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ABSTRACT 

In this thesis, inverse problems related to microwave imaging and microwave 

component design are investigated. Our contribution in microwave imaging for breast 

tumor detection can be divided into two parts. In the first part, a vectorial 3D near-field 

microwave holography is proposed which is an improvement over the existing 

holography algorithms. In the second part, a simple and fast post-processing algorithm 

based on the principle of blind de-convolution is proposed for removing the integration 

effect of the antenna aperture. This allows for the data collected by the antennas to be 

used in 3D holography reconstruction. The blind deconvolution algorithm is a well-

known algorithm in signal processing and our contribution here is its adaptation to 

microwave data processing. 

 Second, a procedure for accelerating the space-mapping optimization process is 

presented. By exploiting both fine- and surrogate-model sensitivity information, a good 

mapping between the two model spaces is efficiently obtained. This results in a 

significant speed-up over direct gradient-based optimization of the original fine model 

and enhanced performance compared with other space-mapping approaches. Our 

approach utilizes commercially available software with adjoint-sensitivity analysis 

capabilities.  
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CHAPTER 1 

INTRODUCTION 

Mathematically, problems in electromagnetics are divided into two major 

categories: inverse problems and forward problems  [1]. In forward problems, the medium 

in which the waves propagate is known and the field solution is to be found. In the 

inverse problems, the field solution is partially known and the properties of the medium 

in which the wave propagates are sought. 

In this thesis, inverse problems related to microwave imaging and microwave 

component design are investigated. In microwave imaging, the scattered electromagnetic 

wave in the observation domain is partially known through measurements while the 

incident field is known a priori. The objective is to reconstruct the electrical properties of 

the examined domain.  

In the microwave design problem, we seek to optimize the structure’s properties 

such as shape and material parameters based on design specifications. 

1.1 MICROWAVE IMAGING FOR BREAST CANCER DIAGNOSTICS 

Breast cancer is the most widespread cancer among women  [2]. X-ray 

mammography  [3] [4] is one of the common approaches to early breast cancer diagnostics. 

There are several problems associated with this method. The most important is that 5%–

15% of the tumors cannot be seen through mammography  [4] [5]. In addition, the 

ionization of tissues caused by X-rays prevents frequent examination of women. 

Magnetic resonance imaging (MRI) is known to be the most sensitive of the available 
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approaches but it is expensive and is not broadly available  [6]. Microwave imaging is a 

promising emerging modality for this purpose.  

In 1979 Jacobi et al.  [7] developed a water-immersed antenna system that was 

able to satisfactorily image canine kidney  [8]. Later, research activities included 

experimental microwave imaging based mainly on linear reconstruction algorithms 

utilizing the Born and the Rytov approximations (e.g., see  [9] [10]). The performance of 

the linear reconstruction algorithms is limited to small low contrast objects  [11] [13]. 

Thus, the later developments have mainly been focused on iterative nonlinear 

reconstruction algorithms which can handle the case of strong complex scatterers. These 

algorithms, however, are more computationally intensive  [14] [21]. They are also 

inherently ill-posed and nonlinear. Often, the nonlinearity of the problem causes the 

algorithm to get trapped in a local minimum leading to an incorrect reconstruction results 

 [22].  

Radar-based imaging is another category of microwave imaging. In radar-based 

imaging, a map of the scattering based on the contrast in the dielectric properties within 

the breast is created. The radar approach was adopted from military and ground-

penetrating applications and was adopted to breast-cancer detection in the late nineties by 

Benjamin  [23] [24] and Hagness  [25]. In contrast to most optimization-based techniques, 

the proposed radar systems operate at higher frequencies (up to 10 GHz) and use a large 

bandwidth (as much as 8 GHz). Most of these radars are therefore ultrawide band (UWB). 

The scattering information is obtained from the transmission and the reception of short 

UWB electromagnetic pulses. The simplest algorithm proposed for radar-based imaging 
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was a standard delay-and-sum (DAS) focusing  [26]. More elaborate techniques such as 

microwave imaging via space-time (MIST) address some drawbacks of DAS. The MIST 

algorithm  [27] [28] outperforms mono-static DAS, although multi-static DAS still 

outperforms mono-static MIST  [29]. An advantage of radar-based imaging over the 

optimization-based imaging is its relatively simple and robust signal processing. To date 

there have been only a few experimental breast-imaging radar systems reported in the 

open literature  [27] [30]- [32]. Although radar-based techniques have their advantages 

(e.g., simplicity), they provide limited performance in terms of image resolution and 

clutter rejection. In addition to the drawbacks mentioned above for optimization-based 

and radar-based techniques, most of the proposed imaging setups so far require 

immersing the antennas and the breast tissue in a coupling liquid. This not only 

complicates the maintenance and sanitation of the setup but also causes additional loss in 

microwave measurements. All of the above drawbacks have hindered the progress toward 

successful clinical trials. 

Microwave holographic imaging is a technique which has been developed for 

concealed weapon detection in the Pacific Northwest National Laboratory  [33] [34] . It 

relies on the measurement of the magnitude and phase of the wave scattered from the 

imaged target on a rectangular or cylindrical aperture. Knowledge of the magnitude and 

phase across an aperture allows Fourier-transform (FT) based reconstruction of the 

target's reflectivity. This technique has been used to form high-resolution two-

dimensional (2D) or three-dimensional (3D) images. Using wide-band frequency data 
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allows for 3D image reconstruction. A successful implementation of the algorithm for 

detection of concealed weapons is reported in  [33] [34].   

In order to be able to apply microwave holographic technique to near-field 

imaging such as breast cancer detection, the original technique has been modified in 

 [35] [38].  So far, microwave holography has been proposed for concealed weapon 

detection  [33] [34] [39], near-field analysis of antennas  [40], biomedical imaging  [41], and 

non-destructive testing and evaluation  [41].  

1.2 MOTIVATION 

In  [41], a novel sensor is proposed to be used in microwave imaging for breast 

cancer detection.  This new sensor has the following advantages. (1) The need for 

coupling liquids is eliminated due to the low-loss solid dielectric material incorporated 

into the antenna structure. This not only simplifies the imaging setup but also eliminates 

the additional power loss due to the coupling liquids. (2) The small sensor aperture leads 

to enhanced spatial resolution in the images. (3) The UWB operation of the antenna 

allows for aperture raster scanning in the UWB frequency range. Since both the new 

sensor and the new holography algorithm proposed in  [38] have a significant potential to 

be used in breast cancer detection, a new techniques to exploit both advantages is 

required. The first problem is that the mentioned holography algorithm is based on a point 

source receiver and transmitter. Thus, the aperture size of the antenna cannot be neglected 

in interpreting the received signals. A method for reducing the integration effect of the 

antenna aperture is required.  
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1.3 CONTRIBUTIONS 

First, a vectorial form for 3D near-field holography is proposed  [44] which is an 

improvement over the holography algorithm proposed in  [38]. Second, a simple and fast 

post-processing algorithm based on the principle of blind de-convolution is proposed for 

removing the integration effect of the antenna aperture  [45]. This allows for the data 

collected by the antennas to be used for 3D holography reconstruction. The blind 

deconvolution algorithm is a well-known algorithm in signal processing  [46] [49] and our 

contribution here is its adaptation to microwave data processing. 

1.4 ACCELERATED SPACE MAPPING WITH ADJOINT SENSITIVITIES 

Microwave circuits and systems are vital for modern technology. They cover a 

vast range of applications from a small device like a cell phone to large scientific projects 

such as space discovery. The development of computer-aided design (CAD) tools and 

optimization methods has led to significant advances in microwave design and modeling 

capabilities, with advantages such as lower  development costs and shortened design 

cycles  [50] [51]. 

Microwave engineering has its beginning in the last century. In the early days, the 

design of microwave circuits would often require the rather tedious and expensive process 

of  ―cut and try‖:  measurements and subsequent amendments on numerous prototypes 

 [52]. Modern CAD tools for microwave circuit design  [53] [55] are developed to 

overcome these difficulties. Nowadays, as powerful computers become available, such 

CAD tools are widely used. Together with the CAD tools, the search for efficient 

optimization methods intensifies. Traditional optimization methods  [56]- [58] directly 
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utilize simulated responses and possibly available derivatives to guide the design toward 

the required specifications. However, the higher the fidelity of the simulation, the more 

expensive is direct optimization. Traditional electromagnetic (EM) optimization is still a 

formidable computational task.  

Space mapping (SM)  [59] [60], first proposed by Bandler et al. in 1994, aims at 

solving this computational problem. It allows for the efficient optimization of expensive 

and complex models referred to as ‖fine‖ models by means of iterative optimization. The 

major burden of the iterative optimization is shifted onto the so called ―coarse‖ model 

which is not accurate but is much cheaper computationally. SM is a widely recognized 

contribution to engineering design for its distinguishing feature of combing the efficiency 

of empirical models with the accuracy of EM simulations. It has been extensively applied 

to modeling and design of engineering devices and systems  [61] especially in the 

microwave area. 

1.5 MOTIVATION 

The sensitivities of the S-parameters are now available in some commercial 

software packages through self-adjoint sensitivity analysis  [62] (SASA). These 

sensitivities significantly decrease the optimization time. On the other hand space 

mapping is a well known approach which also decreases the optimization burden. An 

approach which exploits both SASA and SM is promising.  

1.6 CONTRIBUTIONS 

In this thesis an algorithm which exploits the advantages of both response 

sensitivities and space mapping is proposed  [63]. The relation between the mapping 



MSc Thesis – Ali Khalatpour                     Chapter 1                        McMaster University − ECE   

______________________________________________________________________________ 

 

 7 

matrix between the fine and coarse model spaces and the sensitivities of the coarse and 

fine models was derived in  [63]. Due to the lack of response sensitivities in commercial 

software, a possible algorithm to use this relation has not been developed till now. In this 

thesis, an algorithm which uses response sensitivities with respect to the design 

parameters and the implicit parameters is proposed. A useful design framework based on 

the proposed algorithm is also presented  [65]. 

1.7 OUTLINE OF THESIS 

In chapter 2, an improved holographic microwave imaging techniques is proposed 

to reconstruct an image of the targets. In this algorithm, both co-pol and cross-pol data are 

used which leads to better image quality. These techniques are based on the Fourier 

analysis of the data recorded by two antennas scanning together two separate rectangular 

parallel apertures on both sides of a target. No assumptions are made about the incident 

field, which can be derived by either simulation or measurement. Both the back-scattered 

and forward-scattered signals can be used to reconstruct the image of the target.  

In chapter 3, a novel application of blind deconvolution is presented to improve 

the quality of image obtained through microwave raster scanning.  

In chapter 4, a procedure for accelerating the space mapping optimization process 

is presented. Exploiting both fine- and surrogate-model sensitivity information, a good 

mapping between the two model spaces is efficiently obtained. This results in a 

significant speed-up over direct gradient-based optimization of the original fine model 

and enhanced performance compared with other space-mapping approaches. Our 
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approach utilizes commercially available software with adjoint-sensitivity analysis 

capabilities.  
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CHAPTER 2 

THREE-DIMENSIONAL NEAR-FIELD MICROWAVE 

HOLOGRAPHY USING CO-POLARIZED AND CROSS-

POLARIZED DATA 

2.1 INTRODUCTION 

Various methods have been proposed for microwave imaging. We described 

common optimization-based and radar-based techniques proposed so far for breast 

imaging in chapter 1. We also described the challenges in microwave imaging which have 

prevented the realization of reliable clinical imaging setups so far.   

A microwave holographic imaging technique has been proposed in Pacific 

Northwest National Laboratory  [1] [2] which relies on the measurement of the magnitude 

and phase of the wave scattered from the imaged target on a rectangular aperture. 

Knowledge of the magnitude and phase across an aperture allows Fourier-transform (FT) 

based reconstruction of the target's reflectivity. This technique has been used to form 

high-resolution two-dimensional (2D) or three-dimensional (3D) images. In this method, 

a transmitter antenna and a receiver antenna move together on one side of the target to 

scan a rectangular planar aperture.  

An extension has been made to the holographic image reconstruction developed in 

 [1] [2] to include not only back-scattered but also forward-scattered signals for 2D and 3D 

imaging  [3]- [6]. In this development, no assumptions are made about the incident field 

such as those based on plane-wave representations. The incident field can be given in a 
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numerical form as in the case when it is derived through electromagnetic simulation or it 

can be given through measurement. This is especially important in near-field imaging 

where the target is close to the antenna and the spherical plane-wave assumptions for the 

illuminating wave are not valid. In the 2D technique, the S-parameters collected at a 

single frequency are then processed to first localize the target in the range direction and 

then reconstruct a 2D image of the target. In the 3D technique, the S-parameters collected 

at several frequencies are processed to reconstruct a 3D target region slice by slice.  

In  [1] [2], the solution is provided based on a simplifying assumption leading to a 

scalar wave equation. For example, using two co-polarized dipole antennas, which 

generate and sample only the co-polarized components of the incident and scattered 

fields, is the case considered in  [5] [6]. However, the algorithm in  [5] [6] can be extended 

to handle both co-polarized and cross-polarized data. 

Here, a full vector 3D holography for near-field imaging is presented  [7]. It allows 

for the combined use of the data collected from co-polarized and cross-polarized 

measurements. We demonstrate that this leads to significantly improved reconstructed 

image. The reconstruction results when using co-polarized data only, cross-polarized data 

only, and combined co-polarized and cross-polarized data are presented for X-shaped and 

square-shaped targets. 
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Fig. 1. 3D microwave holography setup with the two dipoles being co-polarized  [7]. 

2.2 THEORY 

The microwave holography setup considered here employs planar raster scanning. 

It consists of two dipole antennas and a target in between as shown in Fig. 1. The 

formulation of the scattered field when using the linear Born approximation is  [8] 

 
sc inc 2 2( ) ( , ) ( )[ ( ) ]s b

V

k k d     E r G r r E r r r                                   (1) 

where 
sc

E  is the scatted field observed at position r , ( , )G r r  is Green’s dyadic function, 

inc
E  is the incident field at the position of r  of the scatterer, and sk  and bk  are the wave 

numbers of the scatterer and the background medium, respectively. The condition for 

applying first-order Born approximation is that the radius a of a sphere enclosing the 

target satisfy  [9] 

min
( 1)

4
n a


                                                                  (2) 

in which n is the index of refraction of the target with respect to the background. 
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In contrast to the work in  [5], where only the co-polarized component (x-

component) of the incident and scattered fields were considered, here we provide a full 

vector holographic theory. This theory allows for the development of reconstruction 

algorithms employing both co-polarized and cross-polarized measured data. 

As shown in Fig. 1, the antennas perform 2D scan while moving together on two 

separate parallel planes positioned at 0z   and z D . Assume that at any measurement 

frequency lf  ( 1,2, , fl N ) we know the incident field 
inc (0,0,0; , , ; )lx y z fE  at any 

point ( , , )x y z  in the inspected volume when the transmitting antenna is at (0,0,0) . In 

addition, all scalar components of Green’s tensor function ( , , ;0,0, ; )j
i lG x y z D f  (i, j = x, 

y, or z) are known for an i-polarized point source at ( , , )x y z  and 
sc
jE  measured at 

(0,0, )D . This information can be obtained via simulations as explained in  [5]. For 

brevity, we set 

inc inc( , , , ) (0,0,0; , , ; )l lx y z f x y z fE E                                    (3) 

( , , , ) ( , , ;0,0, ; )l lx y z f x y z D fG G .                                         (4) 

Let the signal 
sc ( , , , )j lE x y D f   be the scattered wave received at ( , , ).x y D   This 

implies that the transmitting antenna is at ( , ,0)x y   since it moves together with the 

receiving antenna. The incident field and Green’s functions for the case where the 

antenna pair is at ( , )x y   can be obtained from those in (3) and (4) by a simple translation 

if the background medium is uniform: 

inc inc( , ,0; , , ; ) ( , , , )l lx y x y z f x x y y z f     E E                      (5) 
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( , ,0; , , ; ) ( , , , )l lx y x y z f x x y y z f     G G .                            (6) 

Then, each j-component (j = x, y, or z) of the scattered field is written as  [7] 

3
sc

1

( , , , ) ( , , , ) ( , , , )j l l m l
mz y x

E x y D f f x y z f g x x y y z f dxdydz


           (7) 

where  

2 2( , , , ) ( , , , ) ( ),l s l b lf x y z f k x y z f k f                                                                    (8) 

inc
1( , , , ) ( , , , ) ( , , , ),j

l x l x lg x y z f E x y z f G x y z f                                             (9) 

inc
2( , , , ) ( , , , ) ( , , , ).j

l y l y lg x y z f E x y z f G x y z f                                            (10) 

inc
3( , , , ) ( , , , ) ( , , , ).j

l z l z lg x y z f E x y z f G x y z f                                           (11) 

We refer to ( , , , )lf x y z f  as the contrast function. In  [5], we have described how to 

deal with dispersive mediums. The same approach can be employed here as well. For 

now, for simplicity we assume that the contrast function is frequency-independent, i.e., 

( , , ) ( , , , )lf x y z f x y z f , and isotropic, i.e., polarization independent. 

Notice that in (7), the integral over x and y can be interpreted as a 2D convolution 

integral. Thus, the 2D FT of 
sc ( , , , )j lE x y D f   is written as 

3
sc

1

( , , , ) ( , , ) ( , , , ) ,   , ,j x y l x y m x y l
mz

E k k D f F k k z G k k z f dz j x y z


          (12) 

where ( , , )x yF k k z  and ( , , , )m x y lG k k z f  are the 2-D FTs of ( , , )f x y z  and ( , , , )m lg x y z f , 

respectively; and kx and ky are the Fourier variables with respect to x and y, respectively. 

To reconstruct the contrast function, we first approximate the integral in (12) by a 

discrete sum with respect to z for the Nz reconstruction planes 
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3
sc

1 1

( , , , ) ( , , ) ( , , , )
zN

j x y l x y n m x y n l
n m

E k k D f F k k z G k k z f z
 

                       (13) 

where z  is the distance between two neighboring reconstruction planes. By expanding 

(13), a set of linear equation is obtained, which can be solved for ( , , )x y nF k k z . 

For the setup shown in Fig. 1, there could be four antenna configurations when 

performing the raster scan: (1) antenna 1 and antenna 2 both being x-polarized (X-X 

case); (2) antenna 1 being x-polarized while antenna 2 being y-polarized (X-Y case); (3) 

antenna 1 being y-polarized while antenna 2 being x-polarized (Y-X case); and (4) 

antenna 1 and antenna 2 both being y-polarized (Y-Y case). 

Four complex S-parameters are acquired at the two antenna terminals for each of 

the four polarization cases listed above. These four S-parameters constitute four separate 

scattered signals at those in (1) (two reflection and two transmission coefficients). Thus, 

by performing wideband S-parameter measurements at fN   frequencies, writing (13) for 

each polarization case leads to 4 fN  equations at each spatial-frequency pair ( , )x yk k . 

The system of equations for all four polarization cases are combined to form a system of 

12 fN  equations, which must be solved for ( , , )x y nF k k z , n = 1,2,.., Nz. Here, we 

assume that by rotation of the setup the reflection coefficients do not change, so we will 

have 12 fN  equations instead of 16 fN
 
equations. 

The constructed system of equations is solved in the least-square sense to find 

( , , )x y nF k k z , 1,2, , zn N , at each spatial frequency pair ( , )x yk k . Then, inverse 2D FT 

is applied to ( , , )x y nF k k z , to reconstruct a 2D slice of the function ( , , )nf x y z  at each 
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nz z  plane. Then, the normalized modulus of ( , , )nf x y z , | ( , , ) | /nf x y z M , where M is 

the maximum of ( , , )nf x y z  for all nz , is plotted versus x and y to obtain a 2D image of 

the target at each nz z  plane, 1,2, , zn N . By putting together all 2D slice images, a 

3D image of the target is obtained. 

2.3  VERIFICATION 

The reconstruction results when measuring the S-parameters for two co-polarized 

(x-polarized) dipoles have been thoroughly studied in  [5]. Here, we show the 

improvement when adding the data obtained from cross-polarized dipole measurements 

(one dipole is x-polarized while the other one is y-polarized). We consider only 

symmetric targets. Thus, it suffices to perform only two sets of measurements for co- and 

cross-polarized configurations, X–X and X–Y measurements, instead of four sets. By 

measuring wideband S-parameters for these configurations, a system of 7 fN  equations 

is constructed at each ( , )x yk k  ( 4 fN  equations from the X–X measurement and 3 fN  

additional equations from the X–Y measurement).  

In  [5], we employed x-polarized dipoles and only the x-component of the incident 

field was considered in the reconstruction planes. Here, not only we use co- and cross-

polarized dipole measurements but also we consider both the co- and cross-polarized 

components of the incident field in the reconstruction planes. To investigate the 

improvement in the image reconstruction results, two λ/2 (at 6.5 GHz) dipole antennas 

with targets in between are simulated in FEKO Suite 6  [10] as illustrated in Fig. 2. 



MSc Thesis – Ali Khalatpour                     Chapter 2                        McMaster University − ECE   

______________________________________________________________________________ 

 

 20 

In both examples, the background medium is lossy with εr = 16 and σ = 0.5 S/m at 

all frequencies. As shown in Fig. 2(a), in the first example, the target is an X-shape object 

composed of two arms of length 20 mm and a square cross-section with a side of 2 mm. 

This target is placed at z = 30 mm while its arms are positioned along the x- and y-axes. 

As shown in Fig. 2(b), in the second example, the target is a square-shape object 

composed of four arms parallel to the x- and y-axes. Each arm has a length of 20 mm with 

a square cross-section of side 2 mm. This target is also placed at z = 30 mm. The 

constitutive parameters of both targets are εr = 32 and σ = 1 S/m at all frequencies. 

The antennas perform 2D scans by moving together on the two parallel aperture 

planes and collecting wideband (in the frequency range from 3 to 10 GHz) S-parameters 

at each position. The apertures have a size of 60 mm 60 mm with their centers being on 

the z axis. They are located at z = 50 mm and z = 0. 

The sampling rates in the spatial and frequency domains are chosen such that the 

sampling criteria in  [5] are fulfilled. The spatial and frequency sampling rates are 1.5 mm 

and 0.25 GHz, respectively. This provides measurements for each S-parameter at 1681 

positions and at 29 frequencies for each position. Also, from  [5], the computed cross-

range and range resolutions are approximately 3.5 mm and 6 mm, respectively. Complete 

information of both depth and cross resolution of the algorithm is described in [6]. 

In the data acquisition process when the target is present, a 2D scan is performed 

with both dipoles being x-polarized. Then a second 2D scan is performed when dipole 1 is 

y-polarized and dipole 2 is x-polarized. The S-parameters 
t
pqs  (p,q = 1,2) for the two 

antennas are acquired in the presence of the target and recorded for every ( , )x y   position 
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of the antenna pair. The numerical noise in the acquired data is estimated through the 

numerical convergence error of the S-parameters which is 0.02. 

dipole 1

30 mm

20 mm2 mm

2 mm

dipole 2

50 mm

 

(a) 

 

dipole 1

30 mm

2 mm

dipole 2

50 mm

2 mm

20 mm

 

(b) 

 

Fig. 2. Dielectric targets with εr = 32 and σ = 1 S/m in a background medium with εr = 16 

and σ = 0.5 S/m scanned by two λ/2 (at 6.5 GHz) (x- or y- polarized) dipoles (only x-

polarized antennas are shown): Dipole 1 is scanning the z = 50 mm plane while dipole 2 

is scanning the z = 0 mm plane. The simulated S-parameters are recorded in the frequency 
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band from 3 GHz to 10 GHz with a step of 250 MHz. (a) Cross-shaped target. (b) Square-

shaped target. 

The proposed holography technique is applied to the calibrated S-parameters. To 

perform calibration, the same scans are performed without the target to obtain the 

background S-parameters b
pqs  (p,q = 1,2). Then, the calibrated S-parameters are 

calculated as 

cal t b( , ) ( , ) .pq pq pqs x y s x y s                                                            (14) 

Here, due to the uniform background, the background simulations need to be performed 

only once in a sample ( , )x y   position since in all other positions they are the same. For 

both antenna polarizations, the x- and y- components of the simulated incident field and 

Green’s function are recorded in the reconstruction planes at nz z , 1,2, , zn N . These 

planes are of size 80 mm 80 mm. By replacing 
scE  in (7) with the corresponding cal

pqs , a 

system of equations is built. The systems of equations for the two polarization cases are 

then combined and solved as described in section 2.2. 

Fig. 3 and Fig. 4 show the the reconstructed images in the range positions of 6 mm 

to 48 mm with a step of 6 mm when using only the cross-polarized data. It is observed 

that although the shape of the targets can be distinguished in the image at z = 30 mm, the 

arms parallel to the x-axis appear with higher contrast. 

Fig. 5 and Fig. 6 show the reconstructed images in the same range positions when 

using only the co-polarized data. In this case, the targets’ arms parallel to the y-axis 

appear with higher contrast at z = 30 mm. 
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Similarly, Fig. 5 and Fig. 8 show the reconstructed images in the same range 

positions when using both the co- and cross-polarized data. As observed in the images, 

the arms parallel to the x-axis and those parallel to the y-axis appear with almost similar 

contrast in the reconstructed images at z = 30 mm. This confirms the improvement in the 

image reconstruction quality when using both co- and cross-polarized data.  
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Fig. 3. Reconstructed images for the dielectric target in Fig. 2(a) using co- polarized data 

only. 
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Fig. 4. Reconstructed images for the dielectric target in Fig. 2(a) using cross-polarized 

data only. 
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Fig. 5. Reconstructed images for the dielectric target in Fig. 2(a) using both co-polarized 

and cross-polarized data. 
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Fig. 6. Reconstructed images for the dielectric target in Fig. 2(b) using co-polarized data 

only. 
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Fig. 7. Reconstructed images for the dielectric target in Fig. 2(b) using cross-polarized 

data only. 
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Fig. 8. Reconstructed images for the dielectric target in Fig. 2(b) using  both co-polarized 

and cross-polarized data. 
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2.4 CONCLUSION 

In this chapter, we proposed a full vector 3D microwave holographic imaging 

algorithm. This new formulation allows for combining the data measured with both co- 

and cross-polarized antennas in a single reconstruction process. We confirmed the 

improvement in the image reconstruction process by two simulation examples. The 

dielectric properties and the operating frequency band for the examples were chosen to be 

close to those considered in the microwave imaging of biological tissues. We observe that 

when using single polarization measurements, the shape components of the targets 

oriented along the receiving antenna polarization appear with higher contrast. However, 

when using both co- and cross-polarized data, all details appear with almost similar 

contrast. We should emphasize that this approach provides systems of equations with 

much smaller number of unknowns compared to the systems of equations constructed in 

regular optimization-based techniques (where the number of unknowns is equal to the 

number of reconstructed voxels). This reduces the ill-posedness of the proposed technique 

significantly. 

 

REFERENCES 

[1] D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave 

imaging for concealed weapon detection,” IEEE Trans. on Microwave Theory and 

Tech., vol. 49, no. 9, pp. 1581−1592, Sep. 2001. 

[2] D. M. Sheen, D. L. McMakin, and T. E. Hall, “Near field imaging at microwave and 

millimeter wave frequencies,” IEEE/MTT-S Int. Microwave Symp., pp. 1693−1696, 

Jun. 2007. 

[3] M. Ravan, R. K. Amineh, and N. K. Nikolova, “Two-dimensional near-field 

microwave holography,” Inverse Problems, vol. 26, no. 5, May. 2010. 



MSc Thesis – Ali Khalatpour                     Chapter 2                        McMaster University − ECE   

______________________________________________________________________________ 

 

 31 

[4] M. Ravan, R. K. Amineh, and N. K. Nikolova, “Microwave holography for near-

field imaging,” IEEE AP-S/URSI Int. Symp. on Antennas and Propagation, July 

2010. 

[5]     M. Ravan, R. K. Amineh, and N. K. Nikolova, “Near-field microwave holographic 

imaging: target localization and resolution study,” XX URSI Comm. B Int. Symp. on 

Electromagnetic Theory (EMT-S 2010), Aug. 2010. 

[6] R. K. Amineh, M. Ravan, A. Khalatpour, and N. K. Nikolova “Three-dimensional 

near-field microwave holography using reflected and transmitted signals,” accepted 

for publication in IEEE Trans. Antennas Propag. 

[7] R. K. Amineh, A. Khalatpour, and N. K. Nikolova, “three-dimensional near-field 

microwave holography using co-polarized and cross-polarized data,” submitted to 

IEEE Antennas Wireless Propag. Lett. 

[8] W. Chew, Waves and Fields in Inhomogeneous Media, Piscataway, NJ: IEEE Press, 

1995. 

[9] M. Slaney, A. C.  Kak, and L. E. Larsen, “Limitation of imaging with first-order diffraction 

tomography,” IEEE Trans. on Microwave Theory and Tech., vol. 32, no. 8, pp. 

860−874, Aug. 1984.  

[10] EM software & systems-S.A. (Pty) Ltd., http://www.feko.info. 

http://www.feko.info/


MSc Thesis – Ali Khalatpour                     Chapter 3                        McMaster University − ECE   

______________________________________________________________________________ 

 

 32 

CHAPTER 3 

IMAGE QUALITY ENHANCEMENT IN THE 

MICROWAVE RASTER SCANNING METHOD 

3.1 INTRODUCTION 

Microwave imaging is a promising technique for near-field imaging of dielectric 

bodies. It can be employed for imaging of biological tissues  [1], non-destructive testing of 

materials  [2], etc. Although significant progress has been made on hardware 

developments, reliable processing techniques are still needed in order to extract maximum 

information from the measurement data. 

Aperture raster scanning is a fast, reliable, and robust microwave imaging method 

for creating images of the interior of dielectric bodies. Recently, an ultra-wide band 

(UWB) antenna  [3] has been tailor-made for planar aperture raster scanning of biological 

tissues or phantoms thereof without the need for coupling liquids. It is shown that more 

than 90% of the radiated power is coupled to the tissue via the antenna‟s front aperture. In 

the imaging setup, two of these antennas are placed face-to-face on both sides of a 

compressed tissue  [3]. The transmitting and the receiving antennas perform a two 

dimensional (2D) scan while moving together on two separate parallel planes (transmitter 

and receiver planes) positioned at 0z   and z D , respectively, as illustrated in Fig. 1. 

The coupling coefficient (S21 parameter) between the two antennas is measured at each 

sampling position while they perform a 2D scan. 
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A 2D near-field holographic imaging technique has been proposed in  [4]. The 

required complex-valued data (scattering parameters) in this method is collected at a 

single frequency from a 2D raster scanning setup identical to the one illustrated in Fig. 1. 

 

x

y

0
z


target

target point
( , , )x y z

Tx point
( , ,0)x y 

Rx point
( , , )x y D 

D  

                      Fig. 1. Microwave raster scanning setup. 

The holographic imaging requires complex-valued scattered field data. It is best if 

the field is sampled by a point-wise receiver. When an antenna with non-point-wise 

(realistic) aperture is utilized in the measurement, the integration effect of the aperture 

reduces the quality of the reconstructed images, e.g., the images are blurred. In order to 

remove this integration effect, as a first step, we employ a complex-valued blind de-

convolution algorithm. This provides the required complex-valued data for the 

holographic imaging as a second processing step. 

The efficiency of applying combined complex-valued blind deconvolution and 

microwave holographic imaging is examined through simulations and experiments with 

tissue phantoms. 

 



MSc Thesis – Ali Khalatpour                     Chapter 3                        McMaster University − ECE   

______________________________________________________________________________ 

 

 34 

3.2 BACKGROUND FOR 2D HOLOGRAPHY 

With reference to Fig. 1, the target is positioned at z z  and its thickness along 

the z-axis is assumed negligible. A method to find the true position of the target z  has 

been presented in  [4]. 

In general, we can use both transmission and reflected signals. Here, we limit our 

study to transmitted signals only due to their high signal-to-noise ratio in both 

measurements and simulations. 

The transmitting and the receiving antennas perform the 2D scan by moving 

together on two separate parallel planes (transmitter and receiver planes) positioned at z = 

0 and z = D, respectively. Assume we know the incident field (the field in the same region 

when the target is not present) inc ( , , )s x y z  at the z z  plane as a function of x and y 

when the transmitting antenna is at 0x  , 0y   ( 0z   at the transmitting plane. In this 

case the transmission function is defined as [4]          

inc( , , ) ( , , ) ( , , )g x y z s x y z g x y D z                                                (1) 

 where ( , , )g x y z  is the Green function of the medium for a point source at ( , , )x y z and 

an observation point at (0,0,0) . 

The scattered wave due to a point target at ( , , )x y z , when the transmitting and the 

receiving antennas are at ( , ,0)x y   and ( , , )x y D  , respectively, is denoted by ( , )t x y  . 

This represents the acquired S-parameters. Then, the contrast function of the target 

( , , )f x y z  is obtained as [4]: 

1

2D

( , )
( , , ) F

( , , )

x y

x y

T k k
f x y z

G k k z


  

  
  

                                                  (2) 
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where ( , )x yT k k  and ( , , )x yG k k z  are the 2D Fourier transforms (FT) of ( , )t x y   and 

( , , )g x y z , respectively, and 1

2DF  denotes the inverse 2D FT. By plotting | ( , , ) |f x y z  

versus x and y, we can produce a 2D colormap image of the target.  

The Green function can be obtained numerically by putting an infinitesimal dipole 

at the origin. The electric field of this dipole is the Green function of the medium. In the 

case of a uniform medium, the Green function is available analytically [4]:  

 

2 2 2

2 2 2
( , , )

x y zik
e

g x y z
x y z

 


 

 .                                                                    (3) 

 

3.3 COMPLEX-VALUED BLIND DECONVOLUTION 

In image processing terminology, the convolution of an image with a  

point-spread function (PSF) results in a blurred image, i.e., blurred true PSFS S  . In the 

ideal case, there would be no blurring, i.e., blurred trueS S  which implies that PSF= ( , )x y  

where   is the Dirac function.  A PSF different from the ideal case results from effects 

such as the motion of the camera (or sensor), poor focusing or noise. The image 

restoration technique, which finds the true image when the blurred image and the PSF are 

known, is called deconvolution. Blind deconvolution is a special case of deconvolution 

where both the point-spread function (PSF) and the imaged object are not completely 

known  [5].  

Here, we assume that the integration effect of the non-point-wise antenna aperture 

over the collected microwave power acts like a convolution process in the spatial domain. 

Because this effect varies with the tissue properties and the presence of the tumor, 
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complete information of this effect is not available, so a blind deconvolution algorithm is 

needed to reconstruct the true image. It provides „deblurred‟ complex-valued data 

required for the holographic imaging described in section 3.2.  

There are two common blind deconvolution techniques: optimization- based blind 

deconvolution and iterative blind deconvolution. The iterative blind deconvolution (IBD) 

was first proposed by Ayers and Dainty  [6][7]. This technique alternates, between 

updating the restored image and the PSF where the update constitutes a standard classic 

deconvolution. The Ayers and Dainty scheme uses inverse filtering with the associated 

difficulties in inverting small values of the image or PSF spectrum  [6][7]. Davey et al.  [7] 

improved the robustness to noise by using a Wiener filter. They also achieved 

reconstruction of complex-valued data through the inclusion of a support constraint. 

In the optimization-based blind deconvolution, the PSF and the true image are 

obtained by minimizing the following objective function 

 
*( , ) argmin ( )Jx p x, p                                                     (4) 

 where  

 ( , ) .J   x p x p t                                                                   (5) 

In which we assume x is the actual image, p is the PSF, and t is the blurred image. An 

example for solving (4) by use of simulated annealing is reported in  [9]. In  [10], a 

regularization term is added to (4) for  penalizing the noise amplification and  conjugate-

gradient optimization is used.  

In microwave imaging, the true image is a complex-valued signal, which does not 

possess positivity constraint and the data is often noisy. The Wiener filter  [7] has proved 

to be a suitable deconvolution method for complex-valued noisy signals. Other well-
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known algorithms like the Richardson-Lucy algorithm  [8] [9] , are not applicable to this 

problem due to their requirements for the  image to be positive and real. Here, we use a 

two-stage deconvolution which is a combination of the IBD using a Wiener filter and an 

optimization-based algorithm.  

In the first stage, we use iterative blind deconvolution using a Wiener filter. In the 

deconvolution problem, where blurred true PSFS S  , all pairs true( / , PSF)S k k  with k is 

being any complex number are possible solutions. This leads to nonuniqueness of the 

problem  minima in the problem. To avoid this, we impose a normalization constraint 

( ) 1k x  on the image as it has no effect on the holographic imaging but it facilitates the 

convergence of the blind deconvolution algorithm. The constraints on the PSF can also be 

imposed (positivity, symmetry).  

Suppose x is the desired point-wise data, p is the PSF (due to the non-point-wise 

antenna aperture), and t is the blurred data measured by the antenna, i.e.,  x p t , where 

  denotes a 2D convolution operator in the spatial domain. Here, we assume that the 

initial guess for the  PSF is available. We describe the methods for estimation of the 

initial PSF in section 3.4. The algorithm to obtain x  is summarized as follows: 

Step 1: Set k = 1; estimate
(0)

p . 

Step 2: Find ( )k
x  with the Wiener filter algorithm using

( 1)k
p . 

Step 3: Impose the normalization constraint: 
( ) 1k x , where .  denotes the 2-norm 

operator. 

Step 4: Find ( )k
p  with the Wiener filter algorithm using

( )k
x . 
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    Step 5: If ( ) ( )k k t   x p  (  is a pre-determined sufficiently small number) go to Step 

7; else, go to Step 6.  

Step 6: Set k = k+1; go to Step 2. 

Step 7: Terminate. 

 

1st Wiener
deconvolution

set 0k 

1k k 

( )
true kS

( )
simPSF PSFk 

2nd Wiener
deconvolution

blurredS

( ) ( )
true blurred|| PSF ||k kS S   

( )PSF k

yes
terminate

( )PSF k

no

  

Fig. 2. Iterative blind deconvolution using a Wiener filter. 
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The overall algorithm is shown in also illustrated in Fig. 2 with a flow diagram. We use 

the Wiener filter algorithm available in MATLAB  [12] . 

The solution from the IBD is not the best possible solution as there is no guarantee 

for finding the global minimum of the problem. However, this approach is fast and it may 

provide a good starting point for the second stage, which is an optimization-based blind 

deconvolution. Here, we formulate our optimization problem as follow: 

*

2

( , ) argmin ( , ),     where

( , ) (1 ) .

J

J



    

x p x p

x p x p t x
                                                     (6) 

We use simulated annealing to obtain a global minimum for (6) ‎[13]. There are other 

global minimum optimizers, which can be used to solve (6) ‎[13]. The principle 

disadvantage of the global optimization is the computational burden for large-scale 

problems. Here, however, the number of unknowns is not large (typically 800 unknown). 

The summary of the two stages is shown in Fig. 3. The implementation of the deblurring 

procedure in MATLAB is shown in Appendix. 
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sim blurredPSF ,  S

Wiener-filter IBD

 

*
true true

2

true blurred true

( , PSF) arg min ( , PSF)

where PSF 1 ||

S F S

F S S S



     ||
 

Fig. 3. Summary of the two stage blind deconvolution. 

 

3.4 ESTIMATION OF THE INITIAL PSF 

The accurate estimation of the size of the PSF is crucial in blind deconvolution 

algorithms  [5]. Here, the size of the PSF is known a priori which is the size of the 

antenna aperture. In discrete form, the PSF is a mn  matrix where m and n are equal to 

the sides of the antenna aperture divided by the sampling rate (e.g., for 5 mm spatial 

sampling is 57). 

Theoretically, we can estimate the PSF via raster scanning of a small but 

detectable metallic object located at the center of the setup. The reason for putting a 

metallic object is to have maximum sensitivity to its presence. The effectiveness of this 

approach depends on the sensitivity of the imaging setup to detect small objects.  

The second approach for obtaining initial guess for the PSF is to use the results of 

raster scanning for known objects. The scattering field from this object should be 

considerable to have high signal-to-noise ratio. Here, we use a metallic sphere with the 
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diameter 10 mm which is half of the length of the antenna aperture. Increasing the size of 

this known object will increase the simulation time but will keep the effect approximately 

unchanged. In general we can use both the transmitted and reflected signals. Here, 

because the transmitted signal is more sensitive to the presence of the object, we measure 

S21.  As shown in Fig. 4, first a 2D scan is performed by the actual antennas for the 

reference object.. The data acquired in this setup is blurred by the integration effect of the 

receiver antenna. We call the measured data Sblurred.. Another scan is performed by 

replacing the receiver antenna with a point-wise antenna. In this setup, the integration 

effect of the antenna is removed because of the point-wise antenna at the receiver side. 

We call the measured data Strue. The following relation can be made between the 

measured data and the PSF of the antenna: 

true blurredS *PSF S .                                                      (7) 

The PSF due to the effect of the antenna aperture can then be estimated by 

applying direct deconvolution to (7). We used Wiener deconvolution implemented in 

MATLAB  [11] for solving (7). It is worth mentioning that the obtained PSF is strictly 

valid only for this setup. It could serve as an initial estimate of the PSF in the same 

frequency for other imaging setups in which the PSF would be slightly different due to 

the change in the material properties and the object‟s shape. We call this approach the 

two-antenna approach. The two-antenna approach is preferable to the raster scanning of a 

small object if the sensitivity of the imaging setup is not sufficient for the imaging of a 

very small object. 
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(a) 

 

 

                                                          (b) 

 

Fig. 4. Simulation setup for the estimation of the PSF in FEKO: (a) raster scan with the 

actual antennas; (b) raster scan with the actual antenna as the transmitter and a point-wise 

receiving antenna 

 

 

 

 

 

 

point-wise antenna as receiver 
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3.5 IMAGE RECONSTRUCTION RESULTS 

To verify the proposed processing algorithms, we present simulation and 

experimental results. The properties of the background medium and the targets are chosen 

to be close to those of biological healthy and cancerous tissues, respectively. In both 

measurement and simulation, the Green function and the field of antenna are calculated 

numerically. 

Antennas

phantom

VNA

 

Fig. 5. Experimental set up for the aperture raster scanning. 

 

Fig. 6. Sketch of the measurement example. 
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In the first example (Fig. 6), we use the measured data from the 2D raster 

scanning setup shown in Fig. 5. The targets are two spheres with εr   50 and σ   4 S/m 

resembling tumors. They are made of alginate powder and are embedded inside a 

glycerin-based slab phantom emulating a tissue with εr   7 and σ   1 S/m. The diameter 

of spheres is 10 mm and the center-to-center distance between them  is 16 mm. The 

phantom is compressed between two thin plexi-glass sheets. The distance between the 

antenna apertures after this compression is 50 mm. The antennas perform 2D scan on a 

region of size 70 mm by 70 mm with a spatial sampling rate of 5 mm. This scanning is 

performed by an automatic positioning system. At each sampling position, the complex 

coupling S-parameters between the two antennas (S21) are measured at 5 GHz, 7 GHz, and 

9 GHz using a vector network analyzer (VNA). The VNA averaging and resolution 

bandwidth are set to 16 and 1 KHz, respectively. Here, we obtained the initial PSF by the 

two-antenna approach, which was explained in section 3.2. Calibration is performed by 

subtracting the measured S-parameters obtained from the raster scanning of a phantom 

without tumor from those obtained from a phantom with tumor. In both cases, the 

background phantom properties are the same. 

 

 

 

 

 



MSc Thesis – Ali Khalatpour                     Chapter 3                        McMaster University − ECE   

______________________________________________________________________________ 

 

 45 

          
                           x (mm)                                                   x (mm) 

                       (a)                                                           (b) 

            
                           x (mm)                                                     x (mm)  
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Fig. 7. (a) Raw image obtained from the calibrated 
21| |S  for the example shown in Fig. 6 

at 5 GHz. (b) Image obtained after applying blind de-convolution. (c) Image obtained 

after applying holographic imaging to the collected complex-valued 
21S . (d) Image 

obtained after applying blind de-convolution and holographic imaging.  
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Fig. 8. (a) Raw image obtained from the calibrated 
21| |S  for the example shown in Fig. 6 

at 7 GHz. (b) Image obtained after applying blind de-convolution. (c) Image obtained 

after applying holographic imaging to the collected complex-valued 
21S . (d) Image 

obtained after applying blind de-convolution and holographic imaging.  
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Fig. 9. (a) Raw image obtained from the calibrated 
21| |S  for the example shown in Fig. 6 

at 9 GHz. (b) Image obtained after applying blind de-convolution. (c) Image obtained 

after applying holographic imaging to the collected complex-valued 21S . (d) Image 

obtained after applying blind de-convolution and holographic imaging.  
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Figs. 7(a), 8(a), and 9(a) show the raw images created from the calibrated 
21| |S  

signals obtained from the measurement setup shown in Fig. 5. The two tumor stimulants 

cannot be distinguished easily especially at 5 GHz. Then we apply holographic imaging 

algorithm to the complex-valued 
21S . Figs. 7(b), 8(b), and 9(b) show the reconstructed 

images. As seen in these figures, the targets still cannot be distinguished in the image due 

to the integration effect of the antenna aperture. To remove this effect, we apply the blind 

deconvolution to the  

calibrated S21 (Figs. 7(c), 8(c), and 9(c)) and then apply holographic imaging.  

Figs. 5(d), 6(d), and 7(d) show the reconstructed images. The targets are clearly 

distinguished in these images. Finally, we note that the improvement through blind 

deconvolution cannot be appreciated without applying holography.  

In the second example, we use FEKO simulation data from the 2D raster scanning 

of five spheres with εr = 15 and σ = 2 S/m embedded inside a medium with εr = 10 and σ 

= 1 S/m as shown in Fig. 8. The diameter of the spheres is 7.6 mm and the center-to-

center distance between the spheres is 15 mm. The distance between the antenna 

apertures is 5 cm. The spatial sampling is 5 mm at 5 GHz.  The spatial sampling is 3 mm 

at 7 GHz and 9 GHz. Here, we obtained the initial PSF by the two-antenna approach 

explained in section 3.2. 

 
Fig. 10. The simulation setup in FEKO. The dimensions are in mm. 
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Fig.11. (a) Raw image obtained from the calibrated  for the example shown in Fig. 

10 at 5 GHz. (b) Image obtained after applying blind de-convolution. (c) Image obtained 

after applying holographic imaging to the collected complex-valued . (d) Image 

obtained after applying blind de-convolution and holographic imaging.  
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Fig.12. (a) Raw image obtained from the calibrated  for the example shown in Fig. 

10 at 7 GHz. (b) Image obtained after applying blind de-convolution. (c) Image obtained 

after applying holographic imaging to the collected complex-valued . (d) Image 

obtained after applying blind de-convolution and holographic imaging.  
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Fig.13. (a) Raw image obtained from the calibrated  for the example shown in Fig. 

10 at 9 GHz. (b) Image obtained after applying blind de-convolution. (c) Image obtained 

after applying holographic imaging to the collected complex-valued . (d) Image 

obtained after applying blind de-convolution and holographic imaging. 
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Figs. 11(a), 12(a), and 13(a) show the raw images obtained from the calibrated 

21| |S  acquired with the simulation setup shown in Fig. 10. The 5 spheres cannot be 

distinguished easily especially at 5 GHz. Then we apply the holographic imaging 

algorithm to the complex-valued 
21S . Figs. 11(b), 12(b), and 13(b) show the 

reconstructed images. As seen in these figures, the targets still cannot be distinguished in 

the images due to the integration effect of the antenna aperture. To remove this effect, we 

apply blind deconvolution to the calibrated S21 (Figs. 11(c), 12(c), and 13(c)) and then 

apply holographic imaging. Figs. 11(d), 12(d), and 13(d) show the reconstructed images. 

The targets are clearly distinguished in these images. Finally, similarly to the 

measurement results, we note that the improvement through blind deconvolution cannot 

be appreciated without applying holography. 

3.6 CURRENT ISSUES FOR EXTENSION TO 3D HOLOGRAPHY 

The proposed deblurring approach can be implemented with 3D holography, 

where depth information becomes available. At the time of writing of this thesis, 

however, we were unable to obtain the proper reflection signals (S11 and S22). These are 

crucial for the 3D holography reconstruction. The problem arises from the very low 

signal-to-noise ratio for the reflection coefficients. The level of the tumor signatures
1
 falls 

below the level of the noise in the current  

setup. Improving the quality of the measurement setup and designing new sensors may 

help solve the problem.  

1
Tumor signature is the variation of measured signal due to the presence of tumor 
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Similar problems exist in the numerical simulation. The tumor signature falls 

below the level of the numerical error in the current setup especially at frequencies above 

8 GHz. One way to overcome this problem in the simulation is to move the objects during 

the 2D scan instead of the antenna. This decreases the meshing error and helps to improve 

the accuracy of the simulated reflection coefficients.  

Applying these methods to 3D holography in both measurement and simulation is 

the final stage of this research. This is the subject of future work. 

 

3.7 CONCLUSION 

We presented complex-valued blind deconvolution and holographic imaging as 

post-processing techniques for data acquired with microwave aperture raster scanning. 

The collected complex S-parameters obtained from a 2D planar scan at a single frequency 

are first processed by a blind deconvolution algorithm to remove the integration effect of 

the antenna aperture. Then, the complex-valued de-blurred data is processed by a 

holographic imaging algorithm. We have shown that the combination of these two 

algorithms leads to significant enhancement of the image quality. 
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CHAPTER 4 

ACCELERATING SPACE MAPPING OPTIMIZATION 

WITH ADJOINT SENSITIVITIES 

4.1 INTRODUCTION 

Space mapping (SM) optimization aims at shifting the optimization burden from 

an expensive “fine” (or high-fidelity) model to a cheap “coarse” (or low-fidelity) model 

by iteratively optimizing and updating a surrogate. Utilizing a mapping between the 

parameter spaces of the coarse and fine models, the optimization iterates are guided in the 

fine-model space by very few fine-model simulations.  In the field of microwave circuit 

design, SM usually exploits full-wave electromagnetic (EM) solvers as fine models while 

circuit-based CAD tools are utilized as coarse models  [1],  [2]. 

Several SM algorithms have been proposed since its inception in 1994 [1]. 

Aggressive SM (ASM)  [2],  [3] exploits a quasi-Newton iteration with the classical 

Broyden formula to estimate the mapping. Implicit space mapping (ISM)  [4],  [5] exploits 

pre-assigned parameters of the fine model. In ISM, an auxiliary set of parameters (e.g., 

dielectric constant of a substrate) is used to match the coarse model to the fine model. The 

coarse model is then calibrated by these parameters and re-optimized to predict a better 

fine-model design.  Tuning SM (TSM)  [6] integrates the engineering tuning concept into 

SM. Output SM (OSM)  [4] introduces a transformation of the coarse-model response. 

OSM is usually used in the final stage when combined with other SM methods. 

The theory of adjoint sensitivity analysis has been extended to electromagnetic 



MSc Thesis – Ali Khalatpour                     Chapter 4                       McMaster University − ECE   

______________________________________________________________________________ 

 

 56 

solvers  [7]- [9]. Using at most one extra EM simulation, we obtain the gradient of the fine-

model response with respect to all design parameters regardless of their number. Adjoint 

sensitivity analysis can be implemented with different full-wave solvers. The self-adjoint 

sensitivity analysis (SASA) has the advantage of eliminating the extra adjoint EM 

simulation. It is applicable to network responses such as S-parameters  [8]. 

In this thesis, we propose an algorithm for enhancing input SM optimization. 

Using the self-adjoint sensitivities supplied by the EM solver and the cheap response 

sensitivities of the coarse model, a mapping between the fine and coarse parameter spaces 

is accurately estimated. Results show that using available sensitivities dramatically 

decreases the number of iterations and, hence, the number of fine-model evaluations. 

4.2 BACKGROUND 

The input SM algorithm  [1] aims at establishing a mapping between the design 

parameters of the coarse and fine models:  

 c f x Bx c                                                                          (1) 

such that 

 ( ) ( )c c f f ε R x R x .                                              (2) 

Here, 
cx  and f

x  are the coarse- and fine-model design or input parameters, respectively, 

and cR
 
and fR  are their corresponding responses. ε  is a sufficiently small number. Once 

the mapping matrix B is obtained, an approximation of the fine-model optimal design is 

given by [1] 

 ( ) ( )i i
c f
  x B x c                                                   (3) 
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where 
c


x  is the optimal coarse-model solution, ( )iB is the ith iteration mapping matrix, 

f
x  is an estimate of the optimal fine model, and  ( )ic  is the corresponding shift vector. 

Input SM differs in the way B is estimated. In  [1], two sets of points in the fine- 

and coarse-model parameter space are used to estimate the mapping parameters. This 

approach requires an overhead of expensive fine-model simulations. In  [2], the so-called 

ASM algorithm was introduced. Here, B is updated at each iteration using the Broyden 

formula  [10]. An initial guess is usually the identity matrix. If the two models are 

significantly misaligned, the algorithm may fail to give a good result. In  [3], a trust region 

methodology is integrated with ASM. This approach limits the step taken in every 

iteration to guarantee the convergence of the algorithm. In ISM  [5], the mapping is 

established inside the surrogate model.  

In this thesis, we aim at integrating SM optimization with adjoint sensitivity 

analysis that has recently become available in commercial solvers, e.g., HFSS  [11] and 

CST  [12]. 

4.3 INTEGRATING SM AND SASA 

Based on the concept of ISM, at iteration i, the surrogate model response can be 

defined as  [5] 

 
( ) ( ) ( )( ) ( , )i i i
s c c cR x R x p                                         (4) 

where 

 ( ) ( ) ( )arg min ( ) ( , ))i i i
f c c c

  
p

p R x R x p                         (5) 
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( )i
p  is a vector of preassigned parameters which are different from the optimizable 

parameters cx . These parameters are optimized to ensure a better match between the fine 

and surrogate model responses. 
( )i

c


x  is the optimum surrogate response using ( 1)i
p . The 

main drawback of this approach is the requirement of enough preassigned parameters to 

match the fine and surrogate model responses at each iteration which are not always 

available. Here we have a different approach both in using preassigned parameters and 

exploiting surrogate sensitivities. In this approach, by using Jacobian information, we 

establish a mapping between the input of the surrogate and fine models and we use 

preassigned parameters to match the responses of the surrogate and fine models. 

Contrary to (5) our parameter extraction (PE) process is performed via 

 ( ) ( ) ( )

( , )
( , ) arg min ( ) ( , )

c

i i i
c f f c c 

x p
x p R x R x p                        (6) 

where ( )i
fx  and ( )( )i

f fR x  are the ith fine-model solution and fine-model response, 

respectively. The initial point for performing (6) is 
( 1) ( 1)( , )i i

c
  

x p . Using (6) allows 

more degrees of freedom for matching the responses in comparison with ISM. Based on 

 [13], the Jacobians of the surrogate and fine-model responses at two corresponding points 

in the ith iteration are related by 

( ) ( ) ( )( ) ( ).i i i

c f fsJ x B J x                                         (7) 

The Jacobian of the fine-model response is estimated using SASA. If not available, the 

Jacobian of the surrogate-model response is obtained through finite differences (FD). The 
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latter computation is fast because the coarse model is much faster than the fine model. 

The linear input-mapping matrix is obtained by solving (7) as  [13] 

 
1

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i T i i T i

s c s c s c f f



B J x J x J x J x                              (8) 

where ( )( )i

s cJ x  is the Jacobian of the surrogate model. Then we re-optimize the new 

surrogate model to find  

( ) ( )arg min ( ( ))i i
c sU 

x
x R x                                              (9) 

where U is the given objective function.  Finally, the fine-model solution is updated as: 

( 1) ( ) 1 ( ) ( ) ( )( ) ( ) .i i i i i
f c c f

    x B x x x                                     (10) 

If we denote the simulation response accuracy by f , the termination criterion for the 

optimization is set as   

( 1) ( )( ) ( )  i i i
f f s c f 


 R x R x                                  (11) 

where  


 is the infinite norm operator. One can terminate the program if ( 1)( )i
f f


R x  

satisfies the specifications but this may prevent the optimizer from reaching the best 

possible solution. The proposed algorithm can be summarized as follows: 

Step 0: Obtain (0) c


x  through (9) starting from (0) cx , (0) p . 

Step 1: Set 1i  , set
( ) (0) i

f cx  x , obtain 
( )( )i

f fR x  and obtain 
( )( )i

f fJ x simultaneously 

using SASA. 

Step 2: Find ( )i

cx and ( )i
p  using (6). 

Step 3: If not available, obtain ( )( )i

csJ x  through finite difference approximation. 
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Step 4: Calculate ( )i
B  using (8). 

Step 5: Obtain ( ) i

c


x  through (9). 

Step 6: Find 
( 1)i

f


x  using (10), set 1i i  . 

Step 7: Obtain
( )( )i

f fR x  and obtain 
( )( )i

f fJ x  using SASA. 

Step 8:  If (11) is true, go to Step 9; else go to Step 2. 

Step 9: Terminate. 

 

4.4 VERIFICATION 

Here, we consider an eight-section H-plane filter, an extended version of a design 

presented in  [15]. The design specifications are: 

                11 0.16S                                     5.0 GHz 9.4 GHz   

                11 0.85S 
                               

4.9 GHz   

                11 0.5S 
                                 

9.8 GHz   

The fine model is an EM model simulated using HFSS ver. 13 on an X5670 3 GHz 

workstation with 48 GB of RAM. The simulation accuracy is set to 0.002 at  5.0 GHz

with 50% mesh refinement. A magnetic wall is used (because of symmetry) to reduce the 

simulation time. The average simulation time is 240 minutes. As shown in Fig. 1, the 

coarse model is constructed by waveguide sections and inductances to model the septa. 

The a and b in Fig. 1 are the width and the height of the waveguide which are used as 

preassigned parameters. The values of the inductances are found from a simplified 



MSc Thesis – Ali Khalatpour                     Chapter 4                       McMaster University − ECE   

______________________________________________________________________________ 

 

 61 

formula  [16]. This coarse model is simulated using the model solver Agilent ADS  [17]. 

We used the MATLAB optimization toolbox for parameter extraction (using fminsearch), 

direct optimization and re-optimizing the surrogate model (using fminimax). 
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  Fig. 1. The eight-section H-plane filter: (a) the fine model in HFSS with 

a =1.372 inch (3.48488 cm) and b = 0.622 inch (1.57988 cm); (b) the coarse model in 

Agilent ADS. 
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The initial design parameters (0)
cx as well as the fine- and surrogate-model 

parameters obtained during the optimization processes, as well as the preassigned 

parameters, are shown in Tables I and II, respectively. Fig. 3 shows that our enhanced SM 

algorithm converges in fewer fine-model simulations than required by the other SM 

algorithms  [18]. Direct optimization needs 19 fine-model evaluations to converge even 

though it uses SASA and starts from the optimum coarse model which is the best possible 

starting point. Fig. 4 shows a comparison of the new algorithm with direct optimization 

using SASA starting from different starting points. 

TABLE I 

Design Parameter Values during the Optimization Processes  

(all values are in inches) 

  

 

 

 

 

 

 

 

 

 

 (0)
cx  

(0) (1) ( )c fx x  (1)
cx

 
(2)
fx  (2)

cx
 

(3)
fx   

1W  0.5 0.57433 0.56723 0.53318 0.56278 0.53139  

2W  0.5 0.55880 0.56199 0.52337 0.56216 0.52243  

3W  0.5 0.54539 0.54984 0.50497 0.55107 0.50487  

4W  0.5 0.53965 0.54463 0.49759 0.54612 0.49720  

5W  0.5 0.53804 0.54317 0.49663 0.54505 0.49562  

1L  0.7 0.59479 0.69760 0.69200 0.75096 0.69930  

2L  0.7 0.63638 0.63286 0.63552 0.63490 0.63059  

3L  0.7 0.65139 0.65159 0.65101 0.65491 0.65051  

4L  0.7 0.65729 0 65833 0.65992 0.66130 0.65749  
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         frequency (GHz) 

        (a) 

 
           frequency (GHz) 

                (b) 

Fig. 2. The responses obtained during the optimization processes: (a) after 1
st
 

iteration; (b) after 2
nd

 iteration. The horizontal purple lines show the 

specifications. 
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Fig. 3. Comparison of the proposed algorithm with other SM algorithms. 

 

 

Fig. 4. Comparison of direct gradient optimization starting from different points 

with the proposed SM algorithm. One iteration corresponds to one fine- model 

evaluation. 
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              frequency (GHz) 

           (a) 

 
            frequency (GHz) 

           (b) 

Fig. 5. Parameter extraction process: (a) after first iteration; (b) after second 

iteration. The horizontal purple lines show the specifications. 
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TABLE II 

Preassigned Parameter Values (all values are in inches) 

  

 

 

 

4.5 ADJOINT-ACCELERATED DESIGN FRAMEWORK  FOR NOVEL 

MATERIALS IN MICROWAVE APPLICATIONS 

Novel materials such as left-handed (LH) materials or so-called “metamaterials” 

are characterized by simultaneously negative permittivity and permeability. A large 

number of resonant-type LH materials, mostly realized by split-ring resonators (e.g., 

 [19] [21]) and transmission-line (TL) LH materials  [22] have been proposed. These 

artificial materials have been employed in a number of applications like superlens for 

subdiffraction focusing, invisibility cloaks, etc. 

Although fast analytical approaches have been presented to design many 

metamaterial structures, reliable synthesis of such materials still requires full-wave 

simulations. These simulations are expensive in terms of memory and time which makes 

metamaterial design a cumbersome task. This problem becomes even more acute in the 

synthesis of non-uniform metamaterial cells employed in the recently introduced 

transformation electromagnetics/optics (e.g., see  [23]). 

We propose a design framework to expedite the design of metamaterial structures. 

Our sensitivity-enabled framework implements a space-mapping algorithm as well as a 

 a b 

(0)
p  1.3720 0.6220 

(1)
p  1.3526 0.6778 

(2)
p  1.3333 0.7003 
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direct-optimization algorithm. Our framework uses an accelerated space-mapping 

technique which expedites implicit/input space mapping by taking advantage of the 

coarse and fine model Jacobians.  

 

ADS pipeline

HFSS pipeline

· space mapping 

optimization 

algorithm

· direct optimization

Agilent ADS 

Ansoft HFSS

Blade 1

Ansoft HFSS

Blade 2

Ansoft HFSS

Blade n
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instruction responses

& Jacobians

instruction responses

& Jacobians
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& adjoint 
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Fig. 6. Architecture of the implemented design framework.  
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We present the application of our framework to the design of the TL-based flat 

lens proposed in  [24]. The design framework is implemented in MATLAB. The 

framework consists of space-mapping and direct optimization algorithms, an ADS 

pipeline, an HFSS pipeline and the Agilent ADS and Ansoft HFSS simulators. The 

algorithms send instructions and parameters to the ADS pipeline and collect data from it. 

The ADS pipeline follows the instructions to alter the structure of the ADS design and 

calls the Agilent ADS simulator. The ADS simulator writes responses to a file. The ADS 

pipeline picks up the responses and forwards them to the main algorithm. The ADS 

pipeline is also capable of creating Jacobians of an ADS model using finite differences. 

Similarly, the HFSS pipeline can alter the Ansoft HFSS structures, call the simulator and 

return the responses. Since the adjoint sensitivities are available in HFSS, they are fed to 

the main algorithm directly via the HFSS pipeline. We show in Fig. 6 the architecture of 

the implemented framework.  

In the ADS pipeline, ADS generates a netlist.org file for a schematic file. This 

netlist file contains the design parameters, which can be changed. The simulation in ADS 

is called for the current design parameters by using the following command in MATLAB  

system („hpeesofsim netlist.org‟) 

In the HFSS pipeline, to run HFSS through MATLAB, we export the script 

generated for a specific schematic. This script is then called through the following 

command in MATLAB:  

System(„hfss RunScriptAndExit script.vbs‟). 
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The above command runs the script.vbs which starts the corresponding simulation in 

HFSS. We change the design parameters in script.vbs at each iteration.  

For the parameter extraction process, the MATLAB function fminsearch is used. 

For direct optimization and re-optimizing the surrogate model, we use the fminimax 

function. The function utilizes the Jacobian of the objective function if supplied, 

otherwise it uses finite differences to approximate the Jacobian. In direct optimization, the 

exact Jacobian is available through adjoint sensitivity analysis. In surrogate re-

optimization of the ADS model, finite differences are used. 

The framework takes advantage of clustered blades which enable us to continue 

with direct optimization subroutines at any space-mapping iteration. 

4.6  DESIGN OF TRANSMISSION LINE  METAMATERIAL STRUCTURES 

In this section, we employ the proposed SM optimization algorithm to re-design a 

TL metamaterial structure. In  [24], a compact TL metamaterial superlens has been 

presented which has a refractive index of n = –1 around 1.5 GHz which is within its 

passband. Based on the theory presented in  [24], the authors have shown that with this 

lens they can achieve a sub-diffraction limit resolution. This makes this lens suitable for 

applications requiring strongly confined electromagnetic radiation, such as high 

resolution biomedical imaging or non-destructive testing. 

This metamaterial lens is constructed by loading a microstrip line periodically 

with spiral inductors and interdigital capacitors. Fig. 7(a) shows the patterns created on 

the microstrip line to create these loading elements. The simulated structure in HFSS 

includes four cells cascaded in the longitudinal direction (x-direction in Fig. 7). Perfect E 
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and H walls are applied to the top/bottom walls and the side walls, respectively, to create 

an infinitely large structure in the transverse direction. The shorting vias connecting the 

beginning and the end of the microstrip line to the upper E plane ensure elimination of the 

parallel-plate waveguide mode. Also, the center of each pad shown in Fig. 7(a) is 

connected to the lower E plane to create the required loading inductance combined with 

the spiral inductor. The evaluation of such model takes 3 to 10 hours on a Pentium 4 with 

CPU speed of 3 GHz and with a RAM of 32 GB. 

To show the efficiency of designing this metamaterial lens with the proposed SM 

optimization, we first build a coarse model in ADS (Fig. 8). The coarse model consists of 

interdigital capacitor, spiral inductor, microstrip line and vias inserted on a substrate. To 

model the upper E plane, we inset transmission lines with the same length as in the HFSS 

model and with the free-space characteristic impedance. Then, these transmission lines 

are connected in parallel to the microstrip line with lumped inductors which model the 

vias connecting the microstrip line to the upper E plane at the beginning and the end of 

the structure. Since the structure is infinite in the transverse direction, the equivalent 

circuit model is left open in the transverse direction. The simulation time for this coarse 

model is negligible. 

Since the emphasis here is on the design of metamaterial structures with SM 

optimization, we set our design specifications the same as presented in  [24] while starting 

from a different solution. The specifications are: 

21

21

| | 2 dB        1.45 GHz  1.65 GHz

| | 8 dB       1.3 GHz   and  1.9 GHz

S f

S f f

   

   
                      (12) 
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Fig. 7. (a) Unit cell design with spiral inductor and interdigital capacitor and (b) 

Simulation block for TL metamaterial lens. 
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Fig. 8. Coarse model for the TL metamaterial lens shown in Fig. 1 as implemented in 

ADS. 

TABLE III 

Values of the Parameters in the Fine-model as Reported in  [24] 

Parameter Value 

Diameter of vias (mm) 0.7 

WTL (mm) 7 

W (mm) 12 

r for substrate 2.2 

tanδ for substrate 0.0009 

subH (mm) 3.175 

H (mm) 12 
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TABLE IV 

Solutions Obtained During the Optimization Processes 

Parameter 
(1)
fx  (2)

fx  (3)
fx  dx   

indL (mm) 4.20 5.00 4.40 4.57  

capW

(mm) 
0.12 0.08 0.18 0.25 

 

capL (mm) 1.60 2.20 2.30 2.16  

 

TABLE V 

Values of Implicit Parameters Obtained During the Optimization Process 

Parameter i = 1 i = 2 i = 3 
 

upL (nH) 6.60 5.90 5.75 
 

TLW (mm) 4.20 5.60 5.40 
 

    r  3.00 4.20 4.21 
 

subH (mm) 3.20 2.00 2.10 
 

 

The design parameters are selected to be the length of the spiral inductor and the length 

and width of the interdigital capacitor‟s fingers, i.e,  ind cap cap[ ]Tf L W Lx . The 

implicit parameters that are employed to facilitate a better match between the coarse and 

fine models are the inductance of the upper vias upL , the width of the microstrip lines 

TLW , and the substrate permittivity r  and height subH  in the coarse model, i.e., 

up TL sub[ ]TrL W Hp . 
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frequency (GHz) 

 

Fig. 9. Responses obtained during SM and direct optimization processes 

 

At the initial point, the fine-model response, shown in Fig. 9, is unsatisfactory. 

The shape parameters and properties are (1) [4.2 0.12 1.6]Tf x , which are subject to 

optimization, the same as in  [24]. TABLE III shows these values. The values of ( )i
fx

 
and 

( )i
p  obtained during the optimization process are shown in TABLE IV and TABLE V, 

respectively. After three fine model evaluations, the fine-model response satisfies the 

design specifications of (12).  
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Fig. 9 shows the optimal responses of the fine and surrogate model obtained at 

(10)
fx . This solution is very close to the values presented in  [24], i.e., [4.3 0.2 2.5]T

mm. 

We also use our framework to perform direct optimization of the fine model with 

available HFSS adjoint sensitivities. For the direct fine-model optimization, we use the 

minimax algorithm from MATLAB optimization toolbox in conjunction with the 

Jacobian information provided by HFSS.  The termination criteria for both algorithms are 

objective function change f ≤ 0.01 and step size x ≤0.001 mm. As is shown in Fig. 10, 

by starting from the same initial point, i.e., (1) [4.2 0.12 1.6]Tf x mm, the direct fine-

model optimization satisfies the specifications after four fine-model evaluations while the 

solution of the space mapping optimization satisfies the specifications in three iterations. 

The final solution of the direct fine-model optimization is [4.57 0.25 2.16]T mm. 
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                                                              fine model evaluations 

Fig. 10. Comparison of computed minimax cost function for SM optimization with the 

one obtained for the direct fine model optimization when employing sensitivity 

information for both. 

4.7 CONCLUSION 

We proposed an algorithm for the integration of sensitivity analysis with SM 

optimization. It is shown through an example that the number of fine-model evaluations is 

reduced compared to direct optimization, even when using Jacobian information in the 

direct optimization process and starting from the optimum coarse-model solution. The 

proposed algorithm also converges in fewer fine- model evaluations than other space-

mapping methodologies. The availability of parallel processing makes the combination of 

space mapping and direct optimization more interesting as direct optimization can be 

performed by starting from different points obtained from space mapping optimization 

independently. We also present a sensitivity-enabled design framework. The framework 
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features the adjoint-accelerated space mapping and direct optimization that utilize fine 

model adjoint sensitivity information. We use the framework to design a TL flat lens. 

This provides a fast and reliable tool to optimize the shape parameters of the novel 

structures 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 VECTORIAL 3D MICROWAVE HOLOGRAPHY 

In this thesis, a vectorial 3D near-field microwave holography is proposed which 

is an improvement over the existing holography algorithms. This new algorithm allows 

for the processing of co- and cross- polarized field measurements. It is shown that in 

order to reconstruct correctly the shape and contrast-function distribution of an object this 

information is necessary. 

It is possible to further improve the quality of the acquired images while retaining 

real-time performance by: (i) using chirp-pulse signals similar to chirp-pulse computed 

tomography, (ii) a hybrid algorithm which exploits both sensitivity-based detection and 

holography, (iii) modifying the algorithm to be applicable to detection of metallic objects, 

(iv) modifying the algorithm to be applicable to heterogeneous background, (v) 

considering the radiation pattern of the antennas, (vi) noise-cancelation algorithms. 

Beside the possibilities to improve the quality of the holography algorithm, it is 

crucial to design new sensors which are more sensitive to the reflected signal. Without a 

decent reflection signal, as is mentioned in the thesis the algorithm does not perform well. 

5.2 IMAGE QUALITY ENHANCEMENT IN MICROWAVE RASTER SCANNING 

TECHNIQUE 

In this thesis, a simple and fast post-processing algorithm based on the principle of 
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blind de-convolution is proposed for removing the integration effect of the antenna 

aperture. This allows for the data collected by the antennas to be used in 3D holography 

reconstruction. The blind deconvolution algorithm is a well-known algorithm in signal 

processing and our contribution here is its adaptation to microwave data processing. 

For future investigation, finding robust methods, which do not need a time 

consuming simulation is needed for PSF estimation. Here, we use the simulation which 

may not exactly model the measurement setup very accurately. A possible way is to use 

the field distribution on the antenna aperture to estimate the PSF. This can be done with 

measurement at different frequencies using the electric field probes.  

5.3 ACCELERATING SPACE MAPPING OPTIMIZATION WITH ADJOINT 

SENSITIVITIES 

In this thesis, an algorithm which exploits the advantages of both the response 

sensitivities and space mapping is proposed. The algorithm uses the response sensitivities 

with respect to the design parameters and the implicit space mapping. 

Further investigation on approximating the Hessian matrix through space mapping 

is needed. The Hessian of network parameters could also be efficiently estimated using 

space mapping and sensitivity analysis. In addition, a hybrid algorithm which exploits 

both space mapping and direct optimization is promising.  

It is also a worthwhile to investigate response sensitivities in parameter extraction 

and in surrogate modeling. 

On the application side, the design and the optimization of antennas and 

metamaterial structures deserve more investigation.  Contrary to metamaterial structures, 
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where a good coarse model is available, finding a good coarse model for antennas is still 

challenging. Developing 2D codes with approximations for the Green function of the 

medium and a coarse mesh may provide a solution. 
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APPENDIX 

ITERATIVE BLIND DECONVOLUTION MATLAB CODE 
 

% In this function you need to supply psf which is your initial guess, x which is your 

blurred data and an integer number for number of iteration (around 100). When you run 

the program it will give you S which is the unburned data and an integer number r.  You 

have to run the program again and put m= r.  

% Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Iterative Blind Deconvolution 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function[r,S]=IBD(x,psf,m) 

for i=1:m 

psfnew=psf; % updating the PSF 

S=direct(x,psfnew,1); % first deconvolution, direct function  is a direct deconvolution 

S=S/norm(S); % normalizing the data 

psf=direct(x,S,1); % second deconvolution 

u(i)=[norm(conv2(psf,S)-x)]; % estimation of error 

r=find(u==min(u)); % finding the best number of iterations 

function J =direct(varargin) % this function is Wiener deconvolution from MATLAB 
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[I, PSF, ncorr, icorr, sizeI, classI, sizePSF, numNSdim] = ... 

parseInputs(varargin{:}); 

H = psf2otf(PSF, sizeI); 

if isempty(icorr) 

    % noise-to-signal power ratio is given 

    S_u = ncorr; 

    S_x = 1; 

    else  

    % noise & signal frequency characteristics are given 

    NSD = length(numNSdim); 

     

    S_u = powerSpectrumFromACF(ncorr, NSD, numNSdim, sizePSF, sizeI); 

    S_x = powerSpectrumFromACF(icorr, NSD, numNSdim, sizePSF, sizeI); 

end 

% Compute the denominator of G in pieces. 

denom = abs(H).^2; 

denom = denom .* S_x; 

denom = denom + S_u; 

clear S_u 

denom = max(denom, sqrt(eps)); 

G = conj(H) .* S_x; 

clear H S_x 

G = G ./ denom; 

clear denom 
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% Apply the filter G in the frequency domain. 

J = ifftn(G .* fftn(I)); 

clear G 

% If I and PSF are both real, then any nonzero imaginary part of J is due to 

% floating-point round-off error. 

if isreal(I) && isreal(PSF) 

    J = real(J); 

 end 

% Convert to the original class  

if ~strcmp(classI, 'double') 

    J = changeclass(classI, J); 

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

nx=size(J); 

np=size(PSF); 

nm1=nx(1)-np(1)+1; 

nm2=nx(2)-np(2)+1; 

n1x=(nx(1)-nm1)/2; 

n2x=(nx(2)-nm2)/2; 

warning off 

 J=J(n1x+1:n1x+nm1,n2x+1:n2x+nm2); 

%===================================================================== 

function S = powerSpectrumFromACF(ACF, NSD, numNSdim, sizePSF, sizeI) 

sizeACF = size(ACF); 
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if (length(sizeACF)==2) && (sum(sizeACF==1)==1) && (NSD>1) 

    ACF = createNDfrom1D(ACF,NSD,numNSdim,sizePSF); 

end 

% Calculate power spectrum 

S = abs(fftn(ACF,sizeI)); 

%--------------------------------------------------------------------- 

%===================================================================== 

function [I, PSF, ncorr, icorr, sizeI, classI, sizePSF, numNSdim] = ... 

    parseInputs(varargin) 

ncorr = 0; 

icorr = []; 

iptchecknargin(2,4,nargin,mfilename); 

input_names={'PSF','NCORR','ICORR'}; 

I = varargin{1};%        deconvwnr(A,PSF) 

PSF = varargin{2}; 

switch nargin 

  case 3,%                 deconvwnr(A,PSF,nsr) 

    ncorr = varargin{3}; 

  case 4,%                 deconvwnr(A,PSF,ncorr,icorr) 

    ncorr = varargin{3}; 

    icorr = varargin{4}; 

end 

% Third, Check validity of the input parameters:  

% Input image I 
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sizeI = size(I); 

classI = class(I); 

% iptcheckinput(I,{'uint8','uint16','int16','double','single'},{'real' ... 

%                      'finite'},mfilename,'I',1); 

if prod(sizeI)<2, 

    eid = sprintf('Images:%s:mustHaveAtLeast2Elements',mfilename); 

    error(eid,'In function %s, input image must have at least two elements.', ... 

          mfilename); 

elseif ~isa(I,'double') 

    I = im2double(I); 

end 

 

% PSF array 

sizePSF = size(PSF); 

if prod(sizePSF)<2, 

    eid = sprintf('Images:%s:mustHaveAtLeast2Elements',mfilename); 

    error(eid,'In function %s, PSF must have at least two elements.', ... 

          mfilename); 

elseif all(PSF(:)==0), 

    eid = sprintf('Images:%s:psfMustNotBeZeroEverywhere',mfilename); 

    error(eid,'In function %s, PSF cannot be zero everywhere.', ... 

          mfilename); 

end 

% NSR, NCORR, ICORR 
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if isempty(ncorr) && ~isempty(icorr), 

    eid = sprintf('Images:%s:invalidInput',mfilename); 

    error(eid, ... 

          'Invalid input in function %s: provide characteristics for noise.', ... 

          mfilename); 

end 

 

% Sizes: PSF size cannot be larger than the image size in non-singleton dims 

[sizeI, sizePSF, sizeNCORR] = padlength(sizeI, sizePSF, size(ncorr)); 

numNSdim = find(sizePSF~=1); 

if any(sizeI(numNSdim) < sizePSF(numNSdim)) 

    eid = sprintf('Images:%s:psfMustBeSmallerThanImage',mfilename); 

    error(eid, ... 

          'In function %s, size of the PSF must not exceed the image size in any nonsingleton 

dimension.', mfilename); 

end 

if isempty(icorr) && (prod(sizeNCORR)>1) && ~isequal(sizeNCORR,sizeI) 

    eid = sprintf('Images:%s:nsrMustBeScalarOrArrayOfSizeA',mfilename); 

    error(eid, ... 

          'DECONVWNR(A,PSF,NSR): NSR has to be a scalar or an array of size A.'); 

end 

%--------------------------------------------------------------------- 

function f = createNDfrom1D(ACF,NSD,numNSdim,sizePSF) 

cntr = ceil(length(ACF)/2);%location of the ACF center 
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vec = (0:(cntr-1))/(cntr-1); 

[x,y] = meshgrid(vec,vec);% grid for the quarter 

     % 2. Calculate radius vector to each grid-point and number the points 

% above the diagonal in order to use them later for ACF interpolation. 

radvect = sqrt(x.^2+y.^2); 

nums = [1;find(triu(radvect)~=0)]; 

% 3. Interpolate ACF at radius-vector distance for those points. 

acf1D = ACF(cntr-1+[1:cntr cntr]);% last point is for the corner. 

radvect(nums) = interp1([vec sqrt(2)],acf1D,radvect(nums)); 

% 4. Unfold 45 degree triangle to a square, and then the square 

% quarter to a full square matrix. 

radvect = triu(radvect) + triu(radvect,1).'; 

acf = radvect([cntr:-1:2 1:cntr],[cntr:-1:2 1:cntr]); 

   

% Second, once 2D is ready, extrapolate 2D-ACF to NSD-ACF 

if NSD > 2,% that is create volumetric ACF 

    idx0 = repmat({':'},[1 NSD]); 

    nextDimACF = []; 

    for n = 3:NSD,% make sure not to exceed the PSF size 

        numpoints = min(sizePSF(numNSdim(n)),length(ACF)); 

        % and take only the central portion of 1D-ACF 

        vec = cntr-ceil(numpoints/2)+(1:numpoints); 

        for m = 1:numpoints, 

            idx = [idx0(1:n-1),{m}]; 
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            nextDimACF(idx{:}) = ACF(vec(m))*acf; %#ok<AGROW> 

        end; 

        acf = nextDimACF; 

    end 

end 

% Third, reshape NSD-ACF to the right dimensions to include PSF 

% singletons. 

idx1 = repmat({1},[1 length(sizePSF)]); 

idx1(numNSdim) = repmat({':'},[1 NSD]); 

f(idx1{:}) = acf; 

%--------------------------------------------------------------------- 

function varargout = padlength(varargin) 

numDims = zeros(nargin, 1); 

for k = 1:nargin 

    numDims(k) = length(varargin{k}); 

end 

numDims = max(numDims); 

limit = max(1,nargout); 

varargout = cell(1,limit); 

for k = 1 : limit 

    varargout{k} = [varargin{k} ones(1,numDims-length(varargin{k}))]; 

end 
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