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Abstract

Standard MRI is used to image objects at rest. In addition to standard MRI
images, which measure tissues at rest, Phase Contrast MRI can be used to
quantify the motion of blood and tissue in the human body. The current
method used in Phase Contrast MRI is time consuming. The development of
new trajectories has minimized imaging time, but creates sub-sampling errors.
The proposed method uses regularization of velocities and proton densities to
eliminate errors arising from k-space under-sampling.
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Chapter 1

Introduction and Background
Information

1.1 Document Structure

We begin with an introduction to the study of Magnetic Resonance Imaging
by giving a basic summary of its governing equations and related principles
of phase-contrast angiography. We then introduce the optimization model,
which is the focus of this thesis in order to describe the use of under-sampling
in k-space and give a basic idea of what can be done to improve its results.
The functions used in the optimization, including the penalties, are described
and numerical examples of this method are provided. Conclusions are then
drawn and required future work is discussed. Matlab codes used in this thesis
are described in the appendix.

1.2 Principles of MRI

Protons, electrons and neutrons in a magnetic field possess a nuclear spin
angular momentum which is a fundamental property of nature; they act like
tiny toy tops that wobble as they spin. The rate of the wobbling or precession is
what is known as magnetic resonance or Larmor frequency [HBTV99], [Hah60].
The magnetic resonance signal is acquired from precessing magnetic moments
of protons. We refer to this magnetic resonance as spin. The principle of
Magnetic Resonance Imaging (MRI) is based on the interaction of these spins
with three types of magnetic fields:

1. the static magnetic field, around which the protons precess.
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2. the radio frequency field, used for tipping the protons to generate a signal
that can be read.

3. the gradient fields, used for imaging the position of the object being
measured, and to quantify velocity and other properties of tissues.

In the absence of an external magnetic field, the spins are oriented randomly
and the net magnetic moment is zero. However, in the presence of an exter-
nal magnetic field, the spins will align with or against the external magnetic
field, but the net magnetic moment vector is in alignment with the external
field. Also the nuclear spins exhibit resonance at the Larmor frequency. The
exposure of an object or a person to radio-frequency (RF) pulse at the Larmor
frequency causes the net magnetization to spiral away from the main magnetic
field. After a certain length of time, the net magnetization vector rotates 90
degrees and lies in the transverse or x-y plane. It is in this position that the
transverse component is measured. The pulse sequences between the initial
RF pulse and the measurement determine the meaning of the signal. This is
called the preparation phase, and it is possible to generate signals weighted
by the amount of free water, fat, white matter, grey matter etc. If each of the
regions of spin was to experience a unique magnetic field we would be able to
image their positions. A gradient in the magnetic field is what will allow us to
accomplish this. A magnetic field gradient is a variation in the magnetic field
with respect to position. In this thesis we will be concerned with the quan-
tification of velocity using images in which the relative angle of the transverse
component is proportional to the velocity of the tissue in each voxel (discrete
tissue unit volume).

1.2.1 Phase Contrast Angiography

Phase-Contrast Angiography is one of the important techniques used in Mag-
netic Resonance Angiography (MRA) that can be used to directly image flow
in arteries, veins and cerebrospinal fluid [NMP86]. Phase-contrast imaging has
excellent background suppression, allows variable velocity encoding, and pro-
vides directional flow information [IL93], [NFL86]. Two-dimensional phase-
contrast imaging is useful in the assessment of major vascular structures.
Three-dimensional phase-contrast imaging is also useful in depicting small and
medium-sized aneurysms. Other applications of phase-contrast angiography
also concern cerebral venous imaging (thrombosis of cerebral veins, fistula)

2
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Figure 1.1: Protons at rest in a static magnetic field are randomly distributed
with a small net moment parallel to the main field.

and may also be used after injection of a contrast agent. The unique aspect
of phase-contrast angiography is that it can detect both high velocity flow
and extremely slow flow. The application of a stronger flow-encoding gradient
makes it possible to detect slow flow, whereas the application of a weaker flow-
encoding gradient leads to the detection of high-velocity flow [IL93]. During
initial magnetization, the net magnetic moment of the protons are tipped by
the initial radio-frequency (RF) pulse as shown in Fig. 1.2.

Phase-contrast angiography detects the phase changes of the proton
spins, which the moving spins acquire proportional to their velocities. Here
phase means the transverse component (induced by the radio frequency pulse)
that is being measured. At rest protons point in different directions, but
the net moment is parallel to the field as shown in Fig. 1.1. Fig. 1.3 shows
that during the gradient pulse the axis of rotation rotates in the transverse
plane with an angle which is a function of the applied field variation and the
flow/velocity of the matter they are in. After the gradient pulse the proton’s
magnetization, precessing in the transverse plane, is measured: recorded as a
complex number, its phase is a function of the applied field variation (G) and
the flow/velocity (V).

The differential equation for the evolution of magnetization (M) over
short time periods in the presence of an external magnetic field B is defined

3
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Figure 1.2: The net magnetic moments are tipped into the transverse plain by
the RF pulse.

Figure 1.3: Net moments after a velocity-encoding bipolar gradient pulse.
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by the empirical Eq. (1.1) referred to as the Bloch equation.

dM

dt
= γM ×B (1.1)

When there is no radio-frequency pulse the external magnetic field (B) is
represented by BZ = B0 + Gxx + Gyy + Gzz, where BZ is the Z component
of the the external magnetic field B. The equation of translational motion
of an isochromat of spins during sampling can be described by the expression
x(t) = x0 +vxt. According to magnetic resonance (MR) theory [HBTV99], the
fact that the principal action of the proton spin in a constant magnetic field
is a rotation in the two-dimensional transverse plane suggests that a complex
number will be useful. The differential equation described in Eq. (1.1) could
further be simplified by employing the complex representation as shown in
Eq. (1.2), We can categorize Eq. (1.2) as the general solution to the Bloch
equation where the Z component of the external magnetic field (BZ) and the
gradient is constant when there is no radio-frequency pulse. The scaling of
the Z component of the the external magnetic field (BZ) is described by the
Eq. (1.3).

Mx(t) + iMy(t) = (Mx(0) + iMy(0)).eiBZ .t (1.2)

Mx(t) + iMy(t) = (Mx(0) + iMy(0)).ei
R t
0 BZ .t

’ dt’ (1.3)

From Eq. (1.3), the expressions (Mx(0) + iMy(0)).ei
R 1
0 Gxx(t’)dt’ and (Mx(0) +

iMy(0)).ei
R 2
1 Gxx(t’)dt’ is derived when t < 1 and t > 1 respectively. The positive

and negative gradients derived from the bipolar gradient shown in Fig. 1.4 is
represented by the expressions (Mx(0) + iMy(0).eiGx(x0+ 1

2
.V ) and (Mx(0) +

iMy(0)).e−iGx(x0+ 3
2
.V ). The velocity dependent phase at the echo of a simple

bipolar gradient pulse shows minor variation across a single voxel and, after
the data are Fourier transformed, the image for laminar flow in a pixel centred
at position (i, j) is given by Eq. (1.4), where ρ is the proton density, V is the
velocity of blood and the operator (�) signifies point-wise multiplication.

ρi,j � e−iGxx·Vi,j (1.4)

In the next section we talk about k-space and Fourier transform essential to
our understanding of this thesis.

5
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Figure 1.4: Bipolar gradient pulse.

Figure 1.5: Full versus half k-space. [Moz08]
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1.2.2 K-Space

For our understanding of k-space we need to explain the significance of the
Fourier transform to Magnetic Resonance Imaging (MRI). The signals that we
measure in MRI are a combination of signals from all over the object being
imaged. Most signals are composed of a series of sine waves, each with an
individual frequency and amplitude. The Fourier transform allows us to work
out what these frequencies and amplitudes are. The Fourier transform converts
the signal from the time domain into the frequency domain. For any image,
use of the Fourier transform allows us to manipulate the data in the frequency
domain also known as k-space [Ber69].

K-space can be defined as an array of numbers whose inverse Fourier
transform is the magnetic resonance image. It is in k-space that the magnetic
resonance signals are stored and the images are reconstructed from this data.
According to MR theory [Nis96], [Bri74], [Ber69], we can derive the equation
for magnetic resonance signals as

S(t) =

∫
x

∫
y

m(x, y)e−2π[kx(t)x+ky(t)y]dxdy (1.5)

where

kx(t) =
γ

2π

∫ t

0

Gx(τ)dτ , ky(t) =
γ

2π

∫ t

0

Gy(τ)dτ (1.6)

m(x, y) is the transverse nuclear magnetization and Gx, Gy are the gradient
fields in the x and y directions respectively. Comparing the signal equation
Eq. (1.5) with the Fourier transform of m(x, y).

M(kx, ky) =

∫
x

∫
y

m(x, y)e−i2π[kx(t)x+ky(t)y]dxdy (1.7)

we can see that
S(t) = M(kx, ky) (1.8)

or

S(t) = M(γ/2π

∫ t

0

Gx(τ)dτ, γ/2π

∫ t

0

Gy(τ)dτ) (1.9)

Thus, kx and ky are in units of spatial frequency, typically cycles/cm. This
is the most important relationship in MRI. At any given time t, S(t) equals
the value of the two-dimensional Fourier transform of m(x, y) at (kx, ky).
The total recorded signal function s(t) therefore maps directly to a trajectory
through the spatial-frequency (Fourier transform) space as determined by the
time integrals of the applied gradient waveforms Gx and Gy.

7
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Fig. 1.5 shows the difference between an image obtained from a full
k-space and a half k-space data. K-space has this particular property whereby
we can reconstruct an image using only partial k-space data. It is this prop-
erty which we exploit in this thesis. Acquiring complete data (full k-space) is
a long and computationally expensive process.As a result, it is not possible for
critical patients or patients on life support to stay still for a long time in a mag-
netic resonance scanner. To get a very detailed and clear image the magnetic
resonance machine tries to fully collect k-space data which is time consuming.
Partial Fourier reconstruction is a technique that reduces the scanning time by
skipping over some data and sampling certain rows of k-space [Moz08]. By re-
ducing the amount of data to be collected, the scanning time can be drastically
reduced. Hence, understanding efficient under-sampling and reconstruction of
k-space data is very important in the context of this thesis.

1.3 Process Goal

Figure 1.6: Laminar flow velocity phantom used in this thesis.

We present a model-based image reconstruction method that can be
applied in phase-contrast angiography to detect anomalies in blood vessels.
Since most images are distorted or contain significant amounts of noise, we try
to eliminate errors using regularization. Regularization usually involves adding
some sort of penalty to improve the smoothness and thereby the sharpness of
the distorted images.

The main disadvantages of using phase-contrast angiography is the rel-
atively long time that is required to produce images, and that phase-contrast
images are degraded by aliasing artifacts [IL93]. Additionally this method

8



M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster –
Computational Engineering and Science

is plagued by long acquisition times and relatively long echo times. Hence
shortening the time critically ill patients spend in the MRI machine is a ma-
jor motivating factor to develop efficient image reconstruction techniques that
considerably shortens scan times. Although advances like the development of
new trajectories, parallel imaging and faster image acquisitions have reduced
total imaging time for phase-contrast angiographic procedures, it is still rela-
tively slow. However by using under-sampling and regularization of k-space,
the scan time can be greatly reduced.

Figure 1.7: Depiction of flow as a continuous velocity field, with the maximum
flow in the centre of the region of interest.

The numerical phantom which we use to test our model is a simulated
laminar flow velocity profile of a blood flow in an artery as shown in Fig. 1.7.
It is composed of complex data with maximum flow encountered at the centre
of the vessel, while the velocity tapers to the minimum at the walls of the
vessel as shown in Fig. 1.6. In order to show different phases and frequencies
of magnetic resonance signals, all the acquired data are complex.

In this thesis we propose a two stage solution. First we reconstruct the
problem in image space to test our model and then we exploit the problem
in k-space to considerably reduce the amount of data we use. We use the
L2-difference regularization method to eliminate noise in our model, thereby
increasing accuracy of the solution. Our goals in this thesis are outlined below:

9
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1. Faster image reconstruction for shorter MRI scan times.

2. Larger images for better clarity.

3. Accurate images for better diagnosis.

In the next chapter we explain the necessary theory required to understand
our optimization model and then present our model both in the image space
and k-space domain.

10



Chapter 2

Optimization Model

In this chapter, we will present a method that solves the image reconstruction
problem in image space. The motivation to solve the problem in image space
is to use it as a prototype to solve the problem in k-space later on. We discuss
how to model our problem as an inverse problem and how regularization is
used to reduce artifacts and noise. The model we solve is an unconstrained
non-linear optimization problem.

2.1 Inverse Problem

The inverse problem uses the actual observations of the system to infer the
values of the parameters characterizing the system under investigation. To
demonstrate how this is related to phase-contrast angiography, we take the
example where the exact properties of the flow of blood are known. Then
on imaging those blood vessels with contrast agents, the resultant flow map
would be known. That would be the “forward problem”. However, it is nearly
always the properties of the flow of blood that we are trying to find, ideally
without using invasive surgery or contrast agents. Thus we need to solve an
inverse problem. Conceptually an inverse problem is described by the diagram
below [Moz08].

Actual observations→ Parameters of the model (2.1)

The most common concern of the inverse problem is ill-posedness, which is
opposite to being well-posed. A problem is said to be well-posed if its solu-
tion is unique and exits for the arbitrary and continuous data set, whereas
for the ill-posed problem the solution is not unique. The unique solution
computed is unacceptable in a physical sense because it is an approximate

11
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solution [BB98], [Moz08]. The unique solution does not reproduce the exact
solution, but has experimental errors and the original data is not completely
reproduced. We can categorize a problem as a linear inverse problem, if the
relationship between the actual observations and the model parameters are
linear as shown in Eq. (2.2)

Ax = b (2.2)

where A is a linear operator, b and x represent data and model parameters
respectively. The objective of the problem is to find x. We can use methods
from optimization to solve such inverse problems. To do so, we define a goal,
also known as an objective function, for the inverse problem. The goal is a
function that measures how close the predicted data from the recovered model
fits the observed data. In cases where we have perfect data (i.e. no noise)
and perfect physical understanding (i.e. the physics) then the recovered model
should fit the observed data perfectly. The standard objective function term
is usually of the form as shown in Eq. (2.3)

‖Ax− b‖2 (2.3)

In relation to Magnetic Resonance Imaging (MRI), we can define an opti-
mization problem in which the objective function measures the likelihood of
observing image pixel values given the underlying tissue concentrations. In
other words, we minimize the distance between the measured Magnetic Res-
onance (MR) experimental images and the images predicted by the forward
problem.

2.2 Regularization

Regularization and optimization of an inverse problem has been an active
area of research with a long history. An example of such problem might be
the formation of an original image captured using an imaging device (origi-
nal data) [Aga03]. Regularization can be used to make an ill-posed problem
well-posed by introducing additional information about the solution, such as
an assumption about the smoothness or a bound on the norm. The prob-
lem is then changed to a new problem with improved conditioning. Inverse
problems are not usually well-posed, and in order to be solvable a variety of
regularization techniques can be applied. Most often the solution for ill-posed
problems can be expected to be useless, therefore a method to compute the
approximate solutions that are less sensitive to perturbations is needed. We
call this method regularization because it enforces regularity (smoothness) on

12
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the computed solutions. We suppress unwanted noise components by enforc-
ing this regularity, or smoothness which leads to better approximations of the
solution. The Eq. (2.4) shows Tikhonov’s method [TA77] where the regularity
requirement is explicitly incorporated in the formulation of the problem.

min{‖Ax− b‖2 + λ ‖x‖2} (2.4)

The first term ‖Ax− b‖2 measures the fit-to-data and the second term ‖x‖2
measures the regularity of the solution. The regularization parameter (λ) is
a positive parameter which controls the weighting between the two terms. It
indicates that high frequencies in the solution are penalized and converge to
zero, but low frequencies are not regularized. Thus the regularization param-
eter (λ) behaves as a low-pass filter. In order to obtain a balance or minimize
the trade-off, the optimal selection of the regularization parameter (λ) be-
comes important. Various methods [Idi99], [BPT88] have been developed for
the optimal selection of these regularization parameters.

• Discrepancy principle

• L-curve

• Generalized cross validation method

In recent years, the L-curve despite its limitations has gained attention for
computing the selection of regularization parameters. Its a log-log plot of the
regularized solution against the squared norm of the regularized residual for a
range of values of regularization parameters. The numerical computation and
limitation of the L-curve is explained in [Han10] and [Vog96]. Regularization
is implemented on both the rows and columns of the two-dimensional im-
age we use in this thesis. The steps carried out for regularization are outlined
below, where A is one of the variables (ρ and V ) and n is the size of the image.

for i = 1→ n do
for j = 1→ n− 1 do

rowdifference ← rowdifference +(Ai,j+1 − Ai,j)2

end for
end for
for i = 1→ n− 1 do

for j = 1→ n do
columndifference ← columndifference +(Ai+1,j − Ai,j)2

end for
end for

13
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2.2.1 Model in Image Space

In analogy with the definition of a linear inverse problem in Eq. (2.2) we
describe the (nonlinear) fit-to-data term in image space, where m̃ is the exper-
imental data acquired from the Magnetic Resonance Image (MRI) scanners.∑

G

∥∥IGk
◦ (ρi,j � e−iGk·Vi,j )− m̃k,i,j

∥∥2

(2.5)

The model in image space is used to test our theory before we eventually solve
the problem in k-space. The fit-to-data term for the model in image space
is described in Eq. (2.5). As mentioned before in Eq. (1.4), the operator (�)
in Eq. (2.5) represents point-wise multiplication. Since the model in k-space
requires projections to test the effects of minimal data (partial k-space), we
introduce the identity matrix IG as a place-holder for the future application
of projections. Here G determines the gradient vectors used to sensitize the
blood flow components along multiple directions. We use two parameters (ρ
and V ) to determine the computed solution of our optimization problem. ρ
is used to determine the proton density, which is a measure of the amount of
hydrogen nuclei present in water. We solve for both the real and imaginary
parts of ρ. Here, V is the encoded velocity of the blood flow in the artery or
a blood vessel in the x and y directions.

fobj =
∥∥(ρi,j � e−iG1·Vi,j )− m̃1,i,j)

∥∥2

+
∥∥(ρi,j � e−iG2·Vi,j )− m̃2,i,j)

∥∥2

+
∥∥(ρi,j � e−iG3·Vi,j )− m̃3,i,j)

∥∥2

+
∥∥(ρi,j � e−iG4·Vi,j )− m̃4,i,j)

∥∥2

(2.6)

We are solving a problem of size 4n2 as shown in Eq. (2.6) where G1, G2, G3 and
G4 represent the directions along (0,1), (1,1), (1,-1),(1,0) respectively. Since
we are solving both real and imaginary parts of ρ, we simplify Eq. (2.5), which
is described below as Eq. (2.7).

{[(Re(ρi,j) · cos(Gk · Vx,i,j +Gk · Vy,i,j))
+(Im(ρi,j) · sin(Gk · Vx,i,j +Gk · Vy,i,j))− Re(m̃k,i,j)]}2

+{[(Im(ρi,j) · cos(Gk · Vx,i,j +Gk · Vy,i,j))
−(Re(ρ(i,,j)) · sin(Gk · Vx,i,j +Gk · Vy,i,j))− Im(m̃k,i,j)]}2

(2.7)

We introduce the regularization parameters (λ1 and λ2) to ρ and V to Eq. (2.5)
to define our objective function for the model in image space which is described
in Eq. (2.8)

14
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min
∑
G

∥∥IGk
◦ (ρi,j � e−iGk·Vi,j )− m̃k,i,j

∥∥2

+λ1

∑
i,j

‖δρi,j‖2

+λ2

∑
i,j

‖δVi,j‖2

(2.8)

2.2.2 Model in K-space

According to MRI theory [Pau07], most Magnetic Resonance (MR) images de-
pict the spin density as a function of position, and hence should be real-valued.
If this were true, then by the symmetry of the Fourier transform, only half of
the spatial frequency data would need to be collected. Since real functions have
conjugate symmetry in spatial frequency space, the uncollected data could be
synthesized by reflecting conjugate data across the origin. Unfortunately, there
are many sources of phase errors that cause the real-valued assumption to be
violated. These include variations in the resonance frequency, flow, and mo-
tion. One of the general applications of two-dimensional Fourier transform
imaging is reducing scan time. Conventionally more than half of the complete
k-space data is collected, allowing the scan time to be reduced by almost a
factor of two [Pau07]. In this thesis, however, we collect only five-percent of
k-space data.

Projection

The phantom that we are going to use for our model in k-space is completely
sampled in k-space. We can simulate the partial k-space data by projecting
the full k-space data onto a subspace.

projection( full k-space) = partial k-space (2.9)

The simplest way to reconstruct a partial k-space data set is to simply fill
the uncollected data (phase-encodes or readout samples) with zeroes. Then,
we perform the two-dimensional Fourier transform and display the magnitude.
Thus, in our model the projection is described below in Eq. (2.10)

πG ◦z−1(ρi,j � e−iGk·Vi,,j ) (2.10)

The projection in k-space will be different for each velocity sensitization. This
approach enables us to choose a variety of projection matrices for each gradient
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sensitization vectors. In our case we take the horizontal, leading diagonal, sec-
ondary diagonal and vertical samples to effectively sensitize the velocity/flow
of the blood. Let

F (ρ, V ) =
∥∥πGk

◦z−1(ρi,j � e−i·Gk·Vi,,j )−mk,i,j

∥∥2
.

In order to use the chain rule, we define it as a composition of f and g as
follows,

ui,j,k = gk(ρ, V ) = ρi,j � e−iGk·Vi,,j

= [(Re(ρi,j) · cos(Gx,k · Vx,i,j +Gy,k · Vy,i,j)))

+(Im(ρi,j) · sin(Gx,k · Vx,i,j +Gy,k · Vy,i,j)))

−Re(m˜
k,i,j)]

+i[(Im(ρi,j) · cos(Gx,k · Vx,i,j +Gy,k · Vy,i,j)))

−(Re(ρi,j) · sin(Gx,k · Vx,i,j +Gy,k · Vy,i,j)))− Im(m˜
k,i,j)]

f(ui,j,k) =
∥∥πG ◦z−1(u)−mk,i,j

∥∥2

F (ρ, v) = f(g(ρ, v))

∇F (ρ, v) = ∇f(u
i,j,k

)∇g(ρ, v)

The gradient of the model in k-space is described in the Eq. (2.11) below:

∇F (ρ, V ) = (2z(π∗(π(z−1(u))−m)))(∇g(ρ, v)) (2.11)

Minimizing the term shown in Eq. (2.10) defines an approximate solution, ρ
and V to the expression πG ◦z−1(ρ� e−iG·V ) = m. However, if πG ◦z−1(ρ�
e−iG·V ) is singular or ill-conditioned, and m is the result of measurement con-
taminated by noise, the estimate may be inaccurate and there may be a large
number of solutions. We introduce the two-dimensional Fourier transform and
the regularization parameters to construct our objective function for the model
in k-space as shown in Eq. (2.12)

min
∑
G

∥∥πGk
◦z−1(ρi,j � e−iGk·Vi,j )−mi,j)

∥∥2

+λ1

∑
i,j

‖δρi,j‖2

+λ2

∑
i,j

‖δVi,j‖2

(2.12)
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Justification for sparse sampling

Having defined the projections we will use, it is clear that (1) we are sampling
a very small subset of the full data set, and (2) there is a pattern to the
under-sampling. Under-sampling is always justified if a priori knowledge, such
as the expectation of smoothness, is available. In this case, we do expect
smooth images, but we also know that the noise-free images have a great deal
of redundancy. All static tissue, which will generally be most of the tissue, will
be identical in images with all sensitizations. Moving tissue will have velocity
information encoded as phase, but the magnitude will always be the same.
So depending on the relative blood volume, we can expect upwards of three
quarters of the data to be redundant. Furthermore, MRI images have large
constant regions, which causes the information in k-space to be concentrated
near k=0.

In our projection or subsampling scheme, we collect the low k-space
data which contains most of the energy in each sensitization, which can be
interpreted as a low-pass filtering of the data in k-space. We do not collect
all of the high-frequency data, but when we consider all of the sensitizations,
we collect bands in eight principle directions. This results in some coverage
of all parts of k-space, with complete coverage of the lowest frequencies. In
some sense, this is analogous to the situation in PROPELLER [Pip99], whose
sampling pattern is similar to the sampling pattern we would get if we replaced
all of the gradient sensitization vectors with zero.

Sparse structure of the gradient in K-space

The gradient ∇F (ρ, V ) represented in Eq. (2.11) consists of two components
which are ∇f(u

i,j,k
) and ∇g(ρ, v). ∇g(ρ, V ) represents the derivative of the

image in image space and consists of a total of 8n4k elements where n is the
size of the image and k is the total number of gradient sensitization vectors.
The sparseness of the gradient can be attributed to the derivative of g(ρ, V )
with respect to a particular variable which will produce 2n2k non-zero ele-
ments taking into account both the real and imaginary parts of g(ρ, V ). The
structure of sparsity resembles a block diagonal structure and the values of
the diagonal representing the non-zero elements. This is because each pixel
in ∇g(ρ, V ) is composed of all the four variables ( Re(ρ), Im(ρ), Vx,, Vy) given
by the equation. The other component ∇f(u

i,j,k
) is a matrix containing the

intermediate sensitization variables in image space. The output of the gradient
∇F (ρ, V ) can be visualized as the multiplication of two eight block compo-
nents, the output of which will produce 4n2 elements.
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2.3 Implementation

We implement our model in MATLAB using various algorithms available in
the optimization toolbox. We use the function fminunc to find the minimum
of an unconstrained multivariable function. The function fminunc attempts
to find a minimum of a scalar function of several variables, starting at an
initial estimate. The general description of the function signature of fminunc
is shown to be f[x fval]=fminunc(‘objFun’,A,options), where fval is the value
of the objective function objFun at the solution x. Here the objFun is a
MATLAB function of the form function [f g] = objFunK(A), where f is the
function value at x. The gradient of objFun can also be computed by setting
the GradObj option as “on”, by setting options = optimset(‘GradObj’,‘on’).
The gradient is the partial derivatives ∂f/∂xi of f at the point x. That is,
the ith component of g is the partial derivative of f with respect to the ith
component of x.

We generate the numerical phantom which is represented by mi,j in
Eq. (2.12). To generate noise in our phantom we add white Gaussian noise
specifying a scalar signal-to-noise ratio (SNR) per sample in decibels. The
model was implemented with various sets of signal-to-noise ratio values. In
our model, the value of the lowest signal-to-noise ratio used was twenty-five.
The Signal-to-noise ratio is a measure to quantify how much a signal has been
corrupted by noise.We implement the model in image space first by calcu-
lating the gradient and passing it onto the fminunc function in Matlab. We
implement the same procedure for our model in k-space with changes to the ob-
jective function and the corresponding gradient. We then apply a Fast Fourier
Transform (FFT) to the complex data and apply the various projections nec-
essary to optimize our model in k-space. We set the penalty parameters as
λ1 and λ2. The penalty parameters were chosen using the L-curve technique,
which was covered in previous sections.
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Chapter 3

Numerical Results

In this chapter we show the results obtained by optimizing the model in both
image space and k-space. The Fig. 3.1 shows the noisy measurement and the
regularized image of the real part of the proton density and the Fig. 3.2 shows
the imaginary part of the proton density. The images shown in Fig. 3.3 is the
resultant velocities of the blood flow in x and y directions in image space. We

Figure 3.1: Real part of a measured image, showing noise, and the real part
of the reconstructed ρ, the proton density.
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Figure 3.2: Imaginary part of a measured image, showing noise, and the imag-
inary part of the reconstructed ρ, the proton density.

see that that regularization has eliminated noise and the images look much
sharper and smoother.

The Figure’s 3.4, 3.5 and 3.6 are the results obtained by optimizing
in k-space. The images show blurring which is an imaging artifact usu-
ally encountered, when k-space is under-sampled. According to MR the-
ory [Pau07], [HNO06], when k-space is under-sampled, the Nyquist criterion
is violated, and Fourier reconstructions exhibit aliasing artifacts. The reason
for the blurring can be identified by considering the data set to be the product
of a full k-space data set multiplied by a projection function which we denote
as πG as shown in Eq. (2.10), where G is the velocity sensitization vectors.
The inverse Fourier transform of this function is the impulse response that
produces the blurring.

Table. 3.1 shows the execution time of the image optimized in image
space. The number of variables we solve in this optimization is of the size of
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x
y

Figure 3.3: Velocity components in the x and y directions.

Table 3.1: Execution time in Image space

Image size Time in seconds

[8,8] 0.8966

[16,16] 13.5156

[32,32] 142.7051

[64,64] Out of memory
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Figure 3.4: Image reconstructed from partial k-space with (1,0) sensitization,
real and imaginary parts.

4n2, and as we increase the size of the image, the time taken and the memory
constrains on the machine also increases. The results from Table. 3.1 shows
that for optimizing an image of size 64 × 64, MATLAB runs out of memory.
This is because the amount of memory required to store a Hessian (N2) is
too big, along with the machine time required to process it. Hence there is a
need to try and reduce the data set using partial k-space. Table. 3.2 shows
considerable improvement of execution time of the image optimized in k-space.
Not only does the partial k-space allow us to optimize larger images (64× 64)
it takes relatively less amount of time as compared to optimizing in image
space.

We generate two L-curves, where in Fig. 3.7 λ2 is set to 1e-04 and the
results are generated for different λ1 values. In Fig. 3.9 λ1 is set to 1e-04
and the results are generated for different λ2 values. As we mentioned before
in the previous sections λ1 and λ2 are the regularization parameters for the
variables ρ and V in our model. What we know from regularization is that it
improves the results by reducing the artifacts and background noise. In order
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Figure 3.5: Proton density estimate from multiple partial k-space data sets;
real and imaginary parts.

Table 3.2: Execution time in K-space

Image size Time in seconds

[8,8] 0.1791

[16,16] 1.4682

[32,32] 12.7797

[64,64] 170.1214
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x

y

Figure 3.6: Velocity (x- and y-components) estimated, using regularization,
from partial k-space data sets.

to select the best regularization parameters λ1 and λ2, we use the L-curve
to find a good estimate. We can apply different weightings to regularization
parameters within a certain range of data. If λ1 or λ2 is very big, we will
get over-smoothed images, and if it is very small, the results will look under-
smoothed for the corresponding variables. An over-smoothed image reduces
the noise, but does not show the details such as edges and contrasts. By using
the L-curve technique, we can find a good trade-off for λ1 which is located at
the very left of the curvature shown in Fig. 3.7, where λ1 = 1e−05 and for λ2

which is also located at the very left of the curvature shown in Fig. 3.9, where
λ2 = 1e−04.
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Figure 3.7: L-curve showing the variation in the fit-to-data term versus ‖δρ‖2
as λ1 varies with λ2 = 1e−4 held constant.
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Figure 3.8: L-curve showing the variation in the fit-to-data term versus ‖δV ‖2
as λ2 varies with λ1 = 1e−4 held constant.

Figure 3.9: L-curve where λ1 = 1e−04
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Chapter 4

Conclusion and Future Work

In conclusion we have demonstrated in this thesis a model-based image recon-
struction method that reduces the image reconstruction time in phase-contrast
angiography. We demonstrated experimental verification of our model in im-
age space and in k-space. We showed that by under-sampling, we were able
to use reduced data to increase the performance of image reconstruction. We
demonstrated that using only five-percent of the data we were able to achieve
significant benefits in reducing the time taken to optimize large images. We
used regularization to reduce noise and increase the accuracy of the image.
Due to the reduced data set, we were able to solve the memory problem en-
countered while optimizing in image space.

This model can be improved in the future by incorporating a three-
dimensional model which would provide us with more clinical insights of blood
flow. A more complicated phantom can also be used to test our model before
we can use it on clinical data. Significant improvement also can be acquired
by implementing the model in C and using the L-BFGS algorithm for the
optimization. L-BFGS stands for “Limited memory BFGS”. In case of big
dimensions, the amount of memory required to store a Hessian (N2) is too
big, along with the machine time required to process it, hence the need to use
L-BFGS . L-BFGS stores only a few vectors that represent the approximation
of the dense (N2) matrix implicitly. Due to its moderate memory requirement,
L-BFGS method is particularly well suited for optimization problems with a
large number of variables. Table. 4.1 shows the preliminary work carried out
optimizing in image space using L-BFGS.
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Table 4.1: Execution time for image-space model using L-BFGS calling func-
tion and gradient written in C.

Image size Time in seconds

[64,64] 5.1285

[128,128] 16.564
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Chapter 5

Appendix A: Matlab Codes

A1: Objective function in K-space

1

2 function [f g] = objFunK(A)
3 % n − The size of the Image
4 % R − Radius of the vessel
5 % V max − Maximum velocity of blood
6 % p − Proton density matrix
7 % v x − Matrix containing x components of Velocity vector
8 % v y − Matrix containing y components of Velocity vector
9 % (0,1,−1) − Gradient Sensitization vectors

10

11

12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 %−−−−−−−−−−−−−−−− Initialization −−−−
14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15

16

17 n=64;
18

19

20

21 lamda 1=1e−6; %−−−−− Penalty for proton density
22

23 lamda 2=1e−2; %−−−−− Penalty for Velocity
24

25 snr=25; % −−−−−−− Signal−to−noise ratio
26

27

28 [c,d] = size(A);
29
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30 p real = A(1:c/4,:);
31 p imag =A((c/4)+1:(c/4)+d,:);
32 v x = A(((c/4)+d)+1:(c/4)+2*d,:);
33 v y = A(((c/4)+2*d)+1:c,:);
34

35

36

37

38 thetaG1 = (0 .* v x) + (1 .* v y);
39

40 thetaG2 = (1 .* v x) + (1 .* v y);
41

42 thetaG3 = (1 .* v x) + (−1 .* v y);
43

44 thetaG4 = (1 .* v x) + (0 .* v y);
45

46

47 R=n/8;
48 v max=1;
49 v y m=zeros(n,n);
50 p m= zeros(n,n);
51

52

53

54 proj1 temp = fft2( (((p real .* cos(thetaG1) )
55 + (p imag .* sin(thetaG1) ))
56 + (1i*((p imag .* cos(thetaG1) )
57 − (p real .* sin(thetaG1 ) )))),n,n);
58

59

60 proj2 temp = fft2( (((p real .* cos(thetaG2) )
61 + (p imag .* sin(thetaG2) ))
62 + (1i*((p imag .* cos(thetaG2) )
63 − (p real .* sin(thetaG2 ) )))),n,n );
64

65

66 proj3 temp = fft2( (((p real .* cos(thetaG3) )
67 + (p imag .* sin(thetaG3) ))
68 + (1i*((p imag .* cos(thetaG3) )
69 − (p real .* sin(thetaG3 ) )))),n,n);
70

71

72 proj4 temp = fft2( (((p real .* cos(thetaG4) )
73 + (p imag .* sin(thetaG4) ))
74 + (1i*((p imag .* cos(thetaG4) )
75 − (p real .* sin(thetaG4 ) )))),n,n);
76

77
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78

79

80

81 proj1=zeros(n,n);
82

83

84 proj4=zeros(n,n);
85

86

87

88 %Vertical sample
89

90 proj1(:,1:(n/4)+1)=proj1 temp(:,1:(n/4)+1);
91

92 %Diagonal1 sample
93 proj2 = diag(diag(proj2 temp))
94 +diag(diag(proj2 temp,1),1)
95 +diag(diag(proj2 temp,−1),−1)
96 +diag(diag(proj2 temp,2),2)
97 +diag(diag(proj2 temp,−2),−2);
98

99 %Diagonal2 sample
100 proj3=fliplr(diag(diag(fliplr(proj3 temp)))
101 +diag(diag(fliplr(proj3 temp),1),1)
102 +diag(diag(fliplr(proj3 temp),−1),−1)
103 +diag(diag(fliplr(proj3 temp),2),2)
104 +diag(diag(fliplr(proj3 temp),−2),−2));
105

106 %Horizontal Sample
107 proj4(1:(n/4)+1,:)=proj4 temp(1:(n/4)+1,:);
108

109

110 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
111 %−−−−−−−−−−−−−−−− Measurement −−−−−−−−−−−−−−−−−
112 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
113 for l = 1:n
114 for m = 1:n
115

116

117 if (distance([l,m], [n/2,m]) ≥ R)
118 p m(l,m) = 1i;
119 v x m(l,m) = 0;
120

121 else
122

123 p m(l,m) = 2;
124 v x m(l,m) = v max*(1−((distance([l,m], ...

[n/2,m]))ˆ2/Rˆ2));
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125

126

127 end
128

129 end
130

131 end
132

133

134

135 p m real=awgn(real(p m),snr,'measured');
136

137 p m imag=awgn(imag(p m),snr,'measured');
138

139

140 v x m ur=awgn(real(v x m),snr,'measured');
141

142 v y m ur=awgn(real(v y m),snr,'measured');
143

144

145

146 m1 temp=awgn(p m.*(exp(−1i*(0 .* v x m + 1 .* ...
v y m))),snr,'measured');

147 m2 temp=awgn(p m.*(exp(−1i*(1 .* v x m + 1 .* ...
v y m))),snr,'measured');

148 m3 temp=awgn(p m.*(exp(−1i*(1 .* v x m + −1 .* ...
v y m))),snr,'measured');

149 m4 temp=awgn(p m.*(exp(−1i*(1 .* v x m + 0 .* ...
v y m))),snr,'measured');

150

151

152

153

154

155 ftm1=fft2(m1 temp,n,n);
156 ftm2=fft2(m2 temp,n,n);
157 ftm3=fft2(m3 temp,n,n);
158 ftm4=fft2(m4 temp,n,n);
159

160

161

162 m1=zeros(n,n);
163 m4=zeros(n,n);
164

165

166

167 %Vertical sample
168
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169 m1(:,1:(n/4)+1)=ftm1(:,1:(n/4)+1);
170

171 %Diagonal1 sample
172 m2=diag(diag(ftm2))
173 +diag(diag(ftm2,1),1)
174 +diag(diag(ftm2,−1),−1)
175 +diag(diag(ftm2,2),2)
176 +diag(diag(ftm2,−2),−2);
177

178 %Diagonal2 sample
179 m3=fliplr(diag(diag(fliplr(ftm3)))+diag(diag(fliplr(ftm3),1),1)
180 +diag(diag(fliplr(ftm3),−1),−1)
181 +diag(diag(fliplr(ftm3),2),2)
182 +diag(diag(fliplr(ftm3),−2),−2));
183

184 %Horizontal Sample
185 m4(1:(n/4)+1,:)=ftm4(1:(n/4)+1,:);
186

187

188 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
189 %−−−−−−−−−−−−−−−− Fit to Data −−−−−−−−−
190 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
191

192

193

194

195

196

197

198 real G1 = real(proj1) − real(m1);
199 imag G1 = imag(proj1) − imag(m1);
200

201 real G2 = real(proj2) − real(m2);
202 imag G2 = imag(proj2)− imag(m2);
203

204 real G3 = real(proj3) − real(m3);
205 imag G3 = imag(proj3) − imag(m3);
206

207 real G4 = real(proj4)− real(m4);
208 imag G4 = imag(proj4) − imag(m4);
209

210

211

212 f1 = (real G1 .* real G1) + (imag G1 .* imag G1);
213

214 f2 = (real G2 .* real G2) + (imag G2 .* imag G2);
215

216 f3 = (real G3 .* real G3) + (imag G3 .* imag G3);
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217

218 f4 = (real G4 .* real G4) + (imag G4 .* imag G4);
219

220

221

222 f obj=reshape((f1+f2+f3+f4),1,[]);
223

224

225 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
226 %−−−−−−−−−−−−−−−− Gradient −−−−−−−−−−−
227 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
228

229

230

231

232

233

234

235 % Gradient w.r.t real(p) along directions G1,G2,G3,G4
236

237

238 G1 real p=cos(thetaG1) − (1i*(sin(thetaG1)));
239 G2 real p=cos(thetaG2) − (1i*(sin(thetaG2)));
240 G3 real p=cos(thetaG3) − (1i*(sin(thetaG3)));
241 G4 real p=cos(thetaG4) − (1i*(sin(thetaG4)));
242

243

244

245 % Gradient w.r.t imag(p) along directions G1,G2,G3,G4
246

247

248

249 G1 imag p=sin(thetaG1) + 1i*(cos(thetaG1 ));
250 G2 imag p=sin(thetaG2) + 1i*(cos(thetaG2 ));
251 G3 imag p=sin(thetaG3) + 1i*(cos(thetaG3 ));
252 G4 imag p=sin(thetaG4) + 1i*(cos(thetaG4 ));
253

254

255

256

257 % Gradient w.r.t vx along directions G1,G2,G3,G4
258

259

260

261 del g1 vx e1=( −1 .* p real .* sin(thetaG1 ) .* 0 + p imag ...
.* cos(thetaG1) .* 0);

262
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263 del g1 vx e2=1i*( −1 .* p imag .* sin(thetaG1) .* 0 − ...
p real .* cos(thetaG1) .* 0);

264

265 del g2 vx e1=( −1 .* p real .* sin(thetaG2 ) .* 1 + p imag ...
.* cos(thetaG2) .* 1);

266

267 del g2 vx e2=1i*( −1 .* p imag .* sin(thetaG2 ) .* 1 − ...
p real .* cos(thetaG2) .* 1);

268

269

270 del g3 vx e1=( −1.* p real .* sin(thetaG3 ) .* 1 + p imag ...
.* cos(thetaG3) .* 1);

271

272 del g3 vx e2=1i*( −1 .* p imag .* sin(thetaG3 .* 1) − ...
p real .* cos(thetaG3) .* 1);

273

274

275 del g4 vx e1=( −1 .* p real .* sin(thetaG4) .* 1 + p imag ...
.* cos(thetaG4) .* 1);

276

277 del g4 vx e2=1i*( −1 .* p imag .* sin(thetaG4 ) .* 1 − ...
p real .* cos(thetaG4) .* 1);

278

279

280

281 G1 vx=del g1 vx e1+del g1 vx e2;
282

283 G2 vx=del g2 vx e1+del g2 vx e2;
284

285 G3 vx=del g3 vx e1+del g3 vx e2;
286

287 G4 vx=del g4 vx e1+del g4 vx e2;
288

289

290

291

292

293 % Gradient w.r.t vy along directions G1,G2,G3,G4
294

295

296 del g1 vy e1=( −1* p real .* sin(thetaG1 ) .* 1 + p imag .* ...
cos(thetaG1) .* 1);

297

298 del g1 vy e2=1i*( −1* p imag .* sin(thetaG1 ) .* 1 − p real ...
.* cos(thetaG1) .* 1);

299

300
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301 del g2 vy e1=(−1* p real .* sin(thetaG2) .* 1 + p imag .* ...
cos(thetaG2) .* 1);

302

303 del g2 vy e2=1i*( −1* p imag .* sin(thetaG2 ) .* 1 − p real ...
.* cos(thetaG2) .* 1);

304

305

306 del g3 vy e1=(−1* p real .* sin(thetaG3) .* −1 + p imag .* ...
cos(thetaG3) .* −1);

307

308 del g3 vy e2=1i*(−1* p imag .* sin(thetaG3) .* −1 − p real ...
.* cos(thetaG3) .* −1);

309

310

311 del g4 vy e1=( −1* p real .* sin(thetaG4 ) .* 0 + p imag .* ...
cos(thetaG4) .* 0);

312

313 del g4 vy e2=1i*(−1* p imag .* sin(thetaG4 ) .* 0 − p real ...
.* cos(thetaG4) .* 0);

314

315

316

317

318 G1 vy = del g1 vy e1+del g1 vy e2;
319

320

321 G2 vy = del g2 vy e1+del g2 vy e2;
322

323 G3 vy = del g3 vy e1+del g3 vy e2;
324

325

326 G4 vy = del g4 vy e1+del g4 vy e2;
327

328

329 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
330

331

332

333 p1=proj1 − m1;
334 p2=proj2 − m2;
335 p3=proj3 − m3;
336 p4=proj4 − m4;
337

338

339

340 del fu G1=2*ifft2(p1,n,n);
341 del fu G2=2*ifft2(p2,n,n);
342 del fu G3=2*ifft2(p3,n,n);
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343 del fu G4=2*ifft2(p4,n,n);
344

345

346

347

348

349

350

351

352

353 DEL F real p REAL = (real(del fu G1) .* real(G1 real p)) + ...
(real(del fu G2) .* real(G2 real p)) + (real(del fu G3) ...
.* real(G3 real p)) + (real(del fu G4) .* real(G4 real p));

354

355

356 DEL F imag p REAL = (real(del fu G1) .* real(G1 imag p)) + ...
(real(del fu G2) .* real(G2 imag p)) + (real(del fu G3) ...
.* real(G3 imag p)) + (real(del fu G4) .* real( G4 imag p));

357

358

359 DEL F vx REAL = (real(del fu G1) .* real(G1 vx)) + ...
(real(del fu G2) .* real(G2 vx)) + (real(del fu G3) .* ...
real(G3 vx)) + (real(del fu G4) .* real( G4 vx));

360

361

362 DEL F vy REAL = (real(del fu G1) .* real(G1 vy)) + ...
(real(del fu G2) .* real(G2 vy)) + (real(del fu G3) .* ...
real(G3 vy)) + (real(del fu G4) .* real(G4 vy));

363

364

365

366

367 DEL F real p IMAG = (imag(del fu G1) .* imag(G1 real p)) + ...
(imag(del fu G2) .* imag(G2 real p)) + (imag(del fu G3) ...
.* imag(G3 real p)) + (imag(del fu G4) .* imag(G4 real p));

368

369

370 DEL F imag p IMAG = (imag(del fu G1) .* imag(G1 imag p)) + ...
(imag(del fu G2) .* imag(G2 imag p)) + (imag(del fu G3) ...
.* imag(G3 imag p)) + (imag(del fu G4) .* imag(G4 imag p));

371

372

373 DEL F vx IMAG = (imag(del fu G1) .* imag(G1 vx)) + ...
(imag(del fu G2) .* imag(G2 vx)) + (imag(del fu G3) .* ...
imag(G3 vx)) + (imag(del fu G4) .* imag(G4 vx));

374

375
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376 DEL F vy IMAG = (imag(del fu G1) .* imag(G1 vy)) + ...
(imag(del fu G2) .* imag(G2 vy)) + (imag(del fu G3) .* ...
imag(G3 vy)) + (imag(del fu G4) .* imag(G4 vy));

377

378

379

380

381 DEL F real p = DEL F real p REAL + ...
DEL F real p IMAG;

382

383 DEL F imag p = DEL F imag p REAL + ...
DEL F imag p IMAG;

384

385 DEL F vx = DEL F vx REAL + DEL F vx IMAG;
386

387 DEL F vy = DEL F vy REAL + DEL F vy IMAG;
388

389

390

391

392 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
393 %−−−−− Gradient for Regularization −−−−−−−−−−−−−
394 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
395

396

397

398

399

400

401 %−−−−−−−−−−−−−−−− Middle −−−−−−−−
402

403

404

405 for i=2:n−1
406

407 for j=2:n−1
408

409

410

411 DEL R real p(i,j) = (2 * lamda 1)*( p real(i,j+1) ...
− p real(i,j) + p real(i,j−1) − p real(i,j) + ...
p real(i+1,j)−p real(i,j) + ...
p real(i−1,j)−p real(i,j) );

412

413 DEL R imag p(i,j) = (2 * lamda 1)*( p imag(i,j+1) ...
− p imag(i,j) + p imag(i,j−1) − p imag(i,j) + ...
p imag(i+1,j)−p imag(i,j) + ...
p imag(i−1,j)−p imag(i,j) ) ;
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414

415 DEL R vx(i,j) = (2 * lamda 2)*( v x(i,j+1) − ...
v x(i,j) + v x(i,j−1)−v x(i,j) + ...
v x(i+1,j)−v x(i,j) + v x(i−1,j)−v x(i,j) );

416

417 DEL R vy(i,j) = (2 * lamda 2)*( ...
v y(i,j+1)−v y m(i,j) + ...
v y(i,j−1)−v y m(i,j) + ...
v y(i+1,j)−v y m(i,j) + ...
v y(i−1,j)−v y(i,j) );

418

419

420

421 end
422

423 end
424

425

426 %−−−−−−−−−−−−−−−− Left −−−−−−−−−−−
427

428

429 j=1;
430

431 for i=2:n−1
432

433

434

435 DEL R real p(i,j) = (2 * lamda 1)*( p real(i,j+1) ...
−p real(i,j) + p real(i+1,j)−p real(i,j) + ...
p real(i−1,j)−p real(i,j) );

436

437 DEL R imag p(i,j) = (2 * lamda 1)*( ...
p imag(i,j+1)−p imag(i,j) + ...
p imag(i+1,j)−p imag(i,j) + ...
p imag(i−1,j)−p imag(i,j) ) ;

438

439 DEL R vx(i,j) = (2 * lamda 2)*( ...
v x(i,j+1)−v x(i,j) + v x(i+1,j)−v x(i,j) + ...
v x(i−1,j)−v x(i,j) );

440

441 DEL R vy(i,j) = (2 * lamda 2)*( ...
v y(i,j+1)−v y(i,j) + v y(i+1,j)−v y(i,j) + ...
v y(i−1,j)−v y(i,j) );

442

443

444

445 end
446
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447

448

449

450

451

452 %−−−−−−−−−−−−−−−− Right −−−−−−−−−
453

454

455 j=n;
456

457 for i=2:n−1
458

459

460

461 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j−1)−p real(i,j)) + ...
(p real(i+1,j)−p real(i,j)) + ...
(p real(i−1,j)−p real(i,j)) );

462

463 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j−1)−p imag(i,j)) + ...
(p imag(i+1,j)−p imag(i,j)) + ...
(p imag(i−1,j)−p imag(i,j)) ) ;

464

465 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j−1)−v x(i,j)) + ...
(v x(i+1,j)−v x(i,j)) + ...
(v x(i−1,j)−v x(i,j)) );

466

467 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j−1)−v y(i,j)) + ...
(v y(i+1,j)−v y(i,j)) + ...
(v y(i−1,j)−v y(i,j)) );

468

469

470

471 end
472

473

474

475

476

477

478

479

480 %−−−−−−−−−−−−−−−− Top −−−−−−−−−−−−−−−
481

482
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483 i=1;
484

485 for j=2:n−1
486

487

488

489 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j+1)−p real(i,j)) + ...
(p real(i,j−1)−p real(i,j)) + ...
(p real(i+1,j)−p real(i,j)) );

490

491 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j+1)−p imag(i,j)) + ...
(p imag(i,j−1)−p imag(i,j)) + ...
(p imag(i+1,j)−p imag(i,j)) ) ;

492

493 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j+1)−v x(i,j)) + ...
(v x(i,j−1)−v x(i,j)) + ...
(v x(i+1,j)−v x(i,j)) );

494

495 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j+1)−v y(i,j)) + ...
(v y(i,j−1)−v y(i,j)) + ...
(v y(i+1,j)−v y(i,j)) );

496

497

498

499 end
500

501

502

503 %−−−−−−−−−−−−−−−− Bottom −−−−−−−−−−
504

505

506

507 i=n;
508

509 for j=2:n−1
510

511

512

513 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j+1)−p real(i,j)) + ...
(p real(i,j−1)−p real(i,j)) + ...
(p real(i−1,j)−p real(i,j)) );

514
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515 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j+1)−p imag(i,j)) + ...
(p imag(i,j−1)−p imag(i,j)) + ...
(p imag(i−1,j)−p imag(i,j)) ) ;

516

517 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j+1)−v x(i,j)) + ...
(v x(i,j−1)−v x(i,j)) + ...
(v x(i−1,j)−v x(i,j)) );

518

519 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j+1)−v y(i,j)) + ...
(v y(i,j−1)−v y(i,j)) + ...
(v y(i−1,j)−v y(i,j)) );

520

521

522

523 end
524

525

526

527

528 %−−−−−−−−−−−−−−−− TL−−−−−−−−−−−
529

530

531 i=1;
532 j=1;
533

534

535

536 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j+1)−p real(i,j)) + ...
(p real(i+1,j)−p real(i,j)) );

537

538 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j+1)−p imag(i,j)) + ...
(p imag(i+1,j)−p imag(i,j)) ) ;

539

540 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j+1)−v x(i,j)) + ...
(v x(i+1,j)−v x(i,j)) );

541

542 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j+1)−v y(i,j)) + ...
(v y(i+1,j)−v y(i,j)) );

543

544

545
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546

547 %−−−−−−−−−−−−−−−− TR −−−−−−−−−−−−−
548

549 i=1;
550 j=n;
551

552 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i+1,j)−p real(i,j)) + ...
(p real(i,j−1)−p real(i,j)) );

553

554 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i+1,j)−p imag(i,j)) + ...
(p imag(i,j−1)−p imag(i,j)) ) ;

555

556 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i+1,j)−v x(i,j)) + ...
(v x(i,j−1)−v x(i,j)) );

557

558 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i+1,j)−v y(i,j)) + ...
(v y(i,j−1)−v y(i,j)) );

559

560

561

562

563

564

565 %−−−−−−−−−−−−−−−− BL −−−−−−−−−−−−−−−
566

567 i=n;
568 j=1;
569

570

571 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j+1)−p real(i,j)) + ...
(p real(i−1,j)−p real(i,j)) );

572

573 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j+1)−p imag(i,j)) + ...
(p imag(i−1,j)−p imag(i,j)) ) ;

574

575 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j+1)−v x(i,j)) + ...
(v x(i−1,j)−v x(i,j)) );

576

577 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j+1)−v y(i,j)) + ...
(v y(i−1,j)−v y(i,j)) );
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578

579

580

581

582 %−−−−−−−−−−−−−−−− BR −−−−−−−−−−−−−−−
583

584

585 i=n;
586 j=n;
587

588

589

590 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j−1)−p real(i,j)) + ...
(p real(i−1,j)−p real(i,j)) );

591

592 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j−1)−p imag(i,j)) + ...
(p imag(i−1,j)−p imag(i,j)) ) ;

593

594 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j−1)−v x(i,j)) + ...
(v x(i−1,j)−v x(i,j)) );

595

596 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j−1)−v y(i,j)) + ...
(v y(i−1,j)−v y(i,j)) );

597

598 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
599 %−−−−−− Regularization −−−−−−−−−
600 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
601

602

603

604

605

606 p real r x= 0;
607 p imag r x=0;
608 v x r x=0;
609 v y r x=0;
610

611

612 p real r y= 0;
613 p imag r y=0;
614 v x r y=0;
615 v y r y=0;
616

617 for i=1:n
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618

619 for j=1:n−1
620

621

622

623 p real r x =+ (real(p m(i,j+1))−real(p m(i,j))) * ...
(real(p m(i,j+1))−real(p m(i,j)));

624 p imag r x =+ (imag(p m(i,j+1))−imag(p m(i,j))) * ...
(imag(p m(i,j+1))−imag(p m(i,j))) ;

625 v x r x =+ (v x m(i,j+1)−v x m(i,j) * ...
v x m(i,j+1)−v x m(i,j));

626 v y r x =+ (v y m(i,j+1)−v y m(i,j) * ...
v y m(i,j+1)−v y m(i,j));

627

628

629

630 end
631

632 end
633

634

635

636 for j=1:n
637 for i=1:n−1
638

639

640 p real r y =+ ...
((real(p m(i+1,j))−real(p m(i,j)) )* ...
(real(p m(i+1,j))−real(p m(i,j)))) ;

641 p imag r y =+ ...
((imag(p m(i+1,j))−imag(p m(i,j)) )* ...
(imag(p m(i+1,j))−imag(p m(i,j))) );

642 v x r y =+ ((v x m(i+1,j)−v x m(i,j)) * ...
(v x m(i+1,j)−v x m(i,j)));

643 v y r y =+ ((v y m(i+1,j)−v y m(i,j) ) * ...
(v y m(i+1,j)−v y m(i,j)) );

644

645

646 end
647 end
648

649

650 p real r = p real r x + p real r y;
651 p imag r = p imag r x + p imag r y;
652 v x r = v x r x + v x r y;
653 v y r = v y r x + v y r y;
654

655
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656

657

658 f=sum(f obj)+(lamda 1*p real r)
659 +(lamda 1*p imag r)
660 +(lamda 2*v x r)+(lamda 2*v y r);
661

662

663 g=[(DEL F real p + DEL R real p ) ;(DEL F imag p + ...
DEL R imag p);(DEL F vx + DEL R vx);(DEL F vy + ...
DEL R vy)];

A2: Objective function in Image space

1

2 function [f g] = objFun(A)
3 % n − The size of the Image
4 % R − Radius of the vessel
5 % V max − Maximum velocity of blood
6 % p − Proton density matrix
7 % v x − Matrix containg x components of Velocity vector
8 % v y − Matrix containg y components of Velocity vector
9 % (G 0,G 1,G neg 1) − Gradient Sensitization vectors

10 %
11

12 n=32;
13 lamda 1=1e−4;
14 lamda 2=1e−1;
15

16

17 [c,d] = size(A);
18 p real = A(1:c/4,:);
19 p imag = A((c/4)+1:(c/4)+d,:);
20 v x = A(((c/4)+d)+1:(c/4)+2*d,:);
21 v y = A(((c/4)+2*d)+1:c,:);
22

23 R=n/8;
24 v max=1;
25 v y m=zeros(n,n);
26 p m= zeros(n,n);
27 snr=25;
28 G 0=zeros(n,n);
29 G 1=ones(n,n);
30 G neg 1=−(ones(n,n));
31

32
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33

34 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 %−−−−−− Measurement −−−−−−−−−
36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37

38 for l = 1:n
39 for m = 1:n
40

41 if (distance([l,m], [n/2,m]) ≥ R)
42 p m(l,m) = 1i;
43 v x m(l,m) = 0;
44

45 else
46

47 p m(l,m) = 2.5;
48 v x m(l,m) = v max*(1−((distance([l,m], ...

[n/2,m]))ˆ2/Rˆ2));
49

50

51 end
52

53

54 end
55 end
56

57

58 [c,d] = size(A);
59 p real = A(1:c/4,:);
60 p imag = A((c/4)+1:(c/4)+d,:);
61 v x = A(((c/4)+d)+1:(c/4)+2*d,:);
62 v y = A(((c/4)+2*d)+1:c,:);
63

64

65 m1=p m.*(exp(−1i*(G 0 .* v x m + G 1 .* v y m)));
66 m2=p m.*(exp(−1i*(G 1 .* v x m + G 1 .* v y m)));
67 m3=p m.*(exp(−1i*(G 1 .* v x m + G neg 1 .* v y m)));
68 m4=p m.*(exp(−1i*(G 1 .* v x m + G 0 .* v y m)));
69

70

71

72

73

74

75 k=1;
76

77 for i=1:n
78 for j=1:n
79
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80

81

82 real G1 = (p real(i,j)*cos((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))) ) + ...
(p imag(i,j)*sin((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) ) − real(m1(i,j));

83 imag G1 = (p imag(i,j)*cos((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))) ) − ...
(p real(i,j)*sin((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) ) − imag(m1(i,j));

84

85 real G2 = (p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))) ) + ...
(p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) ) − real(m2(i,j));

86 imag G2 = (p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))) ) − ...
(p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) ) − imag(m2(i,j));

87

88 real G3 = (p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j))) ) + ...
(p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j)) ) ) − real(m3(i,j));

89 imag G3 = (p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j))) ) − ...
(p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j)) ) ) − imag(m3(i,j));

90

91 real G4 = (p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j))) ) + ...
(p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j)) ) ) − real(m4(i,j));

92 imag G4 = (p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j))) ) − ...
(p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j)) ) ) − imag(m4(i,j));

93

94

95

96 f1 = (real G1)ˆ2 + (imag G1)ˆ2;
97

98 f2 = (real G2)ˆ2 + (imag G2)ˆ2;
99

100 f3 = (real G3)ˆ2 + (imag G3)ˆ2;
101

102 f4 = (real G4)ˆ2 + (imag G4)ˆ2;
103
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104

105

106 f obj(k)=f1+f2+f3+f4;
107

108 k=k+1;
109

110 % Gradient w.r.t real(p) along directions G1,G2,G3,G4
111

112 G1 real p = 2*(real G1)*cos((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))) − ...
2*(imag G1)*sin((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) );

113

114 G2 real p = 2*(real G2)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))) − ...
2*(imag G2)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) );

115

116 G3 real p = 2*(real G3)*cos((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j))) − ...
2*(imag G3)*sin((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j)) );

117

118 G4 real p = 2*(real G4)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j))) − ...
2*(imag G4)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j)) );

119

120

121 % Gradient w.r.t imag(p) along directions G1,G2,G3,G4
122

123 G1 imag p = 2*(real G1)*sin((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))) + ...
2*(imag G1)*cos((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) );

124

125 G2 imag p = 2*(real G2)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))) + ...
2*(imag G2)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) );

126

127 G3 imag p = 2*(real G3)*sin((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j))) + ...
2*(imag G3)*cos((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j)) );

128

129 G4 imag p = 2*(real G4)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j))) + ...
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2*(imag G4)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j)) );

130

131

132 % Gradient w.r.t vx along directions G1,G2,G3,G4
133

134 G1 vx e1 = 2*(real G1)*( −1* ...
p real(i,j)*sin((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) *G 0(i,j) + ...
p imag(i,j)*cos((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)))* G 0(i,j));

135

136

137 G1 vx e2 = 2*(imag G1)*( −1* ...
p imag(i,j)*sin((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) *G 0(i,j) − ...
p real(i,j)*cos((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)))* G 0(i,j));

138

139

140 G2 vx e1 = 2*(real G2)*( −1* ...
p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) *G 1(i,j) + ...
p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)))* G 1(i,j));

141

142 G2 vx e2 = 2*(imag G2)*( −1* ...
p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) *G 1(i,j) − ...
p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))))* G 1(i,j);

143

144 G3 vx e1 = 2*(real G3)*( −1* ...
p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j)) ) *G 1(i,j) + ...
p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j))))* G 1(i,j);

145

146 G3 vx e2 = 2*(imag G3)*( −1* ...
p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j)) ) *G 1(i,j) − ...
p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j))))* G 1(i,j);

147

148 G4 vx e1 = 2*(real G4)*( −1* ...
p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j)) ) *G 1(i,j) + ...
p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
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(G 0(i,j)*v y(i,j))))* G 1(i,j);
149

150 G4 vx e2 = 2*(imag G4)*( −1* ...
p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j)) ) *G 1(i,j) − ...
p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j))))* G 1(i,j);

151

152 % Gradient w.r.t vy along directions G1,G2,G3,G4
153

154 G1 vy e1 = 2*(real G1)*( −1* ...
p real(i,j)*sin((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) *G 1(i,j) + ...
p imag(i,j)*cos((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))))* G 1(i,j);

155

156 G1 vy e2 = 2*(imag G1)*( −1* ...
p imag(i,j)*sin((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) *G 1(i,j) − ...
p real(i,j)*cos((G 0(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))))* G 1(i,j);

157

158

159 G2 vy e1 = 2*(real G2)*( −1* ...
p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) *G 1(i,j) + ...
p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))))* G 1(i,j);

160

161 G2 vy e2 = 2*(imag G2)*( −1* ...
p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j)) ) *G 1(i,j) − ...
p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 1(i,j)*v y(i,j))))* G 1(i,j);

162

163 G3 vy e1 = 2*(real G3)*( −1* ...
p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j)) ) *G neg 1(i,j) + ...
p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j))))* G neg 1(i,j);

164

165 G3 vy e2 = 2*(imag G3)*( −1* ...
p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j)) ) *G neg 1(i,j) − ...
p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G neg 1(i,j)*v y(i,j))))* G neg 1(i,j);

166

167
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168 G4 vy e1 = 2*(real G4)*( −1* ...
p real(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j)) ) *G 0(i,j) + ...
p imag(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j))))* G 0(i,j);

169

170 G4 vy e2 = 2*(imag G4)*( −1* ...
p imag(i,j)*sin((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j)) ) *G 0(i,j) − ...
p real(i,j)*cos((G 1(i,j)*v x(i,j) ) + ...
(G 0(i,j)*v y(i,j))))* G 0(i,j);

171

172

173

174 g real p(i,j) = G1 real p+G2 real p+G3 real p+G4 real p;
175

176 g imag p(i,j) = G1 imag p+G2 imag p+G3 imag p+G4 imag p;
177

178 g vx(i,j) = G1 vx e1+G1 vx e2+G2 vx e1
179 +G2 vx e2+G3 vx e1+G3 vx e2
180 +G4 vx e1+G4 vx e2;
181

182 g vy(i,j) = G1 vy e1+G1 vy e2+G2 vy e1
183 +G2 vy e2+G3 vy e1+G3 vy e2
184 +G4 vy e1+G4 vy e2;
185

186

187

188 end
189

190

191 end
192

193

194

195

196

197 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
198 %−−−−−−−Gradient for Regularization −−−−−−−
199 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
200

201

202

203

204

205

206 %−−−−−−−−−−−−−−−− Middle −−−−−−−−−
207
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208

209

210 for i=2:n−1
211

212 for j=2:n−1
213

214

215

216 DEL R real p(i,j) = (2 * lamda 1)*( p real(i,j+1) ...
− p real(i,j) + p real(i,j−1) − p real(i,j) + ...
p real(i+1,j)−p real(i,j) + ...
p real(i−1,j)−p real(i,j) );

217

218 DEL R imag p(i,j) = (2 * lamda 1)*( p imag(i,j+1) ...
− p imag(i,j) + p imag(i,j−1) − p imag(i,j) + ...
p imag(i+1,j)−p imag(i,j) + ...
p imag(i−1,j)−p imag(i,j) ) ;

219

220 DEL R vx(i,j) = (2 * lamda 2)*( v x(i,j+1) − ...
v x(i,j) + v x(i,j−1)−v x(i,j) + ...
v x(i+1,j)−v x(i,j) + v x(i−1,j)−v x(i,j) );

221

222 DEL R vy(i,j) = (2 * lamda 2)*( ...
v y(i,j+1)−v y m(i,j) + ...
v y(i,j−1)−v y m(i,j) + ...
v y(i+1,j)−v y m(i,j) + ...
v y(i−1,j)−v y(i,j) );

223

224

225

226 end
227

228 end
229

230

231 %−−−−−−−−−−−−−−−− Left −−−−−−−−−−−−−−−−−
232

233

234 j=1;
235

236 for i=2:n−1
237

238

239

240 DEL R real p(i,j) = (2 * lamda 1)*( p real(i,j+1) ...
−p real(i,j) + p real(i+1,j)−p real(i,j) + ...
p real(i−1,j)−p real(i,j) );

241
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242 DEL R imag p(i,j) = (2 * lamda 1)*( ...
p imag(i,j+1)−p imag(i,j) + ...
p imag(i+1,j)−p imag(i,j) + ...
p imag(i−1,j)−p imag(i,j) ) ;

243

244 DEL R vx(i,j) = (2 * lamda 2)*( ...
v x(i,j+1)−v x(i,j) + v x(i+1,j)−v x(i,j) + ...
v x(i−1,j)−v x(i,j) );

245

246 DEL R vy(i,j) = (2 * lamda 2)*( ...
v y(i,j+1)−v y(i,j) + v y(i+1,j)−v y(i,j) + ...
v y(i−1,j)−v y(i,j) );

247

248

249

250 end
251

252

253

254

255

256

257 %−−−−−−−−−−−−−−−− Right −−−−−−−−−−−−−−−−−
258

259

260 j=n;
261

262 for i=2:n−1
263

264

265

266 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j−1)−p real(i,j)) + ...
(p real(i+1,j)−p real(i,j)) + ...
(p real(i−1,j)−p real(i,j)) );

267

268 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j−1)−p imag(i,j)) + ...
(p imag(i+1,j)−p imag(i,j)) + ...
(p imag(i−1,j)−p imag(i,j)) ) ;

269

270 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j−1)−v x(i,j)) + ...
(v x(i+1,j)−v x(i,j)) + ...
(v x(i−1,j)−v x(i,j)) );

271

272 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j−1)−v y(i,j)) + ...
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(v y(i+1,j)−v y(i,j)) + ...
(v y(i−1,j)−v y(i,j)) );

273

274

275

276 end
277

278

279

280

281

282

283

284

285 %−−−−−−−−−−−−−−−− Top −−−−−−−−−−−−−
286

287

288 i=1;
289

290 for j=2:n−1
291

292

293

294 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j+1)−p real(i,j)) + ...
(p real(i,j−1)−p real(i,j)) + ...
(p real(i+1,j)−p real(i,j)) );

295

296 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j+1)−p imag(i,j)) + ...
(p imag(i,j−1)−p imag(i,j)) + ...
(p imag(i+1,j)−p imag(i,j)) ) ;

297

298 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j+1)−v x(i,j)) + ...
(v x(i,j−1)−v x(i,j)) + ...
(v x(i+1,j)−v x(i,j)) );

299

300 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j+1)−v y(i,j)) + ...
(v y(i,j−1)−v y(i,j)) + ...
(v y(i+1,j)−v y(i,j)) );

301

302

303

304 end
305

306
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307

308 %−−−−−−−−−−−−−−−− Bottom −−−−−−−−−−−−−−−−
309

310

311

312 i=n;
313

314 for j=2:n−1
315

316

317

318 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j+1)−p real(i,j)) + ...
(p real(i,j−1)−p real(i,j)) + ...
(p real(i−1,j)−p real(i,j)) );

319

320 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j+1)−p imag(i,j)) + ...
(p imag(i,j−1)−p imag(i,j)) + ...
(p imag(i−1,j)−p imag(i,j)) ) ;

321

322 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j+1)−v x(i,j)) + ...
(v x(i,j−1)−v x(i,j)) + ...
(v x(i−1,j)−v x(i,j)) );

323

324 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j+1)−v y(i,j)) + ...
(v y(i,j−1)−v y(i,j)) + ...
(v y(i−1,j)−v y(i,j)) );

325

326

327

328 end
329

330

331

332

333 %−−−−−−−−−−−−−−−− TL−−−−−−−−−−−−−−−−−−−−−
334

335

336 i=1;
337 j=1;
338

339

340

341 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j+1)−p real(i,j)) + ...
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(p real(i+1,j)−p real(i,j)) );
342

343 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j+1)−p imag(i,j)) + ...
(p imag(i+1,j)−p imag(i,j)) ) ;

344

345 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j+1)−v x(i,j)) + ...
(v x(i+1,j)−v x(i,j)) );

346

347 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j+1)−v y(i,j)) + ...
(v y(i+1,j)−v y(i,j)) );

348

349

350

351

352 %−−−−−−−−−−−−−−−− TR −−−−−−−−−−−−−−−−−−
353

354 i=1;
355 j=n;
356

357 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i+1,j)−p real(i,j)) + ...
(p real(i,j−1)−p real(i,j)) );

358

359 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i+1,j)−p imag(i,j)) + ...
(p imag(i,j−1)−p imag(i,j)) ) ;

360

361 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i+1,j)−v x(i,j)) + ...
(v x(i,j−1)−v x(i,j)) );

362

363 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i+1,j)−v y(i,j)) + ...
(v y(i,j−1)−v y(i,j)) );

364

365

366

367

368

369

370 %−−−−−−−−−−−−−−−− BL −−−−−−−−−−−−−−−−−−−−−−−
371

372 i=n;
373 j=1;
374

57



M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster –
Computational Engineering and Science

375

376 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j+1)−p real(i,j)) + ...
(p real(i−1,j)−p real(i,j)) );

377

378 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j+1)−p imag(i,j)) + ...
(p imag(i−1,j)−p imag(i,j)) ) ;

379

380 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j+1)−v x(i,j)) + ...
(v x(i−1,j)−v x(i,j)) );

381

382 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j+1)−v y(i,j)) + ...
(v y(i−1,j)−v y(i,j)) );

383

384

385

386

387 %−−−−−−−−−−−−−−−− BR −−−−−−−−−−−−−−−−−
388

389

390 i=n;
391 j=n;
392

393

394

395 DEL R real p(i,j) = (2 * lamda 1)*( ...
(p real(i,j−1)−p real(i,j)) + ...
(p real(i−1,j)−p real(i,j)) );

396

397 DEL R imag p(i,j) = (2 * lamda 1)*( ...
(p imag(i,j−1)−p imag(i,j)) + ...
(p imag(i−1,j)−p imag(i,j)) ) ;

398

399 DEL R vx(i,j) = (2 * lamda 2)*( ...
(v x(i,j−1)−v x(i,j)) + ...
(v x(i−1,j)−v x(i,j)) );

400

401 DEL R vy(i,j) = (2 * lamda 2)*( ...
(v y(i,j−1)−v y(i,j)) + ...
(v y(i−1,j)−v y(i,j)) );

402

403

404

405

406 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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407 %−−−−−−−−−−−−−−−− Regularization −−−−−−−−−
408 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
409

410

411

412

413

414 p real r x= 0;
415 p imag r x=0;
416 v x r x=0;
417 v y r x=0;
418

419

420 p real r y= 0;
421 p imag r y=0;
422 v x r y=0;
423 v y r y=0;
424

425 for i=1:n
426

427 for j=1:n−1
428

429

430

431 p real r x =+ (p real(i,j+1)−p real(i,j)) * ...
(p real(i,j+1)−p real(i,j));

432 p imag r x =+ (p imag(i,j+1)−p imag(i,j)) * ...
(p imag(i,j+1)−p imag(i,j)) ;

433 v x r x =+ (v x(i,j+1)−v x(i,j) * v x(i,j+1)−v x(i,j));
434 v y r x =+ (v y(i,j+1)−v y(i,j) * v y(i,j+1)−v y(i,j));
435

436

437

438 end
439

440 end
441

442

443

444 for j=1:n
445 for i=1:n−1
446

447

448 p real r y =+ ((p real(i+1,j)−p real(i,j) )* ...
(p real(i+1,j)−p real(i,j))) ;

449 p imag r y =+ ((p imag(i+1,j)−p imag(i,j) )* ...
(p imag(i+1,j)−p imag(i,j)) );
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450 v x r y =+ ((v x(i+1,j)−v x(i,j)) * ...
(v x(i+1,j)−v x(i,j)));

451 v y r y =+ ((v y(i+1,j)−v y(i,j) ) * ...
(v y(i+1,j)−v y(i,j)) );

452

453

454 end
455 end
456

457

458 p real r = p real r x + p real r y;
459 p imag r = p imag r x + p imag r y;
460 v x r = v x r x + v x r y;
461 v y r = v y r x + v y r y;
462

463 f=sum(f obj)+lamda 1*p real r
464 +lamda 1*p imag r
465 +lamda 2*v x r+lamda 2*v y r;
466

467

468 g=[g real p;g imag p;g vx;g vy];

A3: Optimization function call

1 options = optimset('GradObj','on','Display','iter',
2 'MaxIter',500,'TolX',1e−200,
3 'TolFun',1e−200,'MaxFunEvals',
4 1000000,'LargeScale','off',
5 'UseParallel','always');
6

7

8

9 p initial= ones(n,n)+1i*zeros(n,n);
10

11

12

13

14 A=[real(p initial);imag(p initial);ones(n,n);zeros(n,n)];
15

16

17 tic;
18

19 [x fval] = fminunc('objFunK',A,options);
20

21 toc;
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22

23

24

25

26 [c,d] = size(x);
27 p real = (x(1:c/4,:));
28 p imag = (x((c/4)+1:(c/4)+d,:));
29 p=(p real+1i*p imag);
30 v x = (x(((c/4)+d)+1:(c/4)+2*d,:));
31 v y = (x(((c/4)+2*d)+1:c,:));
32

33 preal=reshape(v x,1,[]);
34 pimag=reshape(v x,1,[]);
35 vx=reshape(v x,1,[]);
36 vy=reshape(v x,1,[]);
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