
THE EFFECTS OF AGRICULTURE ON CANADA’S MAJOR

WATERSHEDS



THE EFFECTS OF AGRICULTURE ON CANADA’S MAJOR

WATERSHEDS

By

DAN RAMUNNO, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

In Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

c© Copyright by Dan Ramunno, July 2011



MASTER OF SCIENCE (2011) McMaster University

(Statistics) Hamilton, Ontario

TITLE: The Effects of Agriculture on Canada’s Major
Watersheds

AUTHOR: Dan Ramunno

SUPERVISOR: Professor Abdel El-Shaarawi

NUMBER OF PAGES: x, 61

ii



Acknowledgments

I would like to thank my thesis supervisor Dr. Abdel El-Shaarawi for

his support throught my Master’s degree. His concrete directions and feed-

back greatly helped me develop the work of my thesis. He gave me many ideas

and recommendations that I have implemented into my thesis, and his imput

greatly aided in the computational and written aspects of my thesis. I would

also like to thank my family for their support, especially through tough times.

My immediate family members (my parents, my sister Sandra, my sister Lora

and her husband Nipun) have been especially supportive throughout my Mas-

ter’s degree. In addition, I would also like to acknowledge the support that I

received from my classmates and professors during my studies.

iii



Abstract

Water contamination is one of the major environmental issues that neg-

atively impacts water quality of watersheds. It negatively affects drinking

water and aquatic wildlife, which can indirectly have negative effects on ev-

eryone’s health. Many different institutions collected samples of water from

four of Canada’s major watersheds and counted the number of bacteria in each

sample. The data used in this paper was taken from one of these institutions

and was analysed to investigate if agricultural waste impacts the water quality

of these four watersheds. It was found that the agricultural waste produced

from nearby farms significantly impacts the water quality of three of these

watersheds. Principal component analysis was also done on these data, and it

was found that all of the data can be expressed in terms of one variable with-

out losing very much information of the data. The bootstrap distributions of

the principal component analysis parameters were estimated, and it was found

that the sampling distributions of these parameters are stable. There was also

evidence that the variables in the data are not normally distributed and not

all the variables are independent.
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1 Introduction

It is of interest to determine how waste produced from agricultural

farmlands affects the water quality of four of Canada’s major watersheds. To

address this concern, water samples have been collected over several years

and analysed for pathogens. The bacteria counts in these water samples were

counted to assess the water quality of the watersheds. Water samples with

higher bacteria counts strongly indicate that the corresponding watersheds

contain more toxins and are more polluted, meaning that the water quality

of these watersheds is lower. Some of this watershed data was collected by

Edge et al. (2010), and a subset of their data was used in this paper for data

analysis.

For each of the four watersheds, data was collected upstream and down-

stream of the sites where agricultural waste would enter the watersheds. If the

amount of agricultural waste significantly impacts the water quality of the wa-

tersheds, one would expect the bacteria counts in the downstream locations

to be higher than the bacteria counts in the upstream locations. However, if

the amount of waste does not have a significant impact on water quality, one

would expect the bacteria counts to be roughly the same upstream and down-

stream. There are ten different data sets used in this paper, each consisting of

the Total coliform, Fecal coliform and E. coli natural log counts. One of the

main objectives in this paper is to determine if agricultural waste significantly

impacts the water quality of these four watersheds. This was mainly done

by producing different box plots and scatter matrices of the data to investi-

gate the trends in the data and to compare the bacteria counts amongst the

watersheds.



Dan Ramunno - MSc Thesis in Statistics - McMaster University 2

The other objective of this thesis is to investigate if data reduction is

possible through the use of principal component analysis on the watershed

data sets. For each of the ten data sets, the three coefficients of each of the

three principal components and the three corresponding standard deviations

were calculated. The main purpose of these calculations was to derive three

independent random variables that are linear combinations of the three orig-

inal variables that would maximize sample variation in the data. The three

coefficients of these three linear combinations would determine the amount of

axis rotation needed to make the three principal components all orthogonal to

each other with unit length. It is therefore legitimate to remove principal com-

ponents because of their independence of each other. The standard deviations

of the principal components were also calculated to determine which principal

components should be used for data analysis. This technique is known as data

reduction. It is used to express multivariate data sets in fewer dimensions

without losing very much information in the data. This makes it easier to

analyze the data since it can be very difficult to analyze and visualize data

with many variables. In this paper, it has been shown how to express the

data in each of the ten data sets in terms of one variable, which reduces the

number of variables without losing very much information in the data. This

data reduction technique was only used for three-dimensional datasets, which

could be applied to datasets with any number of dimensions.

The data set corresponding to the bacteria counts collected from all of

the locations downstream of the agricultural farmlands from all four water-

sheds, also known as the Ag data set, was further analysed by looking at the

12 approximate bootstrap distributions of the principal component analysis

estimates computed on these data. The bootstrap distribution of each of the
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12 principal component analysis estimates were estimated nonparametrically.

Then two parametric bootstrap techniques were used to calculate the exact

same 12 principal component analysis parameters. One of these parametric

bootstrap techniques was based on a sample generated from the trivariate nor-

mal distribution with mean vector [0, 0, 0] and covariance matrix I3 where I3

is the 3× 3 identity matrix. The other technique was based on a sample gen-

erated from the trivariate normal distribution with mean vector [0, 0, 0] and

covariance matrix R where R is the correlation matrix of the Ag data set. The

results of these three bootstrap techniques were compared to make inferences

about the normality and independence of the three variables in the Ag data

set.

2 Methodology

2.1 Principal Component Analysis

As discussed by Johnson and Wichern (2007), Hotelling (1936) and Jol-

liffe (2002), principal component analysis is a data reduction technique used

to calculate principal components expressed as linear combinations of the vari-

ables in multivariate data. Using these linear combinations to transform the

variables, the original coordinate system with axes X1, X2, ..., Xp is rotated to

obtain a new coordinate system with axes Y1, Y2, ..., Yp, and the axes of this

new coordinate system are positioned to maximize the variation in the data.

The principal components are calculated using the covariance matrix Σ or cor-

relation matrix < in the case of population data observed from X1, X2, ..., Xp,

which is very similar to the principal component calculations for sample data
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(Jolliffe, 2002; Hotelling, 1936). These calculations do not require that the

data are from a multinormal distribution, but having normality means that

one can calculate principal components from a random sample to make in-

ferences about the population principal components. In principal component

analysis, the data is transformed from p variables with n observations into k

new variables with n observations where k ≤ p. Under this transformation,

the new k variables are uncorrelated and independent if normality is assumed.

This retains almost all of the variability of the original data, making it easier

to visualize the data in fewer dimensions and to investigate the relationships

amongst the variables in the data. For a given value of k, the new variables

are selected to maximize the amount of explained variation for any set of k

linear variables. (Johnson and Wichern, 2007; Hotelling, 1936).

2.1.1 Population Principal Components using the Covariance Ma-

trix

Let’s suppose that X′ = [X1, X2, ..., Xp] is a random vector of vari-

ables that represent values observed from the population with covariance ma-

trix Σ with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0. If Yj = a′jX with a′j =

[aj1, aj2, ..., ajp] for j = 1, 2, ..., p, then V ar(Yj) = a′jΣaj for j = 1, 2, ..., p and

Cov(Yj, Yl) = a′jΣal for j, l = 1, 2, ..., p (Johnson and Wichern, 2007). In or-

der to find the principal components, the linear combinations Yj, j = 1, 2, ..., p,

are constructed to be uncorrelated with maximal variance. The first principal

component is Y1 = a′1X and a′1 is computed by maximizing V ar(Y1) under

the constraint a′1a1 = 1 (Anderson, 1963; Jolliffe, 2002). The second principal

component is Y2 = a′2X and a′2 is computed by maximizing V ar(Y2) under the

constraints a′2a2 = 1 and Cov(Y1, Y2) = 0. For j = 1, 2, ..., p, the jth principal
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component is Yj = a′jX and a′j is computed by maximizing V ar(Yj) given that

a′jaj = 1 and Cov(Yj, Yl) = 0 for all l < j (Anderson, 1963; Jolliffe, 2002).

Johnson and Wichern (2007), Anderson (1963) and Jolliffe (2002) have

demonstrated that these formulas for the principal components can be ex-

pressed in terms of the eigenvalues and corresponding eigenvectors of the

covariance matrix Σ with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0. For j =

1, 2, ..., p, the jth principal component can be expressed as Yj = e′jX where

e′j = [ej1, ej2, ..., ejp] is the normalized eigenvector corresponding to λj (Ander-

son, 1963; Jolliffe, 2002). It can also be shown that V ar(Yj) = e′jΣej = λj

for j = 1, 2, ..., p and Cov(Yj, Yl) = e′jΣel = 0 for j, l = 1, 2, ..., p; j 6= l. This

means that the principal components are all uncorrelated to each other and the

variance of each principal component is equal to the corresponding eigenvalue

of Σ (Anderson, 1963; Jolliffe, 2002). Johnson and Wichern (2007) used these

results to show that
∑p
j=1 V ar(Xj) =

∑p
j=1 λj =

∑p
j=1 V ar(Yj). Based on this

equality, the proportion of the total variation in the data explained by the kth

principal component is λk∑p

j=1
λj
, k = 1, 2, ..., p. In practice, one can replace all p

original variables with the first few principal components that explain 80-90%

of the total variation without losing too much information of the original data

(Johnson and Wichern, 2007).

Johnson and Wichern (2007) state that the element ejl of the vector ej

and Corr(Yj, Xl) = ρYj ,Xl are proportional to each other, and |ρYj ,Xl | =
|ejl|
√
λj

σl

for j, l = 1, 2, ..., p where σl =
√
V ar(Xl). Since this correlation coefficient

measures the correlation between one principal component and one X variable

at a time, it is usually better to use the elements of ej to make conclusions

based on the principal components instead of the correlation coefficients. Nev-

ertheless, both of these methods usually give very similar results since large
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elements of ej in absolute value usually indicate that the correlation coefficients

are large in absolute value (Johnson and Wichern, 2007).

2.1.2 Population Principal Components using the Correlation Ma-

trix

Each of the X variables previously discussed may be standardized to

obtain Zj = Xj−µj
σj

, j = 1, 2, ..., p, where µj = E(Xj) and σj =
√
V ar(Xj).

These standardized variables can be expressed as Z = (V1/2)−1(X− b) where

b = [µ1, µ2, ..., µp]
′ and V1/2 is the diagonal matrix with diagonal entries

σ1, σ2, ..., σp. It is well established that E(Z) = 0 and Cov(Z) = < (Ander-

son, 1963; Hotelling, 1933; Hotelling, 1936; Johnson and Wichern, 2007). The

principal components of Z are calculated in the exact same way as the prin-

cipal components of X except the eigenvalues and eigenvectors are calculated

from < instead of Σ. If Z′ = [Z1, Z2, ..., Zp] is a random vector representing

the standardized population values with Cov(Z) = <, then the jth principal

component of Z is Yj = e′jZ = e′j(V
1/2)−1(X − b) for j = 1, 2, ..., p where

b = [µ1, µ2, ..., µp]
′. It is important to note that using the covariance matrix

usually results in different principal components than when using the correla-

tion matrix. Also,
∑p
j=1 V ar(Yj) =

∑p
j=1 V ar(Zj) = p, and the correlation be-

tween Yj and Zl is |ρYj ,Zl | = |ejl|
√
λj for j, l = 1, 2, ..., p. Just like the principal

components computed from Σ, the eigenvalues of < are λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0

(Johnson and Wichern, 2007). The proportion of the total variation in the data

from the jth principal component is λj
p
, j = 1, 2, ..., p. Using < instead of Σ to

calculate the principal components is very useful when the values for each vari-

able have completely different ranges or when the variables represent different

types of measurements. Standardizing each variable means that each variable
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has unit variance, and it ensures that the linear combinations representing

the principal components are not heavily weighed on the variables with higher

variances (Johnson and Wichern, 2007).

2.1.3 Sample Principal Components

Johnson and Wichern (2007) explain how to calculate the principal

components of a multivariate random sample of random vectors x1,x2, ...,xn

from a population with p variables X′ = [X1, X2, ..., Xp] where E(X) = b

with b = [µ1, µ2, ..., µp]
′ and Cov(X) = Σ. When doing multivariate analysis,

it is useful to calculate the sample mean vector, covariance matrix and cor-

relation matrix (x, S and R respectively) for statistical inferences. Johnson

and Wichern (2007) have shown that the sample mean of all the a′xi values,

i = 1, 2, ..., n, is a′x and the corresponding sample variance is a′Sa where

a = [a1, a2, ..., ap]
′ is an arbitrary constant vector and xi = [xi1, xi2, ..., xip]

′

corresponds to the ith row vector of the n × p data matrix. They have also

shown that the sample covariance of (a′1xi, a
′
2xi) is a′1Sa2, i = 1, 2, ..., n, where

a1 = [a11, a12, ..., a1p]
′ and a2 = [a21, a22, ..., a2p]

′ are both arbitrary constant

vectors and xi = [xi1, xi2, ..., xip]
′ is the same random vector that was previ-

ously defined (Johnson and Wichern, 2007).

Analogous to population principal components, ŷj = a′jxi is the jth

sample principal component expressed as the linear combination of xj variables

for j = 1, 2, ..., p and i = 1, 2, ..., n. Analogously, aj is calculated so that ŷj has

maximal sample variance, a′jaj = 1 and the sample covariance is zero for all

of the (a′jxi, a
′
lxi) pairs for l < j. This ensures that the principal components

are all independent of each other with unit length (Johnson and Wichern,

2007). Using these results, Johnson and Wichern (2007) have shown that the
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maximum sample variance of the jth sample principal component is λ̂j, which is

the jth largest eigenvalue of the sample covariance matrix S with corresponding

normalized eigenvector êj (Johnson and Wichern, 2007). Thus, the jth sample

principal component is ŷj = ê′jx, j = 1, 2, ..., p, where x represents an arbitrary

data point sampled from the p population variables X′ = [X1, X2, ..., Xp] and

λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂p ≥ 0. Based on previous results in this section, the jth

sample principal component has sample variance λ̂j for j = 1, 2, ..., p and the

sample covariance of ŷj and ŷl is 0 for j, l = 1, 2, ..., p; j 6= l. It has also

been shown that
∑p
j=1 sj =

∑p
j=1 λ̂j where sj is the jth diagonal element of S

(Johnson and Wichern, 2007). Analogous to population principal components,

the sample correlation between ŷj and xl is rŷj ,xl =
êjl

√
λ̂j

sl
for i, l = 1, 2, ..., p,

where êjl is the lth element of êj. Likewise, it is recommended to look at

both the êjl and rŷj ,xl values when interpreting sample principal components

(Johnson and Wichern, 2007).

The sample principal components may also be calculated using the

correlation matrix R, which normally results in different principal compo-

nents than when using the covariance matrix S. The xi observation vectors,

i = 1, 2, ..., n can also be centered to have a sample mean of 0 without changing

the sample covariance matrix S by using xi − x instead of xi (Johnson and

Wichern, 2007). The jth sample principal component using this transformed

data is ŷj = ê′j(x − x) for j = 1, 2, ..., p, where x is any arbitrary observation

vector. It is easily seen that for each jth sample principal component, if all of

the ŷij = ê′j(xi − x) values are calculated for i = 1, 2, ..., n, then these values

have a sample mean of 0 and a sample variance of λ̂j (Johnson and Wichern,

2007).
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2.1.4 Sample Principal Components of Standardized Data

Just like with population principal components, the sample principal

components of non-standardized data are greatly influenced by variables with

higher sample variance or corresponding to values measured on a larger scale.

To fix this issue, the data are standardized by converting each row vector of

the n×p data matrix X into the transpose of zi = D−1/2(xi−x), i = 1, 2, ..., n;

each jth element of zi is xij−xj
sj

for j = 1, 2, ...p and D is the diagonal matrix

with diagonal elements s2
1, s

2
2, ..., s

2
p (Johnson and Wichern, 2007). As a result,

the ijth element of the standardized n× p data matrix Z is zij = xij−xj
sj

for i =

1, 2, ..., n and j = 1, 2, ..., p. The sample mean vector of the standardized data

is z = 0 and the corresponding sample covariance matrix is SZ = R. Similar

to population principal components, the jth sample principal component of the

standardized data is of the form ŷj = ê′jz, j = 1, 2, ..., p, where λ̂1 ≥ λ̂2 ≥ ... ≥

λ̂p ≥ 0 are the eigenvalues of R with corresponding normalized eigenvectors êj

(Johnson and Wichern, 2007). Analogous to population principal components,

the total sample variance of the standardized data is
∑p
j=1 λ̂j = p, and the

sample correlation coefficient between ŷj and zl is rŷj ,zl = êjl
√
λ̂j for j, l =

1, 2, ..., p. Based on this result, it is clear that λ̂j
p

is the relative amount of the

total sample variance accounted for by the jth sample principal component for

j = 1, 2, ..., p (Johnson and Wichern, 2007).

2.1.5 Important Principal Components to Retain

Different statistical techniques have been designed to determine which

principal components should be retained and which should be excluded from

the data set, and the decision of which technique to use is not set in stone.
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The most common way of doing this is to compare the sizes of the eigenvalues

and keep the principal components corresponding to the largest eigenvalues

(Anderson, 1963). Another useful way of determining which principal compo-

nents to keep is to construct a scree plot. This is a two dimensional scatterplot

with the eigenvalues λ̂j plotted on the y-axis and the j values plotted on the

x-axis, meaning that the eigenvalues are plotted from largest to smallest. To

make it easier to see the relative sizes of the eigenvalues, the points in this

plot are connected by straight lines (Johnson and Wichern, 2007). One of

the points appears to form an elbow, meaning that the points to the left of

this elbow point greatly differ in relative size and the points to the right of

this elbow point do not differ very much in relative size. The principal com-

ponents corresponding to the eigenvalues at the elbow point and to the left

of the elbow point are retained for making statistical inferences. Sometimes,

when doing principal component analysis, the smallest eigenvalue(s) may be

approximately equal to 0 due to rounding errors. This indicates that at least

one of the variables in the data matrix is redundant because it is a linear

combination of other variables. These redundant variables should be removed

from the data matrix to avoid having issues with data interpretation (Johnson

and Wichern, 2007).

2.1.6 How to Interpret Sample Principal Components

There are many different ways to interpret the sample principal com-

ponents. If the distribution of each row of X is approximately Np(b,Σ) where

b = [µ1, µ2, ..., µp]
′ and there are n independent observations on X, then for

j = 1, 2, ..., p, the sample principal components of the form ŷj = ê′j(x−x) can

represent the population principal components of the form Yj = e′j(X − b)
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where b = [µ1, µ2, ..., µp]
′. The distribution of the population principal com-

ponents is thus Np(0,Λ) where Λ is a diagonal matrix with diagonal entries

λ1, λ2, ..., λp and each λj value, j = 1, 2, ..., p is the jth largest eigenvalue of Σ

with corresponding normalized eigenvector ej (Johnson and Wichern, 2007).

The population mean vector b and population covariance matrix Σ can be

estimated by the sample mean vector x and sample covariance matrix S re-

spectively. Assuming that S is a positive definite matrix, one can construct a

contour plot of all the data vectors xi for i = 1, 2, ..., n that satisfy the constant

density curve (x−x)′S−1(x−x) = c2 where x represents all of the xi vectors and

c is an arbitrary constant (Anderson, 1963; Johnson and Wichern, 2007). This

curve is an estimate of the constant density curve (x−b)′Σ−1(x−b) = c2, and

the principal components can easily be seen by the axes of this elipsoid. Even

though the normality assumption can be very useful for interpreting principal

components, it is not needed for calculating the sample principal components

from an n× p data matrix X (Anderson, 1963; Johnson and Wichern, 2007).

Regardless of whether the data are normally distributed and form an

elliptical p-dimensional plot, the n data points can still be plotted in a p-

dimensional plot with the eigenvectors of S as the positions of the new axes.

A hyperellipsoid centered at the coordinate x with axis lengths cj
√
λ̂j can

be fitted to the data for j = 1, 2, ..., p where cj is an arbitrary constant and

λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂p ≥ 0 represent the eigenvalues of S (Johnson and Wichern,

2007). It can be shown that the jth sample principal component expressed as

ŷj = ê′j(x− x) is found on top of the jth hyperellipsoid axis for j = 1, 2, ..., p.

Ultimately, the sample principal components yield a transformed data set that,

when plotted in p-dimensions, has each jth axis running through the coordi-

nate x in the direction of the maximum variance λ̂j for j = 1, 2, ..., p (Johnson
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and Wichern, 2007). When λ̂k > λ̂l, then the ellipse formed by the kth and

lth axes is non-circular where the diameter of the ellipse is larger along the kth

axis. When λ̂k = λ̂l, then the ellipse formed by the kth and lth axes is circular,

and both axes are perpendicular to each other in any direction. This means

that the kth and lth sample principal components are also perpendicular to

each other in any direction (Hotelling, 1933; Johnson and Wichern, 2007). In

practice, the eigenvalues are never exactly the same. When all of the eigen-

values of S are approximately equal to each other, the variation in the data is

approximately the same for all of the p sample principal components, meaning

that eliminating any of these principal components would be inappropriate

(Johnson and Wichern, 2007).

2.1.7 The Asymptotic Behaviour of Sample Principal Components

Johnson and Wichern (2007) explain the asymptotic behaviour of sam-

ple principal components for large sample sizes. Lets suppose that Λ is a

p× p diagonal matrix with respective diagonal entries λ1, λ2, ..., λp, which are

the eigenvalues of Σ in decreasing order with corresponding eigenvectors e1,

e2,...,ep. It is also important to note that λ̂1, λ̂2, ..., λ̂p are the eigenvalues of

S with corresponding eigenvectors ê1, ê2, ..., êp (Johnson and Wichern, 2007).

One can show that
√
n(ŵ−w) has anNp(0, 2Λ2) asymptotic distribution where

w and ŵ are both vectors containing the true eigenvalues and the eigenvalue

estimates respectively. It is also important to mention that
√
n(êj − ej) has

an Np(0,Aj) asymptotic distribution where Aj = λj
∑
t∈C

λt
(λt−λj)2 ete

′
t and C

is the set [1, 2, ..., j − 1, j + 1, j + 2, ..., p] (Johnson and Wichern, 2007). Using

these results, the asymptotic 100(1− α)% confidence interval of λj is derived

to be
[

λ̂j

1+zα/2
√

2/n
, λ̂j

1−zα/2
√

2/n

]
where P (Z > zα/2) = α/2 and Z is a random
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variable from the standard normal distribution. Lets suppose that Âj is cal-

culated the exact same way as the matrix Aj is calculated except all of the

êj vectors are in place of the corresponding ej vectors and all of the λ̂j values

are in place of the corresponding λj values. Then the square root of the sth

diagonal element of 1
n
Âj is approximately the standard error of êjs, which is

the sth element of the jth eigenvector (Johnson and Wichern, 2007).

2.2 The Jackknife

The jackknife is a statistical technique used to reduce the bias of a

particular estimator that provides a biased estimate of the parameter that it

is estimating. In general, a random sample Y1, Y2, ..., Yn can be divided into u

subsamples, each consisting of v observations with n = uv (Miller, 1964, 1974a,

1974b). Lets define θ̂ and θ̂−j as two estimators of θ computed in the exact

same way except θ̂ uses all n sample values and, for j = 1, 2, ..., u, θ̂−j omits the

jth subsample values from all n sample values. Then θ̃ = uθ̂+(1−u) 1
u

∑u
j=1 θ̂−j

is the jackknife estimator of θ, which estimates θ with less bias than θ̂ does

(Miller, 1974b). In particular, Miller (1964) explains how using the jackknife

removes the α1

n
term from E(θ̂) of the form E(θ̂) = θ + α1

n
+ α2

n2 + O(n2),

making the expectation closer to θ thus reducing the bias. Quenouille (1956)

also explains this latter point in detail.

2.2.1 The Most Common Form of the Jackknife

In practice, using u = n and v = 1 is usually the optimal way of deriv-

ing the jackknife estimate. This treats each of the n observations as its own

subsample with one observation, and is the most common form of the jackknife

used for reducing bias (Miller, 1974b). Efron and Stein (1981) explained how
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to estimate the variance of a particular estimator using the jackknife for this

u = n and v = 1 scenario. Let X = (X1, X2, ...Xn) be a random sample of

size n and let θ̂(X) be the estimator for some parameter θ. Then the jackknife

estimate of the variance of θ̂(X) is ˆV arθ̂(X) = n−1
n

∑n
j=1[θ̂−j − θ̂(.)]

2. In this

formula, θ̂−j and θ̂(X) are both calculated in the exact same way except the

jth observation is omitted from X when calculating θ̂−j, and θ̂(.) = 1
n

∑n
j=1 θ̂−j

(Efron and Stein, 1981). Efron and Stein (1981) also showed that the bias of

θ̂(X) is estimated by ˆBiasθ̂(X) = (n−1)(θ̂(.)− θ̂(X)) when using the jackknife.

2.2.2 A Specific Example of How to Use the Jackknife

For example, one can use µ̂2 = x2 to estimate the true value of µ2 where

x = [x1, x2, ..., xn] is an i.i.d. sample of size n from a finite population or a

probability density distribution. It is known that E(X
2
) = µ2 + σ2

n
for all

distributions, meaning that x2 is an asymptotically unbiased estimator for µ2

when n is large, but is always biased especially when n is small. In particular,

E(X
2
) > µ2 means that x2 overestimates µ2 especially when n is small. In

order to reduce the bias of this biased estimate, one can use the jackknife to

estimate µ2. In general, it has been shown that using the jackknife methods

eliminates the bias terms of the form α1

n
. In this example, there is only one

bias term of the form α1

n
, which is the σ2

n
term from E(X

2
) that happens to

represent the entire bias. Using the jackknife expression discussed above, the

jackknife estimate is

µ̃2 = uµ̂2 + (1− u)
1

u

u∑
j=1

µ̂2
−j

= nX2 + (1− n)
1

n

n∑
j=1

X2−j
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in this case. The expected value of this expression is

E(µ̃2) = E

nX2 + (1− n)
1

n

n∑
j=1

X2−j


= nE

[
X2
]

+ (1− n)
1

n

n∑
j=1

E
[
X2−j

]

= n

[
µ2 +

σ2

n

]
+

1− n
n

n∑
j=1

[
µ2 +

σ2

n− 1

]

= nµ2 + σ2 +
1− n
n

[
nµ2 +

nσ2

n− 1

]
= nµ2 + σ2 + (1− n)µ2 − σ2

= nµ2 + σ2 + µ2 − nµ2 − σ2

= µ2

which means that µ̃2 is always an unbiased estimate of µ2. Therefore, the bias

term in E(X
2
) = µ2 + σ2

n
is completely removed, and this verifies that using

the jackknife methods in this case completely removes the bias in the estimate

of µ2.

2.2.3 A Concrete Illustration of This Example

To illustrate a specific case of this example, let x = [x1, x2, ..., xn] be an

i.i.d. sample of size n = 20 sampled from a normal distribution with µ = 20 and

σ = 1. Using the codes presented in the Appendix section, the biased estimate

and jackknife estimate of µ2 were calculated to be µ̂2 = x2 = 406.3838 and

µ̃2 = 406.3538 respectively. The bias and variance estimates of the jackknife

estimate were calculated using the respective formulas defined above, and they

are 0.03000 and 48.7416 respectively. Since the samples were obtained from

a normal distribution with µ = 20 and σ = 1, the true value of µ2 is known
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to be 202 = 400. Since the jackknife estimate is closer to this value than the

biased estimate is, this suggests that using the jackknife methods reduces bias

in the estimate.

It is important to note that these calculations appear to be based on

a sample of size n = 20 that coincidentally represents the normal distribution

with µ = 20 and σ = 1 very accurately. This is not always the case, because

having a small sample size means having a larger variance, and it is more

probable of having a sample with a sample mean that is much larger or smaller

than µ = 20. This is due to sampling error, which is more prominent in smaller

sample sizes. It is also important to note that the jackknife estimate is always

smaller than the original biased estimate in this particular example, because

x2 overestimates µ2 and the Jackknife method reduces the bias by decreasing

the value of x2 to obtain the unbiased jackknife estimate µ̃2. This means that

the biased estimates calculated in any samples skewed left are decreased to

obtain the jackknife estimate. As a result, the jackknife estimate is further

away from µ2 = 400 than the original biased estimate is. This would be

problematic, because the true value of the parameter that one would like to

estimate is unknown in practice, and there is no way of telling how good the

jackknife estimate really is. Nevertheless, the codes in the Appendix section

for this particular example were run numerous times, and it was found that

the jackknife estimate of µ2 is closer to µ2 = 400 than the biased estimate is

in most of the cases.

2.3 The Bootstrap

Despite the fact that the bias and variance of a particular random vari-

able based on a random sample can be estimated using the jackknife, the
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bootstrap methods usually produce more reliable estimations of the bias and

variance than the jackknife does. One can bootstrap a random sample of n

observations collected from a population with a common but unknown distri-

bution F where X = [X1, X2, ..., Xn] is the vector of random variables repre-

senting the randomly sampled observations and x = [x1, x2, ..., xn] represents

the observed random sample values (Efron, 1979). The objective of bootstrap-

ping is to derive an expression to estimate the sampling distribution of some

random variable R(X, F ) by using the observed x values. Normally, one of

two expressions of R(X, F ) is used to do the jackknife, which can be used

to approximate the results obtained from using the bootstrap. One of these

expressions is R(X, F ) = t(X) − θ(F ) where θ(F ) is a particular parameter

describing the function of F and t(X) is an expression derived to estimate the

true value of θ(F ). The other expression is R(X, F ) = t(X)− ˆBias(t)−θ(F )√
ˆV ar(t)

. Both

ˆBias(t) and ˆV ar(t) represent the estimates of the bias and variance of t(X),

which are calculated using the n vectors of the x vector with the ith element

deleted, i = 1, 2, ..., n (Efron, 1979).

When one random sample of x values is drawn from a population with

distribution F , the sample distribution of the x values, denoted F̂ , has a

probability distribution function of 1
n

at each of the x values and 0 else-

where. To do the bootstrap, n values are randomly sampled with replacement

from the n x values to generate a bootstrap sample with random variables

X∗ = [X∗1 , X
∗
2 , ..., X

∗
n] and observed values x∗ = [x∗1, x

∗
2, ..., x

∗
n] (Efron, 1981;

Efron, 1982). The bootstrap forms its own distribution, and the bootstrapped

random variable R(X∗, F̂ ) is derived to estimate the distribution of some ran-

dom variable R(X, F ). Since the distributions of R(X∗, F̂ ) and R(X, F ) are

equal when F = F̂ , this means that the distribution of R(X∗, F̂ ) better ap-
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proximates the distribution of R(X, F ) when the x values accurately represent

the population from where they were sampled. The actual function chosen for

R(X, F ) also affects the effectiveness of its estimator R(X∗, F̂ ) (Efron, 1979).

2.3.1 How to Determine the Bootstrap Distribution of Estimators

In practice, figuring out the bootstrap distribution is usually a hard and

tedious process, and three methods have been formulated to derive this dis-

tribution. One way is to calculate the exact distribution based on theoretical

results. One can also take N separate random samples from x where each sam-

ple is denoted as x∗j , j = 1, 2, ..., N , and then calculate all of the corresponding

R(x∗j , F̂ ) values to form a distribution that approximates the bootstrap distri-

bution (Efron, 1979). Efron (1981) mentions that the estimates of the mean

and standard deviation of the bootstrap distribution are simply the sample

mean and sample standard deviation of the R(x∗j , F̂ ) values. Analogous to

jackknifing, the third method is to estimate the distribution of R(X∗, F̂ ) by

estimating its mean and variance based on the Taylor series (Efron, 1979).

To explain this third method, lets suppose that the bootstrap sample

x∗ of size n is obtained with replacement from the observed values x. For i =

1, 2, ..., n, let W ∗
i = 1

n
N∗i where the random variable N∗i represents the number

of occurrences of xi in the bootstrap sample (Efron, 1979; Efron and Stein,

1981). It has been established that W∗ = [W ∗
1 ,W

∗
2 , ...,W

∗
n ] is multinomially

distributed with mean vector 1
n
s and covariance matrix 1

n3 (nI− J) where s =

[1, 1, ..., 1] is the vector with n elements of 1, I is the n × n identity matrix

and J is the n × n matrix with all n2 elements of 1 (Efron, 1979; Efron and

Stein, 1981). The sampling distribution of the random variable R(X, F ) can be

estimated by the distribution of R(X∗, F̂ ). Using the Taylor series, R(X∗, F̂ ) =
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R(W∗) can be expanded to

R [W∗] ≈ R
[

1

n
s
]

+
(
W∗ − 1

n
s
)

A + 0.5
(
W∗ − 1

n
s
)

B
(
W∗ − 1

n
s
)′

(1)

where A is the n × 1 vector with ith element ai = ∂R(W∗)
∂W ∗

i
|W∗= 1

n
s for i =

1, 2, ..., n and B is the n×n matrix with ijth element bij = ∂2R(W∗)
∂W ∗

i ∂W
∗
j
|W∗= 1

n
s for

i, j = 1, 2, ..., n (Efron, 1979). Using these results, Efron (1979) illustrated how

the bias and variance of R(W∗) are approximately 1
2n2

∑n
i=1 bii and 1

n2

∑n
i=1 a

2
i

respectively, and how these expressions are very similar to the corresponding

expressions for the jackknife.

The bootstrapping techniques can also be applied to two independent

random samples x = [x1, x2, ..., xn] and y = [y1, y2, ..., yn] collected from two

distinct populations with respective distributions F and G. Similar to the

one-sample case, the objective is to derive an estimate of the distribution of

some random variable R(X,Y, F,G) using the observed x and y values with

respective distributions F̂ and Ĝ (Efron, 1979). A bootstrap sample of size n,

denoted x∗ = [x∗1, x
∗
2, ..., x

∗
n], can be drawn with replacement from the observed

x values, and a different bootstrap sample independent of the previous sample

of size n, denoted y∗ = [y∗1, y
∗
2, ..., y

∗
n], can be drawn with replacement from

the observed y values. One can use these bootstrap samples to determine the

distribution of R(X∗,Y∗, F̂ , Ĝ) to estimate the distribution of R(X,Y, F,G),

and the distribution of R(X∗,Y∗, F̂ , Ĝ) is determined using one of the three

ways discussed in the one-sample case (Efron, 1979).
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2.3.2 An Extenstion to the Example Discussed in the Jackknife

Section Using the Bootstrapping Methods

The example discussed in the Jackknife section was applied to the boot-

strap by using x2 to estimate the true value of µ2 where x = [x1, x2, ..., xn] is

an i.i.d. sample of size n from a finite population or a probability density dis-

tribution. Again, x = [x1, x2, ..., xn] is an i.i.d. sample of size n = 20 sampled

from a normal distribution with µ = 20 and σ = 1. Using the codes presented

in the Appendix section, the bootstrap mean, standard deviation and devia-

tion (the absolute difference between the true value and boostrap mean) were

calculated to be 406.3488, 6.7920 and 0.03503 respectively. As discussed in the

example in the Jackknife section, the true value of µ2 is known to be 202 = 400.

The bootstrap mean is also very close to this value, and it is closer to µ2 than

the Jackknife estimate µ̃2 is. However, since the bias is of order 1
n
, one would

expect that the Jackknife estimate would be closer to µ2 since the Jackknife

removes all of the bias terms of order 1
n
, meaning that the jackknife technique

completely removes the bias unlike the bootstrap technique in this particular

example. This suggests that the jackknife technique reduces the bias more

effectively than the bootstrap technique does, which would not be true when

the bias contains terms that are higher order than 1
n
. The bootstrap standard

deviation also appears to be slightly smaller than the jackknife estimate of the

standard deviation, which may also suggest that the bootstrap methods are

more optimal to use.

As mentioned in the Jackknife section, the calculations for the bootstrap

appear to be based on a sample of size n = 20 which happens to coincidentally

represent the normal distribution with µ = 20 and σ = 1 very accurately.
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This does not always happen in practice, because small samples have larger

variances, and having a sample with a sample mean that is much larger or

smaller than µ = 20 is more probable. Again, the codes in the Appendix

section for this particular example were run numerous times, and it was found

that the bootstrap estimate of µ2 is closer to µ2 = 400 than the biased estimate

is in most of the cases. Another reason why the bootstrap technique is prefered

over the jackknife technique is that the bootstrap method does not always

decrease the biased estimate of µ2 like the jackknife method does. This is most

likely because the bootstrap technique estimates the sampling distribution.

Thus, this phenomenon also supports the claim that the bootstrap estimate is

more reliable than the jackknife estimate is.

2.4 Information About the Data

Edge et al. (2010) wished to investigate the water quality of the Bras

d’Henri and Forchette River in Quebec (Bras), the Oldman River in Alberta

(Old), the South Nation River in Ontario (South), and the Sumas River in

British Columbia (Sumas). The exact geographical locations of these water-

sheds can be seen in Figure 1 and Figure 2. They selected these watersheds,

because they are geographically close to agricultural farmlands that are mostly

responsible for fecal waste entering Canada’s rivers, and it makes sense to in-

vestigate the most extreme cases (Edge et al., 2010). The Bras, Old, South

and Sumas watersheds contain six, eight, five and four Agricultural (Ag) sites

respectively, which are directly affected by the waste produced by the agri-

cultural farmlands that enters the water. Each watershed also contains four

Reference (Ref) sites that are upstream from the Ag sites and not affected by

agricultural farmland waste (Edge et al., 2010).
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Figure 1: A map of Canada taken from Edge et al. (2010) showing the exact geographical locations of the
four watersheds

There is potentially a major distinction in the water quality of these

two types of watershed sites. The water in the Ref sites is not affected by the

agricultural sites since it is not contaminated by any agricultural waste that

may enter the streams (Edge et al., 2010). In contrast, the water in the Ag

sites may be affected by runoff water from agricultural farmlands. These two

distinctions were used to compare the water quality before and after the water

may become affected by agricultural waste to determine if agricultural waste

significantly affects water quality in the watersheds. This is the main reason

why the watershed sites are classified as Ag and Ref sites (Edge et al., 2010).

Multiple different times from 2005 to 2007, Edge et al. (2010) collected

water samples from each site when the water surface was not covered with ice.
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(a) Bras d’Henri and Forchette River (b) Oldman River

(c) South Nation River (d) Sumas River

Figure 2: A close-up geographical view of each watershed and a few of the warning signs found near the
watersheds, which were all taken from Edge et al. (2010)

They used a sterilized bottle with a four liter capacity made from polypropylene

to collect each water sample (Edge et al., 2010). The samples, which were

about 20 liters each, were stored in sealed plastic bags on top of ice to keep

them frozen while being delivered to the places that tested the water quality.

When testing the water samples, Edge et al. (2010) observed different factors
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(a) Total Coliforms

(b) Fecal Coliforms

(c) E. Coli

Figure 3: The box plots of the Total Coliforms, Fecal Coliforms and E. coli natural log counts, each
consisting of individual plots corresponding to the 10 datasets

pertaining to water quality (e.g. bacteria counts, water temperature, dissolved

oxygen concentration, mineral concentrations and pH).
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(a) Ag (b) Ag (Bras)

(c) Ag (Old) (d) Ag (South)

(e) Ag (Sumas)

Figure 4: The box plots of the five datasets pertaining to the sites affected by agriculture, each consisting
of individual plots corresponding to the Total Coliforms, Fecal Coliforms and E. coli natural log counts

The data used in this paper was borrowed from Edge et al. (2010). It is

divided into Ag and Ref sites, each consisting of the four different watersheds.

For both the Ag and Ref sites, there are five data sets; four of these data sets

correspond to each of the four watersheds and the fifth data set corresponds to
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(a) Ref (b) Ref (Bras)

(c) Ref (Old) (d) Ref (South)

(e) Ref (Sumas)

Figure 5: The box plots of the five datasets pertaining to the sites not affected by agriculture, each
consisting of individual plots corresponding to the Total Coliforms, Fecal Coliforms and E. coli natural log
counts

all of the observations from all four watersheds pooled into one huge data set.

Ultimately, there are a total of ten distinct data sets used throughout this paper

for data analysis. Each data set contains four columns of values observed from

the applicable watershed sites; the first column contains the values representing
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(a) Ag (b) Ag (Bras) (c) Ag (Old)

(d) Ag (South) (e) Ag (Sumas)

Figure 6: The scatter matrices of the five datasets pertaining to the sites affected by agriculture, each
consisting of individual plots corresponding to the Total Coliforms, Fecal Coliforms and E. coli natural log
counts

when the observations were made and the other three columns contain the

natural logarithm of the Total coliform, Fecal coliform and E. coli counts.

In each data set, the values in the first column are referred to as Julian days,

which are chosen so that the earliest observation has a value of zero and each of
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the remaining values is the number of days after the first observation is made.

The data sets, denoted Ag, Ag (Bras), Ag (Old), Ag (South), Ag (Sumas),

Ref, Ref (Bras), Ref (Old), Ref (South) and Ref (Sumas), contain 825, 206,

304, 187, 128, 121, 26, 37, 25 and 33 rows respectively.

It is important to note that some of the counts in the raw data set had

a value of zero or were missing. Leaving these observations in the data set

would have been problematic, because it would be very difficult or impossible

to do data analysis when the columns are not equal length and the natural

logarithm of zero is undefined. To avoid these issues, the rows containing these

observations were excluded from the data set and the row counts mentioned

earlier. This is reasonable, because the sample sizes of each of the ten data sets

are large, and excluding a few observations would not really affect the sample

sizes. An alternative solution that was considered was to replace the counts

that are missing or zero with estimated values using missing data mechanisms.

This approach was not used, because the calculations are very tedious and it

is not worth going through all the work since the first solution discussed works

fine with large sample sizes.

3 Preliminary Data Analysis

All of the organized data were inputted into the program R. Several

different statistical techniques were executed in R either by using the libraries

in R or implementing codes without the use of libraries. Before doing any

statistical calculations, box plots and scatter matrices were created in R for

visualizing trends in the data. In order to compare the counts of each pathogen

amongst the ten different watershed sites, three sets of boxplots were created
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(a) Ref (b) Ref (Bras) (c) Ref (Old)

(d) Ref (South) (e) Ref (Sumas)

Figure 7: The scatter matrices of the five datasets pertaining to the sites not affected by agriculture, each
consisting of individual plots corresponding to the Total Coliforms, Fecal Coliforms and E. coli natural log
counts

in R corresonding to the Total Coliforms, Fecal Coliforms and E. coli natural

log counts. Each of these plots consists of ten boxplots made from the ten

data sets, and are displayed in Figure 3 with the ten watershed site names

along the horizontal axes. It is seen in Figure 3 that the boxplots for the
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(a) Ag (b) Ref

(c) Ag (Bras) (d) Ref (Bras)

(e) Ag (Old) (f) Ref (Old)

(g) Ag (South) (h) Ref (South)

(i) Ag (Sumas) (j) Ref (Sumas)

Figure 8: The histograms of the ten datasets (for each dataset, the plot on the left, in the middle and on
the right correspond to the Total Coliforms, Fecal Coliforms and E. coli natural log counts respectively)

Ref sites are much lower than those for the Ag sites except the boxplots are

roughly the same for the South watershed for each of the three pathogen types.

This is a strong indication that all of the agricultural farmlands adjacent to

the watersheds except for those adjacent to the South watershed significantly

contribute to watershed contamination.

The Mann-Whitney U test for 2 independent samples was done for the
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(a) Ag (b) Ag (Bras)

(c) Ag (Old) (d) Ag (South)

(e) Ag (Sumas)

Figure 9: The screeplots of the five datasets pertaining to the sites affected by agriculture, which display
the variance of each principal component

E. coli natural log counts to test if there is a significant difference between the

means of the E. coli natural log counts for the Ag and Ref data. There were five

Mann-Whitney U tests done in total. They corresponded to the Ag and Ref

datasets, the Ag (Bras) and Ref (Bras) datasets, the Ag (Old) and Ref (Old)

datasets, the Ag (South) and Ref (South) datasets, and the Ag (Sumas) and

Ref (Sumas) datasets. The respective W test statistics are 76498.5, 4841.5,

9441.5, 2203.5 and 3738.5 with respective p-values of < 2.2 × 10−16, 1.975 ×

10−11, 1.531 × 10−11, 0.643 and 9.752 × 10−12. Based on the p-values, it is
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(a) Ref (b) Ref (Bras)

(c) Ref (Old) (d) Ref (South)

(e) Ref (Sumas)

Figure 10: The screeplots of the five datasets pertaining to the sites not affected by agriculture, which
display the variance of each principal component

evident that the difference in mean values is significant for all the watersheds

except the South watershed, which supports the observations made from the

boxplots in Figure 3.

For each of the ten different data sets, one plot containing three box

plots corresponding to the Total Coliform, Fecal Coliform and E. coli natural

log counts was constructed in R with the pathogen names along the horizontal

axis (see Figure 4 and Figure 5). For each data set, it is evident that the

natural log concentration of pathogens is highest for Total Coliforms, second
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highest for Fecal Coliforms and lowest for E. Coli. However, the difference in

these three boxplots is very small, which indicates that there is slightly less E.

Coli than Fecal Coliforms and that there are not that many other pathogens

since the Total Coliform values are slightly larger than the other two values.

One scatter matrix was also constructed in R for each of the ten data sets,

each consisting of the scatter plots of all possible pairwise combinations of the

Total Coliform, Fecal Coliform and E. coli natural log counts (see Figure 6

and Figure 7). All of the scatterplots for each of the ten different data sets

appear to be weakly linearly correlated and positively correlated. This suggests

that the Total Coliforms, Fecal Coliforms and E. Coli natural log counts are

somewhat pairwise positively linearly correlated. This presumably means that

a high presence of one pathogen type implies a high presence of the other two

pathogen types and that a low presence of one pathogen type implies a low

presence of the other two pathogen types. However, this noticable correlation

appears not to be very strong, meaning that there may be a slight chance that

the correlation is not completely linear.

Table 1: The variances of the principal components of R for each of the ten datasets

Dataset
Variances

sd2
1 sd2

2 sd2
3

Ag 2.7057 0.1966 0.0978
Ag (Bras) 2.6140 0.2762 0.1099
Ag (Old) 2.7394 0.1725 0.0882
Ag (South) 2.5303 0.3152 0.1545
Ag (Sumas) 2.6403 0.2547 0.1050

Ref 2.5217 0.3255 0.1530
Ref (Bras) 2.0898 0.6450 0.2653
Ref (Old) 2.4205 0.4636 0.1159
Ref (South) 2.4948 0.3407 0.1645
Ref (Sumas) 2.4621 0.3978 0.1401

For each of the ten data sets, the three principal components and their
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Table 2: The coefficients of the first principal component of R for each of the ten datasets

Dataset
First Principal Components

Total Coliforms Fecal Coliforms E.Coli

Ag -0.5782 -0.5865 -0.5672
Ag (Bras) -0.5900 -0.5847 -0.5568
Ag (Old) -0.5679 -0.5830 -0.5810
Ag (South) -0.5754 -0.5953 -0.5609
Ag (Sumas) 0.5838 0.5886 0.5592

Ref -0.5557 -0.5936 -0.5821
Ref (Bras) -0.5001 -0.6006 -0.6239
Ref (Old) 0.5235 0.60312 0.6018
Ref (South) 0.5537 0.5922 0.5854
Ref (Sumas) 0.5881 0.6007 0.5415

Table 3: The coefficients of the second principal component of R for each of the ten datasets

Dataset
Second Principal Components

Total Coliforms Fecal Coliforms E.Coli

Ag 0.5534 0.2288 -0.8009
Ag (Bras) 0.3332 0.4518 -0.8276
Ag (Old) 0.8213 -0.3543 -0.4472
Ag (South) 0.6056 0.1509 -0.7814
Ag (Sumas) -0.4535 -0.3349 0.8259

Ref 0.8186 -0.2684 -0.5078
Ref (Bras) 0.8565 -0.4494 -0.2539
Ref (Old) -0.8519 0.3626 0.3778
Ref (South) 0.8285 -0.3218 -0.4582
Ref (Sumas) -0.4691 -0.2920 0.8335

respective standard deviations were calculated in R using the principal com-

ponent analysis algorithm built into R. It is important to note that the stan-

dardized version of the Ag data with mean vector [0, 0, 0] and 3× 3 covariance

matrix R with unit variances was used in the principal component analysis cal-

culations. Using the standardized data instead of the non-standardized data

yields the exact same principal components and corresponding standard devi-

ations as using the correlation matrix instead of the covariance matrix. For

each of the ten data sets, the principal components were calculated in the form

of three vectors with three elements, each vector representing the linear com-
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bination of the Total Coliform, Fecal Coliform and E. coli natural log counts.

The standard deviation of each principal component and the nine principal

component coefficients corresponding to the three principal components were

computed (see Table 1 for the three standard deviations and Tables 2, 3 & 4

for the nine coefficient values). A scree plot was also produced in R to graph-

ically display the variance of each principal component for each data set (see

Figure 9 and Figure 10). In Table 1, Figure 9 and Figure 10, it is very obvi-

ous that the first eigenvalue is way larger than the other two eigenvalues for

each of the ten data sets. For the Ag dataset, the first PC, the first two PCs

and all three PCs account for 90.2%, 96.7% and 100% of the total variation

in the data respectively. Since the data variation is mostly explained by just

the first PC, this means that the other two PCs are not necessary. This trend

is applicable to the other datasets. Therefore, for each dataset, only the first

principal component is needed since it accounts for most of the variation in

the data.

Table 4: The coefficients of the third principal component of R for each of the ten datasets

Dataset
Third Principal Components

Total Coliforms Fecal Coliforms E.Coli

Ag -0.5995 0.7770 -0.1923
Ag (Bras) -0.7355 0.6737 0.07178
Ag (Old) 0.05492 -0.7311 0.6800
Ag (South) 0.5497 -0.7892 0.2737
Ag (Sumas) -0.6734 0.7358 -0.07133

Ref 0.1452 -0.7587 0.6351
Ref (Bras) -0.1279 -0.6614 0.7391
Ref (Old) -0.009643 0.7104 -0.7037
Ref (South) -0.08298 0.7387 -0.6689
Ref (Sumas) 0.6588 -0.7442 0.1101
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4 Precision and Stability of Principal Compo-

nents

Table 5: The sample characteristics of the non-parametric bootstrap samples of the three principal com-
ponents and their associated eigenvector components corresponding to the Ag dataset (true value is value
calculated from original data, deviation is absolute difference between mean and true value, both the stan-
dard deviation and deviation values are in ×10−5, sdj is the jth PC standard deviation, and eji is the ith

element of the jth PC)

Parameter True Value Mean Standard Deviation Deviation

sd1 1.6449 1.6446 766.51 28.955
sd2 0.4434 0.4442 2287.9 82.278
sd3 0.3127 0.3118 1360.6 87.061

e11 0.5782 0.5782 203.03 4.9238
e21 0.5534 0.5574 5264.4 401.41
e31 0.5995 0.5914 4974.7 809.67
e12 0.5865 0.5866 157.38 6.6767
e22 0.2288 0.2200 6713.5 882.35
e32 -0.7770 -0.7763 1797.0 60.587
e13 0.5672 0.5671 266.63 3.0936
e23 -0.8009 -0.7957 2091.1 513.56
e33 0.1923 0.1996 7007.4 737.53

Using the program R, the sampling distributions of the 12 principal

component analysis parameters corresponding to the Ag data set were esti-

mated using the non-parametric bootstrap technique. This was done using

the corresponding codes in the Appendix, and the values obtained by running

these codes are in Table 5. First, in each of the N = 510 iterations, a boot-

strap sample of size n = 825 was created within a loop by randomly sampling

from the rows of the Ag data set with replacement. This was done so that

each bootstrap sample consisted of the same number of rows as in the original

Ag data set. For each bootstrap sample that was created in each iteration,

the three principal components and corresponding standard deviations were

calculated. These resulting 12 bootstrap parameter values (three standard de-

viation and nine principal component coefficient values) were stored into 12
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separate vectors, and this was done by combining the 12 vectors of values from

the previous iterations with the 12 newly calculated values from the current

iteration. After all of these N = 510 iterations were executed, the sample

mean, sample standard deviation and deviation (absolute difference between

the sample mean and the true value calculated from the original data set)

were computed for each of the 12 vectors. The values in Table 5 were com-

puted from this sample using the R codes in the Appendix section, and they

are used to estimate the sampling distributions of the principal component

analysis parameters.

Table 6: The 95% confidence interval of the non-parametric bootstrap samples of the three principal
components and their associated eigenvector components corresponding to the Ag dataset (the one-sample
t intervals were calculated using the pivot of the t-statistic random variable, the bootstrap intervals were
calculated using the ordered values of the bootstrap samples, the asymptotic intervals were calculated based
on the asymptotic distributions of the eigenvalue of R, sdj is the jth PC standard deviation, and eji is the
ith element of the jth PC)

Parameter One-sample t Bootstrap Asymptotic

sd1 1.6439, 1.6453 1.6285, 1.6596 1.5001, 1.8206
sd2 0.4422, 0.4462 0.3970, 0.4883 0.4043, 0.4907
sd3 0.3107, 0.3130 0.2867, 0.3393 0.2852, 0.3461

e11 0.5780, 0.5784 0.5746, 0.5819 N.A.
e21 0.5528, 0.5620 0.4642, 0.6635 N.A.
e31 0.5871, 0.5957 0.4771, 0.6657 N.A.
e12 0.5864, 0.5867 0.5834, 0.5896 N.A.
e22 0.2142, 0.2258 0.07366, 0.3262 N.A.
e32 -0.7779, -0.7748 -0.8073, -0.7413 N.A.
e13 0.5669, 0.5674 0.5613, 0.5721 N.A.
e23 -0.7975, -0.7939 -0.8222, -0.7446 N.A.
e33 0.1935, 0.2057 0.08308, 0.3458 N.A.

In order to verify the precision of these results, the codes used to produce

them were run numerous times and, for each time they were run, the values

in the output were very close to those in Table 5. The results in Table 5 are

very close to those produced from the subsequent times the codes were run.

This confirms the stability of the bootstrap distributions of the 12 parameters,

because the codes produce virtually the same values every time they are run.
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Also, as seen in the first two columns of Table 5, the bootstrap mean values for

the 12 parameters are very close to their respective true values. This means

that the deviations, the absolute difference between these two values found in

the last column of Table 5, are very close to zero. Table 5 also contains the

standard deviations of the bootstrap values, which are also very close to zero.

This strongly suggests that the bootstrap distributions of the 12 parameters are

very stable, because the 12 parameter estimates appear to efficiently estimate

the 12 respective true parameter values with very little bias.

(a) sd1 (b) sd2 (c) sd3

(d) e11 (e) e12 (f) e13

Figure 11: The boxplots of the non-parametric bootstrap samples generated using the Ag dataset for the
six parameters for the standard deviations of the principal components and the elements of the first principal
component (sdj is the jth PC standard deviation and eji is the ith element of the jth PC)

In addition, two different types of 95% confidence intervals were con-
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(a) e21 (b) e22 (c) e23

(d) e31 (e) e32 (f) e33

Figure 12: The boxplots of the non-parametric bootstrap samples generated using the Ag dataset for the
six parameters for the elements of the second and third principal components (eji is the ith element of the
jth PC)

structed in R for each of the 12 bootstrap parameters (see Table 6). One of

these intervals was parametric, because it was based on the assumption that

the bootstrap data is normally distributed. The derivation of this confidence

interval makes use of the pivot of the one-sample t-statistic, and both confi-

dence bounds are derived in the case where both tails are of size α
2

= 0.025.

The other confidence interval was non-parametric, because it was not assumed

that the bootstrap data is normally distributed. For this non-parametric con-

fidence interval, the bootstrap sample was ordered from smallest to largest and

two of the ordered observations were chosen such that α
2

= 0.025 of the or-
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dered observations are less than or equal to the lower bound and α
2

= 0.025 of

the ordered observations are greater than or equal to the upper bound. When

looking at the bounds of both confidence intervals found in Table 6, it is seen

that both bounds of both intervals are somewhat close to the true values and

mean values in Table 5, which also suggests that the 12 bootstrap distributions

are very stable with a reasonably small variance.

Table 7: The mean and standard deviation of the three principal components and their associated eigen-
vector components using different sample sizes (each sample was created using the parametric bootstrap
technique which was sampled from three i.i.d. standard normal distributions, sdj is the jth PC standard
deviation, and eji is the ith element of the jth PC)

Parameter
Mean Standard Deviation

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

sd1 1.1042 1.0750 1.0343 0.04454 0.03270 0.01485
sd2 0.9962 0.9982 1.0000 0.02835 0.01989 0.008918
sd3 0.8847 0.9193 0.9642 0.05285 0.03642 0.01599

e11 0.5463 0.5246 0.5505 0.1915 0.1982 0.1895
e21 0.4658 0.5093 0.4705 0.3360 0.3334 0.3284
e31 0.5429 0.5226 0.5448 0.2013 0.2050 0.1879
e12 -0.009879 0.01050 -0.003367 0.5753 0.5864 0.5786
e22 0.01981 -0.007536 0.0002627 0.5818 0.5574 0.5728
e32 0.008437 0.009556 0.005376 0.5753 0.5883 0.5814
e13 0.02083 -0.02135 0.02494 0.5780 0.5846 0.5712
e23 -0.03611 0.01064 0.0001778 0.5751 0.5651 0.5861
e33 0.007492 0.01177 -0.01601 0.5783 0.5824 0.5748

In addition to the parametric bootstrap technique with three indepen-

dent normal samples, another parametric bootstrap technique was performed

using a different trivariate standard normal sample. The codes for both para-

metric bootstrap techniques are exactly the same except for the part that

generates the samples. The mean vector and covariance matrix are defined

in the portion of the codes that randomly generates the normal samples for

the parametric bootstrap technique with the three dependent normal samples.

The only thing that makes this parametric bootstrap technique unique from

the other parametric bootstrap technique is that the covariance matrix Σ is
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Table 8: The 95% confidence interval of the three principal components and their associated eigenvector
components using different sample sizes (each sample was created using the parametric bootstrap technique
which was sampled from three i.i.d. standard normal distributions, sdj is the jth PC standard deviation,
and eji is the ith element of the jth PC)

Parameter n = 50 n = 100 n = 500

sd1 1.0297, 1.1974 1.0214, 1.1497 1.0099, 1.0676
sd2 0.9368, 1.0540 0.9521, 1.0360 0.9799, 1.0178
sd3 0.7622, 0.9685 0.8410, 0.9789 0.9311, 0.9905

e11 0.05832, 0.7493 0.04760, 0.7459 0.06006, 0.7536
e21 0.004728, 0.9756 0.008125, 0.9849 0.004155, 0.9746
e31 0.05403, 0.7619 0.03839, 0.7566 0.07676, 0.7444
e12 -0.7343, 0.7267 -0.7377, 0.7371 -0.7336, 0.7329
e22 -0.9576, 0.9675 -0.9417, 0.9513 -0.9559, 0.9415
e32 -0.7319, 0.7384 -0.7300, 0.7304 -0.7446, 0.7337
e13 -0.7319, 0.7293 -0.7297, 0.7297 -0.7324, 0.7397
e23 -0.9613, 0.9600 -0.9587, 0.9499 -0.9417, 0.9605
e33 -0.7439, 0.7363 -0.7318, 0.7461 -0.7452, 0.7393

defined to be the correlation matrix of the Ag data set instead of the 3 × 3

identity matrix. This part of the codes requires the use of the R package

mvtnorm to randomly generate the samples from a multivariate normal distri-

bution. In order to generate these samples, the square root matrix of Σ must

be calculated, which can be done in a few ways. In R, the default method

of doing this calculation is eigenvalue decomposition, which was done in the

simulations since the method was not specified in the R codes in the Appendix

section (Genz et al., 2010). Similar to the bootstrap technique for the three

independent standard normal samples, the characteristics of the 12 bootstrap

parameters were calculated. The results are found in Table 9 and Table 10,

which are completely different from the corresponding values in Table 7 and

Table 8.

The codes in the Appendix section used to calculate the confidence in-

tervals in Table 6 were run numerous times just like the codes used to calculate

the values in Table 5. Likewise, each time the codes for the conficence intervals
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Table 9: The mean and standard deviation of the three principal components and their associated eigen-
vector components using different sample sizes (each sample was created using the parametric bootstrap
technique which was sampled from the trivariate standard normal distribution using the correlation matrix
of the Ag dataset for Σ, sdj is the jth PC standard deviation, and eji is the ith element of the jth PC)

Parameter
Mean Standard Deviation

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

sd1 1.6442 1.6442 1.6447 0.02130 0.01465 0.006378
sd2 0.4455 0.4452 0.4442 0.05844 0.04040 0.01809
sd3 0.3041 0.3094 0.3117 0.04144 0.02958 0.01305

e11 0.5783 0.5782 0.5782 0.004743 0.003257 0.001378
e21 0.5394 0.5490 0.5527 0.1288 0.09117 0.03778
e31 0.5861 0.5909 0.5980 0.1203 0.08299 0.03372
e12 0.5866 0.5866 0.5866 0.005213 0.003618 0.001582
e22 0.2151 0.2241 0.2279 0.1832 0.1154 0.04760
e32 -0.7492 -0.7688 -0.7756 0.1214 0.03515 0.01354
e13 0.5668 0.5671 0.5671 0.005952 0.004065 0.001735
e23 -0.7721 -0.7909 -0.7992 0.1287 0.03470 0.01283
e33 0.1765 0.1923 0.1924 0.1866 0.1213 0.05036

Table 10: The 95% confidence interval of the three principal components and their associated eigenvector
components using different sample sizes (each sample was created using the parametric bootstrap technique
which was sampled from the trivariate standard normal distribution using the correlation matrix of the Ag
dataset for Σ, sdj is the jth PC standard deviation, and eji is the ith element of the jth PC)

Parameter n = 50 n = 100 n = 500

sd1 1.5965, 1.6785 1.6110, 1.6687 1.6324, 1.6564
sd2 0.3368, 0.5649 0.3732, 0.5326 0.4068, 0.4784
sd3 0.2292, 0.3929 0.2541, 0.3695 0.2862, 0.3385

e11 0.5687, 0.5875 0.5718, 0.5844 0.5756, 0.5808
e21 0.2590, 0.7687 0.3499, 0.7146 0.4777, 0.6217
e31 0.2889, 0.7663 0.4016, 0.7334 0.5316, 0.6591
e12 0.5779, 0.5978 0.5800, 0.5945 0.5837, 0.5899
e22 -0.1901, 0.5088 -0.01377, 0.4504 0.1379, 0.3163
e32 -0.8108, -0.5897 -0.8098, -0.6769 -0.7978, -0.7460
e13 0.5533, 0.5766 0.5579, 0.5739 0.5635, 0.5704
e23 -0.8288, -0.5902 -0.8258, -0.6994 -0.8187, -0.7712
e33 -0.2036, 0.5016 -0.06058, 0.4284 0.09580, 0.2852

were run, both confidence intervals were very close to both of the confidence

intervals in Table 6 for each of the 12 parameters. This also confirms the

stability of the bootstrap distributions of the 12 parameters, because the con-

fidence interval codes produce virtually the same confidence intervals every

time they are run. In addition, it is also seen in Table 6 that the confidence
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intervals based on the normal assumption are much narrower than the non-

parametric confidence intervals. Also, a boxplot for each of the 12 bootstrap

parameters was created in R (see Figures 11 & 12). All of the boxplots appear

to be roughly symmetric but appear to peak a lot in the middle. Both of these

observations suggest that the bootstrap data may not be normally distributed.

Using the program R, a parametric bootstrap technique similar to the

non-parametric bootstrap technique described above was performed on three

independent standard normal samples of size n. This means that this artificial

data set is actually a trivariate normal sample with mean vector [0, 0, 0] and

the 3× 3 identity matrix as the covariance matrix. The characteristics of the

12 bootstrap parameters were calculated using the exact same type of codes

used for the non-parametric bootstrapping technique except the calculations

of the principal component analysis were based on this artificial data set. This

parametric bootstrapping technique was run three separate times for n = 50,

n = 100 and n = 500, and the results obtained from these calculations are

presented in Table 7 and Table 8. As seen in Table 7, the standard deviations

of the three principal components are very close to one. This is expected,

because the three samples used to determine the 12 bootstrap values for each

element of the bootstrap samples are all sampled from a standard normal

distribution and are all independent of each other. The results in Table 5 and

Table 6 are different from the results in Table 7 and Table 8, suggesting that

the 12 bootstrap samples based on the Ag data set are not normally distributed

or are not all independent of each other.
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5 Discussion

The main objective of the statistical techniques used in the Preliminary

Data Analysis section is to investigate if the waste produced in agricultural

farmlands has an effect on the water quality of Canada’s four major water-

sheds. For each of the three pathogen types in Figure 3, the boxplots for the

Ref sites are much lower than those for the Ag sites with the exception in

the South watershed in which case the boxplots are roughly the same. This

indicates that the amount of waste from the agricultural farmlands near the

South watershed does not hugely impact the water quality in the South water-

shed. However, this strongly suggests that the amount of waste produced at

the agricultural sites near the Bras, Old and Sumas watersheds dramatically

increases the bacteria counts. These inferences are based on the fact that the

Ref sites are upstream from the Ag sites. This means that any contamination

contributed by agricultural lands would have no affect on the Ref sites and

that the pathogen counts measured in the Ref sites are a basal measure of the

amount of pathogens in a control setting without any agricultural impacts.

Therefore, ground contaminants that enter the watersheds appear to increase

the bacteria counts in the watersheds thus decreasing the water quality, and

this trend appears mainly in the Bras, Old and Sumas watersheds.

In all of the watersheds in Figures 4 & 5, it was observed that Fecal Co-

liforms are most present out of all the bacteria types, but not that much more

abundant. This may be an indication that fecal waste is the most prominent

type of agricultural waste contributing to watershed contamination. However,

since all of the bacteria types appear to be similar in concentration, this pre-

sumably means that there are other sources of contamination even though they
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are most likely not as prominent as fecal contamination. In Figures 6 & 7, it

was observed that all of the scatterplots appear to be positively and linearly

correlated, suggesting that the Total Coliforms, Fecal Coliforms and E. Coli

natural log counts are pairwise positively linearly correlated. This is very desir-

able, because the linear regression model is the easiest model to fit to any type

of data and there are many well known statistical tests for analyzing data mod-

elled in this way. However, since these positive linear correlations are weak, it

may not be ideal to fit the linear regression model. Therefore, other nonlinear

models should be considered, because the data may be strongly correlated in

a nonlinear way, which would mean not strongly linearly correlated.

As mentioned in the Preliminary Data Analysis section, the three prin-

cipal components and their respective standard deviations were calculated for

the standardized version of each of the ten data sets. The variation of each

of the three variables has no effect on the variation of the principal compo-

nents, because using the standardized data instead of the non-standardized

data and using the correlation matrix instead of the covariance matrix both

yield the exact same results as discussed in the Methodology section. Instead,

the variation in the principal components is completely due to the nature of

the data itself. The main objective of doing principal component analysis is

to derive linear combination(s) of the original variables in such a way that

reduces the amount of data used in the actual data analysis. As discussed in

the Methodology section, using the transformed data simplifies data analysis,

and the scatterplots of the data can be visualized in fewer dimensions.

For each of the ten data sets, it was observed that the first eigenvalue is

much larger than the other two eigenvalues in Table 1 and Figures 9 & 10. This

means that the first principal component accounts for most of the variation in
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the data for each data set since the eigenvalues are the standard deviations of

the principal components. Even though this has not been done in this paper,

this means that a one-dimensional column of data can represent the original

three columns of data for each of the ten data sets. This would be done

by transforming the three original variables into a linear combination of these

variables, and this linear combination would be constructed in such a way that

the variation in the data is maximized. Ultimately, the variable that is defined

to represent this linear combination would be the first principal component

containing most of the variation in the data. It is important to note that the

remaining two principal components would represent very little variation in

the data and would not be needed for data analysis.

In the Precision and Stability of Principal Components section, the

bootstrap distributions of the 12 parameters were estimated. It was found

that the deviation and standard deviation values were very small for all 12

parameters. This means that the bootstrap distributions are very stable with

small variance, meaning that the bootstrap estimators are very efficient. As

mentioned in the Methodology section, using the bootstrap technique reduces

the sampling bias of the bootstrap estimates, which is apparent in this case

since the bias is very small. Therefore, it is evident that using the bootstrap

technique significantly reduces the bias and results in stable sampling distri-

butions. It was also observed that the bounds of both confidence intervals in

Table 6 are somewhat close to the true values and mean values in Table 5,

further suggesting that all of the 12 bootstrap distributions are very stable.

Also, the codes for this non-parametric bootstrapping technique were run nu-

merous subsequent times. It was observed that the values for each subsequent

simulation are very close to those in Table 5 and Table 6, further suggesting
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that the bootstrap distributions are very stable.

In addition, there is evidence that the bootstrap data may depart from

normality. In Table 6, it was noted that the confidence intervals based on the

normal assumption are much narrower than the non-parametric confidence

intervals. This is a very strong indication that the 12 bootstrap distributions

are not normally distributed, because both sets of 95% confidence intervals are

different in size and magnitude, and one would expect both sets of confidence

intervals to be aproximately the same if the bootstrap samples were normally

distributed. Furthermore, it was observed that all of the boxplots for the 12

bootstrap parameters in Figures 11 & 12 look roughly symmetric but appear

to peak a lot at the mean. This also suggests that the bootstrap data is

not normally distributed, because the normal distribution does not have such

a high kurtosis since it does not peak so abruptly at its mean. For each

eigenvalue in Table 6, the asymptotic confidence interval is wider than the

corresponding other two intervals, further suggesting that the bootstrap data

may not be normally distributed.

The other two bootstrapping techniques discussed in the Precision and

Stability of Principal Components section are both parametric assuming nor-

mality. Because the first parametric bootstap method assumes that the boot-

strapping distribution for the three variables is i.i.d. N(0, 1), one would expect

that the results from this bootstrapping technique would be roughly the same

as the results of the non-parametric bootstrap technique if the three columns

of the Ag data are approximately i.i.d. N(0, 1). Instead, it was observed that

the results in Table 5 and Table 6 are not the same as the results in Table 7

and Table 8. This suggests that the 12 bootstrap samples based on the Ag

data set are not normally distributed or all three variables in the Ag data set
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are not all independent of each other. This is ambiguous, because it is unclear

as to why the results in both sets of tables are different. It could be because

the Ag data are normally distributed or the three variables are independent of

each other. However, it has already been established that the Ag data are not

normally distributed, so both of these reasons must be true.

To further look into this ambiguity, the second parametric bootstrap

technique based on three standard normal samples with the correlation matrix

computed from the Ag data set was run. If the three columns of the Ag data

are all approximately normally distributed, one would expect that the results

of this parametric bootstrap technique would be roughly the same as the results

of the non-parametric bootstrap technique. Instead, it was observed that the

results in Table 9 and Table 10 are completely different from those in Table 7

and Table 8. This suggests that the three variables in the Ag dataset are

not all independent. Furthermore, this may be the foundation of a possible

hypothesis test of independence.

6 Conclusions

From the Preliminary Data Analysis section, it was found that con-

taminants entering the Bras, Old and Sumas watersheds seem to increase the

bacteria counts in the watersheds and decrease the water quality, but this does

not appear to happen as much in the South watershed. It was also found that

there is some positive correlation between each type of bacteria type, indicat-

ing that higher amounts of one pathogen type generally means higher amounts

of other pathogen types. These findings suggest that water contamination is

a major issue in today’s society that urgently needs to be addressed and re-
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solved. This means that industries and people in general need to eliminate or

at least reduce the amount of waste and pollution that they create, especially

the agricultural farmlands near the Bras, Old and Sumas watersheds which

appear to negatively impact the water quality of these three watersheds. Pro-

tecting Canada’s watersheds is very important, because clean drinking water is

a huge necessity and fisheries depend on having clean water for fishing. Thus,

it is very clear that government agencies urgently need to make stronger laws

to protect the water quality of Canada’s watersheds and other water resources.

The calculations for the principal component analysis were done in R

using the standardized version of the data sets. It is usually better to standard-

ize the data, because the variation in the principal components is completely

unaffected by the variation in each of the three variables. This means that one

should use the standardized version of data to do the calculations for principal

component analysis to ensure that all of the variables in the data have unit

variance and mean of zero. For each of the ten data sets, it was found that

the first principal component accounts for most of the variation in the data,

meaning that all three variables can be represented as a linear combination

of these variables constructed in such a way that the variation in the data is

maximized. In this case, this would be useful for analyzing the ten data sets

represented by only one variable if one would choose to further analyze the

water quality data further. This is because there are many one sample tests

that can be used to analyze the data represented by the first principal com-

ponent and one-dimensional confidence intervals concerning these data can be

easily calculated. On the other hand, it is usually more difficult to construct

three-dimensional confidence regions and to do hypothesis tests with the data

represented by the original three variables.
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In the Precision and Stability of Principal Components section, it was

found that all of the 12 non-parametric bootstrap distributions are very stable,

because the bias and variation of the bootstrap sample are both very small for

each of the 12 principal component analysis parameters. This is an important

characteristic, because it means that the estimates of the principal component

analysis parameters are very reliable since they are very efficient with negliga-

ble bias. This characteristic was also found for the two parametric bootstrap

techniques, which means that the corresponding bootstrap distributions are

all stable since the estimates of the principal component analysis parameters

are also very efficient with negligable bias. It was also found that the results

from all three bootstrap techniques are all completely different from each other,

which is a very strong indication that the three variables in the Ag data set are

not i.i.d. N(0, 1). This phenomenon can very well be the basis of a statistical

hypothesis test of independence between two or more variables.

7 Future Work

In this paper, the three bootstrap techniques were only applied to the

Ag dataset. One could also apply these bootstrap techniques to the other nine

data sets to further investigate the properties of the corresponding bootstrap

distributions. In addition, the data used in this paper were actually a small

subset of a larger dataset. Only some of the columns of the original dataset

were used; the columns that were omitted include other bacteria counts as well

as different abiotic factors such as temperature and pH. One could generalize

the analyses done in this paper by including these other datasets to further

investigate the external effects on freshwater contamination in the four water-
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sheds. It was previously mentioned that the correlations amongst the three

variables for each dataset may be nonlinear. One could further investigate the

correlations in the scattermatrices to determine if the correlations are truely

linear. If there is significant evidence that they are nonlinear, then one could

attempt fitting a different regression model to the data that would minimize

the residuals.

In this paper, the estimates of the principal component analysis param-

eters were estimated using the bootstrap methods. In addition, one could use

the jackknife technique to calculate the jackknife estimates of these param-

eters, and then calculate the jackknife estimates of the bias and variance of

these jackknife estimates. In the Methodology section, there was an example

illustrating how to calculate both the jackknife and bootstrap estimates, and

then comparing these two estimates with the original biased estimate. In the

case of the principal component analysis parameters, one could compare the

12 jackknife estimates with the corresponding bootstrap estimates. The pur-

pose of doing these comparisons would be to verify that using the bootstrap

methods reduces the bias of the principal component analysis estimates, and

reduces the bias more effectively than using the jackknife methods does.

The two parametric bootstrap techniques done in this paper were based

on standard normal samples of size n = 50, n = 100 and n = 500. One could

try running these two parametric bootstrap techniques for several different

larger values of n to determine how different values of n affect the bootstrap

results. Moreover, one could investigate the asymptotic behaviour of the boot-

strap estimates as n approaches infinity. Similarly, one could also explore how

several different larger values of N affect the bootstrap results, thus deter-

mining the asymptotic behaviour of the bootstrap estimates as the bootstrap
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sample size N approaches infinity. This work could also be done to determine

how large N and n should be when running the bootstrap to ensure that the

bootstrap results are roughly asymptotic.

It was briefly mentioned in the Discussion and Conclusions sections

that one can use the parametric and non-parametric bootstrap techniques to

investigate the normality and independence of two or more variables. There

are several different hypothesis tests of independence and normality, and these

techniques may potentially be the foundation of creating more of these hypoth-

esis tests. In particular, one could express the values calculated for all three

bootstrap methods as random variables and then derive a test statistic based

on these random variables. The distribution of this test statistic can then be

used to derive a critical region of maximum power to formulate an appropriate

hypothesis test. Thus, one could possibly derive a statistical hypothesis of

independence and normality to test for normality of certain variables and for

independence amongst these variables.
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9 Appendix (all R codes used to get results)

9.1 The Jackknife and Bootstrap examples in Method-
ology section

n=20

u=n

M=10000

minus_terms=NULL
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boot_est=NULL

x=rnorm(n, mean=20, sd=1)

muSq_hat=(mean(x) )^2 #true value of estimate

for(j in 1:n){ #jackknife loop

minus_terms=cbind(minus_terms, (mean(x[-c(j)]))^2)}

muSq_tilde=u * muSq_hat + (1 - u) * 1/u * sum(minus_terms)

muSq_dot=1/n*sum(minus_terms)

variance=(n-1)/n * sum((minus_terms - muSq_dot)^2)

bias=(n-1) * (muSq_dot - muSq_hat)

for(j in 1:M){ #bootstrap loop

x_=x[sample(1:n,replace=T)] #Samples n values w/ replacement

boot_est=cbind(boot_est, (mean(x_))^2)}

muSq_hat #this is the biased estimate

#here are the calculations for the jackknife:

muSq_tilde #jackknife estimate of mu squared

bias #jackknife estimate of bias

variance #jackknife estimate of variance

#here are the calculations for the bootstrap:

mean(boot_est) #bootstrap mean

abs(mean(boot_est)-muSq_hat) #the bootstrap deviation

sqrt(1/(M-1)*sum((boot_est-mean(boot_est))^2)) #the bootstrap stdev

9.2 The preliminary data analysis section

setwd("E:/Thesis/Data") #file directory

PCA_f=function(data){ #fct for PCA

PCA=prcomp(data,center=TRUE,scale=TRUE)

print(PCA)

screeplot(PCA)} #end of fct

#Ag dataset:

data=na.omit(read.csv(file="Ag.csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ag(Bras) dataset:

data=na.omit(read.csv(file="Ag(Bras).csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ag(Old) dataset:

data=na.omit(read.csv(file="Ag(Old).csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ag(South) dataset:



Dan Ramunno - MSc Thesis in Statistics - McMaster University 55

data=na.omit(read.csv(file="Ag(South).csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ag(Sumas) dataset:

data=na.omit(read.csv(file="Ag(Sumas).csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ref dataset:

data=na.omit(read.csv(file="Ref.csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ref(Bras) dataset:

data=na.omit(read.csv(file="Ref(Bras).csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ref(Old) dataset:

data=na.omit(read.csv(file="Ref(Old).csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ref(South) dataset:

data=na.omit(read.csv(file="Ref(South).csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

#Ref(Sumas) dataset:

data=na.omit(read.csv(file="Ref(Sumas).csv")[1:3])

plot(data)

boxplot(data)

PCA_f(data)

fct=function(data){ #fct for 3 boxplots

logdata=log(data)

boxplot(logdata)} #end of fct

fct(data=read.csv(file="TotalColiforms.csv"))

fct(data=read.csv(file="FecalColiforms.csv"))

fct(data=read.csv(file="EColi.csv"))

library(lattice)

par(mfrow=c(1,3))

Variable_f=function(XData, MainTitle, XTitle){ #fct for each variable

hist(XData,data=X,freq=FALSE,type="density",xlab=XTitle,main=

MainTitle,ylab="")
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} #end of fct

Data_f=function(datatype){ #fct for each dataset

Variable_f(X$log.Total.coliforms,"","T")

Variable_f(X$log.Fecal.coliforms,datatype,"F")

Variable_f(X$log.E..coli,"","E")

} #end of fct

X=na.omit(read.csv(file="Ag.csv")[1:3])

Data_f("Ag")

X=na.omit(read.csv(file="Ref.csv")[1:3])

Data_f("Ref")

X=na.omit(read.csv(file="Ag(Bras).csv")[1:3])

Data_f("Ag (Bras)")

X=na.omit(read.csv(file="Ref(Bras).csv")[1:3])

Data_f("Ref (Bras)")

X=na.omit(read.csv(file="Ag(Old).csv")[1:3])

Data_f("Ag (Old)")

X=na.omit(read.csv(file="Ref(Old).csv")[1:3])

Data_f("Ref (Old)")

X=na.omit(read.csv(file="Ag(South).csv")[1:3])

Data_f("Ag (South)")

X=na.omit(read.csv(file="Ref(South).csv")[1:3])

Data_f("Ref (South)")

X=na.omit(read.csv(file="Ag(Sumas).csv")[1:3])

Data_f("Ag (Sumas)")

X=na.omit(read.csv(file="Ref(Sumas).csv")[1:3])

Data_f("Ref (Sumas)")

x=as.matrix(na.omit(read.csv(file="Ag.csv")[3]))

y=as.matrix(na.omit(read.csv(file="Ref.csv")[3]))

wilcox.test(x,y) # 2-sample (Mann-Whitney U) test

x=as.matrix(na.omit(read.csv(file="Ag(Bras).csv")[3]))

y=as.matrix(na.omit(read.csv(file="Ref(Bras).csv")[3]))

wilcox.test(x,y) # 2-sample (Mann-Whitney U) test

x=as.matrix(na.omit(read.csv(file="Ag(Old).csv")[3]))

y=as.matrix(na.omit(read.csv(file="Ref(Old).csv")[3]))

wilcox.test(x,y) # 2-sample (Mann-Whitney U) test

x=as.matrix(na.omit(read.csv(file="Ag(South).csv")[3]))

y=as.matrix(na.omit(read.csv(file="Ref(South).csv")[3]))

wilcox.test(x,y) # 2-sample (Mann-Whitney U) test

x=as.matrix(na.omit(read.csv(file="Ag(Sumas).csv")[3]))

y=as.matrix(na.omit(read.csv(file="Ref(Sumas).csv")[3]))

wilcox.test(x,y) # 2-sample (Mann-Whitney U) test
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9.3 The precision and stability of principal components
section

9.3.1 The non-parametric bootstrap

setwd("E:/Thesis/Data") #file directory

n=825 #size of Ag data set

M=510 #size of bootstrap sample

Data=na.omit(read.csv(file="Ag.csv")[1:3])

PCA=prcomp(Data,center=TRUE,scale=TRUE) #PCA

#3 sample standard deviations:

sd1_t=PCA$sd[1]

sd2_t=PCA$sd[2]

sd3_t=PCA$sd[3]

#9 sample rotation values:

if (PCA$r[1,1]<0) {r11_t=-PCA$r[1,1]} else {r11_t=PCA$r[1,1]}

if (PCA$r[1,2]<0) {r12_t=-PCA$r[1,2]} else {r12_t=PCA$r[1,2]}

if (PCA$r[1,3]<0) {r13_t=-PCA$r[1,3]} else {r13_t=PCA$r[1,3]}

if (PCA$r[1,1]<0) {r21_t=-PCA$r[2,1]} else {r21_t=PCA$r[2,1]}

if (PCA$r[1,2]<0) {r22_t=-PCA$r[2,2]} else {r22_t=PCA$r[2,2]}

if (PCA$r[1,3]<0) {r23_t=-PCA$r[2,3]} else {r23_t=PCA$r[2,3]}

if (PCA$r[1,1]<0) {r31_t=-PCA$r[3,1]} else {r31_t=PCA$r[3,1]}

if (PCA$r[1,2]<0) {r32_t=-PCA$r[3,2]} else {r32_t=PCA$r[3,2]}

if (PCA$r[1,3]<0) {r33_t=-PCA$r[3,3]} else {r33_t=PCA$r[3,3]}

sd1_=NULL

sd2_=NULL

sd3_=NULL

r11_=NULL

r12_=NULL

r13_=NULL

r21_=NULL

r22_=NULL

r23_=NULL

r31_=NULL

r32_=NULL

r33_=NULL

for(i in 1:M){ #beginning of bootstrap loop

Data_=Data[sample(1:n,replace=T),] #Samples n rows w/ replacement

PCA=prcomp(Data_,center=TRUE,scale=TRUE) #PCA

#storing 3 bootstrap standard deviation values:

sd1_=cbind(sd1_, PCA$sd[1])

sd2_=cbind(sd2_, PCA$sd[2])

sd3_=cbind(sd3_, PCA$sd[3])

#9 bootstrap rotation values:

if (PCA$r[1,1]<0) {r11=-PCA$r[1,1]} else {r11=PCA$r[1,1]}
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if (PCA$r[1,2]<0) {r12=-PCA$r[1,2]} else {r12=PCA$r[1,2]}

if (PCA$r[1,3]<0) {r13=-PCA$r[1,3]} else {r13=PCA$r[1,3]}

if (PCA$r[1,1]<0) {r21=-PCA$r[2,1]} else {r21=PCA$r[2,1]}

if (PCA$r[1,2]<0) {r22=-PCA$r[2,2]} else {r22=PCA$r[2,2]}

if (PCA$r[1,3]<0) {r23=-PCA$r[2,3]} else {r23=PCA$r[2,3]}

if (PCA$r[1,1]<0) {r31=-PCA$r[3,1]} else {r31=PCA$r[3,1]}

if (PCA$r[1,2]<0) {r32=-PCA$r[3,2]} else {r32=PCA$r[3,2]}

if (PCA$r[1,3]<0) {r33=-PCA$r[3,3]} else {r33=PCA$r[3,3]}

#storing 9 above values:

r11_=cbind(r11_, r11)

r12_=cbind(r12_, r12)

r13_=cbind(r13_, r13)

r21_=cbind(r21_, r21)

r22_=cbind(r22_, r22)

r23_=cbind(r23_, r23)

r31_=cbind(r31_, r31)

r32_=cbind(r32_, r32)

r33_=cbind(r33_, r33)} #end of bootstrap loop

fct=function(x_,x_t){ #fct for bootstrap results

mu=mean(x_) #bootstrap mean value

dev=abs(mu-x_t) #bootstrap deviation value

stdev=sqrt(sum((x_-mu)^2)/(M-1)) #bootstrap stdev value

a=12 #quartile for lower bound of CI

b=498 #quartile for upper bound of CI

bootCI=cbind(sort(x_)[a],sort(x_)[b]) #95% bootstrap CI

print(list(mu=mu,dev=dev,stdev=stdev,bootCI=bootCI,t.test(x_)))

boxplot(c(x_))} #end of fct

fct(sd1_,sd1_t)

fct(sd2_,sd2_t)

fct(sd3_,sd3_t)

fct(r11_,r11_t)

fct(r12_,r12_t)

fct(r13_,r13_t)

fct(r21_,r21_t)

fct(r22_,r22_t)

fct(r23_,r23_t)

fct(r31_,r31_t)

fct(r32_,r32_t)

fct(r33_,r33_t)

9.3.2 The parametric bootstrap using Σ = I3

n=500 #size of standard normal samples

M=1000 #size of bootstrap sample

sd1_=NULL
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sd2_=NULL

sd3_=NULL

r11_=NULL

r12_=NULL

r13_=NULL

r21_=NULL

r22_=NULL

r23_=NULL

r31_=NULL

r32_=NULL

r33_=NULL

for(i in 1:M){ #beginning of bootstrap loop

x1=rnorm(n, mean=0, sd=1) #first normal sample

x2=rnorm(n, mean=0, sd=1) #second normal sample

x3=rnorm(n, mean=0, sd=1) #third normal sample

PCA=prcomp(cbind(x1,x2,x3),center=TRUE,scale=TRUE) #PCA

#storing 3 standard deviation values:

sd1_=cbind(sd1_, PCA$sd[1])

sd2_=cbind(sd2_, PCA$sd[2])

sd3_=cbind(sd3_, PCA$sd[3])

#9 bootstrap rotation values:

if (PCA$r[1,1]<0) {r11=-PCA$r[1,1]} else {r11=PCA$r[1,1]}

if (PCA$r[1,2]<0) {r12=-PCA$r[1,2]} else {r12=PCA$r[1,2]}

if (PCA$r[1,3]<0) {r13=-PCA$r[1,3]} else {r13=PCA$r[1,3]}

if (PCA$r[1,1]<0) {r21=-PCA$r[2,1]} else {r21=PCA$r[2,1]}

if (PCA$r[1,2]<0) {r22=-PCA$r[2,2]} else {r22=PCA$r[2,2]}

if (PCA$r[1,3]<0) {r23=-PCA$r[2,3]} else {r23=PCA$r[2,3]}

if (PCA$r[1,1]<0) {r31=-PCA$r[3,1]} else {r31=PCA$r[3,1]}

if (PCA$r[1,2]<0) {r32=-PCA$r[3,2]} else {r32=PCA$r[3,2]}

if (PCA$r[1,3]<0) {r33=-PCA$r[3,3]} else {r33=PCA$r[3,3]}

#storing 9 above values:

r11_=cbind(r11_, r11)

r12_=cbind(r12_, r12)

r13_=cbind(r13_, r13)

r21_=cbind(r21_, r21)

r22_=cbind(r22_, r22)

r23_=cbind(r23_, r23)

r31_=cbind(r31_, r31)

r32_=cbind(r32_, r32)

r33_=cbind(r33_, r33)} #end of bootstrap loop

boot_info=function(x_){ #fct for bootstrap results

mu=mean(x_) #bootstrap mean value

stdev=sqrt(sum((x_-mu)^2)/(M-1)) #bootstrap stdev value

a=25 #quartile for lower bound of CI

b=976 #quartile for upper bound of CI
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bootCI=cbind(sort(x_)[a],sort(x_)[b]) #95% bootstrap CI

print(list(mu=mu,stdev=stdev,bootCI=bootCI))} #end of fct

boot_info(sd1_)

boot_info(sd2_)

boot_info(sd3_)

boot_info(r11_)

boot_info(r12_)

boot_info(r13_)

boot_info(r21_)

boot_info(r22_)

boot_info(r23_)

boot_info(r31_)

boot_info(r32_)

boot_info(r33_)

9.3.3 The parametric bootstrap using Σ = <

library(mvtnorm)

setwd("E:/Thesis/Data") #file directory

Data=na.omit(read.csv(file="Ag.csv")[1:3])

n=500 #size of standard normal samples

M=1000 #size of bootstrap sample

sd1_=NULL

sd2_=NULL

sd3_=NULL

r11_=NULL

r12_=NULL

r13_=NULL

r21_=NULL

r22_=NULL

r23_=NULL

r31_=NULL

r32_=NULL

r33_=NULL

for(i in 1:M){ #beginning of bootstrap loop

X=rmvnorm(n,mean=c(0,0,0),sigma=cor(Data))

PCA=prcomp(X,center=TRUE,scale=TRUE) #PCA

#storing 3 standard deviation values:

sd1_=cbind(sd1_, PCA$sd[1])

sd2_=cbind(sd2_, PCA$sd[2])

sd3_=cbind(sd3_, PCA$sd[3])

#9 bootstrap rotation values:

if (PCA$r[1,1]<0) {r11=-PCA$r[1,1]} else {r11=PCA$r[1,1]}

if (PCA$r[1,2]<0) {r12=-PCA$r[1,2]} else {r12=PCA$r[1,2]}

if (PCA$r[1,3]<0) {r13=-PCA$r[1,3]} else {r13=PCA$r[1,3]}
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if (PCA$r[1,1]<0) {r21=-PCA$r[2,1]} else {r21=PCA$r[2,1]}

if (PCA$r[1,2]<0) {r22=-PCA$r[2,2]} else {r22=PCA$r[2,2]}

if (PCA$r[1,3]<0) {r23=-PCA$r[2,3]} else {r23=PCA$r[2,3]}

if (PCA$r[1,1]<0) {r31=-PCA$r[3,1]} else {r31=PCA$r[3,1]}

if (PCA$r[1,2]<0) {r32=-PCA$r[3,2]} else {r32=PCA$r[3,2]}

if (PCA$r[1,3]<0) {r33=-PCA$r[3,3]} else {r33=PCA$r[3,3]}

#storing 9 above values:

r11_=cbind(r11_, r11)

r12_=cbind(r12_, r12)

r13_=cbind(r13_, r13)

r21_=cbind(r21_, r21)

r22_=cbind(r22_, r22)

r23_=cbind(r23_, r23)

r31_=cbind(r31_, r31)

r32_=cbind(r32_, r32)

r33_=cbind(r33_, r33)} #end of bootstrap loop

boot_info=function(x_){ #fct for bootstrap results

mu=mean(x_) #bootstrap mean value

stdev=sqrt(sum((x_-mu)^2)/(M-1)) #bootstrap stdev value

a=25 #quartile for lower bound of CI

b=976 #quartile for upper bound of CI

bootCI=cbind(sort(x_)[a],sort(x_)[b]) #95% bootstrap CI

print(list(mu=mu,stdev=stdev,bootCI=bootCI))} #end of fct

boot_info(sd1_)

boot_info(sd2_)

boot_info(sd3_)

boot_info(r11_)

boot_info(r12_)

boot_info(r13_)

boot_info(r21_)

boot_info(r22_)

boot_info(r23_)

boot_info(r31_)

boot_info(r32_)

boot_info(r33_)

9.3.4 The asymptotic confidence intervals for non-parametric boot-
strap

z=qnorm(0.975,mean=0,sd=1) #right alpha/2 quantile

lambda=c(1.6448828,0.4433664,0.3127090) #eigenvalues for Ag dataset

lambda_f = function(n){ #fct for CI calculations

for(i in 1:3){

print(lambda[i]*c(1/(1+z*sqrt(2/n)),1/(1-z*sqrt(2/n))))}} #end of fct

lambda_f(825)


