. This way of implementation not only drastically
decreases computation cost, but also provides flexibility of an adjustable basis
to cover scan object in further interpolation.

3.2.3 Legendre Polynomial Basis

Legendre polynomials are used in many areas of mathematics, physics and
engineering[11]. They have been well studied from a mathematical point of
view. Legendre polynomials are the most general solution to Legendre’s dif-
ferential equation. A recursive definition of Legendre polynomials is as follows

l0(x) = 1

l1(x) = x

ln+1(x) =
(2n+ 1)xln(x)− nln−1(x)

(n + 1)
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An important property of the Legendre polynomials is that they are orthogonal
with respect to the L2 inner product on a interval −1 ≤ x ≤ 1. Hence,
any continuous function in the interval [-1, 1] can be expressed as a linear
combination of Legendre polynomials,

f(x) =
∑

i

aili(x)

In our application, the polynomial basis is expanded to multivariant basis,

pm(r) = li(x)lj(y)lk(z) (3.7)

Consequently, a 3D continuous sensitivity profile can be expressed as a linear
combination of Legendre polynomials,

Sc(r) =
∑

m

am,cpm(r)

Thus, the sensitivity profile of size M ×N ×L can be translated to a function
between [-1,1] in x, y, z-axis by assuming M

2
pixels per unit length along x-axis,

N
2
pixels per unit length along y-axis and, and L

2
pixels per unit length along

z-axis. The entire image was fitted in the 2× 2× 2 space around the origin to
represent the whole image using Legendre polynomials.

3.3 Results and Discussion

3.3.1 Phantom Results

Based on the proposed sensitivity mapping scheme, a 3D sphere phantom was
scanned using both the body coil and an 8-channel head coil with resolution
128×128×128. Subsampling fully sampled body coil and head coil data gen-
erates a 26×26×26 low resolution data set, which was used to fit polynomials.
Three experiments were investigated to determine the proper model, polyno-
mial basis, and order of polynomial basis to profile sensitivity. To evaluate the
quality of our sensitivity mapping, the phantom image I(r) was reconstructed
with fully sampled head coils data Ihc (r) and interpolated sensitivity profiles
Sc(r) as follows,

I(r) =

∑

c I
h
c (r)Sc(r)

∗
∑

c Sc(r)Sc(r)
∗ (3.8)

14



M.Sc. Thesis – Qiong Wu – McMaster – Biomedical Engineering

Ordinary Polynomial Model vs. Rational Polynomial Model

In this set of experiments, the ordinary polynomial model Eq. 3.1 and ra-
tional polynomial model Eq. 3.3 were set up to fit the 26 × 26 × 26 low
resolution data set. At the same time, the orthonormal polynomial basis
{pm(r)|pm(r) = xiyjzk,−1 ≤ x, y, z ≤ 1, 0 ≤ i + j + k ≤ 7} was used to
fit sensitivity Sc in ordinary polynomial model and numerator Sp in rational
polynomial model. And for the denominator Sq in rational polynomial model,
the basis {pm(r)|pm(r) = xiyjzk,−1 ≤ x, y, z ≤ 1, 0 ≤ i + j + k ≤ 4} was
chosen. Results are shown in Fig. 3.1 and Fig. 3.2.

Figure 3.1: Interpolated Sensitivity in Different Models: upper row is from
ordinary fitting model and lower row is from rational fitting model.

(a) (b)

Figure 3.2: Reconstructed Images in Different Models: (a) ordinary polyno-
mial fitting model, (b) rational polynomial fitting model.
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Polynomial Basis Selection

In order to choose a polynomial basis which is good enough to generate a
smooth sensitivity map as well as relatively low in computation, we investi-
gated four different polynomials, namely orthonormal polynomials, cylinder-
weighted polynomials, body image-weighted polynomials, and Legendre poly-
nomials. All of the above polynomials were generated up to order of 7 to fit
26×26×26 low resolution data set using ordinary sensitivity fitting model. Re-
sults shown below are interpolated sensitivity at the resolution 100×100×100.

(a)

(b)

(c)

(d)

Figure 3.3: Sensitivity with Different Polynomial Bases: (a) orthogonal poly-
nomial basis, (b) cylinder-weighted orthogonal polynomial basis, (c) body
image-weighted orthogonal polynomial basis, (d) Legendre polynomial basis.

Polynomial Order Selection

Considering the order of polynomials might have an effect on sensitivity fitting,
a comparison was undertaken among polynomials of order ranging from 6 to 9.
The orthonormal polynomials and Legendre polynomials were chosen as the
basis for this experiment. The same sphere phantom with low resolution data
26 × 26 × 26 was fitted and 100 × 100 × 100 high resolution sensitivity was
generated by interpolation. Results are shown in Fig. 3.5 and computation
time is listed in Table. 3.1.
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(a) (b) (c) (d)

Figure 3.4: Reconstructed Image with Different Polynomial Bases: (a) orthog-
onal polynomial basis, (b) cylinder-weighted orthogonal polynomial basis, (c)
body image-weighted orthogonal polynomial basis, (d) Legendre polynomial
basis.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Reconstructed Image with Different Orders of Polynomial
Basis:(a)-(d) Legendre polynomials of order 6 to 9 from right to left. (e)-(h)
Orthonormal polynomials of order 6 to 9 from right to left.

Discussion

As a conclusion, although the rational polynomial model fits sensitivity of
most FOV, there is region with unexpected extreme values. It is because

17
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the objective function in Eq. 3.3 is not penalized when Sp,c(r) and Sq,c(r) go
to 0. As a result, the discontinuity of the Sc(r) shows up (see Figure 3.2).
On the contrary, the ordinary model fits the low resolution pretty well and
the generated sensitivity map is successfully used to reconstruct the images.
Among different polynomial bases in experiments, Legendre polynomials gave
the best sensitivity mapping results. Meanwhile, with increasing order of poly-
nomials, Legendre polynomial basis demonstrates an improved error elimina-
tion, whereas orthonormal polynomial basis doesn’t. In terms of computation
cost, time of computing orthonormal polynomials increases drastically with
respect to order and interpolated resolution, because of the complexity of
Gram-Schmidt procedure. For k polynomial bases with n dimensionality, the
cost of this computation is asymptotically 2nk2 floating point operations[2].
Although Legendre polynomials demonstrate faster computation comparing
with orthonormal polynomial basis, the computation time is still not satisfac-
tory, especially in high resolution interpolation.

In order to achieve higher computation performance in sensitivity pro-
filing, we generated a set of polynomial basis with MAPLE in advance. As
discussed above, the experiments with different polynomial basis demonstrate
that although orthonormal polynomial bases cannot compete with Legendre
polynomials in fitting sensitivity, the difference is small enough to assume they
have equivalent performance in sensitivity mapping. Based on this assump-
tion, we can easily generate a set of orthogonal polynomial basis in advance
with any symbolic computation tool. Consequently, the computation time will
efficiently decrease, see in Table 3.1. Moreover, to simplify MAPLE computa-
tion, the normalization in Gram-Schmidt process was omitted.

Table 3.1: Computation time with different polynomial orders (sec) using
MATLAB R2010a installed on a 2.6GHz dual-core AMD Opteron processor.

Order 6 7 8 9
Legendre 137 153 256 434

Orthonormal 1659 1912 4020 7213
Orthogonal (MAPLE) 124 144 203 292
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3.3.2 Brain Data Results

In addition to previous preliminary studies about polynomial properties and
model efficiency, we applied the technique on brain image dataset. A relatively
low resolution (64×64) 2D brain image data was acquired from both body coil
and 8-channel head coil. In addition, images of the same object were collected
by head coil at higher resolution, 400 × 400. The full reconstructed image
is shown Fig. 3.6, which clearly shows that our approach successfully fixed
the low signal area in the middle area which is caused by assumption body

image is equivalent to square root of sum of surface coil signals, Ib =
√

∑

Ih
2.

Moreover, with the polynomials which have already been generated in advance
by MAPLE, computation time is significantly decreased.

(a) (b)

Figure 3.6: (a) reconstructed brain image using the sensitivity profiling cal-
culated from the proposed approach; (b) reconstructed brain image using the

sensitivity calculated based on assumption that
√

∑

Ih
2 is body coil data.
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Chapter 4

Undersampling Optimization

As mentioned in Chapter 2, SENSE imaging utilizes data redundancy from
multiple detectors to decrease phase encoding steps. Consequently, scanning
is accelerated based on the subsampling pattern in k-space. In this section, a
nonlinear semi-definite model is designed to optimize the subsampling pattern.
Meanwhile, the phantom shape is taken into consideration in the optimization
procedure.

4.1 Semi-definite Optimization Model

Generally speaking, SENSE imaging procedure can be modeled as follows,

Mc = Ecρ+ ǫ

where Mc is the measurements from the cth surface coil, Ec is the sensitivity
encoding matrix of the surface coil, ρ is the image to be constructed, ǫ is the
system error which is caused by noises and inhomogeneity of magnetic field.
Combination of signals from multiple detectors generates a large linear system
representing the imaging process as shown below,

M = Eρ+ ǫ (4.1)

M = (M1,M2, · · · ,Mc)
T (4.2)

E = (E1, E2, · · · , Ec)
T (4.3)

Reconstructing image ρ from Eq. 4.1 is an inverse problem. To solve for the
effect of noise on the ρ estimates, multiply both side of Eq. 4.1 by the adjoint,
E∗ = Ē

T
, and solve for ρ,

E∗Eρ = E∗M − E∗ǫ (4.4)
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Assuming that sufficient phase encoding have been collected to be able to
reconstruct the peak amplitudes, E∗E is invertible, so we can write Eq. 4.4 as
shown below,

ρ = (E∗E)−1E∗M − (E∗E)−1E∗ǫ (4.5)

where the first term is the estimation of ρ and the second term is the noise. The
linear system used for the estimation of (E∗E)−1E∗ is known as the Moore-
Penrose pseudo-inverse. Eq. 4.5 shows the role of E in amplifying the noise. To
reduce noise, we can maximize SNR in different ways, depending on whether
we we are concerned with the reconstruction overall or with individual mea-
surement. In this thesis, the worst-case SNR is chosen to be maximized, which
corresponds to the minimum eigenvalue of E∗E.

[1] introduced a method of optimizing non-uniform sampling in multi-
dimensional NMR with respect to expected noise. The same eigenvalue max-
imization approach using a semi-definite constraint can be adapted to the
present problem. More specifically, maximizing the minimum eigenvalue of
E∗E can be formulated as a semi-definte programming (SDP) problem, given
undersampling parameters rd,

max
rd

λ (4.6)

s.t. E∗E − λI � 0 (4.7)

where � is a semi-definite inequality. The variable λ which is equal to the
minimum eigenvalue of E∗E, is introduced to put the problem in the standard
form. The effect of this inequality is to require the eigenvalues in Eq. 4.7 to be
non-negative, which is equivalent to bounding the eigenvalues of E∗E below
by λ. The practical importance of formulation the problem in this way is that
there are a growing number of open-source or academically available solvers
for SDP, which required a standard formulation as shown above.

4.2 Encoding Matrix Simplification

In Eq. 4.7, E is a linear system corresponding to encoding procedures in
SENSE imaging. The structure of E depends on our undersampling scheme
in k-space. In 3D Cartesian SENSE imaging, two gradient fields, perpendic-
ular to the readout direction, are used for phase encoding. As a result, the
optimization problem can be reduced to arbitrary 2D undersampling. For
each phase encoding gradient, the corresponding sample point is denoted as
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{kd|kd ∈ R2}. In the image domain, the undersampling vectors are denoted
as {rd1, rd2|rd1, rd2 ∈ R2}, which are the parameters to be optimized in this
problem.

To optimize undersampling in the image domain we write the encoding
matrix E in the same domain, as follows,

E(rd1, rd2) =











V

V
. . .

V





















S1

S2
...
Sc











(4.8)

where Sc is the sensitivity matrix, the size of which depends on the resolution
of the reconstructed image. V is the folding matrix which is determined by
undersampling vectors rd1, rd2.

The dependence of the matrix size on the unfolding factor leads to a
problem impossible to solve in practice. To overcome it, further assumptions
were made, as follows,

• Assumption 1: the model is based on a M × N undersampling pat-
tern, which means that in k-space subsampling, data is acquired ap-
proximately every M , N lines along each phase encoding direction. The
corresponding image domain reveals each pixel has MN − 1 different
points aliased with itself.

• Assumption 2: optimization is based on the point with the lowest SNR
within the (unaliased) object. For most surface coil, the area is usually
in the center of the object, corresponding position in our coordinates
r = (0, 0).

Based on the above two assumptions, the size of V is fixed, given the lowest
SNR point P0, coordinated at r0, the aliased points set is {r|r = r0 ± ird1 ±
jrd2, r0, rd1, rd2 ∈ R

2 i ∈ {0, · · · ,M − 1}, j ∈ {0, · · · , N − 1}}. Consequently,
E(rd1, rd2) is simplified as follows,

E(rd1, rd2) = [s1(r), s2(r), · · · , sc(r)]T (4.9)

where sc(r) is a vector representing sensitivity from the cth surface coil at the
location {r}. The encoding matrix size for the lowest SNR point is Nc×MN ,
where Nc represents the number of coils, M ,N represents the base subsampling
pattern in k-space.
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4.3 Modified Model with Linear Constraints

As described above, the choice of the number of phase encodes M , N affects
the quality of the reconstruction. Increasing M , N results in an increase of
the rank of the matrix E, yielding pseudoinverses that are better conditioned.
Consequently, the optimization problem Eq. 4.7 is expected to push rd1, rd2

as far out as possible to get a better conditioned matrix. However, in practice,
this is not what happened. Given a point which is the aliasing point with the
lowest SNR point P0, if the point falls into the area where the object doesn’t
cover, this point should be eliminated from the aliasing set {r}, because these
points barely have information of the object.

To prevent points from falling outside of the object area, constraints are
needed in addition to Eq. 4.7. In our design, 8 linear constraints {fi(r)|f ∈
R, i = 1, · · · , 8} were added to the semi-definite model. The 8 linear con-
straints give a hexagon area which covers the round scan object and constrain
all the aliased points with P0 inside. Although a nonlinear function can give
a better constraint on object area, it is difficult to integrate nonlinear con-
straints into a standard SDP. From a practical point of view, most of the
open-source semi-definite solvers or academically available solvers are unable
to handle SDPs with nonlinear constraints. To sum up, the modified SDP
model is shown as follows,

max
rd

λ (4.10)

s.t. E∗E − λI � 0 (4.11)

fi(r) ≥ 0 (4.12)
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Chapter 5

Trust-Region Method

The model from Chapter 4 is a nonlinear semi-definite problem. Unfortunately,
most of the open-source and academically available solvers are incapable to
solve nonlinear SDPs. As an alternative, Taylor expansion is used to refor-
mulate the problem to be a linear SDP problem and trust-region methods are
applied to solve the problem iteratively. In this section, we will introduce the
trust-region methods and their application to solve the semi-definite problem
in Eq. 4.10

5.1 Trust-Region Method

Trust-region methods are iterative methods, which are widely used in non-
linear optimization problems[5]. In each iteration, a region ∆k around the
current iterate xk is defined. Within the region ∆k, the estimate model mk is
considered to be an adequate representation of the objective function f . Then
the step pk is chosen to be the approximate minimizer of the model mk in this
region. If a step pk is not acceptable, they reduce the size of the region ∆k

and find a new minimizer.

The effectiveness of trust-region methods is mainly determined by the
size of the trust-region ∆k. If the region is too small, the algorithm misses
an opportunity to take a substantial step that will move it much closer to the
minimizer of the objective function. If too large, the minimizer of the model
may be far from the minimizer of the objective function in the region, so the
size of the region is needed to reduce and try again. In practical, the size of
the region is chosen according to the performance of the algorithm, during
previous iteration. If the model is consistently reliable, producing good steps
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and accurately predicting the behavior of the objective function along these
steps, the size of the trust-region may be increased to allow larger step to be
taken. A failed step indicates that our model is an inadequate representation
of the objective function over the current trust-region. After such a step, the
size of the region should be reduced and try again[5].

One of the critical ingredients in a trust-region algorithm is the strategy
for choosing the trust-region radius ∆k. The choice is usually based on the
agreement between the model function mk and the objective function f at
previous iterations. Given a step pk, we define the ratio

ηk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)

the numerator is called the actual reduction, and the denominator is the pre-
dicted reduction, which is the reduction in f predicted by the model function.
Since step pk is obtained by minimizing the model mk(pk) over a region that
includes pk = 0, the predicted reduction will always be nonnegative. Hence, if
ηk is negative, the new objective value f(xk + pk) is greater than the current
values f(xk), so the step must be rejected. On the other hand, if ηk is close to
1, there is a good agreement between mk and the function f over this step, so
it is safe to expand the trust-region for the next iteration. If ηk is positive but
significantly smaller than 1, we don’t alter the trust-region, but if it is close
to zero or negative, we shrink the trust region by reducing ∆k at the next
iteration[5].

5.2 SDP Reformulation

A standard SDP is defined as follows,

min cTx (5.1)

s.t F (x) � 0 (5.2)

where

F (x) = F0 +

m
∑

i=1

xiFi (5.3)

The problem data are the vector c ∈ Rm and m + 1 symmetric matrices
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F0, · · · , Fm ∈ Rn×n. The inequality sign in F (x) � 0 means that F (x) is pos-
itive semi-dfinite.

Instead of {Fi} are constants in the standard form, the constraint ma-
trix E∗E is a variable rd dependent matrix. Each entry of the matrix is a
quadratic function with respect to rk

d = (rk1 , r
k
2 , r

k
3 , r

k
4)

T , where r1 = rx
k
d1, r2 =

ry
k
d1, r3 = rx

k
d2, r4 = ry

k
d2. To reformulate Eq. 4.10 to the standard format as

shown in Eq. 5.1, order of 1 Taylor-series expansion of E∗E is applied at rk
d,

which is,

E∗E(rd) , E∗Ek +
∑

i

δri∇E∗Ek
i (5.4)

where

E∗Ek = E∗E|rd=rk
d

(5.5)

∇E∗Ek
i =

∂E∗E

∂ri
|rd=rk

d
(5.6)

since Eq. 5.5 is only trusted within region ∆k, a linear constraint is added on
the SDP model, as shown below,

|δrk
d| ≤ ∆k (5.7)

Formulate the Eq. 5.7 in the matrix format as following,
∑

i

δriHi +∆kI ≥ 0 (5.8)

where

H1 =













1
−1













H2 =













1
−1













H3 =













1
−1













H4 =











 1
−1













(5.9)
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As for the linear constraints {fj(rd)} in Eq. 4.10 can simply be refor-
mulated as follows,

fj(rd) =
∑

i

gi,jδri + ckj (5.10)

where gi,j is a constant, which represents the coefficient of the corresponding
variables in each constraint, cki is a constant represents the constant term in
linear constraint fi at each iterate rk

d. In the matrix point of view, the linear
constraints {fi} can be written as the following matrix format,

∑

i

δriGi + C ≥ 0 (5.11)

where

Gi =











gi,1
gi,2

. . .

gi,8











C =











c1
c2

. . .

c8











(5.12)

To sum up the above reformulation procedure, our final reformulated
standard linear SDP model in each iterate rk

d is shown as follows,

max
δrk

d

λ (5.13)

s.t. F0 +
∑4

i=1 δriFi + λF5 � 0

where

F0 =













E∗Ek

∆kI

C













Fi =













∇E∗Ek
i

Hi

Gi













{i=1···4}

F5 =





I

0
0
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In order to evaluate the step δ(r)kd, the evaluating function is defined
as follows,

ηk =
f(rk

d)− f(rk
d + δrk

d)

m(0)−m(δrk
d)

(5.14)

where m(δrk
d) is the minimum eigenvalue from Eq. 5.13, f(rk

d) is the minimum
eigenvalue of E∗E at rk

d.

With all the definitions and reformulations above, Eq. 5.13 can be
solved following the trust-region methods with procedure shown as below,

Given ∆̂ ≥ 0,∆0 ∈ (0, ∆̂):
for k = 0, 1, 2, · · ·

Obtain δrk
d by (approximately) solving Eq. 5.13

Evaluate ηk from Eq. 5.14
if ηk <

1
4

∆k+1 =
1√
2
∆k

else
if ηk >

3
4
and ||δrk

d|| = ∆k

∆k+1 = min(
√
2∆k, ∆̂)

else
∆k+1 = ∆k

if ηk >
1
4

rk+1
d = rk

d + δrk
d

else
rk+1
d = rk

d

end(for)
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Chapter 6

Results

In this chapter, two sets of data were tested with our sensitivity profiling
method and SDP model. Reconstructed images using optimally subsampled
and conventional regularly subsampled k-space data are compared. In ad-
dition, numerical estimates for noise amplification are shown and validated
against acquired images.

6.1 Phantom Simulation

In this simulation, a 100× 100× 200 3D data was acquired from an 8 channel
head coil, of which the readout direction has resolution 200. The sensitivity
profile was estimated based on a separate 50×50×50 lower resolution dataset
using an order-7, orthogonal-polynomial basis. The SDP model was set up
based on one plane within the volume data perpendicular to the readout di-
rection. The polynomial sensitivities were evaluated at in-plane voxels for the
SDP problem, as well as image reconstruction.

Assuming that the centre of the FOV has the lowest SNR, two under-
sampling patterns were investigated on this dataset. One was a pattern with
6 points aliased with the centre point (case 1), the other had 4 aliased points
(case 2). Linear constraints to keep the aliasing points with an overestimate
of the phantom area were used, see in Figure 6.1(a)(e).

The nonlinear, semi-definite optimization problem was solved in MAT-
LAB using the solver SeDuMi 1.2.1, using the iterative trust-region method. In
both of the cases, undersampling vectors were successfully optimized and pre-
sented a significant numerical improvement in noise amplification and stability
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(as measured by the condition number) of reconstruction, see in Table 6.1.

Table 6.1: Numerical Result of Optimal Undersampling Vectors

Minimum Eigenvalue Condition Number of E Data
AcquisitionInitial Optimal Initial Optimal

case 1 0.0442 0.9040 121.88 24.58 8.50%
case 2 2.2945 6.1139 12.95 8.56 11.68%

Based on the definition of the Fourier transform and the reciprocal
principle, we converted the optimal undersampling vectors rd1, rd2 in the im-
age domain to the corresponding undersampling vectors in k-space rk1, rk2,
see in Appendix A. Since rk1, rk2 were not integers, we rounded the k-space
positions to the nearest point on the normally sampled grid. In addition, the
centre of k-space was densely sampled within a 10× 10 square to preserve the
contrast information. Based on these optimally sampled k-space data, images
were successfully reconstructed, see in Figure 6.1.

Moreover, in order to compare our optimal sampling patterns with reg-
ular sampling pattern, a simulation of regular undersampling pattern 3 × 4
was used to collect k-space data. The same densely sample was taken in the
centre of k-space, the amount of data acquired in total is 9.30%, similar to the
case 1 data (8.50%). The same reconstruction procedure was applied on this
data set. The reconstructed results is shown in Figure 6.2.

In the above results, it is demonstrated that the optimal subsampling
pattern did a better job in image reconstruction and noise elimination. The
amount of noise in the first case (7-fold aliasing) is 3.52× 106, compared with
3.78×106 for the regular 3×4 sampling pattern. However, it is surprising that
the 7-folded pattern produces a better image reconstruction than that of the
5-folded pattern, even though less data was used in the reconstruction. This
is probably a result of rounding the optimal sample spacing to integer spacing
in order to use a fully-acquired data set. Consequently, the sampling pattern
after rounding was not the optimal any more and reconstruction performance
cannot be expected to be of the same quality. This probably also explains why
the optimal sampling pattern did not show significantly less noise amplifica-
tion compared with regular subsampling. To investigate the effect of rounding
in k-space on reconstruction, another phantom with larger FOV was acquired,
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Figure 6.1: Optimal undersampling patterns in image space (a,d), and k-space
(b,e) and reconstructed images (c,f). Red arrows show initial aliasing vectors;
blue arrows show optimal aliasing vectors pattern; red dots show the initial
aliased point set; blue dots show optimal aliased sets; green lines are the linear
constraints in the SDP model. Case 1: (a,b,c). Case 2: (d,e,f).

and will be analysed in the next section.

6.2 Phantom Simulation with Larger FOV

In this section, a set of 2D phantom data with resolution 512× 1024 was col-
lected with a FOV 16 times larger than that necessary for the reconstructed
image (128×256). Each direction of the k-space data had 4 times bigger FOV
compared to the object. This allowed us to round optimal sample points in k-
space to the nearest multiple of 0.25, rather than to integer points. Similarly
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Rounded optimal (a) and regular (e) sampling patterns; corre-
sponding reconstructed images without (b,e), and with (c,f) additional noise.

to the previous simulation, two initial undersampling patterns were investi-
gated in the SDP model. The same solver was used to solve this problem.
Optimal undersampling patterns were found in both cases; see in Table 6.2.
Reconstructed images based on these patterns are shown in Figure 6.3

Table 6.2: Numerical Result of Optimal Undersampling Vector

Minimum Eigenvalue Condition Number of E
Data Acquisition

Initial Optimal Initial Optimal
case3 0.0016 0.0054 424.71 222.23 12.32%
case4 0.0008 0.0046 562.44 239.69 13.45%

34



M.Sc. Thesis – Qiong Wu – McMaster – Biomedical Engineering

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) (e) (f)

Figure 6.3: Optimal undersampling patterns in image space (a,d), and k-space
(b,e) and reconstructed images (c,f), using 4X FOV data to reduce the loss of
efficiency from rounding. Red arrows show initial aliasing vectors; blue arrows
show optimal aliasing vectors pattern; red dots show the initial aliased point
set; blue dots show optimal aliased sets; green lines are the linear constraints
in the SDP model. Case 3: (a,b,c). Case 4: (d,e,f).

We also compare our optimal subsampling pattern with conventional
subsampling, using a similar amount of data in k-space. In this set of simula-
tions, case 4 was chosen to compare with 4×4 regular subsampling. In case 4,
the amount of data collected to reconstruct image is 13.45% of the full k-space
data, versus 11.80% for regular subsampling. The same reconstruction was
applied on both sets of data. The reconstructed images in Figure 6.4, demon-
strate that the optimal undersampling pattern provides better image recovery.
To investigate the noise amplification effects of the optimal and regular sub-
sampling patterns, different levels of artificial noise were added on the k-space
data. Given the noise with mean 0 and deviation a%, which a% means the
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a% of the maximum energy in k-space data. Noise of levels 1%, 5%, 20% were
added to the the k-space data.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.4: Reconstructed Image with Different Levels of Noise: the upper
row is based on the optimal subsampling pattern; the lower on the regular
subsampling pattern. (a)(f) undersampling pattern in k-space, (b)(g) without
noise, (c)(h) 1% noise, (d)(i) 5% noise, (e)(j) 20% noise.

We investigated the reconstruction errors with respect to different levels
of noise in measurements, see in Figure 6.5. The optimal subsampling pattern
results in less noise amplification during image reconstruction.
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Figure 6.5: Reconstruction errors as a function of added noise.
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Chapter 7

Conclusion

In this thesis, we have presented an efficient scheme for approximating sensi-
tivity profiles with polynomials in order to optimize the undersampling pattern
used in SENSE imaging. We have demonstrated numerically the improvement
for system stability and noise reduction.

7.1 Sensitivity Profiling

We have investigated polynomial fitting based methods in sensitivity estima-
tion in order to get accurate continuous sensitivity mappings for an SDP opti-
mization problem and SENSE reconstruction. This approach is easily adapted
to arbitrary planes and/or volumes, and is computationally inexpensive.

Moreover, there are still a wide range of factors that might improve
the sensitivity mapping which need to be investigated. Since our sensitivity
profiling method is only fitting the regularly sampled low resolution dataset,
further research might investigate the influence of non-uniformly sampled low
resolution datasets on sensitivity mapping. Moreover, customizing different
polynomial bases for each channel of head coil might allow lower order of
polynomials for each set, which might accelerate the fitting time. In addition,
as for our rational polynomial fitting model, different solving approaches might
lead to better results, for example, using a Gauss-Seidel approach solving the
numerator and denominator polynomial iteratively.
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7.2 SDP Model

We have shown that the SDP model can consistently improve the theoretical
worst-case expected noise amplification caused by SENSE undersampled im-
age reconstruction. The experimental validation of this expected improvement
was limited by the available phased-array coil and scan software limitations on
the pattern of acquired phase encoded lines and effective field of view. Never-
theless, the images reconstructed from optimized sampling patterns showed a
marked reduction in aliasing and noise amplification, with noise amplification
being measured by adding additional similuated noise to acquired k-space data.

In the future, it is important that these results be reproduced with more
finely controlled phase encode postions and with higher multiples of coils.

40



Appendix A

Relation of Transformations
Between Image Domain and
K-space

Given a linear transformation C

x̃ = Cx

We are looking for the corresponding transformation in k-space,

k̃ = Bk

Based the definition of Fourier tranformation,

ρ(x) =

∫

R3

ρ̂(k)eix
Tkdk

the Fourier transformation based on the translated basis,

ρ(x) =

∫

R3

ρ̂(k)eix
Tkdk (A.1)

=

∫

R3

ρ̂(k)ei(C
−1x̃)T kdk (A.2)

=

∫

R3

ρ̂(k)eix̃
T (C−1)Tkdk (A.3)

Substitute k̃ = (C−1)
T
k in A.3,

ρ(x) =

∫

R3

ρ̂(k)eix̃
T
k̃dCTk
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it is clearly see that the translation in k-space is as follows,

B = (C−1)T

.
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