Sparse Sampling of Velocity MRI

Sparse Sampling of Velocity MRI

By Yogesh Chinta Venkateswarao B.E. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Applied Science

McMaster University © Copyright by Yogesh Chinta Venkateswarao, July 20, 2011 Master of Applied Science(2011) Computational Engineering and Science McMaster University Hamilton, Ontario

TITLE: Sparse Sampling of Velocity MRI

AUTHOR: Yogesh Chinta Venkateswarao B.E.

SUPERVISOR: Dr. Christopher Anand

NUMBER OF PAGES: xi, 61

LEGAL DISCLAIMER: This is an academic research report. I, my supervisor, defence committee, and university, make no claim as to the fitness for any purpose, and accept no direct or indirect liability for the use of algorithms, findings, or recommendations in this thesis.

Abstract

Standard MRI is used to image objects at rest. In addition to standard MRI images, which measure tissues at rest, Phase Contrast MRI can be used to quantify the motion of blood and tissue in the human body. The current method used in Phase Contrast MRI is time consuming. The development of new trajectories has minimized imaging time, but creates sub-sampling errors. The proposed method uses regularization of velocities and proton densities to eliminate errors arising from k-space under-sampling.

Acknowledgments

I express my sincere gratitude to my supervisor, Dr. Christopher Anand, for his neverending helpfulness, encouragement and guidance during the course of my Master's degree.

I would like to thank my late grandparents, Shri G. Sadagopan and Smt S. Suseela, my mother, Dr.C. Sridevi and my aunt, Ms S. Vijayalakshmi and both my brothers (Lak and Deepu) for their support and constant encouragement. I would also like to thank my friends, especially my fellow students at ITB 229 for their help and encouragement.

Contents

Abstract				
A	knowledgments	\mathbf{v}		
Li	t of Figures	viii		
Li	t of Tables	x		
1	Introduction and Background Information	1		
	1.1 Document Structure	. 1		
	1.2 Principles of MRI	. 1		
	1.2.1 Phase Contrast Angiography	. 2		
	1.2.2 K-Space	. 7		
	1.3 Process Goal	. 8		
2	Optimization Model	11		
	2.1 Inverse Problem	. 11		
	2.2 Regularization	. 12		
	2.2.1 Model in Image Space	. 14		
	2.2.2 Model in K-space	. 15		
	2.3 Implementation	. 18		
3	Numerical Results	19		
4	Conclusion and Future Work	27		
5	Appendix A: Matlab Codes	29		

List of Figures

Protons at rest in a static magnetic field are randomly dis- tributed with a small not memory parallel to the main field	9		
The net me metic means and time d into the transmission of the	3		
I ne net magnetic moments are tipped into the transverse plain	4		
by the RF pulse.	4		
Net moments after a velocity-encoding bipolar gradient pulse.			
Bipolar gradient pulse.			
Full versus half k-space. [Moz08]			
.6 Laminar flow velocity phantom used in this thesis			
Depiction of flow as a continuous velocity field, with the maxi-			
mum flow in the centre of the region of interest	9		
Real part of a measured image, showing noise, and the real part			
of the reconstructed ρ , the proton density	19		
Imaginary part of a measured image, showing noise, and the			
imaginary part of the reconstructed ρ , the proton density	20		
Velocity components in the x and y directions			
Image reconstructed from partial k-space with (1,0) sensitiza-			
tion, real and imaginary parts	22		
Proton density estimate from multiple partial k-space data sets;			
real and imaginary parts	23		
Velocity (x- and y-components) estimated, using regularization,			
from partial k-space data sets	24		
L-curve showing the variation in the fit-to-data term versus			
$\ \delta\rho\ ^2$ as λ_1 varies with $\lambda_2 = 1e^{-4}$ held constant.	25		
L-curve showing the variation in the fit-to-data term versus			
$\ \delta V\ ^2$ as λ_2 varies with $\lambda_1 = 1e^{-4}$ held constant.	26		
L-curve where $\lambda_1 = 1e^{-04}$	26		
	Protons at rest in a static magnetic field are randomly distributed with a small net moment parallel to the main field. The net magnetic moments are tipped into the transverse plain by the RF pulse		

List of Tables

3.1	Execution time in Image space	21
3.2	Execution time in K-space	23
4.1	Execution time for image-space model using L-BFGS calling	
	function and gradient written in C.	28

Chapter 1

Introduction and Background Information

1.1 Document Structure

We begin with an introduction to the study of Magnetic Resonance Imaging by giving a basic summary of its governing equations and related principles of phase-contrast angiography. We then introduce the optimization model, which is the focus of this thesis in order to describe the use of under-sampling in k-space and give a basic idea of what can be done to improve its results. The functions used in the optimization, including the penalties, are described and numerical examples of this method are provided. Conclusions are then drawn and required future work is discussed. Matlab codes used in this thesis are described in the appendix.

1.2 Principles of MRI

Protons, electrons and neutrons in a magnetic field possess a nuclear spin angular momentum which is a fundamental property of nature; they act like tiny toy tops that wobble as they spin. The rate of the wobbling or precession is what is known as magnetic resonance or Larmor frequency [HBTV99], [Hah60]. The magnetic resonance signal is acquired from precessing magnetic moments of protons. We refer to this magnetic resonance as spin. The principle of Magnetic Resonance Imaging (MRI) is based on the interaction of these spins with three types of magnetic fields:

1. the static magnetic field, around which the protons precess.

- 2. the radio frequency field, used for tipping the protons to generate a signal that can be read.
- 3. the gradient fields, used for imaging the position of the object being measured, and to quantify velocity and other properties of tissues.

In the absence of an external magnetic field, the spins are oriented randomly and the net magnetic moment is zero. However, in the presence of an external magnetic field, the spins will align with or against the external magnetic field, but the net magnetic moment vector is in alignment with the external field. Also the nuclear spins exhibit resonance at the Larmor frequency. The exposure of an object or a person to radio-frequency (RF) pulse at the Larmor frequency causes the net magnetization to spiral away from the main magnetic field. After a certain length of time, the net magnetization vector rotates 90 degrees and lies in the transverse or x-y plane. It is in this position that the transverse component is measured. The pulse sequences between the initial RF pulse and the measurement determine the meaning of the signal. This is called the preparation phase, and it is possible to generate signals weighted by the amount of free water, fat, white matter, grey matter etc. If each of the regions of spin was to experience a unique magnetic field we would be able to image their positions. A gradient in the magnetic field is what will allow us to accomplish this. A magnetic field gradient is a variation in the magnetic field with respect to position. In this thesis we will be concerned with the quantification of velocity using images in which the relative angle of the transverse component is proportional to the velocity of the tissue in each voxel (discrete tissue unit volume).

1.2.1 Phase Contrast Angiography

Phase-Contrast Angiography is one of the important techniques used in Magnetic Resonance Angiography (MRA) that can be used to directly image flow in arteries, veins and cerebrospinal fluid [NMP86]. Phase-contrast imaging has excellent background suppression, allows variable velocity encoding, and provides directional flow information [IL93], [NFL86]. Two-dimensional phasecontrast imaging is useful in the assessment of major vascular structures. Three-dimensional phase-contrast imaging is also useful in depicting small and medium-sized aneurysms. Other applications of phase-contrast angiography also concern cerebral venous imaging (thrombosis of cerebral veins, fistula)

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

Figure 1.1: Protons at rest in a static magnetic field are randomly distributed with a small net moment parallel to the main field.

and may also be used after injection of a contrast agent. The unique aspect of phase-contrast angiography is that it can detect both high velocity flow and extremely slow flow. The application of a stronger flow-encoding gradient makes it possible to detect slow flow, whereas the application of a weaker flowencoding gradient leads to the detection of high-velocity flow [IL93]. During initial magnetization, the net magnetic moment of the protons are tipped by the initial radio-frequency (RF) pulse as shown in Fig. 1.2.

Phase-contrast angiography detects the phase changes of the proton spins, which the moving spins acquire proportional to their velocities. Here phase means the transverse component (induced by the radio frequency pulse) that is being measured. At rest protons point in different directions, but the net moment is parallel to the field as shown in Fig. 1.1. Fig. 1.3 shows that during the gradient pulse the axis of rotation rotates in the transverse plane with an angle which is a function of the applied field variation and the flow/velocity of the matter they are in. After the gradient pulse the proton's magnetization, precessing in the transverse plane, is measured: recorded as a complex number, its phase is a function of the applied field variation (G) and the flow/velocity (V).

The differential equation for the evolution of magnetization (M) over short time periods in the presence of an external magnetic field B is defined

Figure 1.2: The net magnetic moments are tipped into the transverse plain by the RF pulse.

Figure 1.3: Net moments after a velocity-encoding bipolar gradient pulse.

by the empirical Eq. (1.1) referred to as the Bloch equation.

$$\frac{dM}{dt} = \gamma M \times B \tag{1.1}$$

When there is no radio-frequency pulse the external magnetic field (B) is represented by $B_Z = B_0 + G_x x + G_y y + G_z z$, where B_Z is the Z component of the the external magnetic field B. The equation of translational motion of an isochromat of spins during sampling can be described by the expression $x(t) = x_0 + v_x t$. According to magnetic resonance (MR) theory [HBTV99], the fact that the principal action of the proton spin in a constant magnetic field is a rotation in the two-dimensional transverse plane suggests that a complex number will be useful. The differential equation described in Eq. (1.1) could further be simplified by employing the complex representation as shown in Eq. (1.2), We can categorize Eq. (1.2) as the general solution to the Bloch equation where the Z component of the external magnetic field (B_Z) and the gradient is constant when there is no radio-frequency pulse. The scaling of the Z component of the the external magnetic field (B_Z) is described by the Eq. (1.3).

$$M_x(t) + iM_y(t) = (M_x(0) + iM_y(0)).e^{iB_z.t}$$
(1.2)

$$M_x(t) + iM_y(t) = (M_x(0) + iM_y(0)) \cdot e^{i\int_0^t B_Z \cdot t' \, dt'}$$
(1.3)

From Eq. (1.3), the expressions $(M_x(0) + iM_y(0)).e^{i\int_0^1 G_x x(t')dt'}$ and $(M_x(0) + iM_y(0)).e^{i\int_1^2 G_x x(t')dt'}$ is derived when t < 1 and t > 1 respectively. The positive and negative gradients derived from the bipolar gradient shown in Fig. 1.4 is represented by the expressions $(M_x(0) + iM_y(0).e^{iG_x(x_0 + \frac{1}{2}.V)})$ and $(M_x(0) + iM_y(0)).e^{-iG_x(x_0 + \frac{3}{2}.V)}$. The velocity dependent phase at the echo of a simple bipolar gradient pulse shows minor variation across a single voxel and, after the data are Fourier transformed, the image for laminar flow in a pixel centred at position (i, j) is given by Eq. (1.4), where ρ is the proton density, V is the velocity of blood and the operator (\odot) signifies point-wise multiplication.

$$\rho_{i,j} \odot e^{-iG_x x \cdot V_{i,j}} \tag{1.4}$$

In the next section we talk about k-space and Fourier transform essential to our understanding of this thesis.

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

Figure 1.4: Bipolar gradient pulse.

Figure 1.5: Full versus half k-space. [Moz08]

1.2.2 K-Space

For our understanding of k-space we need to explain the significance of the Fourier transform to Magnetic Resonance Imaging (MRI). The signals that we measure in MRI are a combination of signals from all over the object being imaged. Most signals are composed of a series of sine waves, each with an individual frequency and amplitude. The Fourier transform allows us to work out what these frequencies and amplitudes are. The Fourier transform converts the signal from the time domain into the frequency domain. For any image, use of the Fourier transform allows us to manipulate the data in the frequency domain also known as k-space [Ber69].

K-space can be defined as an array of numbers whose inverse Fourier transform is the magnetic resonance image. It is in k-space that the magnetic resonance signals are stored and the images are reconstructed from this data. According to MR theory [Nis96], [Bri74], [Ber69], we can derive the equation for magnetic resonance signals as

$$S(t) = \int_{x} \int_{y} m(x, y) e^{-2\pi [k_x(t)x + k_y(t)y]} dx dy$$
(1.5)

where

$$k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) d\tau, \quad k_y(t) = \frac{\gamma}{2\pi} \int_0^t G_y(\tau) d\tau \tag{1.6}$$

m(x, y) is the transverse nuclear magnetization and G_x , G_y are the gradient fields in the x and y directions respectively. Comparing the signal equation Eq. (1.5) with the Fourier transform of m(x, y).

$$M(k_x, k_y) = \int_x \int_y m(x, y) e^{-i2\pi [k_x(t)x + k_y(t)y]} dxdy$$
(1.7)

we can see that

$$S(t) = M(k_x, k_y) \tag{1.8}$$

or

$$S(t) = M(\gamma/2\pi \int_0^t G_x(\tau)d\tau, \gamma/2\pi \int_0^t G_y(\tau)d\tau)$$
(1.9)

Thus, k_x and k_y are in units of spatial frequency, typically cycles/cm. This is the most important relationship in MRI. At any given time t, S(t) equals the value of the two-dimensional Fourier transform of m(x, y) at (k_x, k_y) . The total recorded signal function s(t) therefore maps directly to a trajectory through the spatial-frequency (Fourier transform) space as determined by the time integrals of the applied gradient waveforms G_x and G_y .

Fig. 1.5 shows the difference between an image obtained from a full k-space and a half k-space data. K-space has this particular property whereby we can reconstruct an image using only partial k-space data. It is this property which we exploit in this thesis. Acquiring complete data (full k-space) is a long and computationally expensive process. As a result, it is not possible for critical patients or patients on life support to stay still for a long time in a magnetic resonance scanner. To get a very detailed and clear image the magnetic resonance machine tries to fully collect k-space data which is time consuming. Partial Fourier reconstruction is a technique that reduces the scanning time by skipping over some data and sampling certain rows of k-space [Moz08]. By reducing the amount of data to be collected, the scanning time can be drastically reduced. Hence, understanding efficient under-sampling and reconstruction of k-space data is very important in the context of this thesis.

1.3 Process Goal

Figure 1.6: Laminar flow velocity phantom used in this thesis.

We present a model-based image reconstruction method that can be applied in phase-contrast angiography to detect anomalies in blood vessels. Since most images are distorted or contain significant amounts of noise, we try to eliminate errors using regularization. Regularization usually involves adding some sort of penalty to improve the smoothness and thereby the sharpness of the distorted images.

The main disadvantages of using phase-contrast angiography is the relatively long time that is required to produce images, and that phase-contrast images are degraded by aliasing artifacts [IL93]. Additionally this method

is plagued by long acquisition times and relatively long echo times. Hence shortening the time critically ill patients spend in the MRI machine is a major motivating factor to develop efficient image reconstruction techniques that considerably shortens scan times. Although advances like the development of new trajectories, parallel imaging and faster image acquisitions have reduced total imaging time for phase-contrast angiographic procedures, it is still relatively slow. However by using under-sampling and regularization of k-space, the scan time can be greatly reduced.

Figure 1.7: Depiction of flow as a continuous velocity field, with the maximum flow in the centre of the region of interest.

The numerical phantom which we use to test our model is a simulated laminar flow velocity profile of a blood flow in an artery as shown in Fig. 1.7. It is composed of complex data with maximum flow encountered at the centre of the vessel, while the velocity tapers to the minimum at the walls of the vessel as shown in Fig. 1.6. In order to show different phases and frequencies of magnetic resonance signals, all the acquired data are complex.

In this thesis we propose a two stage solution. First we reconstruct the problem in image space to test our model and then we exploit the problem in k-space to considerably reduce the amount of data we use. We use the L_2 -difference regularization method to eliminate noise in our model, thereby increasing accuracy of the solution. Our goals in this thesis are outlined below:

- 1. Faster image reconstruction for shorter MRI scan times.
- 2. Larger images for better clarity.
- 3. Accurate images for better diagnosis.

In the next chapter we explain the necessary theory required to understand our optimization model and then present our model both in the image space and k-space domain.

Chapter 2 Optimization Model

In this chapter, we will present a method that solves the image reconstruction problem in image space. The motivation to solve the problem in image space is to use it as a prototype to solve the problem in k-space later on. We discuss how to model our problem as an inverse problem and how regularization is used to reduce artifacts and noise. The model we solve is an unconstrained non-linear optimization problem.

2.1 Inverse Problem

The inverse problem uses the actual observations of the system to infer the values of the parameters characterizing the system under investigation. To demonstrate how this is related to phase-contrast angiography, we take the example where the exact properties of the flow of blood are known. Then on imaging those blood vessels with contrast agents, the resultant flow map would be known. That would be the "forward problem". However, it is nearly always the properties of the flow of blood that we are trying to find, ideally without using invasive surgery or contrast agents. Thus we need to solve an inverse problem. Conceptually an inverse problem is described by the diagram below [Moz08].

Actual observations
$$\rightarrow$$
 Parameters of the model (2.1)

The most common concern of the inverse problem is ill-posedness, which is opposite to being well-posed. A problem is said to be well-posed if its solution is unique and exits for the arbitrary and continuous data set, whereas for the ill-posed problem the solution is not unique. The unique solution computed is unacceptable in a physical sense because it is an approximate

solution [BB98], [Moz08]. The unique solution does not reproduce the exact solution, but has experimental errors and the original data is not completely reproduced. We can categorize a problem as a linear inverse problem, if the relationship between the actual observations and the model parameters are linear as shown in Eq. (2.2)

$$Ax = b \tag{2.2}$$

where A is a linear operator, b and x represent data and model parameters respectively. The objective of the problem is to find x. We can use methods from optimization to solve such inverse problems. To do so, we define a goal, also known as an objective function, for the inverse problem. The goal is a function that measures how close the predicted data from the recovered model fits the observed data. In cases where we have perfect data (i.e. no noise) and perfect physical understanding (i.e. the physics) then the recovered model should fit the observed data perfectly. The standard objective function term is usually of the form as shown in Eq. (2.3)

$$\|Ax - b\|^2 \tag{2.3}$$

In relation to Magnetic Resonance Imaging (MRI), we can define an optimization problem in which the objective function measures the likelihood of observing image pixel values given the underlying tissue concentrations. In other words, we minimize the distance between the measured Magnetic Resonance (MR) experimental images and the images predicted by the forward problem.

2.2 Regularization

Regularization and optimization of an inverse problem has been an active area of research with a long history. An example of such problem might be the formation of an original image captured using an imaging device (original data) [Aga03]. Regularization can be used to make an ill-posed problem well-posed by introducing additional information about the solution, such as an assumption about the smoothness or a bound on the norm. The problem is then changed to a new problem with improved conditioning. Inverse problems are not usually well-posed, and in order to be solvable a variety of regularization techniques can be applied. Most often the solution for ill-posed problems can be expected to be useless, therefore a method to compute the approximate solutions that are less sensitive to perturbations is needed. We call this method regularization because it enforces regularity (smoothness) on

the computed solutions. We suppress unwanted noise components by enforcing this regularity, or smoothness which leads to better approximations of the solution. The Eq. (2.4) shows Tikhonov's method [TA77] where the regularity requirement is explicitly incorporated in the formulation of the problem.

$$\min\{\|Ax - b\|^{2} + \lambda \|x\|^{2}\}$$
(2.4)

The first term $||Ax - b||^2$ measures the fit-to-data and the second term $||x||^2$ measures the regularity of the solution. The regularization parameter (λ) is a positive parameter which controls the weighting between the two terms. It indicates that high frequencies in the solution are penalized and converge to zero, but low frequencies are not regularized. Thus the regularization parameter (λ) behaves as a low-pass filter. In order to obtain a balance or minimize the trade-off, the optimal selection of the regularization parameter (λ) becomes important. Various methods [Idi99], [BPT88] have been developed for the optimal selection of these regularization parameters.

- Discrepancy principle
- L-curve
- Generalized cross validation method

In recent years, the L-curve despite its limitations has gained attention for computing the selection of regularization parameters. Its a log-log plot of the regularized solution against the squared norm of the regularized residual for a range of values of regularization parameters. The numerical computation and limitation of the L-curve is explained in [Han10] and [Vog96]. Regularization is implemented on both the rows and columns of the two-dimensional image we use in this thesis. The steps carried out for regularization are outlined below, where A is one of the variables (ρ and V) and n is the size of the image.

```
for i = 1 \rightarrow n do

for j = 1 \rightarrow n - 1 do

rowdifference \leftarrow rowdifference +(A_{i,j+1} - A_{i,j})^2

end for

end for

for i = 1 \rightarrow n - 1 do

for j = 1 \rightarrow n do

columndifference \leftarrow columndifference +(A_{i+1,j} - A_{i,j})^2

end for

end for

end for
```

2.2.1 Model in Image Space

In analogy with the definition of a linear inverse problem in Eq. (2.2) we describe the (nonlinear) fit-to-data term in image space, where \tilde{m} is the experimental data acquired from the Magnetic Resonance Image (MRI) scanners.

$$\sum_{G} \left\| I_{G_k} \circ \left(\rho_{i,j} \odot e^{-iG_k \cdot V_{i,j}} \right) - \widetilde{m}_{k,i,j} \right\|^2$$
(2.5)

The model in image space is used to test our theory before we eventually solve the problem in k-space. The fit-to-data term for the model in image space is described in Eq. (2.5). As mentioned before in Eq. (1.4), the operator (\odot) in Eq. (2.5) represents point-wise multiplication. Since the model in k-space requires projections to test the effects of minimal data (partial k-space), we introduce the identity matrix I_G as a place-holder for the future application of projections. Here G determines the gradient vectors used to sensitize the blood flow components along multiple directions. We use two parameters (ρ and V) to determine the computed solution of our optimization problem. ρ is used to determine the proton density, which is a measure of the amount of hydrogen nuclei present in water. We solve for both the real and imaginary parts of ρ . Here, V is the encoded velocity of the blood flow in the artery or a blood vessel in the x and y directions.

$$f_{obj} = \left\| \left(\rho_{i,j} \odot e^{-iG_1 \cdot V_{i,j}} \right) - \widetilde{m}_{1,i,j} \right) \right\|^2 \\ + \left\| \left(\rho_{i,j} \odot e^{-iG_2 \cdot V_{i,j}} \right) - \widetilde{m}_{2,i,j} \right) \right\|^2 \\ + \left\| \left(\rho_{i,j} \odot e^{-iG_3 \cdot V_{i,j}} \right) - \widetilde{m}_{3,i,j} \right) \right\|^2 \\ + \left\| \left(\rho_{i,j} \odot e^{-iG_4 \cdot V_{i,j}} \right) - \widetilde{m}_{4,i,j} \right) \right\|^2$$
(2.6)

We are solving a problem of size $4n^2$ as shown in Eq. (2.6) where G_1, G_2, G_3 and G_4 represent the directions along (0,1), (1,1), (1,-1),(1,0) respectively. Since we are solving both real and imaginary parts of ρ , we simplify Eq. (2.5), which is described below as Eq. (2.7).

$$\{[(\operatorname{Re}(\rho_{i,j}) \cdot \cos(G_k \cdot V_{x,i,j} + G_k \cdot V_{y,i,j})) + (\operatorname{Im}(\rho_{i,j}) \cdot \sin(G_k \cdot V_{x,i,j} + G_k \cdot V_{y,i,j})) - \operatorname{Re}(\widetilde{m}_{k,i,j})]\}^2 + \{[(\operatorname{Im}(\rho_{i,j}) \cdot \cos(G_k \cdot V_{x,i,j} + G_k \cdot V_{y,i,j})) - (\operatorname{Re}(\rho_{(i,j)}) \cdot \sin(G_k \cdot V_{x,i,j} + G_k \cdot V_{y,i,j})) - \operatorname{Im}(\widetilde{m}_{k,i,j})]\}^2$$

$$(2.7)$$

We introduce the regularization parameters (λ_1 and λ_2) to ρ and V to Eq. (2.5) to define our objective function for the model in image space which is described in Eq. (2.8)

$$\min \sum_{G} \left\| I_{G_k} \circ (\rho_{i,j} \odot e^{-iG_k \cdot V_{i,j}}) - \widetilde{m}_{k,i,j} \right\|^2 + \lambda_1 \sum_{i,j} \left\| \delta \rho_{i,j} \right\|^2 + \lambda_2 \sum_{i,j} \left\| \delta V_{i,j} \right\|^2$$
(2.8)

2.2.2 Model in K-space

According to MRI theory [Pau07], most Magnetic Resonance (MR) images depict the spin density as a function of position, and hence should be real-valued. If this were true, then by the symmetry of the Fourier transform, only half of the spatial frequency data would need to be collected. Since real functions have conjugate symmetry in spatial frequency space, the uncollected data could be synthesized by reflecting conjugate data across the origin. Unfortunately, there are many sources of phase errors that cause the real-valued assumption to be violated. These include variations in the resonance frequency, flow, and motion. One of the general applications of two-dimensional Fourier transform imaging is reducing scan time. Conventionally more than half of the complete k-space data is collected, allowing the scan time to be reduced by almost a factor of two [Pau07]. In this thesis, however, we collect only five-percent of k-space data.

Projection

The phantom that we are going to use for our model in k-space is completely sampled in k-space. We can simulate the partial k-space data by projecting the full k-space data onto a subspace.

$$projection(full k-space) = partial k-space$$
(2.9)

The simplest way to reconstruct a partial k-space data set is to simply fill the uncollected data (phase-encodes or readout samples) with zeroes. Then, we perform the two-dimensional Fourier transform and display the magnitude. Thus, in our model the projection is described below in Eq. (2.10)

$$\pi_G \circ \mathcal{F}^{-1}(\rho_{i,j} \odot e^{-iG_k \cdot V_{i,j}}) \tag{2.10}$$

The projection in k-space will be different for each velocity sensitization. This approach enables us to choose a variety of projection matrices for each gradient

sensitization vectors. In our case we take the horizontal, leading diagonal, secondary diagonal and vertical samples to effectively sensitize the velocity/flow of the blood. Let

$$F(\rho, V) = \left\| \pi_{G_k} \circ \mathcal{F}^{-1}(\rho_{i,j} \odot e^{-i \cdot G_k \cdot V_{i,j}}) - m_{k,i,j} \right\|^2.$$

In order to use the chain rule, we define it as a composition of f and g as follows,

$$\begin{aligned} u_{i,j,k} &= g_k(\rho, V) = \rho_{i,j} \odot e^{-iG_k \cdot V_{i,j}} \\ &= \left[(\operatorname{Re}(\rho_{i,j}) \cdot \cos(G_{\mathbf{x},k} \cdot V_{\mathbf{x},i,j} + G_{\mathbf{y},k} \cdot V_{\mathbf{y},i,j})) \right) \\ &+ (\operatorname{Im}(\rho_{i,j}) \cdot \sin(G_{\mathbf{x},k} \cdot V_{\mathbf{x},i,j} + G_{\mathbf{y},k} \cdot V_{\mathbf{y},i,j})) \\ &- \operatorname{Re}(\tilde{m_{k,i,j}}) \right] \\ &+ i \left[(\operatorname{Im}(\rho_{i,j}) \cdot \cos(G_{\mathbf{x},k} \cdot V_{\mathbf{x},i,j} + G_{\mathbf{y},k} \cdot V_{\mathbf{y},i,j})) \right) \\ &- (\operatorname{Re}(\rho_{i,j}) \cdot \sin(G_{\mathbf{x},k} \cdot V_{\mathbf{x},i,j} + G_{\mathbf{y},k} \cdot V_{\mathbf{y},i,j})) - \operatorname{Im}(\tilde{m_{k,i,j}}) \right] \\ f(u_{i,j,k}) &= \left\| \pi_G \circ F^{-1}(u) - m_{k,i,j} \right\|^2 \\ F(\rho, v) &= f(g(\rho, v)) \\ \nabla F(\rho, v) &= \nabla f(u_{i,j,k}) \nabla g(\rho, v) \end{aligned}$$

The gradient of the model in k-space is described in the Eq. (2.11) below:

$$\nabla F(\rho, V) = (2F(\pi^*(\pi(F^{-1}(u)) - m)))(\nabla g(\rho, v))$$
(2.11)

Minimizing the term shown in Eq. (2.10) defines an approximate solution, ρ and V to the expression $\pi_G \circ F^{-1}(\rho \odot e^{-iG \cdot V}) = m$. However, if $\pi_G \circ F^{-1}(\rho \odot e^{-iG \cdot V})$ is singular or ill-conditioned, and m is the result of measurement contaminated by noise, the estimate may be inaccurate and there may be a large number of solutions. We introduce the two-dimensional Fourier transform and the regularization parameters to construct our objective function for the model in k-space as shown in Eq. (2.12)

$$\min \sum_{G} \left\| \pi_{G_k} \circ \mathcal{F}^{-1}(\rho_{i,j} \odot e^{-iG_k \cdot V_{i,j}}) - m_{i,j}) \right\|^2 +\lambda_1 \sum_{i,j} \left\| \delta \rho_{i,j} \right\|^2 +\lambda_2 \sum_{i,j} \left\| \delta V_{i,j} \right\|^2$$

$$(2.12)$$

Justification for sparse sampling

Having defined the projections we will use, it is clear that (1) we are sampling a very small subset of the full data set, and (2) there is a pattern to the under-sampling. Under-sampling is always justified if a priori knowledge, such as the expectation of smoothness, is available. In this case, we do expect smooth images, but we also know that the noise-free images have a great deal of redundancy. All static tissue, which will generally be most of the tissue, will be identical in images with all sensitizations. Moving tissue will have velocity information encoded as phase, but the magnitude will always be the same. So depending on the relative blood volume, we can expect upwards of three quarters of the data to be redundant. Furthermore, MRI images have large constant regions, which causes the information in k-space to be concentrated near k=0.

In our projection or subsampling scheme, we collect the low k-space data which contains most of the energy in each sensitization, which can be interpreted as a low-pass filtering of the data in k-space. We do not collect all of the high-frequency data, but when we consider all of the sensitizations, we collect bands in eight principle directions. This results in some coverage of all parts of k-space, with complete coverage of the lowest frequencies. In some sense, this is analogous to the situation in PROPELLER [Pip99], whose sampling pattern is similar to the sampling pattern we would get if we replaced all of the gradient sensitization vectors with zero.

Sparse structure of the gradient in K-space

The gradient $\nabla F(\rho, V)$ represented in Eq. (2.11) consists of two components which are $\nabla f(u_{i,j,k})$ and $\nabla g(\rho, v)$. $\nabla g(\rho, V)$ represents the derivative of the image in image space and consists of a total of $8n^4k$ elements where n is the size of the image and k is the total number of gradient sensitization vectors. The sparseness of the gradient can be attributed to the derivative of $g(\rho, V)$ with respect to a particular variable which will produce $2n^2k$ non-zero elements taking into account both the real and imaginary parts of $g(\rho, V)$. The structure of sparsity resembles a block diagonal structure and the values of the diagonal representing the non-zero elements. This is because each pixel in $\nabla g(\rho, V)$ is composed of all the four variables ($\operatorname{Re}(\rho), \operatorname{Im}(\rho), V_{x,}, V_y$) given by the equation. The other component $\nabla f(u_{i,j,k})$ is a matrix containing the intermediate sensitization variables in image space. The output of the gradient $\nabla F(\rho, V)$ can be visualized as the multiplication of two eight block components, the output of which will produce $4n^2$ elements.

2.3 Implementation

We implement our model in MATLAB using various algorithms available in the optimization toolbox. We use the function *fminunc* to find the minimum of an unconstrained multivariable function. The function *fminunc* attempts to find a minimum of a scalar function of several variables, starting at an initial estimate. The general description of the function signature of *fminunc* is shown to be f[x fval]=fminunc(`objFun',A,options), where *fval* is the value of the objective function *objFun* at the solution x. Here the objFun is a MATLAB function of the form function [f g] = objFunK(A), where f is the function value at x. The gradient of *objFun* can also be computed by setting the *GradObj* option as "on", by setting options = optimset('GradObj', 'on'). The gradient is the partial derivatives $\partial f/\partial x_i$ of f at the point x. That is, the *i*th component of g is the partial derivative of f with respect to the *i*th component of x.

We generate the numerical phantom which is represented by $m_{i,j}$ in Eq. (2.12). To generate noise in our phantom we add white Gaussian noise specifying a scalar signal-to-noise ratio (SNR) per sample in decibels. The model was implemented with various sets of signal-to-noise ratio values. In our model, the value of the lowest signal-to-noise ratio used was twenty-five. The Signal-to-noise ratio is a measure to quantify how much a signal has been corrupted by noise. We implement the model in image space first by calculating the gradient and passing it onto the *fminunc* function in Matlab. We implement the same procedure for our model in k-space with changes to the objective function and the corresponding gradient. We then apply a Fast Fourier Transform (FFT) to the complex data and apply the various projections necessary to optimize our model in k-space. We set the penalty parameters as λ_1 and λ_2 . The penalty parameters were chosen using the L-curve technique, which was covered in previous sections.

Chapter 3

Numerical Results

In this chapter we show the results obtained by optimizing the model in both image space and k-space. The Fig. 3.1 shows the noisy measurement and the regularized image of the real part of the proton density and the Fig. 3.2 shows the imaginary part of the proton density. The images shown in Fig. 3.3 is the resultant velocities of the blood flow in x and y directions in image space. We

Figure 3.1: Real part of a measured image, showing noise, and the real part of the reconstructed ρ , the proton density.

Figure 3.2: Imaginary part of a measured image, showing noise, and the imaginary part of the reconstructed ρ , the proton density.

see that that regularization has eliminated noise and the images look much sharper and smoother.

The Figure's 3.4, 3.5 and 3.6 are the results obtained by optimizing in k-space. The images show blurring which is an imaging artifact usually encountered, when k-space is under-sampled. According to MR theory [Pau07], [HNO06], when k-space is under-sampled, the Nyquist criterion is violated, and Fourier reconstructions exhibit aliasing artifacts. The reason for the blurring can be identified by considering the data set to be the product of a full k-space data set multiplied by a projection function which we denote as π_G as shown in Eq. (2.10), where G is the velocity sensitization vectors. The inverse Fourier transform of this function is the impulse response that produces the blurring.

Table. 3.1 shows the execution time of the image optimized in image space. The number of variables we solve in this optimization is of the size of

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

Figure 3.3: Velocity components in the x and y directions.

Image size	Time in seconds
[8,8]	0.8966
[16,16]	13.5156
[32,32]	142.7051
[64,64]	Out of memory

Table 3.1: Execution time in Image space

Figure 3.4: Image reconstructed from partial k-space with (1,0) sensitization, real and imaginary parts.

 $4n^2$, and as we increase the size of the image, the time taken and the memory constrains on the machine also increases. The results from Table. 3.1 shows that for optimizing an image of size 64×64 , MATLAB runs out of memory. This is because the amount of memory required to store a Hessian (N^2) is too big, along with the machine time required to process it. Hence there is a need to try and reduce the data set using partial k-space. Table. 3.2 shows considerable improvement of execution time of the image optimized in k-space. Not only does the partial k-space allow us to optimize larger images (64×64) it takes relatively less amount of time as compared to optimizing in image space.

We generate two L-curves, where in Fig. 3.7 λ_2 is set to 1e-04 and the results are generated for different λ_1 values. In Fig. 3.9 λ_1 is set to 1e-04 and the results are generated for different λ_2 values. As we mentioned before in the previous sections λ_1 and λ_2 are the regularization parameters for the variables ρ and V in our model. What we know from regularization is that it improves the results by reducing the artifacts and background noise. In order
M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

Figure 3.5: Proton density estimate from multiple partial k-space data sets; real and imaginary parts.

Image size	Time in seconds
[8,8]	0.1791
[16, 16]	1.4682
[32, 32]	12.7797
[64, 64]	170.1214

Table 3.2: Execution time in K-space

Figure 3.6: Velocity (x- and y-components) estimated, using regularization, from partial k-space data sets.

to select the best regularization parameters λ_1 and λ_2 , we use the L-curve to find a good estimate. We can apply different weightings to regularization parameters within a certain range of data. If λ_1 or λ_2 is very big, we will get over-smoothed images, and if it is very small, the results will look undersmoothed for the corresponding variables. An over-smoothed image reduces the noise, but does not show the details such as edges and contrasts. By using the L-curve technique, we can find a good trade-off for λ_1 which is located at the very left of the curvature shown in Fig. 3.7, where $\lambda_1 = 1e^{-05}$ and for λ_2 which is also located at the very left of the curvature shown in Fig. 3.9, where $\lambda_2 = 1e^{-04}$.

Figure 3.7: L-curve showing the variation in the fit-to-data term versus $\|\delta\rho\|^2$ as λ_1 varies with $\lambda_2 = 1e^{-4}$ held constant.

Figure 3.8: L-curve showing the variation in the fit-to-data term versus $\|\delta V\|^2$ as λ_2 varies with $\lambda_1 = 1e^{-4}$ held constant.

Figure 3.9: L-curve where $\lambda_1 = 1e^{-04}$

Chapter 4

Conclusion and Future Work

In conclusion we have demonstrated in this thesis a model-based image reconstruction method that reduces the image reconstruction time in phase-contrast angiography. We demonstrated experimental verification of our model in image space and in k-space. We showed that by under-sampling, we were able to use reduced data to increase the performance of image reconstruction. We demonstrated that using only five-percent of the data we were able to achieve significant benefits in reducing the time taken to optimize large images. We used regularization to reduce noise and increase the accuracy of the image. Due to the reduced data set, we were able to solve the memory problem encountered while optimizing in image space.

This model can be improved in the future by incorporating a threedimensional model which would provide us with more clinical insights of blood flow. A more complicated phantom can also be used to test our model before we can use it on clinical data. Significant improvement also can be acquired by implementing the model in C and using the L-BFGS algorithm for the optimization. L-BFGS stands for "Limited memory BFGS". In case of big dimensions, the amount of memory required to store a Hessian (N^2) is too big, along with the machine time required to process it, hence the need to use L-BFGS . L-BFGS stores only a few vectors that represent the approximation of the dense (N^2) matrix implicitly. Due to its moderate memory requirement, L-BFGS method is particularly well suited for optimization problems with a large number of variables. Table. 4.1 shows the preliminary work carried out optimizing in image space using L-BFGS.

Table 4.1: Execution time for image-space model using L-BFGS calling function and gradient written in C.

Image size	Time in seconds
[64,64]	5.1285
[128,128]	16.564

Chapter 5

Appendix A: Matlab Codes

A1: Objective function in K-space

1 2 function [f g] = objFunK(A) 3 % n − The size of the Image 4 % R - Radius of the vessel 5 % V_max - Maximum velocity of blood 6 % p - Proton density matrix 7 % v_x - Matrix containing x components of Velocity vector 8 % v_y - Matrix containing y components of Velocity vector 9 % (0,1,-1) - Gradient Sensitization vectors 101112 %------ Initialization -----13 %-148_ 1516 17 n=64; 18 192021 lamda_1=1e-6; %----- Penalty for proton density 22lamda_2=1e-2; % Penalty for Velocity 232425 snr=25; % ----- Signal-to-noise ratio 262728 [c,d] = size(A); 29

```
= A(1:c/4,:);
30 p_real
31 p_imag =A((c/4)+1:(c/4)+d,:);
v_x = A(((c/4)+d)+1:(c/4)+2*d,:);
v_y = A(((c/4)+2*d)+1:c,:);
34
35
36
37
38
  thetaG1 = (0 \cdot v_x) + (1 \cdot v_y);
39
  thetaG2 = (1 \cdot v_x) + (1 \cdot v_y);
40
41
  thetaG3 = (1 \cdot v_x) + (-1 \cdot v_y);
42
43
  thetaG4 = (1 \cdot v_x) + (0 \cdot v_y);
44
45
46
47 R=n/8;
48 v_max=1;
49 v_y_m=zeros(n,n);
50 p_m = zeros(n, n);
51
52
53
54 projl_temp = fft2( (((p_real .* cos(thetaG1) )
                             + (p_imag .* sin(thetaG1) ))
55
                  + (li*((p_imag .* cos(thetaG1) )
56
                   - (p_real .* sin(thetaG1 ) ))),n,n);
57
58
59
  proj2_temp = fft2(((p_real .* cos(thetaG2)))
60
61
                  + (p_imag .* sin(thetaG2) ))
                   + (li*((p_imag .* cos(thetaG2) )
62
                   - (p_real .* sin(thetaG2 ) )))),n,n );
63
64
65
  proj3_temp = fft2( (((p_real .* cos(thetaG3) )
66
                              + (p_imag .* sin(thetaG3) ))
67
                              + (li*((p_imag .* cos(thetaG3)))
68
                               - (p_real .* sin(thetaG3 ) ))),n,n);
69
70
71
  proj4_temp = fft2((((p_real .* cos(thetaG4)))
72
                               + (p_imag .* sin(thetaG4) ))
73
                               + (li*((p_imag .* cos(thetaG4) )
74
                               - (p_real .* sin(thetaG4 ) ))),n,n);
75
76
77
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

```
78
79
80
  proj1=zeros(n,n);
81
82
83
   proj4=zeros(n,n);
^{84}
85
86
87
   %Vertical sample
88
89
   proj1(:,1:(n/4)+1)=proj1_temp(:,1:(n/4)+1);
90
91
92
   %Diagonal1 sample
93 proj2 = diag(diag(proj2_temp))
                  +diag(diag(proj2_temp,1),1)
94
                  +diag(diag(proj2_temp,-1),-1)
95
96
                  +diag(diag(proj2_temp,2),2)
97
                  +diag(diag(proj2_temp, -2), -2);
98
99 %Diagonal2 sample
100 proj3=fliplr(diag(diag(fliplr(proj3_temp)))
101 +diag(diag(fliplr(proj3_temp),1),1)
102 +diag(diag(fliplr(proj3_temp),-1),-1)
103 +diag(diag(fliplr(proj3_temp),2),2)
104 +diag(diag(fliplr(proj3_temp),-2),-2));
105
106 %Horizontal Sample
  proj4(1:(n/4)+1,:)=proj4_temp(1:(n/4)+1,:);
107
108
109
110
                 ----- Measurement ---
111
112
   2
  for l = 1:n
113
114 for m = 1:n
115
116
            if (distance([1,m], [n/2,m]) \ge R)
117
118
                 p_m(l,m) = 1i;
                 v_x_m(1,m) = 0;
119
120
121
            else
122
123
                 p_m(1,m) = 2;
                 v_x_m(l,m) = v_max*(1-((distance([l,m], ...
124
                    [n/2,m]))<sup>2</sup>/R<sup>2</sup>));
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

```
125
126
127
            end
128
   end
129
130
131
   end
132
133
134
   p_m_real=awgn(real(p_m), snr, 'measured');
135
136
   p_m_imag=awgn(imag(p_m), snr, 'measured');
137
138
139
   v_x_m_ur=awgn(real(v_x_m), snr, 'measured');
140
141
   v_y_m_ur=awgn(real(v_y_m), snr, 'measured');
142
143
144
145
   ml_temp=awgn(p_m.*(exp(-li*(0 .* v_x_m + 1 .* ...
146
       v_y_m))), snr, 'measured');
   m2_temp=awgn(p_m.*(exp(-1i*(1 .* v_x_m + 1 .* ...
147
       v_y_m))), snr, 'measured');
   m3_temp=awgn(p_m.*(exp(-1i*(1 .* v_x_m + -1 .* ...
148
       v_y_m))), snr, 'measured');
   m4_temp=awgn(p_m.*(exp(-1i*(1 .* v_x_m + 0 .* ...
149
       v_y_m))), snr, 'measured');
150
151
152
153
154
155 ftml=fft2(ml_temp,n,n);
   ftm2=fft2(m2_temp,n,n);
156
   ftm3=fft2(m3_temp,n,n);
157
   ftm4=fft2(m4_temp,n,n);
158
159
160
161
162 ml=zeros(n,n);
163
   m4=zeros(n,n);
164
165
166
   %Vertical sample
167
168
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

```
169 ml(:,1:(n/4)+1)=ftml(:,1:(n/4)+1);
170
171 %Diagonall sample
172 m2=diag(diag(ftm2))
173 +diag(diag(ftm2,1),1)
174 +diag(diag(ftm2,-1),-1)
175 +diag(diag(ftm2,2),2)
+ diag(diag(ftm2, -2), -2);
177
178 %Diagonal2 sample
179 m3=fliplr(diag(diag(fliplr(ftm3)))+diag(diag(fliplr(ftm3),1),1)
180 +diag(diag(fliplr(ftm3), -1), -1)
181 +diag(diag(fliplr(ftm3),2),2)
182 +diag(diag(fliplr(ftm3),-2),-2));
183
184 %Horizontal Sample
185 m4(1:(n/4)+1,:)=ftm4(1:(n/4)+1,:);
186
187
188
   2
           ----- Fit to Data ------
189
   0
190
   0
191
192
193
194
195
196
197
198
            real_G1 = real(proj1) - real(m1);
199
            imag_G1 = imag(proj1) - imag(m1);
200
            real_G2 = real(proj2) - real(m2);
201
            imag_G2 = imag(proj2) - imag(m2);
202
203
            real_G3 = real(proj3) - real(m3);
204
            imag_G3 = imag(proj3) - imag(m3);
205
206
            real_G4 = real(proj4) - real(m4);
207
            imag_G4 = imag(proj4) - imag(m4);
208
209
210
211
212
            f1 = (real_G1 .* real_G1) + (imag_G1 .* imag_G1);
213
            f2 = (real_G2 \cdot real_G2) + (imag_G2 \cdot rimag_G2);
214
215
            f3 = (real_G3 .* real_G3) + (imag_G3 .* imag_G3);
216
```


M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

```
M.A.Sc. Thesis - Yogesh Chinta Venkateswarao - McMaster -
Computational Engineering and Science
263 del_g1_vx_e2=li*( -1 .* p_imag .* sin(thetaG1) .* 0 - ...
p_real .* cos(thetaG1) .* 0);
```

```
264
265
   del_g2_vx_e1=( -1 .* p_real .* sin(thetaG2 ) .* 1 + p_imag ...
       .* cos(thetaG2) .* 1);
266
   del_g2_vx_e2=li*( -1 .* p_imag .* sin(thetaG2 ) .* 1 - ...
267
       p_real .* cos(thetaG2) .* 1);
268
269
   del_g3_vx_e1=( -1.* p_real .* sin(thetaG3 ) .* 1 + p_imag ...
270
       .* cos(thetaG3) .* 1);
271
   del_g3_vx_e2=li*( -1 .* p_imag .* sin(thetaG3
                                                      .* 1) - ...
272
       p_real .* cos(thetaG3) .* 1);
273
274
   del_g4_vx_e1=( -1 .* p_real .* sin(thetaG4) .* 1 + p_imag ...
275
       .* cos(thetaG4) .* 1);
276
   del_g4_vx_e2=li*( -1 .* p_imag .* sin(thetaG4 ) .* 1 - ...
277
       p_real .* cos(thetaG4) .* 1);
278
279
280
                G1_vx=del_g1_vx_e1+del_g1_vx_e2;
281
282
                G2_vx=del_g2_vx_e1+del_g2_vx_e2;
283
284
                G3_vx=del_g3_vx_e1+del_g3_vx_e2;
285
286
287
                G4_vx=del_g4_vx_e1+del_g4_vx_e2;
288
289
290
291
292
    % Gradient w.r.t vy along directions G1, G2, G3, G4
293
294
295
   del_g1_vy_e1=( -1* p_real .* sin(thetaG1 ) .* 1 + p_imag .* ...
296
       \cos(\text{thetaG1}) \cdot 1);
297
   del_g1_vy_e2=li*( -1* p_imag .* sin(thetaG1 ) .* 1 - p_real ...
298
       .* cos(thetaG1) .* 1);
```

```
Computational Engineering and Science
301 del_g2_vy_e1=(-1* p_real .* sin(thetaG2) .* 1 + p_imag .* ...
       \cos(\text{thetaG2}) \cdot 1);
302
303
   del_g2_vy_e2=li*( -1* p_imag .* sin(thetaG2 ) .* 1 - p_real ...
       .* cos(thetaG2) .* 1);
304
305
   del_g3_vy_e1=(-1* p_real .* sin(thetaG3) .* -1 + p_imag .* ...
306
       \cos(\text{thetaG3}) .* -1);
307
   del_g3_vy_e2=1i*(-1* p_imag .* sin(thetaG3) .* -1 - p_real ...
308
       .* cos(thetaG3) .* −1);
309
310
311
   del_g4_vy_e1=( -1* p_real .* sin(thetaG4 ) .* 0 + p_imag .* ...
       cos(thetaG4) .* 0);
312
313 del_g4_vy_e2=li*(-1* p_imag .* sin(thetaG4 ) .* 0 - p_real ...
       .* cos(thetaG4) .* 0);
314
315
316
317
                 G1_vy = del_q1_vy_e1 + del_q1_vy_e2;
318
319
320
                 G2_vy = del_g2_vy_e1 + del_g2_vy_e2;
321
322
                 G3_vy = del_q3_vy_e1 + del_q3_vy_e2;
323
324
325
326
                 G4_vy = del_g4_vy_e1 + del_g4_vy_e2;
327
328
329
330
331
332
                 p1=proj1 - m1;
333
                 p2=proj2 - m2;
334
                 p3=proj3 - m3;
335
                 p4=proj4 - m4;
336
337
338
339
                 del_fu_G1=2*ifft2(p1,n,n);
340
                 del_fu_G2=2*ifft2(p2,n,n);
341
                 del_fu_G3=2*ifft2(p3,n,n);
342
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster –

```
del_fu_G4=2*ifft2(p4,n,n);
343
344
345
346
347
348
349
350
351
352
   DEL_F_real_p_REAL = (real(del_fu_G1) .* real(G1_real_p)) + ...
353
       (real(del_fu_G2) .* real(G2_real_p)) + (real(del_fu_G3) ...
       .* real(G3_real_p)) + (real(del_fu_G4) .* real(G4_real_p));
354
355
   DEL_F_imag_p_REAL = (real(del_fu_G1) .* real(G1_imag_p)) + ...
356
       (real(del_fu_G2) .* real(G2_imag_p)) + (real(del_fu_G3) ...
       .* real(G3_imag_p)) + (real(del_fu_G4) .* real( G4_imag_p));
357
358
   DEL_F__vx_REAL
                      = (real(del_fu_G1) .* real(G1_vx))
359
                                                                + . . .
       (real(del_fu_G2) .* real(G2_vx)) + (real(del_fu_G3) .* ...
       real(G3_vx)) + (real(del_fu_G4) .* real( G4_vx));
360
361
362
  DEL_F__vy_REAL
                     = (real(del_fu_G1) .* real(G1_vy))
                                                                + . . .
       (real(del_fu_G2) .* real(G2_vy)) + (real(del_fu_G3) .* ...
       real(G3_vy)) + (real(del_fu_G4) .* real(G4_vy));
363
364
365
366
   DEL_F_real_p_IMAG = (imag(del_fu_G1) .* imag(G1_real_p)) + ...
367
       (imag(del_fu_G2) .* imag(G2_real_p)) + (imag(del_fu_G3) ...
       .* imag(G3_real_p)) + (imag(del_fu_G4) .* imag(G4_real_p));
368
369
  DEL_F_imag_p_IMAG = (imag(del_fu_G1) .* imag(G1_imag_p)) + ...
370
       (imag(del_fu_G2) .* imag(G2_imag_p)) + (imag(del_fu_G3) ...
       .* imag(G3_imag_p)) + (imag(del_fu_G4) .* imag(G4_imag_p));
371
372
373 DEL_F__VX_IMAG
                       = (imag(del_fu_G1) .* imag(G1_vx)) + ...
       (imag(del_fu_G2) .* imag(G2_vx)) + (imag(del_fu_G3) .* ...
       imag(G3_vx)) + (imag(del_fu_G4) .* imag(G4_vx));
374
375
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

```
376 DEL_F__Vy_IMAG
                        = (imag(del_fu_G1) .* imag(G1_vy)) + ...
       (imag(del_fu_G2) .* imag(G2_vy)) + (imag(del_fu_G3) .* ...
       imag(G3_vy)) + (imag(del_fu_G4) .* imag(G4_vy));
377
378
379
380
                 DEL_F_real_p = DEL_F_real_p_REAL + ...
381
                    DEL_F_real_p_IMAG;
382
                 DEL_F_imag_p = DEL_F_imag_p_REAL + ...
383
                    DEL_F_imag_p_IMAG;
384
                 DEL_F__vx = DEL_F__vx_REAL + DEL_F__vx_IMAG;
385
386
                 DEL_F__vy = DEL_F__vy_REAL + DEL_F__vy_IMAG;
387
388
389
390
391
392
         - Gradient for Regularization -
393
394
395
396
397
398
399
400
401
                       - Middle -
402
403
404
405 for i=2:n-1
406
        for j=2:n-1
407
408
409
410
            DEL_R_real_p(i,j) = (2 * lamda_1) * (p_real(i,j+1) ...
411
                - p_real(i,j) + p_real(i,j-1) - p_real(i,j) + ...
                p_real(i+1,j)-p_real(i,j) + ...
                p_real(i-1,j)-p_real(i,j) );
412
            DEL_R_imag_p(i,j) = (2 * lamda_1) * ( p_imag(i,j+1) ...
413
                -p_{imag}(i,j) + p_{imag}(i,j-1) - p_{imag}(i,j) + \dots
                p_{imag(i+1,j)}-p_{imag(i,j)} + \dots
                p_imag(i-1,j)-p_imag(i,j) ) ;
```

414 $DEL_R_vx(i,j) = (2 * lamda_2) * (v_x(i,j+1) - ...$ 415+ v_x(i,j-1)-v_x(i,j) + ... v_x(i,j) $v_x(i+1,j)-v_x(i,j) + v_x(i-1,j)-v_x(i,j));$ 416 $DEL_R_vy(i,j) = (2 * lamda_2) * (...$ 417 $v_y(i, j+1) - v_y_m(i, j)$ + ... v_y(i,j-1)-v_y_m(i,j) + ... v_y(i+1,j)-v_y_m(i,j) + ... v_y(i-1,j)-v_y(i,j)); 418419 420421end 422end 423 424425426---- Left -427428j=1; 429430for i=2:n-1 431432433434 $DEL_R_real_p(i, j) = (2 * lamda_1) * (p_real(i, j+1) ...$ 435 $-p_real(i,j) + p_real(i+1,j)-p_real(i,j) + \dots$ p_real(i-1,j)-p_real(i,j)); 436437 $DEL_R_imag_p(i,j) = (2 * lamda_1) * (...$ p_imag(i,j+1)-p_imag(i,j) + ... p_imag(i+1,j)-p_imag(i,j) + ... p_imag(i-1, j)-p_imag(i, j) ; 438 $DEL_R_-vx(i,j) = (2 * lamda_2) * (...$ 439 $v_x(i, j+1) - v_x(i, j)$ + v_x(i+1,j)-v_x(i,j) + ... v_x(i-1,j)-v_x(i,j)); 440 $DEL_R_vy(i, j) = (2 * lamda_2) * (...$ 441 $v_y(i, j+1) - v_y(i, j)$ + $v_y(i+1,j)-v_y(i,j)$ + ... $v_y(i-1,j)-v_y(i,j)$); 442443444 445end 446

e	Right
j=n ;	
for	i=2:n-1
]	DEL_R_real_p(i,j) = (2 * lamda_1)*(
	(p_real(i,j-1)-p_real(i,j)) +
	(p_real(i+1,j)-p_real(i,j)) +
	(p_real(i-1,j)-p_real(i,j)));
]	DEL_R_imag_p(i,j) = (2 * lamda_1)*(
	(p_imag(i,j-1)-p_imag(i,j)) +
	(p_imag(i+1,j)-p_imag(i,j)) +
	<pre>(p_imag(i-1,j)-p_imag(i,j))) ;</pre>
1	$\int u \mathbf{x} (\mathbf{i} \mathbf{j} - \mathbf{i}) = (\mathbf{z} * \operatorname{Iall(Ia_2)}) * (\mathbf{z} \mathbf{x} (\mathbf{i} \mathbf{j} - 1)) + (\mathbf{z} i$
	$(v_{-x}(i+1,j) + v_{-x}(i,j)) + (v_{-x}(i+1,j) + v_{-x}(i,j))$
	(v_x(i-1,j)-v_x(i,j)));
]	DEL_Rvy(i,j) = (2 * lamda_2)*(
	$(v_y(i, j-1)-v_y(i, j)) + \dots$
	$(v_y(i+1,j)-v_y(i,j)) + \dots$
	$(v_y(1-1,j)-v_y(1,j)));$
end	

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

483	i=1;		
484			
485	f	or	j=2:n-1
486			
487			
488			
489			<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*((p_real(i,j+1)-p_real(i,j)) + (p_real(i,j-1)-p_real(i,j)) + (p_real(i+1,j)-p_real(i,j)));</pre>
490			
491			<pre>DEL_R_imag_p(i,j) = (2 * lamda_l)*((p_imag(i,j+1)-p_imag(i,j)) + (p_imag(i,j-1)-p_imag(i,j)) + (p_imag(i+1,j)-p_imag(i,j)));</pre>
492			
493			<pre>DEL_Rvx(i,j) = (2 * lamda_2)*((v_x(i,j+1)-v_x(i,j)) + (v_x(i,j-1)-v_x(i,j)) + (v_x(i+1,j)-v_x(i,j)));</pre>
494			
495			<pre>DEL_Rvy(i,j) = (2 * lamda_2)*((v_y(i,j+1)-v_y(i,j)) + (v_y(i,j-1)-v_y(i,j)) + (v_y(i+1,j)-v_y(i,j)));</pre>
496			
497			
498			
499		end	
500			
501			
502			
503	%		Bottom
504			
505			
507	i=n:		
508	÷ 117		
509	f	or	j=2:n-1
510			-
511			
512			
513			<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*(</pre>
			(p_real(i,j+1)-p_real(i,j)) +
			(p_real(i,j-1)-p_real(i,j)) +
			<pre>(p_real(i-1,j)-p_real(i,j)));</pre>
514			

M.A.Sc.	Thesis – Yogesh Chinta Venkateswarao – McMaster –
	Computational Engineering and Science

515		<pre>DEL_R_imag_p(i,j) = (2 * lamda_1)*(</pre>
		(p_imag(i,j+1)-p_imag(i,j)) +
		(p_imag(i,j-1)-p_imag(i,j)) +
		(p_imag(i-1,j)-p_imag(i,j))
516		
517		<pre>DEL_Rvx(i,j) = (2 * lamda_2)*(</pre>
		(v_x(i,j+1)-v_x(i,j)) +
		(v_x(i,j-1)-v_x(i,j)) +
		(v_x(i-1,j)-v_x(i,j)));
518		
519		<pre>DEL_Rvy(i,j) = (2 * lamda_2)*(</pre>
		(v_y(i,j+1)-v_y(i,j)) +
		(v_y(i,j-1)-v_y(i,j)) +
		(v_y(i-1,j)-v_y(i,j)));
520		
521		
522		
523	ene	d
524		
525		
526		
527		
528	%	TL
529		
530		
531	i=1;	
532	j=1;	
533		
534		
535		
536		$DEL_R_real_p(i, j) = (2 * lamda_1) * ($
		(p_real(i,j+1)-p_real(i,j)) +
		(p_real(i+1,j)—p_real(i,j)));
537		
538		DEL_R_imag_p(i,j) = $(2 * \text{lamda_l}) * (\dots$
		(p_imag(i,j+1)-p_imag(i,j)) +
		(p_imag(i+1,j)-p_imag(i,j))) ;
539		
540		$DEL_R_vx(i,j) = (2 * lamda_2)*($
		$(v_x(i,j+1)-v_x(i,j)) + \dots$
		$(v_x(i+1,j)-v_x(i,j)))$);
541		
542		$DEL_R_vy(i, j) = (2 * lamda_2) * ($
		$(v_y(i, j+1)-v_y(i, j)) + \dots$
		(v_y(i+1,j)-v_y(i,j)));
543		
544		
545		

×	TR
0	ΞIX
i=1;	
j=n;	
<u> </u>	
	<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*(</pre>
	(p_real(i+1,j)-p_real(i,j)) +
	(p_real(i,j-1)-p_real(i,j)));
	$DEL_R_imag_p(i,j) = (2 * lamda_1) * ($
	(p_imag(i+1,j)-p_imag(i,j)) +
	(p_imag(i,j-1)-p_imag(i,j))
	$DEL_R_vx(i,j) = (2 * lamda_2)*($.
	$(v_x(i+1,j)-v_x(i,j)) + \dots$
	(v_x(i,j-1)-v_x(i,j)));
	$DEL_R_vy(i,j) = (2 * lamda_2)*($
	$(v_y(i+1,j)-v_y(i,j)) + \dots$
	(v_y(i,j-1)-v_y(i,j)));
0,	DI
<u>o</u>	BL
%	BL
% i=n; i=1:	BL
%; j=1;	BL
% i=n; j=1;	BL
% i=n; j=1;	BL DEL_R_real_p(i,j) = (2 * lamda_1)*(
%; i=n; j=1;	<pre> BL DEL_R_real_p(i,j) = (2 * lamda_1)*((p_real(i,j+1)-p_real(i,j)) +</pre>
° i=n; j=1;	<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*((p_real(i,j+1)-p_real(i,j)) + (p_real(i-1,j)-p_real(i,j));</pre>
%; j=1;	<pre> BL DEL_R_real_p(i,j) = (2 * lamda_1)*((p_real(i,j+1)-p_real(i,j)) + (p_real(i-1,j)-p_real(i,j)));</pre>
%; j=1;	<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*((p_real(i,j+1)-p_real(i,j)) + (p_real(i-1,j)-p_real(i,j))); DEL_R_imag_p(i,j) = (2 * lamda_1)*(</pre>
%; j=1;	<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*((p_real(i,j+1)-p_real(i,j)) + (p_real(i-1,j)-p_real(i,j))); DEL_R_imag_p(i,j) = (2 * lamda_1)*((p_imag(i,j+1)-p_imag(i,j)) +</pre>
% i=n; j=1;	<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*((p_real(i,j+1)-p_real(i,j)) + (p_real(i-1,j)-p_real(i,j))); DEL_R_imag_p(i,j) = (2 * lamda_1)*((p_imag(i,j+1)-p_imag(i,j)) + (p_imag(i-1,j)-p_imag(i,j)));</pre>
% i=n; j=1;	<pre>BL</pre>
%; j=1;	<pre>BL</pre>
°,; j=1;	<pre>BL</pre>
% i=n; j=1;	<pre>BL</pre>
% i=n; j=1;	<pre>BL DEL_R_real_p(i,j) = (2 * lamda_1)*((p_real(i,j+1)-p_real(i,j)) + (p_real(i-1,j)-p_real(i,j))); DEL_R_imag_p(i,j) = (2 * lamda_1)*((p_imag(i,j+1)-p_imag(i,j)) + (p_imag(i-1,j)-p_imag(i,j))); DEL_Rvx(i,j) = (2 * lamda_2)*((v_x(i,j+1)-v_x(i,j)) + (v_x(i-1,j)-v_x(i,j)));</pre>
% i=n; j=1;	<pre>BL</pre>
% i=n; j=1;	<pre>BL</pre>

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

M.A.Sc.	Thesis – Yogesh Chinta Venkateswarao – McMaster –
	Computational Engineering and Science

```
618
        for j=1:n-1
619
620
621
622
             p_{real_rx} =+ (real(p_m(i,j+1))-real(p_m(i,j))) * \dots
623
                 (real(p_m(i,j+1))-real(p_m(i,j)));
             p_imag_r_x =+ (imag(p_m(i,j+1))-imag(p_m(i,j))) * ...
624
                 (imag(p_m(i,j+1))-imag(p_m(i,j)))
                                                              ;
             v_x_r = + (v_x_m(i, j+1) - v_x_m(i, j) * ...
625
                 v_x_m(i, j+1) - v_x_m(i, j));
             v_y_r_x =+ (v_y_m(i, j+1)-v_y_m(i, j) * ...
626
                 v_y_m(i, j+1) - v_y_m(i, j));
627
628
629
         end
630
631
632
   end
633
634
635
   for j=1:n
636
         for i=1:n-1
637
638
639
                  p_real_r_y =+ ...
640
                       ((real(p_m(i+1,j))-real(p_m(i,j))) )* ...
                       (real(p_m(i+1,j))-real(p_m(i,j))));
641
                  p_imag_r_y =+ ...
                       ((imag(p_m(i+1,j))-imag(p_m(i,j))) )* ...
                       (imag(p_m(i+1,j))-imag(p_m(i,j))) );
                  v_x_r_y =+ ((v_x_m(i+1,j)-v_x_m(i,j)) * ...
642
                       (v_x_m(i+1,j)-v_x_m(i,j)));
                  v_y_r_y = + ((v_y_m(i+1,j)-v_y_m(i,j)) * ...
643
                       (v_y_m(i+1,j)-v_y_m(i,j)) );
644
645
         end
646
   end
647
648
649
650 p_real_r = p_real_r_x + p_real_r_y;
651 p_imag_r = p_imag_r_x + p_imag_r_y;
652
   v_{x_r} = v_{x_r} + v_{x_r};
   v_{-}y_{-}r = v_{-}y_{-}r_{-}x + v_{-}y_{-}r_{-}y;
653
654
655
```

```
656
657
658 f=sum(f_obj)+(lamda_1*p_real_r)
659 +(lamda_1*p_imag_r)
660 +(lamda_2*v_x_r)+(lamda_2*v_y_r);
661
662
663 g=[(DEL_F_real_p + DEL_R_real_p ) ;(DEL_F_imag_p + ...
DEL_R_imag_p);(DEL_F__vx + DEL_R__vx);(DEL_F__vy + ...
DEL_R_vy)];
```

A2: Objective function in Image space

```
1
2 function [f g] = objFun(A)
       - The size of the Image
3 % N
          - Radius of the vessel
4 % R
  % V_max - Maximum velocity of blood
\mathbf{5}
6 % p

    Proton density matrix

7 % v_x - Matrix containg x components of Velocity vector
8 % v_y - Matrix containg y components of Velocity vector
  % (G_0,G_1,G_neg_1) - Gradient Sensitization vectors
9
10 %
11
12 n=32;
13 lamda_1=1e-4;
14 lamda_2=1e-1;
15
16
17 [c,d] = size(A);
18 p_real = A(1:c/4,:);
19 p_{imag} = A((c/4)+1:(c/4)+d,:);
20 v_x = A(((c/4)+d)+1:(c/4)+2*d,:);
21 v_y = A(((c/4)+2*d)+1:c,:);
22
23 R=n/8;
24 v_max=1;
25 v_y_m=zeros(n,n);
26 p_m= zeros(n,n);
27 snr=25;
G_0 = zeros(n, n);
29 G_1=ones(n,n);
30 G_neg_1=-(ones(n,n));
31
32
```

```
33
34
   0
35
   2
         -- Measurement -
36
   8
37
   for l = 1:n
38
       for m = 1:n
39
40
41
            if (distance([1,m], [n/2,m]) \ge R)
                p_m(1,m) = 1i;
42
                v_x_m(1, m) = 0;
43
44
            else
45
46
47
                p_m(1,m) = 2.5;
                v_x_m(l,m) = v_max*(1-((distance([l,m], ...
48
                    [n/2,m]))<sup>2</sup>/R<sup>2</sup>));
49
50
            end
51
52
53
       end
54
55 end
56
57
58 [c,d] = size(A);
59 p_real = A(1:c/4,:);
60 p_{-imag} = A((c/4)+1:(c/4)+d,:);
61 v_x = A(((c/4)+d)+1:(c/4)+2*d,:);
62 v_y = A(((c/4)+2*d)+1:c,:);
63
64
65 ml=p_m.*(exp(-li*(G_0 .* v_x_m + G_1 .* v_y_m)));
66 m2=p_m.*(exp(-li*(G_1 .* v_x_m + G_1 .* v_y_m)));
67 m3=p_m.*(exp(-li*(G_1 .* v_x_m + G_neg_1 .* v_y_m)));
  m4=p_m.*(exp(-li*(G_1 .* v_x_m + G_0 .* v_y_m)));
68
69
70
71
72
73
74
75 k=1;
76
   for i=1:n
77
       for j=1:n
78
79
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

80	
81	
82	real_G1 = (p_real(i,j)*cos((G_0(i,j)*v_x(i,j)) +
	$(G_{-1}(i,j) * v_{-}v(i,j))) + \dots$
	$(p_{imag}(i,j) * sin((G_0(i,j) * v_x(i,j))) +$
	(G 1(i,i) * v v(i,i))) - real(m1(i,i));
83	imag G1 = (p imag(i, j) * cos((G 0(i, j) * v x(i, j))) +
	$(G 1 (i, i) * v v (i, i))) = \dots$
	(p_real(i,i)*sin((G_0(i,i)*v_x(i,i)) +
	$(G_1(i,i) * v_v(i,i))) - imag(m1(i,i));$
84	
85	real G2 = (p real(i,i) * cos((G 1(i,i) * v x(i,i))) +
00	$(G_1(i, i) * v v(i, i)) +$
	(n imag(i i) + sin((G 1(i i) + y x(i i))) +
	$(C_1(i, j) + v_1 v_1(i, j)) = real(m^2(i, j))$
96	$(0_1(1, j), v_2(1, j), j) = 1001(02(1, j), j)$ imag G2 = (p imag(i i)+cos((G 1(i i)+v x(i i))) +
80	$(C_1(i, j) + v_1 v_1(j, j)) = $
	$(0_{-1}(1, j) \wedge 0_{-1}(1, j)) / \cdots $
	$(p_1(a_1(1, j), s_1)((a_1(1, j), v_1(1, j))) = (m_2(m_2(1, j)))$
07	$(G_1(1, j) \times V_2(1, j))) = Imag(mz(1, j)),$
87	real G3 = (r real(i i) + cos((G 1(i i) + v v(i i))) +
88	$(G \text{ neg } 1 (i \ i) + y \ y (i \ i))) +$
	$(G_{11}, G_{21}, G_{$
	$(p_{1}) = (p_{1}) = (p_{$
80	$(G_{11}, G_{21}, G_{11}, G_{$
09	$(G \text{ neg } 1 (i \ i) + y \ y (i \ i))) = -$
	$(G_{11}, G_{21}, G_{$
	$(p_1 = a_1(1, j) \land s_1 = a_1(1, j) \land v_2 \land (1, j) \land v_3 \land (1, j) \land (1, j)$
00	$(G_{11}, G_{11}, G_{$
90	real G4 = (rreal(i i) + cos((G 1(i i) + vrs(i i))) +
91	$(C \cap (i - i) + v v (i - i))) +$
	(0 - 0 + 7) + (-7) +
	$(P_1(a_1, j), S_1((0_1, (1, j), V_X(1, j))) = (P_1(a_1, j), (1, j))$
0.2	$(0_0(1, j) \times 0_2(1, j)) = 1001(0(1, j))$
32	$(C \cap (i - i) + x_1 x_2 (i - i))) =$
	(0 - 0 (1)) + 0 - y (1)) + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
	$(p_1(a_1(1, j), s_1), (g_1(1, j), v_2(1, j))) = (g_1(a_1, j), (g_1(1, j)))$
0.2	$(G_{-}(1, j) \times V_{-}(1, j))) = Imag(ma(1, j)),$
93	
94	
95	$f1 = (roal C1)^2 + (imag C1)^2$
96	$\Pi = (Ieal_GI) 2 + (Imag_GI) 2,$
97	$f_{2} = (r_{2})^{2} + (i_{r_{2}} - c_{2})^{2}$
98	$12 - (16a1_02) 2 + (1may_02) 2j$
99	$f_{3} = (r_{0,2})^{2} + (i_{m_{2},m_{2}})^{2}$
100	$13 - (1001_03) 2 + (1000_03) 2;$
101	$f_{A} = (r_{A})^{2} + (i_{B})^{2}$
102	$14 = (real_{64}) 2 + (lmag_{64}) 2;$
103	

```
104
105
106
            f_{obj}(k) = f1 + f2 + f3 + f4;
107
            k=k+1;
108
109
    % Gradient w.r.t real(p) along directions G1, G2, G3, G4
110
111
112
   G1_real_p = 2*(real_G1)*cos((G_0(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j))) - \dots
       2*(imag_G1)*sin((G_0(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j)));
113
   G2_{real_p} = 2*(real_G2)*cos((G_1(i,j)*v_x(i,j)) + ...
114
       (G_1(i,j) * v_y(i,j))) - \dots
       2*(imag_G2)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_1(i,j)*v_y(i,j)) );
115
116
  G3_real_p = 2*(real_G3)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_{neg_1}(i,j) * v_y(i,j))) - \dots
       2*(imag_G3)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_neg_1(i,j) *v_y(i,j)) );
117
   G4_real_p = 2*(real_G4)*cos((G_1(i,j)*v_x(i,j)) + ...
118
       (G_0(i,j) * v_y(i,j))) - \dots
       2*(imag_G4)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_0(i,j) * v_y(i,j)));
119
120
   % Gradient w.r.t imag(p) along directions G1,G2,G3,G4
121
122
   G1_{imag_p} = 2*(real_G1)*sin((G_0(i,j)*v_x(i,j)) + ...
123
       (G_1(i,j)*v_y(i,j))) + ...
       2*(imag_G1)*cos((G_0(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j)));
124
  G2_{imag_p} = 2*(real_G2)*sin((G_1(i,j)*v_x(i,j)) + ...
125
       (G_1(i,j) * v_y(i,j))) + \dots
       2*(imag_G2)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_1(i,j)*v_y(i,j)) );
126
  G3_imag_p = 2*(real_G3)*sin((G_1(i,j)*v_x(i,j)) + ...
127
       (G_{neg_1}(i,j) * v_y(i,j)) + \dots
       2*(imag_G3)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_neg_1(i,j) *v_y(i,j)) );
128
   G4_{imag} = 2*(real_G4)*sin((G_1(i,j)*v_x(i,j)) + ...
129
       (G_0(i,j) * v_y(i,j))) + \dots
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

```
2*(imag_G4)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_0(i,j)*v_y(i,j)) );
130
131
    % Gradient w.r.t vx along directions G1, G2, G3, G4
132
133
  G1_vx_e1 = 2*(real_G1)*(-1*...
134
       p_real(i,j)*sin((G_0(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j)) ) * G_0(i,j) +
                                             . . .
       p_imag(i,j)*cos((G_0(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j)) * G_0(i,j));
135
136
137
  G1_vx_e2 = 2*(imag_G1)*(-1*...
       p_{imag(i,j)} * sin((G_0(i,j) * v_x(i,j)) + ...
       (G_1(i,j)*v_y(i,j)) ) *G_0(i,j) - ...
       p_{real}(i,j) * cos((G_0(i,j) * v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j)) * G_0(i,j));
138
139
   G2_vx_e1 = 2*(real_G2)*(-1*...
140
       p_real(i,j)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_1(i,j)*v_y(i,j)) ) *G_1(i,j) +
                                             . . .
       p_{imag(i,j)} * cos((G_1(i,j) * v_x(i,j)) + ...
       (G_1(i,j)*v_y(i,j)))* G_1(i,j));
141
142 G2_vx_e2 = 2*(imag_G2)*(-1*...
       p_{imag(i,j)} * sin((G_1(i,j) * v_x(i,j)) + ...
       (G_{-1}(i,j) * v_{-y}(i,j)) ) * G_{-1}(i,j) -
       p_{real}(i, j) * cos((G_1(i, j) * v_x(i, j)) + ...
       (G_1(i,j) * v_y(i,j))) * G_1(i,j);
143
144 \text{ G3_vx_e1} = 2*(\text{real_G3})*(-1*...
       p_real(i,j)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_neg_1(i,j) * v_y(i,j)) ) * G_1(i,j) + ...
       p_{imag(i,j)} * cos((G_1(i,j) * v_x(i,j)) + ...
       (G_neg_1(i,j)*v_y(i,j))))* G_1(i,j);
145
146 \text{ G3}_vx_e2 = 2*(\text{imag}_G3)*(-1*...
       p_{imag(i,j)} * sin((G_1(i,j) * v_x(i,j)) + ...
       (G_neg_1(i,j)*v_y(i,j)) ) *G_1(i,j) - ...
       p_{real}(i,j) * cos((G_1(i,j) * v_x(i,j)) + ...
       (G_neg_1(i,j)*v_y(i,j))))* G_1(i,j);
147
  G4_vx_e1 = 2*(real_G4)*(-1*...
148
       p_real(i,j)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_0(i,j)*v_y(i,j)) ) *G_1(i,j) + ...
       p_{imag(i,j)} * cos((G_1(i,j) * v_x(i,j)) + ...
```

```
(G_0(i,j) * v_y(i,j))) * G_1(i,j);
149
150
  G4_vx_e2 = 2*(imag_G4)*(-1*...
       p_imag(i,j)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_0(i,j)*v_y(i,j)) ) *G_1(i,j) -
                                            . . .
       p_real(i,j)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_0(i,j) * v_y(i,j))) * G_1(i,j);
151
152
    % Gradient w.r.t vy along directions G1, G2, G3, G4
153
154 G1_vy_e1 = 2*(real_G1)*( -1* ...
       p_{real}(i,j) * sin((G_0(i,j) * v_x(i,j)) + ...
       (G_1(i,j)*v_y(i,j)) ) *G_1(i,j) + ...
       p_{imag(i,j)} * cos((G_0(i,j) * v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j))) * G_1(i,j);
155
   G1_vy_e2 = 2*(imag_G1)*(-1*...
156
       p_{imag(i,j)} * sin((G_0(i,j) * v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j)) ) * G_1(i,j) -
                                            . . .
       p_real(i,j)*cos((G_0(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j))) * G_1(i,j);
157
158
   G2_vy_e1 = 2*(real_G2)*(-1*...
159
       p_{real}(i,j) * sin((G_1(i,j) * v_x(i,j)) + ...
       (G_1(i,j)*v_y(i,j)) ) *G_1(i,j) +
       p_imag(i,j)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j))) * G_1(i,j);
160
161 G2_vv_e2 = 2*(imaq_G2)*(-1*...
       p_imag(i,j)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j)) ) * G_1(i,j) - ...
       p_real(i,j)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_1(i,j) * v_y(i,j))) * G_1(i,j);
162
  G3_vv_e1 = 2*(real_G3)*(-1*...
163
       p_{real}(i,j) * sin((G_1(i,j) * v_x(i,j)) + ...
       (G_neg_1(i,j) *v_y(i,j)) ) *G_neg_1(i,j) +
                                                     . . .
       p_{imag(i,j)*cos((G_1(i,j)*v_x(i,j)) + ...)}
       (G_neg_1(i,j)*v_y(i,j))))* G_neg_1(i,j);
164
    G3_vy_e2 = 2*(imag_G3)*(-1*...
165
        p_{imag(i,j)} * sin((G_1(i,j) * v_x(i,j)) + ...
        (G_neg_1(i,j)*v_y(i,j)) ) *G_neg_1(i,j) -
                                                      . . .
        p_real(i,j)*cos((G_1(i,j)*v_x(i,j)) + ...
        (G_neg_1(i,j)*v_y(i,j))))* G_neg_1(i,j);
166
167
```

```
M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster –
Computational Engineering and Science
```

```
51
```

```
168 G4_vy_e1 = 2*(real_G4)*( -1* ...
       p_{real}(i,j) * sin((G_1(i,j) * v_x(i,j)) + ...
       (G_0(i,j)*v_y(i,j)) ) *G_0(i,j) + ...
       p_imag(i,j)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_0(i,j) * v_y(i,j))) * G_0(i,j);
169
170 G4_vy_e2 = 2*(imag_G4)*(-1*...
       p_imag(i,j)*sin((G_1(i,j)*v_x(i,j)) + ...
       (G_0(i,j) * v_y(i,j)) ) * G_0(i,j) - ...
       p_real(i,j)*cos((G_1(i,j)*v_x(i,j)) + ...
       (G_0(i,j)*v_y(i,j))) * G_0(i,j);
171
172
173
174
   g_real_p(i,j) = G1_real_p+G2_real_p+G3_real_p+G4_real_p;
175
   g_imag_p(i,j) = G1_imag_p+G2_imag_p+G3_imag_p+G4_imag_p;
176
177
178
   g_vx(i,j)
                   = G1_vx_e1+G1_vx_e2+G2_vx_e1
            +G2_vx_e2+G3_vx_e1+G3_vx_e2
179
            +G4_vx_e1+G4_vx_e2;
180
181
                 = G1_vy_e1+G1_vy_e2+G2_vy_e1
   g_vy(i,j)
182
            +G2_vy_e2+G3_vy_e1+G3_vy_e2
183
184
            +G4_vy_e1+G4_vy_e2;
185
186
187
188
         end
189
190
191
    end
192
193
194
195
196
197
        -----Gradient for Regularization -----
198
   0
199
   0
200
201
202
203
204
205
                      - Middle -
206
207
```

```
208
209
210 for i=2:n-1
211
       for j=2:n-1
212
213
214
215
216
            DEL_R_real_p(i,j) = (2 * lamda_1) * (p_real(i,j+1) ...
               - p_real(i,j) + p_real(i,j-1) - p_real(i,j) + ...
               p_real(i+1,j)-p_real(i,j) + ...
               p_real(i-1,j)-p_real(i,j) );
217
            DEL_R_imag_p(i,j) = (2 * lamda_1) * ( p_imag(i,j+1) ...
218
               - p_imag(i,j) + p_imag(i,j-1) - p_imag(i,j) + ...
               p_imag(i+1,j)-p_imag(i,j) + ...
               p_imag(i-1,j)-p_imag(i,j) ) ;
219
                                (2 * lamda_2)*( v_x(i,j+1) - ...
220
            DEL_R_vx(i,j) =
               v_x(i,j) + v_x(i,j-1)-v_x(i,j)
                                                             + ...
               v_x(i+1,j)-v_x(i,j)
                                      + v_x(i-1,j)-v_x(i,j) );
221
            DEL_R_vy(i,j) = (2 * lamda_2) * (
222
                                                   . . .
               v_y(i, j+1) - v_y_m(i, j)
                                           + ...
               v_y(i, j-1) - v_y_m(i, j)
                                            + ...
               v_y(i+1,j)-v_y_m(i,j)
                                             + ...
               v_y(i-1,j)-v_y(i,j) );
223
224
225
226
         end
227
   end
228
229
230
                   —— Left —
231
232
233
    j=1;
234
235
       for i=2:n-1
236
237
238
239
            DEL_R_real_p(i, j) = (2 * lamda_1) * (p_real(i, j+1) ...
240
               -p_real(i,j) + p_real(i+1,j)-p_real(i,j) + \dots
               p_real(i-1,j)-p_real(i,j) );
241
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

	M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science
242	<pre>DEL_R_imag_p(i,j) = (2 * lamda_1)*(p_imag(i,j+1)-p_imag(i,j) + p_imag(i+1,j)-p_imag(i,j) + p_imag(i-1,j)-p_imag(i,j));</pre>
243	
244	<pre>DEL_Rvx(i,j) = (2 * lamda_2)*(v_x(i,j+1)-v_x(i,j) + v_x(i+1,j)-v_x(i,j) + v_x(i-1,j)-v_x(i,j));</pre>
245	
246	<pre>DEL_Rvy(i,j) = (2 * lamda_2)*(v_y(i,j+1)-v_y(i,j) + v_y(i+1,j)-v_y(i,j) + v_y(i-1,j)-v_y(i,j));</pre>
247	
248	
249	
250	end
251	
252	
253	
204 255	
256	
257	% Right
258	
259	
260	j=n;
261	
262	for i=2:n-1
263	
264	
265	
266	$DEL_R[real_p(1, j)] = (2 * Iamda_1)*(\dots$
	$(p_{1}) = a_{1}(1, j_{1}) p_{1} = a_{1}(1, j_{1}) + a_{1}(1, j_{$
	(p real(i-1, j) - p real(i, j)):
267	
268	$DEL_R_imag_p(i,j) = (2 * lamda_1) * (\dots$
	(p_imag(i,j-1)-p_imag(i,j)) +
	(p_imag(i+1,j)-p_imag(i,j)) +
	(p_imag(i-1,j)-p_imag(i,j))) ;
269	
270	$DEL_R_vx(i,j) = (2 * lamda_2)*($
	$(v_x(i, j-1)-v_x(i, j)) + \dots$
	$(v_x(i+1,j)-v_x(i,j)) + \dots$
	(V_X(l-1,])-V_X(l,])));
271	DEL P $xx(i i) = (2 + londo 2) + ($
272	$(v_y(i, j-1)-v_y(i, j)) + \dots$

	(v_y(i+1,j)-v_y(i,j)) + (v_y(i-1,j)-v_y(i,j)));
273	
274	
275	
276	end
277	
278	
279	
280	
281	
282	
283	
284	
285	% Top
286	
287	
288	i=1;
289	
290	for j=2:n-1
291	
292	
293	
294	DEL_R_real_p(i,j) = (2 * lamda_1)*(
	(p_real(i,j+1)-p_real(i,j)) +
	(p_real(i,j-1)-p_real(i,j)) +
	(p_real(i+1,j)-p_real(i,j)));
295	
296	$DEL_R_{imag_p}(i, j) = (2 * lamda_1) * ($
	(p_imag(i,j+1)-p_imag(i,j)) +
	(p_imag(i,j-i)-p_imag(i,j)) +
	(p_imag(i+1,j)-p_imag(i,j)));
297	
298	$ \Box \Box \Box \Box K_{-} \vee X (I, J) = (2 * Iamda_{-}2) * ($
	$ (\vee_X (\bot_I)^{+} \bot)^{-} \vee_X (\bot_I)) + \dots $
	$(\vee_X (\bot, J - \bot) - \vee_X (\bot, J)) + \dots$
000	$(\vee_X (\bot^{+}\bot, J) - \vee_X (\bot, J)));$
299	DEL P $xx(i, i) = (2 + londo 2) + ($
300	$(\mathbf{x} \mathbf{x}(\mathbf{i} \mathbf{j}+1) - (\mathbf{z} \mathbf{x} \mathbf{i} \mathbf{a} \mathbf{u} \mathbf{u} \mathbf{a} \mathbf{z}) \mathbf{x} \mathbf{x}$
	$(v_{y}(\bot, J^{\top}\bot) - v_{y}(\bot, J)) \qquad \top \qquad \dots \qquad \qquad$
	$(v_{-y}(\bot, J^{-} \downarrow) - v_{-y}(\bot, J)) \qquad \top \qquad \dots \qquad (v_{-y}(\bot, J^{-} \downarrow)) \qquad \qquad) \cdot$
301	(v-y(⊥,)) v-y(⊥,)))),
302	
302	
304	end
305	
306	
300	

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

307			
308	%		Bottom
309			
310			
311			
312	i=n;		
313			
314		for	j=2:n-1
315			
316			
317			
318			$DEL_R_real_p(i,j) = (2 * lamda_1) * (\dots$
			(p_real(i,j+1)-p_real(i,j)) +
			(p_real(i,j-1)-p_real(i,j)) +
			(p_real(i-1,j)-p_real(i,j)));
319			
320			$DEL_Rimag_p(i,j) = (2 * lamda_1) * ($
			(p_imag(i,j+1)-p_imag(i,j)) +
			(p_imag(i,j-1)-p_imag(i,j)) +
			(p_imag(i-i,j)-p_imag(i,j))) ;
321			DEL P $w (i i) = (2 + 1) - (2 + 1)$
322			$(\mathbf{x} \times (\mathbf{i} + \mathbf{j})) = (\mathbf{z} \times \operatorname{Ian(ua_2)} \times (\cdots))$
			$(v - x (i - j) + 1) = v - x (i - j)) + \cdots$
			(v - x (i - 1 - i) - v - x (i - i)))
303			
324			DEL R $vv(i, i) = (2 * lamda 2) * ($
024			$(v v(i, j+1) - v v(i, j)) + \dots$
			$(v_{-y}(i,j-1) - v_{-y}(i,j)) + \dots$
			$(v_{v_{i}}(i-1,j)-v_{v_{i}}(i,j)));$
325			
326			
327			
328		enc	1
329			
330			
331			
332			
333	%		TL
334			
335			
336	i=	=1;	
337	j=	=⊥;	
338			
339			
340			
341			<pre>DEL_K_real_p(1, j) = (2 * lamda_l)*(</pre>
			(p_real(1,]+1)-p_real(1,])) +

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

	(p_real(i+1,j)-p_real(i,j)));
	$DEL_R_{imag_p(i,j)} = (2 * lamda_1)*($
	(p_imag(i,j+1)-p_imag(i,j)) +
	<pre>(p_imag(i+1,j)-p_imag(i,j)));</pre>
	$ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$
	$(v_X(1, j+1) - v_X(1, j)) + \dots$
	$(v_X(1+1, j)-v_X(1, j)))$;
	$DEL_R_vv(i,i) = (2 * lamda_2)*()$
	$(v v(i, j+1) - v v(i, j)) + \dots$
	$(v_v(i+1,j) - v_v(i,j))$):
%	TR
i=1;	
j=n ;	
	$DEL_{R_{real}}(1, j) = (2 * lamda_{l}) * ($
	$(p_{real}(1+1, j)-p_{real}(1, j)) + \dots$
	(p_real(1, j-1)-p_real(1, j)));
	DEL P imag $p(i = 1) = 12 + landa 1) + 1$
	$(n imag(i+1 i) - (2 * iamua_1)*(.)$
	$(p_{1}, p_{1}, p_{1},$
	(P-rmag(r,) r) P-rmag(r,)// / /
	$DEL_R_vx(i, j) = (2 * lamda_2)*($
	$(v_x(i+1,j)-v_x(i,j)) + \dots$
	$(v_x(i,j-1)-v_x(i,j)));$
	$DEL_R_vy(i,j) = (2 * lamda_2)*($.
	(v_y(i+1,j)-v_y(i,j)) +
	(v_y(i,j-1)-v_y(i,j)));
%	BL
i=n;	
j=1;	

75	
76	<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*(</pre>
	(p_real(i,j+1)-p_real(i,j)) +
77	(p_real(1-1,j)-p_real(1,j)));
78	<pre>DEL_R_imag_p(i,j) = (2 * lamda_1)*(</pre>
	(p_imag(i,j+1)-p_imag(i,j)) +
	(p_imag(i-1,j)-p_imag(i,j))) ;
79	DEL D $uv(i i) = (2 + londo 2) + ($
80	$(v_x(i,j+1)-v_x(i,j)) + \dots$
	(v_x(i-1,j)-v_x(i,j)));
81	
82	$DEL_R_vy(i,j) = (2 * lamda_2) * ($
	$(v_y(1, j+1) - v_y(1, j)) + \dots$
33	//////////////////////////////////////
34	
85	
86 •	מת
37 6 38	вк
39	
00 i=n;	
₁ j=n;	
02	
93	
95	<pre>DEL_R_real_p(i,j) = (2 * lamda_1)*(</pre>
	(p_real(i,j-1)-p_real(i,j)) +
	(p_real(i-1,j)-p_real(i,j)));
96	DEL D image $n(i \rightarrow) = (2 \cdot 1) - (2 \cdot 1)$
97	$L_{L-K-I} \operatorname{Imag}(p(I, j)) = (2 * Iamaa_I) * (\dots$ $(p \operatorname{Imag}(i, j-1) - p \operatorname{Imag}(i, j)) + \dots$
	(p_imag(i-1,j)-p_imag(i,j)));
98	
99	$DEL_R_vx(i,j) = (2 * lamda_2)*($
	$(v_x(i, j-1)-v_x(i, j)) + \dots$
	$(V_X(1-1, j)-V_X(1, j)));$
20	
00 01	$DEL_R_vv(i,j) = (2 * lamda_2) * ($
00 01	<pre>DEL_Rvy(i,j) = (2 * lamda_2)*((v_y(i,j-1)-v_y(i,j)) +</pre>
00 01	<pre>DEL_Rvy(i,j) = (2 * lamda_2)*((v_y(i,j-1)-v_y(i,j)) + (v_y(i-1,j)-v_y(i,j));</pre>
00 01 02	<pre>DEL_Rvy(i,j) = (2 * lamda_2)*((v_y(i,j-1)-v_y(i,j)) + (v_y(i-1,j)-v_y(i,j)));</pre>
00 01 02 03	<pre>DEL_Rvy(i,j) = (2 * lamda_2)*((v_y(i,j-1)-v_y(i,j)) + (v_y(i-1,j)-v_y(i,j)));</pre>
00)1)2)3)4)5	<pre>DEL_Rvy(i,j) = (2 * lamda_2)*((v_y(i,j-1)-v_y(i,j)) + (v_y(i-1,j)-v_y(i,j)));</pre>
```
Regularization -
407
408
    2
409
410
411
412
413
    p_real_r_x = 0;
414
415
    p_imag_r_x=0;
416
    v_{y_{r_{x}}} = 0;
417
418
419
420
    p_real_r_y= 0;
421
     p_imag_r_y=0;
    v_x_r_y=0;
422
423
    v_y_r_y=0;
424
425
   for i=1:n
426
427
        for j=1:n-1
428
429
430
             p_real_r_x =+ (p_real(i,j+1)-p_real(i,j)) * ...
431
                 (p_real(i,j+1)-p_real(i,j));
             p_imag_r_x =+ (p_imag(i,j+1)-p_imag(i,j)) * ...
432
                 (p_imag(i,j+1)-p_imag(i,j))
                                                      ;
             v_x_r = + (v_x(i, j+1) - v_x(i, j) * v_x(i, j+1) - v_x(i, j));
433
             v_y_r_x =+ (v_y(i, j+1)-v_y(i, j) * v_y(i, j+1)-v_y(i, j));
434
435
436
437
438
         end
439
   end
440
441
442
443
   for j=1:n
444
         for i=1:n-1
445
446
447
                  p_real_r_y =+ ((p_real(i+1,j)-p_real(i,j))* ...
448
                       (p_real(i+1,j)-p_real(i,j))) ;
                  p_imag_r_y =+ ((p_imag(i+1,j)-p_imag(i,j))* ...
449
                       (p_imag(i+1,j)-p_imag(i,j)) );
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

```
v_x_r_y =+ ((v_x(i+1,j)-v_x(i,j)) * \dots
450
                      (v_x(i+1,j)-v_x(i,j)));
                  v_y_r_y =+ ((v_y(i+1,j)-v_y(i,j)) * ...
451
                      (v_y(i+1,j)-v_y(i,j)) );
452
453
         end
454
455 end
456
457
458 p_real_r = p_real_r_x + p_real_r_y;
459 p_imag_r = p_imag_r_x + p_imag_r_y;
460 \quad v_x_r = v_x_r_x + v_x_r_y;
   v_y_r = v_y_r_x + v_y_r_y;
461
462
   f=sum(f_obj)+lamda_1*p_real_r
463
        +lamda_1*p_imag_r
464
        +lamda_2*v_x_r+lamda_2*v_y_r;
465
466
467
468 g=[g_real_p;g_imag_p;g_vx;g_vy];
```

A3: Optimization function call

```
1 options = optimset('GradObj','on','Display','iter',
                                         'MaxIter',500,'TolX',1e-200,
\mathbf{2}
                                         'TolFun', 1e-200, 'MaxFunEvals',
3
                                        1000000, 'LargeScale', 'off',
4
                                         'UseParallel', 'always');
5
6
7
8
   p_initial= ones(n,n)+li*zeros(n,n);
9
10
11
12
13
14 A=[real(p_initial); imag(p_initial); ones(n,n); zeros(n,n)];
15
16
17 tic;
18
  [x fval] = fminunc('objFunK', A, options);
19
20
21 toc;
```

```
M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster –
Computational Engineering and Science
```

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

M.A.Sc. Thesis – Yogesh Chinta Venkateswarao – McMaster – Computational Engineering and Science

Bibliography

- [Aga03] Vivek Agarwal. Total variation regularization and l-curve method for the selection of regularization parameter. Technical report, 2003.
- [BB98] M. Bertero and P. Boccacci. Introduction to Inverse Problems in Imaging. IOP Publishing Ltd., 1998.
- [Ber69] G. D. Bergland. A guided tour of the fast fourier transform. *IEEE* Spectrum, 6(7):41 -52, 1969.
- [BPT88] Mario Bertero, Tomaso A. Poggio, and Vincent Torre. Ill-posed problems in early vision. *Proceeding of the IEEE*, 76(8), August 1988.
- [Bri74] E.O. Brigham. The Fast Fourier Transform. Prentice-Hall, 1974.
- [Hah60] E.L. Hahn. Detection of sea-water motion by nuclear precession. Journal of Geophysical Research, 65(1):776–777, 1960.
- [Han10] Per Christian Hansen. Discrete Inverse Problems: Insight and Algorithms. SIAM, 2010.
- [HBTV99] E. Mark Haacke, Robert W. Brown, Michael R. Thompson, and Ramesh Venkatesan. Magnetic Resonance Imaging:: Physical Principles and Sequence Design. John Wiley and Sons, Inc, 1999.
- [HNO06] Per Christian Hansen, James G. Nagy, and Dianne P. O'Leary. Deblurring Images: Matrices, Spectra and Filtering. SIAM, 2006.
- [Idi99] Jerome Idier. Regularization tools and models for image and signal reconstruction. In Proceeding of the 3rd International Conference on Inverse Problems in Engineering, 1999.

- M.A.Sc. Thesis Yogesh Chinta Venkateswarao McMaster Computational Engineering and Science
- [IL93] John Huston III and Richard L.Ehman. Comparison of time-offlight and phase-contrast mr neuroangiographic techniques. Journal of continuing medical education in radiology, 13:5–19, January 1993.
- [Moz08] Mehrad Mozafari. Model-based tissue segmentation from simulated partial k-space MRI data. Master's thesis, McMaster University, 2008.
- [NFL86] G.L. Nayer, D.N. Firmin, and D.B. Longmore. Blood flow imaing by cine magnetic resonance. *Journal of Computer Assisted Tomog*raphy, 10:715, 1986.
- [Nis96] D.G Nishimura. Principles of Magnetic Resonance Imaging. IEEE Press, 1996.
- [NMP86] D.G. Nishimura, A. Macovski, and J.M. Pauly. Magnetic resonance angiography. *IEEE transactions on Medical Imaging*, MI-5(3):140, 1986.
- [Pau07] John Pauly. Non-cartesian reconstruction. Technical report, Stanford University, Stanford University, 2007.
- [Pip99] James G. Pipe. Motion correction with PROPELLER MRI: Application to head motion and free-breathing cardiac imaging. Magnetic Resonance in Medicine, 42(5):963–969, 1999.
- [TA77] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. Winston, 1977.
- [Vog96] C.R. Vogel. Non-convergence of the l-curve regularization parameter selection method. *Inverse problems*, 12:535–547, 1996.